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Abstract

On the temperature derivative market, modeling temperature volatility is an important
issue for pricing and hedging. In order to apply pricing tools of financial mathematics, one
needs to isolate a Gaussian risk factor. A conventional model for temperature dynamics
is a stochastic model with seasonality and inter temporal autocorrelation. Empirical work
based on seasonality and autocorrelation correction reveals that the obtained residuals are
heteroscedastic with a periodic pattern. The object of this research is to estimate this het-
eroscedastic function so that after scale normalisation a pure standardised Gaussian variable
appears. Earlier work investigated this temperature risk in different locations and showed that
neither parametric component functions nor a local linear smoother with constant smoothing
parameter are flexible enough to generally describe the volatility process well. Therefore, we
consider a local adaptive modeling approach to find at each time point, an optimal smoothing
parameter to locally estimate the seasonality and volatility. Our approach provides a more
flexible and accurate fitting procedure of localised temperature risk process by achieving ex-
cellent normal risk factors. We also employ our model to forecast temperature in different
cities and compare it to a model developed by Diebold and Inoue.

Keywords: Weather derivatives, localising temperature residuals, seasonality, local model selection
JEL classification: G19, G29, G22, N23, N53, Q59

1 Introduction

Pricing of contingent claims based on stochastic dynamics for example stocks or FX rates is well
known in financial engineering. An elegant access of such a pricing task is based on self-financing
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replication arguments. An essential element of this approach is the tradability of the underlying.
This however does not apply to weather derivatives contingent on temperature or rain since the
underlying is not tradable. In this context, the proposed pricing techniques are based on either
equilibrium ideas (Horst and Mueller (2007)) or econometric modelling of the underlying dynamics
Campbell and Diebold (2005) and Benth, Benth and Koekebakker (2007) followed by risk neutral
pricing.

The equilibrium approach relies on assumptions about preferences (with explicitly known func-
tional forms) though. In this study we prefer a phenomenological approach since the underlying
(temperature) we consider is of local nature and our analysis aims at understanding the pricing
at different locations and different time points around the world. Such a time series approach has
been taken by Benth et al. (2007), who corrects for seasonality (in mean), then for intertemporal
correlation and finally as in Campbell and Diebold (2005), for seasonal variation in volatility. After
these manipulations, a Gaussian risk factor needs to be isolated in order to apply continuous time
pricing techniques, Karatzas and Shreve (2001).

Empirical studies following this econometrical route show evidence that the resulting risk factor
deviates severely from Gaussianity, which in turn challenges the pricing tools, Benth, Héardle and
Lopez Cabrera (2011). In particular, for Asian cities, like for example Kaohsiung (Taiwan), one
observes very distinctive non-normality in the form of clearly visible heavy tails caused by extended
volatility in peak seasons. This is visible from Figure[I] where a log density plot reveals a nonnormal
shoulder structure (kurtosis= 3.22, skewness= —0.08, JB= 128.74).
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Figure 1: Kernel density estimates (left panel), Log normal densities (middle panel) and QQ-plots
(right panel) of normal densities (gray lines) and Kaohsiung standardised residuals (black line)

As in Benth et al. (2007) temperature 7} is decomposed into a seasonality term A; and a stochastic
part with seasonal volatility o;.

The fitted seasonality trend A; and seasonal variance o7 are approximated with Fourier series (and



an additional GARCH term):
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The upper panel of Figure [2] displays the seasonality and deseasonalised residuals over two years
in Kaohsiung. The lower panel RHS displays the empirical and seasonal variance function, while
the lower panel LHS shows the smoothed seasonal variance function over years. The series expan-
sion , failed though in the volatility peak seasons. Even incorporating an asymmetry term
for the dip of temperature in winter does not improve the closeness to normality.

One may of course pursue a fine tuning of (1) and with more and more periodic terms but this
will increase the number of parameters. We therefore propose a local parametric approach. The
seasonality Ag and o, are approximated with a Local Linear Regression (LLR) estimator:

argminZ{Tt—es—fs(t—s)}2K<t;LS> (3)

e f t=1

365
t —
arg min g {é?—gs—vs(t—s)}2K< h8> (4)
Gv =1

where T} is the mean (over years) of daily averages temperatures, 2 the squared residual process
(after seasonal and intertemporal fitting), h the bandwidth and K () is a kernel. Note, that due to
the spherical character of the data, the kernel weights in , may be calculated from “wrapped
around observations” thereby avoiding bias. The estimates AS, 62 are given by the minimizers é,,
g, of , . The upper panel of Figure [2| shows the seasonality in mean and the bottom panel
on the RHS the volatility estimated with Fourier series and local linear regression using the quartic
kernel. We observe high variance in winter and early summer and low variance in spring and late
summer.

The scale correction of the obtained residuals (after seasonal and intertemporal fitting) is appar-
ently not identical over the year. A very structured volatility pattern up to April is followed by
a moderately constant period until an increasing peak starting in September. This motivates our
research to localise temperature risk. The local smoothness of o7 is of course not only a matter
of one location (here Kaohsiung) but varies also over the different cities around the world that we
are analysing in this study. Our study is local in a double sense: local in time and space. We
use adaptive methods to localise the underlying dynamics and with that being able to achieve
Gaussian risk factors. This will justify the pricing via standard tools that are based on Gaussian
risk drivers. The localisation in time is based on adjusting the smoothing parameter h. For a
general framework on local parametric approximation we refer to Spokoiny (2009). As a result we
obtain better approximations to normality and therefore less biased prices.

This paper is structured as follows. Section 2 describes the localising approach. In section 3, we
present the data and conduct the analysis to different cities. Section 4 presents a forecasting exer-
cise and the following section is devoted to an application where the pricing of weather derivative
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contract types is presented. Section 6 concludes the paper. All quotations of currency in this paper
will be in USD and therefore we will omit the explicit notion of the currency. All the CAT bond
computations were carried out in Matlab version 7.6 and R. The temperature data for different
cities in US, Europe and Asia were obtained from the National Climatic Data Center (NCDC), the
Deutscher Wetterdienst (DWD), Bloomberg Professional Service and the Japanese Meteorological
Agency (JMA).

2 Model

Let us change our notation from t — (¢,7), with ¢ = 1,...,7 = 365 days, 7 =0,...,J years. The
time series decomposition we consider is given as:

Xagsjrt = Tpj— My,

L
X355+t = E Bij X36554t—1 + ¢,
I=1

é?t,j = Ottt
etvj ~ N(071)7
L
Etj = X365j+t—25sz365j+t_z7 (5)

=1

where T, ; is the temperature at day ¢ in year j, A; denotes the seasonality effect and o; the seasonal
volatility. Motivation of this modeling approach can be found in Diebold and Inoue (2001). Later
studies like e.g. Campbell and Diebold (2005) and Benth et al. (2007) have provided evidence that
the parameters (3, are likely to be j independent and hence estimated consistently from a global
autoregressive process model AR(L;) with L; = L. Since the stylised facts of temperature are
re-occurring every year, our focus is on flexible estimation of A; and o2, see Figure .

The seasonal trend function A; and the seasonal variance function o? affect the Gaussianity of

the resulting normalised residuals. The commonly used approaches 1. truncated Fourier series, 2.
local polynomial regression are both too restrictive and do not fit the data well since they are not
yielding normal risk factors. These observations motivate us to consider a more flexible approach.
The main idea is to fit a simple parametric model locally for the trend and variance with adaptively
chosen window sizes. Specifically, we use kernel smoothing and adopt an adaptive technique to
choose the bandwidth over days. Other examples of this technique can be found in Cizek, Hardle
and Spokoiny (2009) and Chen, Hérdle and Pigorsch (2010).

2.1 How does the adaptation work?

The time series 7} ; are approximated at a fixed time point s € [1,365]. Our goal is to find a local
window that follows certain optimality properties to be defined below. Specifically, for a specified
weight sequence, we conduct a sequential LRT to choose an appropriate bandwidth. Different
procedures of estimating seasonality and volatility are studied. Suppose that the object to be
approximated is the seasonal variance 0(t) = {0?}. A weighted maximum likelihood approach is



given by:

05 (s) & arg max L{W*(s),0}
0cO
365

= arg mmZZ{log (270) /2 + &7 ;/20}w(s, t, hy), (6)

oo o

with the “localising scheme” W¥(s) = {w(s, 1, hy),w(s, 2, hy), ..., w(s, 365, hy)} ', where w(s, t, hy) =
h'K{(s—t)/h}, k=1,...,K, hy < hy < h3 < ... < hy the prescribed sequence of bandwidths,
and K(u) =15/16(1 — u*)?I(|u] < 1) (quartic kernel).

The explicit solution of (@ is given by:

ng sthk/Zwsthk
_th sthk/Zwsthk

with

J
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From a smoothing perspective we are in a comfortable situation here since the boundary bias
is not an issue, as we are dealing with a periodic function 6(t) = 6(t + 365). We use mirrored
observations: assume hyx < 365/2, then the observation set, for example for the seasonal volatility,

is extended t0 €2 45, %565, - - -, €5, 7, - - ., E299, Where
~2 def 12
€ = E36541 —204 <t <0,

242 366 <t<T730.

Since the location s is fixed, we drop s for the simplicity of notation.

For ¢ < k, the accuracy of the estimation is measured by the fitted likelihood ratio (LR):
LW, 0,,0,) %< LW, 6,) — LW, 6y). (7)

The volatility o, or trend A; estimation happens within an exponential family, so LR can be written
in closed form, Polzehl and Spokoiny (2006):

L(W*, 0,67) = NeK (6, 07)
= —{log(0x/0") + 1 — 0" /0,}/2, (8)

where N = J 320% w(s, t, hy) and K(6y, 0%) is the Kullback-Leibler divergence between two normal
distributions with variances 05 and 6*. Note that is the divergence in the volatility case. For
trend estimation, it has to be replaced by (6, — 6%)/(202).



The Kullback-Leibler divergence of two distributions with densities p(x) and ¢(z) is defined as:

K {p(2). q(x)} 2 E ) log % ©)

To guarantee the feasibility of the tests, we need moment bounds and confidence sets for LR, which
guarantee that the MLE is concentrated in the level set of the likelihood ratio process around the
true parameter. For the volatility case, see Polzehl and Spokoiny (2006); for the trend case, see
Mercurio and Spokoiny (2004).

Theorem 2.1 [Spokoiny (2009)] Assuming that 0(t) = 0% for any t € [1,365], then for 3 > 0 and
kel,...,K,r>0, denote Py«(.) as the measure corresponding to (@ We obtain:

Po- { LOW*,0,,6%) > 3} < 2exp () (10)
and a risk bound for a power loss function:

E - |[L(WE 6, 07| <t (11)

where v, = 2r L>0 3" Yexp(—3)d3. This polynomial bound applies to all localising schemes W*
simultaneously.

The risk bound allows us to define likelihood based confidence sets since together with it
tells us that the likelihood process is stochastically bounded. Define therefore confidence sets with
critical values 35 to level a:

@mk = {9 . L(Wk,ék,ﬁ) S ﬁk} (12)
Equipped with confidence sets , we launch the Local Model Selection (LMS) algorithm:

Fix a point s € {1,2,...,365}.

Start with the smallest interval hy: él = 0~1

For k > 2, ék is accepted and ék = ék if ék,l was accepted and éz € Eup,VW=1... k-1,
le.

LOW* 0,,0,) <3090=1,... k—1.
Otherwise, set ék = ék,l, where ék is the latest accepted after first k& steps.

Define k as the kth step we stopped, and 0, = éiw (> k.

The LMS algorithm is illustrated in Figure [3| For every estimate 0), the corresponding confidence
set is shown. If the horizontal line originating 6, does not cross all the preceding intervals then
the selection algorithm terminates.

A further integrated approach is to consider an iterative algorithm to cope with heteroscedastic-
ity in the corrected residuals after seasonality in mean and variance component varies between
estimating the seasonal component and the variance 6(t) = {A;, 0?}. The procedure is:

7
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Figure 3: Localised model selection (LMS)

Step 1. Estimate B in an initial A? using a truncated Fourier series or any other deterministic func-
tion;

Step 2. For fixed A,, = {AS s A;V}T, s ={1,...,365} from last step v, and fixed j3, get 62,41 by

365
fyﬂ = arg mlnz Z {Ts65j+¢ — A.lsl,u(t - 5)
t=1 5=0
L
- Z BiXs65541-112/20% + log(2m0?) /2)w(s, t, h},);

=1

Step 3. For fixed &iyﬂ and 3, we estimate /A\S,Z,H, s = {1,...,365} via another local adaptive pro-
cedure:
365 J L )
As wv+1 = arg mmz Z {T365j+t A — A” Z X365J+H} w(s, t, h;f)/Z&?,yH,

{A’ AH}T =1 j=0
where {h, hl, by, ..., Wy} is a sequence of bandwidths;

Step 4. Repeat steps 2 and 3 till both |A;,+1 — A, | < 7 and |67,,, — 62,| < m for some constants
7 and 5.

Our empirical implementation suggests that one iteration is enough.

The LMS methods requires critical values 3, which define the significance for the LRT statistics
L(W?*,8,,0)) or alternatively speaking the length of the confidence interval (see ) at each step.
The critical values are calibrated from the “propagation condition” below which ensures a desired
level of type one error. To be more specific, for every step k, define ék as the “survived estimator”
after the kth step (if the estimator is not rejected up to step k, then 0, = Hk, else if the estimator
has been rejected at step [ < k, then Qk = 01) Measure the closeness of Qk and Qk by:

Eo-|[L(WF, 0,0, < ar, (13)




for k =1,..., K with v, the parametric risk bound in and « a control parameter corresponding
to the type one error. In fact

Eg* L(Wk, ék, ék)’T — P@* (ék # ék)

for » — 0, therefore o can be interpreted as a false alarm probability.

More precisely if step k is accepted as described in Figure [3] then 6, = 6), and the nonzero loss
Eg« L(W* 0, 0,) can only occur if the estimator has been rejected before or at step k, which under
the homogeneous parametric model case, is denoted as “false alarm”.

With the “propagation condition” below, critical values are constructed.

e Consider first 3; and let 3o = 33 = ... = 351 = co. This leads to the estimates ék(gl) and
the value 3; is selected as the minimal one for which
sup E - |L{W*, 0y, 0p(61)}] < —"— k =2,... K. (14)
0* K - 1
e Suppose 3i,...,3k-1 have been fixed, and set 3, = ... = jx-1 = oo. With estimate

Om(31,---,3x) form=Fk+1,..., K. select 3; as the minimal value which fulfills

. kae,
SupEe*‘L(Wmaemvem<517"'73]?))‘T < (15)
g K—-1
form=k+1,..., K.
Inequality describes the impact of the k critical values to the risk, while the factor [ffl in

ensures that every 3; has the same impact. The values of («,r, hy, ..., hx) are prespecified
hyper-parameters of which robustness and sensitivity issues will be discussed in Section 3. The
following theorem provides insight into the form of 3.

Theorem 2.2 [Spokoiny (2009)] Suppose that 0 < hx_1/hi, < 1 and 0(t) = 6* for all t € [0, 365].
An upper bound for the critical values 3 1s given by:

3k = aplog K + 2log(nhy/a) + 2rlog(hy [ hy)
where ag > 0 1s a constant.

A risk bound for a global model (6(¢) = 6*) has been given in (13). This may now be extended to
the nonparametric setting via the “Small Modeling Bias (SMB)” condition:

365
AO) =S K(0:,0) Huw(s, b, he) > 0} < A, Vk < k) (16)

t=1

where k* is the maximum k satisfying (16]), also called “oracle”.

The estimation risk for the function (¢) is described for k < k* by the “propagation” property:
E oy log{1+ |[LW" 61, 0,)"/t.} < A +a. (17)



An estimate for k* is desired. The adaptive estimate 9 will in fact enjoy this property as we
show below. The estimate 49 behaves similarly to the oracle estimate 0, since it is “stable” in the
sense that even if the described selection scheme overshoots k*, the resulting estimate Qk is still

close to the oracle 0)-. This may be expressed as that the attained quality of estimation during
“propagation” is not lost at further steps:

LW e, 0) Tk > k*} < 31

A combination of the propagation and stability property then leads to the “oracle” property:

L(W* 0y, 0)|"
Eg(.)log{1+| (V2. 6k, 6) }§A+1,
X,
LW, 0, 0,)]"
Eg(,)log{1+| ( ’tk’ 3l }SA—FOz—l—log{l—i—&}

for 0 € © with A(W* 0) < A and k < k*. This means that the risk of estimating adaptively is
composed into three parts: the SMB, the false alarm rate and a small term corresponding to the
overshooting risk.

3 Empirical analysis

We conduct an empirical analysis of temperature patterns over different cities (Figure . The
data set contains daily average temperatures for different cities in Europe, Asia and US: Atlanta,
Beijing, Berlin, Essen, Houston, Kaoshiung, New York, Osaka, Portland, Taipei, Tokyo. The
summary of the data and characteristics can be seen in Table

-
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Figure 4: Map of locations where temperature are collected

We first check seasonality, intertemporal correlation and seasonal variation. Table [2| provides the
coefficients of the Fourier truncated seasonal function for some cities for different time periods.
The coefficient a can be seen as the average temperature, the coefficient b as an indicator for global
warming. The latter coefficients are stable even when the estimation is done in a window length
of 10 years. In the sense of capturing volatility peak seasons, the left panel of Figure [5| visualizes
the power of capturing volatility peak seasons by the seasonal local smoother using the quartic
kernel over the estimates modeled under Fourier truncated series .
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City Period ADF KPSS AR(3) CAR(3)

7Tk b1 B2 B3 a1 Qo as
Atlanta 19480101-20081204 -55.55+ 0.21*** 0.96 -0.38 0.13 2.03 1.46 0.28
Beijing 19730101-20090831 -30.75+ 0.16*** 0.72 -0.07 0.05 2.27 1.63 0.29
Berlin 19480101-20080527 -40.94+ 0.13** 0.91 -0.20 0.07 2.08 1.37 0.20
Essen 19700101-20090731 -23.87+ 0.11* 0.93 -0.21 0.11 2.06 1.34 0.16
Houston 19700101-20081204 -38.174+ 0.05* 0.90 -0.39 0.15 2.09 1.57 0.33
Kaohsiung 19730101-20091210 -37.96+ 0.05* 0.73 -0.08 0.04 226 1.60 0.29
New York 19490101-20081204 -56.88+ 0.08* 0.76 -0.23 0.11 2.23 1.69 0.34
Osaka 19730101-20090604 -18.654 0.09* 0.73 -0.14 0.06 2.26 1.68 0.34
Portland  19480101-20081204 -45.13+ 0.05* 0.86 -0.22 0.08 2.13 1.48 0.26
Taipei 19920101-20090806 -32.824 0.09* 0.79 -0.22 0.06 220 1.63 0.36
Tokyo 19730101-20090831 -25.934 0.06* 0.64 -0.07 0.06 235 1.79 0.37

Table 1: ADF and KPSS-Statistics, coefficients of the autoregressive process AR(3) and continuous
autoregressive model C'AR(3) model for the detrended daily average temperatures time series for
different cities. +0.01 critical values, * 0.1 critical value, **0.05 critical value, ***0.01 critical
value.

City Period a b 61 d1 62 dg 63 d3
Berlin (19480101-20080527) 9.2173 0.0000 9.8932 -157.9123 0.2247 261.2850 0.1591 -127.7303
(19730101-20080527) 9.3050 0.0001 10.0070 -161.2493 0.4601 -66.0530 -0.3723 -416.4776
(19730101-20080527) 9.3050 0.0001 10.0070 -161.2493 0.4601 -66.0530 -0.3723 -416.4776
(19830101-20080527) 9.4581 0.0001 10.0969 -161.7129 0.5205 -51.9929 0.3734  42.0874
(19930101-20080527)  9.5923 0.0002 10.1995 -162.9774 0.6564 -37.1548 0.4241  41.9970
(20030101-20080527) 9.6948 0.0007 10.1954 -162.3343 0.5554 -43.2293 0.3269 1.5998
Kaohsiung (19730101-20081231) 24.2289 0.0001 0.9157 -145.6337 -4.0603 -78.1426 -1.0505  10.6041
(
(
(
(
(
(

19730101-19821231) 24.4413 0.0001 2.1112 -129.1218 -3.3887 -91.1782 -0.8733  20.0342
25.0616 0.0003 2.0181 -135.0527 -2.8400 -89.3952 -1.0128  20.4010
19930101-20021231) 25.3227 0.0003 3.9154 -165.7407 -0.7405 -51.4230 -1.1056  19.7340

)
)
)
)
)
)
)
)
19830101-19921231)
)
19490101-20081204) 53.1473 0.0001 18.6810 -143.4051 -3.3872 271.5072 -0.4203 -16.3125
)
)
)
)
)
)
)
)
)
)

New-York
19730101-20081204) 53.6992 0.0001 18.0092 -148.4124 -3.5236 279.6876 -0.4756 -21.8090
19730101-19821204) 53.6037 -0.0000 17.7446 -155.2453 -3.7769 289.7932 -0.8326  -4.2257
(19830101-19921204) 54.8740 -0.0003 17.6924 -152.7461 -3.4245 284.6412 -0.4933 -218.9204

53.8050 0.0003 17.6942 -153.3997 -3.4246 285.7958 0.5753 -315.2792

52.9177 0.0012 17.8425 -151.2977 -3.8837 287.2022 -0.1290 -216.7298

15.7415 0.0001 8.9171 -162.3055 -2.5521 -7.8982 -0.7155 -15.0956

15.8109 0.0001 9.2855 -162.6268 -1.9157 -16.4305 -0.5907 -13.4789

15.4391 0.0004 9.4022 -162.5191 -2.0254 -4.8526 -0.8139 -19.4540

16.4284 0.0001 8.8176 -162.2136 -2.1893 -17.7745 -0.7846 -22.2583

16.4567 0.0001 8.5504 -162.0298 -2.3157 -18.3324 -0.6843 -16.5381

19930101-20021204
20030101-20081204

(

(
Tokyo (19730101-20081231
(19730101-19821231
(19830101-19921231
(19930101-20021231
(

20030101-20081231

Table 2: Seasonality estimates Ay of daily average temperatures in Asia. All coefficients are nonzero
at 1% significance level. Data source: Bloomberg.
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Figure 5: The empirical (black line), the Fourier truncated (dotted gray line) and the the local
linear (gray line) seasonal mean (left panel) and variance component (right panel) using Quartic
kernel and bandwidth h = 4.49.
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City Corrected residuals with Fourier ;—t— | Corrected residuas with Local smoother ~—=t—

JB Kurtosis Skewness KS — AD JB Kurtosis Skewness KS 'AD
Berlin 304.77 3.54 -0.08 0.01 7.65 279.06 3.52 -0.08 0.01 7.29
New-York  403.39 3.47 -0.23 0.02 23.22 375.50 3.45 -0.228 0.02 21.74
Kaohsiung 2753.00 4.68 -0.71 0.06 79.93 | 2252.50 4.52 -0.64 0.06 79.18
Tokyo 133.26 3.44 -0.10 0.02 8.06 148.08 3.44 -0.13 0.02 10.31

Table 3: Skewness, kurtosis, Jarque Bera (JB), Kolmogorov Smirnov (KS) and Anderson Darling
(AD) test statistics (365 days) of corrected residuals.

After removing the local linear seasonal mean from the daily average temperatures (X; =
Ti — A Lvn), we check that X, is a stationary process with the Augmented Dickey-Fuller (ADF)
and the KPSS tests. The analysis of the partial autocorrelations and Akaike’s Information criterion
(AIC) suggest that a simple AR(3) model fits the temperature evolution well. Table |I| presents
the results of the stationarity tests as well as the coefficients of the fitted AR(3). The empirical
seasonal variation (square residuals after seasonal and intertemporal fitting), the seasonal variation
curves (2) and (4) are displayed on the right panel in Figure [5| while the descriptive statistics for
the residuals after correcting by seasonality are given in Table 3] Both seasonal volatility estimators
lead to heavy tail distributions of corrected residuals and negative skewness.

The adjustment in the smoothing parameter h will provide the localisation in time. The band-
width sequences are selected from four candidates: (3,5,7,9,11,13,15), (3,5,8,12,17,23,30),
(5,7,10,14,19,25,32), (7,9,11,14,17,10,24). The candidates are chosen according to the low-
est Anderson Darling statistic. The best candidate for bandwidth sequence is that one that yields
a residual distribution close to normality. Smoothing the bandwidths selected at discrete points,
gives yet another adaptive estimator.

The critical values (CV) as calibrated from and are given in Figure [6] The left side
provides CVs simulated from a sample of 10® observations for a quartic kernel for both mean and
volatility with 6* = 1, r = 0.5 and different values of significance level a. The CVs for different
bandwidth sequences are displayed in the right side of Figure [fl The CVs, as one observes, are
insensitive to the choice of r and a.

A one year short period is considered in the first place for demonstration purpose, while later we
show how the results change with different time length periods. Figures [7] [§] [9] and [I0] present
general results for different cities under different adaptive localising schemes for seasonal mean
(Me) and seasonal volatility (Vo): with fixed bandwidth curve (fi), adaptive bandwidth curve
(ad) and adaptive smoothed bandwidth (ads) for different time intervals. The seasonal mean is
estimated jointly over the years, using a = 0.3 and power level » = 0.5. The upper panel of each
volatility plot on Figures shows the sequence of bandwidths and the smoothed bandwidth;
the bottom panel displays the variance estimation with fixed bandwidth (dashed line), smoothed
adaptive bandwidth (dotted line) and adaptive bandwidth (dot-dashed line). In all countries, one
observes significant differences between the estimates. When smoothing the discrete bandwidths
over time, the estimated variance curves are smoother. In particular, in cities like Kaohsiung and
New York, one observes more variation of the seasonal variance curves during peak seasons (winter
and summer times). The triangles and circles in the bottom panel of each volatility plot helps
us to trace the source of non-normality over time, since they corresponds to 10 dots of the upper
and lower tails of the QQ-plots of square residuals respectively (see Figure [11] for Berlin results).
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Figure 6: Simulated CV for likelihood of seasonal volatility @ with 6* =1, r = 0.5, MC = 5000
with o = 0.3 (gray dotted line), 0.5 (black dotted line), 0.8 (dark gray dotted line) (left), with
different bandwidth sequences (right).

Left top plots of Figures show the mean case. Different from the seasonal variance function,
we do not observe a big variation of smoothness in the mean function. One can see that in all
cities, the bandwidths are varying over the yearly cycle with a slight degree of non homogeneity
for Kaoshiung.
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An approach to cope with the non normality brought in by more observations is to estimate
mean functions year by year (SeMe), and then aggregate the residuals for variance estimation.
We therefore estimate the joint/separate seasonal mean (JoMe/SeMe) and seasonal variance (Vo)
curves with fixed bandwidth curve (fi), adaptive bandwidth curve (ad) and adaptive smoothed
bandwidth (ads). Table [5] and Table [6] show the p-values for normality tests. Volatility plots
on the Figures displays the behavior of the variance function estimation when the period
length changes. The average over years acts as a smoother when we consider more years. The
estimated AR(L) parameters for different cities using joint/separate mean (JoMe/SeMe) with
different bandwidth curves are illustrated in Table [l The results again show that an AR(3) fits
well the stylised facts of temperature.

The p-values of normality test statistics (Kolmogorov Smirnov KS, Jarques-Bera JB, Anderson
Darling AD) of corrected residuals (after seasonal mean and volatility) for different cities under
varying localising schemes are displayed in Table [5] and Table [f} The results are compared for
different periods (3 years, 4 years, 5 years). The longer the period, the smaller the p-value of
normality and therefore the more likely to reject the normality assumption. The standardised
residuals are closer to normality (Berlin and New York) or at the same level (KKaoshiung and Tokyo)
overall. The approach shows stability over more years. The p-values for adaptive estimates, over
all cities, are generally larger than those for fixed bandwidth estimates. We observe that in US
cities the risk factor show a better Gaussian pattern compared to other cities. With smoothed
bandwidth, there are a slightly improvements in some cases. In most of the cases, specially in
cities at sea level, the correction by adaptive models outperforms the classical method.

We tackle the problem of loosing information when considering estimates at individual level or
averaging mean functions over time, with a refined approach that considers the minimum variance
between the aggregation of yearly local mean function estimates and an optimal local estimate 6°.
Once the sets of local mean functions have been identified, the aggregated local function can be
defined as the weighted average of all the observations in a given time set. Formally, if 6 (t) is the
localised observation at time ¢ of year j, the aggregated local function is given by:

t) = ijéj@). (18)

With this aggregation step across J, we give the same weight to all observations, even to obser-
vations that were unimportant at the yearly level. Then a reasonable optimized estimate will be:

365
argmmz Z{Q — 90 t)}* subject to Z}-Izle =Lw;>0,j=1,...,J, (19)

=1 t=1

where the weights are assumed to be exogenous and nonstochastic, and é;’ is defined as one of the

following: 1 (SeMe Locave), éj(t) = J! Z] 1 07 2(t), the average of seasonal empirical variances
over years, 2, (SeMe Locsep) é;’( ) = &QZ( ), the yearly empirical variances, 3, one of above two
approaches with maximized p-values over year. One may interpret this normalization of weights as
an optimization with respect to different frequencies (yearly, daily). Table[5|and Table @ display the
results of the aggregation over time (Locave, Locsep, Locmax). Although the p-values decrease
when considering more years, the aggregation approach performs drastically better than other

approaches, especially in New York, because it weights more to extreme cases.
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Figure 11: QQ-plot for standardised residuals from Berlin using different methods.
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City Method Period Mean 51 Bo B3 mean (AR)
Berlin JoMe 5 years ad 0.9970 -0.2923 0.0969 6.29e-03
fi 0.9776 -0.2899 0.1129 4.80e-16

SeMe 1 year ad 0.8291 -0.2758 0.0000  -7.13e-03

fi 0.3091 -0.3294 -0.2674  -9.65e-16

2 years ad 0.8153 -0.2574 -0.0578  -9.29e-03

fi 0.3553 -0.3318 -0.1959  -5.46e-16

3 years ad 0.8481 -0.2793 0.0000 -2.21e-02

fi 0.3564 -0.3333 -0.1769  -6.88e-16

4 years ad 0.8009 -0.2553 0.0000  -5.36e-04

fi 0.3026 -0.3312 -0.1751  -7.49e-16

5 years ad 0.8357 -0.2570 0.0000 5.49e-03

fi 0.3333 -0.3413 -0.1654  -6.63e-16

Tokyo JoMe 5 years ad 0.5985 -0.1006 0.0697  -1.49e-02
fi 0.5760 -0.1057 0.0716 1.68e-16

SeMe 1 year ad 0.3191 -0.0570 -0.1939 2.17e-03

fi 0.1510 -0.1538 -0.2985  -3.50e-16

2 years ad 0.4690 -0.0736 -0.0929 5.54e-03

fi 0.2239 -0.1785 -0.2459  -1.03e-15

3 years ad 0.4486 -0.1355 -0.0628  -6.14e-03

fi 0.2660 -0.2113 -0.1842 -1.14e-15

4 years ad 0.4752 -0.1315 -0.0445  -9.97e-04

fi 0.2719 -0.2116 -0.1701 -1.21e-15

5 years ad 0.4334 -0.1562 -0.0578  -2.63e-03

fi 0.2546 -0.2306 -0.1704  -1.02e-15

NewYork JoMe 5 years ad 0.7333 -0.1956 0.1202 1.66e-03
fi 0.7128 -0.1966 0.1375  -1.26e-16

SeMe 1 year ad 0.6467 -0.1745 0.0000  -2.49e-03

fi 0.3440 -0.2773 -0.1180 4.90e-16

2 years ad 0.5994 -0.2111 0.0000 6.43e-04

fi 0.2809 -0.3114 -0.1188 3.87e-16

3 years ad 0.5581 -0.2355 0.0000 2.00e-04

fi 0.2888 -0.3208 -0.1319 1.82e-16

4 years ad 0.5447 -0.2404 0.0000  -1.29e-03

fi 0.3039 -0.3248 -0.1186 1.24e-16

5 years ad 0.5425 -0.2353 0.0000  -1.47e-03

fi 0.2925 -0.3073 -0.1509 2.13e-16

Kaohsiung JoMe 5 years ad 0.7818 -0.1416 0.0000 2.37e-04
fi 0.7661 -0.1320 0.0000 7.12e-16

SeMe 1 year ad 0.6747 -0.0948 -0.0920 4.87e-02

fi 0.4719 -0.1740 -0.2126 6.22e-16

2 years ad 0.6178 -0.0854 -0.1348 3.92e-02

fi 04767 -0.1596 -0.2182  -2.43e-17

3 years ad 0.6740 -0.1628 -0.1149 4.01e-02

fi 0.4751 -0.2249 -0.2131  -2.20e-16

4 years ad 0.6387 -0.1250 -0.1164 3.39e-02

fi 0.4505 -0.1916 -0.2030 1.10e-16

5 years ad 0.6283 -0.1286 -0.0991 3.04e-02

fi 0.4262 -0.1967 -0.1965  -1.93e-16

Table 4: AR(L) parameters for Berlin (20020101-20071201), Tokyo (20030101-20081201),
New-York (20030101-20081201) and Kaohsiung (20030101-20081201) using joint/separate mean
(JoMe/SeMe) with fixed bandwidth curve (fi), adaptive bandwidth curve (ad), adaptive smoothed
bandwidth (ads) seasonal mean/volatility (Me/Vo) curve.

21



‘(ejduwes Jo 1IN0 oIe PaISPISU0D 9q 0} IvaK B[} I0J SIOJRUI)SS 9Y)) SAIND (0 /O]N) AN[I)e[0A/uesW
[euoseas (spe) yipmpueq payjoows aaljdepe ‘(pe) aaind yipimpueq aarrdepe () oAInd yiprmpueq paxy yim (s]\eg/eJNO[) ueswu
oyeredas /qutof 10] :sowyos SUIZI[eD0] dAT)dRpR JUSISNIP I9PUN S[RNPISSI Pajoollod (T0ZT1L00Z-T010¢00g) Sunisyoey] 23 (10Z1L00%
-TOT0Z00%) UI[Ieg I0J sorisIyess 1s9] ((TV) Sul[Ie(] uosiopuy pue (S3) sowirmg sorosow|oy] ‘(¢[) vieg anbrep jo senjea-sd :¢ 9[qrR],

FI-99'T 00+20°0 €0-9L'¢ ¢I9¢'¢ 001200 FFI0°0 60-9LF FIOC'S €€E0°0 G0°0'T 80-9L°¢ TO-9¢'8 Xeuwnor] SJN°S
PI9T'T 00+90°0 €09C'T CI-96'T 00+20°0 92T0°0 60-°¢°G¢ ZI®Y9 TI¥Z0°0 90°0'¢ 90°9F T0°0'8 desooT SINeS
PI-9T'T 00+90°0 €091 CI-96'T 00+20°0 9210°0 60-°¢°¢ ZI®6'9 TI¥20°0 90°0'¢ 90°9F T0°0'8 9ARDOT SINOS
6097 T GI-9€€ CO0™Y'T 80°TF ¢I9¢¢ €000 €0°8F L0=GC¢ TI0O00 €0-°989 ¥0°LCG 90°07% OASP® 9N ONPS
6097'T GI-9¢'€ ¢C099'T 80°T'¥ ¢I-9¢'¢ 00¢0°0 G0-98F L0°¢'¢ 90000 €0-°98'9 ¥0°LG 90-°T'€ OAP® 9N 9INPS
60°T°¢€ €1-°9T'C ¢0-9¢'T 60°L6 €1-°0'T 96100 G0-9¢'¢c L0o¢'T TI100°0 ¥0-°T'¢ 90°0°C 90-98'¢ OAT °INT PIN°S
PI9T'T 00+20°0 €0°6'T CI-9F'¢ 00+°20°0 TT00°0 60-°L€ SI©96'¢ F0000 SO°F'T 90-°¢T 90-°0¢ OASP® 9]\ Pe 9IAOS
PI9T'T 00+90°0 €0-°8'T ZI-9F'¢ 00+°0°0 ZI00°0 60°L€¢ SI96'¢ €0000 G0-9F'T 90-9¢°'T 90-9¢'T OAP® 9]NP® 9]NPS
91-99'F 00+°0°0 €0-9¢'¢ ¥I-98°L 00+20°0 €200°0 TT-°¢6 00+°20°0 L0000 LO9%'C TIO8T GO9F1 OAT 9]NP® ONPS
02-20°C 00+°0°0 60-98'9 LT-9Z'T 00+°0°0 8€00°0 €T-96'¢ 00+20°0 0T00°0 90-°¢'T TI-9¢¢ GO0OT'¢ €096'T €098 €0CF'0  OASP® 9N 9INO[
02-290°¢ 00+20°0 S0-98'9 LT-9¢'T 00+20°0 8€00°0 €I-96°¢ 00+°0°0 TTI00°0 90-°¢'T TI-OEG GCO0-9¢'T €096'T €098 G69E°0 OAP® SN SNOf
1¢2¢°C 00200 S0-98'¢ 6T-°2L'8 00200 8¢00°0 ¥I°F'T 00+°0°0 €200°0 60°9°¢ 00+°0°0 S0-°¢'¢ ¥0-°G'8 ¥0-°9L'9 05070 OAT 9INT SINOr
1Z-9¢°¢ 00+20°0 G0-98°¢ LI9¢'T 00+20°0 0T00'0 €I-9%'¢ 00+°0°0 S000°0 90989 60-°LL S0°0°L €0-9¢°¢ CO9LT T0¥E'0 OASPe dAP® SINOf
12-9€°¢ 00+°0°0 €0-98°¢ LI9¢'T 00+20°0 L0000 €I-9%'¢ 00+°0°0 ZI00°0 90989 60-°LL C099'¢ €0-9¢°¢ CO9LT ¥S¥€'0  OAP® 9NP® SINOf
¢¢20'¢ 00200 90-20°¢ 61-26°'¢ 00+20°0 TTI00'0 STI-°8F% 00+20°0 ¥T100°0 60-2€'9 00+20°0 ¥0-9¢T S0°LF L0-°¢'6 SI0T°0 OAY SINP® dNO[ Funisyory|
TLLT'0 G0-9G¢'C 868G'0 G4ST°'0 ¥0=°9°€¢ Lcl80 ¥6IT'0 POO8T <cOI80 LG¢8°0 TO099T TO-9L6 Xeuno 99§
IP0T°0 G09L'T €08%'0 S¥0T'0 €0=°6'T LcIS'0 ISTIT'0 P0S°0€ GLY80 LECR'O TO96T TO-98°6 desooTT SINeS
6€0T°0 G09LT 16470 GPOT°0 €0°6'T TETS0 I8IT0 ¥0=0¢ €LV80 LECBO TOP6'T T0986 9ARIOT 9INOS
80L0°0 €0-99'T 0980°0 8¥%0°0 €0-26'9 T90T'0 ¥#¢90°0 €0°¢'6 09000 08¢T'0 20989 F0OLY OASP® 9N 9INPS
80L0°0 €0-99'T #0600 8¥%0°0 €0-26'9 08600 ¥¢90°0 €0°¢'6 T1900°0 08¢T'0 <0989 ¥09LG OAP® 9N 9INPS
8€€0°0 S0-98'9 69600 TcI00 €S0-°0% L1600 OTTO'0 S0°9'T 65000 O0I¥0'0 €0°8¢C V099G OAY °INT PIN°S
¥.¢c’0 G09€C OFP8T'0 6¢¥c’0 €0°99F ¢L90°0 090¢°0 €0°6'¢ GS00°0 ¢4¥9°0 <02€E G026L OASPe SJNepe 95
¥.¢¢’0 G09€¢ 008T°0 6¢vc’0 €0°9F €E€L00 090¢°0 €0°6¢ 6L000 ¢4¥9°0 ¢02€€E G006 OAP® 9]Nepe 9INOS
0G2T°'0 S09T'F T69T'0 TZOT'0 90-9¢°T 92E€T'0 ¥850°0 OT-96'T FITO'0 8.£0°0 00+°20°0 ¥0-9¢'S OAY SINP® 9NPS
G€c0’0 L096'T 0LEC'0 CITO0 2L0-99'T TI¢0'0 ¢8%¢'0 €0°C¢¥ 9€E0°0 0cvT'0 <0996 ¥0°F¥ GG¢9°0 69€€°0 <¢09L°0  OASP® 9N 9INOf
G€c0’0 L096'T 689¢°0 <IT00 2L0-99'T 9GT0°0 ¢8%¢'0 €0°¢¥ ¢ve0’0 0cvl'0 <0296 V097G GS¢9'0 69€€°0 G86L°0 OAP® 9]NF SNOf
¢800°0 ¥I-®EL 9LE€°0 ¥EOO'0O €I9¢T GL¥0'0 #6210 80=0F 88800 60900 OT9€T €09¢€E 09¢¢°0 €TLE0 S0C80 OAY SINH SINOf
¢9€0'0 80°0'T €LIT0 66200 8O°T'T ¢LS0°0 18620 G0=LF €IT0°0 T9T¥F'0 <0°0€¢ FO=T'T ¢686°0 L0660 L6L6°0 OASP® 9NPe SINO[
¢9€0'0 80°0°T LI¥IT'0 66200 80°T'T €L¥0°0 186¢°0 G0=LF% TO0T00 T9T¥'0 <0°0€ G066 ¢6860 L0660 LI66°0  OAP® SINPe SINO[
8ET0'0 ¥I-96'C 6EET'0 9TT00 91988 9¢0T'0 0980°0 ¥IOYE CPIO0 6¢60°0 ¥I©9C ¥099T 09%%'0 G¢9¢0°0 %0060 OAT 9]NP® SNOf utpeyg
av ar S av ar S av ar S av ar S av ar S

(sreak g)senpep-d (sready) sonpep-d (s1eoh ¢) sonyep-d (s1eady) sonfep-d (1eaAT) senyep-d POYIOIN

22



"(epduwes Jo 1IN0 oI PaIsPISU0D 9 0) Ieak J[} 10} SIOYRUI)se 9Y})aAInd (0A /\) A1I[11R[0A /URaW
[euoseas (spe) yipimpueq peyjoows aalpdepe ‘(pe) aaInd yipimpueq aandepe () eAInd yipimpueq poxy yum (|NS/9NO()
urow ojeredos/uiol 10J :sowroyds SuISIeoO] dAT)depR JUOIOPIP IDPUN S[RNPISSI P1dalIod (TOZIS00Z-TOTOL00Z) OANOT, 3 (10218003
-TOT0£00%) JIOX -MoN I0J $o13s1IR)S 1597 (([Y) SUIIR(] UOSIOPUY PuUe (§3]) AOUIIWG AoI0S0oW[0Y ‘(¢ [*) vlog] aubre Jo senjea-d :9 9[qr],

¢097'¢ 60969 GEES'0 C099°¢€ ¥0-9¢'¢ ¢¢c90 ¥6IT'0 €0°%T TI7¢'0 9¢I€0 ¢0=0C T0°T'S XBUIOTT SINPS
¢09¢¢ G0-9¢'¢ ¥8¢G'0 ¢09¢€ 70989 ¢689°0 EITT'0 €0°0T LEIG'0 ¥0O0E'0 €09°988 T09E ¢ deso0T SINOS
¢09¢¢ G0-9G¢'¢ L8CE0 ¢09¢€ 70989 96890 E€ITT'0 €0°0'T LEGG'0 ¥0O0E'0 €09°88 T09E¢ 9ABDOT SINOS
G098'6 0I9¢T €9¥€0 ¥0=6'¢c 809¢'€ 8IET'0 67000 L09%'¢ 8CEO'0 09000 €09°¢€ V09F€¢ OASP® 9N T 9INOS
G0-98'6 0I-9CF €PEE'0 ¥0-96'C 80-°¢'€ 88ST'0 6¥00°0 L0°%'¢ €L20°0 0%00°0 €09C€¢ ¥0-9E'C OAP® 9INT °]N°S
G0-9¢'T FI-9L'T €CI€°0 G0-98°C €I96'6 T¥FIc'0 S000°0 00+20°0 €980°0 €000°0 80-°0°L ¥0-°F'8 OAT 9INY PIN°S
¢0=L¢ 90-9¢°¢ 80010 2¢0=L¢ S09%'¢ ¥990°0 ¥0L0'0 G0-°T'¢ 9¢00°0 9.LGT°0 €0-°9%'C G098'8 OASpPe 9] Pe 9INOS
¢00L¢ 90-9¢'¢ SGY0T°0 ¢0=L'¢ G09F'¢ G¢950°0 ¥0L0°0 G0°T'¢ €900°0 9.LGT'0 €0°7'¢ G096"L OAP® 9]NPe 9]NOS
€097¥ OI°F'T L661°0 ¢0°0'T 80-°T'T G8IT'0 ¢ITO'0 ¥I-°0°¢ CGE€EIO0 €TT0°0 80°F'C ¥0°C¥ OAT 9INP® 9IN°S

€09C°T G0°T'C ¢cI¥'0 €0-°0°L ¥02¢°¢ ¢8CC'0 TSE0'0 €0-98'T 0960°0 Tc€Z'0 ¢0-9¢L €099°¢ 60L9°0 C996°0 G¢869°0 OASP® 9ING 9INOf
€09¢°'T C0-°T'¢ 69670 €0-°0"L ¥0°¢'¢ 6L9¢°0 TSGE0'0 €0-98'T GE€G0'0 TCE€C'0 ¢0-9G¢'L €0°FF 60L9°0 €996'0 €9€L°0  OAP® °ING °9INOf
Y0971 80-°T'T LE€CE0 €0-°T'T L0©L'G L60C°0 T800'0 90-9¢'¢ ¥¢cl'0 L2900 ¥0-°6"T ¢0=T'T ¢¥90°0 ¢800°0 6¢5€0 OAT °INT SINOr
€0-9¢'¢ ¥09¢°€ S8ILT'0 ¢09€'T €0°%'T ¢I160°0 9I¥0°0 €0-9T°¢ 06000 &¥90°0 CO0°T'T ¥0-°F'¢ ¢8¥¥'0 €¢cS'0 9LEV'0 OASP® 9]AP® 9INO[
€0-9¢'G¢ ¥02¢'€ T6VT°0 ¢09¢'T €0°%'T T1960°0 9I¥0°0 €0-9T°¢ L8000 ¢¥90°0 CO0°T'T ¥O0°T'€ &8¥¥'0 €¢cS'0 69160 OAP® 9AP® 9INOI
70°6'8 L02¢F L09¢°0 €0-°6¢'¢ 90-°¢'¢ 000T°0 T600°0 90-9¢'¢ 0¢IO0 ¥ITO'0 90-°¢'6 €0-°9'T OTTO'0 ¥000°0 GLLE'0  OAT 9NP® °INO[ 0&¥0],

G860°0 ¢¥9¢’0 16870 ¢cOE0 L¥0S'0 6GL89°0 G6¥¢0 €IEF'0  TO9EL T96L°0 6.¢%°0 T09¢6 Xeuno] 99§
G990°0 9¥PE0 €¥8C'0 G¥0C'0 G69G°0 82ES0 9GLT0 6S%F'0 TOOT'G Gecl0 LTIGCS0 T09¢6 deso0T SINOS
G990°0 9¥PE0 C¥8C'0 GP0C'0 G690 TEES0 9GLTO0 6S%F'0 TOOT'G Gocl0 LTIGCG0 T09¢6 9ARIOT SINOS
8¢c0°0 ¥4CT'0 98T0°0 89€0°0 ¥¢€<0 TE00'0 GEB0'0 TTELO  G0-20°L 6200 09€0°0 L0926V OASP® 9INTF 9]N°S
8¢c0'0 ¥4CT'0 €9T0°0 89€0°0 ¥¢€S'0 6€00°0 GE80'0 TEELO  CO-°T'L 65¢0°0 09€0°0 L0-°T'C OAP® SINT 9 ]N°S
€L00°0 S2¢00°0 G€c0'0 L6T0°0 GO¥PT'0 <¢I00'0 86500 G09S0 ¥0-96'T ¢6¢0°0 ¥8E0'0 90°%'1 OAT °INY °IN°S
06600 €9¢¥'0 6900°0 TLZc' 0 €96¥°'0 01000 €ETE0 6L0L°0 F¥OOLT ¥L0L'0 99¢E€0 90-9C 'L OASPe SJNP® 9]NOS
06600 €9¢¥'0 92000 TLZC'O0 €967°'0 60000 €ETE0 6L0L°0 ¥OOGT ¥2L0L°0 99¢€°0 90-96'€ OAP® 9JNP® 9]N°S
6620°0 280T°0 %9100 LZLT'0 Tg€€0 €T100°0 TPET'0 ¥68¢°0 FO-OE'T TLTE0 9990°0 90-9L°C OAY SINP® 9]N°S

GT€0'0 6ST0°0 TES0'0 €IET'0 0960°0 <¢9%0°0 €€¥0'0 ¢020'0 C0-°LT LGGT'0 TE€EC'0 ¥0°8'F 6£00°0 0TCO'0 SG609°0 OASPr °9NY 9INOf

GT€0'0 6ST0°0 LG¥P0°0 €IET'0 0950°0 TIP0°0 €€¥0'0 ¢020'0  CO-°LT LGGC'0 TE€EC'0 ¥0°F'¢ 6¢£00°0 0TCO'0 ¢683°0  OAP® °9INY SINOf

€700°0 90000 €¢S0°0 8€ZO'0 09000 99600 T¥IO'0 L2000 <€0°9T SIIT0 0£T0'0 ¥0-°0F% 00¢0°0 ¢c0c'0 T909°0 OAT 9SINY SINOr

L9T0°0 €0c0°0 ¢LTO0 €SIT'0 86S0°0 O0STO'0 890T°0 €000 €02°9¢ 861E€'0 80TE'0 ¥O9€C 990T°0 SG80T'0 CIG6°0 OASPe SINP® 9INOf

L9T0°0 €0c0°0 PET00 €STIT0 86S0°0 €LT0°0 890T°0 €000 €0=6'T 86TE€0 80TE'0 ¥02°9'¢c 990T°0 S¢80T'0 6VI6'0 OAP® SINP® 9NOf

¢T00°'0 8000°0 2L€20°0 06T0°0 08000 29200 0%€0°0 26000 €0-°T% GL6T'0 9070°0 ¥0-9€'9 LITE€0 ¢8I0 LL98°0  OAT SINP® SINO[ HIOX-MON
av ar S av ar S av ar S av ar S av ar S

(s1ead g)sonyep-d (sready) sonyep-d (s1eaf ¢) sonyep-d (s1eady) sonyep-d (reafT) senpep-d POIOIN

23



JoMe fiMe adVo DI

Berlin(2007) 2 years 29.93( 28.23-31.73) 34.05(25.25-43.96)

3 years  29.74(27.44-32.17) 28.54(22.01-35.88)

Kaoshiung(2008) 2 years 5.75( 4.81- 6.82 7.54(5.96-9.37)
3 years 8.00(6.44-9.73 7.06(5.67-8.76)

)

)

)

)

New York(2007) 2 years  27.24(24.21-30.73) 27.27(20.43-33.04
3 years  37.32(30.61-45.28) 24.73(20.14-30.15

Tokyo(2008) 2 years 10.30(8.02-13.10 10.55(8.03-14.10

3 years  12.95(10.29-16.01 10.20(8.77-11.80

e e [ e e [ S e

Table 7: Mean Square Error and its confidence interval of the forecast from 1000 samples.
4 Forecast and comparison

Diebold and Inoue (2001) (DI) tried to answer the question: how best to approach the weather
modeling and forecasting that underlies weather derivative demand and supply by proposing the
model:

L
T, = Trend; + Seasonal; + Z pe—iTi + owey

=1
M
Trend, = Z Bnt™
m=0
d d(t) d(t)
Seasonal, = ;[(SCJJCOS{Q’/TP%} + 5s,pSin{2ﬂp%}] (20)
Q R S
d(t ) d(t
ol = Z{%QCOSQWQ% + 737q81n(27rq%)} + Z{ar(at,rat,rf + Z Bsop_ .} (21)
t=1 r=1 s=1

We now compare the accuracy of our model to this model. Since DI used as benchmark the
EarthSat forecast this is implied by this forecast exercise. DI mentioned that their point forecasts
were always at least as good as the persistence and climatological forecasts, although not so good
as judgementally-adjusted NWP forecast produced by EarthSat until a horizon of eight days.
Therefore, good performance of the technique presented here could potentially suggest that our
time series model is relevant for weather derivatives.

Figure and display the out of sample forecast for four cities for the year 2007 or 2008.
More precisely we have taken the model "JoMe fiMe adVo" (see Table 4,5) as our forecast tool
and have generated N (0, 1) stochastic risk factors to simulate 150 days ahead. The DI method
has a tendency to slightly underestimate the temperature as we could see from comparison of the
simulated time series. Table [ listed the cumulative error and its confidence interval for forecasts.
Our adaptive techniques performs strictly better in normality, see Table [§] Using 2 years’ date
calibration, the forecast from our method is better than the DI method, but not for 3 years.
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Figure 12: 150 days ahead forecast, DI method against true temperature (black dots and
line), our method against true temperature (blue dots and line), fitted using 2 years data. R?* =
0.5767(D1),0.6407(our),0.4340(D1I),0.6113(our),0.5341(DI),0.5137(our), 0.6402(D1),0.5716 (our).
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Figure 13: 150 days ahead forecast, DI method against true temperature (black dots and
line), our method against true temperature (blue dots and line), fitted using 3 years data.R? =
0.5537(D1),0.5763(our),0.4674(D1I),0.4791(our),0.5303(D1I), 0.4536(our), 0.7362(DI), 0.6508 (our).
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JoMe fiMe adVo Diebold
JB KS AD JB KS AD
Berlin(2007) 2 years  0.0005 0.0960 0.1421 4.9¢-07  0.0000 0.0034
3 years 0.0343 0.0042 0.2523 0.0000 0.0000 0.0128
Kaoshiung(2008) 2 years 2.5¢-05 5.3e-11 1.5e-06 1.5¢-05 0.0000 1.9e-10
3 years 0.0012 0.0000 6.0e-13  0.0000 0.0000 6.7e-20
New York(2007) 2 years  0.0002 0.2331 0.2558 1.7e-05 0.0633  0.0390
3 years 0.0179 0.0202 0.0434 0.0000 8.6e-06 0.0012
Tokyo(2008) 2 years 0.0045 0.0751 0.2322 7.1e-05 3.9e-13  0.0011
3 years 0.0535 0.0018 0.0351 3.3e-16 4.0e-13  0.0003

Table 8: Normality Statistics

5 A temperature pricing example

Futures and options written on temperature indices are traded at the Chicago Mercantile Exchange
(CME). Temperature futures are contracts written on different temperature indices measured over
specified periods [r1, 73] like weeks, months or quarters of a year. The owner of a call option
written on futures Fiy ;, -,) with exercise time ¢ < 7 and measurement period [, 75] will receive
max { Fl¢ 7, ) — K,0}. The most common temperature indices are: Heating Degree Day (HDD),
Cooling Degree Day (CDD), Cumulative Averages (CAT) (or Average Acumulative Temperatures
AAT). The CAT index accounts the accumulated average temperature over |7y, T

T2
CAT (11, 1) = / T,du,
where T), = (T maz+Tumin)/2 and the measurement period is usually a month or season. The HDD
index measures the cumulative amount of average temperature below a threshold (typically 18°C or
65°F) over a period |11, 2]: max(c—T,,,0). Similarly, the CDD index accumulate max(7,—c,0). At
CME, CAT-CDD futures are traded for European cities, CDD-HDD for US, Canada and Australian
cities and AAT for Japanese cities.

Under the non-arbitrage pricing setting, a CAT temperature future is defined as:
F(t,Tl,TQ) = EQA [CAT(Tla 7—2>|‘E] 9

where )\ denotes the market price of risk and the stochastic process for the daily average tempera-
tures after removing seasonality (X; = T; — A;) is assumed to follow a continuous-time autoregres-
sive process AR(L)(CAR(L)) with deterministic seasonal variation o; > 0:

dXt = AXtdt + eLJtdBt, (22)

where X, € R* for L > 1 denotes a vectorial Ornstein-Uhlenbeck process, e; a k’th unit vector in
R” for k =1,...L, B, a Brownian motion and a L x L-matrix A:

0 1 0 ... 0 0

0 0 1 .0 0

A= 0 :
0 o 0 0 1

-7 —Op_q 0 —ag
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with positive constants aj. The AR(L)’s process estimated in can be therefore seen as a
discretely sampled continuous-time processes (CAR(L)) (22), see Hirdle and Lopez Cabrera (2010)
or Benth et al. (2007) for more details. The last three columns of Table (1| display the CAR(3)-
parameters for all temperature data. Then, for 0 < ¢t < 74 < 7, the explicit form of an C'AT
future price is given by:

T2
FCAT(t,Tl,Tg) - EQ)\ |:/ Tudu’Ft]

T1

T2 T1
= / Audu -+ at77-1’7-2Xt -+ / )\uauamhmeLdu

T1 t

+ / Auowe] A exp {A(r, —u)} — Iz)erdu (23)
T1

with a;,, ., = e/ A" [exp{A(ra — )} —exp {A(7; — t)}], I, a L x L identity matrix (Note that
At # Ny).

The options at CME are cash settled i.e. the owner of a future receives 20 times the Degree Day
Index at the end of the measurement period, in return for a fixed price. At time t, CME trades
different contracts i = 1,--- , I with measurement period ¢t < 7{ < 4. For example, a contract with
i =T is six months ahead from the trading day ¢. For US and Europe CAT/CDD/HDD futures I
is usually equal to 7 (April-November or November-April), while for Asia [ = 12 (Jan-Dec).

In order to achieve Gaussian risk factors and being able to price temperature future prices, we
estimate A; and o; by means of the previous adaptive smoothing techniques. The temperature
prices given by CME, the index values computed from the realised temperature data I(;, -,y and the
estimated CAT-AAT future prices with separate adaptive bandwidth for seasonality in mean and
volatility (SeMe Locave, SeMe Locsep, SeMe Locmax) of Berlin, Tokyo and Kaohsiung contracts
are given in Table [g| By inverting (23), we inferred the MPR ()\;) from traded weather futures
in Berlin and Tokyo. As we see in Figure the market price of risk for these products is
different for different cities and contract types and time-varing but constant over contracts. We
use the inferred MPR from Tokyo AAT futures to price over the counter (OTC) ATT futures for
Kaohsiung. Similar to Hardle and Lopez Cabrera (2010), we regress the average MPR of contract
i over the trading period, against the variation in period [y, 7], i.e.

T1
N 1 N
7 o § 7
0’7’1,7’2 - ™ — t - 0t7

T2
52 = ! &2

§ 67
T1,T2 Ty — T4

t=T71

The specification of the MPR is estimated as a deterministic function of volatility:

A = 4.08 —2.1962 _ +0.285%

71,72 T1,72°

A more general descriptive measure between the difference of CME and estimated prices is given
by root mean squared errors RMSFE's:

n

RMSE = |0 (Fitmm — L m))%

=1
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Figure 14: MPR for Berlin CAT futures and Tokyo AAT futures traded before measurement period.

where F; ., (i = 1,...,n the number of contracts) are the estimates of future prices, and Itr 7 18
the realised temperature in |1y, 72|. Table [L0|shows the corresponding RM SE’s. The results show
smaller RMSE's when future prices are estimated via pricing methods that consider an unbiased
market price of weather risks. By using adaptive local methods, the estimates are closer to the
market temperature prices, meaning that they have learned the market conditional of past weather
surprises. This brings, of course, investment chances: someone who purchased a CAT contract for
Berlin on 20070427 with 7 = 20070501 and 7 = 20070531 would have paid 9140 EUR (1 index
point = 20 EUR per contract, see Table |§] ). If he had held until expiration, a payoff 744 EUR
(9884-9140 EUR) would had resulted. The last column of Table [9] shows the difference between
CME prices (column 5) and the estimated risk neutral prices (P = @ or A\; = 0). In general, we
observe that risk neutral prices behave like the the realised temperature. This might be interpreted
as a personal forecast for an investor. When the difference is positive, the strategy to hedge would
be to buy a Call(C), and a Put(P) for negative difference. For example, if a farmer in Kaoshiung
would like to hedge his exposure to weather risk, let us say an accumulated average temperature
of 767.00 index points during April 2009, one might build a portfolio of combinations of traded
temperature derivatives e.g. Tokyo’s contracts to replicate his payoff. In other words, the realised
temperature in April 767.00 = —1.23 x 450.00(C) + 2.23 x 592.00, where 450.00 and 592.00 denote
the CME Tokyo-AAT prices for Marz and April respectively.

6 Conclusions and further work

We show that temperature risk stochastics are closer to Gaussian when applying adaptive statistical
methods. We demonstrate that a local smoothing procedure corrects for seasonality and volatility.
Technically, the proposed adaptive technique is rooted in ideas of Mercurio and Spokoiny (2004);
Spokoiny (2009). We found that the method performs well, not mattering the specification given
for A; or o;. We also found that the proposed adaptive technique shows good performance over a
calibration window of 2 years, for a longer calibration interval of 3 years though our method seems
to stay behind the forecasting performance of the DI technique.

The localisation works by selection of weights (at each time point ¢) from a finite number of
localising schemes W* k = 1,..., K. We calculate local parametric MLEs 6, that satisfy a small
modeling bias condition. The adaptation of parameters increases the procedures’s flexibility and
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Contract type Measurement Period RMSE between F, 0) and Realised Temperatures

t,71,72,A¢,
sl 75 No. contracts X, =0 : At = A At = A A=A CME
SeMe Locave SeMe Locsep SeMe Locmax

Berlin-CAT 20050401 20050430 62 2.69 5.40 5.39 4.86 26.63
Berlin-CAT 20050501 20050531 83 10.15 47.94 47.98 49.50 15.70
Berlin-CAT 20050601 20050630 104 2.96 145.79 145.95 26.82  8.64
Berlin-CAT 20050701 20050731 126 6.06 360.24 359.99 386.87 11.92
Berlin-CAT 20050801 20050831 146  11.76 62.25 62.23 66.83 85.95
Berlin-CAT 20050901 20050930 169 3.52 84.62 84.63 87.21 43.81
Berlin-CAT 20051001 20051031 190 2.20 109.09 109.58 106.37 46.05
Berlin-CAT 20060401 20060430 231 14.43 219.59 218.90 111.12 8.70
Berlin-CAT 20060501 20060531 228 7.23 112.00 112.04 128.13 15.70
Berlin-CAT 20060601 20060630 226 4.72 838.80 824.36 258.61 41.41
Berlin-CAT 20060701 20060731 164  33.29 159.73 159.71 260.24 231.70
Berlin-CAT 20060801 20060831 219  32.15 73.17 73.17 114.38 61.88
Berlin-CAT 20060901 20060930 227  26.47 75.64 75.66 137.31 109.34
Berlin-CAT 20061001 20061031 220 5.09 9.20 9.20 30.24 79.27
Berlin-CAT 20070401 20070430 230  69.36 76.62 76.61 76.35 74.70
Berlin-CAT 20070501 20070531 38 3.69 51.56 51.56 51.46 59.57
Berlin-CAT 20070601 20070630 58  35.96 38.17 38.17 37.51 44.61
Berlin-CAT 20070701 20070731 79 45.12 41.92 41.92 41.94 33.06
Berlin-CAT 20070801 20070831 79 25.35 118.54 118.47 97.99 29.38
Berlin-CAT 20070901 20070930 79 62.17 105.67 105.63 96.67 60.93
Tokyo-AAT 20080501 20080531 25  24.80 103.96 103.97 104.61 548.00
Tokyo-AAT 20080601 20080630 46  42.84 10.66 10.66 10.02 638.11
Tokyo-AAT 20080701 20080731 67  50.08 111.02 111.02 110.81 830.93
Tokyo-AAT 20080801 20080831 89  10.97 65.35 65.35 62.49 844.41
Tokyo-AAT 20080901 20080930 110  37.58 37.53 37.53 33.99 683.63
Tokyo-AAT 20081001 20081030 5 12.96 61.28 61.29 58.65 585.64
Tokyo-AAT 20090301 20090331 35 1.71 20.10 20.10 20.69 145.00
Tokyo-AAT 20090401 20090430 37  36.87 16.69 16.69 16.55 110.11
Tokyo-AAT 20090501 20090531 37 45.01 23.76 23.76 23.65 57.83
Tokyo-AAT 20090601 20090630 37 9.28 16.25 16.25 16.16 135.19
Tokyo-AAT 20090701 20090731 37 22.74 27.79 27.79 27.77 41.84
Tokyo-AAT 20090801 20090831 19  18.88 5.935 5.93 6.61 136.61

Table 10: Root Mean Squared Error (RMSE) between the CME and the estimated weather futures
F 1, 720 under different localisation schemes (6 under SeMe Locave, SeMe Locsep, SeMe Locmax)
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estimation accuracy. We also observed in most of the cases, that the proposed method outperforms
the standard estimation methods. One obtains fair temperature derivative prices and consequently
an unbiased market price of weather risk.
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