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Abstract

Nonparametric curve estimation resampling methods have a long tradition.
Cross-Validation is used for instance to optimize the smoothing parameter. In
this paper a resampling method is studied that is helpful in drawing inferences
from curves. More specifically a variant of the Bootstrap is proposed to con-
struct errorbars and to compare with parametric curves. This so-called Wild
Bootstrap is easy to implement and does not require complicated plug-in esti-
MATLOL.

RESUME

Rééchantillonner pour faire de l'estimation non paramétrique,
est une technique ancienne.

Les méthodes de validation croisée sont utilisées, par exemple,
pour optimiser le paramétre de lissage.

Dans ce papier, on étudie une méthode de 'réé(_:hantillormage
utile pour faire de 1’inférence sur les courbes de régression.

Plus spécialement, une variante du Bootstrap (facile a mettre
en oeuvre), appelée Wild-Bootstrap est proposée pour construire des
intervalles de confiance et est camparée avec les techniques paramétriques.

Ik
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1. The need for computer assistance

A typical task for a statistician is that of model construction and compari-
son with known or traditional models. In curve estimation a common approach
to this task is to start with a nbnparametric curve estimate and then to an-
alyze its qualitative features. Certain shape characteristics (e.g. the location
of peaks) guide and help in proposing and constructing a suitable (parametric)

model. .

A good example for this approach is the human growth curve study by
Gasser et al. (1984). They compared a nonparametric regression growth curve
with a traditional parametric model and found that the parametric model did
not model a pre-pubertal growth spurt. In the field of density estimation Mar-
ron and Schmitz (1989) describe the evolution of income distributions over time.
They found that, in contrast to more traditional log normal density estimates,
the nonparametric curve shows two distinct modes that were changing height

and location.

A typical scenario in these studies was the interactive graphical comparison
of the curve estimates. Curves have been compared for example with parametric
fits or among each other when a smooothing parameter varied. Of course this
is only a method of "graphical inference” but it helps in developing a sense for
the real shape of a curve. Usual methods for the inference in curve estimation
include error bars or measures of distance between curves. For sensible inference

these error bars should be constructed with simultaneous coverage probability.

Both approaches for inference in curve estimation have been done theo-
retically, see e.g. Konakov and Piterbarg (1984); Hardle and Mammen (1989).
A drawback of this theoretical approach is that its use in practice requires
"plug-in” estimation of complicated functionals of the data distribution. The
purpose of this paper is to show how resampling techniques help in finding
asymptotically correct error bars or the distribution of a test statistic for com-
paring nonparametric with parametric regression models. These models are
completely automatic resampling methods and require no knowledge about the

functionals entering the asymptotic distributions of the test statistics.

In section 2 I describe the Bootstrap in the setting of curve estimation. It

is called the Wild Bootstrap since resampling is done from one single residual
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to infer the conditional distribution. Section 3 is devoted to the problem of
comparison between nonparametric and parametric regression models. The
construction of simulated simultaneous error bars with the wild bootstrap is
described in Section 4.

2. The Wild Bootstrap in Curve Estimation

Stochastic design regression is based on iid. observations {(X;,Y;)}L, €
IR**! and the goal is to estimate m(z) = E(Y|X = z) : R? — IR. The form of
the nonparametric kernel regression estimator, developed by Nadaraya (1964)
and Watson (1964) is

(@) ==Y Kale - X)Ya/ fale) (2.1)
=1
where
ful@) =n7' D Ka(z — X)) (2.2)
=1

and where Kp(u) = h=*LK(u/h) is a kernel weight function with bandwidth h.
All results of this paper are given in terms of this estimator. The essential ideas

though carry over to other regression estimators.

Resampling methods in nonparametric regression are used for a variety of
purposes. Asymptotically optimal bandwith sequences for example are found by
cross-validation, see Rice (1984); Hardle and Marron (1985). I concentrate on
the Bootstrap resampling method here. Bootstrap techniques are well known
tools for assessing variability. In the present context a little care has to be
taken to properly account for smoothing bias. In particular the so-called naive
Bootstrap

Resample from the pairs {(X;,Y) Ty

is not appropiate for the questions I deal with here. The naive bootstrap does
not reflect the bias correctly. Indeed

E*mi(z) - tul(z) = O,

where E* denotes expectation under the bootstrap distribution and 7 (z) de-
notes the above (2.1) computed from the bootstrap observations {(X;, Y;)},.
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My approach to this problem is to resample on the basis of the residuals
€ =Y; —mp(X;)

Note that at each X; we may have a different conditional distribution G; of
(Y;|X;), so we should not resample from the whole set of residuals as in Hardle
and Bowman (1988).

In order to retain the characteristics of G; I will use the Wild Bootstrap
which is a resampling method based on the single residuals £;. More precisely I
define a two point destribution G; which has mean zero, variance equal to the
square of the residuals, and third moment equal to the cube of the residual.
Some algebra reveals that if G; = v6, + (1 — 4)6s, then a = é;(1 — v/5)/2,
b = (1 + \/5)/2 and v = (5 + \/5}/10‘ These parameters ensure that if
et ~ Gy, then Ec* = 0, Ee*? = ¢2, Ee™® = &3, In a certain sense the resampling
distribution can be thought of as attempting to reconstruct the distribution of
each residual through the use of one single observation. Therefore it is called
the Wild Bootstrap. More formally we have the following

Wild Bootstrap Algorithm

Define at each X, the two point distribution G;.
2. Generate Bootstrap errors &; ~ Gi.
3. Define Boootstrap observations
Y =1y (Xi) + i

for error bar computation, respectively
Y7 = my(X;) +ef

for comparison with a parametric model {my:6 € O}.

Here m, denotes the kernel smoother (2.1) with bandwith ¢ >> h and
my the least squares estimator for a parametric model {my : § € O} of the

regression curve. A related resampling technique was considered by Wu (1986).

3. Resampling for comparison with a parametric model
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Suppose that one has computed a nonparametric curve estimator together
with a parametric fit from a model {mg : § € ©} to explain the regression of Y
on X. A possible way to compare these two curves is to compute the integrated

squared differences between iy and a parametric fit m;. Since
E(ra(z)|X) = Ki,nm(z)

where X = {X;}%, and

Knnp(e) =071 Ki(e = X)p(X.)/ fa(e)

i=1 ;

it makes more sense to compare riip(e) with Ky ,m,(e). Therefore I propose
to consider
T, = nh?/? /(-r?'zh(x) — Ix’h_nrrzé(a:))'zw(:t)d;r (3.1)

as a teststatistic to test the parametric hypothesis m € {mgy : 6 € ©}. Here w
denotes a weight function.

This test statistic will be small under the hypothesis and can be interpre-
tated as a smoothed variant of the y’-statistic. For linear regression models,

k
miz) = ZGJpj{I) et f olz) >,
=1
it is easy to see that the Least Squares estimate m; can be expanded as

my(z) = mpy(z) + 071 Y < p(z),g(Xi) > e+ op((n log n)™V?) (32)

with bounded functions p,q. Assume now that the kernel K is a bounded
symmetric probability density function with compact support and that A ~
n~1/4+d) the optimal rate for estimating m nonparametrically (Stone, 1982).
Under smoothness conditions on m, f,0%(z) = var(Y|X = z) and moment

assumptions on ¢;, Hardle and Mammen (1989) have shown

Theorem 1.  Under the hypothesis "m € {mg : 8 € ©}” and validity of
expansion (3.2)
d(L(Ta), N (b, V)) = 0,
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where

by = h=42 K 0)/ }‘f()“; dz,

V = 2K*(0) / T ?25@ da,

d(e,e) denotes the Mallows metric and Kglj) denotes the j-times convolution
product of K.

For a practically oriented statistician an application of this theorem might
be a nightmare: He has to estimate all those rather complicated constants in
Theorem 1 and then to plug them in into the asymptotic distribution to obtain
level a sets for hypothesis testing. A way to avoid such obstacles is an automatic
resampling method which yields the desired rejection regions. In a first attempt
we could try to simulate the distribution of T, by using the naive bootstrap.
Unfortunately this method fails in approximating the N (b, V') distribution of
T, see Theorem 1. The reason lies in the fact that the regression function is not
the conditional expectation of the observation under the bootstrap distribution.
Therefore the bias is not correctly reflected.

The Wild Bootstrap works though: The statistic T computed from sim-
ulated data as described in the above wild bootstrap algorithm has the correct
asymptotic normal distribution. More formally we can write for a resampling

scheme over B replications:

FOR b=1 TO B DO BEGIN
1. Generate Wild Bootstrap observations (X;, Y").
2. Create T} like T,,.
END
From L*(T¥) define the (1 —«) quantile f%
and REJECT, IF T, > f%.

A proof for the correctness of this procedure can be found in Hardle and
Mammen (1989). How well the bootstrap distribution £*(T,) approximates
L(T,) in seen from the plot below. It shows from M = 1000 Monte Carlo runs
and B = 100 resampling steps four distributions approximating £(T5,).
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Figure 1. Four densities of T,,. The line with label 1 denotes the (kernel) density
of the distribution of T, over ALL Monte Carlo runs (M = 1000). The line
with label 2 is the (kernel) density of T, from ONE Monte Carlo run using the
Wild Bootstrap method from B = 100 bootstrap curves. The curve labelled 3
is the Normal theory density from Theorem 1 with the KNOWN constants b,
and V. The curve labelled 4 is the Normal theory density from Theorem 1 with

ESTIMATED coustants b, and V. From Hirdle and Mammen (1988).

The thin line (label 1) denotes the Monte Carlo kernel density estimate
of the T,-distance from the M runs. The medium thin line (label 2) is the
kernel density of one bootstrap sample out of the M runs (taken at random).
The thick line corresponds to the Normal theory density as given in Theorem
1 based on the true b, and V (label 3). The dashed line finally shows the
Normal theory density based on estimated by and V' (label 4). In all four cases
the bootstrap estimates the distribution of the distance quite well. The normal
approximations are totally misleading. Power estimates and an application of
this technique to the determination of the functional form of demand curves
are presented in Hardle and Mammen (1989).
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4. Simulated Simultaneous Error Bars.

Simultaneous error bars are intervals I(z;),7 = 1,..., N such that at dis-

tinct design points zy,...,. rn with probability at least (1 — a)

mp(z;) —miz;) € {z;),7=1,...,N.

A quite common approach to this problem 1s to work with the limiting distribu-
tion of Vrh?[imy(z;)—m(z;)] at the gridpoints z = {.'rj};-\“':l. From the limiting
Normal distribution one can obtain via the "plug-in" method quantiles at the

gridpoints and can correct for the level via the Bonferroni method.

The essential drawback of this approach is that it requires estimation of
asymptotic bias and variance. In particular the bias of the Nadaraya-Watson
estimator (2.1) is a rather complicated functional of the joint distribution of
(X.,Y). see Collomb (1981). A computer assisted automatic resampling method

for finding error bars may resolve these practical problems. Consider the Wild

Bootstrap again. Given a bootstrap sample {(X,.Y,*}}"_, one can compute a

kernel smoother mi} () from (2.1). The hope is now that a number of replica-

tions of mj(z) can be used for approximating the distribution of
vVahtig(z) — m(z)].

This hope can be fulfilled if i} (2) is correctly centered as the following theorem

shows.

Theorem 2. Given the assumptions of Theorem 1 (except (3.2), we have along

almost all sample sequences and for all z € IRY

supy, .a.‘upﬂpn'\-{\fn Rl (x) - m(x)] < z}
— P*{Vnhd[ﬁrz{.{) - 7}7';.3{_.'{‘)} <z} —0, n— oc.
Here h and ¢ run over sets
H, = Ec-n._u{'Hd),E‘n_l‘(('Hd}], O<e< <o

G, = I?}_ﬂl/“+d)+5,?'1_6]?é > 0.

respectively.
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For an intuitive understanding of why the bandwidth ¢ used in the con-
struction of the bootstrap residuals should be oversmoothed, consider the means
of 1y (x) —m(z) under the Y| X — distribution and mj(z) —m,(z) under the —
distribution in the simple situation when the marginal density f(x) is constant

in a neighborhood of . Asymptotic analysis as in Rosenblatt (1969) shows that

EY X (rp(z) - m(z)) = h?(/um/z)m”m.

E* (1} (z) = mgla)) = B¥( / -15211'/2_)-r?e;(:1:}.

- - . - -~ L
Hence for these two distributions to have the same bias we need m (z) —
m. {z). This requires choosing ¢ tending to zero at a rate slower than the optimal
bandwidth h for estimating m(z), sce Gasser and Miiller (1984). A data-driven

method for chosing ¢ is also reported in Hardle and Marron (1989).

As a practical method for finding the actual pointwise levels 3; at each r;
[ suggest the following "halving” approach. In particular, motivated from the
Bonferroni method, first try 3 = «/2M, and calculate az. If the result is more
than o/M, then try 8 = a/4M, otherwise next try 3 = 3a/4M. Continue
this halving approach until neighboring (since only finitely many bootstrap
replications are made, there is only a finite grid of possible 3’s available) values
3. and 3* are found so that ag, < a/M < ag-. Finally take a weighted average
of the 3, and the 3* intervals where the weights are (ag. — a/M)/(ag. — as,)
and (a/M — ag, )/(age — ag, ) respectively. |

More formally we can write the algorithm for finding error bars as follows.

FOR b=1 TO B DO BEGIN
1. Generate Wild Bootstrap observations {(X,,Y;*)}iL,.
Yite g X ) el oo

2. Create mj(z) like mhg(z).

END

From L*{Vnhd[m:(z) —m,(z)]} define the error bars using the above
halving approach.

For an illustration of these ideas, consider Figure 2. Figure 2a shows a

scatter plot of the expenditure for potatoes as a function of income for the year
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1973, from the Family Expenditure Survey (1968-1983). Figure 2b shows a
nonparametric regression estimate which was obtained by smoothing the point
cloud, using the kernel algorithm. As a means of understanding the variability
in"the kernel smooth, Figure 2b also shows some error bars, constructed by
the boostrap method proposed here. These bars are estimated simultaneous
80 % confidence intervals. Note that the error bars are longer on the right
hand side, which reflects the fact that there are fewer observations there, and
hence more uncertainty in the curve estimate. Note also that the error bars are
asymmetric since the bootstrap method correctly corrects for the bias of the
Nadaraya—Watson kernel smoother.
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Figure 2b. Potato expenditure vs. income (a) Scatter plot (b) Regression smooth
and error bars
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Abstract

The personal computer is becoming a widely used tool for data analysis. |
describe some minimum requirements for a data analysis machine and discuss
the theoretical objects (machine data structures) in order to efficiently orga-
nize the interplay between statistics and computing. The ideas are shown to
be implementable on a desktop system like an IBM AT or PS/2. The particu-
lar implementation discussed here is called XploRe and is written in TURBO

PASCAL 5.0.
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Detecting structure is a typical task for a statistician interested in model
construction and analysis of relations between variables. "Structure” can have
many meanings: outliers at specific locations (or indices), clusters of points,
linear dependence between variables, etc. Before we can see any kind of struec-
ture we have to ask how to detect it and what tools do we need to provide in
order to decide whether something is really a structure. Very simple structural
elements of a data set may be detected just by looking at the list of values, e.g.
a column with small numbers with the exception of one large one will indicate
an outlier. On a finer level summary statistics for the variables and the use of
graphical techniques like Boxplots help us to see data structures like skewness,
for example. Suppose one has detected by these techniques that certain vari-
ables have a right skew distribution. A very natural next question is whether
the points causing this skewness create other structural features in the other
variables as well. Can we efficiently perform this task with one of the "classical
packages” ?

Most statistical packages now in use, such as SAS or MINITAB, were
designed to operate in a batch-like mode. The user enters commands from the
keyboard and the system scrolls subsequent stages of the analysis and displays
on explicit request values or plots. Therefore the data analytic task, "investigate
the behavior of other variables given the detection of skewness in a particular
variable” cannot be done instantaneously. Instead we have to write a separate
program. This program has to first identify the indices of the interesting subset
and then make several statistics and plots from other variables on the basis of

this subset.

The development of hardware in the last years has made it possible to carry
out this task and similar ones within a desktop system. It should be empha-
sized though that the hardware, in principle, gives the "possiblity” to perform
such operations efficently at a high "power/price” ratio but in many cases the
computing environment (the software) is not capable of doing what a data an-
alyst wants to do. It is the object of this paper to propose some standards for
an ideal computing environment and to demonstrate a first approximation to
these ideals in an existing computing environment based on a widely used IBM

desktop system (IBM AT, IBM PS/2).
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The desktop concept allows us to analyze various facets of the data from
different viewpoints (windows) at the same time. Stuetzle (1987) has made this

evident, stating:

Each window and in particular each plot, corresponds to o sheet of papé.f

on the deskiop.

Before computers entered our work we shuffied paper on the desk to com-
pare and evaluate different structural elements of the data. Now the paper .
shuffling is replaced by window clicking and logical links between the sheets are
not only in the statistician’s mind but also between defined computer objects
inside the machine. These computer objects and their implementation are de-
scribed below. It is argued in Section 2 that instead of expensive hardware it
is a matter of software to bring data analysis into life, especially data analysis
in high dimensions. In Section 3 I describe a current approximation to a data
analysis computing environment. Section 4 is devoted to an example session

with the system XploRe.

2. The Corvette versus the Chevette: Do four cylinders suffice 7

In analysing data we are programming, in effect, our view towards the data

‘and the structures we want to and can see. By selecting certain scales we can
concentrate our eyes dynamically on local or global features, see McDonald and
Pederson (1986). For example, with a single column of numbers, by using LOG-
transformations we can sharpen our eye for peaks or other local structures. Asa

consequence we need a flexible programming and computing environment that
allows us to sharpen our eyes if necessary for interesting details on the macro
or micro scale. Assisting tools in this task are four "cylinders” (minimum

requirements):
@ The capability of showing 3D rotation motion.
® The capability of a multi-window system.

© A high resolution display (at least 600 x 400 pixels).

Hardle, W. (1989) The Interplay between Statistics and Computing in Data Analysis
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® A graphical input system like a mouse or a tracker ball.

Even today, high resolution display and the mouse are available at low cost.
The important remaining cylinders are the capability of a multi-window system
and 3D motion. Having the possibility of a multi-window view on the data en-
hances our capability of finding structure and the 3D motion allows us to see in
an exploratory way features in 3D space. These two cylinders can be driven and
supported from different levels of the machine's hard- and software. By adding
more cylinders (e.g. hardware), the multi-window technique, for example, can
be realized on the operating system level or close to it. More cylinders mean
in this case that window operations like opening, closing, moving, reshaping,
etc. are available on a (fast) low level. On the other hand we need more than

elementary window handling techniques.

Let me give a simple example. Suppose we are looking at similarly scaled
2D data repeatedly by studying a sequence of scatter plots. Qur eyes would
"detect” artifacts due to different scales unless the scale of the 2D scatterplot
pictures are the same for all plots. It is therefore highly desirable to have the
possibility of a STATIC2DPICTURE object (possibly of window type) which
stays unchanged in subsequent calls. Practically speaking this means that a
picture shown in a window system "has to know what scales it had in earlier
calls”. In a more modern language, we would say that the picture should have
the capability of inheriting properties of earlier stages of an analysis.

This capability of inheritance in an Object Oriented Programming System
(OOPS) creates extra difficulties in software construction. If we try to realize
this concept of a statistical STATIC2DPICTURE object in a eight cylinder ve-
hicle (e.g. the machine with a built in window system) we face extra difficulties
since we have to artificially attach statistical meanings to windows constructed
for a different purpose. Thus the construction of a "statistical data window”
can bring us down to ordinary programming speed. With other words more
cylinders can be more expensive and may even slow us down. For this reason
some people have called such vehicles "Corvette data analysis machines”.

The Coruvettes are very powerful, not very frequent among the data analysis
vehicles and sometimes have to drive the speed of a Chevette.

A Chevette is a data analysis machine that operates from a lower pow-
ered level but has the (dis)advantage of free object programming. Free object
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programming means that we can define our programming objects by ourselves
in one horizontal level without time consuming "vertical diffusions” to other
levels. Of course this is an advantage from a pure theoretical point of view but
a disadvantage on the programmer’s side. The other advantages, such as price
and portability, make it clear that the "Chevette data analysis machine” is the
preferable choice. Note that portability has two meanings here. First ‘we can
export the code more easily since it is written in one level although possibly
simulating deeper levels. Second we can implement the code on portable ma-
chines (laptops) to show data analysis live to other statisticians ! Summarizing
these thoughts leads me to the conclusion that a four cylinder personal com-
puter like an IBM AT or PS/2 is acceptable for interactive data analysis if we
tune it correctly e.g. program it correctly. In the following I describe a four

cylinder Chevette called XploRe.

3. XploRing data

XploRe is an interactive, graphically oriented computing environment de-
signed to analyse various kinds of relations between data and to apply and
r.bmpare different smoothing methods. XploRe is suitable for investigating
high dimensional data. It supports the user with the above four cylinders and
other sop'histica.l:cd data management tools such as masking, brushing, labeling
and rotation of data. In addition, a wide variety of additive models are avail-
able, among them ACE (Alternating Conditional Expectations), Breiman and
Friedman (1985), ADE (Average Derivative Estimation), Hirdle and Stoker
(1989), PPR (Projection Pursuit Regression), Friedman and Stuetzle (1981).

XploRe is designed as an open system. It is basically a framework awaiting
more software in the form of user written submodules. The user can write his or
her own programs and add them into XploRe via an object oriented user inter-
face. The construction of XploRe has been influenced by similar systems like S
(Becker, Chambers and Wilks, 1988) and ISP (Interactive Scientific Processer).
It differs from both systems by the fully graphically oriented user interface. The
hard- and software background of XploRe consists of: an IBM Personal Com-
puter AT, XT, PS/2 or a closely compatible machine, runnning DOS Version

2.0 or later.
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XploRe is an OBJECT oriented system. An object can be of one of four

types:

. VECTOR

. WORKUNIT
. PICTURE

. TEXT

A VECTOR object is a data vector as a logical unit with which to work.
This vector may contain strings or real numbers and can be of variable length.
The simplest form of a WORKUNIT object is an ordered collection of data
vectors. However, a workunit can also include display attributes and a mask
vector. Display attributes concern the layout of scatter plots such as data
marking symbols, linestyle, line pattern, line thickness etc. A TEXT object
is necessary to show information as text on the display. This can be data
you are analyzing, documentation you want to pin down or system output. A
PICTURE object contains the viewport characteristics of certain views that
you have on data, e.g. the name of the picture and the axes and the scaling of
the axes. For 3D rotation the rotation angles, the initial distance from the point
cloud, location of the origin and zooming increments are kept in this picture

object.

=
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Fi;.a:]; ':I'hu two menu bars of the XploRe main menu alter pressing "M". Un-
derlying is a STATIC2DPICTURE scatterplot.

XploRe has a menu structure. Two menu bars will appear on your display
(see Fig. 3.1). A third menu bar appears, if you press and hold down the
<ALT> key. You can choose an option by typing the capitalized letter of the
corresponding menu entry. Whenever a pull down menu appears at the next
step, it is in most cases possible to get QUICK HELP by pressing <ALT>+F1.
For example, if you are not familiar with the ACE algorithm, you press this key
sequence and a help file explaining the algorithm pops up. The main keys are
explained below.

OBJECTS (0,0) After clicking Objects you can see an overview of the ex-
isting objects with their current names. In addition the type of object (vector,
workunit, ...) is indicated.

CREATE (¢,C) You are asked which object you would like to create. Clicking
WORKUNIT will show you a window "select a vector number: 1 or ESC”
containing all vectors of the active workunit. In this way you van create other
workunits from existing vector objects. You can select as many vectors you
want. Clicking VECTOR will allow you to make a new vector from an existing
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vector, e.g. by taking LOGs. After clicking PICTURE, you are asked for
a desired picture type. By choosing the option STATIC2DGRAPHICS you
can create a picture object for 2 dimensional static graphics, while the option
DYNAMIC3DGRAPHICS defines an object for dynamic 3D graphics. The
menu entry DRAFTMANSPLOT will create up to 25 2-dimensional scatterplots
by plotting each of up to five selected vectors (which are kept in the same
workunit) against each other of them. After clicking TEXT a window "create
text” appears on the screen. This means that you have invoked the editor of
XploRe and are able to write ASCII texts. It is now possible to write datasets
or comments on data without leaving XploRe.

ACTIVATE (a,A) You are asked which object type you would like to activate.
By clicking the object of a certain type (in a window "activation™) you activate
the object. This means that this object becomes the default data set or picture
for following operations.

DISPLAY (d,D) This feature allows you to display any existing object of
XploRe. Again you will be asked by a window to select an object type to
display. Suppose you have created some workunits and you want to display
one of them. First you will be asked to choose a corresponding picture object
by showing a window. The picture object cantains the characteristics of the
viewport (axes and origin) of the graphical display. There are three different
kinds of display styles available. The option STATIC2DGRAPHICS will show
you a two-dimensional picture display of two selected vectors of your dataset,
whereas DYNAMIC3DGRAPHICS shows you a three-dimensional picture dis-
play of accordingly three vectors of the workunit. If you would like to display
a dataset with more than three dimensions, you have the possibility to display
two-dimensional scatterplots of up to five vectors against each other of them.
In this case you must choose the option DRAF TMANSPLOT. If you want to
display a text object (the data vectors of a workunit or the corresponding expla-
nations) you first have to read the workunit or the corresponding text file as a
TEXT object. After this action you can display the vectors or the explanatory
help file.

READ (r,R) You are asked what kind of object you want to read. If you
want to display data as text it is neccessary to choose the TEXT option. In
a next step you have to select the subdirectory of your file . You can choose
a standard DOS wildcard mask. After clicking a file XploRe creates the reads
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the desired object.

WORKUNIT INFORMATION (i,I) By clicking the menu option Info you
first have to select a workunit. After it a window (Fig. 3.2) will be shown,
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Fig.3.2: Workunit Information of a workunit containing the sideimpact data, see
section 4.

MANIPULATE (m,M) With this operation you invoke the manipulation
part of XploRe, see Figure 3.1. At first it is necessary to activate the corre-
sponding object you would like to use by the Manipulate option (see Activate).
Then you can select an operation under the menu entry Manipulate. At the
next step you have to select an XploRe object which should be the "input” of
the selected operation. The calculation time depends on the complexity of the
procedure being used. The result of this operation is stored in a new workunit
which will be the top most entry in the window if you click the menu option
Objects.

SESSION INFORMATION (s,S) This menu option shows a window con-
taining all important information on the actual XploRe session. These are the
active objects, time and the remaining memory (number of available bytes).

GRAPHICSTATUS (g,G) This option allows you to alter the graphics
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driver of your sereen display. You have the possibility to select of 8 drivers.

These are

. CGA

. MCGA

. EGAG4

. EGAMONO

. HERCMONO
. ATT400

* VGA

s PC3270

BASIC STATISTICS (b,B) By this menu option you can select one of the
following four basic statistics. The menu option Boxplot shows you a parallel
boxplot of all vectors which correspond to the workunit you have to select.
In the box on the left side of your display you can see a scale (extends from
minimum to maximum of all data) and a legend which contains the marker
symbols of median, mean, inner- and outer fence. The option Stem and Leaf
Plot shows you the corresponding display of all vectors after selecting the desired
workunit. The option Data Summary gives a summary of a selected workunit
by showing minimum, maximium, range, mean, median, variance and upper
and lower quartile of all vectors. Finally the last option Correlation Matrix
shows a matrix containing the correlation between all vectors of the workunit.

TOOLS (t,T) You can Edit workunit display attributes and Edit picture
display attributes. If you have created many new objects during an Xplofle
session and you don’t want to write all objects separately, it is useful to click
the option Save all in order to write all existing objects held in memory at this
moment. To read all objects of an XploRe session back into memory you have

to click the option Load all.

HELP (h,H) This option informs you about some important keys to get help
or to leave XploRe.

CLEARSCREEN (<ALT>+¢,C) Clears the screen, but leaves the current
objects active.

EXIT (<ALT>+4x,X) With this option you can leave XploRe and return to
DOS. Don’t forget to save the XploRe objects which you want to keep on disk

for later use.
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0S SHELL (<ALT>+0,0) If you want to use the DOS shell during an
XploRe session type one of the above keys. To go back to XploRe type EXIT

and the main menu appears again.

DELETE (<ALT>+d,D) You are asked which object type you would like
to delete. By clicking the object type and the object name a deletion of the

object is performed.

ENVIRONMENT (<ALT>+e,E) This option shows the content of the
pascal source file typedef.pas and contains the declarations of the variables

types used by the XploRe pascal modules.
INVERTSCREEN (<ALT>+1,I) Inverts the actual screen display.

4. An example of an XplcRe session

In this section I present an analysis using Xplofle with the side impact
data set given in Table 3, Appendix 2 of Hardle (1959). These data have been
gathered by simulating side impacts with Post' Mortal Test Objects (PMTO).
The response variable is Y € {0,1} a binary variable denoting fatal injury (Y =
1) or non-fatal injury (Y = 0). The predictor variables are X = AGE, the age
of the PMTO, X; = VEL, the measured speed (in km/h) and X3 = T12RM,

. the measured accelaration (in g) at the 12th rib. The aim of the analysis is to
devise a model for predicting the probability of fatal injury given a certain z.

Figure 4.1a shows a scatterplot of the variables AGE and ¥ in this side
impact data set. One can immediately see that there are a few high AGE vari-
ables which seem to fall out of the response pattern for the other observations.
How can we investigate this further 7 We invoke the cursor and move it to the
points we are interested in. In Figure 4.1b this action is shown with the right-
most AGE value. By studying the values of the other variables shown in the
window on the left top of the display we see that this observations is from an
experiment with a velocity of 45km/h and received an input of T12RM = 103g.
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Figure 4.1 b. A scatterplot of the variables AGE and ¥ with activated cursor for
contrel af values, The cursor is at (z,y)=(53,0) .
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We have now a hint this specilic data value is an outlier in this iatginal
scatterplot. But how can we see more 7 We display the same data set in
a DRAFTMAN'’S plot, a system of all pairwise scatterplots, see Figure 4.2,
By using a brush (in the Yvs.X, scatter) and by highlighting the values with
VEL = V0 = 45km/h we can see that those observations correspond to a
nearly uniform AGE distribution in the scatter plot AGE vs.VEL. Brushing
is a conditioning technique: by conditioning on the experiments with VEL =
45km/h we see the distribution of the other marginal variables. By moving the
brush to the right we can see that the pattern of the highlighted points in the
Y vs. AGE plot changes from many "0"s to many "1"s. So we can expect on
an intuitive level a positive effect of this influental variable on m(z) = P(Y =
11X =z),z € IRY.
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Figure 4.2. A draltman’s plot with a brush at the scatterplot Y vs. X3, The brush
is at the 45km fh group,

To investigate this point more deeply we apply the ADE method. The
ADE method is a technique for finding the average derivative

§ = Ex{m'(X)],

here m'(s) € IR? denotes the gradient vector of m(s). For Generalized Linear
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Models with unknown link function, i.e.,
m(z) = g(z" B),

= 4f with a scalar 7. Thus,

the average derivate is proportional to §, ]
without knowledge of the

computing v gives an estimate of # (up to scale)
link function. For this purpose we press "M”, for manipulation and have a
menu of a variety of smoothing techniques (see Figure 3.1). After pressing the
ENTER key when the cursor is on the "ADE" line we are asked to enter the
bandwidth k. Using a bandwidth of h = 1 we obtain a value of

§ = (0.423,0.061,0.137)

for the standardized regressors.

The corresponding projection §TX vs. Y is shown in Figure 4.3 together

with 2 kernel smooth and confidence bands. One clearly sees the asymmetry
of the response function due to a cluster of five points (high AGE, but low
T12RM). One may now compare this nonparametric link function with more
traditional approaches such as logistic regression analysis using the GLIM mod-

ule of XploRe .
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Figure 4.3. The projected data, a kernel smooth plus confidence bands in a

STATIC2DGRAPHICS Picture.
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INTERACTIVE DATA ANALYSIS ON A PERSONAL COMPUTER

W. Hirdle (Rheinische-Friedrich-Wilhelms Universit8t, Bonn, BRD)

Abstract

The personal computer is becoming a widely used tool for daca
analysis. Some minimum requirements for an interactive data analysis
machine are deseribed. 1 discuss the theoretical ebjects (machine data
structures) In order te efficiently organize the interplay between
statistics, computing and human perception. The proposed concepts are
shown to be implementable on a desktop system like an IBM AT or P5/2.
The particular implementation discussed here is called X¥ploRe and is
written in TURBO PASCAL 5.0,

1. Interactive data aﬂrlahl_}zsis

Detecting features and structures i{s a typical task fer a statistician
interested in model construction and analysis of relations hetween
variables  "Fealures" or "structures" can have many meanings: ocutliers
at specific locations {or indices), clusters of points. linear
dependence between wvariables, etc. Before we can see any kind of
structure we have to ask how to detect it and what teols we need to
provide inm order to decide whether something is really a structure.
Once we have decided about the tools then we have to ask how to
perceive the features and how to conmstruct the human-machine inter-

face. In this article I would like to sketch some concepts and ideas
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of how this task can be done in an interactive data analysis computing

environment.

Very simple structural elements of a data set may be detected just hy
looking at the list of values, e.g. a column with small numbers with
the exceptien of one large one will indicate an outlier. On a finer
level summary statistics for the varisbles and the use of graphical
techniques like Boxplots or residual plots help us to see data
structures. A Boxplot for example is a simple graphical technique to
diagnose skewness, Suppese one has detected by the technigues that
variable 1 has a right skew distribution. A very natural next question
iz whether the points causing this skewness in variable 1 create other
structural features in variables 2, 3, 4 ... as well. Can we effi-

ciently perform this task with one of the "classical packages"?

Most statistical packages now in use, such as SA5 or MINITAB, were
designed to operate in a batch-like mode. The user enters commands
frem the keyboard and the system scrolls subsequent stages of the
analysis and displays on explicit request values or plots. Therefore
the data analytic task, "investigate the behavier of other wvariables
given the detection of skewness In a particular variable" camnot be
done instantaneously. Instead we have to write a separate program.
This program has te first identify the indices of the interesting
subset and then make several statistics and plots from other variables

on the basis of this subset.

The development of hardware in the last years has made it pessible teo
carry out this task and similar ones within a desktep system. Ic
should be emphasized though that the hardware, in principle, gives the
“possibility” te perform such operations efficiently at a high
"power/price” ratic but in many cases the computing environment {the

software) is not capable of doing what a data analyst wants to do. Ve
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will see below a first approximation of a statistical desktop system

based on a widely used IBM desktop system (IBM AT, IBM PESL).

The desktop concept allows us to analyze various aspects of the data
from different viewpoints (windsws) at the same time. Stuerzle (1987)

has made this evident, stating:

Each window and in particular each plot, corresponds to a sheet of

paper on the desktop.

Before computers entered our work we shuffled paper on the desk to
compare and evaluate different structural elements of the data. Now
the paper shuffling is replaced by window clicking and legical links
between the sheets are not only in the statistician’s mind but alse
between defined computer objects inside the machine. These computer
shjects and their implementation are described below., It is argued in
geceion ? that instead of expensive hardware it is a matter of
software te bring interactive data analysis into life, especially data
analysis in high dimensions. In Sections 3 I deseribe a current
approximation to a data analysis computing environment. Seccion 4 is

devoted to an example session with the system Xplofe.

2. Four concepts of interactive data analysis

In analysing data, we are programming, in effect, our view towards the
data and the structures we want to and can see. By selecting certain
scales we can concentrate our eyes dynamically on local or global
features, see McDonald and Pederson (1986). For example, with a single
column of numbers, by using LOG-transformatiens we can sharpen our eye
for peaks or other local structures. Ginter Sawiczki (198%) has des-

cribed this aptly as follaows,
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Data analysls has two aims: teo find infermative features in the data,

and te bring them te human perceptien.

As a consequence we need a flexible programming and computing environ-
ment that allews us to sharpen our eyes if necessary for incteresting
details on the macro or micre scale. There are four hasic concepts of
interactive data analysis. I call them "cylinders® since they basic-
ally provide the power of an interactive enviromment. These four
cylinders are:

- The capability of showing 3D rotation motionm.

- The capability of a multi-window system.

- A high resolution display (at least 600 x 500 pixels).

- A graphical imput system like a mouse or a tracker hall.

High resolution display and the mouse are available at lew cost. The
important (and a bit more expensive) cylinders are the capability of a
multi-window system and 3D motion. Having the possibility of a multi-
window wview on the data enhances our capability of finding features
and the 3D motion enables us te see in an expleratory way nonlinear
structures in 3D space. By adding more cylinders (e.g. hardware), the
malti-window techmique, for example, camn be realized on the operating
system level or clese to it. More cylinders mean in this case that
window operations like opening, cleosing, moving, reshaping, etc. are
available on a (fast) low level. This seems to be attractive but we

need more than elementary window handling techniques.

Let me give a simple example. Suppose we are looking at similarly
scaled 20 data repeatedly by studying a sequence of scatter plots. Our
eves would "detect" artifacts due to different scales unless the scale
of the 2D scatter plot piletures are the same for all pleots. It is
therefore necessary to have the possibilicy of a STATIC2DPICTURE ohb-
jeet (possibly of windew type) which stays unchanged in subsequent
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calls. Practically speaking this means that a pleture shewn in a
windew system "has te know whart scales it had in earlier calls". In a
more modern language, we would say that the picture should have the

capability or inheriting properties of earlier stages of an analysis.

Thisz capability of inhericance in an Object Orienced Programming
System (OOP5S) creates difficulties in software construction. If we try
to realize this concept of a statistical STATICZDPICTURE cbject in a
eight cylinder wehicle (e.g. the machine with a built-in window sys-
tem) we face extra difficulties since we have to artificlally actach
statistical meanings to windows constructed for a differenc purpose.
By forcing the construction of a “statistical data window" in a window
system not designed for data analysis we can slow down to ordinary
programning speed. With other words: more cylinders can be more
expensive and contra-produccive, For this reason some people have

called such wehicles "Corvette data analysis machines”™,

The Corverres are very powerful  not very frequent among the data ana-
¥ I ¥

Ivsis vehicles, and somertimes have to drive the speed of a Cheverre.

& Cheverte 1is a data analysis machine that operates from a lower
powered level but has the {dis)advancage of free object programming

Free object preogramming means that we can define our programming ob-
jects (e.g. statistical windows) by ourselves in one horizental level
without time consuming “vercical diffusions" to ocher levels. Of
course this is an advantage from a pure theoretical point of wview buc
a disadvantage on the programmer's side. The other advantages, such as
price and portability, make it clear that the "Chevette dara analysis
machine® is the preferable choice, MNore that portabilicy has two
meanings here. First we can export the code more easily since it is
written in one Llevel although possibly simulating deeper levels.

Second we can implement the code on portable machines (laptops) to
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show data analysis live to other statisticians! Summarizing these
thoughts leads me to the conclusion that a four cylinder personal
computer like an IBM AT or PS5/2 1s acceptsble for interactive data
analysis if we tune it correetly e.g. program it correctly. In the

following 1 describe a four cylinder Chevette called XploRe,

3. XploRing data

{ploRe is an interactive, graphically oriented computing environment

designed te analyse varlous kinds of relations between data and to

apply and compare different smoothing methods. ¥ploRe is suitable for

investigating high dimensional data. It supports the user with the

above four cylinders and other sophisticated data management tools

such as masking, brushing, labeling and reotation of data. In addition,

a wide varlety of additive models are avallable, among them:

- ACE (Alrernating Conditional Expectations), Breiman and Friedman
(1985),

- ADE (Average Derivative Estimation), Hirdle and Stoker (198%),

- PPR (Projection Pursuit Regression), Friedman and Stuetzle (1981},

ApleRe s designed as an open system. It is basically a framework
awalting more software in the form of user written submodules, The
user can write his or her own programs and add them into X¥ploRe via an
object oriented wuser Interface. User supplied help files can be
atrached so that the data analyst in a strlct semse is able to design

his own computing environment.

The construction of XploRe has been influenced by similar systems like
S (Becker, Chambers and Wilks, 1988) and ISP (Interactive Scientific
Frocessor). It differs from both systems by the fully graphically

oriented user interface. The hard- and software background of XploRe
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consists of: an IBM Persenal Computer AT, KT, P5/2 or a closely com-
patible machine, rumning DOS version 2.0 or later.

XPIoRe iz an OBJECT orlented system. An object can be of one of four
types:

- VECTOR

- WORK UNIT

- PICTURE

- TEXT

& VECTOR object ls & data vector as a logleal unit with which te work.
This wector may contain strings or real numbers and can be of wariable
length. The simplest from of a WORKE UNIT object is an ordered collec-
tien of data wvectors. However, a work unit can also include display
artributes and a mask vector. Display attribuctes concern the layout of
scatter plots such as data marking symbols, linestyle, line patrern,
line thickness, etc. A TEXT object is necessary to show information as
text on the display. This can be data you are analyzing, documentation
you wWant to pin down, or system output. A PICTURE object contains the
viewpolnt characteristics of cercain views that wou have on data, e.g.
the name of the picture and the axes and the scaling of the axes. For
iD rotation the rotation angles, the initial distance from the point
cloud, location of the erigin and zeooming increments are kept in this

plcture object,

X¥pleRe has a4 menu structure, Two menu bars will appear on your display
{see figure 3,1}, A third menu bar appears, If you press and hold down
the «<ALT> key. You can choose an option by typing the capitalized
letter of the corresponding menu encry, Whenever a pull down menu
appears at the next step, it is in most cases possible te pet QUICK
HELF by pressing <ALT>+Fl. For exanmple, if you are mot familiar with
the ACE algorithm, you press thiz key sequence and a help £ile

explaining the algorithm pops up. The main keys are explained belew,
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Figure 3.1. The two menu bars of the XploRe main menu after pressing
"M Underlying is a STATICZDPICTURE scatter plot of AGE
vs. Y in the lower left corner and a draftman’s plot of
AGE, VEL, T12RM in the lower right cormner
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DBJECTS (o,0) After clicking Objects you can see an overview of the
existing objects with their current names. In addition the type of

ohject (vector, work unit, ...) is indicated.

CEEATE (e,C) You are asked which object you would like to create,
Clicking WORK UNIT will show you a window "select a vector number: 1
or ESC" containing all wveectors of the acrive work unit. In this way
you can create other work unilts from existing vecteor objects. You can
select as manv vectors you want. Clicking VECTOR will allew you to

mzke & new vector frem an existing vector, e.g. by taking LOGs. After
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clicking PICTURE, you are asked for a desired plcture type. By
choosing the option STATICZDGRAFPHICS you can create a picture object
for ? dimensional static graphics, while the option DYNAMICIDGRAPHICS
defines an object for dynamic 3D graphicsz. The menu entry
DRAFTMANSPLOT will create up to 25 2-dimensional scatter plots by
plotting each of up to five selected vectors (which are kept in the
same work unit) against each other of them. After clicking TEXT a
window "ereate text" appears on the screen. This means that you have
invoked the editor of XploRe snd are able to write ASCLI texts. It is
now possible te write data sets or comments on data without leaving

XploRe.

ACTIVATE (a,A) You are asked which objeet type you would like cto
activate. By clieking the objecc of a certain type (in a window "acti-
vation”) you activate the ebject. This means that this object becomes

the default data set or pleture for following operatiens.

DISPLAY (d,D) This feature allows you to display any existing object
of XploRe. Again you will be asked by a window te select an object
type to display. Suppose you have created some work units and you want
to display one of them. First you will be asked to choose a corre-
sponding picture object by showing a window. The picture cbject con-
tains the characteristics of the viewport (axes and erigin) of the
graphical display. There are three different kinds of display styles
available, The option STATICZDGRAPHICS will show yeu a two-dimensional
pieture display of two selected vectors of your data set, whereas
DYNAMICIDSRAPHICS shows vou a three-dimensional picture display of
accordingly three vectors of the work unit. If you would like to dis-
play a data set with more than three dimensienms, you have rhe possi-
bility te display twe-dimensienal scatter plots of up to five vecrors
agalnst each other. In this case you must choose the option

DRAFTHANSPLOT . 1f you want to display a text object (the data vectors
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of a work unit of the corresponding explanations) you first have to
read the work unit or the corresponding text file as a TEXT object.
After this action you can display the vectors or the explanatory help
file.

READ (r,R) You are asked what kind of object you want to read. 1f you
want to display data as text it is mnecessary to choose the TEXT
option. In a next step you have to select the subdirectory of your
file. You can choose & standard DOS wildecard mask, After clicking a
file XploRe creates and reads the desired ebject.

Figure 3.2. Work unit Information of a work umit containing the side
impact data, see sectlon &4
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WORK UNIT INFOEMATION (I,i) By clicking the menu option Info you
first have to select a work unit. After that a window (figure 3.2}
will be shown.

MANTPULATE (m,H) With this operation you invaoke the manipulation part
of XploRe, see flgure 3.1. At first it is necessary te activete the
corresponding object wyou would like to use by the Manipulare option
(see Activare). Then you can select an operation under che menu entry
Manipulate. At the next step you have to select an XploRe object which
should be the "input" of the selected operation. The caleculation time
depends on the complexity of the procedure being used, The result of
this cperation Is stored im a new work unit which will be the topmost

entry in the window if you click the menu option Objects.

SBESEION INFORMATION (s,5) This menu optieon shows a window containing
all important information on the actual XploRe session, These are the
active objects, time and the remaining memory {(number of awailable

bytes).

GRAFPHICSTATUS (g,G} This option allows you to alter the graphics
driver of your screen display. You have the possibility to select &
drivers. These are:

- CGA

- MCGA

- ECAGYL

= EGAMOND

- HERCMONO

- ATTLOD

- VGA

- PC3270
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BASTC STATISTICS (b.B) By this menu option you can select one of the
following four basic statistics. The menu option Boxplot shows you a
parallel boxplot of all wvectors which correspond Co the work unit you
have to select. In the box on the left side of your display you can
see a scale (extends from minimum to maximum of all data) and a legend
which contains the marker symbols of median, mean, inner- and outer
fence. The option Stem and Leaf Plot shows you the corresponding dis-
play of all vectors after selecting the desired work unit. The option
Data Summary gives a summary of a selected work unit by showing mini-
mum, maximum, range, mean, median, variance and upper and lewer quar-
tile of all vectors, Finally the last option Correlstion Matrix shows
a matrix containing the correlation between &ll wvectors of the work-

unic.

TOOLS (t,T) You can Edit work unit display attributes and Edit pic-
ture display attributes. If you have created many new objects during
an XploRe session and you dom’'t want to write all objects separately,
it ie useful te elick the option Save all in order te write all exist-
ing objects held in memory at this moment. To read all objects of an

XploRe session back inte memory you have to click the optiom Load all.

HELP (h,H) This option informs you about some important keys to get

help or to leave XploRe.

CLEARSCREEN (<ALT>+c,C) Clears the screen, but leaves the current

objects active,
EDIT (<ALT>+x,X) With this option you can leave Xplofe and return to

DOS. Don't forget to save the XploRe objects which you want to keep on

disk for later use.
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05 SHELL (<ALT»+0,0) If you want to use the DOS shell during an
XploRe session type one of the above keys. To go back to ¥ploRe type

EXIT and the main menu appears again,

DELETE (<ALT>+d,D) You are asked which ebject wyou would like to
deletve, By clicking the object type and the object name a deletion of

Che object is performed,
ENVIRONMENT (<ALT»>+e . E) This eprion shows the econtent of the pascal
source file ryvpedef. pas and contains the declarations of rthe variables

types used by the YploRe pascal modules,

INVERTSCREEN (<ALT=+i, 1) Inverts the actual sereend display.

. An example of an XploBe session

In this section I present an analysis using XploRe with the side
impact data set given in Table 3, Appendix 2 of Hirdle (1989). These
data have been gathered by simulacing side impacts with Post Mortal
Test Objects (PMTO). The response variable fg Y € {(0,l} a binary wvari-
able denoting fatal injury (¥ = 1) or nom-fatal injury (¥ = 0). The
predictor variables are X, = AGE, the age of the PMTO, X, - VEL, the
measured speed {(in km/h) and X, = TI?EM, the measured accelerarion {in
g}l ac the 12cth rib. The aim of the analysis is to devise & model For

predicting the probabilicy of fatal injury given a cercain x.

Figure 4.la shows a scatter plot of the wariables AGE and Y in this
slde 1impact data set, One can immediately see that there are a few
high AGE wvariables which seem to fall out of the response pattern for
cthe other observations. How can we investigate this further? We invoke

the curser and meve it te the points we are interested in. In Figure
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Figure &.la. A scatter plot of the variables AGE and Y. The display
style of the work unit has been set to circles
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4.1k this action is shown with the right mest AGE walue. By studying
the walues of the other wvariables shown in the window om the left top
of the display we see that this cbservatien is frem an experiment with

a velocity of 45kmsh and received an input of T12RM = 103g.

We have now a hint that this specific data walue is an outlier in this
marginal scatter plet. But how can we see more? We display the same
data set in & DRAFTMAN'S plot, a system of all pairwvise scatter plots,
see Figure & 2a. By using a brush {(in the Y¥wvs.X, scatter) and by high-
lighting. the walues with VEL « VD = 45mmsh we can see that chose
cbservations correspond to a nearly uniform AGE distribution In the
scatter plot AGE ws., VEL, Brushing (s & conditioning technique: by
conditiening on the experiments with VEL - 45km/h we see the dis-

tribution of the other marginal variables. By moving the brush to the

Figure 4.2a. & draftman's plec with a brush at the scatter plet
Yve . X,. The brush is at the 45km/h group
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right we can see that the pattern of the highlighted peints in the Y
vs. AGE plot changes from many "0"s to many "1"s. So we can expect on
an intuitive lewvel a positive effect of this Influental variable on
m{x) = P(Y = 1|X = x),x € IRY.

Using the multi window technique, an important cylinder in our data
analysis chevette, we can enhance our view even more. Figure 4.2b
showe a combination of three display techniques. In the upper right
corner we see a DYNAMIC3DPICTURE with the wvariables AGE, VEL and T,
Below a draftman’s plot of the three predictor varlables. Finally in
the lower left the STATICZDPICTURE that we saw already in Figure 3.1.
By using the brush now in one of the plots we can link all these pic-
tures and highlight the respective points in each of the different
windnus. In an explanatory way wWe can see & positive effect of In-

creasing the predictor variables.

Figure 4.2b. A multi window view on the side impact data set
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To investigate this point more deeply we apply the ADE method. The ADE

method is a technique for finding the average derivative
§ = Exlm' (X3],

here m'{o) € IRY denoctes the gradient wvector of m{c). For Ceneralized

Linear Models with unknown link functien, i.e.,
mix) - g(xTHY,

the average derivate is proportional co &, 4 = y8 with & scalar 7.
Thus computing v gives an estimate of § {(up to scale) without know-
ledge of the link function. For this purpose we press "M", for manipu-
lation and have a menu of s wvariety of smoothing techniques (see
Figure 3.1). After pressing the ENTER key when the cursor is on the
"ADE" line we are asked to enter the bapndwidth h. Using a bandwidth of

i = 1 we obtain a value of
& = (0.423,0.061,0.137)
tor the standardized regressors.

The ceorresponding prejection ETI vs, ¥ is shown In Figure 4.3 ro-

gether with a kernel smooth and confidence bands. One clearly sees the
asymmetry of the response function due te a cluster of five poincs
(high AGE, but low T1Z2EM). One may now compare this nonparametric link
funcrien with more tradicienal approaches such as legistic regression

analysis using the GLIM module of XploFe
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Figure 4.3, The projected data, a k-N § smocth bootstrap confidence
bands in a STATIC2DGRAFHICS picture
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The confidence bands are computed using the Wild Bootstrap technique
of Hirdle and Marron (1982},

I would like to thank Ray Carroll, Richard Gill and David Scott for
numerous fruitful discussions on the subject of statistical computing.
They helped sharpening end programming my thoughts on the interplay

between computing and statisties.
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ABSTRACT. Bootstrap techniques naturally arise in the seiting of nonparametric regression
when we consider questions of smoothing parameter selection or error bar construction. The
bootstrap provides a simple-to-implement altemative to procedures based on asymptotic
arguments. In this paper we give an overview over the various bootstrap techniques that have
becn used and proposed in nonparametric regression. The bootstrap has to be adapted to the
models and questions one has in mind. An interesting variant that we consider more closcly is
called the Wild Bootstrap. This technigque has been used for construction of confidence
bands and for comparison with competing parametric models.

1. Introduction.

In this paper we will study bootstrapping for estimating a nonparametric regression
function m. The nonparametric regression model can be written as:

Y.-l =m(X1} + E; (1= 1.....,“}

where X; are the design variables ( for simplicity one dimensional) and g are the error

terms. Our aim is to consider statistics related to the estimation of the unknown regression
function m, We pursue this aim in different models concerning the stochastic structure of the
variables, For simplicity we consider three models.

MODEL 1.

The €'s are independent, identically distributed random variables with E€; = 0. The X;
are deterministic.

MODEL 2.

The pairs (X;, Y;) are independent, identically distributed random variables with E(g; | X;)
i

G. Roussas {ed.), Nonparametric Functional Estimation and Related Topics, 111-123.
@ 1991 Khewer Academic Publishers. Printed in the Netherlands.
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=0, Thenm(x) = E(Y; EXi =x).

MODEL 3,

The ¢;'s are independent random variables with E €, = 0. The X; are deterministic. The
distribution of the errors may depend on the design variable,

The model that has been most dominantly investigated is MODEL 1, the socalled fixed
design’ model, see Eubank (1988) and Hirdle (1990). Note that MODEL 3 covers the class of
models of type 1. Also if we condition on the design variables then MODEL 2 is contained
in MODEL 3. Of course there is a wide range of possibilities between these above model
classes. For example, with the variance function 62(x) =var( € | X = x), one can assume that
in MODEL 3 the additional assumption holds that g, / o(X;) are ii.d. . One such approach

could be to parametrize the variance function as in Carroll (1982) and estimate the parameters
before entering a bootstrap step.

Each of these models suggests a different resampling procedure. Furthermore one may use
a resampling procedure motivated by a larger model ( for instance MODEL 3) in a smaller
model ( for instance MODEL 1). This makes sense if one wants to safeguard oneself in
MODEL 1 against deviations from MODEL 1. But clearly if one is more interested in
efficiency than model robustness one should prefer resampling methods motivated by the
assumed model. In the context of resampling procedures for linear models this point has also
been made in Liu and Singh (1989). To our knowledge the first bootstrap study for making
inference about m can be found in a film by McDonald(1982). He assumed MODEL 2 and
resampled {rom the pairs of observations (X, Y;). A recent bootstrap overview has been
given in Mammen (1990c).

Throughout our paper we use the kemel estimator My, with bandwidth h=h; and kernel
K (Nadaraya, 1964; Watson, 1964)

2?21 Kh{x = Xi} Y;

(1.1) fiip(x) = :

E?:l Kn(x — X;)

Kp(s)=h™ K( /h).

For simplification of notation the dependence of h on n will be suppressed. Generalizations of
the results presented here to higher dimensional design variables are straightforward. In the
fixed design model with equidistant X; = i/n the denominator in (1.1} is often conveniently
replaced by n, see Miiller (1988).

We are mainly interested in the distribution of functionals of (=) - m(+), for instance the
L, norm of this function or the evaluations of this function at a set of points. But we have

also other functionals such as shape parameters in mind { see Mammen, 1990a). We discuss
the bootstrap procedures which have been proposed in the literature for MODEL 1 - 3 in the
next section. We do not address in this paper the problem of computational feasibility of
bootstrap in this context. To avoid the computer intensive direct computation of the
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smoothing in (1.1) we propose the method of Weighted Averaging of Rounded Points
(WARPing) of Hiirdle and Scott (1990) as a fast method for performing the resampling steps.
Throughout the paper we call the computable simulated stochastic structure the "hootstrap
world'.
2. The bootstrap procedures.
2.1, L1.D. ERRORS (MODEL 1), RESIDUAL RESAMPLING .
To mimic the stochastic nature of this model in the bootsirap world one proceeds as follows,
STEP 1. Calculate residuals

€= Y; - m(X;) (i=1.....n).
STEP 2. Centering.

€ =€;-¢., where €. =nl Y, &
STEP 3. Resampling.

Draw randomly e‘;, - E:. out of the set {E-., . Eﬂ]
STEP 4. Create bootstrap observations
Y; = RgXi) +€; .
Here a bandwidth g is chosen which may be different from the initial bandwidth h,
STEP 5. Calculate a nonparametric kernel estimate in the bootstrap world.
2., Kax-X)Y]
Y Kaix-X)

@.1) fiih(x) =

STEP 6. Bootstrap approximation.

To approximate the distribution of the desired functional of Miy(+) - m(*) use the
computable conditional distribution of the functional of ﬁ;[-} -m E_[-} )

Let us discuss this bootstrap procedure for the case of the evaluation functional mp(x) - m(x).
It is common language to say that the "bootstrap works', if in STEP 6 for suitable choice of h
and g the bootstrap distribution tends to the same limit as Mip(x) - m(x) in probability. This
says nothing about the finite sample behaviour of the bootstrap procedure. We will report
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below (theorem 2.2) theoretical reasons for ameliorated finite sample approximations by
bootstrapping.

Before entering into a discussion of existing results let us shortly remark that the centering
STEP 2 is appropriate. By contrast o linear least squares regression (with intercept) the
residuals do not add up to zero. Therefore a bias in the resampling stage would occur if we do
not guarantee the bootstrap errors to have mean zero in the bootstrap world (although this
does not affect a first order asymptotic analysis). STEP 2,3 is in practice dong from residuals
from an interior interval of the design space in order to avoid boundary effects. This has been
done in the paper by Hirdle and Bowman (1988) who showed that the bootstrap works.

THEOREM 2.1. The conditional distribution of Ynh (fiy(x) - i g(X)). tends in probability
to the same Normal limit as Yo h ( Mp(x)- m(x) ), provided the errors have finite variance

o, m is twice differentiable, standard assumptions on K hold andh ~n15,g - 0, gh
— oo,

In fact the above theorem was originally proved without the technique of oversmoothing.
Instead of a different bandwidth g in the resampling step Hiindle and Bowman used the same
g = h which then lead to the necessity to estimate the bias of the bootsirap estimator
explicitly. The oversmooth bandwidth g has been introduced exactly for that reason to deal
with the bias implicitly, A similar observation has been made by Scott and Terrell (1987)
when they tried to estimate the MISE expansion of density estimators for bandwidth
selection. For this purpose they estimated the second derivative of the density. Also here the
variance of the estimator for the second derivative is proportional to n-! g5 which makes
clear why the "optimal rate” of g~ n"'3 does not work here. The above bootstrap procedure
has also be used for bandwidth selection by the above authors. See also Hall (1990a) who
investigated this bootstrap for general Lp distances with a so called uniform kernel.

The bootstrap can be used for the construction of confidence intervals. The accuracy of the
bootstrap confidence intervals has been considered by Hall (1990b). Let

¥2 = var( fin(x) ) = 02 1% [T Knlx - X)) 2 = 02B2

say where 12 = %, KZ(x - X;). The ‘ordinary’ and ‘studentized' versions of fiig(x) - E fip(x)
arc

S=1d o 'TR, Kn(x-Xpg ,
~ -1
T=1}0 YR Knix-Xi)e.

Note that by undersmoothing one may center about E fiip(x). Then for w; = E[ (g;/ o) ] and
polynomials p;

P(S<u) = ®(u) + (@h) 172 pg py(w) 0(u) + (mh) L { (14-3) polu) + 13 pa(u) )} 6u)
+ lower order terms ,
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P(T<u) = Du) + (8h)12 i p; () 6(u) + (ah)! { (g-3) polu) + P2 p3(w) ) 6(u)
+ (/)12 py py(u) $(u) + lower order terms.

In the bootstrap world we have the complete analogue

P*(S*<u) = ®(u) + (nh) 12 Es pru) ¢u) + (nhy! { @-3} palu) +I§ pa(u) ) d(u)
+ lower order terms,

P*(T"<u) = ®(u) + (nh)172 E} p1(u) d) + (nhy! { @'3) palu) + Ii% pa(u) | du)
+ (/)12 II; p4(u) ¢(u) + lower order terms.

Since the cnmwms[x} converge to Y at the rate V2 we have the following Theorem.
THEOREM 2.2. Under some regularity conditions the following expansions hold

P*(S*<u) - P(S<u) = Op(n'! h12),

P*(T"<u) - P(T<u) = Op(n'! W 1/2),
Note that this rate does not hold for the nonstudentized statistic

U=Py @n-E M.
Then we observe a significantly weaker approximation
P*(U*gu) - P(Usu) = t".'!{u.-’;} — ©(u/o) + lower order terms,

since this difference is only of the order G-C= Op(n-1/2), see eg. Gasser ct al.(1986). Also
in other contexts ( see for instants Hall (1988) and Mammen (1990b) ) it is well known that
studentizing gives a considerable improvement of coverage error.

2.2. AN APPLICATION WITH ALMOST L1.D. ERRORS.

A direct application of the above bootstrap to kemnel sprectral density estimates is not
straightforward since the periodogram values become only "asymptotically independent” and
also the error structure for this regression problem is of multiplicative nature. Consider a
strictly stationary real valued process and let Y; be the periodogram values at discrete
equidistant frequencies in [- &, x]. The kemel spectral density estimate is of the form (1.1)
(with denominator equal to 2 mn since the design is equidistant on [- &, n]). The regression
equation is mulitplicative, i.e. Y; = m(X;) €, . This makes a slight modification of the above
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resampling steps necessary where we in fact replace residual contruction by E, =Yi/ l'ﬁh(?(i]

and the centering is done by & =Ei.-" E- . Details for this resampling procedure are found in
Franke and Hiirdle(1990) who show an analogous result to theorem 2.1. and treat also
bootstrap bandwidth selection . For bootstrapping a nonparametric, nonlinear autoregressive
time series see Franke(1990),

2.3. THE RANDOM DESIGN MODEL 2, PAIRWISE RESAMPLING.

When the data are generated according to MODEL 2 it seems natural to resample from the
pairs (X, Y;). ..., (X, Y,,). This has been considered in Dikta(1588) and McDonald(1982).

However, we would like to argue that this sort of resampling does not reflect the stochastic
structure of MODEL 2. Note that the bootstrap does not represent the conditional distribution
of the observations given the design points. Indeed, in the bootstrap world the conditional

expectation E'(ﬂ | X; )} is equal to Y’,' with probability one ( if the design variables are
pairwise different with probability one). Here E*(U 1 V) denotes E(U | V, (X;, Y}), ..., (X,
Y, )) . Consider for instance the case that one bootstraps the distribution of the kemel estmate
at a fixed point x . Denote the bootstrap sample by (X; Y',}, e (X5, Y5 ) and define now

ZLI Kh{x - x:} Y‘:
> Kalx-x)
Then under the conditions of theorem 2.1 the bias of { Mp(x)- m(x) ) is of order O(?%)

whereas the bootstrap bias estimate E’(fin(x) - fin(x) ) is of the lower order Op(n/3).

Therefore here bootstrap works only after a separate bias estimation or undersmoothing as in
Dikta({1988). To see why this bootstrap does not estimate the bias correctly recall that
fip(x) - m(x) is an asympiotically linear statistic and therefore the bootstrap bias estimate
must be asymptotically zero. To appreciate why consider the followiung calculations. With

Heo=n1Y!  Kilx-X) Y,
)= iy Kn(x - X¢). and

=n13"  Kyfx-Xi)

(2.2) filh(x) =

one gets
¥
et o e Th(X)
E mp(x) = E -
fh(x)
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1+ 000 - Tt

a
- g* () e }} + smaller order terms
fh(x)

T(x)

LA

= fin(x) + (2 E" 50 (Fr00 - o)

Now apply E" Kh(x - x:‘} = i‘h(x) to obtain

E* 10 (T - )

=E"n2Y"  Kalx - X{) ¥ (Kn(x - X;) - )

=n2)"  (Ka(x-XP Yi - 0 (o fin(x)
= Op((ah) 1 ).

Another example where the paired bootstrap fails is given in Hiirdle and Mammen (1950).
There the Ls - distance between the nonparametric kemnel regression estimator mip, and a

parametric regression estimator is proposed as goodness of fit test statistic of a parametric
regression model. It is shown that here bootstrap does not estimate the distribution of the test
statistic consistently on the hypotheses. The test statistic turns out 1o be asymplotically

cquivalent to a U - statistic ¢, + Zi #j Hn((G,Y3), (X;Y;) , which is clean , i.e.
E[H((X, Y7, (X;Y)) | X;,Y; ]=0for i+ . The following lemma, which we leamed from van
Zwet (1989), shows that bootstrap does not work for clean U-statistics %n a5 an estimate of
the distribution of V = '?‘n - E?., . But we may remark here that bootstrap may also work for
clean U-statistics after another more appropriate choice of the bootstrapped statistic V.

LEMMA 2.3. Forasample U,, ... , U, of iid. random variables and a symmetric function
H (H(xy) = H(y.x)) assume

E(H(U,U)IUy)=0,
E HXU,,U,) < ==,

E H¥(U pUg) <o,
We consider

5= Ei#j H{Uil UJJr

§*=Zj,j HU, U)
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where (U], ... , Uy ) is a resample drawn from (U, ... , U, } . Then
n2 [var'(§*) - 3var(8) ] = O in probability.
Note that under the assumption of the lemma n-2 is the correct norming factor because of

var(S)=n(n- 1} E H¥U,,U,).

2.4. SMOOTHED BOOTSTRAP IN THE RANDOM DESIGN MODEL 2

A pairwise resampling procedure may be contructed by bootstrapping from the two
dimensional distribution function

X

Fyxy) =n13L, 1{‘!’;5?}! Kg(t-X;) dt

as in Cao-Abad and Gonzalez-Manteiga (1989) where g has to be appropriately chosen. The
smooth bootstrap observations can be generated from a pairwise resampling as in section 2.3
by adding independent variables with density g1 K, to the design variables. Denote now the

smooth bootstrap sample by (XI, Y;), ..., (X5, Y1) and construct the bootstrap analogue

., A m - .
(2.2) to (1.1). The marginal density of Xj is fg(x)= n-! Zm Kg(x - X;) The bias will be
correctly reflected since

E*(Y} | X{ = x) = flig{x).

Cao-Abad and Gonzalez-Manteiga (1989) investigate the accuracy of the boolstrap
approximation in this resampling scheme and obtain

THEOREM 2.4. The bootstrap approximation ( i.e. the conditional distribution of nh
{fﬁ]'l{x] - Mg(X) ) ) approximates in probability the law of Yooh ( mp(x)- mix) ) with order
Dp[l‘fzﬂ),in‘_’.

sup,_g | P"{ VR R (fin(x) - Mg(x)) Sz} - P(YA D (fin(x) - m(x)) < z} 1 = Op(m??),
provided some regularity conditions and g ~ w''%,
An analogous result can be shown for resampling from the joint kemel density of the
bivariate distribution of (X;, Y;). The rcgularity conditions assumed in this theorem entail that

the conditional distribution of the errors given X; = x depend smoothly on x. This assumption
is not necessary in the resampling discussed in the nexl section.
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2.5. NOT IDENTICALLY DISTRIBUTED ERRORS (MODEL 3), WILD
BOOTSTRAPPING.

For MODEL 3 the wild bootstrap procedure has been introduced in Hiirdle and Mammen
(1990}, The wild bootstrap is related 10 proposals in linear regression models of Wu (1986)
(sce Beran (1986), Liu (1988), Liu and Singh(1988), Mammen (1989)). Since in this
approach one is going 1o use one single residual E; to estimate the ‘conditional’ distribution
£0Y; - m(X;) | X.) by an estimate F; we are calling it the wild bootstrap. More precisely F;
is defined as an arbitrary distribution which fulfills

Ef, Z=0,

~
Bf, Z°=(&)".

R Z'=@®).

For instance one may use a two point distribution which is uniquely determined by these
requirements, Then F; = £(Z;) where Z; = - (/5 -1) & / 2 with probability ('3 +1) / (5 and

Zj =05 +1) Eu’ 2 with probability 1 - (Y5 +1) / (2/5). Or in another construction one may put
Z; =5 U; where £(U;) does not depend on i and where EU; = 0, EU} = E U} = 1, cg.
Ui =Vi/vV2 + [V? - 1)/ 2 where the V;'s are independent N(0,1) - distributed variables.

: . . * [
For the construction of the bootstrap observations one generates independent g -~ F; .
. . . L] e
Note that STEP 2 of section 2.1 is not necessary since the g; have automatically mean zero by

construction. STEP 4,5 though are identical, one uses (X, 'l': = ﬁig{Xi} + Ef} as boolstrap
observations ( for an appropriate choice of the bandwidth g , see section 2.1 ). Then one
creates fip(+) according 1o (2.1).

To avoid technical regularity conditions on the ‘conditional' error distributions let us
consider the asymptotic performance of wild bootstrap in the random design MODEL 2. For
the distribution of p(x) - m(x) at a finite number of points x wild bootstrap has been studied
in Hiirdle and Marron(1990) see section 2.6 below.

Let us consider wild bootstrap for the test statistic of Hirdle and Mammen(1990) which we
have mentioned in the last section. This test statistic tests the hypothesis of a parametric
regression model and it is based on the distance between the parametric and the
nonparametric kemnel regression estimate iy,

For the regression function m(+)=E(Y; | X;=+) a parametric model (my: 0 ¢ O }
may be given. The parametric approach shall be compared with the nonparametric analysis
which are only based on the assumption that m(-) is a 'smooth' function. To this account a
parametric regression estimator mg may be plotted against a kernel estimator my, . The

question arises if visible differences between ma and My can be explained by stochastic

fluctuations or if they suggest to use nonparametric instead of parametric methods. One way
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to proceed is to measure the difference between mg and My, by a distance and to use this

distance as a test statistic for testing the parametric model. The L,-distance between the
nonparametric and parametric fits has been proposed in Hirdle and Mammen (1990). More
precisely let X, | denote the (random) smoothing operator

20y Khlx—Xi)g(X)
Z?ﬂ Ky, [H. - Xi)

Because of E(fip(x)! Xy, ... . X)= Kp o m(x) consider the following modification of the
squared deviation between my, and me !

Xhm E(J'-} L

Tn=n¥h ['T'lh("]- Khn m‘;(x}]z n(x) dx

where wis a weight function.
We propose to use T, as a test statistic to test the parametric hypothesis:

me my:8e®).
Related tests for testing a parametric form of a density have been proposed by
Neuhaus(1986, 1988), Cox, Koh, Wahba, and Yandell {1988), Cox and Koh(1989), Eubank

and Spicgelman(1989). Related bootstrap tests have been considered in Azzalini, Bowman,
and Hirdle (1989) and Firth, Glosup, and Hinkley (1989). For an approximate calculation of

critical values we have to determine the asymptotic distribution of 'T‘n for a parametric
m=mg .
For simplicity we consider only the k-dimensional linear parametric model. Put

my(x)=0,2,(x)+ ... +0B, g (x)=<0,g2(x)>

where g is a R¥-valued function (for some k). With a smooth weight function w the weighted

least squares estimator 0, = 0 is defined by
B = arg min, ZL, wXi)(Y; - mg(Xi)2.
B can easily be calculated

]

(37, woxo gk gt D wixi) gX) Y

*

Now construct independent g Fi and use now (X, Y? = ma{Xi) + E?] as boolstrap

Hardle, W. and Mammen, E. (1991) Bootstrap Methods for Nonparametric Regression



Nonparametric Functional estimation and Related Topics, Edited by G.Roussas, Kluwer
Publishing company, Series C: Mathematical and Physical Sciences, 335, 111-124

observations. Then create ?:, like ?,, by the squared deviance between the parametric fit and
o~
the nonparametric fit. From the Monte Carlo approximation of L‘(Tn] construct the (1 - o)

& o~ a Y
quantile t:.l"F and reject the parametric hypothesis if T, > ty . The following Theorem has been
shown in Hirdle and Mammen(1990]).

THEOREM 2.5. Assume, that m lies in the paramesric hypotheses {my: O @). Then under
some regularity conditions for a deterministic sequence ¢, the conditional distribution of

o~

Tn - &y converges weakly to the same limit as the distribution of ?n - C (in probability),
2.6 SIMULTANEOUS ERROR. BARS

Under the condition of theorem 2.1. the conditional distribution of Voh (fip(x) - glx))
tends in probability to the same Normal limit as ¥n h ( mip(x) - m(x)). This convergence holds
in fact uniformly over a grid of points, so it can be used for the construction of error bars with
simultaneous coverage probability. The accuracy of these confidence intervals has been
investigated by Cao - Abad (1990) and Hiirdle, Huet and Jolivet(1990).

The main advantage of bootstrapping in this context lies in the fact that the simulated
distribution of Yn i (ffiy (+) - M (+) ) at a finite number of points can be easily used to contruct
confidence intervals with simultancuous coverage probability. A conservative way of
constructing confidence intervals at a finite number M of design points is the Bonferroni
method where we use M pointwise confidence intervals each with coverage probability 1 -
o/M. A morc accurate method is to construct first pointwise confidence intervals with
coverage probability 1 - f3, say, such that the uniform coverage is 1 — o.. We suggest the
following halving approach. First try individual (i.c. at each design point) coverage probabilty
1 - B =1-0/(2M) and calculate by simulation the resulting simultaneuous coverage 1 - Otg. If

the result is more than « then try P = o/(4M) otherwise next try B = 3o/(4M). After stopping
this halving approach find neighboring values B, and p* so that 0p, < &< 0. Finally take

the weighted average of the B, and B* intervals, For an application in an econometric context
see Hirdle and Marron (1990).
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CHOOSING A KERNEL REGRESSION ESTIMATOR 421

meaningful to perform an asymptotic analysis at
places where there are hardly any data. It may
seem a bit ironical that Chu and Marron make the
same assumption “bounded from below” in the
same paper {(assumption A.4 of Section 3). In an
interesting paper, Fan (1990) concludes indepen-
dently about the Nadaraya-Watson estimator
(remark 2, Section 3) “...hence its asymptotic
minimax efficiency is arbitrary small.”

CONCLUSIONS

Our conclusion is that the convolution weights
are clearly superior to evaluation weights for fixed
design, since we have the same variance for both
methods but a nasty bias for evaluation weights.
For random design, the problem seems to us more
open: There is a minimax argument, and we would
like to repeat a general argument, which is not
well quoted by Chu and Marron (Section 3): “The
latter authors [Gasser and colleagues] in particular
seem to feel that variability is not a major issue,
apparently basing their feelings on the premise

Comment

Birgit Grund and Wolfgang Hardie

1. OBJECTIVES OF SMOOTHING

Smoothing has become a standard data analytic
tool. A good indicator of this is the increased offer
of smoothing procedures in a variety of standard
statistical software packages. It is therefore high
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Minnesota 55108, and CORE Research Fellow, Uni-
versité Catholigue de Louvain, Belgium. Wolfgang
Hardle is Professor of Statistics, CORE, Univer-
sité Catholique de Louvain, 34 Voie du Roman
Pays, B01348 Louvain-la-Neuve, Belgium. He is cur-
rently visiting CentER, Tilburg University, The
Netherlands.

that it is always easy to gather simply more data.”
What we said when discussing the structural bias
of the evaluation weights was the following (Gasser
and Engel, 1990} “These bias problems are partic-
ularly accentuated in the scientific process of many
empirical sciences: studies are usually replicated
by sticking to the design of the previously pub-
lished study. In this way, qualitatively misleading
phenomena as obtained by the Nadaraya-Watson
estimator will be attributed even more confidence.”

QUTLOOK

One way out of this problem has been opened by
Fan (1990), who showed that for random design
local polynomials have the same bias as convolu-
tion weights and the same variance as evaluation
weights (the equivalence of local polynomials to
convolution type kernel estimators for fixed design
had been shown by Miiller, 1987). A further possi-
bility for improving the variance properties of con-
volution weights has been described by Chu and
Marron in Section 6.

time to provide background information that en-
ables statisticians and users to critically evaluate
the—in the meantime—rich basket of smoothing
tools. The paper by Chu and Marron meets this
demand for information and compares two different
kernel regression estimators on an easy, under-
standable level. The authors combine successfully
careful mathematical discussion with heuristic ar-
guments in a well-done exposition. Cleverly chosen
striking examples provide an easy access to not
immediately apparent problems in smoothing for
data analysis. We congratulate the authors to this
valuable contribution.

Among the many objectives of smoothing, there
are certainly the two perhaps most discussed. These
are P1: to find structure; and P2: to construct esti-
mators from a probability distribution.

We agree that the interplay of these two objec-
tives is vital for an honest parameter-free data

Grund, B. and Hardle, W. (1991) On the Choice of Kernel Regression Estimators. Discussion of

a paper by Chu and Marron
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analysis. Each responsible statistician should be
aware of the limitations of the used methods. Even
if we pretend to follow mainly P1, that is, to look
for structure in the data, breakpoints, etc., without
caring too much for theoretical optimality, we
impose implicitly certain assumptions on the un-
derlying probability structure. In the case of non-
parametric curve regression those assumptions
could concern the design distribution (uniform or
with modes), the observations (independent/de-
pendent), the error structure conditional on X (ho-
moscedastic/heteroscedastic) and some features of
the regression curve. Thus, the degree of trusting
our own results is always an indicator for trusting
the validity of our model, whether we recognize or
neglect its existence.

On the other hand, “elaborated” methods, which
provide estimators with good theoretical properties,
more obviously require a bunch of assumptions. We
are aware of them, but usually can’t guarantee
their validity. Therefore, any outcome of a smooth-
ing algorithm should be regarded skeptically and
checked whether it is plausible, regardless of
whether we mean to follow P1 or P2.

The problem of the unknown underlying proba-
bility structure is also present, if we decide to trust
either the evaluation or the convolution estimator.
Certainly, the latter has its deficiencies for a
nonuniform design. Figure 5 in Chu and Marron
makes it very clear. One should, of course, not
conclude from this and also the mean square error
discussion there that the evaluation estimator is
the “universal wonderful super-smoother” in all
situations. We shortly demonstrate in Section 2
that there is no uniform outperformance of one
estimator over the other; in a simple example we
display where and to which extend we can expect
superiority of the evaluation or the convolution
estimator.

In our opinion, there are other important objec-
tives, too, for example P3: computational efficiency.

Particularly the problem of computational effi-
ciency is oftenly underestimated by theoreticians,
although it influences the choice and applicability
of the smoothing method significantly in real life.
Certainly, P3 becomes a vital issue when iterative
algorithms have to be used, in optimizing smooth-
ing parameters or solving for implicitly defined
functions like in the generalized additive modeling;
see Hastie and Tibshirani (1990).

In Section 3, we demonstrate how kernel-
type estimators can be modified to ensure fast
computation.

2, EVALUATION OR CONVOLUTION?

Let us confine to the decision problem: evalua-
tion or convelution estimator?

We assume the random design model with ho-
moscedastic variances, given by

Y= m(X;) + ¢,

fori=1,...,n, where the (X, }‘})’s are identically
distributed variables; the design variable X, has
the probability density f; the ¢;'s have mean 0 and
variance o®. Following the notation of the paper by
Chu and Marron, we denote the evaluation and the
convolution estimator by sz and rit, respectively.

Obviously, there is a trade-off between bias and
variance. For the heuristical understanding of esti-
mates, it is certainly advisable to regard both ef-
fects separately. Nevertheless, in real life, we have
to decide for the one or the other estimator taking
into account both bias and variance simultane-
ously, and the final choice of the “better’ estimate
will depend as well on the underlying problem as
on the optimality criterion.

In this section, we compare mg and ra by the
relative efficiency

_ IMSE (¢, hmst:,l)
IMSE, (g, hmss,.)

(2.1) RE

where IMSE (7, h) denotes the leading term of
the integrated mean square error of s, for i rep-
resenting either /g or .. Using the notation in
Section 5 of the paper by Chu and Marron, we have

(2.2)  IMSE,(, h) = n"'h"1V + h4B2,

where V= [vdx and BZ= [ b?dx. The optimal
bandwidth ke, is defined to minimize the
right-hand side of (2.2).

Simple caleulus provides us

IMSE, (7, thsE,,)
IMSE (g, hiysg,)

2.3 1/5
S O e Ve

[/ (m"+2m p/f) dx]”

The following simple examples are designed to
demonstrate the interplay of the design distribu-
tion and the shape of the true regression curve in
determining the relative efficiencies of iz and

. ﬁlc.

ExamprLE 1. We consider the class of regression
curves

1+ :}"“

(2.4 m(x) = (5
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for xe[-1,1] and for v = 0, and the family of
random designs with densities

(2.8)  fu(x) = (1 - w)(1/2) + wey y(x),

for wel0,1], where ¢_, ,, denotes the density of
the standard normal distribution, truncated to
[-1,1). For w = 0, the design variable X is uni-
formly distributed on [-1,1); the most concen-
trated design in this example is the truncated
standard normal distribution (w = 1).

Some representatives of the regarded regression
curves are shown in Figure 1. The parameter 4 = 0
corresponds to a linear function, and for growing ¥
the curves deviate more and more from the straight
line. .

Figure 2 below displays RE (see (2.1)), for all
combinations of designs f, and true regression
curves m.. With respect to the y.scale here, the

00 01 02 O3 04 05 O0s 0OF 0B 09

Fic. 1. Regression curves m (x) = ((1 + x)/2)'*7 for different
values of . With respect fo the y-scale of the Figures 2 and 4, the
curves are equidistant and cover the whole range,

1

08

v 4

Fic. 2. Relative efficiency RE of mo and mg, in dependence
from design density f, and regression curve m.; see Example 1.

curves in Figure 1 are equidistant and represent
the whole range.

We have chosen the above families for conve-
nient control of bias and variance.

Under uniform design (« = 0) both mg and Mg
have the same bias, but . has a bigger variance.
More precisely, ve = 3vg /2 for all xe[—1,1), for
all bandwidths and any regression curve. This
setting causes

RE = (3/2)"° forally =0

and is reflected by the straight line on the right
front side of the box.

The left front side of the box in Figure 2 corre-
sponds to estimating a straight line under increas-
ingly nonuniform design, the ideal background for
the convolution estimator. We see that the trade-off
between bias and variance begins to favor rii, at
about w = 1/3.

The region where the convolution estimator is
superior to the evaluation estimator (RE = 1) is
rather small for this example. Even under the most
nonuniform design (w = 1) the convolution estima-
tor is better just for v < 0.5 (see Figure 1).

ExaMmprLE 2. We regard the same class of regres-
sion curves, but the class of random designs is now
given by the densities

(=) = e[ 2).

for w > 0, that is, the truncated N(0, w?) normal
distributions. Figure 3 below shows some represen-
tatives. We see that w = 2.3 describes almost the
uniform design.

The relative efficiency RE is displayed in Figure
4. Note, that the densities in Figure 3 are not

1.4

1.2

1.0

0.8

0.6

04

] 8
a

(-] L " n

@ -G8 =086 =04 =02 =30 02 G4 06 08 1.0
Fic. 3. Truncated normal densities f(x) = ¢_; f{x/w) for
different values of w.
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Fic. 4. Relative efficiency RE of mo and mg, in dependence
from design density f_, and regression curve m.; see Example 2.

equidistant with respect to the w-scale of Figure 4.

Figure 4 provides a similar impression about the
relative behavior of the convolution and the evalua-
tion estimator as we saw in Example 1. Again, the
convolution estimator is preferable for regression
curves with low slope (y small) and rather concen-
trated design (v small). The region where the con-
volution estimator is superior seems to be greater
here. But note that values w =< 0.4 correspond to a
rather peaky design density.

3. COMPUTATIONALLY FAST ESTIMATORS

We have motivated the need for fast smoothing
techniques. One possibility to speed up computa-
tion is to use weighted averaging of rounded points
(WARPing). This technique is based on the follow-
ing three steps: discretize the data, generate kernel
weights and convolute the binned data with the
kernel.

Regression data are discretized by counting
the X observations that fall into bins [(j — 1/2)6,
(j + 1/2)8), where 5 denotes the (small) bandwidth
and j varies over all integers. Additionally, one
records the sum of the response Y's in these bins
and maintains a pointer structure to nonempty
bins. We describe this technique here only for the
evaluation estimator, it could of course be applied
also to the . estimator.

WARPing is designed for kernels with compact
support. Let us assume that K is supported on
[-1,1). Define the index function

(3.1 x)=joxe[(i-3)6(J+3)5).
which returns the index of the small bin that x

belongs to. Then the WARPing approximation to
the evaluation estimator mg is

T K(((x) ~ (X)) /MY,
> :-:K((‘(-") = ‘(Xi})i"M) ’

’&M,K(x] =

here the integer M = h&~! stands for the band-
width of the discretized kernel. An easy recalcula-
tion leads to

M-1
{32} ?ﬁM‘K(I) - Z I:‘L_-IM K(IIM)Y.J:}+£,
Z ;-1—MK(I}|M}"'¢U}+£

where n; and Y, ; denote the number of X's that
fall into bin j and the sum of the corresponding
Y'’s, respectively. :

Formula (3.2) shows that essentially the problem
of varying h depends now only on the number of
bins, which is usually orders of magnitude smaller
than the sample size n.

Thus, the above mentioned iterations and succes-
sive calls of kernel smoothing subroutines is per-
formed much faster. Suppose we want to estimate
m at N points. The evaluation kernel estimator
requires O(nN) operations for a kernel with non-
compact support like the Gaussian kernel. For a
kernel with compact support, this numerical effort
is reduced slightly to O(nhN). For the WARPing

MSE(x)
002 004 006 008 0.0

a8 02 U‘.l 0‘.5 D:ﬂ 148
x
Fic. 5. Leading term of the MSE of ing {solid line) and of the
WARPing step function my gx. Underlying model: mix)=
xsin(2xx) + 3z, uniform design, o® = 0,25, Parameters: h =
0.25, M = 5, n = 100, quartic kernel.

0.030

MSE(1)
020

0.010

0.0 02 0.4 L1 0.8 0

x
FiG. 6. Leading term of the MSE of g (solid line) and of the
corresponding WARPing polygon function (dotted line), with
conservative bounds for the latter (dashed line). The same model
and parameters as in Figure 5.
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approximation, we need n operations to discretize
the data intoe Ny nonempty bins. Thus,
the numerical effort for this method is of order
O(n + Nz M).

Of course, the WARPing method introduces a
discretization bias. The bias may be reduced by
joining the obtained discrete step function (see
(8.2)), via a polygon. Breuer (1990) has computed
for m(x) = xsin(2rx) + 3x and uniform design the
MSE as a function of x for both the i, estimator
and the WARPed estimator 71, .

In Figure 5, the discretization bias is seen to be

Comment

Jeffrey D. Hart

Chu and Marron have provided us with a clear
and thorough account of the relative merits of eval-
uation and convolution type kernel regression
estimators., One is left with the impression
that neither type of estimator is to be preferred
universally over the other. We learn, for example,
that the weights of the convolution estimator some-
times have the unsettling behavior exhibited in
Figures 6b and 7 of Chu and Marron. The authors
make it clear that there are a number of factors,
including type of design (fixed or random), design
density and nature of underlying regression func-
tion, that need to be considered before choosing an
estimator type. Having reading their article, I now
have a slight preference for mg over m. in the
random design case, at least in the absence of any
information about the design density or regression
curve. When the design points are nonrandom and
evenly spaced, I prefer s, since its convolution
form appeals to me, and since boundary kernels are
easy to construct with s (see Gasser and Miiller,
1979). Below 1 will mention a modification of .
that I feel is a viable competitor of 72z even in the
random design case.

The authors’ point about the down weighting
phenomenon of the convolution estimator is cer-
tainly well taken. However, I would like to ques-

Jeffrey D. Hart is Associate Professor of Statistics,
Texas A&M University, College Station, Texas
77843,

quite drastic, although we gained in speed of com-
putation. The linear interpolant has a much better
bias behavior, as is seen in Figure 6. For this
estimator conservative bounds for the numerical
discretization error and its effect on MSE( x) can be
given and are displayed in Figure 6 as long dashed
lines.
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tion an aspect of their comparison of the variances
of fig and /.. As the authors note in Section 4,
the biases of the two estimators are not compara-
ble, the bias of /iy being smaller in some cases and
that of i, smaller in other cases. It follows that
“good” bandwidths for the estimators will gener-
ally be different. Why then is it sensible to compare
Var(ritz) and Var(.) at the same value of h?

A little-used but informative way of comparing
the errors of g and s is to consider the limiting
distribution of
- |g(x) = ()|

| e(x) = m(x)]

Unlike an MSE comparison, this approach takes
into account the joint behavior of the two estima-
tors. Suppose that Chu and Marron’s assumptions
(A.1)-(A.5) hold and that the design density is
U(0,1). Suppose further that the bandwidths of m,
and rh, minimize their respective MSEs. Then it
can be shown that, for each x, the ratio (1) con-
verges in distribution to

(2)2"5|21 +s| _
3 | Zy +Y, |

as n— o, where (Z,, Z,) have a bivariate normal
distribution with Z, ~ N(0,1), Z, ~ N(0,1) and

Corr(Z,, Z,)
)dz fK =pg.

( me(z]K’((

(@)

Grund, B. and Hardle, W. (1991) On the Choice of Kernel Regression Estimators. Discussion of

a paper by Chu and Marron



""Bootstrapping and Related Techniques', ed. Jockel, K.H., Rothe, G. and Sendler, W., Springer
Lecture Notes in Economics and Mathematical Systems, 376, 63-70

BOOTSTRAP CONFIDENCE BANDS

Wolfgang HARDLE
C.0.R.E.
Voie du Romen Pays 34, B-1348 Louvain-la-Neuve

Michael Nusshaum
Karl-Weierstrass-Institut fiir Mathematik
Mohrenstr. 39
D-1086 Berlin

Abstract

Bootstrap confidence bands are constructed for nonparametric regression. Resampling is based
on a suitably estimated residual distribution. The procedure is called the Wild Bootstrap. The
method is to construct first a fine grid of error bars with simultaneous coverage probability. Second
the end-points of these error bars are joined via polygon pieces or parabolae using assumptions on
the local curvature of the regression curve.

1. Motivation

Nonparametric regression smoothing is a flexible method for estimation of mean curves. Since
this technique makes no structural assumptions on the underlying curve, it is very important to
have a device for understanding when observed features are significant. An often asked question
in this context is whether or not an observed peak or valley is actually a feature of the underlying
regression function or is only an artifact of the observational noise. For such issues confidence
bands should be used.

This paper proposes and analyzes a method of obtaining confidence bands based on simul-
taneous error bars at a grid of points. The method is simple to implement and relies on local
smoothness of the regression curve. The construction is based on a residual resampling technique
which models the conditional error distribution and also takes the bias properly into account.

For an understanding of these ideas, consider Figure 1. Figure 1a shows a scatter plot of the
expenditure for potatoes as a function of income for the year 1973, from the Family Expenditure
Sucvey (1968-1983). Figure 1b shows a nonparametric regression estimate which was obtained
by smoothing the point cloud, using the kernel algorithm described in Section 2. As a means of
understanding the variability in the kernel smooth, Figure 1b also shows error bars, constructed
by the Wild Bootstrap method proposed in Hardle and Marron (1990). These bars are estimated
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simultanecus 80 % confidence intervals. Note that the error bars are longer on the right hand side,
which reflects the fact that there are fewer observations there, and hence more uncertainty in the
curve estiinate. The error bars are also asymmetric in particular at points with high curvature
which reflects the correct centering of the bars by a bias term. We propose a method of joining
these error bars in order to obtain a bootstrap confidence band.

FIGURE 1 A FIGURE 1 B
J . !
3—:}- }-3.

1.0

0.5

Soo 0% R BT 75 5.0 950 0.5 e 1S 2.0 28 a0

Figure 1 a,h. Expenditere for potalo {¥) vs. income (K] (a) Scatter Flot {b) Regression kernel smooth
{quartic kernel with band with k=0.3) aed errors bars.

Clearly there is & need for confidence bands in all applications of nonparametric regression.
Hall and Titterington (1986) constructed a confidence band for calibration of radio carbon dat-
ing assuming Normal errors. Knafl, Sacks and Ylvisaker (1984) derived uniform variability bands
under the same error structure.

Our approach is based on resampling from estimated residuals. This form of bootstrapping
preserves the error structure in the data and guarantees that the bootstrap observations have errors
with mean zero. There are two main advantages to this approach. First it correctly accounts for
the bias and hence does not require additional estimation of bias or the use of a sub-optimal {(under
smoothed) curve estimator. Second, no assumption of homoscedasticily is required, the method
automatically adapts to different residual variances at different locations.

In Section 2 we give a technical introduction into simultaneous error bars constructed via the

Wild Bootstrap. In Section 3 we consider bootstrap coufidence bands. Proofs are given in the
forthcoming paper by Hardle and Marron (1990).

2. Simultanecus error bars via the Wild Bootstrap

Stochastic design nonparametric regression is based on iid. observations {{X},¥7]][., € R

=]

and the goal is to estimate m(z) = E(Y|X = z): Y — IR. The form of the kernel regression
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estimator we consider is

(e) ="'y Kalz - Xi)Yi/ fulz) (2.1)
im]
where .
fu(z)=n"' Y Ki(z - Xy) (2.2)
=1

and where Ku(u) = h=?K(u/h) is a kernel weight function with bandwidth h. All results of this
paper are stated in terms of this estimator, although the essential ideas clearly extend to other
types of kernel estimators such as those of Gasser and Miiller (1984) and also to other regression
estimators, such as spline methods, as discussed in Eubank (1988).

One approach to the problem of finding simultaneous error bars would be to work with limiting
normal distributions of the estimator at the grid points. However the joint distribution of the
estimator at close gridpoints has substantial positive correlation, which makes the derjvation of
joint normal theory confidence intervals nontrivial. In fact, they essentially should be done by
simulation methods. Since simulation methods are needed anyway, it seems more economical to
use direct resampling,

While bootstrap methods are well known tools for assessing variability, more care must be
taken to properly account for the type of bias encountered in nonparametric curve estimation. In
particular, the naive bootstrap approach, of resampling from the pairs {(X;,Y¥;) : i = 1yoymi} is
inappropriate because the bootstrap bias will be 0, see Hirdle and Mammen (CORE DP 9049).
Our approach to this problem is to first use the estimated residual

&= Y; — (X)), (2.3)

To better retain the conditional distributional characteristics of the estimate, we do not re-
sample from the entire set of residuals, as in Hardle and Bowman (1988). We use the idea of
wild bootstrapping, as used in Hardle and Marron (1990) where each bootstrap residual is drawn
from the two point distribution which has mean zero, variance equal to the square of the residual,
and third moment equal to the cube of the residual. In particular define a new random variable
e} having a two point distribution &, where G; = v6a + (1 — )i is defined through the three
parameters e, b, -y, and where §,, §, denote point measures at a, b respectively. Some algebra reveals
that the parameters a,b, v at each location X; are given by a = £,{1 - /5)/2, b = £(1 + VB)/2
and v = (3 4+ V5)/10. These parameters ensure that Ee* = 0,Ee*? = ¢? and Ee*? = £}, The
above formulation of the wild bootstrap, hased on a twe point distribution, is only one possible
approach. Other distributions such as mixtures of normals could be considered as well, -

After resampling, bootstrap data
Yih =g (Xi) + e} (2.4)

are defined, where thy{z) is a kernel estimator with bandwidth g taken to be larger than & (a
heuristic explanation of why it is essential to oversmooth ¢ is given below). Then the kernel
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smoother (2.1} is applied to the bootstrapped data {(X;,¥*}} L, using bandwidth h. Let r}(z)

=1
denote this kernel smooth. A number of replications of rj}{z) can be used as the basis for simul-
taneous error bars because the distribution of rhy(z) — m(z) is approximated by the distribution
of gz} — rig(z), as Theorem 1 shows.

For an intuitive understanding of why the bandwidth ¢ used in the construction of the boot-
strap residuals should be oversmoothed, consider the asymptotic bias in the case of uniform f(z):

EY X (shp(z) — m(z)) = rﬂf WK [2)m' (z),

E*(imp(z) — ray(z)) = hz[/uz.f{f?.:lrh:{x].

Hence for these two distributions to have the same bias we need rh:{z] — m' (z). This requires
choosing g tending to zero at a rate slower than the optimal bandwidth h for estimating m(x) !

The simultanecus error bars are found as follows. First partition the set of locations where
error bars are to be computed into M groups. Suppose the groups are indexed by j = 1, .-+, M
and the locations within each group are denoted by 24,k = 1,---, Nj. More precisely, the set of
grid points 4,k = 1,- -+, N; has the same asymptotic relative location c; (not depending on n)
to some reference point ;¢ in each group j. Therefore define

ik =ceh+zip k=1,.--,N;. (2.5)

In the multidimensional case, the simplest formulation is to have each group lying in a hypercube
with length 2h. Now within each group j we use the bootstrap replications to approximate the
joint distribution of

in(g) = m(z) = {ma(zje) —mlzjp) s k=1,--+, N;}.

Next we state a thporcm which shows that the bootstrap works for the set of locations within
each group. For notational convenience we suppress the dependence on j. Technical assumptions
are

(1) m(z), f(z) and ¢*(z) = Var(¥Y]|X = z) are twice continuously differentiahle.

(2} The kernel function i is symmetric and nonnegative, ex = [ K2 < oo and dg =
S (u)du < oo,

(3) sup.E(e?)X =12) < e
(4) flze)zn>0.
Under assumptions (1) and (2} a reasonable choice of k will be in the set

Hy = [;n_”["""},én_”“"di], g E<on

For this choice of bandwidth the kernel amoother rhp(z) is asymptotically optimal, see Section 5.1
of Hardle {1990). The exact specification of the rate of convergence of ¢ is less important for the
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validity of the following theorem, although it must tend to zero at a rate slower than k. Hence it
i asgumed that g is chosen from the set

G = 1ﬂ-lf[4+d}+ﬁ,n—5]’£ = 0.

A fine tuning of the choice of bandwidth g is presented in Theorem 3 of Hardle and Marron (1960).

Theorem 1. Given the assumptions above, we have along almost all sample sequences and for
all z £ R¥
supheH, supged, [PYF {Vnhi[mn(z) — m(z)] < 1)

— P*{Vrhi[ii(z) - iy(z)] < 2}| = 0.

The reason that uniform convergence {in h and g) in the above result is important, is that it
ensures that the result still holds when h or g are replaced by random data driven bandwidths.
For each group j this joint distribution is used to obtain simultaneous 1 —a/M error bars that are
simultanecus over k = 1,---, Nj asfollows. Let 8 > 0 denote a generic size forindividual confidence
intervals. Our goal is to choose § so that the resulting simultaneous size is 1 — a/M. For each
@)k k =1,--+, N define the interval Ij () to have endpoints which are the §/2 and the 1 — 3/2
quantiles of the (i} () —rig(z;e)) distribution. Then define ag to be the empirical simulteneons
size of the # confidence intervals, i.e. the proportion of curves which lie outside at least one of the
intervals in the group j. Next find the value of 3 , denoted by fi;, which makes oy, = a/M. The
resulting J; intervals within each group j will then have confidence coefficient 1 — afM. Hence
hy the Donferront bound the entire collection of intervals I; x(8;), k = 1,---, Ny, j =1, -, M will
simultaneously contain at least 1 — @ of the distribution of fi}(z ;) about rfig(x;4). Thus the
intervals I; 4 B;) — thg(x;x) + rinlz;k) will be simultaneous confidence intervals with confidence
coelficient at least 1 — @. The result of this process is summarized as

Theorem 2. Define M groups of locations 54,k = 1,---,Nj,j = 1,---, M where simultaneous
error hars are to be established. Compute uniform confidence intervals for each group. Correct the
significance level across groups hy the Bonferroni method. Then the bootstrap error bars establish
asymptotic simulianeous confidence intervals, i.e.

limpecePim(z; k) € Iia(f) — glzje) + finlz;a), (2.6)
k=1 Njj=1- - M}2l-«

As a practical method for finding §; for each group j we suggest the following "halving"
approach (also called a bisection search). In particular, first try § = a/2M, and calculate a4,
If the result is more than of/M, then try § = af4M, otherwise next try § = 3a/4M. Continue
this halving approach until neighboring (since only finitely many bootstrap replications are made,
there is only a finite grid of possible #'s available) values 4. and B* are found =o that ap, <
a/M < age. Finally take a weighted average of the 5, and the §* intervals where the weights are

(age — af/M)/(oge — ag,) and (afM — oy, )/{ap- —ag,) respectively.

All of the results in this paper have been stated in terms of the so-called stochastic design
model where the regressors X are thought of as realizations of random variables. Since these results
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are all conditional on Xy, , X, our ideas carry over immediately to the case where the X's are
fixed and chosen by the experimenter.

In the case of binary regression {dose-response curves, Cox (1970, p.8)), where the response
variable ¥ takes on only the values 0 or 1, there are more natural ways of obiaining bootstrap
confidence intervals than those described here. A direct application of our method would give
bootstrapped data Y* which take on values different from 0 and 1. A seemingly more natural
approach would be to bootstrap from a Bernoulli distribution with parameter i (X;). It is inter-
esting to know how fast the convergence in Theorem 1 takes place. This has been analysed via
Berry-Esseen bounds as in Cao- Abad (1983). More precisely Cac-Abad shows that the convergence
in Theorem 1 is of order n=%'®. Hirdle, Huet and Jolivet (1990) consider Edgeworth expansions of
the studentized statistic u":E{r‘r:p.{;r]l — m(z})/varz and as in Hall (1000) find slightly better rates.

3. Booistrap Confidence Bands

Onee simultaneous error bars have been constructed on a grid of points the extension to

uniform confidence bands [¢{r), &z )] such that
Ple(r)<m(z) <gz)forallzl ml~a
can be done in several ways., (ne approach is based on bounds on the first derivative m'(z). Let
us consider for simplicity just two points z; and z3 of the set of grid points. From section 2 we
know that with probablity {1 — @) the true curve m(z) lies at these points in [¢(z;),€(z;)], 7 = 1,2
The exact for of ¢, F is given in Theorern 2. By the mean value theorem we know that for some
point £ € [z1,@0); m{za) = mlzi) = m'(£)(z2 — 1) thus it is natural to use bounds on the first
derivative. Suppose that
f<m'(z)SdeySz<ay

then the two error bars can be joined with two line segments to ensure an overall upper bound
between @; and z3. These two lines segments are

z —+ F(z) =8z — 1) + =)
r— Flz) = §(z — x2) + T(z2).
In a similar way the lower bound can be constructed by

z — —g(z) = f{z — =) + g(=1)

= —g(z) =6z — 22) +glz2)-
Thus the desired canfidence band 18
o(z) = g (z) V gy(z) and Ez) = Ty (z) ATa(2).
Ohwiously this set of four lines contains the true curve with probability (1 — a). The construction

can be extended to an arbitrary set of grid points previded we have construeted error bars of
simultaneous coverage probablity. Thus the confidence band is a sequence of connected hexagons.

Another approach we propose is based on bounds on the second derivative. This will lead to
parabolae joining the error bars as indicaled in Figure 2.

Héardle, W. and Nussbaum, M. (1991) Bootstrap Confidence Bands
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Figure 2. Dootstrap confidence bands based on bounde on the second derivative. The parabolas are
different gince the bound in the sdjncent intervals may be diferent.

To get some insight into this construckion consider for simplicity error bars in ¢, =0, 13 = 1.
Let us construct the upper band. I the error bars have lengths c(z1) and ¢(z;) we can subtract
the line joining the bars since it has second derivative equal to zero. So we ma.grr' assume th,a{ t!hfe
upper band &z},0 < = < 1 passes zero at ry and zp. Assune now that [m"{z)| .E L in this
interval and that for some z, m(z) 2 t > 0. By the mean value theorem we find &;,7 = 1,2 such

that s

1-z

!
m'(£) = ;‘""‘(Ez} = -
By vet another application of the mean value theorem, there is a £3 :

T _ E _{_-‘i-—L:]
m [EH} - ‘Ei _ {I
t i

T z(1-2)

Hence, using the bound on m"{x) we have
t < E{z(1—z)).
This means that m(z) must be below the parabola (1 - 2)e(z;) + 28(z3) + L(2(1 — 2))-
A different approach could be based on glubal bounds of the arclength of the curve between
adjacent error bars. The arclength between r; and z; is f:’ 1+ (m'(x))*dz, thus a bnunld
on this quantity would give us another pessibility to construct confidence bands. The geometric

location of points with a fixed distance to two foci is an ellipse. The obtained confidence band
would thus be a nice esthetic sequence of intersecting ellipses.

Héardle, W. and Nussbaum, M. (1991) Bootstrap Confidence Bands
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The paper by Professor Ker-Chau Li proposes a new and very useful approach
to dimensionality reduction in multivariate nonparametric regression. The advan-
tage of this approach as compared to others is the exceptional simplicity both of
the idea and of the computational tools. We suppose that this would give rise to
a wide implementation of slicing inverse regression (SIR).

As many simple ideas, of course also Sliced Inverse Regression will have its
pitfalls in “nonsimple” situations. In particular, SIR depends very much on the

probability structure of the x-variables described by

For any b in R?, the conditional expectation E(bx | fix,...,0kx) Is

linear in B1x, ..., Bxx; that is, for some constants ¢cg,c¢1,...,cx,
E(bx | fix,...,fxx) =co+c1f1x+ -+ +eg Brx. (3.1)

A “nonsimple” situation might be where the distribution of x is a mixture
of two normal distributions or has a more complicated nonelliptical structure. In
this case a nonparametric technique based on estimating the multivariate density
of x = (xi,...,X,) might be reasonable to check the assumption (3.1). We discuss

later an approach based on this (more complicated) technique.

There are at least two questions that are imbortant for a practioner: how
to choose the number of principal directions K and how to choose the number
of slices H? These questions are addressed to some extent but we feel that they
deserve some more comments.

It is said that the root n consistency property in estimation of directions holds
no matter how H is chosen and that it even holds when each slice contains only
two observations. This is probably somewhat misleading. If H can be chosen
arbitrarily, then it seems possible to use the simplest estima,fe, ie., to put H=1.
But ‘this is, of course, bizarre since in this case py = 1, and the estimate will be
close to my, = E(Z) = 0. When H increases the number of nontrivial eigenvectors
of the matrix V will also increase. Although, it will not be evident for what H all
the K principal eigenvectors are present. This could suggest that H should rather
be chosen large to make sure that we catch all the principal directions. Thus one
might incline to the other extreme, i.e., to choosing only two observations per
slice. To understand this extreme, let us think of one observation per slice, then
V= Z?:liii?‘.’ Thus the principal directions are chosen from ‘the covariance
structure of x as in principal components analysis. Thus, between these two

extremes of SIR, there is a lot of freedom which makes alternative approaches

1
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interesting. One of them is based on a different identification method of the e.d.r.
space, the second is based on average derivative estimation (ADE). Finally, we
propose a nonparametric version of factor analysis.

Let us cénsider instead of V the matrix
B = By[E(x | y)E(x" | y))

(assume here that x is already standardized). Elements of B can be expressed as

by, = ] m; (y)me(4) F(dy)

where m;(y) is the regression function of y on the jth component of x, and F
is the marginal distribution of y. To estimate b;z, replace F by the empirical
distribution F},, and m;, m; by the nonparametric regression estimates m;, m;.
Thus -

B = [ AW = 1300,

The functions 7m;, M may be kernel, orthogonal series or any other estimates. If

M is regressogram, then we get something very similar to SIR, namely,

s 1
B =0 AT )
where
1 H n
y)=— Y > I{ys € I,y € L} %,.

RPh h=1 s=1

This estimate will of course have a bias decreasing with # — co. Similar func-
tionals like the average derivative have a variance proportional to 1/n. We suspect
therefore that a careful choice of H will yield a y/n-convergence of § to B.

All the eigenvectors of B that correspond to nonzero eigenvalues are contained
in the e.d.r. space. In fact, it follows from Corollary 3.1 that

Ex|y)=ca@b+ - +cx(y)Bx

where Cj(y) are some functions. Therefore B = Efm,:l &imBiBL, where &im =
E(cj(y)em(y)). Thus if b is not in e.d.r. space, ie, b L {fi,...,8k}, then
Bb=0. ’

(1991) Hardle, W. and Tsybakov, A.B. Remarks on Sliced Inverse Regression.
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In the simplest case of K = 1 one gets
B=&uph, &u=EdW)

Assume that £ is normalized so that [|$1|| = 1. Then B is the eigenvector of B
corresponding to the maximal eigenvalue ¢;1:

Bpy = énfr; & >b0TBb, Vb:|p| =1

Another approach first devéioped for the case K =1 is ADE, see Hardle and
Stoker (1989), Hardle, Hart, Marron, and Tsybakov (1990). The average derivative
is defined by

/ Vm(x)fx (x)dx

where Vn'z(a:)* is the gradient of the unknown regression function m(x) = E(Y |
X = x) and fx(x) is the marginal density of x. The average derivative can
be estimated +/n-consistently. Although all the pr’evious.wqi'k on ADE was con-

cerned with the case of K = 1, its extension to the more general model y =
m(ﬁfx, ceey %x,s) is straightforward. In fact, the average derivative is then

AD=E (me(ﬁf'x, .. ,ﬂﬂx,a))
=c1f+- - +ckPk,

where

5

) ’ :
¢j=FE (—é—t—m(ﬁgﬂx, ...,ﬁf_lx,t,ﬁ}'_,_lx,..., T x,¢€)

t=ﬁ}'x) .

Define the matrix B; = AD - ADT. This matrix is an analogue of B defined
earlier since all the eigenvectors of B that correspond to nonzero éigenvalues are
in the e.d.r. space. Thus, in the same way as earlier, we can choose the estimates
E;, ... ,BK of principal directions as the first K eigenvectors of ‘

ﬁl = .ZB @T,
where AD is an average derivative estimator.

The choice of the number of principal directions K can be addressed in at
least three different ways:

(1991) Hardle, W. and Tsybakov, A.B. Remarks on Sliced Inverse Regression.
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(if) the candidates for principal directions are known and ordered; the first X
directions are principal; K must be estimated;

(i) the candidates for principal directions are known; the number K of prin-
cipal directions and their positions are unknown; these directions must be
estimated;

(iif} the candidates for principal directions are unkﬁown, their number is also

unknown.

Professor Ker-Chau Li proposes an interesting way of treating the problem
in case (iii) for normally distributed x. His approach is based on the correlation
structure of x only. This can be viewed as an analogue to sequential hypothesis
testing techniques in linear regression. However, the extension to the case of non-
Gaussian x seems to be somewhat difficult. '

Note that (i) is solved if one has a solution of (ii). Under (ii) we can assume in
general that possible candltiates for principal directions are all the coordinate axes.
For example this assumptlon is quite reasonable if one thlnks of a nonparametric
version of factor analysis. Thus, the unknown regressmn function m(x), x =
(x1,-..,%p) € R?, is of the form

K .
m(x) =Y g (x5), dr €{1,...,p},
K=1

where K < p is some ’integer, K > 1. the problem is to estimate the set J =
{j1,-..,ik}. Given a sample (x1,Y1),...,(Xn,Yn) define

s (7) = —-ZYK (),
o) = g 3 K (S5

n

Here f,; is the kernel estimate of the marginal density f; of jth component, x;;’s
are the components of vectors x; = (x1,...,Xip), K is a kernel and b, > 0 is a
bandwidth. Consider the following procedure of estimating J.

1) Calculate the quantities

1< ,
Snj = ;Z;rij(xij)’ i=1...,p
1= .
2) Arrange Sy; in the decreasing order:
SO 25D 22 5P,

4
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Let (1), be the integer that equalts to j with maximal value S,; = SS,I), )n
be the integer that equals to j with Sp; = ,(,2), etc. Thus

(K)n =3 €{1,...,p}: Snj =S,

Without loss of generality assume that all .S'S,k) are different (thus (K), is
uniquely defined). In particular we have
1 n .
S§O = - 3 2. (i)

i=1

3) Choose K, as the minimizer of the following statistic
Ko = [arg min(SP) + Kbn)] -1,
K<p

where b, is a sequence that tends to zero as n — oo and nb2 — co.

The estimate of the set {j1,...,jx} is defined as J,, = {(1)n,...,(Kn)n}, and
the corresponding estimate of the regression function is

mﬂ(x) = Z gnjk(xjk)l

Kel,

where (x;)
(p:) = ni\Ki)
(%5 = Fui)

It can be proved that under suitable assumptions P{J, = J} — 1, n — oo (Hardle
and Tsybakov (1990)). Moreover, the estimate m,(x) is pointwise asymptotically
normal and converges to m(x) with the rate that is achievable for the case of
univariate regression function estimation.

This idea of estimating “principal components” can be viewed as a modifica-
tion of AIC-BIC criteria with the additional reordering of components accordihg to
some stochastic criterion. Note that instead of Sy;’s we could take for reordering
any other data-dependent quantities that are asymptotically nonzero for “principal

components” and are zero for negligible components.
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1. Efficient smoothing parameter selection

The difficulty of assessing accurate smoothing parameter selectors has long been underestimated.
This is mainly due to the fact that in the last few years a large toolbox of data driven selectors has
been developed. The size of this toolbox created an overoptimistic approach in using automated
smoothing procedures: All these methods are asymptotically optimal, some are even root-n con-
vergent, so why care about a specific one? The paper by Hall énd Johnstone has given us a very
precise quantification of the difficulties inherent in smoothing parameter selection and has shown
us relative merits of different methods. Moreover, the proposed efficient selector works much better
than classical tools like, for example, cross-validation. For this and for the insight into the apparent
circulus vitiosus, namely the negative correlation of data driven selectors and the desired optimal
selector, we would like to thank the authors. They have combined brilliant mathematical analysis
with important empirical and practical questions and have made a deep problem of nonparametric
statistics accessible for a wide readership.

An implementation of the proposed efficient selector needs a fine tuned estimator of J;. /2, see
Section 5. In fact, some accuracy is required in the stage of estimating this tuning constant, see

Park and Marron(1991). One needs more than consistency,

Jr-i-.s/'_’ - ']J'+s/2! = Op(n-a)

for some small positive «. This is because ¢2"t***! is chosen to cancel the two leading bias terms
of Jr, and a bit of mistuning for this constant yiclds some bias, so that one can not get the full
advantage of Jones and Sheather’s device. Hence just replacing m by Amg in the first tuning stage,
as in the present paper, may not work too well when m is far different from mg in its shape. We
suspect that the simulation gave good results since mg was used which is the same as m except for

a scale factor.
2. An argument for cross-validation

The technical approach to describing the difficulties of data driven bandwidth choice is to assume.
that the object under study, the density or the regression function, has more than two derivatives.

Thus, in a sense, one employs higher order smoothiuess to describe a problem typical for lower order

2
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smooth functions. This is sofnewhat unsatisfactory since for the higher order smooth functions one
knows how to construct better estimators based on higher order kernels. Is this another circulus
vitiosus that we can not avoid?

Cross-validation does not face this problem sinee it can be applied independent of the knowledge
of the smoothness class: It is asymptotically optimal for kernel density estimates provided the density
f is bounded. In the mind of many statisticians cross-validation plays the role of ”z" for smoothing
parameter selection. So one can imagine that a number of statisticians will still use cross-validation

in the future.
3. An extension for regression with non uniform covariates

The theory developed iﬁ the present paper may be extended to the case of regression with non
‘uniform covariates. Suppose we are given observations of independent identically distributed random
variables {(X;, Y:)}?.,, where X;, Y; ¢ R. For a simple extension to this case, let us assume that the

- marginal density function, f(z), of the covariates is kﬁown- to us. An estimator of the conditional
expectation m(z) = E(Y|X = z), similar to the one proposed by Nadaraya(1964) and Watson(1964),
is given by

my () = m(e)/ flz)

where
in(e) = (nh)™' Y K{(z ~ X;)/h}Yi.
i=t1

Note that in contrast to the Nadaraya-Watson estimator we divide here by the true and known
density and not by an estimate of the marginal density f(z). It is known that these estimators have
different variances, but we have not been able to extend the results of the present paper to this full
generality.

An appropriate measure to assess the performance ol 7 in this case is
A(h) = /{ﬁmh(:c) — m(2)} u(z) f(z)dz .
By paralleling arguments in the present paper, the same representation

i’() =4 + n.ll'r’,-i._,jl + ”p(”’“:”m),

3
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may be established with slight changes in J,, J, and I;(%). In fact,
Jp = (—1)" /m(:c){m.(a;)u(:c)}(g’")f(:n)da:,
Jo = {n(n - D¢ =1 Zw Yi¥iul N X LE{(XG = X5) 9}

Li(h) = /{-,u,(.zr)&,,(.v)u(.z?)f"l(:L')d:z:.

Also the definition of b should be modified according to the changes in the asymptotic representation
of M"(h). Write J and B for consistent estimators of J = fr”guf"1 and B = [ m?u respectively,

where r(z) = m(z)f(z). Then b is defined by
b = Fo{2(nh3) "1 (6%u) + B)kns + 3R}
The modified forms of J, and J,, for instance, come from equation (65) In our case

27> V(X)) = BlY oM ()] + 0,(n-11)
=1
= E[m(X ) (0] + Op(n%)

and, with modified J, defined above,
- R I : .
(=17 Z Yol (X)) = 5(-],- + Jp) 4 op(nY?).
i=1

It is exactly at this point where we could not see how 1o extend it to the random estimate of the

density. We hope that this will be solved in the luture.
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1. Introduction

Let (X1,71), +,(Xn,Ys) be i.i.d. bivariate random variables such that
Y; = m(X;) +e
where m is an unknown regression function and ¢; are i.i.d. random errors.

Define a smoother m,(z) as a solution of the following optimization problem

| dd Xi—2
) mn(z) = argmin Yi-t) K
(1.1) (¢) = argm ;p( ) K(=—)

where p(-) is a convex function, K(-) is a nonnegative function (a k;ernel)r and h, > 0
is the smoothing parameter or the bandwidth. Let 9 be the left-side derivative of p.
If ¢ is continuous then the smoother (1.1) satisfies the equation

1 Y Wi mae) KBTI = 0

=1

The estimates (1.1) are called M-smoothers. They are straightforward generalizations
of kernel regression estimates based on the idea of M-estimation see Hirdle and
!Tsyba.kov (1988). The so-called Nadaraya-Watson regressioh estimate is a special
case of M-smoother for p(u) = wu?%. Other possibilities are the median smoother
(p(u) = |u}) and Huber-type smoothers with

u?/2, lul <,
plu) = 9
, clu] = ¢*/2, |u|>ec,

where ¢ is some positive number.

The asymptotic properties of M-smoothers have been studied by several au-
thors. Pointwise consistency and asymptotic normality are investigated in Tsybakov
(1982a, b; 1983) and Hardle (19843.). The fixed z-design case is considered by Hardle
and Gasser (1984). A recursive modification of M-smoother is introduced and anal-
ysed in Tsybakov (1983). Locally-polynomial M-smoothers has been considered by
(Katkovnik (1985)); For asymptotic normality of locally polynomial M-smoothers,
including the case of discontinuous y¥-functions, and for optimal bandwidth selection
see Tsybakov (1986). Other possibilities of robust data smoothing is based on M-type
splines (Huber (1979), Cox (1983)). Also nonparametric regression M-estimates on

1
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functional classes have been introduced (Nemirovskii, Polyak and Tsybakov (1983,

1985)). They have the advantage to be robust estimates that inherit qualitative be-
~havior of the unknown function m (e.g. convexity, monotonicity, etc.). In neither of
“these papers the data-driven choice of smdothing parameter has been considered.

This paper is concerned with this problem. The asymptotically optimal band-
width calculated in Tsybakov (1982b) depends on some a priori constants that in
- practice are unknown. This raises the point of data-driven bandwidth selection for
M -smoothers. For the fixed design case Hardle (1984b) proposed to use the cross-
validation technique and related global bandwidth selectors based on the residual sum
- of squares. More recently Hall and Jones (1989) proved the asymptotic optimality of
cross-validation bandwidth selector for random design robust nonparametric regres-
sion with the Huber-type function p. They also considered the adaptive choice of
tuning parameter ¢ ocurring in the definition of p. Proofs of asymptotic optimality in
'Hall and Jones (1989) are based on the assumption that all moments of &; are finite.
It is conjectured that cross-validation and related bandwidth selection criteria are not
asymptotically optimal unless some higher moments of ¢; are finite. This comes from
the fact that such criteria contain oscillating terms that are linear in Y;. The higher
moments assumption, however, is not reasonable in our view if one believes in gross
errors.

~ Thus there exists the problem of finding adative bandwidth selectors that are
asymptotically optimal in a sense to be defined here under milder assymptions on the
“error distribution. Another problem is data-driven bandwidth selection for a wide
class of M-smoothers including the case of discontinuous ¥-functions (e.g. the median-
- smoother). These problems are addressed here. We study a variable bandwidth
M-smoother and we introduce the “plug-in” technique to construct locally adaptive
stochastic bandwidths. The use of variable bandwidth kernel smoothers is motivated
by the simple observation that in asymptotics the mean integrated squared error
(MISE) of the best variable bandwidth estimator is smaller than MISE of the best
constant bandwidth estimator (see e.g. Miiller and Stadtmiiller (1987), Tsybakov
(1987)). This property can be explained intuitively by the possibility to reduce the
bandwidth and therefore the local mean squared error near peaks, and to increase the
bandwidth in flat parts of the curve. ’ |

The “plug-in” technique i.e. the use of of estimated asymptotically optimal
bandwidths goes back to Woodroofe (1970) who used it in density estimation (see

2
(1992) Hardle, W. and Tsybakov, A.B. Robust Locally Adaptive Nonparametric Regression.



Data Analysis and Statistical Inference - Festschrift in Honour of Friedhelm Eicker

Devroye and Gydrfi (1985); chapter 6, for further references). Mack and Miiller (1987)
, and Tsybakov (1987) proved the asymptotic optimality of “plug-in” bandwidth choice
for the Nadaraya-Watson regression estimator. | ’

In this paper we extend to robust M-smoothers the results of Tsybakov (1987)
concerning data-driven local bandwidth selection. The class of M-smoothers studied
here is rather broad, also smoothers with discontinuous ¥-functions such as the median

smoother satisfy our assumptions.

2. Main Results

First consider the asymptotic normality of variable bandwidth A -smoothers at
a fixed point z. Assume the following.

(A1) The kernel K is nonnegative, bounded, compactly supported, and

| / I;(u)du -1 , f uK(u)du = 0.

(A2 ) The regression function m is twice continuously differentiable in some neigh-
borhood of z. i

(A3 ) The mérginal density f(-) of X, is continuously differentiable in some n‘eigh~
~ borhood of z, f(z) # 0, and

bi(z) = f(z) m'(z)/f(z) + m"(x)/2 # 0.

(A4 ) The function 3 is nondecreasing.

(A5 ) The function ¢(u) = J ¥(u+ v)dF(v) where F is the distribution of errors ;
is twice continuously differentiable in some neighborhood of the point u = 0,

p(0) = ¢"(0) = 0, ¢(0)>0.
(A8 ) The function @o(u) = [4%(u+ v)dF(v) is continuous and positive in some
neighborhood of the point u = 0. '
(A7 ) The bandwidth hy, is of the form h, = B(z)n~!/5 where 8(z) > 0 is a constant.

3
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In the following we use the notation Cx = [K?*(u)duand dx = [u?K(u)du.

Assumption (A7) is introduced since it guarantees the optimality of the rate of
convergence for the class of regression functions m with bounded second derivative
_(Ibragimov, Hasminskii (1981), Stone (1980)). '

THEOREM 1. Let (A1) - (A7) be satisfied. Then, as n — oo, the sequence
n¥5(m,(z) — m(z)) is asymptotically normal with mean |

b(z)B%(z)b1(z) /uzK(‘u)du

and variance '
° ey = 220 [ K@y
(¥'(0))? B(z)f(=)

Remark 1: Note that the bias of M-smoother is the same as the bias of the Nadaraya-

Watson regression estimate (Collomb (1977)). The variance differs in that we have
‘now ¢2(0)/(¢'(0))? = V (%, F) instead of conditional variance Var (Y|X = z).

Remark 2: V"I‘heorem 1 is closely related to the earlier results by Tsybakov (1982b)
and Hardle (1984a) although it is not the direct consequence of these.

~ For the following we need some more concepts. Denote R(B(z), K,z) = ¥(z) +
o?(z) the MSE of M-smoother at a-fixed point z calculated from the asymptotic o
distribution. We call the M-smoother m,(z) with bandwidth hn = h,(z) pointwise "
optxmal if h, = B*(z)n~/5 where '

g*(z) = argrﬁinR(ﬁ, K,z) =
B>0
V(¥,F) Ck

= TFehe) @
- The MSE of pointwise optimal M-smoother is

2)1/5}

R'(K,2) = R(B'(2),K,2) =

= (5/4*°%) V($, F)** 6}/°(z) f~4/%(=) (dx)*/® (Ck)*/®

Define the locally adaptive M-smoother as

(2.1) Mn(z) = argmin Z p(Yi-K(=22
: telR =) h,
4
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where f:,? = fzn(Xl, «oe, Xn, ==, Y, z) is a sequence of stochastic bandwidths such
that ' :

i ,
(2.2) W —+‘, n — 00,

for every point & where 8(z) > 0. The sequence h,, satisfying (2.1) can be constructed
using consistent pilot estimators of b1, f and V. Such estimators are presented in

Section 3.

To prove asymptotic normality of locally adaptive M-smoother we need the fol-

lowing additional ‘assumption.

(A8) The kernel K is continuous and there exist such L > 0,a € (1,2] , ¢ € (0,1)
~ that _ | |
f(_K(qU) ~ K(u)’du < Llg=1]*, |¢-1| < &.

THEOREM 2. Let (Al) - (A8) and (2.2) hold. Then for any solution ,(z) of
(2.1) the sequence n?3(sm,(z) — m(z)) is asymptotically normal with mean b(z) and

variance o2(z).

Thus 77, is pointwise asymptotically equivalent to m,, provided (2.2) is true. In
particular, the locally adaptive estimate 77, with h, = B,(z)n=1/ where 3, (z) LA
B*(z) , n — oo, is asymptotically equivalent to the pointwise optimal M-smoother.

3. Pilot Estimators.

To estimate B*(z) consistently we need consistent estimators fr(,o-)(:c), f,gl)(:z:),
mg,l)(x),mg)(a:),Vn‘of £, ffym!/,m",V respectively. The estimates of f and f’ are
standard (see e.g. Devroye and Gyérfi (1985)). For example we can take

1 = Xi—z
{(£) — 3 —_
() = malF i ',-E=1 K ( an ), £=0,1,

where the kernel K, satisfies (A1), K is such that
: /K;(u)du =0, juK;(u)du: 1,

and a, — 0 so that na3 — co.

5
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The estimation of m’(z) and m”(z) is somewhat more sophisticated since robust
estimators are to be used here. The standard kernel pilot estimates of m’ and m” asin
Tsybakov (1987) are linear in Y; and hence they are sensitive to outliers. A possible
way of consistent robust derivatives estimation is the local approximation method
(Katkovnik (1985), Tsybakov (1986)). However this method is rather involved from
the computational point of view. Some simple estimates are preferable. For example,
define

mgl)(‘”) = (mn(z + an) — ma(x))/an,

m@(z) = (Ma(T + an) + Ma(z — an) — 2ma(z))/(242)

where an = 0 and my(z) is the robust estimate (1.1).

1t follows from Hardle, Collomb (1986) that under mild conditions on the error
distribution

(31) limsup P{b, sup |mn(z)-m(z)|>€} =0, Ve>0, Vz,
n =2l <8 |

where b, = O((n/logn)}/3), n — oo, and § > 0 is small enough. Note that

P{ImD(z) - m(z)] 2 ¢} <

P{Im{(e) - EESLmE) 5y
P{ lm'(z)—m(”“;f ) >

The second probablhty in the RHS of this inequality vanishes if n is large enough.
- The first probablhty does not exceed -

P{2a;! sup Imn(2)~m(2)l>6/2}

|z—=|<8

for n such that a, < 6. If a7! = o((n/logn)}/3) then this probability tends to 0 as
n — oco. This proves consistency of m (z). Consxstency of my )(z) follows from the
same arguement (here, however, we have to choose a;! = o((n/log n)1/6), |

As thé estimate of variance V choose
%Z’#z(Ys - mn(Xi))
V = i=1 .
" 7 (3=(pn(an) — #a(0)))

6
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where

on(@) = = 3" ¥(a+Yi = ma(X0).
i=1

The estimate Vn converges in probability to V' as n — oo under some choice of a,
provided ¢ is bounded and Lipschitz continuous and (3.1) holds. In fact under these

conditions
: n

Y PV mn(XJ)—-— Z $e)l <

i=1 i=1

<2 Y Im(X) = ma(X)] = 0p(ba),n — oo.

zlw

" This entails convergence of the numerator of V;; to ¢2(0). Similarly
1 <& ,
sup |gn(a) = = 3 w(ei+a)l <
a_ i=1

<2 3 Im(X) = ma(X:)| = op(bn),n = co.

Here and in the sequel ¢;,i = 1,2, .- --are positive constants. Convergence of the de-
nominator of Vj, to (¢'(0))? follows now from the same arguement as the convergence
ms,l)'(z) L {z) that has been just proved.

Note that consistent estimates of V can be constructed also for the case of discon-
tinuous . For example, if we want to use the median smoother (i.e. ¥(u) = sign u)
we have to estimate V = (4p2(0))‘ where p(-) is the densﬂzy of €;. A possible esti-
mator of V is now V, = (4p,,(0))" where

pn(O) = (nan)" ZK LM

ﬂ

)-

Assuming that a, tends to 0 slowly enough, imposing Lipshitz condition on K and
using (3.1) we easily get consistency of p,(0). -

4. Proofs

To simplify the notation set wlo.g. m(z) = 0,0(z) = o,b(z) = b,8(z) =
Byhn(z) = hy = Bn~/5. Since 9 is monotone and K is ‘nonnegative we obtain

: mul® uan‘2/5 n
(1) {n(z) < YCW U{EK( »

W,, C {Ma(z) < uon=%3}

)=0}1

-
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where u € R is arbitrary, and
i

{Z ¢(Y- - uan’zls)K( ) < 0}.

i=1
| Denote |
puo(e =P { gy ;’“Y"""""_MIK( %)= K( n(l-;-t)))l <)
pan =P{ Ihn/h - 1] > é8}.

where e > 0,0<6< 1. It is clear that

(4.2) P(W,) < P{f ; ni <€} + Piale,6) + Pan

and

(4.3) | P(W,) 2> P{-—\/l—; ‘}; ¢ni < —€} = pin(€,8) — p2n
 where G = A3%% (Vi — uon 2/5)1{(()( — z)/hy).

Define |

, 5121 = Var{Cni}:thi = (Cni = E{Cni})/5n,i=1,-- “n
N'ote that Y,; are standardized - i.i.d. random vé.riables.

If h, is not random and h, = h, = Bn~1/5 then (4.2) and (4.3) hold with
€ = 0,p1n = pon = 0 Theorems 1 and 2 follow from (4.1) - (4.3) and the next

relations:

(44 hmP{ZK( =0} =0,
(4.5) o hr? S(l).lp lim sup pin(e,8) = 0, Ve > 0,
(46) | lim P{—= \/_ >:T Cni < e:}
b,
-3 soz(ﬂ)f(x)fK'“’( ) Ve R

- 8
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where ® is the standard normal cdf. In fact, Theorem 1 is the consequence of (4.1) -
(4.4), (4.6) with € = 0,h, = h, = fn~'/5. To prove Theorem 2 note that by (2.2),
(4.2), (4.5) and (4.6)

€

D tmew POR) <~ 2+ e )
for any € > 0 Simila;ly,
(4.8) lim,inf P(Wa) > @(u - 2 - ~0) f(x)sf RO

Since € > 0 is arbitrary we get
. e b
hmP(Wn) = <I>(u- —).

This together with (4.1) and (4 4) entails Theorem 2. Thus it remains to prove (4. 4)
to (4.6).

Proof of (4.4). Denote g, = 2f(z). We have

= 0)=

‘ 1 « 1 X,-—-:.'v' 1 X;—ﬁ:‘ _
= P{~ ;(7{: K(T)—'ﬁ:f{( ) =

< P{—-—-—ZK( ) < -m}+

~+P{|tl<5. nll: i (1; (h (}:l—t)) K( hn ))' >”1}+P2’7

=1

The first probability in the RHS of (4.9) tends to 0 as n.— oo since

LA f(z),n — 00,

(4.10)
(Parzen (1962)). The second probability tends to 0 by Lemma 1 of Tsybakov (1987)
if 6> 0is chosen to be small exjpugh. The third probability ps, tends to 0 by (2.2).

9
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If hn = h,, then only the first probability in the RHS of (4.9) is nonzero, a,nd (4.4)
follows directly. from (4.10). In this case condition (A8) is redundant.

Proof of (4.5). Use the following result of Prokhorov (1956). Let f(¢) be a contin-
uous random process on T' = [-§, 8] and

(4.11) E(fE+h) = ft)2 <kh*, t,it+heT,ae (1,2 >0,
' where & > 0 is a constant. Then
(4.12) P{sup |£(t) = £(0) | > €} < eone=o6(="1/4,¢ > 0.
Define < |
| ) = ﬁ Z WY = urn IR (K2 . (1; 5

z z—
——) - K(+—=).
(h (1+t+h)) (hn(1+t)) .
We prove now that the process f(t) satisfies (4.11) for n large enough. This entails
(4.5) since the LHS of (4.12) equals to pia(€,6) in our case. We have

@9 BGerh - sy -
=1 E(Z W(Y; — uon?%) Kin (X, h))? =

nhn i=1
1

— [RE{$*(Y1 — won™*®) KT (X1, h)}+
+n(n = I)(E{$(Y: — uon=25) K1 (X1, D)}

Assume that § € (0,1) is small enough that 25/(1 -d) < €o. This guarantees that
|5 — 1| <o for any t,t+ h € T. By (A8)

Kln(z h)

(4.14) ' ;1 / K2 (z,h)dz < csh®.
It follows easily from (AS) and from Cauchy inequality that
(4.15) Bt / IK1n(2,B)| dz < csh®/2.

Using (4.‘15) and the fact that ¢,(u) is bounded in some neighborhood of u = 0, and-
f(z) is bounded in some neighborhood of z = z we get

(4.16) -}-‘l-iv:{«/ﬂ(y1 —uon~%) K2 (X1,h)} =
- 7}. / a(m(z) — uon=5) F(2)K2, (2, h)dz < csh®.
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Moreover : ' ‘
E{¢(Y1 — uon~ %) K1a(X1,h)} =

_ , 4
= [ ¢m(z) = uon™) f)Kanle, )z = 30T,
! j=1
‘where

L= f (p(m(z)  uon=21%) =  (O)(m(z) — uorn~Y/%)) f(z)Kin(z, B)dz

2= / p(m(z) = uon™*%) (f(z) - f(2))K1n(2, h)dz,

mﬂ(x)

[r@ O (@) + THE (=) = o Kun( s,

m”(Z)

L = [ 1@ O)m() - m(@) - 2) = T2 (o = ) Kun(e, Rz
- Note that (4.15), (A2) and the boundedness of supp K entail

Is

L] < ern=® f |Kin(z, )| dz < can=/5he/2,
Using‘(Al) we get

b = £(=)¢/(0) [Za2 (44 = 1+ 9B~

uan'zlstln(z,h)dz}

Hence ' \
lIs] < con3/5(h + ho/?).

The derivatives m’, f' are finite and continuous in some neighborhood of z, a.nd the
derivative ¢’ is finite and continuous in some neighborhood of zero. ‘This together - -
with the condition ¢(0) = 0 gives that '

L] < cmn“2/5f |K1n(z, h) | dz < cun™®/*po/2.

Finally, the condition ¢(0) = ¢"(0) =0 and continuity of ¢” in some neighborhood
of zero entail 7

sup lp(m(z) — uon™*/%) - ¢'(0)(m(2)-
la=| DO+ AR .

—uon~Y%)| < ¢12 sup |m(z) — uon=?/52 <
|z ~z|<D(1+[t]+}h])hn

< c1an™ 5, D = max{|z| : K(2) # 0}.
| 11
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Using this inequality and (4.15) we 6btain
| ‘Ill < cyqn~ %5/,
Thus we proved that
(4.17) |E{$(Y1 — uon~2%)K1a(X1,h)}| < crsn3/5(h 4+ ho/2)
It follows from (4.13), (4.16), (4.17) that
E(f(t+B) - FO) S cao(h? + %),

This yields (4.11) since by (A8) a €(1,2].
Proof of (4.6). We have

P{-—\/l._—y-z- z": Cni < €} =
i=1

= P{jE 3 Yor < (-VA BlGub+)fsa}.

i=

Here

(4.18) Vn E {Cnx} = ‘ |
= \/n/h,, /@(m(z) —uon 2/rs)f(z)K(

= v/nh, / K@)p(m(z + vhy) - uan’2/5)f(x + vhp)dv.

)dz =

" Denote ,
H(@) = p(m(z+1) —uon~?%).

Using (4.1) we obtain

(4.19) f K(0) H(vhn)f(z + vha)dv =

- / K(v)(H(0) + H'(0)vh, + -;-H"(evh,,)(vh,,y)x
X (f(z) + f'(z + 01vhn)vhy)dv =

= H(O)f(z) + B2 f P K (0)(H'(0)f'(z + 01vhn)+
+ (1/2)H" (Bvhs)f(2))dv + an

. 5 12 :
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 where 0 < 6,8, < 1 and an, = O(h2) by (A1) and by boundedness of f/(z + ¢) and
H"(t) for small £. | : '

Now

(4.20) | H(0) = p(—uon~%%) =
= —uon~ 23/ (0) + O(n=*/%),
H'(0) = ¢'(—uon~2/%)m'(z) =
= ¢ (O)m'(2)(1 + o(1)),n — oo.

Since K is bounded and compactly supported and f/, H” are continuous we get
(4.21) f VK (v)f'(z + Byvhy)dv =
= f'(z) /sz(p)dv + o(1),
| f V2K (o) B (§uhn)do =
= H"(0) [ v2K (v)dv + o(1),
| whefe by continuity of ¢’ a.ndkp” |
- (4.22) | , .‘H”(O) = " (—uon~4%)m'(z)+
| | | + (p'(—uaﬁ‘?ls)m"(z) = go';'(O)m’(z)+

+¢'(0)m"(2) + o(1) = ¢'(O)m" (2) + o(1),

Combining (4.18) - (4.22) we find
(4.23) | lim /A E{Gu} = VB (—uo@'(0)f(2)+
+8720/0) [ PK(0)dv (9(2)1(2)).

Next
2 = {3} - (B{Gm))?

where
E{¢:,} = [¢2(m(z + vhy) — uon~ %) K2(v) f(z + vhy)dv

= 2(0)f(a) [ K)o +ol1).

13
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- This together with (4.23) entails
(4.24)  lims? = a(0)f(2) f K*(o)do.
From (4.23), (4.24) one obtains
lim (—v/n E{¢n1}/3s) = u—b/o.

To prove (4.6) it remains to show that the distribution of n=1/23""_| V;;; converges
towards the standard normal. By the normal convergence criterion, as given in Loéve
(1960), p.295, it suffices to prove that

(4.25)  EmE{YAI(|Ya] 2 ve)} = 0,Ve > 0.
Using (4.23), (4.24) we get
| E{YAL} = s7?E{¢3i1a} +o(1)

where I, = I{|Yn1] > vne} < H{[Cn1l > 6.},60 = 7 es, — |E{(,,l}| Thus
(4.25) follows from

(4.26) | lim E{¢31.} = o.

Now we prove (4.26). By (Al) we have D = max{|z| : K(z)' # 0} < oo. The
| monotomcxty of 9 entails '

(4.27) ' sup |1,b(§ +m(z) — uan‘2/5)| <
. : |z==|<
< max{l¢(€ + )|, 1€ - W)} & w(§),¥ € R,
where 0 < v/ < 00 is chosen such that uon=2/5 + maxy; _z|<Dh, [m(z) = m(z)| < '

for n large enough. Using (4.23) (4.24), (4.27) and the boundedness of K we find

Gl < B2 K(E —Jw(é),
167! < crn 2/51”(51)(
Hence ) ' ' '
(4.28) E{¢3I,} <

<o [WHOI(e) 2 i w?I)FE)

It follows from (A6) that the integral [ wz(E)dF(.f) is finite for 4/ > o enough. Thus
(4.28) tends to 0 as n — oo, and therefore (4 26) is true. This concludes the proof of
(4.6). | |

. 14 ,
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1. Introduction and Motivation

In this paper we consider classes of statistical models that arc natural gencralizations of
generalized linear models. Generalized lincar models cover a-very broad class of classical statistical
models including linear regression, ANOVA, logit, and probit modcls. An important clement of
generalized linear models is that they contain parametric components of which the influence has
to be determined by the experimentator. Here we describe some lines of thought and research
rclaxiﬁg the parametric structure of these components. ‘

In gencralized linear models response variable and explanatory variables are related by pre-
determined functional forms, c.g:, the logit model with a logistic link function and a linear form
on the explanatory variables, sce McCullagh and Nelder (1989). In this example the fixed para-
metric structures are the logistic distribution function and the (lincar) form of the influence of the
explanatory variables. Gcnerah/mg such a type of model means to abandon the form of cither of
these fixed components, i.e., thc logistic (inverse) link functmn or tho tincar puri:rtm Generalizing
the form of the link function means to allow for a flexible or parameter free form. Generalizing the:
form of the linear predictor means to allow for any unknlown function of the explanatory variables.

Allowing for any functional form of influence for the predictor variables leads into well known
dimenﬁonality problems, commonly called the curse of dimensionality (Huber 1985). In order to
avoid this curse of dimensionality Hastic and Tibshirani {1990) proposcd to generalize the linear '
predictor by a sum of non-parametric univariate functions. This leads to so called generalized
~ additive models. They contain generalized linear models as a special case when the link function
is known and the univariate functions operating on the explanatory variables are linear.

"Relaxing the form of the link function means to keep the linear predictor but to replace, in
terms of our previous example, the logistic function by a non-parametric (preferably monotone)
function. More gencrally several of these types of response models can be added, each using a
different lincar predictor and {non-parametric) link function. These modcls are known as projection

pursuit regression (PPR) models due to-an algorithm developped by Friedman and Stiitsle (1981).

(1992) Hardle, W. and Turlach, B. Nonparametric Approaches
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If we take just on term, i.c., an unknown (inverse) link function operating on a linear combination
- of the explanatory variables, this is called a one term projection pursuit model, in econometrics
also called a single indez model. Stoker (1892a, pp. 17 20) from an entirely economic point of

view, considers labor supply leading to such a single index model.

2. Nonparametric Approaches to generalized linear models

We Ha.ve argued that natural generalizations of generalized linear models are weakening and
relaxing the link function or the linear form of the explanatory variables. To fix ideas let X € R
denote the explanatory variable and Y € IR be the responsc variable. A generalized linear model
(GLM) connects the mean g2 of Y with the predictor n = X7 4 via a link function G, i.e., ;;. = G(n).
As a running examples we shall use the case of binary response mori:z]s, ie,Y € {0,1}. The GLM
then reads as P[Y = ljz".J = z] = G(z"'#). The aim is to estiniatc 8 when the link function G is
fixed. Here and in the following we use the term link where ‘McCullagh and Nelder (1989) mean

the inverse link. Since in our examples this link is monotone there is no problem of confusion.
Single Index Models

Single Index Modcls keep the linear component but generalize the link. Inour running example
this reads as :
PlY = X =z] = g(z"¥) (21)

with g an unknown univariate “smooth” function. Note that herc some standardization of the
parameter 8 is asked for, since as such, (2.1) does not identify B but rather the direction of §.
The aim here is to estimate 8 and the unknown link. For illustration of statistical and numerical

procedures to be describied later we would like to introduce

example 1.

X ~ N0, 13), 3=(1, )7
g(n) = L(n) + p¢'(n),  L(n) = exp(n)/[1 + exp(n)] (2.2)
PIY = 1|X = 2] = ¢(z"$)

This model is almost a Logit model, only the skew deviation term py'(s) makes it different

- from a GLM. For p = 0 it falls into the class of GLMs. For later illustrations we have set p =06

(1992) Hardle, W. and Turlach, B. Nonparametric Approaches
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and have generated n = 200~datapoin£s (i, %) according to (2.2). A graphical inspectation of the
data gives a taste of nonparametric structure. Figure 1 shows a three dimensional scatterplot of
the data. If we project the X variables in the 45° line we obtain Figure 2. This picture shows
the pfojected data =70 against y; together with the link ‘g{m). All these graphics and futurc

comﬁutations were done in XploRe (1992).

3D View of Sample
10
z o
os ° a0 o °
do 0,%3p 2° ©
s ° 9, é‘s' o ¥ o
o °oo
N, Lt
L] s °
o}04 0 g 5 °
o2
X
30
X X
Y x2
ZY
Figure 1: A three-dimensional scatterplot of the sample {(=], 22, 4:) 1?8 for cxam-

ple 1.

Generalized Additive Models

Generalized Additive Models keep the link but generalize the linear predictor to a sum of

nonparametric functions. In our running example this reads as

d
PlY =1|X =2] =G |a+ Y g;(X’) (2.3)

=1
where X7 denotes the j** component of the vector X = (X',..., X7 and the g, are unknown

_ univariate “smooth” functions. Again some standardization is necessary since the model as such
daes not identify the unknown {gj}le. The aim here is to estimate the nonparametric functions

g,. For illustrations of later techniques let us introduce

(1992) Hardle, W. and Turlach, B. Nonparametric Approaches
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Simulated Data Set
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Figure 2: The observations y; for example 1 plotted against n = T8 =z} 1 22

" The link g(z) = L{n) + 0.6¢'(5) is shown as the solid line.
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Figure 3: A four picture display with {(n:,%:)}?% and G(:) in the upper left. The
nonparametric components are in the lower left and upper right. A rotated vicw of

the surface {(z},z2,m)}?% is given in the lower right.
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example 2.

X~M0O5), a) =2 a6)=[" -1
G=L . : (2.4)
PIY = 1|X =z] = G(g1(z") + g2(=*))

This model is almost a Logit model, only the second predictor variable has a nonliéiéar in-
fluence on 7. Figure 3 shows a four picture display with the data {(n:, ) 200 in the upper left
corner together with the Logistic link. Note that the predictor is m; = g (z!) + go(z?). Ther “non-
parametric” components g; are shown in the-lower left und the upper right. An impression of the

nonlinear components can be gained by rotating the three dimensional surface {(z!,z?, m)}2%.

3. Single Index Models

Model (2.1) is called a single index model or a one term projection pursuit. model. This

terminology is due to Friedman and Stiitzle (1981) who considered the more general model:

K
Py=1X=2]= 2:191(_37';3,-)
3=

where the §; € R? are unknown parameters and the g;'s are unknown functions, éatisfying some
“smoothness” assumptions. In order to make the ,6‘_, s and the g;’s :dent,lﬁable one has to impose
restrictions on the scale, usually [|g] =1, or 8! = 1. '
Friedman and Stiitzle (1981) proposed to estimate K, J; and g; by the method of “Projection
Pursuit Hegr%sion"(PPR) algorithm. This. procedure estimates terms g;(X73;) as long as the
fraction of unexplained variance is below a userspecified treshhold. In each step that 8; is choosen
which maximizes the fraction of unexplained variance given the previous terms (projection pursuit).'_

The fitted model after convergence is

K
P[Y = llX = z] = Zgj(z’ 5,)
=1
From a mathematical point of view, a drawback of this method is, that it is not clear which value
of K is to be chosen. Research has therefore focussed on one term projection pursuit models. In
this line Hall (1989) constructs a root-n consistent estimator of 8. A different method is that of
Hirdle and Stoker {1989) also called ADE for Average Derivative Estimation. It is based on the

(1992) Hardle, W. and Turlach, B. Nonparametric Approaches
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following idea. Define m(z) := g(z78) and observe that for the average derivative 8, as defined
below, we have 7
b= =
Ex[m'’ (X)] E"{d( %)
Thus § determines 3 up to scale. Let f(z) denote the density of X and { its vector of the negative
log-derivatives (partial), ='——'§§i = f# (1 is also called score vector). Under assumptions on

" f this enables us to write

(XTB))8. (3.1)

6 = E{m'(X)] = E[iY) ' (3.2)

- and to estimate § by § = n=! 30 in(z:)y:. Here I, is an estimator of [ based on a kernel density
smoother with bandwidth h. For an easy access to kernel density smoothing see the book by
Silverman (1986). With root-n estimates for § precise estimates for the link can be obtained.
The convergence rate for ¢ is one dimensional, however in practice there remains the pfoblem of
selecting the bandwidth A. This was investigated in Hirdle, Hart, ivla.rron, and Tsybakov (1992}
and for a weighted average derivative by Hirdle and TsybakoV '(1991). Stoker (1991) proposed
alternative estimators for 6. A Monte Carlo comparison of these different methods was done by
Stoker and Villas-Boas (1992b).

The estimation of the score vector ! via a kernel density estimator involves a number of
intensive calculations, especially when we optimize over h. Therefore discretization or WARPing
‘ ideas should be used (Turlach 1992). For our simulated example Figure 4 shows the result of this
» method. We calculated 4 and used the Nadaraya- Watson regression estimator to estimate §. Note

that the horizontal scale on this figure is different since (3.1) suggest that & has different scale
then 8. In fact for ADE the scale of & changes with g but it does not matter for the statistical
interpretation of the link g that we are interested in.

The estimation of § and its asymptotic covariance matrix £ for example 1 was done with
Program 1 in Section 5. Note that for this example we have § = (3:1%). The binning parameter
d was chosen in such a way that maximal 20 bins were used in each coordinate, i.e., d=~ ((J 256)
The estimate for the average derivative and the asymptotic covariance matrix was calculated using
the three adjacent bins which equals a bandwidth k =~ (gg). As result we have

;- (0124 § _ (0188 0.036
TReams) T (0036 0208/
“ These results allow us to test some hypothesis formally using 2 Wald statistic (see Stoker (1992a),
pp. 53-54). In particular, to test the restriction RS = ro, the Wald statistic

W = n(Ré - ro)T(REsRT) ™\ (RS - ro)

is compared to a x*(rank R) critical value. Table 3.1 gives some examples for this technique.

- '(‘1'992’)’Hérdi'e;"W. and-Turtach; B. Nonparametric Approaches--
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Restriction Value W df.  Plx*(d.f)> W)
' =8=0 2625 2 ]
fl=62=0135 0365 2 083

6 =52 0.126 1 0.72

Table 3.1: Wald Statistics for some restrictions on 4.

ADE projection
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Figﬁ}-e 4: For the simulated data set of example 1 :r;‘-"'ﬁ vs. % and two estimates of
§(zT6) are shown. The thick line shows the Nadaraya-Watson regression estimator
for § with a bandwidth of & = 0.3, for the thin line h = 0.1 was chosen.

Another method to estimate g and 8 in (2.1) was proposed by Ichimura (1992). Let ¢ denote
the error term inherent to the response variable. Observing that {Bo denctes the true par;ﬁeter):

(l) The variation in Y results from both the variation in X7 and the variation in e

(2) On the contour line X7 8, = ¢, where ¢ is a given constant, the variability in Y results
only from the vanatlon ine.

(3) Observation (2) does not necessanly hold on a contour line deﬁned by XTB = ¢ for
B # Oo. Along this contour !me, the value of X7 8y changes and therefore the variability -

in Y again results from the variation in both XTfg and .

(1992) Hardle, W. and Turlach, B. Nonparametric Approaches
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To identify Bp Ichimura thi.fs,proposes to estimate the conditional variance

Var [Y|XT=d =E[{Y - E[Y|x"p =}"] . (33)

by estimating E [Y|XT8 = c] by a kernel estimator and to find than the vector 4 that mini-
mizes (3.3). Hirdle, Hall and Ichimura (1991) proposed a simple and effective crossvalidation
method for this setting which yields a; root-n consistent estimator of gy and an asymptotically
~ optimal estimator of kg, the bandwidth which should be used to calculate the kernel estimate of g.

A way of testing a GLM against this specific single index alternative has been given by
Horowitz and Hirdle (1992). They constructed a conditional moment test based on ideas of
Bierens (1990} and Newé;} (1985). Another approach for such a test via Bootstrapping ideas was
investigated by Rndriguez-Cﬁmpos and Cao-Abad (1992). e

4. Generalized Additive Models

A generalized additive modet differs from a GLM in that an additive predictorkreplac&s the
linear predictor . The estimation of this model is usnally a highly iterative procedure. Estimation
of o and ¢1,...,94 in (2.3) is accomblished by replacing the weighted linear regression in the
adjusted dependent variable by an appropriate algorithm for fitting a weighted additive model
(Hastie and Tibshirani 1990). This iterative fitting of a weighted additive model is known as local
- scoring since it generalizes the Fisher scoring procedurc. Each estimation of a weighted additive
‘model is done in an iterative process known as backfitting. In the backfitting step non-parametric
estimates for g1,.-.,94 are calculated. The propertics of the backfitting algorithm have been -
studied by Craig and Kohn (1991) or Hirdle and Hall {1992) for example.

More specifically we have to estimate functions g; in the model

N ) ]
PlY=1X=z2]=G (a+ Zg,-(Xj)) .
=1

The explicit algorithm of finding the nonparametric components is given by (see Hastie and Tib-

-(1992)-Hardle, W. and Turlach, B. Nonparametric Approaches
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shirani 1987):
Local Scoring Algorithm
Initialization f;o) =0forj=1,...,d, &© =logit(§).
Loop " over outer interation counter m
™ (z:) = &™) + T, ™ ()
$i =logit ™! (7™ (z:))
= 7™ () + (i — 5:)/1Bi(1 — i)
w; =5 (1 — pi), i=1,...,n
Obtain d(’“+'),j;("‘+l),j =1,...,d by applying the backfitting

¥4

L

algorithm to z; with explanatory variables z; and observation weights w;.

until the deviance D(y, p) = —2 3 [yi log(p:) + (1 — 1) log(1 — ;)] converges.

Backfitting Algorithm

Initialization f}o) =0forj=1,...,d &% =3

Repeat for j = 1,...,d repeat such cycles:
. d . . .
nep-d- Y ful@®) i=1..n
. =iy
filzl) = S(rlw,z}) i=1,...,n
2
- d . .
Until RSS =31, (y; -a-x f}-(:c;’)) converges.
R j=1

Here S(r|w, x" } denotes the value of the function obtained by smoothing the scatterplot (r, z) with

weights w at the point z;. - = <

Since non-parametric_estimation methods are used in the backfitting step two main problems

- arise. The first problem is how to choose the smoothing parameter in this non-parametric fit regard-

less whether splines, kernél estimators or others are used, see Buja, Hastie and Tibshirani (1989).

The second problem is, since the whole process is iterative, how to make the calculations of the

non-parametric fits as fast as possible. )
For kernel regression estimates this leads to WARPing (see Scott 1985, Hardle and Scott 1992,

~and Fan and Marron 1992). A third problem is how to incorporate the weights in the non- :

_parametric smoothing step (see Hastie and Tibshirani 1990, pp. 72-74). Especially in logistic-

models, as we discuss them here, these weights can cause numeric problems. If the ‘estimated .

probability f; = P[Y; = 1|X] is very close to 0 or 1 the weight for this observation in the backfitting

-step will be very small. But the adjusted dependent variable will be very big resulting in a big

partial residual. This can result in a bad fit within the baékﬁtting algorithm which leads in the

next step of the local scoring to the same problem.

(1992) Hardle, W. and Turlach, B. Nonparametric Approaches
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Figure 5: A four picture display with the results of the fitting procedure for the
Gcnerahzed Additive Model. Legend is the same as for Figure 3 where 1; is replaced

by .

Program 3 in Section 5 demonstrates how thé Generalized Additive Model can be estimated
in XploRe (1992). The result of this fitting is visualized in Figure 5. The backfitting algorithm
provides> estimates of the function gj in the multiple additive regression model Elylz] = a +
>, 95(z7) with E[g;(+7)) =0 forj=1,...,d. It is easily seen that in example 2 given by (2.4) we
have Elg;(z¥)] = 0, j = 1,2. Thus for our example we would expect that a is estimated as 0. In

fget the result is & = (0.25.

5. The implementation in XploRe

The above caIculanons have been performed in the language XploRe (1992). In this section
> we glve some programs that are usefu! in solving the iterative procedure for Generalized Additive
Models for example or for ADE. The Single Index Model for example 1 has been estimated using
the ADE technique with the following program.

library(smoother) ’ ;load the necessary libraries
library{addmod) :
randomize (0)

- (1992) Hardle; W- and Turlach, B. Nonparametric Approaches-——————
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x = normal(200 2) : ;generate the explanatory variable
rho = 0.6
beta = #(1 1)
eta = x#beta ;eta, notation as in (2.2)
g = 1./(1+exp(-eta)) - rho * eta.*pdfn(eta);calculate g{eta}
" u = uniform (200 2)
y = u.<g ' ;generate the response variable
d = (pax(x)-min(x))/20 ;choosing a binning parameter
(xb yb) = bindata(x d 0 y) ;binning the data

(del dvar) = adeind(xb yb d 3}
- ;jestimate the average derivative and the asymptotic covariance matrix
est = (x*dél) 'y ;calculate the projection

ghl = regest(est 0.1) ;find estimates for g
gh2 = regest(est 0.3)
show(est ghl gh2 s2d) ' ;show results (Picture 4)

Program 1: This program generates and estimates example 1

The commands of XploRe (1992) are similar to GAUSS but more fine tuned for smoothing and
nonparametric methods in high dimensions. The Generalized Additive Model (GAM) of example 2

was created using the following code:

randomize (0)
x = normal{200 2)
gl = x[,1)
g2 = x(,2].#x[,2]~1
eta = gl+g2
px = 1./(1+exp(-px))
u = uniform(200)
Yy = u.<px
createdisplay(pic3, 2 2, 82d s2d s2d d3d)
show(eta™y eta"px s2di, x[,1]7gl s2d2, x[,2]) g2 s?da x"eta d3dl)

Program 2: This program generates Picture 3

The estimation of the GAM was done by

proc{fx alpha dev)=lscore(x y)
dim = cols{x)

gx = matrix(rows(x) dim 0) iinitialize g_j

xs = 1 o : jused to store information
;to sort the covariates

ybar = mean(y) ;initialize alpha

alpha = ln(ybar/(l—ybar))

loop = 1

devold = 0

dev = 100000;

(1992) Hardle, W. and Turlach, B. Nonparametric Approaches
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- while( (abs(dev-devold) > 0.01) &% (loop < 6) )
eta = alpha + sumr{gx)
p = 1./(1+exp(-eta))

w'=p.*(1-p) ;calculate the weights
z = ota + (y-p)./w ;calculate the adjusted
o ’ " j;dependent variable

(gx alpha xs)=backfit(x z xs w 0.4) ;the backfitting step

devold = dev

dev = -2#sum(y. *1n(p)+(1 y) . *in(1-p)) ;calculate the deviance

loop = loop+l . .

endo )

endp -

Program 3: This program implements the Locél Scoring Algorithm
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Second Order Effects in Semiparametrie
Weighted Least Squares Regression

RAYMOND J. CARROLL and WOLFGANG HARDLE
Texas A & M University, College Station, and University of Bonn

Summary, We consider a heteroscedastic linear regression model with normally distributed
errors in which the variances depend on an exogenous variable. Suppose that the variance
function can be parameterized as y(z;, #) with ¢ unknown. It is well known that, under
mild regularity conditions, the weighted least squares estimate with consistently estimated
weights has the same limit distribution as if ¢ were known. The covariance of this estimate
can be expanded to terms of order n~1. If the variance function is unknown but smooth,
the problem is adaptable, i.e., one can estimate the variance function nonparametrically
in such a way that the resulting generalized least squares estimate has the same first order
normal limit distribution as if the variance function were completely specified. We compute
an expansion for the covariance in this semiparametric context, and find that the rate of
convergence is slower than for its parametrie counterpart. More importantly, we find that
there is an effect due to how well one estimates the variance function. For kernel regression,
we find that the optimal bandwidth is of the usual order, but that the constant depends
on the variance function as well as the particular linear combination being estimated.

1. Semiparametric weighted least squares regression

Consider a heteroscedastic - linear regression model with normally distributed
errors and replication of the response. Given fixed predictor variables (24, 2:), the
response variables are

Yi=xf+amy (i=1,..,nandj=1, ..., m); (1.1)
with:
of =ylzi, Bo); Emy=0; Var (ny)=m .

In this model, each response is observed m times, § is the regression parameter
and y is the variance function of the response. The {z;};_, are observable scalars,
possibly a component of the observable p-dimensional vectors {z¢}}_,. The reason
that Var (5y)=m will become clear later. In this paper, the (4, z;) are fixed
constants, but the results hold in the random case by conditioning on their ob-
served values. In this paper, we study with the effect of estimating the variance
function on weighted least squares estimates of §.
Define

Su(®)=n"1 3] me] lp(z, 9);
=1

12+
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S(#) =ij Sa(#);
B(8) =871 (8) nt 3 2 Ve lplzi, ) .
f=]1

The Gavss-MARKOV estimate of § is f(#o). Given {(zs, z:)}7_1

B(#0) ~ Normal (8, n-18x($0)"1) .
Of course, in pr&ctice, # is unknown and must be estimated. If # is the maximum
likelihood estimate of &y, then it can be shown (CaARroLL and RUurPERT, 1982) that

i !

n? (B(8)—p)=Normal (0, S-1(8)) . (1.2)
Result (1.2) is a parametric adaptation result, suggesting that for large sample
sizes there is no effect to first order due to estimating #;. ROTHENBERG (1984) has
investigated more closely the effect of estimating #, showing that

Cov {n'% (B(#) —B)} =8, (Do) +n 12w, (1.3)

where 2, depends on {(:,2:)}{_,, is positive semidefinite and is uniformly bounded
in the sup norm. This second order covariance expansion says that the price for
estimating & is an increase in variability of order n-1. Expansions such as (1.3)
when the variances depend on the mean and/or the errors are not normally
distributed have been investigated by CarroLL, Wu and RUPPERT (1988).
Suppose that instead of a complete parametric specification of the heterosce-
dastic regression model, we allow the variance function to be nonparametric, i.e.,

o7 =1o(z¢) = 1/go(z1) , (1.4)

with an unknown smooth variance function yo. Now the unknown parameters are
(B, wo), S0 we are in a semiparametric context, see BICKEL (1982) and BEGUN,
et al. (1983). In this setting, CARROLL (1982) has constructed adaptive estimates
as follows. For any v, let

i
Salp)=n"1 3] z] iplzi);
f=1
Sly) =Lm Sa(p);

Bly) =S;1(sa)‘§ 2 Yify(ze) .

Form a kernel smoother $, of g. Then, in this semiparametric framework,
CarroLL (1982) proved the following analogue to (1.2):

1
n? (B(#)—p)=Normal (0, S~1(yn)) . (1.5)

This is an adaptation result which says that there is no cost to first order for
estimating the unknown nonparametric y. In the light of the second order ex-
pansion (1.3), it is natural to ask the following questions.

Carroll, R. and Hardle, W. (1989) A note on second order effects in a semiparametric
context
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1

A. Can we compute to second order the covariance of n (ﬁ ($)—B) for a jmm-
cular §?

B. If so, is the second order term converging at the rate n-1?

C. Suppose a kernel smoother is used. In the second order expansion, is ﬂ;ere an
effect of the bandwidth used to estimate yo? ,
If ¢ is chosen appropriately, f(p) is .Bymmebrlcally dmtr]buted about 8. In this
paper, we pick a particular estimate i based on kernel regression techniques and
compute an analogue to the covariance expansion (1.3), namely,

1 .

Cov {n® (B(4n)—B)} =54 (o) +n PR, , (1.6)
where Q, depends on {(z, z:)};_;. This leads to the following major conclusions.
First, the second order covariance term converges at a slower rate for the semi-
parametric model than it does for the parametric model, thus answering question B.
With respect to question C, for general bandwidth % the second order expansion
term n %30, in (1.6) splits into two components, a variance term and a bias? term,
so that

1
Cov {n? (B(¥n) — B)} =Sy (wo) + (nh) 1 2, , +h4Q2, 5 . (1.7)

When estimating linear combinations of g the bandwidth & should thus be chosen
so as to minimize the resulting quadratic form from (1.7). We call such a band-
width choice optimal. Thus, the optimal bandwidth in a kernel estimate of yp
converges to zero at the usual rate »~"/° (CoLLoms, 1981), but the constant of the
optimal rate depends not only on the variance function yo but also on the parti-
cular linear combination being estimated. This argument extends to estimating a
vector of linear combinations of 8, with the result that there is a vector of optimal
bandwidths.

There are some general implications of our results. In the semiparametric
context, there is some concern that much larger sample sizes will be needed to
achieve approximate normality than is true in a parametric model, see Hs1ex and
Maxsk1 (1987). Indeed, our resultsindicate that semiparametric adaptive estimates
should converge more slowly than do parametric estimates. More importantly,
our results suggest that adaptive semiparametric estimates may be sensitive to
the choice of the smoothing parameter. Empirical evidence of our theory is
provided by Hsier and Manskr (1987, p. 551), who state that

The performance of (adaptive semiparametric) estimates has been shown to be
rat her sensitive to on'e’s choice of smoothing parameter.

We return to this point at the end of the paper. In the next section, we provide
a basic second order decomposition of the covariance matrix for our semipara-
metric estimates. In section 3, we discuss in detail the effect of smoothing on the

covariance.

Carroll, R. and Hardle, W. (1989) A note on second order effects in a semiparametric
context
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2. A second order expansion

The key to our construction is that sample means and sample variances are in-
dependent for normally distributed data. Let & =7i., d:=emph %(2z:) and &2 =s%/m,
where s is the usual sample variance of (Y41, ..., ¥1m). The sequences {(8;, &)}2_,
and {s}{_; are mutually independent, and E(el, | z:) =wo(z1). We estimate yo by
nonparametric regression of the observable e} on z;. Let s be an estimate of g
based solely on the pairs {(, z;)}!_;. Let go=1/ypy and $,=1/,. Define T,=
=n"2 (B(1pn) —Blyo))-

Theorem 1. Given {{xs, 2¢)}{_,. for any n # follows that

ET.=0
and :
Cov {n'’® (B(on) — B)} =8, (o) +Cov {Ta} . (2.1)

Proof. That ET, =0 follows from the fact that i, is independent of the §; given
the z. Given {(24, %)}, the distribution of T, does not depend on 8 and f(yo)
is a complete sufficient statistic for §. As in RoTHENBERG (1984), by Basu's
Lemma (LEHMANN, 1983, p. 46), T, is independent of B(yo), from which the result
is immediate.

The next section is devoted to a detailed examination of the second term on the
right hand side of (2.1).

3. The effect of smoothing on the covariance

The purpose of this section is to get a qualitative understanding of the second
term on the right hand side of (2.1). We use kernel smoothers for estimating yo,
see GassEr and MULLER (1979). Other smoothing methods could be used, see
Mack (1981) and HARDLE (1989). Every nonparametric regression technique for
estimating yo will depend on a smoothing parameter. In our case, the smoothing
parameter is the so-called bandwidth A which as a function of n tends to zero such
that the bias of the estimate (typically of order %2) and its variance (typically of
order (nk)-1) tend to zero.

A major technical problem is to avoid allowing #, to be near zero, for otherwise
expectations may not exist and in any case one wants to avoid giving observations
nearly infinite weight. There is also a small technical problem in our calculations
where we must bound ||, *(1s)||.., where ||-||. denotes the usual sup norm. To avoid
this, let §,. be a smoother with bandwidth & —~0. Define 7, =h2+¢ for some suffi-
ciently small ¢ =0, and

Pa(2) =1n+min {,e(2), 75"} - .
Of course, §a(z) =1/pa(2). For each i, define the stochastic differences

Ay=min {ye(z1), 7y '} —po0(24) .

Carroll, R. and Hardle, W. (1989) A note on second order effects in a semiparametric
context
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Theorem 2. Assume that as h -0 and n—~<=, for integers g=>0
n-t 37 E(402 =0 (h*+ (nk)~) .
i=1

Assume that {(x:, 20)}7_, are uniformly bounded and that yo(z) is uniformly bounded
away from zero and infinity. Write

n
Ly=n"1 3] xx] Adilyi(24);
i=1

Lo=n-t 3]zl A 1pd(zs) -
i=1

Then, the second order exj:ansion term is

Cov (T} =8, (yo) E {(Lz— L1S; (o) L{)} 857 (yo) +0 (S + (mh)~1} . (3.1)
Remark. The assumption made in the Theorem on the moments of {A:7_; is

met by a variety of kernel smoothers. For instance, GASSER and MULLER (1979)

show that the assumption holds for g4 —yo at ‘‘non-boundary” points, but this

can be extended to include boundary points since we are taking averages over all
observations. Our assumption then holds since |A:| =ax(2¢) —po(2i)].

Proof. Recall that 8;=ewpy (zi), go=1/ywo and §n=1/p. Write &n(z) =§nlz)—
1

—go(2), Salw)=n"1ZPxx; [y(z;) and Ea(g) =n 2 Z7zidig(z:). We have that
T =8, (n) Raldn) —S5 ‘(o) Balgo) -
Define '

n
Cin=n"1 )] @] yo(zi) go(zi) Ga(z:) = Sn(tPn) — Snlpo)
1

T
Cop=n"1 2 xfi’t;r%ﬂu(zf} ba(zi) -
T

Then if A, =Sn(§a)~t — Sa(wo)~t and Dy = Ra(gn) — Ralgo), we have that
- Tp=AnRu(go)+ AnDn+Salye)™ Dy .
Note that
Cin=E(Ru(go) D} | €1.); Can=Cov (Dyn|¢,); Salyo)=Cov (Ralgo)) -

By direct calculation and collecting terms, we get that the conditional covariance

iven &, is
i

Cov (T | &2,) = {Sy *(n) — Sn “(wo)} (Salwo) + 2C1n+ Can)
X {85 1 (n) — S5 (o)} (3.2)
+Sn_1('ﬂ0} Gﬁﬂs;l{'ﬂ‘ﬂ)‘l' Bia+ B.lr,, ,
where

Bin=(87 () — S5 o)) (Crn+Cen) S *(yo) .

Carroll, R. and Hardle, W. (1989) A note on second order effects in a semiparametric
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We also have the expansion
87X (9) — S5 (wo) =S (ya) {Snlo) —Sn(n)} S5 (o) (3.3)
+S,,_1(!Pu} {Snw’ﬂ) —Sﬂ(tpﬂ)} S?I_I(W)
X {Sn(yo) — Su(n)} Sy (po) + Hin
=8 (o) C1a8  (yo) + 8 (wo) C1aSy (o) C1aS, ' (0)
+ Hlu i
where for some ¢=0,
(| Haall =6 [|Saltn) — Salpo)l 75 =¢ [ICral% 717" -
In this last expression, the term 7, ! comes from the need to bound [|S,; (i)l
which is of order 7, ! by construction. By TAYLOR expansion, we also obtain
Gnl20) — golz0) = — (g + A (2 + (11 + Aol z2) (3.4)
— (gn+ A1)3/wg(2) + Haali) ,
where |Han(i)| =c¢ {n; 148+ 12} for some ¢ >0. We now substitute (3.4) into Cin and
C3a, and then substitute (3.3) into (3.2) and take expectations. Each term has to
be considered separately. It is most convenient to pre- and post multiply (3.2)
by Sa(wo), and to then consider each of the resulting four terms separately. Ca_ll
these terms Gy, with Ggﬂ=GL,. With this pre- and post multiplication, it is
immediate that '
E(G1n) =E(C1a8; *(y0) C1a) +0 {hé+ (nh)7}
=L18; (wo) LT +o {hi+ (nk)71} .
We also see that
E(G2n) =E(L2) +o0 {h*+ (nk)71} .
Note that Gss =Sa(yo) BinSa(yo), so that
E(Gan) = — E(C1a8; M) C1a) +o {h4+ (nh)~1}
= —L187 (o) LT +o0 {h4+ (nh)-1} .
Since Ggn =G}, collecting terms completes the proof. ®
Define
: E{d¢} =h2?Bn(z: k};
Var {4} = Valzi, k) (nh)™;
Ay(k, B)=n-1 Y] @] Valzi, h)Ip3(zi);

i=1

Ap(n, h)=n-1 3] z] Balzs, B)/yo(z1);
i=1

As(n, hy=n-1 3] 2] S5 (go) zex; Valzi, B)lyo(zs)
f=1

Ay(n, h)=n‘1€21’ i) S,y H(go) zex] Balzi, B)/po(z) -

n
As(n, hy=n"1 )] zx Ba(zi, h)[y(21) -
i=1

Carroll, R. and Hardle, W. (1989) A note on second order effects in a semiparametric
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Note that A;— A2S8-1(yo) Az is positive semidefinite. The following results are
immediate consequences of Theorem 2.

Corollary 1. Assume that as n—~c and h—~0 we have Aj(n, k) -4y (bounded in
norm) for j=1, ..., 5 and Su(g0) ~S. Then _

Cov (Tn) =81 {(nkh)~! Ay +h* (d5— A28-143)} S-1+ 0 {h4+ (nh)1} . (3.5)

Corollary 2. Assume (3.5). For estimating any linear combination a'§,
1

Cov {n*a’ (B(ss) —B)} (3.6)
=a"8; (yo) a+a"S7 {(nh)~! A1 +h? (45— A2S-145)} 8-la
+o0 {hi+(nk)1},
so that the optimal bandwidth is k~c(a) n''>, where
al§-1 A;5-1¢g 1/3
cla)= {4aTS—1 (45 -AES“IAng'l_}

(3.7)

Remark. Besides the points which have been discussed in the introduction,
Corollary 2 has a number of interesting implications for bandwidth selection in
semiparametric problems. We find that the most interesting result is that the
optimal bandwidth depends on the linear combination &' being estimated.
In particular, this means that if one uses an “‘off-the-shelf”” bandwidth selection
method such as crossvalidation or equivalent methods (HArDLE, HALL and MAR-
RON, 1988), one is using a nonoptimal bandwidth.
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Let (X, ¥ ) (X, ¥,) be Lid. rv's and let m{x)= E{ ¥| ¥ = x) be the regression
curve of ¥ on X1 A M-smoother m {x) is a robust, nonlinear estimator of mix),
defined in analogy 1o robust Af-gstimators of location. In this paper the asymptotic
maximal deviation supg ., .. [mai)—mir} is considered. The derived result allows
the consiruction of a uniform confidence band for m{x). T 198% Academic Press, Tnc

1, INTRODUCTION

Let (X, Y,). (X5 Y5h . (X,. Y,) be a sequence of independent iden-
tically distributed bivariate random variables with joint probability density
function fi(x, v). Let m(x)= E(Y| X = x) denote the regression curve of ¥
on X. Nadaraya [11] and Watson [18] independently proposed the
estimator of m(x),

m¥(x)=(nh,)"’ i K((x—X))/Yi/[(nh,) "' 2 K((x—X;)/h,)],  (L1)

i=1 i=1

where K: R — R denotes a positive kernel function and /= h,, is a sequence of
bandwidths tending to zero as n tends to infinity. The Nadaraya- Watson
estimator, m*(x) can be considered as a local least-squares estimate, since
mX*(x) minimizes

H(0)=(nh,) "' ¥ K((x— X)) Y, 0)

i=1
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with respect to . Equivalently, m*(x) can be viewed as a local average of
those Y-observations with corresponding X-observation in a neighborhood
of x. The size of that neighborhood is regulated by the bandwidth sequence
lh,}.

It is well known that the sample mean is highly sensitive to outliers. It is
therefore expected that m*{x), as a local average of the Y-observations,
may give rise of misinterpretations when outliers are present. A huge out-
lier, for instance, may mimic peaks or bumps. Such outliers occur quite
often in practice, see for instance Ruppert et al. [15, Fig. 2] or Bussian and
Hardle [3].

In this paper we investigate so called M-smoothers, as considered by
Hirdle [5]. M-smoothers are nonlinear curve estimates and are implicitly
defined as a zero (w.r.t. #) of the function

G,(0)=(nh,)"" E K((x — X )/h,) ¥(Y;—0). (1.2)

=1

Here y: R — R denotes a bounded monotone, antisymmetric function. We
call the M-smoother m1,(x). It is shown in this paper that

P {[25 log n)'"? [ sup r(r)[(m,(1) HMII)I,-’J-[K)”Z—%] ‘11}

Degel

—— exp(— 2 exp{ —x)), (1.3)

m—= o0

where 8, r(1), A(K), d, are suitable scaling parameters. This result allows
the construction of (asymptotic) uniform confidence bands for m{x). In a
small Monte Carlo study (Section 3) the behavior of both m¥(x) and
m,(x) is investigated when the data contains outliers, generated by heavy
tailed conditional distributions of (Y| X =x).

The result (1.3) improves upon that of Johnston [9] in a number of
ways. First, Johnston obtains results like (1.3}, but for estimates different to
the Nadaraya—Watson estimator (1.1); our result (1.3) applies to the
Nadaraya—Watson estimator as a special case (set (u)=u). Second, (1.3)
holds for a much broader class of estimators. Finally, we obtain (1.3) under
assumptions weaker than those needed by Johnston.

The function  entering into the definition of the M-smoother m,(x), can
be chosen in various ways. For instance, the classical j-function

Y(u)=min{c: max{x, —c}}, =0

can be used [8]. In this paper we do not emphasize the choice of a par-
ticular \-function; any of the y-functions to be specified below yields a

Hardle, W. (1989) Asymptotic maximal deviation of M-smoothers
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robust estimate m,(x) of mix). The choice of a particular y-function
depends on the kind of contamination model that is assumed to have
generated the outliers, One possible contamination model and an adopted
-function thereof is described in Hardle [5].

As a footnote we would like to mention some related work. Stuetzle and
Mittal [16] obtained bias and variance rates with K(u) =4I _, ,,(u) and
Hirdle and Gasser [6] showed some asymptotic properties of m,(x) in a
fixed design setting.

For the rest of the paper we will write 4 instead of &,.

2. RESULTS

The following assumptions will be convenient.
(A1) The kernel K(-) is positive has compact support [ —A4, 4] and
is continuously differentiable;
(A2) (nh) " "*logn)*? =0, (nlogn)'? h¥? =0, (nh*) logn)’ < M,
M a constant;
(A3) h *(logn) |~ fely)dy=0(1), f;{y) the marginal density of
Y, {a,} | a sequence of constants tending to infinity as # — o0;
(Ad) infy., <y lg(t) Z2g,=0, where g(t)=E(¥'(Y—m(n)| X=1) fxl1),
[+ the marginal density of X
{A5) the regression function mix) is twice continuously differen-
tiable, the conditional densities f(y|x) are symmetric for all x; ¥ is
piecewise twice continuously differentiable.
Define also

a’(1) = E(PHY—mi1))| X =1)

H(1) = (nh) =" Y. K((t—X.)/h) (Y, — m(1))

fee]

D)= (mh)~" S K((t=X,)fh) P'(¥,—m1))

i=]1
and assume that ¢’(7) and fy{r) are differentiable.

Assumption {Al) on the compact support of the kernel could possibly be
relaxed introducing a cutoff technique as Csérgd and Hall [4] for density
estimators. Assumption (A2) has purely technical reasons: to keep the bias
at a lower rate than the variance and to ensure the vanishing of some non-
linear remainder terms. Assumption (A3} appears in a somewhat modified
form also in Johnston's paper [9]. When we want to apply the following
theorem to the Nadaraya Watson estimator m*(x) we have to restate (A2)

Hardle, W. (1989) Asymptotic maximal deviation of M-smoothers



Journal of Multivariate Analysis, 29, 163-179

as h *(logn) [}~ . ¥ fi{¥)dy (which is assumption Al in Johnston [9]).
Assumption (A5) asking for the symmetry of the conditional densities is a
common assumption in robust estimation [8]. It guarantees that the only
solution of [ Y(y— - ) f(y|x)dy=0is m(x)=E(¥|X=x). If we had skew
distributions then we would no longer estimate the conditional mean but
rather some different conditional measure of location.

TueoREM. Let h=n 7 i<d <} and A(K)={" , K*(u) du and
d,= (28 log n)"* + (28 log )~ log(c,(K)/x'?) + ;[log & + log log n ] },

if ¢)(K)=K(A)+ K (—A)/[24(K)}]>0
d,=(26log n)"” + (28 log n)~"*{log(c,(K)/2m) }

otherwise with cy(K)= [ [K'(u)]? du/[2A(K)].

Then (1.3) holds with

r(1) = (nhyg(O)[e*(1) f(1) ]

This theorem can be used to construct uniform confidence intervals for
the regression function as stated in the following corollary.

CoroLLARY. Under the assumptions of the theorem above, an
approximate (1 —a) x 100% confidence band over [0, 1] is

m,(t)+ (nh) " 2161 foln) A K) T2
xq '"(1)[d, + cla)(26 logn) =] - [A(K)]',

where c(x)=log 2 —log|log(l —a)! and 41{r), 1) are consistent estimates

for o(r), flt).

The proof is essentially based on a linearization argument after a Taylor
series expansion. The leading linear term will then be approximated in a
similar way as in Johnston [9], Bickel and Rosenblatt [1]. The main idea
behind the proof is a strong approximation of the empirical process of
{(X, Y)}7_, by a sequence of Brownian bridges {with 2-dimensional time)
as provided by Tusnady [17].

It follows by Taylor expansions applied to the defining equation (1.2)
that

m, (1) —mit) = (H,(¢) — EH,(1))/q(1) + R,(1), (2.1
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where [H,{t)— EH,(t)]/q(t) is the leading linear term and

R.(t)=H (1)[q(1)—D,(1)]/[D,(1) - q(1)] + EH (1)/q(1)
+3(m, (1) =m(1))* - [D,(1)]
n . (2.2)
(nh) " Y K((x— X)/h) (Y, —m(r) + (1)),

i=1

[ri(e)| < |m (1) —ml1)].

is the remainder term. In the third section it is shown (Lemma 3.1) that
| R, Il =Supo<. =1 |R(1)] = a,((nh log n} ™).
Furthermore, the rescaled linear part

Y £) = (nh)'?[a®(1) [{1)] ~"2(H,(t) — EH,(1})
is approximated by a sequence of Gaussian processes, leading finally to the
process

Ys oty =h~"2 [ K((t = x)/h) dW(x),

as in Bickel and Rosenblatt [1].
We also need the Rosenblatt transformation [13],

T(x, y) = (Fyp(x|p) Fyly))s

which transforms (X, ¥,) into T(X,, Y,)= (X}, ¥;) mutually independent
uniform rv’'s. With the aid of this transformation, Theorem 1 of Tusnady
[17] may be applied to obtain the following lemma.

LemMa 2.1. On a suitable probability space there exisis a sequence of
Brownian bridges B, such that

sup |Z,(x, y)— B,(T(x, ¥))| = O(n~"*(log n)’)  as.,

x, ¥

where Z (x,y)=n"?[F (x,v)— F(x, p)] denotes the empirical process of
{{X?'! Yr']}?:] .

Before we define the different approximating processes let us first rewrite
¥,(1) as a stochastic integral with respect to the empirical process Z,(x, y),

Y,(0)=h~"2g(0) "7 [[ K((e = x)/h) (= m(1) dZ,(x, )

g'()=a(t) fyl1).
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The approximating processes are now

e

Yo(0)=(hg(1) ™2 || K((t=x)/h) ¥(y =m(1)) dZ,(x. ),
where I',= {|y| <a,}, g(t)=E(*(y—m(t)) - 1|y Sa, NX = 1)1 (1)
Yia(t) = (hg(0)) " | K((=x)/h) ¥(y = m(1)) dB,(T(x. ),
{B,} being the sequence of Brownian bridges from Lemma 2.1.
Yan(t) = (hg(e) ™2 [[ (=) ¥y —m(0) dWAT(x, ),

{W,) being the sequence of Wiener processes satisfying

B, (x', yy=W, (x', y)—xyW,(1,1)

Ys.(t)=(hg(0)) V2 || Ki(t=x)h) P(y—mix)) dW,(T(x. )

-r"

Vo ult)=(hg(1)) "' | g(x) 2K (1 = x)/h) dW(x)

Y, (1) =h—"2 [ K((1—x)/h) dW(x),

!W(.)} being the Wiener process on (— a0, %0).

Lemmata 3.2 to 3.7 ensure that ali these processes have the same limit
distributions, The results then follow from

Lemma 2.2 Bickel and Rosenblat [17]). Let d,, A(K), & as in the theorem.
Let

Y, (1y=h""% | K((t— x)/h) dW(x).

Then

P({ié 1ngn1‘-’-"*{ sup |Ys.ntr}:;u.[ﬁ_r]l-’z—d,,}a:x)ﬂ

| - - |

)

3. Proors

We show first that [ R, [| =supg., <1 |R,(7)] vanishes asymptotically with
the desired rate (nh logn)~ """
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LemMMma 3.1, For the remainder term R,(t) defined in (2.2) we have

IR, | = 0,((bhlogn)~""). (3.1)

Proof. First we have by the positivity of the kernel X and |¥"| < C,,

1

uR"us[ inf (m,,un-qun] (VH, |- lg—D, Il +D,1 - |EH. I}
bsmizl

- 1
+c.-|m,,—m||2-[ in |Dn(r)|} ALl
D=l

where f, = (nh) ' ¥, K((x— X,)/'h).
The desired result (3.1) will then follow if we prove

|H, | =0,(n '?h="(logn)~ ") (3.2)
lg— D, |l = 0,(n~ ¥ h~4(log m)~*?) (3.3)
|EH, || = O(h?) (3.4)
Im,—m|?=o,((nk)”"(log n) "*). (3.5)

Define U, (1)=n""A"*logn)"?[H,(1)— EH,(¢)]. We [lirst show that
U,(t) =" 0 for all +. This follows from Markov's inequality since

U)=3 U, (1),

where U, (1} = n=**h~*logn)'*[K((r — X)h) P(Y, — m(1)}
EK((t—=X)/h) - ¥(y—mi(1))], are i.id. rv's and thus

P(|U () =e)se *n 2R~ (logn)-h "EK*((1— X)/h) PHY —m(1)).

The RHS of this inequality tends to zero, since

h'EK*((t — X)/h) PHY —m(1))

—h | K2((1 = w)h) E(PP(Y = m(1)] X =u) f(u) du
~a?(t) filt) - | K*(u) du

by continuity of ¢7(7) and fy(?).
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Next we show the tightness of U/ (r) using the following moment con-
dition [2, Theorem 15.6]

E{|U(1) = U,(t,)] - |U(12) = U] } S Cy - (83— 1,1,

where C, is a constant,
By the Schwarz inequality,

E{|U (1) = U (;)] - 1U (1) = U, (1)}
< {(E[U1) = Upr) T - ELU12) = Ul0) T}

Tt suffices to consider only the term E{U,(1)— U, (1,)]"
Using the Lipschitz continuity of K, ¥, m and assumption (A2) we have

{ELU{0) = U,(2)*}'?
< {(log n)(nh) **-E[A + B]*}"*
H‘;.CA{FI;?} """{lﬂgn}“z |:—;J]+Cﬂ{”—l.-'lth—5,-'4“05?]]“-2.“_rli

<Cy-lt—14 |,
where

A= i K((t= X )RILPY, —ml1))— PLY, —m(1,))]

i=1

B= i P(Y,—m(e))K((t, = X)) h)— K((r — X )/h) ],

i=1

and C,, Cy are Lipschitz bounds for ¥, m, K.
Since (3.4) follows from the well-known bias calculation

EH,(1)=h~" | K((1—w)/h) E(P(y —m(0)}| X =u) fx(u) du= O(R?),

where O(h?) is independent of z [12], we have from assumption (A2} that
| EH, || = ol(nh)~2(log n)~"?).
Statement (3.2) thus follows using tightness of I/,(1) and the inequality

IlHH” ngn_EHu |+ ”EHJI“-

Statement (3.3) follows in the same way as (3.2) using assumption (A2)
and the continuity properties of K, ¥, m.
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Finally from Hardle and Luckhaus [7], where uniform consistency of
m, (t) — mi(1) is shown, we have

7, — ml| = O ({nh)~"*(log n)'?),

which implies (3.5).
Mow the assertion of the lemma follows, since by tightness of D_(t),
infy ¢, ey [Dalt)] =, gy and thus

IR, = 0, ((nk) =" Z(log m) =)L+ ] £, 1])-

Finally, by Theorem 3.1 of Bickel and Rosenblatt [1], [|f,I=0,1);
thus the desired result |R, | =o,((nh)~"*(logn) '?) follows. In the non-
robust case, i.e., ¥(u)=u, the remainder term R, reads

Ry=[m}—m][fy—1.)fx" + E(thy,—m)f, /[, (3.6)

where m (x)=(nh) ' ¥, K((x =X )/h) ¥..

Johnston [9] proved that (i, — Er,)/f has the desired asymptotic
distribution as stated in our theorem.

So if we apply the recent result of Mack and Silverman [10] or Hardle
and Luckhaus [7] to ||m* —m| and the well-known result from Bickel and
Rosenblatt [1] to |fy—/.|. we may conclude that the first term on the
RHS of (3.6) is 0,((nh)~"*(log n)~""). The second term in (3.6) is

[.F:' ! j‘ K({t —u)/h)-miu) f{u) du—m(t) h‘lf K((t—u) f(u) dﬂ]ﬁ"lfx'[f]

which is by the same calculations as mentioned above [12] of the order
O(h*). This shows that our result generalizes Johnston's paper. Our
theorem says also that the confidence bounds are smaller. Johnston had
sHY=E(Y*| X=1t) as a factor for the asymptotic confidence bound, we
have a2(1) = var(¥| X =) which is in general smaller than s*(¢). We now
begin with the subsequent approximations of the processes Y, , to ¥s .

LEMMA 3.2. Yo . — Yo .l =O((nh)~?(log n)*) as.

Proof. Let t be fixed and put L{y)=¥(y— m(r)) still depending on ¢,
Use integration by parts and obtain

J'}’F Ly} K((t — x)/h) dZ,(x, ¥)

A Pidg
=J !
= —A *y=

Liyv)yKiu)dZ (t—=h-u y)
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A [

=" " zut—h-wy)dlLiy) Kw)] + Lia,) j Z,(t-u, a,) dK(u)

-.I_Ail_u.‘_ —_
A
~L(~a,) | ZAt—h-u —a,) dK(u)
=—d

A

+fo;|[ Z,(t—h-u, y)dL(y)

s dy

+L’(an] Zn,{f_h'A:an]' L{ HH}Z“[I—'}I‘A, —I'J,,J:|
—K{—A}Ir L(t+h-A y)dL(y)+Lla,) Z(t+h-A, a,)

—I{—a)Z (t+h-A, —a,,}].

If we apply the same operations to Y, , with B,(T(x, y}) instead of
Z, (x.y) and use Lemma 2.1, we finally obtain

sup h'Zg(n)'? i — Y (1) = O((nh)~ (log n)*) a.s.,
O0=t=1

using the differentiability and boundedness of .

Lemma 33. ||Y, ,— Y, .| =0.,4").
Proof. Note that the Jacobi of T(x, y) is f(x, y) hence

|Y,(0) = Y 0(0)
=|mm W) 2 [ gty —mln) Kt xS (x. ) de dy) W01, DI

It follows that
R Y, — Yo < W00, 1) - g2
- sup p~! |F| ey —mi{t)) K((e — x)/h)|fx, ) dx dy.
D rsl .
Since | g~ "?| is bounded by assumption and ¢ is bounded, we have

W2 Y, =Y, IS IWAL 1) - Cyh ™! | (K({t—x)/h)) dx=0,(1}.

LEMMA 3.4, || }"21 w anl — Op{h I:l}_
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Proof. The difference | Y, ,(1)— Y, (1)} may be written as

‘{g{r}m 2 oy —m(e) =y —mx)] K= x)/h) W (Tix, )|

If we use the fact that s, m are uniformly continuous this 1s smaller than
h 1/2 Lg,“}l — 12 | Op{h]

and the lemma thus follows.

LemMMa 3.5, ||¥, ,— Y5 ,[l=0,h")

Proof.

X 152
| Yo (1) = Yo (1) =k "2 ’ {[%] - 1} K((1 — x/h) dW(x)

e 0 d ([ gl(e— hu))"?
<h | W[.r—hu}a{[ o ] —I}K[u]du
172
h=12 | K(A) W(1—hA ‘5'—”_"”’}]I -1}‘
o wa—ha {24
+h12 | K(— A) W{t+hA}{[M]m—]H
g(¢)

=S|1R(E;+Sj__n{1}+Sﬁ:n(r}i SaF.

The second term can be estimated by

1 172
h= 'S, | <K(A4)- sup |W(t— A4h)|- sup F:"H[M} —1}‘

Dgr<l Uil glr) ’

bv the mean value theorem it follows that
h=172||8, , = 0,1).

The first term S, , is estimated as

. D B » glt —uh) ""2_
h 5,,,,“1_[;: L Wit mﬁ}{K(u}([ o ] 1}@

1 p4 gle—uh) "2 [ g'(t — uh)
_EJ AW“_HMK{H}[ g(1) J [ g(1) ]du’
=|T,, (2}—=T; (1)l say:
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|75 | < Cs-[4 , |W(t—hu) du=0,(1) by assumption on g(r)=a%):
f¥lt). To estimate T, , we again use the mean value theorem to conclude
that

g(r—uh)|'"?
sup h ll[—] — 1< Cs-|ul;
ﬂsézgl g{” ‘

hence

A
IT, | <Ce- sup | |W(t—hu) K'(w) ujdu=0,(1).
’ 1

D=r=l Y4

Since S (1) is estimated as S, ,(7), we finally obtain the desired result.
The next lemma shows that the truncation introduced through {a, |
does not affect the limiting distribution.

LEMMA 3.6. | Y,— Y, .| =0,((logn)~"7).

Proof. We shall only show that g'(r) "2h~'"?[[5_,, d(y—mlt))
K((t—x)/h) dZ (x, y) fulfills the lemma.

The replacement of g'(f) by g(¢) may be proved as in Johnston [9].
The quantity above is less than 2 "2 g= - 1ff(,15a,) Wly—ml(-))
K((-— x)/h) dZ(x, y)|. Tt remains to show that the last factor tends to zero
at a rate O,((log n)""*). We show first that

v (1y=(logn)#h = [ y(y—m()) K((t = x)/h) dZ,(x. y)

Ll e}
L,0 forall¢

and then we show tightness of 17,(7), the result then follows:

V(1) =(log n'?(nk)~"" E (WY, —mit) Iy 0 (Y3} K((E = X2} R)

i=1

— EY(Y, = m(e)) - 11y, (Y0 K((1 = X))}

=% X, (1)

i=1

where {X, (1)}7_, are iid. for each n with EX, (1}=0 for all te[0,1].
We have then

EX2 (1)< (log n)(nh) ' B (Y —m(1)) Iy o0 (Yo K3((1 = Xi)/h)

< sup  K%u)-(log n)(nh) 'EY (Y, —m(1)) Iy 5 a0, (Y

A d
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hence

" 2
'l"ﬂ.l'{ Vn[!}}=E( E Xn:xl:r)) =i EXE!"{”

=1

< sup Kliulh"{lﬂgn}[ Sly)dy-M,,

—Ad=n=d “ Ayl = an}

where M, denotes an upper bound for > This term tends to zero by
assumption (A3). Thus by Markov's inequality we conclude that

Virl—=0 for all te[0,1].

To prove tightness of {V (1)} we refer again to the following moment
condition as stated in Lemma 3.1:

E{l Vﬁ'{”_ I)r.'i'(fl.]] ! |Vn('r2}|_ Vn{*rjl } = Cr'{rl_ II]2

' denoting a constant, telt,, ;).

We again estimate the left-hand side by Schwarz’s inequality and estimate
each factor separately,

E[Vn{'”_ Vnt."]}]2=“0g”}{”‘&} lE{ E !Plu[f: l!Ilr"j*l}-h Y|:|'f{|_;.-:':n,,'|[},.-}

i=

2
_E{l'pn[!s Iy, X.:! Yz)'f{-yl::a,.}[jr.:)]} ’

where ¥, (1, 1;, X, ¥;) = (Y, — mi(e)) K((r — X, J/h) — (Y, — m(1,))
K({t, — X,)/h). Since v, m, K are Lipschitz continuous, it follows that

(ELV(1) = V(1) P}

- 12

vl g

It we apply the same estimations to V(1) — V', {t,) we finally have

E{IV, (1) = Vo (1;)] - Vo(t2) = V.eH

<Cillogmhlt—nln—dx| £y dy

[1wl = ag)

<C' - |t;—t,|*since te [t,, t2] by (A3).
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Lemma 3.7. Let A(K)={ K*u)du and let {d,} be as in the theorem.
Then

(28 log n) [ Y5 .l /[AMK)]?—d, ]
has the same asymptotic distribution as
(28 log n)' [ Yy, Al /[AMK)]"? —d,].
Proof. Y, () is a Gaussian process with
EY, (1)=0
and covariance function

ri(t, ) =EY, ,(1;) Y5 (1)

= [2(1) 812 0! [ 2= m(x) K((1y = x)h)

x K((t; — x)/h) f(x, y) dx dy.

"

=h'g(t) ()] "2 || 20— mC0) (v 1x) dyK((t = x)/h)
x K((1, = x)/h) fx(x) dx

b~ [g() g(i2)] 7 [ 8(x) K((e, = xVR) (1~ x)/h) dx

=rqlly, 1)

where r4(t,, £,) is the covariance function of the Gaussian process Yy alth
which proves the lemma.

4. A MonTe CARLO STUDY

In a small Monte Carlo study m,(x), together with its uniform con-
fidence band, and m*(x), the (linear) Nadaraya-Watson estimator, were
compared. The pseudo-random number generators GGUW for uniform
rv's in [0, 1] and GGNPM for normal rv's (both from the IMSL package)
were used to generate bivariate data {(X,, ¥,)}7_,. n= 100 with joint pdf

jm 1%
flx, yy=gly —m(x)) Iy 15(x)

. (4.1)
glu) = f5e(y)+ 95 e(u/9).
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We took mi(x)=sin(nx) and used the kernel

Kw=31-), lul<],

0, u| > 1.

In Fig. 1 the raw data, together with the regression curve m(x), is
displayed. The random variables generated with probability {5 from the
longtailed pdf Je¢(u/9) (see (4.1)) are marked as squares whereas the
standard normal rv’s are shown as stars.

We then computed both m*(x) and m_(x) from the data. The bandwidth
was set to n~ V¥ a1 and Huber's iy-function with a cutofl point of ¢=0.2
was used. In Fig. 2 the two estimators together with the uniform confidence
band (according to the corollary) with 95% coverage probability is shown.
The true regression curve and the confidence band are shown as fine dotted
lines, whereas the robust M-smoothers are shown as a solid line and the
Nadaraya—Watson estimate is displayed as a broken line. The raw data is
overlaid with the same conventions as for Fig. 1, but note that some of the
outliers are clipped since Fig. 2 has a different scale. At first sight m*(x)
has clearly more variation and has the expected sensitivity to outliers. A
closer look reveals that m*(x) for x = 0.55 even leaves the confidence band.
It may be surprising that this happens at x=~0.55 where no outlier is

15,0+ .

10,0

0.0 4 "_—1-.—-— ‘ R

a0 ' 0.2 0.4 0.6 0.8 ' L0
Fis, 1. Raw data with outlizrs. The regression curve mix) =sin{nx) and the raw data
poinits,

Hardle, W. (1989) Asymptotic maximal deviation of M-smoothers



Journal of Multivariate Analysis, 29, 163-179

) |
|
- ' |
3 _ | :. |
T
""—:u_—;_,—_—"'"“'"_'d_ g S
[0 B e e
=14 = : - . + |
=3 I
E ]
|
=5 I
i |
0‘_1] 0.2 : " — - i

Fic. 7. Smoothed data with uniform confidence bands. The regression curve
mix)=sin{zx), the M-smoother m,{x), the Nadaraya—Walson estimator m*(x), and 93%
confidence band.

placed, but a closer look at Fig. 1 shows that the large negative data value
at x~ 0.8 causes the trouble. This data value is inside the window (h =~ 1)
and therefore distorts m*(x) for x & 0.55, whereas the estimate m;{0.8) is
not affected since the positive huge outlier at x 0.9 balances the sensitivity
effect (symmetry assumption). The M-smoother m,(x) (solid line) is unaf-
fected and stays fairly close to the true reression curve mix).
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Abstract: We consider univariate nonparametric regression. Two standard nonparametric regression function estimates are
kernel estimates and nearest neighbor estimates. Mack (1981) noted that both methods can be defined with respect to a kernel
or weighting function, and that for a given kernel and a suitable choice of bandwidth, the optimal mean squared error is the
same asymptotically for kernel and nearest neighbor estimates. Yang (1981) defined a new type of nearest neighbor regression
estimate using the empirical distribution function of the predictors to define the window over which to average. This has the
effect of forcing the number of neighbors to be the same both above and below the value of the predicior of interest; we call
these symmetrized nearest neighbor estimates. The estimate is a kernel regression estimate with “ predictors™ given by the
empirical distribution function of the true predictors. We show that for estimating the regression function at a point, the
optimum mean squared error of this estimate differs from that of the optimum mean squared error for kernel and ordinary
nearest neighbor estimates. No estimate dominates the others, They are asymptotically equivalent with respect to mean

squared error if one is estimating the regression function at a mode of the predictor.

Keywords: nonparametric regression, kernel regression, nearest neighbor regression, bias, mean squared error.

We consider nonparametric regression with a ran-
dom univariate predictor. Let (X, Y) be a bi-
variate random variable with joint distribution H,
and denote the regression function of ¥ on X by
m(x)=E(Y | X=x). If it exists, let f_ denote the
marginal density of X. A sample of size n is taken,
(¥, x;)fori=1,..., n. Two common estimates of
the regression function are the Nadaraya—Watson
kernel estimate and the nearest neighbor estimate,
see Nadaraya (1964), Watson (1964) and Stute
(1984) for the former, and Mack (1981) for the
latter. Fix x, and suppose we wish to estimate
m(x,). The kernel and nearest neighbor estimates

* Research supported by the Air Force Office of Scientific
Research and by Sonderforschungsbereich 303, Universitit
Bonn.

are defined as follows. Let K be a nonnegative
even density function.

Kernel estimates, Let k. be a bandwidth de-
pending on a. Then the kernel estimate is

Ef_.}:-K( - x")
i hker

A

A ker

M)

’ﬁker(xﬂ) =

Nearest neighbor estimates. Let k=k(n) be a
sequence of positive integers, and let R, be the
Euclidean distance between x; and its & th nearest
neighbor. Then the nearest neighbor estimate is

ZLI "-K’x' — Xg
P {X0) = }7(&‘ J - (2)

n X, — Xp
)
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Under the differentiability conditions on the
marginal density f,, Mack has shown that the
asymptotically optimal versions of the kernel and
nearest neighbor estimates have the same behav-
jor, Let m'") and f!/" denote the jth derivative of
m and f, respectively. If ¢p= [K*(x)dx and
dy = [x*K(x) dx, remembering that K is sym-
metric, the kernel estimate has bias

. —_ i
hlasker - hh:r dK

- mm(xﬂ}fx(xn} +2m M (x0) [ (x,)

2£(xo)
+0(hie,) (3)
and variance
vary, = ¢ Var(Y | X = xg)/(nhyefo(%0))
4 o({nhke,) '1)‘ (4)

Of course, (3) is not the exact bias of the kernel
estimator but is instead an asymptotic bias based
upon a linearization argument. There is obviously
a bias versus variance trade-off here, so that if one
wants to achieve the minimum mean squared er-
ror, the optimal bandwidth is k. ~n~'/* and the
optimal mean squared error is of order O(n~*").
The formulae for bias and variance of the kth
nearest neighbor estimate are the same as in (3)
and (4) if one substitutes 2f (x,)nh,,, for k.

Let F denote the distribution function of X,
and let F, denote the empirical distribution of the
sample from X. Let h,,, be a bandwidth tending
to zero. The estimate proposed by Yang (1981)
and studied by Stute (1984) is

?ﬁ:lrﬁ(xﬂ)=(”h.mn)_l
% iJ’fK(M . (9)
i=1

EHH

!

The nearest neighbor estimate defines neighbors
in terms of the Euclidean norm, which in this case
is just absolute difference. The estimate (5) is also
a nearest neighbor estimate, but now neighbors
are defined in terms of distance based on cm-
pirical distribution function. This makes for com-
putational efficiency if the uniform kernel is used.
A direct application of (5) would result in O(n*h)
operations, but using updating as the window

moves over the span of the x’s results in O(n)
operations. Other smooth kernels can be com-
puted efficiently by iterated smoothing, i.e., higher
order convolution of the uniform kernel. Another
possible device is the Fast Fourier transform
(Hirdle, 1987). Since the difference between (2)
and (5) is that (5) picks its neighbors symmetri-
cally, we call it a symmetrized nearest neighbor
estimate. Note that i, ,, always averages over a
symmetric neighborhood in the x-space, but may
have an asymmetric distribution of x points in
this neighborhood. By contrast, r,,, always aver-
ages over the same amount of peints left and right
of x;, but may in effect average over an asymmet-
ric neighborhood in the x-space. The esimate 1,
has an intriguing relationship with the A-NN
estimator used by Friedman (1986). The variable
span smoother proposed by Friedman uses the
same type of neighborhood as does s, and is
used as an elementary building block for ACE, see
Breiman and Friedman (1985). The estimate (5)
also looks appealingly like a kernel regression
estimate of ¥ against not X but rather F (X).
Define

ﬁ;nn(xﬂ)

it ook E 2 . g

Then Stute shows that as as n — o0, h,,, — 0 and
nhd,, — w0,

(th ) (1 (X6) = P (%))

= Normal(0, ¢y Var(¥| X=x,)). (7)
This has the form (4) as long as h,,, = by f.(xg).
However, the asymptotic bias term (see just after

(4)) is not the same as the kernel estimator. If we
define

swm

biasmn = ﬁm-ll:xﬂ) - m(xl,'l}l

then it follows from Stute (1984, p. 925) that

bias, ,, = ., [ [m(x) = m(x,)]

e Blze) )

b ).F(d.x]

snri

=f[m° F ' (F(xy) - uh,,,)
~mo F7'(F(xo))| K(u) du,
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so that by a simple Taylor series expansion,

bias,,,,
— d ’m"z}{xn)fx(xu) - mm(xu}fxm(xu}
LTl K 2ff{x0)
+ol k). (8)

Comparison of (3) and (8) shows that even when
the variances of all three estimates are the same
(the case h,,,=h,.f.(xy)), the bias properties
differ unless

mP(xq )fx“]( xq) = 0.

Otherwise, the optimal choice of bandwidth for
the kernel and ordinary nearest neighbor estimates
will lead to a different mean squared error than
what obtains for the symmetrized nearest neigh-
bor estimate.

The preceeding discussion presumed that we
are interested in estimating the regression function
only at the point x; and that bandwidth was
chosen locally so as to minimize asymptotic mean
squared error. In practice, one is usually interested
in the regression curve over an interval, and the
bandwidth is chosen globally, see for example
Hirdle, Hall and Marron (1988). Inspection of (3),
(4) and (8) shows the usual tradeoff between kernel

and nearest neighbor estimates; in the tails of the
distribution of x, the former are more variable but
less biased.

The symmetrized nearest neighbor estimate is a
kernel estimate based on transforming the x data
by F,. Other transformations are possible, e.g.,
log(x). In general, if we transform by w = G(x), if
my(w) =m(x) and w has density f,. then the bias
and variance properties of the resulting kernel
estimate are given by (3)-(4) in m, and f,, the
translation to f, and m being immediate by the
chain rule.

Example. For illustrative purposes we use a large
data set (n=7125) of the relationship of Y=
expenditure for potatoes versus X = net income of
British households (in tenth of a pence) in 1973.
The data come from the Family Expenditure
Survey, Annual Base Tapes 1968-1983, Depart-
ment of Employment, Statistics Division, Her
Majesty’s Stationary Office, London, and were
made available by the ESRC Data Archive at the
University of Essex. See Hirdle (1988, Chapter 1)
for a discussion. A sunflower plot of the data is
given in Figure 1. For these data, we used the
quartic kernel

K(u)=E(1—u?)I(|u)<1).
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Fig. 1. Potatoes vs. Netincome. Sunflower Plot of Y= expenditure for Potatoes versus X = net income of British households (both
reported in tenth of a Pence) for the Year 1973, n = 7125. The number of petals of the sunflower indicates the frequency of

observations falling in the cell covered by the sunflower.
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Fig. 2.

We computed the ordinary kernel estimate (1) and
the symmetrized nearest neighbor estimate (5), the
bandwidths being selected by crossvalidation, see
Hirdle and Marron (1985). The crossvalidated
bandwidths were A, =0.25 on the scale (0,3) of
Figure 2 and h,,,=0.15 on the F, scale. The
resulting regression curves are plotted in Figure 2.
The two curves are similar for x <1, which is
where most of the data lie. There is a sharp
discrepancy for larger values of x, the kernel
estimate showing evidence of a bimodal rela-
tionship and the symmetrized neighbor estimate
indicating either an asymptote or even a slight
decrease as income rises. In the context, the latter
seems to make more sense economically and looks
quite similar to to curve in Hildebrand and
Hildebrand (1986). Statistically, it is in this range
of the data that the density f, takes on small
values, which is exactly when we expect the big-
gest differences in the estimates, i.c., the kernel
estimate should be more variable but less biased.
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SUMMARY

The use of nonparametric regression is explored to check the fit of a parametric
regression model. The principal aim is to check the validity of the regression curve rather
than necessarily to detect outliers. A pseudo likelihood ratio test is developed to provide
a global assessment of fit and simulation bands are used to indicate the nature of departures
from the model. The types of data considered include discrete response variables, where
standard diagnostic techniques are often not appropriate, and first-order autoregressive
series. Several numerical examples are given.

Some kev words: Autoregressive time series; Binary data; Bootstrap; Logistic regression;, Nonparametric
regression; Outlier; Poisson; Residual; Resistant method.

1. INTRODUCTION

Nonparametric regression can be used in an informal graphical way to assess the
relationship between a response and an explanatory variable, In this paper we aim to
develop more formal methods of assessing the assumptions of a parametric model, in
particular when regression diagnostics of the type developed for normal linear models
are not readily available. The principal aim is to check the validity of the systematic parn
of the model by comparing a nonparametric estimate of the regression curve with a
parametric one. Such 2 comparison may also identify outliers, although the distinction
between outliers and model inadequacy is not always easy.

Two techniques are used to assess the fit of a parametric model. In § 2, confidence
bands are constructed around the fitted regression curve by simulation. A comparison
of these with the nonparametric curve gives an indication of the nature of any departures
from the model. In § 3, a pseudo likelihood ratio test is developed. This provides a
quantitative global assessment of fit. In applying these ideas, special emphasis is given
to discrete data, and notably logistic regression, because of the difficulty in applving
standard residual-based model checking techniques to this type of response variable. A
Poisson regression example is discussed in § 4. However, the underlying ideas have wider
applications. Autoregressive time series of order 1 are discussed in § 6. Sections 5 and 7
discuss general issues.

We first discuss the context of binary regression with a single covariate and the
difficulties caused by the discreteness of the response variable. The observed data are
assumed to be of the form (x,, y,, n;), where x, is a covariate value, and y, has a binomial

Azzalini, A., Bowman, A. and Hardle, W. (1989) On the use of nonparametric regression for model
checking
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distribution with index n; and probability p(x,) fori=1, ... , m. Here p(x) is the regression
function of interest and a commonly made assumption would be that p(x) has the logistic
form

plx; e, B)=e"""/(1+ e ATy,

The raw residuals, i.e. observed value minus fitted value, from such a model are difficult
to interpret because they are differences of discrete and continuous quantities for which
a normal distribution is usually not appropriate and which in particular can often have
a markedly skew distribution. Cox & Snell (1968) defined modified residuals which
alleviate the problems of discreteness, but difficulties remain in some data sets, typically
from observational studies, where covariate values are irregularly spread over a large
number of points and »; =1 for most &

Landwehr, Pregibon & Shoemaker (1984) introduced a variety of residual and partial
residual plots appropriate for logistic regression. Fowlkes (1987) demonstrated how
smoothing methods are beneficial in this context, allowing diagnostic methods which
were originally developed for continuous data to be applied, in particular discussing
residuals

{B(x)=p(xi; & B)Y/ S p(x)},

where p( . ) denotes a smooth nonparametric estimate of the response function and &{.}
denotes the estimated standard deviation of 5 under the logistic model. Green & Yandell
(1985) used nonparametric smoothing in the context of semiparametric models, to give
plots of estimated response curves. Hastie & Tibshirani (1987) did the same for generalized
additive models and derived asymptotic confidence bands and degrees of freedom for
the nonparametric models. Fienberg & Gong (1984) also highlighted the benefits of
smoothing in providing diagnostic checks.

It is the aim of the present paper to extend these approaches by developing more
formal methods of inference when comparing nonparametric and parametric regression
curves. In particular, a pseudo likelihood ratio test allows a significance level to be
attached to the global comparison of the two curves, and confidence bands are used to
indicate the nature of any departures. These methods are also applied to types of data
and models not discussed by other authors.

Techniques of nonparametric regression have been intensively studied in the context
of continuous data but it is only relatively recently that Copas (1983) has applied this
idea to binary data. The weak assumption that the regression function is smooth allows
a kernel estimator of p(x) to be constructed as

- Eom (5530, 5 e (59,

where w( . ) is a symmetric nonnegative kernel function with mode at 0, and h is a positive
bandwidth controlling the amount of smoothing applied to the data. In the numerical
work of this paper, a standard normal kernel will be used throughout. The choice of h
will be discussed in some detail in § 5, but for the moment we note that the technique
of cross-validation can be applied in the present context by choosing h to maximize the
function

m

H ﬁ—-{-':ij‘{l —poi(x)}m 7,
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where p_,(.) denotes the nonparametric estimator constructed from the data with the
ith observation omitted. Although such an approach has not been studied in the present
context, similar likelihood criteria have been extensively investigated in the related areas
of regression with continuous data and in density estimation, where strong theoretical
justification has been provided (Hardle & Marron, 1985).

2. SIMULATION BANDS

As an illustrative example of logistic regression, we use the data of Finney (1947)
which has been analysed by several other authors. The data consist of 39 observations
on the presence or absence of vasoconstriction in the skin of the digits at a variety of
volumes and rates of air low. In order to keep the development simple, we shall employ
a single covariate, x equal to log (volume) plus log (rate}, as implicitly suggested by the
author. The case of two separate covariates will be discussed at a later stage. Since most
of the n;'s are 1, it is appropriate to pool the information in neighbouring data using the
estimator (1) under the assumption that the relationship between the mean of y and x
is smooth.

The cross-validatory bandwidth in this case is h = 0-06 and Fig. 1 displays the nonpara-
metric regression estimate; two observations, numbers 4 and 18 in Finney's (1947) listing,
cause a large peak in the estimate near x =0-2. This agrees with the analyses of other
authors who found these observations to be outliers. In this case the departure of the
regression function from the logistic shape is extreme but in general there is a problem
in assessing whether observed differences indicate significant departures from the model.

1-0

0-8

06

Probability

0-4

12 111 1 11 - 512

-1-0 =05 0-0 05 1-0 1-5
log (volume)+log (rate)

0-0

Fig. 1. Finney's data, with nonparametric estimate of regression func-

tion, shown by solid line, and approximate 95% confidence bands

derived by simulation from logistic model, broken lines. Frequencies
of zeros and ones indicated at top and bottom of graph.
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First, the logistic model must be fitted. Since one of the purposes of model checking
and diagnostics is to identify outliers, it is more appropriate that the unknown parameters
are estimated by a resistant technique rather than by maximum likelihood. Pregibon
(1982) describes a resistant technique for fitting binomial data which is approximately
95% efficient when the chosen model is correct, and this leads to the estimates @ = —5-252,
B =7-719 for Finney's data. Copas (1988) discusses general issues associated with resistant
fitting and proposes a simple alternative model.

We now compare the fitted model with the data by constructing simulation bands for
the nonparametric curve under the assumption that the logistic model is correct. It is
straightforward to estimate the mean and variance of p under the logistic model, but the
use of simulation removes the assumption of normality implicit in the use of =2 standard
deviations as a reference. Moreover, the same simulations will be used for an alternative
technique to be described in § 3. Simulation was emploved by Atkinson {1981) to produce
an envelope on a probability plot of residuals from a regression model. Landwehr et al.
(1984) used an analogous plot with raw residuals from a logistic fit. The pooling of
neighbouring information involved in the estimator (1) has the attractive feature of
making use of the smoothness of p{x) and allows assessment of the adequacy of the
model to be carried out on the probability scale, which is the natural one for exploratory
purposes.

To construct pointwise simulation bands in the present context, a complete set of
simulated responses {yT, ..., ¥t} is derived from the fitted model, that is y¥ has a binomial
(m, p(x;; a, ﬁ}) distribution, and a new nonparametric estimate p* is produced, using

1-5 + .
Iy
1
1-0 | 4
0 1
10 |
5 05 ]
K= 0 1 1
2 001
2 00 v 0 ]
0 W d
" A 1
A 0O N
—0-5 W v
DD
0
—1:0

=15 -1-0 —0-5 0-0 05 1-0 1-5
log (rate)

Fig. 2. Finney's data with two covariates and simutation envelope, 95%

level, derived from logistic model; 0, |, observed response whase p lies

within envelope; A, positive response whose p lies above the envelope;

W, response whose p lies outside the envelope, due only to window
effect of smoothing,
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the same smoothing parameter employed on the original data. This operation is repeated
a large number of times, say N. For given &, empirical upper and lower 1e percentage
points of the p*'s at each design point defined the simulation bands. The issue of choosing
a new smoothing parameter for each simulation is discussed in § 5.

Figure 1 displays this procedure as applied to Finney's data with N =300. For
readability, the empirical upper and lower 2;-percentiles of p* at each x; have been joined
by straight lines. This confirms that observations 4 and 18 do not conform to the model.
There is one neighbouring point at x =0-25 whose p lies above the envelope but for
which y; =0. This is due to the window effect of smoothing, as would also be the case
if p lay below the envelope and y; = 1. Although Fig. 1 displays only the outcome associated
with the cross-validatory bandwidth h =0:06 and N =500, the qualitative conclusions
are unchanged for a range of values of h and much smaller values of N.

The idea of simulation bands extends readily to the case of several covariates. The
results, however, can be easily plotted only with two covariates and little is known of
the performance of nonparametric regression in higher dimensions. As an example, the
two covariates log (volume) and log (rate) have been used in Finney's data. Figure 2
illustrates the simulation approach in two dimensions. Each symbol plotted represents
a design point. For points whose j lies within the envelope, the allocated symbol is the
observed response, 0 or 1. For positive responses whose p lies above the envelope, the
code A is used: the two symbols A in the plot again correspond to observations 4 and
18. The symbol W is used for points whose p lies above the envelope but which have
y; =0; this is clearly due to the window effect of smoothing.

Such simulation bands can be implemented with more than two covariates by identifying
the position of each p(x;) with respect to a simulation envelope at that point, without
attempting a graphical representation. An alternative way of implementing the bands is
to regard the linear predictor z=x'8 as a single covariate. Univariate smoothing, and
simulation, may be applied to the data in the form (z,, y;, n;). However, with two covariates
more information is available by plotting as in Fig. 2.

3. PSEUDO LIKELIHOOD RATIO TEST

The purpose of the above simulation method is to heip the detection of local departures
from the hypothesized model. A limited but consistent departure is likely to lead to
estimates which fall within the simulation bands unless a very large sample is available.
On the other hand an estimate which falls just outside the simulation bands at some
points does not provide convincing evidence against the hypothesized model since the
bands do not define a simultaneous confidence region.

A more satisfactory way of assessing goodness of fit is to define an appmgﬁatc statistic
which measures globally the discrepancy between {f(x,)} and {p(x;: &, 8)}. Here we
consider the formal expression of the likelihood ratio for the hypotheses

Hy; p(x)=(x; a, B) for some a and B,

H,: p(x) is a smooth function. )
The likelihood under H, is evaluated at p(.; &, 8), making use of the fitted parameter
values. The likelihood under the alternative is evaluated at p(.)=p{.). In the logistic
regression case, the pseudo likelihood ratio statistic is then

z'[—”fmg{ptn;&.m}”"" y‘)k’g{l—p{x.:&m ‘ o
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Now H, and H, are nested hypotheses. However, H, is not being fitted by maximum
likelihood and this need not even be the case for H,. The test statistic may therefore
occasionally take negative values, although in nearly all cases it will be positive. With
the usual interpretation of likelihood ratio statistics, the procedure may be viewed as
constructing an estimate of the Kullback-Leibler distance between the two models. In
this sense the test is consistent because as the sample size increases the normalized test
statistics will converge to zero if H, is true and to some nonzero value if H, is false.

That the test statistic is derived from a likelihood ratio argument does not imply that
its distribution is approximately chi-squared. We now examine the null hypothesis
behaviour of the test statistic (2) by simulating data from the fitted model as described
in § 2. Hastie & Tibshirani (1987) discuss similar statistics in the context of additive
models and give an argument for an approximate number of degrees of freedom. In a
forthcoming paper W. Hirdle and E. Mammen show that the distribution of (2) is
asymptotically normal.

The significance of the observed test statistic is calculated from its position in the
ordered test statistics derived from the simulated data. With Finney's data the observed
significance level is 0-4% with simulation size N =500. Notice that the smoothing
parameter h and the parameter estimates & and 2 are determined once from the original
data and are subsequently kept fixed throughout the simulations of statistic (2). The
effects of this on the significance level are discussed in § 5.

4. POISSON REGRESSION

The ideas of the previous section can be applied to the data of Bissell (1972) giving
the lengths, x;, of 32 pieces of cloth and the corresponding numbers of observed flaws,
¥:. A natural model is a regression where y; is assumed to have a Poisson distribution
with mean Bx,. A resistant fit to the data, using the technique referred to in § 1, gives
B =0-0143. This is close to the maximum likelihood estimate, 0-0151.

Figure 3 displays the data and a nonparametric estimate of the regression line of the
form (1) with n, =1, with a normal kernel, and with the smoothing parameter / =100
chosen by cross-validation. The pseudo likelihood ratio test statistic analogous to (2) is

f { Fx)+ B+ y, log—{*—}} (3)

Bx;

where n denotes the sample size and the notation ;( . ) for the nonparametric regression
reflects that we are no longer working on a probability scale. The observed significance
level is 1-4%. This provides some evidence that the linear model is inadequate and
simulation bands, & =0-05, obtained as in § 3, can be used to help identify how the data
differ from the model. These bands are also displayed on Fig.3 which suggests an
inadequacy of the model at high covariate values. The observed curve also strays outside
the simulation envelope near x =300. This is caused by the presence of a very large
observation at x = 371, although a departure is not exhibited exactly at that point because
of the balancing effect of a very small observation at x =417,

Bissell (1972) also reached the conclusion that the simple linear model is inadequate
via different methods. An extended model was proposed where 8 has a gamma distribu-
tion, entailing larger variability in the data. This broader model can be assessed in a
similar way to the Poisson regression. One effect is that the simulation bands are increased
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Fig. 3. Bissell's data with a nonparametric estimate aof regression

function, shown by solid line, and sithulation bands, 95% level, derived
from Poisson linear model, shown by broken lines.

in width and now contain the entire nonparametric curve. However, it is interesting that
the discrepancies between the data and the linear model are predominantly negative
between 400 and 600 and predominantly positive elsewhere.

5. CHOICE OF SMOOTHING AND MODEL PARAMETERS

In the above simulations, the smoothing parameter A of the nonparametric curve and
the parameter estimates of the proposed models were determined once and for all from
the original data. They were not recalculated on each new set of simulated data. The
Poisson model offers a convenient framework within which the effects of this can be
discussed, since the maximum likelihood estimate of the model parameter has the
particularly simple form 8 =X y,/Z x;. For the remainder of this section, we therefore
use this maximum likelihood estimator instead of the resistant version. As previously
noted, there is little numerical difference between these with Bissell's data.

In the test statistic (3), the component corresponding to the linear model is based on
a maximum likelihood fit to the data. If the distribution of this test statistic is to be
accurately computed, then this source of variability should be incorporated into the
simulations by re-estimating 8 on each of the simulated data sets. If this is done for
Bissell's data, the significance of the observed test statistic drops from 1-4% to 0-2%.
The reason is that, for each simulation, the likelihood component is maximized, and so
the test statistic is minimized, by re-estimating . The position of the observed test statistic
is therefore made more extreme with respect to the simulated values. This effect holds
in general, whenever the parameters of a proposed model are re-estimated on the simulated
data. The strategy of estimating the model parameters once, and keeping them fixed
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throughout the subsequent simulations, is therefore conservative, and has the advantage
of avoiding a large number of additional maximum likelihood calculations.

The choice of the smoothing parameter h in the nonparametric component of the test
statistic (3) may also be viewed as playing the role of a fit to the observed data. There
are two obvious ways in which this feature can be incorporated into the simulations. The
first is to choose a new value of h by cross-validation on each simulated data set. This
is not an attractive option since smoothing parameter choice is a rather imprecise operation
and so a large amount of variability is added to the distribution of interest unless the
sample size is large. An additional problem is the large amount of computational effort
involved.

An alternative is to choose h in a way tailored to the proposed model rather than to
the data. A natural approach would be to choose h to minimize the expected value of
the pseudo likelihood ratio (3), where the expectation is taken under the Poisson linear
model. However, a more tractable approach is to choose h to minimize

[Z{y Flx)} ]

i=1 x:

This is a sum of standardized squared residuals, with expectation again taken under the
Poisson linear model. This expression can be evaluated algebraically, and minimized
numerically, using 8 = ,B This produces a smoothing parameter of 87 and an observed
test statistic with an associated significance of 2%.

In summary, the parameters of the proposed model should be re-estimated on each
simulated set of data if this is computationally feasible. Of the two possibilities for choice
of smoothing parameter, the one tailored to the proposed model is more attractive since
it avoids the computational effort and the extra variability incurred by cross-validation
on each simulated set of data. There are, however, occasions when a model based choice
of smoothing parameter is inappropriate. For example, a regression model with slope
near zero leads to a very large smoothing parameter which obscures any nonlinearity in
the data.

6. FIRST-ORDER AUTOREGRESSIVE SERIES

The parametric models discussed so far have been of generalized linear type, with
discrete response variables. However, the basic ideas developed can be applied to a wider
variety of models. As an illustration consider autoregressive time series of order 1. The
model is

Ye=pyioite, (4)

where —1<p <1 and {¢} is a sequence of independent normal errors, with mean 0 and
variance o, There is now a scale parameter, which has not been the case in previous
examples.

A simulated time series of size 200 is displayed in Fig. 4 as a plot of y, against y,_,,
the form in which the linearity of the model (4) can be most easily examined. The slope
parameter of the linear model is estimated by

A=Y vy /) Xy
r=2

=1
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Fig. 4. Simulated time series data, y, against y,_;, with true
regression function, shown by solid line, nonparametric esti-
mate 7, dashed line, and fitted linear model, dotted and dashed
line.
This form ensures that the estimate lies within the feasible region (-1, 1). Our more
general model assumes that y, = r(y,_,)+£,, where the function r(.) is not necessarily
linear. A nonparametric estimate of r is provided by smoothing the data of Fig. 4, namely

F(y) = z y{w(y_yf—l) Z w(y_y!—l){
=2 h g rmd h

For consistency and other asymptotic properties of a wide class of kernel estimates which

includes 7(y), see Robinson (1983). To take account of the bias introduced by smoothing,

we adjust 7 so that the estimate is approximately unbiased when the linear model is
correct. It is easy to show that

6,2 =1
v+ {1
py h-(l _p2)
is approximately unbiased. This bias-corrected curve is plotted in Fig. 4 and will be

referred to by 7.
Cross-validation is used to select an appropriate smoothing parameter by minimizing

22 {yr - F—r(}’:—l)}z,

where 7_, denotes the estimator with the point (y,, y,-,) omitted. This yields the value
0-3 for the data of Fig. 4. If the linear model is correct, the contribution to the likelihood
from the first observation is asymptotically negligible; ignoring this term, the pseudo
likelihood ratio statistic is equivalent to

Y-y -2 v -y )Y
Z{yr-ﬁy.-.)}zf" .
It is not hard to show that both § and the test statistic (5) are independent of the nuisance

parameter . The particular structure of the present problem enables us to simulate the
null hypothesis distribution once, and to refer to this for any data set of interest, because

(5)
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we do not have the problem of different covariate values. In the present case, the x-axis
values are also random.

Here the use of a smoothing parameter tailored to the model runs into difficulty when
p =0, for the reasons mentioned at the end of § 5. Cross-validation is therefore used to
choose a new smoothing parameter for each simulated set of data. The linear model is
also easily refitted on each simulation. Any inaccuracy in the size of the test is therefore
due to simulation error only.

Table 1 lists the empirical upper 5% and 2-5% points of the distribution of the test
statistic when model (4) is correct. The entries are based on 1000 simulations and
correspond to a variety of slope parameters p and sample sizes n. Only one half of the
table is displayed since the reflection of this pattern will be produced for negative values
of p. Thus for any original set of data we need only calculate the smoothing parameter
and test statistic once, and then refer to the table to assess whether there is significant
evidence of departure from the linear model. With the data of Fig. 4 we obtain p =0-62
and a test statistic of 26-9 which can be seen from Table 1 to be significant at the 5%
level, although not quite at 2;%. In fact the data of Fig. 4 were simulated using the
nonlinear function (Haggan & Ozaki, 1981)

r(x)=(0-5+1-4 e *)x

and so nonlinearity has been correctly identified while simple visual inspection of Fig. 4
would lead to very little suspicion that the linear model is inadequate.

Table 1. Approximate upper 5% and 2% points of the null
hypothesis distribution of the autoregressive test statistic for a
variety of values of p and n

n=>50 n =100 n =200

p 5%  23% 5% 2% 5% 249
0-0 8 12 8 12 7 15
02 11 17 14 19 14 16
0-4 16 25 21 26 19 24
0-6 22 k]| 24 29 21 28
0-8 28 36 29 37 30 43
09 45 57 46 56 45 64
0-95 72 87 74 92 80 104

Since Table 1 displays remarkable stability of the percentiles as a function of the
sample size n, it would be feasible to implement an approximate version of this test by
reference to a single table with argument p.

7. DiscussioN
Itis helpful to give the underlying ideas and procedures a general formulation. Suppose
that we have regression data whose distribution is of the form
}':'ixr' ~f(.; r(x), ¥),

where r(x) denotes the regression curve E(y|x) for which a parametric model r(x; 8)
is proposed, and ¢ denotes possible additional parameters. Under a proposed model,
we have a parametric estimate for r(x) given by r(x; @), where 8 is a consistent estimate
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of 6. Alternatively, under an assumption of smoothness, we have a nonparametric estimate
F(x) =X yw,/E w,, where w; denotes the kernel weights w{(x — x;)/ h}. This nonparametric
estimate can be adjusted to allow for the bias which is known to occur under the proposed
model, where E{F(x)}=Z r(x;; 0)w,/Z w,.

A global comparison of the two curves r{x; 8) and 7(x) is made through the test statistic

3 {log f(y: F(x), ) —log fyi; 7(x; 6), )},

The significance of the observed value of this statistic is estimated by simulating its
distribution under the proposed model y,-|x.--f[.;r{x.:-9),q?f). The nature of any
differences between r(x; #) and F(x) are assessed by using the same simulations to
construct a simulation band for 7(x) under the proposed model r{x; &).
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SUMMARY
An adaptation of least squares cross-validation is proposed for bandwidth choice in the
kernel estimation of the derivatives of a probability density. The practicality of the method
is demonstrated by an example and a simuiation study. Theoretical justification is provided
by an asymptotic optimality result.

Keywords: CROSS-VALIDATION DENSITY DERIVATIVES; KERNEL ESTIMATORS

1. INTRODUCTION

The kernel approach provides an attractive method for estimation of both probability
densities and their derivatives. Such estimators have been successfully used in the
exploration and presentation of data; see, for example, Silverman (1986). Density
derivatives are of particular interest for the evaluation of modes and inflection points.
They are also of theoretical importance, as they occur both directly and indirectly in
asymptotic expansions of error criteria for density estimation. In addition, density
derivatives are of practical importance for estimating scores in certain additive
models: see Hirdle and Stoker (1990). Another application is to the empirical verifica-
tion of uniqueness of equilibria of market demand, where the estimation of deriva-
tives of densities enters through so-called income effects; see Hildenbrand and
Hildenbrand (1986).

As with any type of smoothing method, the performance of kernel estimators is
heavily dependent on the choice of smoothing parameter. If the effective amount of
local averaging is too small, the resulting curve estimate is subject to too much sample
variability, which appears in the form of a curve which is too wiggly. In contrast, too
much local averaging results in the introduction of an unacceptably large bias, in the
sense that features of the true curve will be smoothed away.

A practical approach to the problem of smoothing parameter selection for density
estimation is provided by least squares cross-validation, which was proposed by
Rudemo (1982) and Bowman (1984). Strong theoretical justification has been pro-
vided by several asymptotic optimality results which demonstrate that the selected
smoothing parameter is, in the limit, effectively the same as the squared error optimal
choice; see Hall (1983), Stone (1984) and Burman (1985). .

In this paper the cross-validation idea is extended to the estimation of density
derivatives. The extension is motivated and made precise in Section 2. The practical
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effectiveness of this method is demonstrated through an example and a simulation
study in Section 3.

Section 4 provides theoretical underpinning for the cross-validation method. In
particular, two types of asymptotic optimality results are established. It is shown that
the cross-validated smoothing parameter is asymptotically the same as the squared
error optimal choice, and also that the squared error performance is effectively the
same. Section 5 contains the proofs of the theoretical results.

2. CROSS-VALIDATION FOR DENSITY DERIVATIVES

We consider here the estimation of the kth derivative f®)(x) of a probability
density f(x) from a random sample X,,...,X,. A kernel estimator of f*(x),
motivated by taking the kth derivative of the kernel estimate of f, is given by

Oy =n-1 3] A% 1K® {(x~ X))/h},
i=1

where h is called the bandwidth or smoothing parameter and X is the kernel function
which is assumed to be a symmetric probability density. Gasser er al. (1985) have
developed an interesting asymptotic theory for the optimal choice of K which shows
that the best choice of the function K'® is not necessarily the kth derivative of the
optimal kernel for estimating f. However, the present form is used here because we
prefer its intuitive content and are concerned about numerical instabilities (see Section
3 for more details on this, as well as a strong reason for not using the normal kernel,
especially for large k). As already noted, the choice of the amount of smoothing,
quantified here by A, is crucial to the performance of /*(x).

The essential idea of least squares cross-validation, for the estimation of f (the
special case k = 0 here), is to use the bandwidth which minimizes the function

Vi) = | fior ae—201 3 i,

=]

where f, ; denotes the leave-one-out kernel estimator (defined for general & later).
This method of bandwidth selection can be motivated by observing that the function
CV(h) provides a reasonable, and indeed unbiased, estimate of the first two terms in
the expansion of the integrated square error,

di(fon ) =1 {Fu(x) = F(0)}? dx
=i -20Hf+]r

So, since the third term is independent of 4, the minimizer of CV(k) may be expected
to be reasonably close to the minimizer of 4.
This idea can be extended to the estimation of derivatives of the density by observ-

ing that
di(F®, f®) = [ { /P 0) = fP )} dx
= [ Ji2 = 2 f{0 S0 + [ f*2.

As before, the last term is independent of 4, so it has no effect on the location of the
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minimizer, and the first term is available to the experimenter, By integration by parts,
the second term may be estimated by the second term of the cross-validation function,

V) = [ e ax—2n-1(- 10 33 FE00x),
f=1
where

) = (n=1)-1 D] h-%-1K@ {(x—X,)/h}.

J=i

Hence the bandwidth %,, which minimizes CV,, should be close to A2, the minimizer

of di( /¥, f*).
CV, (k) can be simplified to give the computationally more straightforward version

CVi(h) = (= 1)n-1h-2-! [n'l 31 S (ReK)®{(X,— X, )/ h}
L

—2n-1"'2. 3, mm[(}:,.--,mm}],

i#j

where here and throughout an asterisk denotes convolution. This can either be used
directly, or easily adapted to give an efficient fast Fourier transform approximation,
as described in Section 3.5 of Silverman (1986). For some kernels, the fact that
(KeK)20) = K®)» K16 can also be useful,

3. EXAMPLE AND SIMULATIONS

We tested the bandwidth selection method described in Section 2 on several data
sets for estimation of f®(x), the first derivative of f(x). We had the best success
when the kernel was standard normal. Piecewise polynomial kernels, with asymptotic
optimality properties of the type described in Gasser et al. (1985), sometimes gave a
numerically unstable derivative cross-validation function, especially for the smaller
data sets. This seems to be caused by the fact that CV, makes use of the 2kth derivative
of K, which for & = 1is discontinuous for some popular kernels. One approach to this
problem would be to use piecewise polynomials that have an optimality property
under smoothness constraints, as developed in Miiller (1984), although we have not
tried this.

The normal kernel is attractive also for larger data sets, as the function CV,(4) may
be efficiently calculated by a fast Fourier transform algorithm as mentioned at theend
of Section 2. To see how much loss in efficiency could be expected from using the
normal kernel, we calculated an analog of Table 3.1 of Silverman (1986). The analog
of Silverman’s C(K) (although see Marron and Nolan (1989) for a more convincing
derivation) for estimating the kth derivative is

C(K) = {J(K®)R}46 +2) ([ x2+k KRV )+ 2)/(5 4 20)

Table 1 shows the efficiency (in the sense of Silverman) of the normal kernel, with
respect to some of the optimal kernels of Miiller (1984) (indexed by the amount of
‘smoothness’ u in Milller’s notation), defined as
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TABLE 1
Efficiencies of the normal kernel, with respect to Miiller's optimal kernels

k B eff (K, ,. ™)
172

0 2 % (—:—) = 0.9570
700

0 3 T 2 = 0.9640
S~ 0.8355
2320 x T

1 3 ﬁﬁ— (F) =~ (.8562

2 2 2% (l) * - 0.7008
17303 \ 11 .

2 3 ke L) " - 07207
37349 \ 13 :

eff (K, .0 #®) = {Cp(Ky, )/ Cr(p)}5+2008,

In view of the well-known fact that there is very little loss in efficiency when k = 0, we
were rather surprised to see a fairly substantial loss in efficiency for the other cases.
The loss is not too serious for k& = 1, but is worse with increasing k. It appears that &
need not be too large before this loss in efficiency will outweigh the numerical and
intuitive advantages of the Gaussian kernel.

Derivative cross-validation usually, but not always, gave a larger bandwidth than
the ordinary cross-validation. This was expected from the asymptotic rate of conver-
gence results, which say that a larger bandwidth is required to estimate higher deriva-
tives. In particular, in the simplest setting of X non-negative and f sufficiently
smooth, reasonable bandwidths are of the order n-1/@%+5, which increases in k; see,
for example, Stone (1980).

An interesting case was an application to a data set on food expenditures in 1973
from the Family Expenditure Survey, Annual Base Tapes (1968-1983) (Department
of Employment, 1984). The data utilized in this paper weré made available by the
Economic and Social Research Council's data archive at the University of Essex.
Because of the large size of this data set, we worked with a condensed version, where
each observation consists of the average of groups of 50 order statistics. .

The estimation of the derivative of the probability density is useful for several
reasons in this context. One is that it is a major component of the Engel curve, which is
vital for empirical verification of the law of demand. Another is that it figures heavily
in the estimation of elasticities. See Hildenbrand and Hildenbrand (1988) for defini-
tion, motivation and analysis of these quantities together with the economic conclu-
sions which have been drawn. One more related application is that it represents the
most difficult to estimate component of the average derivative functional, which,
together with the Engel curve, is also important for empirical verification of the law of
demand; see Hirdle and Stoker (1990).
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Fig. 1. Cross-validation functions CV, and CV, for food expenditure data, X standard normal

Fig. 1 shows a superimposition of the cross-validation functions CVy(h) and
CV,(h). A feature that was typical of all the examples that we have considered is that
the minimum is much better defined for the derivative. This appears related to the fact
that bandwidths chosen by cross-validation have better stability properties in settings
where curve estimation is more difficult, such as higher dimensional estimation. See
Section 4 of Marron (1986) for a discussion of this seeming paradox.

An interesting feature of this data set, that we did not observe for any other, is that
if we extend the range of As, for which minimization is performed, to include some
very small values then the function CV, (k) hasits global minimum at an unreasonably
small value. This is not a practical problem for this data set, because the bandwidthsin
the extended range represent amounts of smoothing which give a far too wiggly curve
to be seriously considered. However, it is worth noting because similar phenomena
have been observed for ordinary density cross-validation; see Rudemo (1982) and
Scott and Terrell (1987).

The bandwidth selection rule was also applied to some simulated data. 15 samples
of size 750 of data having the extreme value density

Sx)=exe
were generated to assess the performance of 4, in the estimation of
fO(x) = efe~**(1 —ex).

The selected bandwidths are listed in Table 2. With only 15 data sets, the resuits are far
from conclusive, but they do give some insight.

Most of them are in reasonably close agreement with the bandwidth which
minimizes the mean integrated square error, which was roughly 0.34 in this case. To
give an idea about the performance of the resulting curve estimates, we chosc. the
sample which gave the median value of d) A, f17) among our 15 replications. Fig. 2
shows the resulting curve estimate /5" as a broken line and the true underlying curve

£ as the full curve.
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TABLE 2
Values qf h s for 15 samples from the extreme value density with n = 750 using the
standard normal kerne!

0.16 0.44 0.20 0.45 0.33
0.44 0.30 0.46 0.43 0.28
0.18 0.34 0.34 0.47 0.16

4. THEORETICAL RESULTS

For ordinary density estimation, i.e. for k=0, the effective asymptotic per-
formance of the cross-validated bandwidth has been established by the optimality
results of Hall (1983), Stone (1984) and Burman (1985). In this section, it is seen how
these results may be extended to general &.

Assume that X is a compactly supported probability density with 2k bounded
derivatives and that f has 2k + 2 continuous bounded derivatives. The assumption of
compact support of K does not include the Gaussian kernel used in Section 3. The
results proven here can be extended to this case by a straightforward truncation argu-
ment. This is not explicitly done because the increased technical complexity of the
proof only detracts from the main points.

The bandwidths under consideration are assumed to come, for each n, from a set
H,sothat sup,cy b < n~%, inf, g h 2 n(-1+8/&+1) and card(H,) < n* for some con-
stants 6 > 0 and p > 0.

The cross-validated bandwidth A, is asymptotically the same as the optimal band-
width k¢ (both chosen as minimizers over the set /,) in the following sense.

Theorem 1. Under the above assumptions, as n — oo,
ho/hE—1, almost surely.

The fact that this result means that the cross-validated bandwidth is useful for
estimation is demonstrated by the following theorem.

Theorem 2. Under the above assumptions, as n — o,
di(f; 9, fO)d(FP, Sy -1, almost surely.

Remark 1. Sinced,israndom, i.e. changes for different data sets, one may prefer
as an error criterion its expected value, the mean integrated square error, .

du(FfP, F®) = Edi( /0, f&),

The proof of theorems 1 and 2 may be adapted in a straightforward fashion to give the
4y analogues of those results:

he/hy— 1, almost surely,
du(FiP, fO) du(FiP, F®) = 1, almost surely,

where h; denotes the minimizer of dy(f{*, f®). However, no statement is made here
about Ed;(f¥, £®).
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Fig. 2. Simulation target curve (——) and curve estimate (—-) for the data set giving median per-
formance, from the extreme value distribution, using the standard normal kernel

Remark 2. The assumption that f has 2k + 2 derivatives is substantially stronger
than that made, for & = 0, by most of the researchers cited at the beginning of this sec-
tion. With more technical effort (and messy notation) than seems justified to us, this
assumption can be weakened somewhat, but observe that the assumption of at least 2k
derivatives appears to be essential for the establishment of asymptotic optimality for
this method of cross-validation.

5. PROOFS
Theorems 1 and 2 are a consequence of the following two lemmas.
Lemma 1.
supsen, | {di(F, f*) — A(M)}/A(R)| 0, almost surely,
where
A(h) = [(KORn-1h-Ck+D + (f u K/2P[(f*+D)Y R4
Lemma 2.
sups wem, | Blh, B =0, almost surely,

where

B(h, h') = [CV(h) — di (), f®) — {CV(R) — di(F*, SO/ {4 () + A(h)]}.

Calculations of the type leading to equation (3.20) of Silverman (1986), for
example, show that A (k) asymptotically approximates dy( f, 8 in the sense that

supaes,| {dm(F®, F&) — A}/ A(R)| = 0.

This can be used to verify the claims made in remark 1.
The proof of lemma 1 follows very closely the proof of theorem 1 of Marron and
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Hirdle (1986). To see how to adapt the current set-up to the notation of that paper,
define

g(x) =Rt f® (x),
£(x) = B f® (x),
Ai=h-l,
b\(x, y):= h='K®)(x—y)/h,
w(x) dF(x) := dx.

The results of Marron and Hirdle (1986) cannot be directly applied here because the
target function g(x) in that paper is not allowed to depend on A. However, an inspec-
tion of the proof in that paper shows that the result still holds, even in the current
slightly more general context. This completes the proof of lemma 1.

Lemma 2 is a consequence of the following lemma.

Lemma 3.

["': i X)) - 5.?”*31'— R] /A (fl}| -0, almost surely,

SUPhen,

where
R=n"' 2] foO(X)) - ]fﬂ”f.
i=1
To prove lemma 3, define
U = h-%-1K@{(X, - X;)/h} — h-%-1[ K@) {(x~X;)/h} f(x) dx
- (X)) + [ f@(x) f(x) dx.
Vii=EU, ;| X)),
W, ;=U,;-V.
To finish the proof it is sufficient to show that

SUDpes, | 17! 2 V.a/A (h)| -0, almost surely, (1)

and that

SUDge#, | EDIDN WJ.;/A (h) | -0, almost surely. (2)
Y]

To verify expression (1), by the Borel-Cantelli lemma it is sufficient to show that
fore>0

nt Y V.—| > m(h)] < w.

=]

3 card(H,) supn.H,P[

n=1
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Hence by the Chebyshev inequality, it is sufficient to show that there is a constant
v > 0, so that for m = 1,2, ... there are constants C,, such that

n 2m
sup,,,,,.}_-‘[n—! > V,./A (};)I € Cpn—vm. (3)
i=
To establish inequality (3), observe that {Z]., V;} is a martingale with respect to the
sequence of sigma fields generated by {X,,...,X,}. An application of equation
- (21.5) of Burkholder (1973) (which is essentially Rosenthal’s inequality), with
®(x) = x?m, to the finitely (from 1, . . ., n) indexed martingale, gives

im]

n 2m
E (E H) < C(n™h*m + n),

for some constant C. Inequality (3) follaws from this and the definition of A (k). This
completes the proof of inequality (3), and hence also that of expression (1).

To verify expression (2), by a development similar to that leading to inequality (3),
it is sufficient to show that

2m
sup,,,,,,_s[n—: I /A (h)] < Cpn-m, @)
i>j
Since
E(Wﬂj X)) = E(Wi._ilX_.'J =90,
{Z£Z;5; Wi} is a martingale with respect to the same sequence of sigma fields as
before. Applying the same inequality to this finitely indexed martingale gives

E(Z Z Wr,.a) " < C(nimh-Qk+m 4+ pme1 - @k+ 2m),

i}

for another constant C. A consequence of this is inequality (4). This completes the
proof of expression (2) and hence that of lemmas 2 and 3.
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Investigating Smooth Multiple Regression by the

Method of Average Derivatives
WOLFGANG HARDLE and THOMAS M. STOKER*

Let {x, . . . . &, ¥) be a random vector where y denotes a response on the vector x of predictor variables. In this article we
propose a technique [termed average derivative estimation (ADE)] for studying the mean response m(x) = E(y | x) through
the estimation of the & vector of average derivatives § = E(m'). The ADE procedure involves two stages: first estimate o
using an estimator 4. and then approximate m(x) by rit(x) = §(x73), where § is an estimator of the univariate regression of y
on x'd. We argue that the ADE procedure exhibits several attractive characteristics: data summarization through interpretable
coefficients, graphical depiction of the possible nonlinearity between v and x73, and theoretical properties consistent with
dimension reduction. We motivate the ADE procedure using examples of models that take the form m(x) = §(x78). In this
framework, 4 is shown to be proportional to § and mi(x) infers m(x) exactly. The focus of the procedure is on the estimator
4, which is based on a simple average of kernel smoothers and is shown to be a VN consistent and asymptotically normal
estimator of . The estimator §(-) is a standard kernel regression estimator and is shown to have the same properties as the
kernel regression of y on x74. In sum. the estimator d converges to 4 at the rate typically available in parametric estimation
problems, and mi(x) converges to E(y | x™5) at the aptimal one-dimensional nonparametric rate. We also give a consistent
estimator of the asvmptotic covariance matrix of 4. to facilitate inference. We discuss the conditions underlying these results,
including how W N consi estimation of J requires undersmoothing relative to pointwise muitivariate estimation. We also
indicate the relationship between the ADE method and projection pursuit regression. For illustration, we apply the ADE
method to data on automobile collisions.

KEY WORDS: ADE regression; GLIM models; Kernel estimation; Nonparametric estimation.

1. INTRODUCTION where m' = dm/dx is the vector of partial derivatives and
expectation is taken with respect to the marginal distri-
bution of x. We argue in the next section that ¢ represents
sensible “coefficients” of changes in x and y.

We construct a nonparametric estimator o of J, based

The popularity of linear modeling in empirical analysis
is based on the ease with which the results can be inter-
preted. This tradition influenced the modeling of various
parametric nonlinear regression relationships, where the

mean response variable is assumed to be a nonlinear func-  °n 21 Observed random sample (x;, y) (i = 1.. .., N).
tion of apwci hted sum of the predictor variables. As in L
8 D i form the weighted sum 2, = x7d fori = 1,. . . , N (where

linear modeling, this feature is attractive because the coef-
ficients. or weights of the sum. give a simple picture of
the relative impacts of the individual predictor variables
on the response variable. In this article we propose a flex- .
ible method of studying general multivariate regression m(x) = g(x79). (1.3)
relationships in line with this approach. Our method is to
first estimate a specific set of coefficients, termed average
derivatives, and then compute a (univariate) nonpara-
metric regression of the response on the weighted sum of
predictor variables.

The central focus of this article is analysis of the aver-
age derivative, which is defined as follows. Let (x, y) =

xTis the transpose of x), and then compute the (Nadaraya—-
‘Watson) kernel estimator g(-) of the regression of y; on
Z;. The regression function m(x) is then approximated by

The output of the procedure is three-fold: a summary of
the relative impacts of changes in x on y (via 4), a visual
depiction of the nonlinearity between y and the weighted
sum x7d (a graph of £), and a formula for computing
estimates of the mean response m(x) {from Eqg. (1.3)]. We
refer to this as the ADE method, for “average derivative
estimation.”

Xy .. ., Xg, ¥) denote a random wi W i .. . L .
@ oLl ) om vector here_ I th_c In addition to allowing data summarization through in-
response studied. If the mean response of y given x is = . .
denoted by terpretable coefficients, the average derivative estimator

) is computationally simple and has theoretical properties

m(x) = E{y|x), (1.1) consistent with dimension reduction. The statistic & is
based on a simple average of nonparametric kernel
smoothers, and its properties depend only on regular-
o = E(m), (1.2) ity properties on the joint density of (x, y) or, in particu-

. lar, on no functional form assumptions on the regression

- WolTaans Hardle & Privatd It for Wireechafretheore 1 function m{x). The limiting distribution of VN(J — 8) is
Univerostrﬁnﬁgcn:r Dfig{lﬂ B‘;a:n?;izlérar;s;::uﬁc oflréserr:an;r.e"l?!;:ma; multivanate norma]; F,I-he L e e mgr"?SSlon_esn'
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ment, Massachusetts Institute of Technology, Cambridge. MA 02139.  predictor variable, but it achieves the optimal rate that is
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then the vector of “‘average derivatives” is given as
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typical for one-dimensional smoothing problems (see
Stone 1980). Although & and g(-) each involve choice
of a smoothing parameter, they are computed directly
from the data in two steps and thus require no computer-
intensive iterative techniques for finding optimal objective
function values.

Section 2 motivates the ADE method through several
examples famili?.r from applied work. Section 3 introduces
the estimators ¢ and § and establishes their large-sample
statistical properties. Section 4 discusses the results, in-
cluding the relationship of the ADE method to projection
pursuit regression (PPR) of Friedman and Stuetzle (1981).
Section 5 applies the ADE method to data on automobile
collisions. Section 6 concludes with a discussion of related
research.

2. MOTIVATION OF THE ADE PROCEDURE

The average derivative d is most naturally interpreted
in situations where the influence of x on y is modeled via
a weighted sum of the predictors; where m(x) = g(x"f)
for a vector of coefficients §. In such a model, § is inti-
mately related to f§, as m’' = [dg/d(x78)]f, so that § =
E[dg/d(x"B)]# = 7B, where y is a scalar (assumed non-
zero). Thus & is proportional to the coefficients § when-
ever the mean response is determined by x7f.

An obvious example is the classical linear regression
model; vy = a« + x"8 + e, where ¢ is a random variable
such that E(e | x) = 0, which gives § = f. Another class
of models is those that are linear up to transformations:

d(y) = wx™f) + e, 2.1

where w(-) is a nonconstant transformation, ¢(-) is in-
vertible, and e is a random disturbance that is independent
of x. Here we have that m(x) = E[¢ (w(x78) + e) | x]
= g(x7f). The form (2.1) includes the model of Box and
Cox (1964), where ¢(y) = (y* — 1)/i, and w(x7f) =
+ [(xTBy — 1)/ 4;.

Other models exhibiting this structure are discrete re-
gression models, where y is 1 or 0 according to

y=1 ife<y(xp)
=0 ife=wx™. (2.2)

Here the regression function m(x) is the probability that
y = 1, which is given as m(x) = Prie < w(x"8) | x} =
g(xTf). References to specific examples of binary response
models can be found in Manski and McFadden (1981).
Standard probit models specify that e is a normal random
variable (with distribution function ®) and w(x7§) = «
+ x7B, giving m(x) = ®(a + x7f). Logistic regression
models are likewise included; here m(x) = exp(a + x"f)/
[1 + exp(a + x"B)]. .
Censored regression, where
y=wx™ +e fwk™P) +e=0
=0 if w(x’g) + e <0, (2.3)

is likewise included, and setting w(x78) = a + x7f gives
the familiar censored linear regression model [see Powell
(1986), among others].

A parametric approach to the estimation of any of these
models, for instance, based on maximum likelihood, re-
quires the (parametric) specification of the distribution of
the random variable e and of the transformations w(-),
and for (2.1), the transformation ¢(-). Substantial bias can
result if any of these features is incorrectly specified. Non-
parametric estimation of 6 = yf avoids such restrictive
specifications. In fact, the form m(x) = g(x"f) generalizes
the “generalized linear models” (GLIM); see McCullagh
and Nelder (1983). These models have g invertible, with
£~! referred to as the “link” function. Other approaches
that generalize GLIM can be found in Breiman and Fried-
man (1985), Hastie and Tibshirani (1986), and O’Sullivan,
Yandell, and Raynor (1986).

Turning our attention to ADE regression modeling, we
show in the next section that m(x) of (1.3) will estimate
g(xT8) = E(y]x7é), in general. Consequently, the ADE
method will completely infer m(x) when

m(x) = g(xT4).

But this is the case for each of the aforementioned ex-
amples, or whenever m(x) = §(x7f), since a (nonzero)
rescaling of § can be absorbed into g. Here m(x) is re-
parameterized to have coefficients § = yf by defining g(-)
= g(-/y), so m(x) = §(x"f) = g(x79). This rescaling cor-
responds to E[dg/d(x76)] = 1, a normalization of g that
would not obrain for alternative scalings of f.

Equivalently, we can interpret the scale of J by noting
that if each value x is translated to x + A, then the change
in the overall mean of y is ATd. This feature is familiar for
coefficients when the true model is linear, but not for
coefficients within a nonlinear model. For instance, alter-
native scalings of § for the transformation model (2.1)
would make the average change dependent on ¢(-) and
w().
Finally, there are modeling situations where & is inter-
pretable but (2.4) does not obtain. For instance, if x =
{x;, x;) and the model is partially linear,

y=x{p + p(x) +e (2.5)

then §, = f, and d, = E(p'), where § = (§,, d,) coincides
with the partition of x. If, in addition, ¢ = §(x{f,), then
4, = B, and 4, = yf,, so 4, is proportional to the coeffi-
cients within the nonlinear part of the model. See Robin-
son (1988) for references to partially linear models and
Stoker (1986) for other examples where the average de-
rivative has a direct interpretation.

(2.4)

3. KERNEL ESTIMATION OF
AVERAGE DERIVATIVES

Our approach to estimation of 4 uses nonparametric
estimation of the marginal density of x. Let f(x) denote
this marginal density, f' = df/ax the vector of partial
derivatives, and { = —d In f/ox = —f'/f, the negative
log-density derivative. If f(x) = 0 on the boundary of x
values, then integration by parts gives

5 = E(m’) = E[i(x)y]. (3.1)

Hardle, W. and Stoker, T. (1989) Investigating Smooth Multiple Regression by the Method
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Qur estimator of J is a sample analog of the last term in
this formula, using a nonparametric estimator of {(x) eval-
uated at each observation.

In particular, the density function f(x) is estimated at
x using the (Rosenblatt-Parzen) kernel density estimator

v )
=1
where K() is a kernel function. h = hy is the bandwidth

parameter, and & — 0 as N — =. The vector function /(x)
is then estimated using f,(x) as

x) = = fix) fu@), (3.3)

where fi = af,/9x is an estimator of the partial density
derivative. For a suitable kernel K(-) under general con-
ditions, f,(x), f #(x), and I,(x) are consistent estimators of
f(x), f'(x), and {(x), respectively.

Because of division by f,.' the function {, may exhibit
erratic behavior when the value of f; is very small. Con-
sequently, for estimation of 4 we only include terms for
which the value of f,(x,) is above a bound. Toward this
end, define the indicator [; = I[f,,(x) > b], where [[-] is
the indicator function and b = by is a trimming bound
such that b — 0 as N — =, X

The “‘average derivative estimator” ¢ is defined as

fulx) = (32)

§ =Nt ﬁj Lxywd,.

=]

(3.9)

We derive the large-sample statistical properties of  on
the basis of smoothness conditions on m(x) and f(x). The
required assumptions (listed in the Appendix) are de-
scribed as follows. As before, the & vector x is continuously
distributed with density f(x), and f(x) = 0 on the bound-
ary of x values. The regression function m(x) = E(y | x)
is (a.e.) continuously differentiable, and the second mo-
ments of m’ and ly exist. The density f(x) is assumed to
be smooth, having partial derivatives of order p = k + 2.
The kernel function K{-) has compact support and is as-
sumed to be of order p. We also require some technical
conditions on the behavior of m(x) and f(x) in the tails
of the distribution, for instance, ruling out thick tails and
rapid increases in m(x) as |x| — o.

Under these conditions, & is an asymptotically normal
estimator of d, stated formally as follows.

Theorem 3.1. Given Assumptions 1-9 stated in the
Appendix, if (a) N— o, h— 0, b— 0, and b~'h — 0;
(b) for some & > 0, b*N'~*h**? — =; and (c) Nh**"? —
0, then VN(S — &) has a limiting normal distribution with
mean 0 and variance £, where Z is the covariance matrix
of r(y, x), with

r(y, x) = m'(x) + [y = m(x)]{(x). (3.5)

The proof of Theorem 3.1, as well as those of the other
results of the article, are contained in the Appendix.
The covariance matrix X could be consistently estimated
as the sample variance of uniformly consistent estimators
of r(y. x) (i = 1, -, N), and the latter could be

constructed using any uniformly consistent estimators of
I{x), m(x), and m'(x). The proof of Theorem 3.1 suggests
a more direct estimator of r( y;, x;), defined as

Fri = fh(xi)yr'ji + N-h* z

af e (XX
5 [ (57
- k(55 o] 5.

Define the estimator £ of S as the sample covariance
matrix of {#;/}}:

(3-6)

(3.7)

where 7, = N1 % F,‘J, We then have the following theo-
rem.
Theorem 3.2. If N— = h—0,b— 0, and b th —

0. = is a consistent estimator of Z.

Theorem 3.2 facilitates the measurement of prccisicn
of 4 as well as inference on hypotheses about J. For ip-
stance, the covariance matrix of J is estimated by N~ i$,
Moreover, consider testing restrictions that certain com-
ponents of § are 0 or testing equality restrictions across
components of é. Such restrictions are captured by the
null hypothesis that Qd = g, where Q is a k| X k matrix
of full rank k; = k. Tests of this hypothesis can be based
on the Wald statistic W = N(Q«f = g)(QEQT) Q6 -
gp). which has a limiting »* distribution with &, df.

We now turn our attention to the estimation of g(x79)
= E(y | x73) and add the assumption that g{-) is twice
differentiable. Set #, = x,-TS (j=1,...,N), and let f,
denote the density of z = x7d. Define g(z) as the (Na-
daraya—WaIson] kernel estimator of the regression of y on

= xT5:
z -z
(NA) ﬁiKl(-h—,‘) Y

4@ = @ A
where f,, is the density estimator
fm‘(x} = N-'h'~! Z K; (T"%) (3.9

with bandwidth A" = h}, and K is a symmetric (positive
univariate) kernel function. Suppose, for a moment, that
z; = x]J instead of Z; were used in (3.8) and (3.9); then
it is well known (Schuster 1972) that the resulting regres-
sion estimator is asymptotically normal and converge:
(pointwise) at the optimal (univariate) rate N**. Theorem
3.3 states that there is no cost to using the estimated values
2, as described previously.

Theorem 3.3. Given Assumptions 1-10 stated in thu
Appendix, let z be such that fi(z) =2 by > 0. If N — =
and h* ~ N-Y5, then N**[g,(z) — g(z)] has a limitine
normal distribution with mean B(z) and variance V(z)

Hardle, W. and Stoker, T. (1989) Investigating Smooth Multiple Regression by the Method
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where
B() = g2 + £ @Fi@IA@) [ wKiw) du

V(z) = [var(y | £’ = 2)/f(2)) I Ki(u)? du. (3.10)

The bias and variance given in (3.10) can be estimated
consistently for each z using y, g,, and f,,, and their de-
rivatives. using standard methods. Therefore, asymptotic
confidence intervals can be constructed for g,, (z). It is
clear that the same confidence intervals apply to m(x) =
gw(x78), for z = x74.

4. REMARKS AND DISCUSSION
41 The Average Derivative Estimator

As indicated in the Introduction, the most interesting
feature of Theorem 3.1 is that d converges to & at rate
V' N. This is the rate typically available in parametric es-
timation problems and is the rate that would be attained
if the values [(x;} (i = 1 , N) were known and used
in the average (3.4). The estimator [(x) converges point-
wise to [(x) at a slower rate, so Theorem 3.1 gives a sit-
uation where the average of nonparametric estimators
converges more quickly than any of its individual com-
ponents. This occurs because of the overlap between ker-
nel densities at different evaluation points; for instance,
if x; and x, are sufficiently close, the data used in the local
average f,.(xt) will overlap with that used in f a(x;). These
overlaps lead to the approximation of § by U statistics with
kernels depending on N. The asymptotic normality of &
follows from results on the equivalence of such U statis-
tics to (ordinary) sample average. In a similar spirit,
Powell, Stock, and Stoker (in press) obtained VN con-
vergence rates for the estimation of “density weighted”
average derivatives, and Carroll (1982), Robinson (1988),
and Hardle and Marron (1987) showed how kernel den-
sities can be used to obtain VN convergence rates for
certain parameters in specific semiparametric models. We
also note that our method of trimming follows Bickel
(1982), Manski (1984), and Robinson (1988).

For any given sample size, the bandwidth # and the
trimming bound b can be set to any (positive) values, so
their choice can be based entirely on the small-sample
behavior of 8. Conditions (a)~c) of Theorem 3.1 indicate
how the initial bandwidth and trimming bound must be
decreased as the sample size is increased. These conditions
are certainly feasible; suppose that h = AN ~* and b =
byN=1, then (a)-(c) are equivalent to 0 < n < { and p/
(p - 2y<{<(l —dp - &)/(2k + 2). Sincep =k +
2 and ¢ is arbitrarily small, # can be chosen small enough
to fulfill the last condition.

The bandwidth conditions arise as follows. Condition
(b) assures that the estimator & can be “linearized” to 1
without an estimated denominator and is a sufficient
condition for asymptotic normality. Condition (c) assures
that the bias of J vanishes at rate V'N. Conditions (a)~(c)
are one-sided in implying that the trimming bound b can-

" Set & =

not-converge too quickly to 0 as N — s, but rather must
converge slowly, The behavior of the bandwidth 7 as N
— = is bounded both below and above by Conditions (b)
and (c).

Condition (c¢) does imply that the pointwise conver-
gence of f,(x) to f(x) must be suboptimal. Stone (1980)
showed that the optimal pointwise rate of convergence un-
der our conditions is N*"2+%_ and Collomb and Hirdle
(1986) showed that this rate is achievable with kernel
density estimators such as (3.2), for instance, by taking &
= hyN~V@r+% But we have that Ni¥-? — =, which vi-
olates Condition (c), so as N — =, i must converge to 0
more quickly than &.This occurs because (c) is a bias con-
dition; as N — =, the (pointwise) bias of f,(x) must vanish
ata faster rate than its (pointwise) variance, for the bias
of 3 to be o(N='?). In other words, for \/ﬁ consistent
estimation of 4, one must “undersmooth” the nonpara-
metric component [,(x).

4.2 Modeling Multiple Regression

Theorem 3.3 shows that the optimal one-dimensional
convergenee rate is achievable in the estimation of g(x74)
= E(y|x73), using J instead of 4. The requirement that
g(+) is twice differentiable affixes the optimal rate at
N3, but otherwise plays no role: if g(-) is assumed dif-
ferentiable of order ¢ and K\(-) is a kernel of order g,
then it is easily shown that the optimal rate of N9/@24+1 js
attained. The attainment of optimal bne-dimensional rates
of convergence is possible for the ADE method because
the additive structure of g(x74) is sufficient to follow the
“dimension reduction principle” of Stone (1986). Alter-
native uses of additive structure can be found in Breiman
and Friedman (1985) and Hastie and Tibshirani (1986).

The ADE method can be regarded as a version of PPR
of Friedman and Stuetzle (1981). The first step of PPR is
to choose § (normalized as a direction) and § to minimize
s(g, B) = Z [y — &PV, and any model of the form
m(x) = g(x"f) is inferred by the ADE estimator rit(x) =
£w(xT8) at the optimal one-dimensional rate of conver-
gence. For a general regression function, however, #(x},
gx, and & will not necessarily minimize the sum of squares
s(g, B): given g, B is chosen such that {y, — g(x7f)} is
gngogonal to {x.g'(x/ )}, which does not imply that § =

/]o].

Given 4, §w 1s a local least squares estimator; namely,
Z K\[(z — xJ8)/R')(y; — ¢)* is minimized by t = §,(2).
Moreover, d is a type of least squares estimator, as follows.
(8)~'u(x)[;, where S, is the sample moment S,
= N1 Z ,(x)Iy(x)],. Then § is the value of d that min-
imizes the sum of squares 2 [ y; — £/dJ?, or equivalently,
S8 are the coordinates of {y} projected onto the sub-
space spanned by {J,(x)1}.

ADE and PPR thus represent different computational
methods of inferring m(x) = g(x78). The possible advan-
tages of ADE arise from reduced computational effort;
(given h, b, and k") rit(x) = §(x7d) is computed directly
from the data, whereas minimizing s(g, §) (by checking
all directions J and computing g for each ) typically in-
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volved considerable computational effort [although the re-
sults of Ichimura (1987) may provide some improvement].

5. ADE IN AN AUTOMOBILE COLLISION STUDY

We illustrate the ADE approach with data from a proj-
ect on the calibration of automobile dummies for studying
automobile safety. The data consist of observations from
N = 58 simulated side impact collisions as described in
Kallieris, Mattern, and Hirdle (1989) and listed in the
Appendix. All calculations are performed using GAUSS
On a microcomputer.

Of interest is whether the accidents are judged to resuit
in a fatality, so the response is y = 1 if fatal, y = 0 if not
fatal. The £ = 3 predictor variables are age of the subject
(AGE, x,), velocity of the automobile (VEL, x,), and the
maximal acceleration (upon impact) measured on the sub-
ject’s abdomen (ACL, x;). The x variables are standard-
ized for the analysis: each variable is centered by its sample
mean and divided by its standard deviation, For this ap-
plication, the regression E( y | x) = m(x) is the conditional
probability of a fatality given x.

Because of the moderately small sample size, for com-
puting J we use a standard positive kernel instead of the
higher-order kernel prescribed by Theorem 3.1 (for k& =
3, a kernel of order p = 5 is indicated, and some limited
small sample Monte Carlo experiments showed that the
oscillating local weights produce slightly smaller bias but
considerably higher variance than a standard positive ker-
nel). In particular, we used the kemel K(u,, wy, 1y) =
K (1) K1) Ky(u3), where K, is the univariate “biweight”
kernel

Ki(u) = (15/16)(1 — w?(|ju] =< 1).

Although our theoretical results do not constrain the
choice of bandwidth /, some Monte Carlo experience sug-
gests that reasonable small-sample performance is ob-
tained by setting & in the range of 1 to 2 (one to two
standard deviations of the predictors), and so we set & =
1.5. Likewise for the trimming bound b; for interpretation
we set the bound to drop the a = 5% of observations with
smallest estimated density values.

The average derivative estimates & are given in Table 1
for the collision data in Table 2. The AGE effect is rea-
sonably precisely estimated, whereas the VEL and ACL
effects are not very well estimated (on the basis of their
standard errors). On the basis of the appropriate Wald
statistics, (4,, 62, d;) = 0 and (;, 8;) = 0 are rejected at

(5.1)

Table 2. Coliision {side impact) Data

AGE  VEL ACL y AGE VEL  ACL
22 50 S8 ] 30 45 a5 4
21 49 160 4] 27 46 96 i
40 50 134 1 25 a4 06
43 50 142 1 53 44 86
23 51 118 4] 64 45 B85
58 51 143 1 54 45 103 L
29 51 77 0 41 45 102
29 51 188 0 36 45 108
47 51 100 1 27 45 140
39 51 188 1 45 45 94
22 50 162 0 49 40 77
52 51 151 1 24 40 101
28 50 181 1 85 40 82
42 50 158 1 63 51 169
59 51 168 1 26 40 82
28 a1 128 0 60 45 83
23 61 268 1 47 45 103
38 41 76 0 59 44 104
50 81 185 1 26 44 139
28 a1 58 0 3 45 128
40 61 190 1 47 46 138
32 50 94 0 0 45 102
53 47 131 0 25 44 0 ¢
44 50 120 1 50 44 88 -
88 < 51 107 1. 53 50 128
36 50 97 0 62 50 136 -
33 53 138 1 23 50 108
51 a1 &8 1 27 80 176 :
60 42 78 1 19 80 191 {

analysis, but we do not for illustrative purposes, using

-from Table 1. In addition, for this data the ADE estimate.

are not sensitive to bandwidth or trimming percentag.
choice; although not reported, virtually identical estimate:
are obtained for bandwidths in the range of 1 to 2, ant
trimming percentages are obtained in the range of 1%-
10%.

For computing the kernel regression g(-) of y on x79
we also employed the biweight kernel X, with bandwidtk:
h' = .20. The curve § is graphed in Figure 1. Figure 1
displays the familiar shape of cumulative density function.
but it is important to note that there is nothing in the
tramework that implies this shape or implies that g(x7é
= E(y|x78) (or £ should be monotonic in x76. Although
somewhat beyond the scope of this article, it may be o
interest to explore some features of this finding, as a brie:
illustration of how nonparametric analysis can be used tc
guide parametric modeling.

In particular, suppose that these data were consistent
with a (homoscedastic) discrete response model of the
form

A . = ife<x"
a 5% level of significance, whereas 4, = 0 is not. Con- NSO
sequently, we could set §, = 0 for the femainder of the =0 ife=xT3, (5.2
5 Table 1. Average Derivative Estimates for Collision Data
Hypothesis tests
Predictor variables
. Degrees of

4 AGE (x,) VEL (x;) ACL (xy) Null hypothesis Wald statistic W freedom q Prixi> W)
Value 134 051 045 (84, 65, d3) = (0,0, 0) 19.41 3 00023
Standard error 033 028 027 {d2, 65) = (0, Q) 7.61 2 022

4y =0 3.44 1 063

NOTE: N = 58:41 = 1.5;a = 5%.
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Figure 1. ADE Regressifon for Collision Data.

" where e is distributed independently of x (possibly with
nonzero mean). This formulation specializes (2.2) by set-
ting w(z) = z and normalizing f to 4. As discussed pre-
viously, in this model E{y | x) = m(x) = g(y | x7) =
Pr(e < x74), so g(z) is the cumulative distribution func-
tion of e. Moreover, under this model, g* = dg/dz is the
density function of e, which we can estimate by the kernel
estimator of g’ (the derivative of g). The estimator is
graphed in Figure 2. Its multimodal shape indicates the
possibility of a “mixture” distribution for e, which is in
contrast with standard parameterizations of binary re-
sponse models (e.g., in a probit model ¢ is assumed to be
normally distributed). Although we do not pursue these
issues further here, at minimum, these results suggest that
one should test for the presence of a mixture, as well as
look for additional distinctions in the data (or design dis-
crimination rules) that can be built into the model so that
a unimodal density for e is statistically appropriate.

The appearance of several modes of §'(-) is not due to
undersmoothing; it remains with a tripling of the band-
width k" to .6. Moreover, it is not due to using the im-
precise estimate J;; dropping ACL and reestimating gives
a more pronounced multimodal shape of §'.

There is one feature of the results, which appears in

3.50 r

2.80—

.40

0.70-

b ] L I i I Il ] L

-0.36 -0.2 ou2
TA
=x' 3

Figure 2. ADE Regression Dervative for Collision Data.

0.00
-0.60

conflict with the framework, that merits further study. The
average of §'(x7d) over the data is 1.76, which contrasts
with the normalization £(g’) = 1. Although possibly due
to sampling error or our particular choice of &' (doubling
h' to .4 decreases the average to 1.17), this could signal
underestimation of & or, in particular, underestimation of
the scale of . Although we could easily “correct” for this,
our intention here is just to indicate the need for further
study of scaling and/or normalization of o. With regard
to the preceding discussion, it is important to note that a
rescaling of 0 would only relabel the horizontal axes of
Figures 1 and 2. In particular, the scaling of & does not
affect the substantive conclusions of Figures 1 and 2, nor
does it affect the fitted values m(x) of the ADE model
(1.3).

6. CONCLUDING REMARKS

In this article we have advanced the ADE method as a
useful yet flexible tool for studying general regression re-
lationships. At its center is the estimation of average de-
rivatives, which we propose as sensible coefficients for
measuring.the relative impacts of separate predictor vari-
ables on the mean response. Although we have established
attractive statistical properties for the estimators, it is im-
portant to stress that the real motivation for the ADE
method is the economy it offers for nonparametric data
summarization. Instead of attempting to interpret a fully
flexible nonparametric regression, the ADE method per-
mits the significance of individual predictor variables to
be judged via simple hypothesis tests on the value of the
average derivatives. Nonlinearity of the relationship is
summarized by a graph of the function g. As such, we
regard the ADE method as a natural outgrowth of linear
modeling, or “running (ordinary least squares) regres-
sions,” as a useful method of data summarization.

Although the results of our empirical illustration are
encouraging [another application is given in Hardle, Hil-
denbrand, and Jerison (1988)], many questions can be
posed regarding practical implementation of the ADE es-
timators. For instance, are there automatic methods for
setting the bandwidth and trimming parameters that assure
good small-sample performance of the estimators? Would
small-sample performance be improved by normalizing the
scale of 4 or using alternative methods of nonparametric
approximation for the ingredients of 4?7 These sorts of
issues need to be addressed as part of future research.

The ADE estimators are simple to compute, using stan-
dard software packages available for microcomputers. In
addition, these procedures are being implemented as part
of the exploratory data software package XploRe of Har-
dle (1988).

APPENDIX: ASSUMPTIONS, PROOFS OF
THECREMS, AND DATA

Al Assumptions for Theorems 3.4, 3.2, and 3.3

1. The support (0 of f is a convex, possibly unbounded subset
of R* with nonempty interior. The underlying measure of ( y, x)
can be written as g, X u,, where g, is Lebesgue measure.

2. f(x) = 0 for all x € df}, where d{l is the boundary of {}.
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3. m(x) = E(y | x) is continuously differentiable on acao,
where 0 — 0 is a set of measure 0.

4. The moments E[{7(x)I(x)y?*] and E[(m")"(m")] exist. My(x)
= E(y*|x) is continuous.

5. All derivatives of f(x) of order p exist, where p = k + 2.

6. The kernel function has support {u| {u| =< 1}, is symmetric,

has p moments, and K(u) = 0 for all u € {u] [u} = 1}. K(u) is
of order p:
I K(u) du = 1,
Ju‘!u“-” s ubK(u) du = 0, Lh+bh++<p,
and
Ju’lu‘! oK) duF 0, L AL+ + = p

7. The functions f(x) and m(x) obey local Lipschitz conditions:
For v in a neighborhood of (), there exist functions wy, Wy, W,
and w,, such that

[flx + v) = f) < ofx)lvl,
[f'(x + v} = ['(x)] < wp)lv],
fm'(x + v) = m'(x)] < walx)lv],
and
Hx + Imix + v) — I(x)m(x)] < @ (x)v],

where E[(lye,)] < =, E[(ywp)] < =, Elwi] <=, and E[w},]

8 LetA,, = {x| f(x) > b} and By = {x
=, [, m(x)f'(x) dx = o(N~").

9. If f*» denotes any pth order derivative of f, f# is locally
Holder continuous: there exists y > 0 and c(x) such that |f*!
(x + v) = fior(x)| = c(x) |vj". The p + ¥ moments of K(-) exist.
The following integrals are bounded as N — oo:

x| fx)=bh AsN—

J‘ mix)fe(x) dx; hi L c(xym(x) dx;

h j m(x)(x) f'P(x) dx; kit | e(x)m(x)i(x) dx.

An additional assumption for Theorem 3.3 follows.

10. m(x) =
interior of (1.

E(y | x) is twice differentiable for all x in the

A2 Proof of the Main Results

We begin with two preliminary remarks. First, Equation (3.1)
is shown formally as theorem 1 of Stoker (1986), by compo-
nentwise integration by parts (see also Beran 1977). Second,
because of Condition (c}), as N — =, the pointwise mean squared
errors of f, and f are dominated by their vanances. Therefore,
since the set {x | f(x) = b} is compact and b~'h — 0, for any ¢
> 0 we have that [compare Silverman (1978} and Collomb and
Hardle (1986}

sup|fa(x) = F(x) {[f(x) > b] = O,[(N'-wnR¥)-v]

and

supl fi(x} ~

(A.la)

£ G > b) = O,(N-wmhied 13,
(A.1b)

In the proofs, we use two (unobservable) “estimators” that

are related to 4. First, define 3 based on trimming with respect
to the true density value:

3= N3 Lo,

iwl

where I = I[f(x) > b] (i=1,...

(A2)

, N). Next define a linear-

ization §:
§ =258+ 8, + 4y, (A.3)
where
&=Nﬂ2mnm
Y T
5‘ - g ():J
b = —N- z A - (A4)

fx)

Proof of Theorem 3.1. The proof consists of the following

four steps.

Step 1. Linearization: VN( - 3) = g,(1).

Step 2. Asymptotic normality: VN[§ — E(8)] has a limiting
normal distribution with mean 0 and variance X.

Step 3. Asymptotic bias: VN[E(J) - 4] = o(l).

Step 4. Tnmmmg VN($ — 6) has the same limiting distri-
bution as VN(d —
The combination of Steps -4 yields Theorem 3.1.

Step 1: Linearization. Some arithmetic gives

VNG - 5y = N S HG@) = Alollfie) = ]
B A Z Fulx) f(x)
o ) = fixP
- N V3 I ) r_!r_‘
2 or
50 by (A.la), there is a constant ¢, such that with high probability
VN - B
VN
= bt — bf.‘;(N"“‘x‘h‘}"‘” Sl:p {If - f:i”
] iy\
X SUP[tf. - f'l]
VN 2 My,
¥ T po ey suellf - fllp—F—"

The terms N-' Z | y,|Z, and N-' Z |{(x;)y,|/; are bounded in prob-
ability by Chebyshev H 1nquahty Consequently, from (A.la,b)
we havc thal N(a - a) O (b 2N = hﬂbh l_l’-vl:iz) -
0,(1), since b*N'~“*h* — = and b‘.’\:"".‘::“2 — w by Condition
(b). :

Step 2: Asymptotic Normality. We show that VN[ - E(8)]
has a limiting normal distribution by showing that dy, é, and d,
are VN equivalent to (ordinary) sample averages and then ap-

pealing to standard central limit theory. Throughout this section,
v; = (¥, x;). For ;, we have that

VN[d, = E(39)] = N (2 {rofw) = E[fn(v)]}) + 0,(1),

(A.3)

where ry(v) = [(x)y, since var(ly) exists and b — 0 as N — =,
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To analyze 6, and 4,, we approximate them by U statistics.
The U statistic related to d, can be written as

U= (2’)' 2 2 pinlun, v,

=l el

with

N\ T FG)
where K' = dK/du. Note that by symmetry of K(-), we have
VNG, ~ E(8)]

= VN[U, - E(U)] - N{VR[U, - EQU)]

The second term in this expansion will converge in probability
to 0 provided that VN[U, ~ E(U,)] has a limiting distribution,
which we show later. Therefore, we have that

VNIS, - E(3)] = VN[U, - E(U)] + o,(1).
The U statistic related to 4, is

U‘l = (2’) Z 2 Pm(un vf)’

fal vl

_ b fx =\ (x)yd, | W)y
pw = ~3k "( n )( foy * f(x,)')‘

U, is related to 4, via
VNS, - E(8)] = VN[U, - E(U)] = N~
x {VN[U. - E(U)]}

= L (223) 2 2k

(A.6)

with

N
+ N7 S NR*K(0)
im]

i(x)yd ("(x))'f))
X - E .
( Flx) flx)
As before, the second term converges in probability to 0 provided
that \/-N-[U, ~ E(U,)] has a limiting distribution, as shown later.
The third term converges in probability to 0, because its variance
is bounded by K(0PN-*h-¥*(hibRE[l(xPy*I] = o(1), since Nh*
— @ and /b — 0. Therefore,
VN[$: = E(6:)] = VN[U: = E(U)] + 0,()).  (A])
The analysis of U; and U, is quite similar, so we present the
details only for Uf;. We note that U, is a U statistic with varying
kernel (e.g., see Nolan and Pollard 1987), since p,y depends on
N through the bandwidth k. Asymptotic normality of U, follows
from lemma 3.1 of Powell, Stock, and Stoker (in press), which
states that if E[|p.x(v;, v)f] = o(N), then

VNIU, = E(Uy)]

g = N~ (2 {rin{v) = E['m(u)]}) + o,(1), (A's).

iml

where r\y = 2E[ pin(v, v)|v]. This condition is implied by (b):
If M(x) = E(yl | x) and Ma(x) = E(y*I | x), then

E[| pinlvi, v

1 X =X
S — I
5451;,:;.1[ ‘K ( h )

= 2M(x )M (x)]1f (x) f (x)) dx, dx,

?
[Ma(x) + My(x;)

T | K@) + M + hu

=2M (x )M (x, + hu)]f(x)f(x, + hu) dx; du
= O(b-h~*-%) = O[N(B*NR=Y-'] = o(N), ~

since b*Nh*** — = is implied by Condition (b). Therefore, (A.8)
is valid.

We now refine (A.8) to show that U, is equivalent to an average
whose components do not vary with ¥, namely, the average of
ri(v) = E[r(v)], where r(v) = l(x)y. + m’(x;). For this, b* =
sup,{f(x + hu) | f(x) = b, ju| = 1} and I* = I[f(x) > b*]. By
construction, if |u| < 1, then I[f(x + hu) > b] — [7 # 0 only
when [ = 0, and &* — 0 and h/b* - D as b— 0 and h — 0.
Now write riy(v) = EQ2p(v, v) | u) as

rin(,)
i [ (R y_,f,__m(x).’]f(x)>b[)
- -hen | K( " )(f(x.J pTE I M

7/ o Frear
-j(x‘)fh K" f(x, + hu) du — I f& K'(w)

X m(x; + huydu - (1 = I7) J’h'lK'(u)M(x. + hu)
x {[f(x + hu) > b] = I} du

= —%jﬁ({u)f’(x, + hu)du + IF J’ K(4)

* mx, + hu)du + (1 = IPalx; h, b).

where a(x; h, b) = ~ [ h='K'(w)m(x + hulI[f(x; + hu) > b]
— I} du, so the difference between r,y and r, is

tn(v) = r(ty) = rlw)

- ";’(_;f K@){f'(x + hu) = f'(x)] du

+ jK(u)[m'(x,- + hu) — m'(x)] du + (1 = LHx)y
+ (1 = Im'(x) + (1 = IMa(x; h, b).

The second moment E[|t,(v)["] vanishes as N — =. By As-
sumption 7, the second moment of [y.f/f(x)] I K@) f'(x; +
hu) — f'(x)) duis bounded by (h/b)([ |u| K(u) du}E| y'w}] =
O[(h/b)?] = o(1). The second moment of /* [ K(u)[m'(x, +
hu) = m'(x)] du is bounded by A(J |u|K(u) du)E[wi] = O(h)
= o(1). The second moments of (1 — [)(x)y and (1 — I*)m’
{x;) vanish by Assumption 4, since b — 0 and b* — 0. Finaily,
the second moment of (1 — [?)a(x; h, b) vanishes if the second
moment of a(x;; A, b) exists. Consider the ith component a,(x;;
h, b) of a and define the marginal kemel K, = [ K(u) du, and
the conditional kernel K, = K/K,,. For given x, integrating a.(x;
h, b) by parts absorbs k™' and shows that a, is the sum of two
terms: the expectation [with regard to K(u)] of m; (x + hul{I[f(x
+ hu) > b} = I[f(x) > b*]} and the expectation [with regard
to K,,) of Km(x + hu) over u values such that f{x + hu) = b.
Because the variances of m' and y exist, the second moment of
each of these expectations exists, so E(ai) exists. Therefore,
E(|a]*) exists, so the second moment of (1 — I")a(x; A, b) van-
ishes, which suffices to prove E[|ty(v)fF] = o(1).

This fact completes the proof that U, is asymptotically normal,
as

N-2 (z {rv(v) = E[ﬁ.\'(f-")]})

iml

- N (2 (o) - E[r,(un})

=l

+ N1 (2 ftm(v) - E[rm(u)]}) (A.9)
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and the last term converges in probability to 0, since its variance
is bounded by E[[t,»(t)["] = o(1). Combining (A.9), (A.8), and
(A.6), we have

VRS, - E@)] = N2 (3, trte) - E[n(v)l}) + o,),

(A.10)
where r,(v) = l{x)y + m'(x).

The U statistic representation of J, is analyzed in a similar
fashion. In particular, E[| pix(vi, v;)fF] = o(N) follows from (b),
so Uy, = E(US) is VN equivalent to a sample average, which
combined with (A.7) gives

VN[§, - E(@)] = N (E {ri(v) - Eir:(vﬂ}) + o,(1),

(A.11)
where r:(v) = =[l{(x)y + {(x)m{x)]. Combining (A.5), (A.10),
and (A.11) yields Step 2, as

N

VRIE - @) = 8 (3 o) - EC@D) + o)

(A.12)

with ry(v) + r(v) + n(v) = r(v) = r(y, x) in the statement of
Theorem 3.1.
Step 3: Asymptotic Bias. The bias of § is E(8) — 6 = tw =
Tix = Tav, Where
o = E[lxyyd] - 6,

- H yl -
= E ([fk(x) frix)] f(.t))
and

e = E (7o) - o) “222E)

Let A, By be defined as before; then

Tow = J; [(x)m(x) f(x) dx — j (x)m(x)f(x) dx

= [ me)f () de = o(N.
By
We only show that 1,y = o(N-"2), with the proof of Ty =
o(N-"2) quite similar. Let : denote an index set (&, ..., &),
where 2 &, = p. Foru = (u), .. ., u), define u' = ufl - u
and fi# = 3#f/(3du). By partial integration we have

o = [ meo [ K@s e + ) - 5700 due

= [ mo3 [ Kooy du as,

where the summation is over all index sets 1 with £ £ = p and
£ lies on the line segment between x and x — hu. Therefore,

Tin

hr=1 J’ mx) S, fi9(x) J’ K(uye du dx

+ bt L m(x) 3 J K@) fi?(Q) = fir(x)]w du dx

O(hY)

by Assumption 9. Therefore, by Condition (c), we have 7,y =

O[N-'3(N'ipe-1)] = o(N-'?). The same analysis for 7,y com-

“ pletes the proof of VN[E(8) — 4] = o(1).

Step 4: Trimming. Steps 1-3 have shown that VNG -
§ — R) = 0,(1), where R = N"' Z [r(y;, x) — E(r)], 504 is
asymptotically normal. We now demonstrate the same property
for &. For this, let ¢y = ¢ (N""“31*)~12, where ¢, is an upper
bound consisent with (A.la). Define thc average kemel esti-
mator based on trimming with respect to the bound b + cy: 3.
= N1 Zm L(x)yd[f(x) > b + cy]. Since b~'cy — 0 by Con-
dition (b), J, obeys the tenets of Steps 1-3. so VN@, - 6 —
R) = 0,(1). We now show that VN(§ — 3.) = o,(1). First. /,
= I[f(x) < b + cu; fulx) > b], 50

Vﬁ(a - 3,) N-u2 Z Iu{xs)}"ifr

N- 1!2[!(;) —x)yd + N- qux)yH

1=l

The latter term vanishes in probability, as

Voo \N";z i =)y

i

N
s N3 ld,

= N2 3 |Hegylllf(x) < b + e,

50

N 2
E ‘N 2 1)y,

=N'E (Z )yl f(x) < b + e».l)

=1

= EQUayPIi@ < b + o} = o)

by the Lebesgue dominated convergence theorem, since b + ¢y
— 0 and ElI(x)y} exists. The first term also vanishes in proba-
bility, as

=l

L S lhe) - 1)) m.i

< N-12 z ”i(x!) = I(XJ)H}'J“T-

- Fr)falx) — fix)f(x) i
- 2 R
,(X} frx) Iy ”

i1 Fulx)
+ N-UE 21 ifn(x}*(_) if(x, |

Thus with high probability

N
N-12 Z [f.(x,} = I(I-}]y-fil

=1

= bt suplf = FULEC) > b = e (V2 3 i)

+ b sup{lf, — fUIf(x) = b - o]} (N""‘ Z if(x.)yrlf.)

= 0,(b-IN-1wp-E-2) = (1),
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since N-12 2 | y;|f,and N-"2 Z [i(x;)y /[, are each 0,(1), as before,
and B*N'-wikte2 — e by Condition (b). Therefore, VNS -
3) = 0,(1), s0 VN(S = & — R) = o,(1). This completes the
proof of Theorem 3.1.

Proof of Theorem 3.2. The estimator 7y is constructed by
direct estimation of the U statistic structure of d. In particular,
define pix(v,, v) and ps(v,, v) by replacing f, I, and I by £,
and 1 in the expressions for pyy and p.y. Next define fy =
Loyl 7 = 2N Z, unlv, 0), P = 2N Z; Pl ), and
# = fy + Py + Fy. By techniques similar to those cited for
{A.la,b), we have that suplf, = r{y., )l = o,(1).

An argument similar to Step 4 can be applied to X, so con-
sistency of £ will follow from consistency of N™' T A LI for
E(rr™) and consistency of N~' Z #.J; for E(r). But these follow
immediately; for instance, we have

N3, Fufhl = E(rrT)
= NS (= PP — )L+ NV b~ nYL
+ NS (Fe = )Tl - NO Y (1 - 1)
+ N7! Z rrl = E(rr")
= 05(1)'
since sup|# — r(y, x)|L = o,(1), the variance of r exists, and
Pr{f(x) = b} = o(1). This completes the proof of Theorem 3.2.

Proof of Theorem 3.3.  With z; = x]3, define d, = £, — 7, =
x7(8 = 6), and since f,(z) = b, > 0, d, = 0,(N-?). Denote by
g, and f, the kernel regression and density estimator (3.8) and
(3.9) using z instead of £, Whenh ~ N-'%, itisa standard result
(Schuster 1972) that N*3[gy(z) — g(2)] has the limiting distri-
bution given in Theorem 3.3. Consequently, the resuit follows
if 4u(2) — &r(2) = 0 (N _

First consider fu — fu. By applying the triangle inequality
to the Taylor expansion of f., we have
Ifuwiz) = ful2l

< [sup{d}| |fiv(2) + supld} | N2 2 Kil(z = )R],
where &, lies between 2 and z;. Therefore, fuw(2) = flz) =
0,(N-**), and by a similar argument fu(2)§(2) — fue(2)8w(2)
= 0, (N"%), so we can conclude that ge(z) = () =
0,(N-*%). This completes the proof of Theorem 3.3.

[Received March 1987. Revised March 1 959.]
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SEMIPARAMETRIC COMPARISON OF REGRESSION CURVES

By W. HARDLE! AND J. 8. MARRON"?

Universitiit Bonn and Universitit Bonn and University of North
Carolina at Chapel Hill

The comparison of nonparametric regression curves is considered. It is
assumed that there are parametric (possibly nonlinear) transformations of
the axes which map one curve into the other, Estimation and testing of the
parameters in the transformations are studied. The rate of convergence is
n~'/? although the nonparametric components of the model typically have a
rate slower than that. A statistic is provided for testing the validity of a given
completely parametric model.

1. Introduction. An important case of regression analysis is the comparison
of regression curves from related samples. Even when there is no reasonable
parametric model for each regression curve a way of quantifying differences
across individual curves is often desirable. A well-known example is the study of
child growth curves, where individual curves certainly seem to require nonpara-
metric estimation techniques [Gasser, Miiller, Kohler, Molinari and Prader
(1984)] but may have a simple relationship between them. Another example
appears in Figures 1(a) and 1(b), which show acceleration data from a study on
automobile side impacts [Kallieris, Mattern and Hérdle (1986)].

The curves give the impression that they are noisy versions of similar
regression curves, where the main difference is that the time axis is shifted and
there is a vertical rescaling. A parametric model that could be deduced from a
physical or biomechanical theory is not available here; see Eppinger, Marcus and
Morgan (1984), so a nonparametric smoothing technique seems to be a reason-
able way to estimate the acceleration curves for inference regarding this data set.
The problem of comparison of the two curves could be modeled parametrically
because, to a large extent, the difference between them seems to be quantified by
two parameters, horizontal shift and vertical scale. Hence, a comparison of
nonparametric regression curves in a parametric framework is desirable for
studying data sets of this type.

The main objective of this paper is the analysis of general semiparametric
models where nonparametric curves are related in a parametric way. The case
that is treated in detail is where there are two curves which are the same up to a
transformation of the horizontal axis and a transformation of the vertical axis,
and these transformations are indexed by some parameters. The techniques of
this paper are adaptable to other semiparametric models such as multiplicative
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or additive combination of a nonparametric regression curve with a parametric
“modulation” function. An additional benefit of the theory developed in this
paper is that, with no extra work, a statistic is provided for testing the validity
of a given completely parametric model. This test quantifies the idea of checking
a parametric model by comparing the parametric fit to a nonparametric regres-
sion curve,

Section 2 contains a mathematical formulation of these ideas, together with a
proposal for estimating the parameters. This parameter estimate is seen to be
consistent under very mild conditions in Section 3. Asymptotic normality, with
the rate of convergence typical to parametric problems, is established under
somewhat stronger conditions in Section 4. Section 5 gives test statistics, to-
gether with their asymptotic null distributions, for testing whether some param-
eters can be eliminated from the model and also for testing whether a given
semiparametric model is in fact appropriate.

Hardle, W. and Marron, J. S. (1990) Semiparametric comparison of regression curves



Annals of Statistics, 18, 63-89

2. Parametric comparison of nonparametric regression curves. The
observations (x,, Y}),...,{(x,, ¥,), of the first curve are assumed to come from the
nonparametric regression model,

Y=mlx)+e, i=1,...,n.

The observation errors ¢, are assumed to be independent, mean 0, with common
variance o2 The design points x, are taken to be equally spaced on the unit
interval x, = i/n. Suppose the data from the second curve are

(x{, Y/),...,(x}, Y;), from the nonparametric regression model,
Y = my(x}) + €,

where the ¢/ have common variance o'%, are independent of the ¢; and otherwise

have the same stochastic structure as the ¢, and where x/ = i/n. While x/ is the

same as x,, these are distinguished for the sake of clarity later in the paper.
The parametric nature of the curve comparison problem is modeled by

(2.1) my(x) = 8, 'my( Tj7'x’),

where T, and S, are invertible transformations (e.g., shifts and scalings of the
axes) indexed by the parameter § € ® C R?, and where §, is the true value of
the parameter. Such a model for linear transformations S; and T, has been
called “shape invariant” by Lawton, Sylvestre and Maggio (1972). A good
estimate of 6, will be provided by a value of # for which the curve m,(x) is
closely approximated by

M(x,8) = Sym,(Tyx).

The effectiveness of each value of # is assessed by the loss function,

L(8) = [[m(x) = M(x,0)]"w(x) dz,

where w is a nonnegative weight function. Note that M(x, 8,) = m,(x), so 8,
minimizes L(#). The unknown regression functions m, and m, are estimated by
kernel smoothers,

ﬁh{x] =n"! i Kk(x ~-x,)Y,

i=1
Ay(x) =n"! Y Kp(x' — x{)Y/,
i=1
where K,(-) = (1/h)K(- /k), for a kernel function K which integrates to 1. See

Priestley and Chao (1972) and Collomb (1981, 1985) for properties of this
estimator. Define the estimate # of 8, to be an argument which minimizes

L(e) = [[mx) - M(x,0)]"w(x) dx,

where M(x, ) = S,rt,(T,x). Since L(#) is a continuous and nonnegative func-
tion, there are no difficulties concerning the existence or measurability of 8. The
weight function w(x) is used to eliminate boundary effects and to restrict
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attention to a region where both i, and M(x, #) provide reasonable estimates.
This is illustrated by the following example.
Figure 2 is concerned with the specific setting

my(x) = (x - 0.4)",
my(x') = (x’ - 0.5)° - 0.2.
This fits in the above framework by defining:
S(x) =x+ 69,
To(x) = = + 6V,
and letting
b, = (8Y,68?) = (0.1,0.2).

Figure 2(a) shows two sets of 100 simulated observations, where the (x,, Y;) are
represented by squares, where the (x!, Y;") are represented by stars and where
the errors are Gaussian with mean 0 and variance 0.0004. As a simple method of
nullifying boundary effects we consider estimating m,(x) on the subinterval
x € [n,1 — 7] (the choice of 7 is discussed below) and m,(x’) on the subinterval
x’ € [1,1 — n]. For more complicated but also more efficient means of handling
boundary effects see Gasser, Miiller and Mammitzsch (1985) and Rice (1984a).
To keep the focus on the main points under discussion here we do not incorpo-
rate this type of improvement. This second restriction corresponds to, for each #,
estimating

(2.2) M(x,8) = Smy(Tyx) = (x + 80 — 0.5)° — 0.2 + 6@

on the subinterval x € [ — 8, (1 — 5) — #"V]. Hence, for 8 > 0, w should be
0 outside the interval [ — 8™, (1 — n) — 8], We do not take w to be the
indicator of this interval because the minimizer of £(6) will then have some bias
towards larger values of #'" and we suspect that the minimum will be harder to
compute. Figures 2(b) and 2(c) contain the same data as Figure 2(a), except that
the (x/, Y;") have been replaced by (x/ + 0.106, Y, + 0.196) and (x! + 0.2, Y +
0.2), respectively. Observe that from these figures it is quite apparent that
4" € [0,0.2]. Hence, we can restrict ® to only include 8 with 6V & [0,0.2], and
take w(x) to be the indicator of [, 0.8 — 7).

In the general case, we assume that there is an interval [a, &] C [0, 1] where
boundary effects are eliminated and then define

w(x) = EI;IB]-[.:, m[Tpx]

= lny, o7 'La, b]}(x }

Note that for § to be a reasonable estimate, this requires that © be rather small.
This assumption does not seem too restrictive because these methods will only be
applied after the experimenter has looked at some preliminary curve estimates.
Such a previewing procedure does not cause any additional effort if an interac-
tive graphical data analysis program is available, Hence, it is assumed that the
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TaBLE 1
Parameter estimates for the simulated regression data for different
values of it and . Reported are values of x3i-statistics
for Hi", HE® and x5 for HY"

supp( w) h [leh B HM H® H® HM H® H®
{With estimated covariance) (With exact covariance)

(00,08 002 0106 0200  B78 1328 1458 59 1000 1059
(01,07 002 0114 0198 362 974 1040 25 735 760
(02,06 002 0114 0198 102 668 675 75 480 497
(00,08 004 0106 0198 916 1356 1491 59 980 1040
(0.1,07) 004 0106 019 327 999 1040 25 720 745
(0.2,06) 004 01068 0194 107 669 676 7.5 470 477
(0.1,03) 010 0106 0194 703 946 1059 59 940 1000
(0.1,07) 010 0116 0196 280 723 779 30 720 750
(02,06 010 0120 0192 9.8 474 497 95 460 470

experimenter has a good approximate idea of the value of #,. Tt is merely an
assumption to the effect that the design of the experiment is appropriate for the
type of inference to be done, .

The first four columns of Table 1 show how the estimates §V and §'®, which
have been found by a gridsearch (Figure 4 gives an intuitive feeling for the type
of grid that we used), depend on the support restriction % and the bandwidth A
for the above simulated data set appearing in Figure 2. The remaining columns
will be discussed in Section 5.

Observe that the parameter estimates are not very sensitive to the support
restrictions as expressed by the cutoff parameter n. Also varying the bandwidth
does not affect the estimates too much. Under the above assumptions, for the
final estimation of the underlying curve m,(x), the two data sets can be pooled

by using
1iy(x) + 1M(x, 8).

This will only be an effective estimate of m,(x) if the assumption of the curves
being the same is correct, but even the assumption is not quite correct, this still
provides a reasonable estimate of the “average curve.” More than two regression
curves can be analyzed by using preliminary estimates to choose one curve that
seems to lie in the center and calling that m,, then comparing the other curves to
that. However, it should be kept in mind that this is only an example, so it is not
possible to make general conclusions. Furthermore, it has been deliberately
chosen so that the method may be expected to work well.

Alternative ways of formulating the semiparametric comparison model are to
assume that M(x, #) = m,(x) + Sy(x), or M(x, 8) = m,(x)S,(x), where S,(x) is
a “modulation” function which is assumed to be known up to the parameter
# = 8. The general ideas of this paper apply in this case; however, details of the
proofs will be different. It appears that these forms should be substantially easier
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to analyze. There are some recent papers on a model of the first form; see Engle,
Granger, Rice and Weiss (1986), Green (1985), Rice (1986) and Speckman (1986).
A semiparametric model of the form (2.1) but with random parameters has also
been investigated by Kneip and Gasser (1988). For an access to related work in
the time series context, see Cameron and Hannan (1979), Cameron (1983) and
Cameron and Thompson (1985). See He (1988) for another method of parameter
estimation in a model similar to ours (but more specialized) in the interesting
case of random design points.

3. Consistency of the parameter estimate. In this section, precise condi-
tions are given for the convergence of # to #, as the sample size grows. The most
important assumption is that the loss function L(#) be locally convex near f, in
the sense that: Given & > 0, there is a D(e) > 0, so that |# — #| > e implies

(3.1) L(8) — L(8,) > D(e).

This condition ensures the identifiability of the parameters. An example of when
this condition fails to hold is when m(x) is constant and 7} is a horizontal shift.
The remaining assumptions ensure consistency of the regression estimates. To
allow for use of an automatically chosen (and hence random) bandwidth, see
Rice (1984b) and Hirdle and Marron (1985a), and also to show that consistency
of @ is not dependent on the particular choice of the bandwidths, we establish
consistency uniformly over A, A’ in the interval

B" — [n—l+ﬁ, n—ﬁ}!

where § > 0 is arbitrary. The kernel function K, in addition to integrating to 1,
is assumed to be compactly supported and Hélder continuous, i.e., there exist
constants a, 8 > 0 such that |[K(u) — K(v)| < aju — o|*. The regression func-
tions m(x) and m(x) are assumed to be Holder continuous. The transforma-
tions S, and T, are assumed to be smooth in the sense that:

(32) sup sup [S/(x)] < oo,
fed x<(0,1]
(3.3) sup sup [{T;']’(x”«: 0.
06 xe(0,1]

Note that (3.2) and (3.3) are not any restriction at all if S, and T; are linear. The
following theorem is proved in Section 6.

THEOREM 1. Under the above assumptions § is consistent for 8,, uniformly
over h, b’ € B,, in the sense that

sup |0 — 6, =0 a.s.
h,heB,

4. Asymptotic normality. In this section the rate of the convergence in
Section 3 is studied by giving conditions for asymptotic normality of '/ 20 - 6,).
Since the nonparametric estimators M, and /M, have a rate of convergence
slower than n'/2, some care must be taken to obtain the rate of convergence n'/*

Hardle, W. and Marron, J. S. (1990) Semiparametric comparison of regression curves



Annals of Statistics, 18, 63-89

for the § — 4, limiting distribution. To this end we assume that

(4.1) Tyx = 8D + §x,

(4.2) S; only depends on 8@ .. g

and that i, and i, employ the same amount of smoothing in the sense that
(4.3) h' = §@h.

Assumption (4.3) seems quite restrictive at first glance; however, an inspection of
the proofs reveals that it is in fact necessary for n'/? convergence of the
parameter estimates. A simple way of implementing this in practice is to choose
the bandwidth for only i,, say by cross validation, and then using a preliminary
estimate of #9 to get an improved §® and iterating. More efficient methods
would pool the information from the two curves, as discussed in Marron and
Rudemo (1988) and Marron and Schmitz (1988). This is complicated in the
present situation because the smoothing parameter selection is confounded with
the estimation of #, but a promising possibility to be investigated is to choose
both 4 and # to be the joint minimizers of the sum of L(#) and the cross-valida-
tion score functions for the two curves.

As in Section 3, a critical assumption concerns the identifiability of 4,.
Assume that

(4.4) H(#,) is positive definite,

where H(#) is the d X d matrix whose [, ['th entry is
JMi(x, 0)M, (x, 6)w(x) d,

using the notation M(x, 8) = (3/36”)M(x, #). Under the assumptions of this
section, it can be shown that (4.4) implies (3.1). To gain some insight into this,
consider the case Sy(x) = 89 + §Wx, where

M(x,8) = 09my(8" + §@x),

My(x,0) = 09my(60 + §3x)x,

Mx,8) =1,

My(x,8) = my( 81 + 0x),
Observe that (4.4) is then essentially requiring that the functions 1, m(x), m'(x)
and xm'(x) be linearly independent in L% w). To facilitate Taylor expansion

arguments, it is assumed that Sy(x) is smooth in the sense that the following
functions are uniformly continuous and bounded uniformly over x € supp(w)
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over # € ©,and over LI’ =1,...,d:
Si(x) = - -8(x),
S0x) = 2o Si(x),
(45) S0.0(2) = 0 1(2),
§54(x) = -84 i(x),

d
Sﬂ'. I, :{x} = Ex Sa,:, r(x).

This assumption is trivial if S, is linear. Also to facilitate expansions, assume

(4.6) m/"( x) exists and is uniformly continuous.
A consequence of (4.5), (4.6) and the linearity of Tj is that

d
(4.7) M, (x,0) = WM:(L #)

is uniformly continuous and bounded uniformly over x € supp(w), § € ©, and
II'=1,...,d. Also assume that K is a compactly supported probability density
with Holder continuous second dexivative, and that Ee¥ < oo, for £ = 1,2,...,
uniformly over i = 1,..., n. The final requirement is that the bandwidth 4 is
taken to be an automatically selected bandwidth k, as discussed in Rice (1984b),
Hirdle and Marron (1985a, b) and Hardle, Hall and Marron (1988) have shown
that under the above assumptions

h=hy+ 0,(n"*"),
where h, = ¢,n '/, for a constant c,. Hence, if B, is defined by
B = [ho — p~¥10te hy + n—-aﬂow},

for some a € (0,1/10), then P[h € B*]1 - 1. Note that h is chosen only from
the data Y,,...,Y,. This allows assumption (4.3) to be satisfied in a simple
fashion. See the discussion there for other possibilities.

THEOREM 2. Under the above assumptions
V(8 — 6,) -« N(0, H"(6,)CH '(6))),
where the l, U'th entry of L is

4f[uz + u’z(Sﬁ{ﬂ(mg{T}"x]])E]MI(x, 0, )M, x, 6, )w(x) dx.

The proof of Theorem 2 is in Section 7. To add insight into this theorem,
consider the special case of the example given in Section 2. Note that Tyx =
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BANDWIDTH SELECTION FUNCTION FOR SIMULATED DATA
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Fic. 3. Bandwidth selection function based on the Epaneénikov kernel and weight function on
(0.1, 0.7).

8" + x and S;x = 8 + x, so an obvious modification of the notation of this
section will be made. In particular, from (2.2),
M,(x,8) = 2(x + 80 — 0.5),
My(x,0) =1,
Sp(x) =1,

and so

H(30}=(§(U-4—?1}3 0 )
0 2(0.4 — q)

Thus, v (§ — #) has asymptotic covariance matrix

5o aodw
(0.4 — )\ 0 4(0.4 —n)* [
The bandwidth selection function computed for (x,, Y,), with w supported on

[0.1,0.7] and the Epaneénikov kernel had a global minimum at & = 0.04 (Figure
3) but had a pronounced local minimum. In this simulated example we used

T(h) =n ' ¥ [ = i(x)]*w(x)/[1 - 20 'h" 'K (0)]
i=1

as a bandwidth selector. See Hiirdle, Hall and Marron (1988) for a more complete
discussion of the issues of bandwidth selection. The negative loss function for
this bandwidth is shown in Figure 4, Note that Figure 4 shows that the loss
function is more sensitive to changes in ™ than to changes in #¢. This is
reflected intuitively by thinking about vertical and horizontal shifts in
Figure 2(a).
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NEGATIVE LOSS AS A FUNCTION OF THETA1 AND THETAZ

WG 058

=0, DOl

Fic. 4. Negative loss as a function of 0 and 8%, m(X) = (X - 04", Errors N(0,0.0004).
Weight function on (0.1, 0.7).

While the vertical shift is obvious, we find it much more difficult to justify a
horizontal shift just by “eye inspection.” Statistically, this can be quantified by
var(61) = 0.0444, var(§¥) = 0.0053 (where these are the entries in the asymp-
totic covariance matrix given in Theorem 2). L(f) is minimized at 6 =
(8™, §) = (0.106,0.196) which is the shift used in the construction of Figure
2(b). An intuitive understanding of ¢ can also be gained from Figure 5, which
shows it (x} (solid line) and M(x, #) (dashed line). Note that either a horizontal
or a vertical shift in the relative position of these curves will increase the
integrated (over [0.1,0.7]) squared difference between these.

A look at Figure 1 indicates that the shift-scale model, T, = 6" + x, §; = Wy
(using notation consistent with this section) should be appropriate for the
automobile side impact data. After transforming the X-values into the unit
interval, the bandwidth & = 0.012 was obtained by cross validation over the
interval [0.1,0.7] for the data set shown in Figure 1(b), which we took to be
{(x;, ¥,))'_, with n = 800. The negative loss function L(#} is shown in Figure 6,
which for its form is called the “Sidney Opera.”. As expected from a comparison
of Figures 1(a) and 1(b), the choice of 8% is more critical than that of 8. The
“side ridges” in the negative loss correspond to values of §V, where there is a
matching of “first peaks” to “second peaks.” The loss function was minimized at
b = (81, ) = (0.13,1.45). Figure 7 shows how 7i,(x) (solid curve) compares
with M(x, §) (dashed curve).
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SIMULATED REGRESSION DATA
ATIUSTED REGREENICH TURVES

i
0. 1854

2. og
0. 08

Fi1c. 5. Adjusted regression curves for the simulated data. m{X) = (X — 0.4)%. Errors N(0, 0.0004).
¢ = 0,106, 8% = 0,196,

SIDE IMPACT DATA
FLOT OF THE MEGATIVE LOSE FUNCTION
NEZ_LDEE
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Fic. 6. “Sidney Opera” negative loss function for the side impact data. Weight function on
©.1,0.7).
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AUTOMOBILE IMPACT DATA
ADJUSTED RECRESBION CURVES

R
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Fic. 7. Adjusted regression curves for the automobile side impact data, Weight function on
(0.1, 0.8). 8 = 0.13; ' = 1.45,

5. Hypothesis testing. There are two important hypotheses to test in this
semiparametric model. First, can the parametric part of the model be reduced?
(For example: Can a horizontal shift and scale be reasonably replaced by just a
shift? Is an apparent vertical shift really significant?) Second, is the semipara-
metric model of this paper appropriate for a particular data set? [That is: Is
m,(x) really a simple transformation of m,(x)?] To formulate the first hypothe-
sis, suppose there is a #* € © so that

m,(x) = M(x,8%).

For example, components of §* corresponding to the types of shifts discussed
earlier are 0 and to the scaling are 1. A general way to formulate the hypothesis
is

H,: A(8,— 6%) =0,

for an r X d matrix A of rank r. A reasonable basis for a hypothesis test
is A(8 — %), which has an asymptotic N(0,L*) distribution under H,,
where ¥* = AH(6,) 'LH(8,) 'A". This suggests rejecting H, when
(8 — 6*)TATE* ~'A(f — 6*) is larger than the 95th percentile of the x distribu-
tion, where L* is a consistent estimate of L*. These ideas can be illustrated in
the simulated data example of Section 2 which is depicted in Figure 2(a).
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Consider the hypotheses:
HY: 60 =0,
HP: @ =0,
HP: ¢ = §@ =0,

Table 1 shows the observed test statistics for the » simulated regression data. To
give some feel for the effect of estimating £* by L*, two types of test statistics
are shown, the first type using the exact value I* and the second type using the
estimate 2*. The effect of various choices for w and h is also illustrated in
Table 1.

Note that the observed values of the test statistics are relatively independent
of the bandwidth, but depend quite heavily on the choice of 3. It is not
surprising that the values decrease with increasing n because larger 7 means less
of the data are used, so the tests will lose power. This effect is most notable for
H{Y, which is easily understood by covering observations near the boundary in
Figure 2(a). Note that in all cases the results here are highly significant. This is
to be expected, except in the case H{" with 7 = 0.2. The fact that the test
proposed in this section is quite powerful in this example may be seen by
covering the intervals [0.0,0.2] and [0.6,1.0] in Figure 2(a). We recommend
taking n as small as possible. A means of doing this is to first start with some
preliminary guess at 7, use this to get a preliminary k., then take a final n which
just barely eliminates the boundary effects for this A.

For the automobile impact data, using the notation of Section 4, we tested

H{V: g0 =,
HP: 60 =1,
HP: g0 = g = 1.

The observed test statistics are presented in Table 2, which has a layout similar
to Table 1. In contrast to Table 1, this time the observed values of the test
statistics are relatively independent of 5 [not surprising since essentially all of
the useful information is contained in the center of Figures 1(a) and (b)], but
vary a lot with h. The reason that the tests lose power for larger values of A is
that when i, and 2, are oversmoothed, the distinctive peaks in Figures 1(a)
and 1(b) are greatly diminished. As expected from the pictures, H{¥ suffers the
most from this effect, although we can still reject this hypothesis at the level
0.05, when h = 0.012 (selected by cross validation).

For testing the second hypothesis, that the model is correct, an obvious
statistic is L(#), which should be small if the model is correct, but large
otherwise. The asymptotic distribution of £(#) is summarized in

THEOREM 3. Under the assumptions of Section 4,
nh}:’z(ﬂ(-ﬁ] - n“hglq,} = N(G,Cf},
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TaBLE 2
x*-statistics for different bandundths and support restrictions for
impact data
supp(w) h H{" H® a3
{With estimated covariance)
(0.0, 0.8) 0.0 248 13.4 2180
(0.1,0.7) 0.005 246 13.3 2150
(0.2, 0.6) 0.005 245 13.0 2130
(0.0, 0.8) (Lo12 509 4.36 232
{0.1,0.7) 0.012 80.3 4.32 229
(0.2, 0.6) 0002 80.0 4.25 227
(0.0, 0.8} 0.040 419 2.26 62.3
{0.1,0.7) 0.040 41.6 2,924 614
(0.2,0.6) 0.040 414 2.20 60.9

where
C, = (IKJ)(I[E%; + 0’2(So’ﬁ(mz[x]]]i]w(i"e:‘{x}] dx

cf=2&gm[f(x*x}“]

@ 2
ol rl F] 2 -
I[@ + 0’285 (my(x))) ] W(Taul(ﬂ) d’C])-

The proof of Theorem 3 is in Section 8. It follows from Theorem 3 that a
reasonable test, of the hypothesis that m, is indeed a parametric shift of m, will
reject when

Li#) > (nﬁ}*lé’, +n 'RV 2, _,

where 2,_, is the (1 — a)th quantile of the standard normal distribution, and
where the estimates

6~ | fm)( f[ﬁ— + 7(S¢(()))’

/ tK*KrF]( o afﬂ{sg[rm{xn)rwm—lundz),

n n
¢2=n' Y (Y- -’ﬁl{x;‘}]z: ¢*=n"" 3 (Y~ ’ﬁz{:xf))z
i=1 i=1
have been used. The observed test statistics for the side impact data set are
listed in Table 3 for a weight function concentrated on (0.1,0.7). The shift-scale
model that we proposed achieved a p-value of 0.02, whereas all the other studied
submodels had p-values less than 0.001. Figure 7 provides an intuitive feeling for
the power involved in this test. Note that while 6 clearly provides an informative
choice of the parameters, it is also clear that the curves are certainly not the
same. The fact that, at least in this example, the parameter estimation method

wm-*(xndx),

C? = 20®
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TABLE 3
The test statistic from Theorem 3 for correctriess of the model.
supp(tw} = (0.1,0.7)

o jw Test statistic p
Shift and scale model 0.13 1.45 201 0.0220
Shift model, only 0.03 1.00 30.02 < 0.0010
Scale model, only 0.00 0.10 21,18 < 0.0010
none 0,00 1.00 345.00 < 00010

of this paper provides good estimates of the amount of shift and scale, even when
the underlying curves are not identical, seems to greatly enhance its potential
applicability.

6. Proof of Theorem 1. To simplify notation, let sup, mean sup, ;5.
Given £ > 0,

P|sup|d — 6, > e] < P|sup(L(8) - L(4,)) > D{e)]
) h

A

|
P[sup(L(é) — L(B) + £(8,) - L(8,)) > D(E)]

D() ]

< P|sup|L(6) - L(d)|>
i 2

+ P
2

, D(e)
sup | L(6,) — L(8)|> l
Hence, Theorem 1 follows from: Given ¢ > 0,
(6.1) rP
n=1

where sup, means sup, . .
To prove (6.1), note that by rearranging terms, by adding and subtracting
2m,(x)M(x, #) and by the triangle inequality,

|L(6) — L(8)]

sup sup|L{#) — L(8)| > s] < o,
& A

< [0, = m) Oy + my)| + 2| M = MY| + 2| M(m, — iy) |

+|(M - MY(M + M)||wds.
Hence, by the Schwarz inequality, (6.1) follows from: Given & > 0,

(6.2) ﬁ P[slipf(fﬁl — m) wdx > e] < e,

n=1

=< o0,

(6.3) EP[sup supf{ﬂa’—M}gwdit:»f
0 A

n=1
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together with

(6.4) fmfwdx < o0,

(6.5) sup fMEwdx < 0.
9

To prove (6.2), note that for B, c B,

P[sup f(rﬁh - m,)wdx > ¢
A

. 2 N
< P| sup f{mh—ml} wdr > —

he R, 2

f{rﬁh - my) wdx - f(r&hl - ml)zwdx

+ P| sup inf
heB, MER

E
}2,

By Halder continuity of m, and K, B, can be chosen so that the second term is
0, for n sufficiently large, and so that #(B.) < n', some £> 0. Hence, by
Theorem 1 of Marron and Hardle (1986), (6.2) follows from

sup Ef(fﬁ;! — m) wdx = 0,
heB,
which is easily established by the methods of Rosenblatt (1971).
To prove (6.3), note that

f[jﬁ{x, 8) — M(x, E)]Ew[x) dx
= [ [ Sy Tyx) — Symo(Tyx)] “w(x) dx

- fﬂ [84(8) (o) = mo(w)]*w(Ty () (T3 ) () da.

Hence, (6.3) follows from (3.2), (3.3) and the methods used to establish (6.2).

Note that (6.4) is a consequence of the Hblder continuity of m,(x). To prove
(6.5), use Hélder continuity of m.(x) and an argument of the type used on (6.3).
This completes the proof of Theorem 1. O

7. Proof of Theorem 2. Let vé{ﬁ) denote the d-dimensional vector of
partial derivatives, L,(#) = (3/36"")L(#). Note that

m oA

(7.1) 0=vL(8) = vL(8)+ H(E,)(6 - 6),

where ﬁ[ﬂ] is the Hessian matrix, whose components are ﬁi. A8 =
(3/369")L,(8), and where £ lies on a line segment connecting § and 6,
Theorem 2 is a consequence of (7.1), together with the following lemmas.

LEMMA 2.1,
vn vL(8,) =4 N(0,2).
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LEMMA 2.2,
ﬁ(én} _‘p H(GD}

To prove Lemma 2.1, note that the /th component of wL(#,) is
fﬂ[ﬁtl(x) — M(x,8,)](=M,(x,6,))w(x) dx.

For the rest of this section, let sup, mean sup; . g.. Lemma 2.1 follows from
Lemmas 2.1.1 through 2.1.4.

LEmmaA 21.1. Forl=1,...,d,

f[rﬁl(x) h ﬂE‘r[‘r’'E;"}}]'(‘EI"I-IT"~"":’'ﬁ'-r) - Hr[x,ﬂu})w[x]dx‘ - OD(H_I’&],

sup
h

LEMMA 21.2. Forl=1,...,d,

=o(n"1?).

sup | [ Eriu(x) — EM(x, 00)] Mi(x, 6)w(x) dx

LEMMA 2.1.3. Forl=1,...,d,
sm:ple?;(ft) = Zy(ho)| = 0,(n™1?),
where
Z(h) = [[m(x) - E(x) + EM(x,6,) ~ M(x, 8,)] M(x, 0,)w(x) dx.
LEMma 2.1.4.

n'%2Z( hy) =4 N(0, Z),
where Z( h,) is the vector whose components are the Z,(h,).

To prove Lemma 2.1.1, note first that m,(x) = M(x, 8,). Hence, by the
Schwarz inequality, it is enough to show

(7.2) sup f[1i(x) — m,(x)]"w(x) dx = o,(n /"),
h

(7.3) sup J[M(x, 8,) — M(x, 8)] w(x) dx = 0,(n~7),

(7.4) sup [ [Mi(x, 8,) — M(x,8,)] ‘w(x) dx = 0,(n~5").

The proofs of (7.2) and (7.3) use the same methods as were used on (6.2) and
(6.3), together with the fact that, under the present stronger assumptions,

sup Ef[lri?_jlr - my Jfwdx = 0,(n=*?).
he B,
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To verify (7.4) in the case of [ = 3, note that
ﬂ;{x, by) — j’ﬂ'{x:aﬂ} = Sﬂ'a.f{’hz{nnx)) - Sﬂu,f(mz{ﬂiﬂx})

= Sﬁu,:{fn](fﬁz{Taﬁ} - mz(ﬂﬁ])*
Hence, the methods used on (7.3) together with (4.5) may be applied. To
establish (7.4) when [ = 1, write

Mr||{-7’v's By) — M(x,6,) = Ss:ﬂ( ’ﬁﬁ(Tﬂqx])ﬁE(Tﬁ'ux} - Saru( mEETEux})m:':(ﬂux)
= (Sq{ia(Tyx)) = Simo(Tox)) s Ty x)

+ 8¢ (my(Tox)) (sl Togx) — miy(Toe))-
Now use the Schwarz inequality and the above methods applied to estimation of
m/, instead of m,, together with assumption (4.5).
To finish the proof of (7.4), note that

M,(x,6,) = Sﬂ( me(Tenx}]mE(Ta.,I}xs
My(x,8,) = 8;(ry(Tyx))

a 1 0@ + 8V — x!
1 : ’
n L gk [ 0®h )Yf ]

rTe
= 8i(y(Tyx))n~! LU(x, ) Y7,
]

B =f,

where
-1 62y + 85V — x! 05" — x; [ 0§Px + 8§V — x;
U{‘r! ‘rln = Eﬂ{z:ﬂh K H&z}h - ﬂéthﬂ ﬂé’g}k -

But, uniformly over h € B* and over x € supp(w),

n! E Ulx, x)my(x}) = fU{J:, x')Ymy(x') dx’ + O(n™*?)

-1 P xX—U u X' xX—-u
'fﬁgmh ( h )Jrﬂg;“’hﬂ ( h ]
x mo(8 + 8(Pu) du + O(n~*?)

(7.5) ! (i K(x;u)u]]

" hJ\du
1
X Eu[—ﬁm(ﬂé.” + 0®u) du + O(n )

1 xX—u
-/ IK( . )um;{eglr + 8®u) du + O(n~ ")

= amjy(Tyx) + O(n~'7%).
Thus,
M,y(x,8,) — My(x,8,) =1+ II + III,
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where

1= [Si(a(Ty2)) = Simo( Tyx)) ] LU, x0) Yy,
II = Sg’n{ mQ{Tﬂnx})n“ E_U(x, x!)el,

I = §;( my( Ty x))O,(n~1/5).

The I = 2 case of (7.4) now follows from the Schwarz inequality and the methods
used on the other cases. This finishes the proof of Lemma 2.1.1.
To prove Lemma 2.1.2, note that uniformly over h € B* and x = supp(w),

EM(x,6,) = E[S,( Emy(T)x)) + (o Tox) — Emy(T,x))
(7.6) xSy Emy(Tyx)) + (mo(Tox) — Brrg(Tox) ) 'S70(8,)
= 5, Ery(Tyx)) + O(n=*")
and
Eny(Tyx) =n! EK.’:’(T&DI - x{)Sﬂ‘u‘ml(Tﬂ;‘x{}
= th,I:Tsax — u')Sa,; lm,(Tg_olu'} du’ + O(n=*/®)
= [K(w)S;;'m(x — hu) du + O(n™*%)
(1.7) = fK(H){Sa;‘(fK(ZJmlfx N hz)dz)
+{m,(x ~ hu) — fK(z)m,(x — hz) dz)S,’D(fK{z}m]{x ~ hz) dz]
2
+ ;(mlix — hu) - fK(z]ml(x - hz)ﬂ’z) Ss’;’(&ﬂ}l du + O(n™*7)

= 5! [K(@Im(x = he) dz) + On~2),
from which it follows that EM(x,8,) = [K(2)m(x — h2) dz + O(n~*").
Lemma 2.1.2 now follows from Er,(x) = [K(u)my(x — hu) du + O(n~*/%), and
assumption (4.6).
To prove Lemma 2.1.3, note that
[Un(x) = Brn(x)] Mz, 8)w(x) dx = n~* T Vi( k),

where

Vi(h) = [Ky(x = x)M(x, 6)w(x) d

= fK(u}MJ(xi + huw(x; + hu) du.
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Thus, by uniform continuity of M,
sup|n IE{V(h) = Vi{ ho))e:| = o,(n™"2).
The M part can be handled by similar methods together with the linearization

technique of (7.6) and (7.7). This completes the proof of Lemma 2.1.3.
To prove Lemma 2.1.4, note that for [ = 1,...,d,

Z(hy) = n"V L (Age; + Byel),
where l
Ay= [Kufx = x)M(x, 8)w(x
= My(x;, 6 )w(x;) + 0,(1),
By, = i Erny( Ty x,) )M x;, ) w(x,) + 0,(1).

Using the Cramer-Wold device, a central limit theorem for Z(k,) can be
established by showing asymptotic normality of each linear combination

n'/? Ec;?Z;(hu] = 2n"1/2 E( ECII:AHEI + Byel) |,
I i 1

where ¥,¢? > 0. Since this is a sum of independent mean zero random variables
with third moments, by Liapounov’s version of the array-type central limit
theorem [see Chung (1974), Theorem 7.1.2, for example], we need only check that
the variance tends to a constant. But

var(zn WE((Eq ”]}: +(EqB,{] ))
= 4n~ g((gqﬂu]ﬂaz + (gciau) uﬂ)
= 4fl(§ch¢{x,3o})2aﬂ

+(Ec,(Sg’nEﬁtg(Tanx))Mi(x.ﬂn)]za’ilw(x}d_r + o(1),

which is positive by assumption (4.4). Similarly, for ,I' = 1,..., d,
cov(n*2Z,( hy), n**2Z,( h,))

_ 4f[a + -:r"" Emz[i’},n )2]Mf(x, 8, )M (x, 6, w(x) dx + o(1).

This completes the proof of Lemma 2.1.4 and hence also the proof of Lemma 2.1.
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To prove Lemma 2.2, note that for /' = 1,..., d,
Ly o(£,) = [2[Mi(x, £,)M(x, £,)
- (rin(x) = M(x, €,))M, ,(x, )] wlx) dx,
Ly, o(8) = [2[M(x, 6)My(x,0,)

_{ml{x) - M(x, ﬂn))Mt. olx, Hﬂ)]w(-‘:} dx.

Thus, by appropriate adding and subtracting, by the Schwarz inequality, and by
(4.7), it is enough to show:

(7.8) sup [ [7in(x) = my(2))"w(x) dx =, 0,
(7.9) sup [18(x, £,) — M(x, £,)]"w(x) dx -, 0,
(7.10) [1M(x,£,) - M(x, 8,))"w(x) dx -, 0,
(7.11) m;pf[ﬂ,(x,én] — M(x, &) w(x) dx >0,
(7.12) f [M,(x,£,) — M,(x,8,)] w(x) dx —,0,
(7.13) sup (9, (2, &,) - M, p(x,8,)] wl(x) dx -, 0.

Note that (7.8) and (7.9) are immediate corollaries of (6.2) and (6.3). Equations
(7.10) and (7.12) are consequences of the uniform continuity assumption (4.7).
Verification of (7.11) requires only a straightforward extension of the methods
used on (7.4) to the case of §, — #,. T'o prove (7.13), the same general techniques
as used on (7.4) apply. The only difference is that verification of

(7.14) EM, ,(x,8) - M, ;(x,8)
requires more calculation in some cases. Note that for [, I’ = 3,
L, (8) = Sﬂ,t, ol mz[TpI))s
ff.e, AA8) = Se.1 r(?ﬁz(Tﬁ));
L:,l(ﬁ') = Ss’.:(”“z(Tﬂx):‘mé{Tex}:
L,\(8) = 8; iy Tyx))y(Tyx),
L, ,(6) = Sg’.;(mg(Tpx)}mé{Tgx)x,
Lx(0) = Ss.;(mginx)}aiﬂﬂm{nx}.
Ly (8) = S§(my(Tyx))m3(Tyx) + Sg"(mz{i'}x)}(mg(i‘ax])z,
E’n(ﬂ} = Sy (g Tyx )y (Tyx) + Sﬂrr(fﬁﬂnx})(ﬁzﬁ(ﬂ'x”z:
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s0 these cases can be handled as was done for (7.4). The hard cases arise because

Ly o(8,) = Simo T 0))mi(Tyx)x + S7/(maol Toy2)) (mi(Tox)) s,

a
38(2,1 Z(TEI)

1, 2{‘9 )= (mz(ﬂux))

o

+ ( E(Teo"})l j[z} (Taﬂ] My Tyx)

=y

32
L, ,(8,) = (mﬁ(rﬂx})[aﬂﬂ} mo(Tox L=ﬂ

+ 8, (mzmxl]{ fmmzmxj]

32
L, 2(30) = Sﬂn(mg{ﬂnx})| g z(Tsx)L \
) d
i S-‘;::( T},x]) g{m T:'?I}
In view of the work done for (7.4), it remains to show that
ad d .
E—— 83[2] mE(TEIJ 8 aﬂ(z; mﬂ{g:ﬂx) ' = MZ(Tﬂnx]x:
=Yo = 0
2 2
E——m,(Tx ——m,(Tyx = m7(T, x)x*.
Jﬂm]‘g 2( f )m-% &Hﬂ” z': [} ) - z( iy }

To check these, observe that, as in (7.4),

d -2 [ 0%x + 8V — x’
E aﬂ{E}'fﬁQITEI) oo, = f[ac(lﬂ}“hz K B&ﬂ)h .
(x' = H&“) J 0%x + 6 — x’ L
PR N my(x) dx’ + o(1)
o )
1 d? x—-u
= fﬂﬂ]z}[ " {K P )u o 05V + 8Pu) du + o(1)

= fK,;(x — u)umy (8" + 0Pu) du + o(1)

= amy(Tyx) + o(1),
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32
(Tﬂx}

Faper ™

f 2 K(ﬁéz’x + 8t — x’
3&2]-‘}1 5&2%

2x" — O5") [ 6x + 6" — &
T 052

8=6,

2 ¢ .
G PR L kL il

U 65h ”mzm dx’ + o(1)

1 d® jx—-u » a @
- fh*?{g}z d,uzK( z )n: mz[ﬂﬂ Y+ u) du + o(1)
0

= x*my(Tyx) + o(L).
This completes the proofs of (7.13), Lemma 2.2 and Theorem 2. O

B. Proof of Theorem 3. Since the technical details of this proof follow
closely those of the proof of Theorem 2, only an outline is given. Note first that

£(8,) = L(d) + (8,— 6)vL(D) + 1(8, - 0)"H(E,)(6, - B).

where £, is between #, and 8. Now since the second term on the right side is 0, it
is enough to show that

(8.1) (6,- 6)"A(E,)(8, - 8) = 0,(n™),
(8.2) nhy?(L(6,) — n~'h5'C,) -, N(0,C2).

Theorem 2, together with the methods of Section 7, make (8.1) easy to verify. To
check (8.2), note that

L(8) = [[(hi(x) = Ei(x)) = (M(x, 8) - EM(x,6,))] w(x) dx
+0,(n"")
= f[n_l ZKh[x - x;)e;— n!

2

ZKH(I:?DI - x;}E:(Sju(mz{Tﬂnx]}J w(x)dx

+ 0, (n7")
=n"* Y Y[ Aye, e —~ Byeie) — Byees + Cyelel] + Oy(n™'),
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where

Ay = [Kilx = x)Kp(x — x,)w(x) ds,

B, = th[x - -";':'Kh’{Tst - -"::'(Sv:,( mz(Tﬂux)))w(x} dx,

Ci = fﬁfr(Taﬂx - x! ) Ky (Tyx — x;.}{S,,’a(mg(Tﬂux}}]zw(x) dx.
Hence,

E(L(8,)) = n "2 L[ A0 + Cyo”?] + O(n™?)

= n"a;ffK,,{x — u)'w(x) dxdu

+nlo” ff K, (Tx - xr}z(sﬂ’.,(mz{Tsnx)”Ew{I] dx dx’
+0(n71) \ \
{nh}_lo";(fﬁ'z)(fw) + (nh) "10'2("‘}'{2)[I[Sg:)(mg{x)})gw)

+ O(n™ ).
To understand the variance structure of ﬁ{&u ), note first that

var(n 2 ¥ T Age,|

=ntYy ¥ (AL + ApAy)o
i’
2
= n‘%"ff?[fﬁ'h{x — u ) K(x — uy)w(x)de| du,du,
+o(n?)

A
= n_ﬂh"h"(fK*Kz)(wa +o(n"%h7"),
where * denotes convolution, that

Vﬂr(zﬂ_ﬂ E }:. B“-EiEEa)

i
=4n*Y Y Blo%”?

i#i

=n “4o%" ff [th[.t — u) ) KTy x — iu,)

(Sgﬂ[mi(ﬂnx]])w(x} d:lf] du, du,
+o(n™")

=n 2h‘1402nr’2(ff{1=Kﬂ](f[S,‘ﬂ[m.z{x})]zw(TF;‘x}-::b:) +o(n *h 1),
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and that

W(” 2 2 Cii'ffff’)
iwi

=2 f| KTz - w) KTy — )

i, (ma(Ty,2))) w0(x) dxr d, du

+o(n7")
= n 20 [ K 02 [5i0m)] (T, ) |
+ O(n~%h71).
But
!.I'a_t'(art_2 Ei:Au-e?‘] = ‘EA“ var(ef ) = O(n=%h"?),
var( ‘*EBu g ‘) =0(n "% ?),
var( EC“E:E)= O(n *h™?),
( _ZZEA“E!E‘,EH ?EZB” “]
cuv( 222:’1:1 E£E0, 11 EZC"E:E:) =0,
cnv(En EZEB,, €€, N 222 It tsJ
Hence,

var(L(6,)) = n h~'C2 + o(n 2h").
To verify the asymptotic normality, first obtain it for n ?L,X, A 6.6, and
n~2L.X.Cele! using Theorem 1 of Whittle (1964), with his r taken to be n'/ 0
and for 2n‘2f. LyByyeel, by an ordinary central limit theorem for arrays. An

application of the Cramer—Wold device then gives (8.2). This completes the proof
of Theorem 3. O

ficknowledgment. The authors are grateful to Raymond Carroll for inter-
esting discussions and for suggesting the method of parameter estimation.
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Biased Crossvalidation for a Kernel Regression
Estimator and its Derivatives *)

Vorwag, gehalten im Rahmen des Arbei *Statstisehe Kolloquiea® am 19. April 1989,

For univariate nonparametric regression, we compute the mean squared error of a kernel
regression estimator and its derivatives (GASSER and M ULLER, 1984), extending
slightly the conditions of applicability of this estimator. We show how to estimate this mean
squared error and thus the best smoothing parameter by what SCOTT and TERRELL
(1987) call biased crossvalidation, which is essentially a refined version of the “plug-in”
method. This bandwidth estimator is shown to be asymptotically optimal in the sense of
HARDLE and MARRON (1985).

Introduction

Suppose that given x, Y has regression function E(Y|x)=m(x) and variance function
a*(x) = var(Y | x). We consider the estimation of m(x) and its derivatives using a kernel re-
gression estimate.

One motivation for our problem arises in chemistry, where estimation of the regression
function and its first derivative is of interest, see LUCCHESE (1985). His experiments are
based upon physical models for gas-surface scattering, with x representing parameters (in-
put factors) in his model. The experimental method is a Monte-Carlo simulation based
upon the underlying physical model. The input factors x are thus ours to control, and may
be generated in a fashion chosen by the experimenter. Lucchese uses a uniform density over
a specific range. The values x might not be generated uniformly or with equal spacing, but
rather a random design might be appropriate.

Another motivation stems from the empirical verification of the law of demand, where de-
rivatives of mean demand curves occur in the estimation procedure, see HILDENBRAND
and HILDENBRAND (1986). Mean demand curves are regression functions of Y= de-
mand for some good against X = income computable from a cross-section of an economy.

The setting for the estimate is as follows. Assume that the values of x are confined to the
unit interval, and suppose we have n independent observation (Y, x), with

*) Research supported by the Air Force Office of Scientific Research, the Natonal [nsttutes of Health and Sonderforschungsbereich 303,
Univernitit Bonn.
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X <x;< - <x,. In the ordinary setup considered by PRIESTLEY and CHAO (1972),
GASSER and MULLER (1979, 1984) and RICE (1984), the x‘s are assumed to be fixed
constants. Since in the applications we have in mind (see above) the predictor variable x is
random or at least simulated, we differ from the usual setting. We allow x to be random but
typically condition on it in the following calculations.

Let A, ..., A, be a disjoint collection of intervals covering the unit interval such that
X € 4.«.

Let X be a density function with compact support. The estimate of the pth derivative of m
at x, with bandwidth A considered by CLARK (1977) for p = 0 and GASSER and
MULLER (1979) is as follows:

AP(x) = 7 7P ¥ WP xg, b}, where (L.1)

=1

WP 1) = | KO 2 Y, :
Pl =], (2 )au (12)

Except at the endpoints of the unit interval, the standard choice for A, is

Ar=(8.1,5), where 5= {(x+x,,)/2. (1.3)

Since W¥X(xo, h) can be computed in closed form by appropriate choice of the kernel func-
tion K, the estimate (1.1) is easier to compute than the nearest neighbor estimate (MACK,
1981) and avoids the technical and practical problems of the random denominator of the
ordinary kernel estimates. A major problem with the estimate (1.1) is that it can be much
too variable if the x’s have an accumulation point, although in our context and in many
other practical situations this will not occur.

This paper addresses two issues. The first involves the choice of the intervals A. Define
JAll to be the length of the interval A. When computing the mean and variance of the
Gasser-Milller estimate, it is usual in the cited literature to assume that [lA]l is of order n—!
for each i, or more precisely, ' g

All =0,
12‘:"‘;" Jl=0(n"")

This can be relaxed slightly, as we show in Lemma 1 in the next section.

The more important problem concerns the choice of bandwidth h. RICE (1986) considered
this problem for derivative estimation when the design is uniformly spaced. He constructed
a least squares crossvalidation estimate to minimize asymptotic mean squared error. By
Fourier arguments, he showed that his bandwidth estimator is asymptotically optimal in the
sense of HARDLE and MARRON (1985). An alternative approach is discussed by
MULLER, et al. (1987). Our work is somewhat more general in that we construct an
asymptotically optimal bandwidth estimator for non-equispaced designs and for estimating
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the regression function and its derivatives. However, the results are not really comparable,
because rather than using least squares crossvalidation we use a refined version of “plug-in”
bandwidth selection which in the density estimation context has been called biased cross-
validation by SCOTT and TERRELL (1987).

The paper is organized as follows. In section 2, we compute the mean squared error of the
derivative estimate, (1.1). In section 3, we define the biased crossvalidation algorithm and
state the asymptotic optimality result. All proofs are in the appendices.

Assumptions and Mean Squared Error

We assume throughout that the kernel X is a density function with a bounded support and
at least p + 4 continuously differentiable derivatives. Since it is a density function, it is
necessarily nonnegative. This is a matter of taste. Higher order kernels could be used with
little change in the results, but weighted regression with negative weights does not appeal
to us. This is not as idiosyncratic as it may seem. [n our examples, both the mean function
and its first derivative are of interest, and as a practical matter it seems vital that the esti-
mated derivative be the derivative of the estimated mean, and that the estimated mean be
positive.

We assume that ¢*(x) is bounded, and m(x) has p + 4 continuously differentiable derivatives.

Let w(x) =0 be a weight function with support C strictly contained in the interior of the
unit interval. We are interested in estimating the pth derivative of m(x). The criterion we
will use to judge an estimate m¥(x) is weighted mean integrated squared error

MISE() = [ E[A®xg) — m®(xgokxozy @

Let B(K) = [(K*(z)Pdz and u(K) = [2°K(z)dz. Define

C,,={u|!;’")( x°;u );&0 for some X, eC}.

We define I(A: € C,) to be the indicator that A, intersects C,. Define also

. 2
sioe) =470 ) Sssa] (K022 )) sl = Bt

t=]

o) = H TP | K ’( 5 )m(")d“=mwcxa) + (DR (Kym®* Py,

the last following from integration by parts. We can now compute a simple approximation
to (2.1).
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Lemma 1: Assume that for k& < 4, we have that

DA KA € G = 07, 22)

I=1

Then, except for terms of order O(h* + (PR + %)~ + R3(mPhi +¥)18),
MISER) = [ stxodwtznddzo + (120l ROPAS [ 0m® * g udzdn - (23)

Assumption (2.2) is of course satisfied in the cases considered by GASSER and MULLER
(1979, 1984) and RICE (1986). It can also be shown to hold almost surely if the intervals
A, satisfy (1.3) and if the x, are the order statistics of a sample from a population whose
density and its first two derivatives are bounded. However, (2.2) fails in the case that the
design has an isolated mass point in C, the support of the weight function w.

‘We would like to minimize (2.3), but this requires knowledge of the conditional variance
curve a3(x) and the (p + 2)« derivative m®*?(x) of the regression curve. The plug-in method
is to estimate these last two functions from the data and plug them into (2.3), which is then
minimized. Suppose now that the plug-in bandwidth is chosen so that it balances bias® and
variance of MISE(h) , which means that s ~ n~'/®+2), This method does not work since with
this choice of bandwidth m¥+? jis not estimated consistently. A similar phenomenon was
observed by SCOTT and TERRELL (1987) in the field of density estimation. We therefore
modify the plug-in estimate in order to get a consistent estimate of (2.3). This is done in the
next section.

3. Biased Crossvalidation

In this section, we define our estimate and 4 and state the main result. The derivation of the
estimate is outlined in Appendix A, while the proof of the main result is given in
Appendix B. Let H, be a discrete set of &’s; precise details are given in the statement of the
Theorem. Let Ay, minimize MISE(h) (see 2.3) in H,. Following HARDLE (1990), we say
that a bandwidth selection rule h is asymptotically optimal with respect to MISE(h) if |

MISE(h)

m — 1 in probability

Biased Crossvalidation Algorithm: Define
KP() = _f KP(2)KO(z + )dz

and let a¥(x) be a kernel estimate of the variance function, defined through the formula
a(x) = E(Y?| x) — {E(Y| x)}*. That is, if S¥(x) = E(¥?| x) and S%x) is the estimate of S*(x)
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obtained by setting p=0 in (1.1) and replacing Y by ¥ in (LI),

&¥(x) = S*x) — (m(x))*. Further, define

0 i k)= | [ K= it

Define A as that value in H, which minimizes the biased score function (BSF)

BSF(h, ) = BV =2 ) N8 (e) i

el

n

+ (112 (KR ™% Zs#(xaemﬁ, LR+ Y ) VY0, 40k B)

=1 i=1kwnl

Our main result is the following Theorem.

then

(3.1)

Theorem: Let H,c[n-0-#e+» p~] be a discrete set. Let y=1/7 for p=0 and
0<y<d<1/(5+2p) for all p. Let E| € [“ < oo for some k. Assume that the cardinality
#H, of H, satisfies the growth condition #Hn = o(1). Then & is asymptotically optimal

with respect to MISE(h).

Remark 1: The reader will note that the set H, contains the “optimal rate” A, ~ n-!/€+3),
but the Theorem has wider application since it contains a large class of possible bandwidths.

The awkward condition y = 1/7 for p =0 arises as part of the proof.

Remark 2: With appropriate choice of K and w, the criterion (3.1) can be computed in

closed form.

Remark 3: If we assume that all moments of e, are finite, then as in HARDLE and
MARRON (1985), the Theorem can be extended to include the entire set [n-8-8¢+2), p~¥],
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Appendix A: Derivation of (3.1)

We now show how we arrived at the bandwidth selection criterion (3.1). Proofs are given at the end of the section.
In estimating (2.3), we consider the two terms separately. The two parts of the second term of (3.1) are complex, re-
sulting from estimating the second term in (2.3). We make a few preparatory definitions. Define

Alwg, b p) = XD Ny WP, NP 20 B): Alh, ) = JAtxu. h, pyw(xg)dzg (4.1)
i=lkni
Blh,p)=h""" 2-"Zm“(x],}J;‘ J; KP (252 Ywiupdudy . (4.2)

iml
For the second term in (2.3), substituting (1.1) with p* = p + 2 results in a double sum, the cross terms of which add
an extra bias term and must be eliminated. If we eliminate these cross terms, then the resulting estimate of the second
term in (2.3) is A(h, p + 2) , see (A.1). The analysis of this term is summarized in the following Lemma.

Define

K., 1) = [KOWKO u + ety + ruja,

Dh={[di.dl):1:§'}(%.u.h) #0 forsome uel,ved,}.
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In addition to the assumptions of Lemma 1, assume that
z Znadﬁm,tn’mf € CYI(A € CI((Ay Ay) € D) = O(hn ™Y, (4.3)
{=lkpi

Lemma 2: For A & Ha if ¢1(p, 1, h) = h? + (nh12+#)~1 4 h(n?h}+ %)=L, then
Alh,p) = j'(m"’(xamxo)uo = B(h, p) + Uys(h) + O(k(nh' *#)™' 4 815, m, 1) , (4.4)

where for p 2 0,
E(U1,(m)™) = O(hinh' * )~ 4 p! + P(an? + )=S0 (A4.9)

Assumption (A.3) holds for the designs considered by GASSER and MULLER (1979, 1984) and by RICE (1986).
It also holds almost surely if the x's are a sample from a distribution with a continuously differentiable density.

Since the term U14(h} — 0 in probability uniformly in H,, we see that A(h, p + 2) is a biased estimate for the integrated
bias? term of MISE(h) (see 2.3). In order to construct a consistent estimate, we have to estimate the term
B{h, p + 2), see (A.2). The obvious method is plug in (x) into (A.2). This substitution in summed up in the following
result.

Lemma 3: Make the assumptions of Lemmas 1 and 2. Define &;, = Q,(i, i, ). Write
&, m, B) = hp(rrhl+ #)-2_!- Jez(r:.kl + Ip)—l + (nsha +:p}-l .
Then, for h e H,,

n L] >
" ""Zan% - B(hp)= A" ”Z’”ﬂ’f&}éu -5 "’Z’*’% =Q,,

=1 =] Jw
where
Q= O(85{p, 7, B) + Upy(h):  E(Unpy(h)™0 = O(n’n *+ 420, (4.6)

We now consider the first term in (3.1). Note that by (2.2),
J.s,{x)w(x}.dr = O((nh* * P ~Y)) = T(h,n) + Ola(nh' * 2)7Y),  where
Tih, ) = SR~ 2 iAo}z L Wi (%)
i=1 t

Thus the first term in (3.1) is just T(A, n) with an estimated variance function. To see that it is consistent, we offer the
following result
Lemma 4: Make the assumptions of Lemmas 1 and 2. Let Q, be as in Lemma 3. Then, for h e H,,

Ptk n) = BEOW1 - *Znafne’(xaj;mm

|
= [sawiads +Q, + Uslh) + Othinn %)Y, (48)

where
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EUy, (k)0 = O(nn** )50 (4.9)

Proof of Lemma 1: We have that

EA®xg) = mPag) = 5™ Y m(x) W) (4.10)
=

2
Var(m®Pzg) = 4~ +2 Y 42 { o 2= du}‘
arA®zg) ;E.”x‘) (=)

Proving Lemma 1 follows directly along the lines of the argument used by GASSER and MULLER (1984) with use
of (2.2) when & = 3.

Proof of Lemma 2: Let &, = ¥, — m(x;) . Write A(xy, A, p) = L}A{xo, h, p), where

n N
Ailzo b p) = KPS N o) e WPz, Wz )¢
T=ljkui

At b )= 2PN ) W, (e )

d=lhpi
Aoy by p) = RIS N ol () WP g, YW, )
iml kahi

Further define Adh, p) = fA(xa, h, p)w{xo)dxq for i=1,2,3 and

G =h *”Zm’(xaf{w?*(xo. Y wlxghex

i=1
dplcs v h) = JX("]{z}KM(z + e)w(v + hz)dz;

It is an easy caleulation to show that

i1 ) it [ (P55 ) = K52 Yt = o

i=1

By direct aigebra,
a5 = [ OnfP ) ohxgtzg = ¢,
= f{é”’cxa;}’wtxo)dxa — ¢, + Ol (p, . )
- I{mmfxoi}zw(xojdxa = B(h. p) + O(htn * #)™! 4 £,(p, m, ).

Define m{)(xy) by (A.10) and

P xg) = 50 [ KO (.
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Then,
Ax(xg, h, p) = Fi(xq) + Falxg) — Fy(xg) (say) .
n
=251 ”’)Z eEWIm(xoj[m{,P]{xu) + [mfp]{xu) - mé"][xn}] — mix) Wfpj(xg. h)} .
i=1
Since F3 = [Fy(x)dx = h-30+#L] ey, with |y | € MAJAIRI(A; e Ch), for some M > 0, F; satisfies (A.5) by Whittle's

inequality (WHITTLE, 1960). Similar arguments can be used for F) and Fi. Finally A(A, p} = Aulh, p) — Awilh, p),
where

n "
Ayl p) = KN N e [ W g, WP, Bwlxghzg
=l k=]

Ayfh, p) = h ””Ze?f{ W0, 1)) Wizoddzy ;

i=1

These two terms have the same expectation. By Whittle's inequality, they both differ from their expectations by an
amount satisfying (A.5). This completes Lemma 2.

Proof of Lemma 3: Note that | §; , | < M||AJ]® for some M >0 and §,, = 0 if J(A; e C)) = 0. Also,

w U IER )8, , = 1B (h),

where

Byih)=h">" ”ZZE,: €fy: Oy= ZWE‘(;:‘, WO (x, by, , ;
k|
i
BH) =2 P 8, 0= ) i)W sy W
i ki

By(R) = A7 2D ) W, )W ks )G,
k1l i

It is easily seen that Bj(h) — B(k, p) is nenrandom and of order &i(p, 1, A). By (2.2), | 8] < n~Y|AJlI{5; e C)), s0 by
Whittle's inequality 8,(h) satisfies {A.6). Finally, | 0« | < n~Y|AJ] |AdIF(As Ak Ca), so that Whittle's inequality shows
that Bi(h) also satisfies (A.6).

Proof of Lemma d: It suffices to prove the result for the convergence of ‘:""(i:. x) to T{h, 7t), see (A.T) and (A.8). Write
5%(x) = E(Y?| x) and let 5){x) be the kernel estimate of S¥{x]. It folloews that
-1-2 1
Fhyn)= Fy = Fy= Zua,n §x) - (htx)) }f w(ud .

i=1

As in the proof of Lemma 3, one can show that
Fy-dp™! ”’Zl{n o (IJI wludu
i=1

has the same order as (A.6). Similar types of calculations show that the same holds for

Héardle, W. and Carroll, R.J. (1990) Biased Crossvalidation for a Kernel Regression
Estimator and ist Derivatives



Ostereichische Zeitschrift fir Statistik und Informatik, 20, 53-64.

F-gn'” "’Zufsawquw(u}du .

i=1

This completes the proof.

Appendix B: Proof of the Theorem

We will show that

MISE(h) — MISE(k") — (BSF(h) — BSF(h)) P
:..;'3:, | MISE(h) + MISE(R') |=0,a5n - 00 (8.1)

It follows from (B.1) that Ris asymptotically optimal since with high probability for any # > Q,

MISE(R) — MISE(hg) — (BSF{h) ~ BSF{h)) <
MISE(h) + MISE(hg)

where iy = argmin, , 5, MISE(R). Now from this
0= BSF(R) - BSF{hy) = (1 — n)MISE(R) — (1 + n)MISE(hg)
which gives

A
| MISEG) _1+n
MISE(hy) — 1—n

Hence h is asymptotically optimal! To show (B.1) it suffices to show that

MISE(hy - BSF(R) p
;:f,l l MISE(R) o (8.2)

Consider now the different terms of the difference MISE(h) — BSF(k). We have to show that they tend to zero "uni-
formly over h faster than MISE(R), h € H, itself tends to zero” in the sense that is made precise in formula (B.2). Let
Ta(h) denote one of those terms. The general idea is to apply Bonferroni’s inequality and then use the inequalities
given below. Let n > 0 be given, Then

P{:ug | To(RN MISE(R) | >n} # Hu:us P{| To(R)IMISE(R) | > n} .

The established Lemmas 1 — 4 will ensure that this last term will tend to zero and thus (B.2) is shown. First of all
observe that we can work with the approximation to MISE(h) as given in Lemma 1. [ndeed

MISER) — [ ez ~ (DK 0n® * D))tz
o e HISER) I

- - P
<sup | Ch? + Gy + 7R S0,
he H,

To see this, first note that [s,(x)w{x)dx = O,(nh! * %)}, and then use

n—iﬂhi(m‘ll +2p]—-l12 -2

5 JOY s  es
A+ [~ )2 =n

: < (Yt
h 4+ (nn! T )1 h* + (nh1* Py (o)

It remains to consider the terms
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Tinlh) = [y (et — SO Y, 1075)| wisda.
i=1 i
which must be of “lower order than MISE" uniformly over k;

- n
Tynlh) = .[(”'@ * V) hwix)dx — Blhp+2) —h~ "D N pvo L i h)
imlj#i
which must be “o(1) uniformly over A since h* cancels with M/SE"; and
n
Tyl = Blhp+2) =4~ "% iz
[l

which must be “o(1) uniform over h since 4* cancels with MISE". We first consider Ti,(h). Let n > 0 arbitrary. In the
notation of Lemma 4,

Tyalh) = [sylawtoxide — b, n) = Riy(0) + Unalh) + Ul
where from Lemmas 3 and 4,
Ryp(h) = Ofh(nh' * 27 4 i (un' ¥ 272 4 n¥(nn' +%y70 4 (°03F %))
E | Up(k) 10 = O{(n*a*+ ¥y} ; E| Unyfh) 1P = Of(m*n® + )75} .
Of course,
P{| 150 MISE(R) | > n} < P{| Up{R){ MISE(R) | > n/3}
+ P{| Us (R MISE(h) | > nj3} + P{| Ry () MISE(h) | > n[3)

We consider each of the terms. Recall that for h € H,, MISE(h) is of order h* + (nk!*#)-!, and for § as in the
statement of the Theorem,

A=W+ 2 < p o 8
For Ria(h), we use the facts that for some ¢ >0,
chinh' * P)"\ | MISE(h) < by chP(nh' * P) | MISE(R) < P (nh' * )7
ch¥(nh' * 2" YMISER) < B3 (PR = a7 e ),
We finish consideration of Ti(h) by studying Us(h). the calculation for Un(k) being easier. Now,
P{| Up,() | IMISE(R) > nl3} < (nMISE()[3} 20 | Uy, (h) |0
= O{h™%0 + (ni' * F)Pha}(n’h¢ * )] = Of(n " * ¥y~ 4. (nn)H0}
= O{(nh** %)~ ap @ = Dhs . (mpy~he} = Of(n~ 0P =20 4 (nnhyH} . (B.3)
We have to show that for kq sufficiently large, #H, times the terms in (B.3) converges to zero. Since
(ni%)™0 = Of(n! ~HI~AM+ Bhh} = g(n™),
and #H, = o(n™) for some fixed k, by choosing k; sufficieatly large we get that

#H (nh*y 0= o(1) .
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The other terms in (B.3) differ depending on whether p =0 or not. For p=0,
#H,(n =38, % — 2jka _ o{#Hﬂ(n—3.56+ (1;2))1:‘,} .
so the result follows since in this case 6 >y = 1/7. If p = |, then the result follows since
#Hn[n'uh:'" -2]ku = OfHA" (Zp + 1]5&,,) )
This completes the proof for Ti.(h).

We next consider Ty,(h), which can be rewritten as Tu(h) = Ui{h) + Rau(h), where, from Lemma 2, Ru(h) is non-
random and

Ron(h) = Ofh(nk®* )71 4 k2 4 (u' A +P+ 71 4 (a?n+ 2714,
E| Upah) 10 = Ofn(nh** #)~" + 43+ P(ua* + )30,
Let » > 0 be arbitrary. We have to show that
K Ry, (R) MISE(H) - 0 (B.4)

uniformly in h and thatin H,,

#H P{R* | Uy() | IMISE(R) > nj2} 0. (B.5)
It is easy to show that (B.4) holds since & < n~* and 6§ < 1/(5 + 2p). Consider U,(h) and note that

P{* | Upylh) | IMISE(R) > ni2} < (nh ™ MISE(R)(2)"ME | U, () |Po
= Of{h* MISE(R)} % 00((nh* * 2! 4+ &' * 2 (an* * ) Hho 2 On~d)e

Since # Hy1-# = o(1) by assumption, this proves (B.S).

Finally, we consider Ti(h). Let n > 0 arbitrary and note that
Tln(}’) = U!n[k} + R!u(h)v

where from Lemma 3,
Ray(h) = O+ 2(nh** )7 4 wun® * )71 4 (n°n7 T #)7)
E| Usylh) [ = O((n’n™ * *#)%0)
We must show (B.4) but for Ry,(h) and (B.5) but for Us,(h). The former is easily checked since
B3k’ t 2y o pPah* ) < PP = 0(1)
Wk P2 = mat ) 2 = 0(1)
@B P = et A <t = 1)
Finally, using the same technique as needed to prove (B.5), note that
E | Ugyfh) [P = Of(n*a™ * ¥y} = o(n™"9) ,

from which the result follows. This completes the proof of the Theorem.
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ABSTRACT

Simulated car-to-car side impacts, designed for the analysis
of traumateclogical aspects, invelve two sets of variables.
Predictors include exogenous biomechanical factors as well
as anthropometric variables, suech as age. The response is
measured a scale of injuy scores and is thus multinominal.

It is the aim of a statistical analysis of such data to
devise a multinominal response model that axplains possible
patterns of injury as a function of a suitable set of
predictor variables. Several approaches for modelling such

8 multinominal response relatioenship have been proposed in
the literature, among them the Logistic and the Weibull
regression models. Two major guestions in applying such models
are as follows: What model is appropriate and how should
different models be compared. Another concern is how the
gquality of a given model should be presented for varying sets
of predictors,

In this paper we discuss the first gquestion by constructing
a8 goodness-of-fit test based on bootstrapping flexible, non-
parametric alternatives to a given parametric candidate
model. Secondly, we present several graphical techniques

that allow relatively simple comparisons of different models.

1. Modelling the influence of anthropometric and mechanical
parameters on trauma indices:

The aim of the statistical analysis of simulated car impacts
is to develop models that allow one to understand how the
severity of impacts depend on observable input variables.
Typically such input variables can be divided into

two types. The first set of variables is describing

(1990) Mattern, R., Hardle, W. and Kallieris, D.
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the test subject's physical characteristics, suoch as

height or age. A second set is concerned with the actual
experimental setting, and contains such parameters as
velocity of the impact and acceleration measured at various
places. These input variables determine jointly the response
variable. The observed response variable is a trauma index
usually scaled according to some injury scale, e.g. AIS
(1980). The AIS trauma index, for example, ls a discrete
variable in {0,1,2,3,4,5,6), with the lightest (or non)
injury indexed by "0" and the severest injury indexed by "6".
The input variables are mostly of continuous nature, i.e.
they can possibly take each value in a certain interval.

Phrased in terms of statistical methodology we are given a
discrete regression problem, i.e, discrete response variables
(trauma index) are regressed on various kinds of predictor
variables (possibly continuous or also discrete).(See Bickel]
and Doksum (1277), Neter and Wasserman (1974, Chapter 9)).
The aim of this statistical problem is to construct suitable
models for explaining the probability of a certain level

of trauma index as a function of the given covariables. In
this paper we denote by (X Ei}, i=1,..., n, the data
points from such an experifMent; X standing for the vecter of
predictor variables (input) and ¥ denoting the discrete
response variable (output vector). Since the response variable
is multinominal (i.,e. takes values in a discrete ordered set)
it is reascnable to define the regression function as the
probability that ¥ is bigger than some value c¢. Henca,we are
dealing with a set of regression functions

P (x} = P(Y2c|X=x),

where o runs through the discrete set of possible response
values (trauma indices)., In determing such functicns p one
would like to have some basis regquirements fulfilled that
are direct consequences of the experimental setup. These are

(1.1} Monotonicity, i.e. if the input variables are ordered
in some natural way then increasing the strength of
impact or increasing age, the probability of having
a trauma index greater than or equal to ¢ should also
increase,

{(1.2) Consistency, i.e. Pcl 2 Pcz for e, £ e,

Consistency means that the curves p_ should be so that the
probability of having trauma index greater than ¢ increases
if ¢ decreases.

(1990) Mattern, R., Hardle, W. and Kallieris, D. o
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In the pext section we discuss several multinominal response
models, In section 3 we show how nonparametric smoothing
technigues help in selecting a suitable response model. In
section 4 we discuss some graphical methods for enhancing the
summary statistics of a given fit when the set of predictor
variables is varied. In section 5 the application of these
methods to the Heldelberg side impact data is presented.
Section 6 is devoted to conclusions.

. Multinominal Response Models

There are two different approaches to model the dependence of
the conditional probability p, (x) = Ftigﬁ?xl as a function
of the covariables x. The first approach is to assume that
this function p. is a member of a specific class of para-
meterized functions. The second approach is called non-
parametric since the form of p. is not restricted by any
reguirement except those of (l.l) and (1.2) above. The para-
metric approach has the advantage of easier interpretation

of coefficients and also of numerical computations, whereas
the non-parametric approach has the advantage of not being
bound to any functional form. Both should serve each other

&5 an alternative and should not be seen as mutually exclusive
models. Well-known parametric models include the Logistiec and
the Probit regression models. The basic structural assumption
for both approaches is the same; both are models based on
linear combinations (projections) of the predictor wvariable
X, 1.e. the function p. is modelled as

P.(x) = c_(BTx),

with a link function G, and parameter B. The parametric
approach consists of ffﬂing the function G.l.) = G, Wi, + .)
to a certain shape whereas the non-parametric approach does
not prescribe the form of G, . In the following we just
write G to describe the general form of G .
In a Logit analysis one assumes that G is of the form of a
logistic distribution function, i.e.

Glz) = axplz)fl+expliz)).

The functions P, are determined by the maximum likelihood
methed, i.e. cne maximizes for each c

e
B, PF(Y, 2 ¢ Ixt = x,)
[ #}

|

n

il i=]

C
Gla _ + .ﬂTxi]Tl.[l - Gla _ + ,BTxi}“' =3

Y, = I(Y, 2 e).
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subject to the consistency conditien. In the same way other
models like the Probit model with G egual to the standard
normal distribution function can be adapted. Yet another
shape function 18 the Weibull distribution function.

The non-parametric approach does not fix the shape function
G, but rather lets it be any smooth function following the
requirements (1.1} and (1.2). Given the parameter vector

i the link function G is determined by & non-parametric
smoothing technique, such as spline or kernel, see Hardle
{1388). The kernel smoother ﬁh{zl at the polint

z = BT x for data [Ei.-.ﬂTxi, 'fl}
is defined by

~ - =1 .n _ =1 .m
Cplz) =0 '3]_ K (22 WY A7k (22 )

where Kplul} = h™TK(u/h) is a delta function seguence with
bandwidth h and kernel K, where K is & continuous probability
density. The kernel smoother is a consistent estimate of G if

h =+ 0 as the sample size n tends to infinity. The parameter 0
can be determined in various numerical ways, since the function
G 1s not determined up to scale. One of the possibilities is

to determine G and B jointly by minimizing the Hesidual Bum

of Squares (R53) or other measures of accuracy. This amounts
to finding G and 8 such that

-1
30 0y - e(aTx;))*

15 minimal. This minimization 18 done iteratively by searching
over all possible directicns 8, that is why this method is
called Projection Pursuit Hegression (PPR), see Friedman and
Stuatzle (1%81). Anocther method is called Average Derivative
Estimation (ADE). In ADE estimates of B are obtained in a
direct way without involving the link function G. This estimate
of & is defined as

- _1 o ﬁ' =
B=mn "X Y (X )X )

where £ denotes an estimate of the partial derivatives of
£, the density of X. For details see Hirdle and Stoker (1988).

(1990) Mattern, R., Hardle, W. and Kallieris, D. o
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3. Selecting a suitable model

The task finding a suitable model among the many possible
parametric and non-parametric alternatives involves the
statistical precision of the model as well as the numerical
applicability,. It is widely known that the Logistic regression
model can be guite easily fitted numerically, SAS Supple-
mentary (User's Guida (1985). Other link functions G, for
example the Probit curve have a similar shape (see Berkson,
1951) but require more computational effort. Also the non-
parametric smoothing method reguires a lot more on compu-
tations but has the advantage of not being restricted in

its functional Fform. In particular the symmetry of the link
function that is inherent to the Logit model is no restriction
for the non-parametric approach. Indeed the response of the
side impact experiments is somawhat asymmetric, as was pointed
out by several people who tried a skewed Weibull distribution
a8 a link function G. The price one has to pay though for

this additional feature is that the numbasr of parameters,

and thus the numerical cost and precision of the algorithm,
increase.

Since the non-parametric alternative allows fitting in a much
wider class of functions it seems reasonable that it can be
used in a formal test of goodness of fit of low dimensional
parametric models, To simplify matters let us consider only

a binominal response model of one dimensienal X variables,
i.a, ¥ takes the values O or 1. the proposed test is based on
smoothing the response variables of a given parametric fit
plx;6). One defines the kernel smoother on data (Rse %) as

1

-1
T Ky (KX Y T2, Ky (XX g)-

plX ) =n
The smoothing parameter h can be determined by crossvali-
dation, see Hardle (19%88). The test is described formally
as follows.

1, Fit a candidate parametrie model (p (x;8)

2. Simulate new observations (X® Y"£ from this model by using
a pseudo random number gen&rﬂ%ur based on plx:@}
{bootstrappingl.

3. Datermine for each X ; that has been observed the empirical
5 % guantiles of a kernel smoother of the simulat=ad data.

4, Center thesa 5 % bands around the assumed parametric
candidate model.

5. Check whether the kernel smoother based on the original
data lies in between these bands.

(1990) Mattern, R., Hardle, W. and Kallieris, D. £
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Figure 3.1

aAnother method is based on comparing the likelihood for
different medels with a bias correction for different

number of parameters. This is related to ideas of Akaike
(1877) and works as follows. One compares the Log-Likeliheoods
under both models, i.=.

B Ly(8) = nLly(B,) - (dim(model )-din(model ,)).

Based on the limiting chi-square distribution of twice the
likelihood ratio statistic one cannont distinguish the two
models if the magnitude of the above difference is less than
0.5.

4. Comparing similar models

1f the above models are run for several types and sets of
input variables it is important to compare the output of the
different fits. In the study of the Heidelberg data we found
the following, mostly graphically criented tools very
convenisnt.

Concomltant pairs

Concomitant pairs are defined through all pairs of observations
with different response values, Now count all pairs of obser-
vations where the current model fit predicted a higher
prabability for the higher Y-value. Then compute the share

of these pairs among all pairs with different Y-values.
Certainly if this share of concomitant pairg is close to 1

the model fits quite well. The procedure LOGIST of the SAS
system computes this number on request.

Prediction Table

The prediction table is simply a freguency table of the
gbserved trauma indices wversus the predicted trauma indices.
The number of correctly predicted response variables is the
classification rate. This number lies between O and 1.
Certainly a number close to one is desirable. It is guite
intuitive that the empirically determined classification
rates are over optimistic since the data is used to determine
the model as well as to judge it. An unbiased estimate of the
classification rate can be obtained by, for example, cross
validation. In this method the whole analysis is performed n
times on n subsamples each of size n-1 (leave one ocut method).
The left out observation is predicted by the model
constructed from the rest of the observations. This leades to
an unbiased estimate of the prediction error, as was shown

by Btone (14974},

(1990) Mattern, R., Hardle, W. and Kallieris, D.
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NONPARANETRIC LOGISTIC REGRESSION BOOTSTRAF
NEIN = §00

L L] S hE SEE I =D e
&

Fig. 3.1 Hopparametric logistic distribotion of the lnjury
peverity (y = 1 for AIS» 3 mand ¥ = 0 for AIE & 3) over
the TTI with 5 & confidencebande for 500 simulstions
according to the bootstrap method,

e} bandwidth h=13

b} bandwidth h= 8

(1990) Mattern, R., Hardle, W. and Kallieris, D.
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The enhanced histogram of predictien errors

This is a histogram of the abserved differences between the
observed trauma index and the predicted index where large
indices are marked in a special way. The procedure is as
follows. 1. Compute all the differences predicted response -
ocbserved response. 2. Index all large trauma values (for the
ALS values (predicted or observed) greater than 4.

i. Draw a histogram of these differences where the big trauma
indices get marked by using special symbol.

In figure 4.1 we show an enhanced histogram for the TT1
(Eppinger et al., 19B4) as a predictor variable for the
TOALIS (thorax AIS5).

Figure 4.1
This Thoracic Trauma Index is defined through
TTI = 1.4 AGE + 0.5 FORCE.

Une sees from this enhanced histogram of prediction erros

that the TTI leans toward over estimating the true responses.
Indeed, the histogram is skewed to the right. There are 11
cbservations involving the thorax AIS value of 4. Two of these
eleven observations have prediction error zerc.0ne obsarvation
has been predicted to have A1S value 4, but really had value

4 {prediction error 2 to the right in the histogram), and
eight observations had AIS value 4 but were wrongly classi-
fied as 3. One should therefore search for a model that more
faithfully predicts the high AIS values.

A distortion measure

A8 A& measure of distortion of current fit we would like to
propose two subintegrals of the above histogram. This pair

of numbers tells firet whether the fit is skew, i.e. has a
bias towards over- or underestimating the true response

value. Secondly the size of the subintegrals relative to

the sample size immediately gives a goodness of fit eriterion.
The first subintegral just counts the number of positive
exceedances (to the right of the eelumn zero in figure 4.1).
The second subintegral countg the number of negative
exceedances, in this case -8. This together gives the
distortion mesure (-8, 35) whieh describes in a very condensed
form the skewness of the prediction and how much the true
values are missed by the above model,

(1990) Mattern, R., Hardle, W. and Kallieris, D. o
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The lIlsocguants

The plot of isogquants is designed for two dimensional
predictor variables and shows in & graphical way what
trauma indices are to be expected given all possible
combinations of covariables. In figure 4.2 we show the
predicted thorax AIS classes ag a function of AGE and
FORCE, as defined in Kallieris, Mattern and Hi3rdle (19B6).

Figure 4.2

The region indicated by the letter A would be the region of
(4GE, FORCE) combinations where AIS5 = 0 would be predicted.
The region with AIS = 3 is shown by D and the highest AIS
value of 4 is marked by an E. Overlaid in this plane are

the original data values (0,1,2,3,4). This plot allows simple
comparison of different fits by simply studying the regions
that determine the AIS values. Given for instance the age of
30 one can easily determine by raising the values of FORCE
at what points of FORCE the prediction to higher AIS classes
would happen. (FORCE level 140 jumg to predicted AIS 3,
FORCE level 250 jump to predicted AIS 4).

5. Application to the Heid=lberg data

Only a few research onsets are suited to determine the
connection beween mechanical influence and injury severity
when measured in AIS degrees. There are real accident analyses
on one hand and e¢rash tests with post mortem human subjects
(PMHS) on the other hand. Both research onsets are not ideal.
The advantage of crash tests with PMHS is, e.9., that by
defined conditions of the accident severity, loads acting

on the body can be measured in physical magnitudes like
acceleration at ribs, sternum, vertebral bodies and head. This
iz not pessible in the real accident analyses. Differences

of the injury limits against the living human beings are
criticized as a disadvantage of the crash tests with

FMHS, The lopad values measured on the bodies of the PMHB
however, are indispensable basis data for the construction

of dummies, if these dummies should be gualified for the
injury prediction in crash tests.

At the Institute for Legal Medicine of the University of
Heldelberg crash tests were conducted with PMHS and dummies
for many vears to investigate this research concept. As
follows, the investigation of lateral cecllisions should
represent which connections exist between loading parameters
at the body of the PMHS, anthropometric data and injury
severity and how these connections can be used for injury
prediction by utilization of the gtatistical methods described
above, Basis of the connection analyses are 58 90-degree
lateral collisions. 1n these collisions PMHS have been loaded
in near side position in the impacted/standing vehicle.

(1990) Mattern, R., Hardle, W. and Kallieris, D.
Validierung der Verletzungskriterien TTl und VC als Verletzungspradikatoren
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Fig. 4.2 Isoguantplot for the illustration of the prediction
resulte of the logistic regression from AGE and FORCE.
Zone A; prediction of TORIE = O
Zone B: prediction of TORIS = 3
Zone E: prediction of TORIS = 4
Numbere im the zones: observed thorax-injury dearees
FORCE = 1/2 (accel.max. 4th rib impacted side + max,
result, accel. Th 12) x bodymass / 75
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The crash tests have been conducted at impact velocities

of 40, 45, 50 and &0 km/h (Rallieris et al., 19B87}). In the
PMHS 22 acceleration values at head, thorax, spinal column
and pelvis have been recorded for each test. The injuries

of the BMHAS have been scaled according to AIS BO. It was
seen in the statistical analyses that the injury levels

could be most effectively predicted by the method of

logistic regression. In the B0 degree lateral collisions

the body injury severity (TAAIS) was generally leading

and determined the maximum injury severity (MAIS). Therefore,
the prediction of the body injury severity for right

gide lateral collisions is presented here as an example.
Among the 22 as maximum and 3 ms values recorded accelerations
the following proved to be the best predictors:

1. sccelaration (3 ms walue) in r=direction at lower sternum
(BUX3) (g):

2. acceleration (3 ms value) at the 12th thoracic vertebra
in y~direction {(T12¥3) (g);

The further improvement of the injury prediction has been
reached in considering the Body Mass (BMASS) (kg) as
covariable., With these covariable combination, the logistie
model estimated the following parametere for the injury
index E:

% = 0.15 BMASS + 0.08 T12¥3 + (.06 BUX3.

The probability curves for TAAIS rankings 0,4 and 5 are shown
in figure 5.1, for impacts from the right. The threes tests
with TAAlS 2 and 3 in the test series were not considered.

Figure 5.1

Below a % value of 18.3, the envelope of the A1S probability
turves indicates a high probability te be uninjured (the
highest probability is below Z = 18). Between Z = 18.3 and

4 = 20, a TAAIS of 4 is largely to be expected and above

7 = 20 the probability for TARIS 5 of about 45 % increases
continuously te 100 % tat & = 25). The enhanced TAAIS
difference histogram (see section 4) in figure 5.2 shows
that the above mentioned covariable combination as correctly
predicts 59 % of the cases. The model predicts the TAAIS

in 13 % too high and in 15 % a level too low; each cne time,
the model underestimated the cobserved injury fer two and

4 ALS degrees.

Figure 5.2

(1990) Mattern, R., Hardle, W. and Kallieris, D.
Validierung der Verletzungskriterien TTl und VC als Verletzungspradikatoren
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6. Conclusions

We have presented several multinominal response models of
parametric and non-parametric nature, A way of comparing
these models and deciding which one is more appropriate

than others is given by considering non-parametric
alternatives in the construction of a simulation band.

Thie simulation band technigue (section 3) lead for the
Heidelberg data to the conclusion tht the Logistic response
model is appropriate for the analysis of car-to-car side
impacts. Comparing the Likelihoods of the Logistic and the
Weibull link functions we found no batter fit for the Wei-
bull model, see Kallieris, Mattern and Hirdle (1986). ke
furthermore presented a variety of graphical technigues
which are of great assistance when looking for suitable
predictor variables X, see ssction 4. Using these technigues
we found for example that the Logistic model using the trauma
index

7 = 0,15 BMASS + 0.08 T12¥3 + 0.06 BUAX3

had good prediction properties for the TAAIS, see section 5.
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Simultaneous error bars are constructed for nonparametric kernel
estimates of regression functiona. The method is based on the bootstrap,
where resampling is done from g suitably estimated residual distribution.
The error bars are seen to give asymptotically correct coverage probabilities
uniformly over any number of gridpoints. Applications to an economic
problem are given and comparison to hoth pointwise and Bonferroni-type
bhars is presentad through a simulation study.

1. Motivation. Regression smoothing is an effective method for estima-
tion of mean curves in a flexible nonparametric way. Since this technique
makes no structural assumptions on the underlying curve, it is very important
to have a device for understanding when observed features are significant. A
question often asked in this context is whether or not an observed peak or
valley is actually a feature of the underlying regression funection or is only an
artifact of the ocbservational noise. For such issues, confidence intervals should
be used that are simultaneous (i.e., uniform over location) in nature. This
paper proposes and analyzes a method of obtaining any number of simultane-
ous error bars at a grid of points. The method is simple to implement and does
not rely on the evaluation of quantities which appear in asymptotic distribu-
tions. The construction is based on a residual resampling technique which
models the conditional error distribution and also takes the bias properly into
account (at least asymptotically).

For an understanding of these ideas, consider Figure 1. Figure 1a shows a
scatter plot of the expenditure for potatoes as a function of income for the year
1973, from the Family Expenditure Survey (1968-1983). Figure 1b shows a
nonparametric regression estimate which was obtained by smoothing the point
cloud, using the kernel algorithm described in Section 2. As a means of
understanding the variability in the kernel smooth, Figure 1b also shows error
bars, i.e., vertical confidence intervals constructed by the bootstrap method
proposed in Section 2. These bars are estimated simultaneous 80% confidence
intervals. Note that the error bars are longer on the right-hand side, which
reflects the fact that there are fewer observations there and hence more
uncertainty in the curve estimate. The error bars are asymmetric in particular
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Fic. 1. Expenditure for potato vs. income (a) scotter plot (b) regression kernel smooth (quartic
kernel with band with h = 0.3) and errors bars.
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at points with high curvature which reflects the correct centering of the bars
by a bias term.

Bierens and Pott-Buter (1987) derived variability bands with pointwise
coverage probability for a related question in demand theory. Clearly there is a
need for effective simultaneous error bars in all applications of nonparametric
regression. Hall and Titterington (1988) constructed a confidence band for
calibration of radio carbon dating. Knafl, Sacks and Ylvisaker (1985) derived
uniform variability bands under the assumption of a Gaussian error structure.

The use of bootstrap methods for assessing variability bands in nonpara-
metric regression was to our knowledge first suggested by McDonald (1982).
There are several ways of bootstrapping in the context of nonparametric
smoothing. The interactive method used by McDonald was based on resam-
pling from the empirical distribution of the pairs of ohservations. This ap-
proach has also been investigated by Dikta (1988) who showed that, up to a
bias term, a type of pointwise bootstrap confidence interval is asymptotically
correct. If the predictor variables are fixed nonrandom values, resampling
should be done from estimated residuals as has been argued by Bickel and
Freedman (1981) in the setting of linear regression. Hirdle and Bowman
(1988) applied this resampling scheme to the nonparametric regression proce-
dure, also in the case of random predictor variables on estimated residuals.
This form of bootstrapping preserves the error structure in the data and
guarantees that the bootstrap observations have errors with mean zero. There
are two main advantages to this approach. First, it correctly accounts for the
bias and hence does not require additional estimation of bias or the use of a
suboptimal (undersmoothed) curve estimator. Second, no assumption of ho-
moscedasticity is required; the method automatically adapts to different resid-
ual variances at different locations.

The resampled data is smoothed to give an approximation to the simultane-
ous distribution of the estimator at a grid of peints. This distribution can
either be used directly to obtain simultaneous error bars, or a simple Bonfer-
roni approach can be used. We also study methods for generating bars which
are based on groups of gridpoints. This approach provides a general frame-
work, which includes the direct and Bonferroni methods as extremes.

In Section 2 we give a technical introduction to our method and present
theorems which demonstrate the asymptotic validity of the bootstrap simulta-
neous errors bars. In Section 3 simulations and the previous application are
discussed. We describe this economic example in more detail and do a compari-
son of different grids of error bars through simulation. The simulations
indicate that handling the bias is the most difficult aspect of this problem,
especially when the regression function has substantial curvature. The analy-
sis of Section 3 provides a quantification of this difficulty. For this reason, in
the examples we considered, 80% error bars had actual coverage as poor as
50-65%. In Section 4 we give proofs of the theorems in Section 2.

2. Bootstrap error bars. Stochastic design nonparametric regression is
based on observations {( X, Y,)}*., € R?"! and the goal is to estimate m(x) =
E(Y|X = x): R - R. The form of the kernel regression estimator, developed

Hardle, W. and Marron, J.S. (1991) Bootstrap Simultaneous Error Bars for Nonparametric
Regression
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by Nadaraya (1964) and Watson (1964) is

1 2 K(x-X,)Y,
(2.1) my(x) = - Eli%l(x—]}"—,

where

1 "

(2.2) fh[x) - Y Ky(x - X;)
i=1

and where K,(u) = h ?K(u/h) is a kernel weight function with bandwidth
h. All results of this paper are stated in terms of this estimator, although the
essential ideas clearly extend to other types of kernel estimators such as those
of Gasser and Miiller (1984) and also to other regression estimators, such as
spline methods, as discussed in Eubank (1988).

The choice of the bandwidth is erucial to the performance of the estimator.
An asymptotic analysis of this choice and discussion of various data based
bandwidth selectors may be found in Chapters 4 and 5 of Hardle (1989). The
results of the present paper are formulated in such a way as to allow this type
of objective bandwidth choice to be employed.

One approach to the problem of finding simultaneous error bars would be to
work with limiting normal distributions of the estimator at the grid points.
However, the joint distribution of the estimator at these gridpoints has
substantial positive correlation, which makes the derivation of joint normal
theory confidence intervals nontrivial. In fact, they essentially should be done
by simulation methods. Since simulation methods are needed anyway, it seems
better to use a more direct approach through bootstrapping, as opposed to
relying on the normal approximation and also to facing the problems of
parameter estimation that such an approach entails.

While bootstrap methods are well-known tools for assessing variability,
more care must be taken to properly account for the type of bias encountered
in nonparametric curve estimation. In particular, the naive bootstrap approach
of resampling from the pairs {(X,,Y,): i = 1,...,n} is inappropriate because
the bootstrap bias will be 0. Our approach to this problem is to first use the
estimated residual

(2.3) £ =Y, — m,(X;).

The essential idea is to resample from the estimated residuals, which are the
differences between the observations and the pilot estimate and then use this
data to construct an estimator whose distribution will approximate the distri-
bution of the original estimator.

To better retain the conditional distributional characteristics of the esti-
mate, we do not resample from the entire set of residuals, as in Hérdle and
Bowman (1988). One possibility would be to resample from a set of residuals
determined by a window function, but this has the disadvantage of requiring
choice of the window width. To avoid this we use the idea of wild bootstrap-
ping, as proposed in Hirdle and Mammen (1989) [but see Rosenblueth (1975)
for access to related literature], where each bootstrap residual is drawn from
the two-point distribution which has mean zero, variance equal to the square

Hardle, W. and Marron, J.S. (1991) Bootstrap Simultaneous Error Bars for Nonparametric
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of the residual and third moment equal to the cube of the residual. In
particular define a new random variable ¢ having a two-point distribution G,
where G; = y5, + (1 — y)3, is defined through the three parameters a,b,,
and where §,, §, denote point measures at a, b, respectively. Some algebra
reveals that the parameters @, b,y at each location X, are given by a =
£(1-v5)/2, b=#(1+v5)/2 and ¥ = (5 + V5)/10. These parameters en-
sure that Ee* = 0, Ee*? = §Z and Ee*® = £}, In a certain sense the resam-
pling distribution G, can be thought of as attempting to reconstruct the
distribution of each residual through the use of one single observation. There-
fore it is called the wild bootstrap. It is actually the cumulative effect of all
these residuals that is used in the generation of the simultaneous error bars.
The above formulation of the wild bootstrap, based on a two-point distribu-
tion, is only one possible approach. Other distributions could be considered as
well and an interesting question for further work is finding whether some will
give better performance. See Section 7 of Wu (1986) for some closely related
ideas in linear regression.
After resampling, new observations

(24) Y,* = m (X)) +ef

are defined, where #,(x) is a kernel estimator with bandwidth g taken to be
larger than h (a heuristic explanation of why it is essential to oversmooth g is
given later). Then the kernel smoother (2.1) is applied to the hootstrapped data
{(X.,Y,*)'_, using bandwidth A. Let /A}(x) denote this kernel smooth. A
number of replications of mi¥(x) can be used as the basis for simultaneous
error bars because the distribution of #,(x) — m(x) is approximated by the
distribution of m}(x) — 7 (x), as Theorem 1 shows.

Here and in the following, to help keep the various probability structures
straight, we use the symbol Y|X to denote the conditional distribution of
Y,,...,Y,|X,,..., X, and the symbol * to denote the bootstrap distribution of
YA, . L VAKX, Y, L (X, T

For an intuitive understanding of why the bandwidth g used in the
congtruction of the bootstrap residuals should be oversmoothed, consider the
means of #,(x) — m(x) under the Y|X-distribution and j(x) — 7 (x) un-
der the *-distribution in the simple situation when the marginal density f(x)
is constant in a neighborhood of x. Asymptotic analysis as in Rosenblatt (1969)
shows that

EYX (i, (x) — m(x)) = hi(fuszz]m"{x].

E*(mi(x) = mg(x)) = hz(fuszZ)rﬁ;{x).

Hence for these two distributions to have the same bias, we need m/(x) —
m"(x). This requires choosing g tending to zero at a rate slower than the
optimal bandwidth h for estimating m(x), see Gasser and Miiller (1984).
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There are several ways to use the bootstrap approximation to understand
the variability in i ,(x). We prefer a finite set of error bars instead of a
continuous band because for a reasonably dense collection (as in Figure 1b},
there is little information lost and the bar approach is much easier to compute
and also to analyze. The simplest is to calculate pointwise 1 —a confidence
intervals, but these will then not be simultaneous in nature. A naive way of
extending pointwise intervals to M simultaneous confidence intervals is by
applying the Bonferroni method, which is to correct the significance level by
the number of locations at which the error bars are to be constructed. This
involves first finding M pointwise intervals with confidence coefficient 1 —
a /M. Then by the Bonferroni inequality, the collection of these intervals will
have simultaneous confidence coefficient at least 1 — «. A drawback to the
Bonferroni approach is that the resulting intervals will quite often be too long.
The reason is that this method does not make use of the substantial positive
correlation of the curve estimates at nearby points.

A more direct approach to finding simultaneous error bars is to consider the
simultaneous coverage on pointwise error bars and then adjust the pointwise
level to give a simultaneous coverage probability of 1 — a. Note that there are
also many other ways to obtain simultaneous error bars, but this has the
compelling feature of assigning equal size (in the confidence interval sense) to
each bar,

A general framework, which includes both the Bonferroni and direct meth-
ods, can be formulated by thinking in terms of groups of grid points. First
partition the set of locations where error bars are to be computed into M
groups. Suppose the groups are indexed by j = 1,.. ., M and the locations
within each group are denoted by x; ;, k=1,..., N;. The groups should be
chosen so that for each j, the x; ; values in each group are within 2A of each
other. The reason for this is that when the x values are further than 24 apart,
the estimates are independent and independent theory simultaneous error
bars are quite close to those derived from Bonferroni theory (this can be seen,
for example, by calculating the lengths of independent theory and Bonferroni
theory intervals for standard normal random variables, which turn out to be
typically within about 3% of each other). In the one-dimensional case this is
easily accomplished by dividing the x-axis into intervals of length roughly 2h.
The asymptotics given later are based on the assumption that the number of
+’s in each group does not change with n. More precisely, the set of grid points
X g k=1,..., N, has the same asymptotic relative location ¢, (not depending
on n) to some reference point x; , in each group j. Therefore define

(25) lek=ckh+x.hul k= 1,--.--. N_}'

In the multidimensional case, the simplest formulation is to have each group
lying in a hypercube with length 2. Now within each group j we use the
bootstrap replications to approximate the joint distribution of

Fup(x) - m(x) = {Pals,) —m(x; )k =1,..., Nj}.
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Next we state a theorem which shows that the bootstrap works for the set
of locations within each group. For notational convenience we suppress the
dependence on j. Technical assumptions are:

AssuMpPTION 1. m(x), f(x) and o*(x) = Var(Y|X = x) are twice continu-
ously differentiable.

AssumpTiON 2. The kernel function K is symmetric and nonnegative,
C'K = J{KZ < ® and dﬁ' L] IHEK{H}(EH < %,

AssumpTioN 3. sup, E(s3X = x) < o,
AsSSUMPTION 4.  flxg) =27 > 0.

Under Assumptions 1 and 2, reasonable choice of 2 will be in the set
H, = [im lf{4+:i),§n—lf[4+d}]‘ D<e¢<E<m,

For this choice of bandwidth, the kernel smoother #,(x) is asymptotically
optimal, see Section 5.1 of Hardle (1989). This assumption is not restrictive
because, for ¢ and ¢ reasonably small and large, respectively, it will be satisfied
with probability tending to 1 if % is chosen by cross-validation, for example,
see Hirdle, Hall and Marron (1988). The exact specification of the rate of
convergence of g is less important for the validity of the following theorem,
although it must tend to zero at a rate slower than k. Hence it is assumed that
g 18 chosen from the set

G, = [n~V@* D5 n=5] 55 0.

A fine tuning of the choice of bandwidth g is presented in Theorem 3.

THEOREM 1. Given the previous assumptions, we have along almost all
sample sequences and for all z € R,

sup sup ‘P“x{m[rﬁh(g} —m(x)] < §}

heH, gei,
=PH{Vh? [mi(x) - Ay(9)] <2f| - 0.

Note that our assumption on the speed of the bandwidth % ensures that
each of the previous probabilities has a nontrivial limit. In fact, the proof of
the theorem comes from showing that both Vnh? [#2,(x) — m(x)] and
Vah? [m3(z) — o{x)] have the same limiting normal distribution. The reason
that uniform convergence (in A and g) in the previous result is important is
that it ensures that the result still holds when k or g are replaced by randem
data driven bandwidths. For each group j this joint distribution is used to
obtain simultaneous 1 —a/M error bars that are simultaneous over k =
1,..., N, as follows. Let B > 0 denote a generic size for individual confidence
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intervals. Our goal is to choose 8 so that the resulting simultaneous size is
1 —a/M. For each x,,, k=1,..., N, define the interval I, ,(f) to have
endpoints which are the 8,/2 and the 1 — /2 quantiles of the (rAj(x; ,) —
i (x; ) distribution. Then define a, to be the empirical simultaneous size of
the B confidence intervals, i.e., the proportion of curves which lie outside at
least one of the intervals in the group j. Next find the value of 8, denoted by
B;, which makes ay, = a/M. The resulting 8, intervals within each group J
will then have confidence coefficient 1 — « /M. Hence by the Bonferroni bound,
the entire collection of intervals I, ,(B), k=1,...,N;, j= 1,...,M will
simultaneously contain at least 1 — « of the distribution of ®j(x; ,) about
e (x; ). Thus the intervals I; ,(B;) — i (x; ;) + i lx; ;) will be simultane-
ous confidence intervals with confidence coefficient at least 1 — a. The result of
this process is summarized as:

Tueorem 2. Define M groups of locationsx; ,, k=1,... N, j=1,..., M,
where simultaneous error bars are to be established. Compute uniform confi-
dence intervals for each group. Correct the significance level across groups by
the Bonferroni method. Then the bootstrap error bars establish asymptotic
simultaneous confidence intervals, i.e.,

(2.6) nh{“n P{m(xj,k} € Ij,k{ﬁj) — g (x; ) + (%5 4),
k=1,....,N,j=1,...,M}21-a.

As a practical method for finding B; for each group j, we suggest the
following halving approach (also called a bisection search). In particular, first
try 8 = a/2M and calculate a,. If the result is more than a/M, then try
B = a/4M, otherwise next try g = 3a/4M. Continue this halving approach
unit neighboring (since only finitely many bootstrap replications are made,
there is only a finite grid of possible B’s available) values g, and Bg* are found
so that a; < a/M < ag.. Finally, take a weighted average of the g, and the
B* intervals where the weights are (ag. — a/M)/(ay. — ay ) and (a/M -
ag )/{ag — ag ), respectively.

Note that Theorem 2 contains, as a special case, the asymptotic validity of
both the Bonferroni and the direct simultaneous error bars. Bonferroni is the
special case N; = -+ = Ny, = 1 and the direct method is where M = 1.

The previous theorems require that M, the number of neighborhoods,
remain constant with respect to n. The reason is that otherwise, the Bonfer-
roni method of combining across neighborhoods, will require the significance
level for each neighborhood to tend to zero. This means we could no longer
apply Theorem 1, because it is formulated in terms of fixed z. An interesting
direction for further work would be to investigate a suitable analogue of
Theorem 1, which would allow M to grow. The neighborhood approach should
be very useful here because only M need grow, not N.

The next issue is how to fine tune the choice of the pilot bandwidth g. While
it is true that the bootstrap works (in the sense of giving asymptotically correct
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coverage probabilities) with a rather crude choice of g, it is intvitively clear
that specification of g will play a role in how well it works for finite samples.
Since the main role of the pilot smooth is to provide a correct adjustment for
the bias, we use the goal of bias estimation as a criterion. We think theoretical
analysis of the previous type will be more straightforward than allowing the
N; to increase, which provides further motivation for considering this general
grouping framework.

In particular, recall that the bias in the estimation of m(x) by M, (x) is
given by

bu(x) = EY ¥, (x) — m(x).

The bootstrap bias of the estimator constructed from the resampled data is
by (%) = E*[mf(x)] — i (x)

1 2 Kiy(x—X,)m (X)) B

T El fi(x)

The following theorem gives an asymptotic representation of the mean square
error for the problem of estimating b,(x) by b, ,(x). It is then straightforward
to find g to minimize this representation. Such a choice of g will make the
means of the Y|X and * distributions close to each other.

For notational simplicity, we state this result explicitly only for the case
d = 1. Extension to general d is straightforward, but messy, because the
derivatives need to be replaced by sums of partial derivatives. In addition to
the technical assumptions required for Theorem 1, we also need:

().

AssuMPTION 5. m and f are four times continuously differentiable.
AssuMpTION 6. K is twice continuously differentiable.

THEOREM 3. Under Assumptions 1-6, along olmost all sample sequences,
2 .
(2.7) E[(5h1g{x] — by(x)) ‘Xl,...,Xn] ~ h[Cin gt + Cogt],
in the sense that the ratio tends in probability to 1, where

_(K)((1/2)dg) o %(x)
¢ f 7(2) ’
((1/2)dg)[(mf)® = (mfry](x)?
f(x)* '

2

An immediate consequence of Theorem 3 is that the rate of convergence for
d = 1 of g should be n~'/°, This makes precise the previous intuition which
indicated that g should be slightly oversmoothed. In addition, under these
assumptions, reasonable choices of A will be of the order n~'/°. Hence, (2.7)
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shows once again that g should tend to zero more slowly than k. Note that
unlike the previous results, Theorem 3 is not stated uniformly over h. The
reason is that we are only trying to give some indication of how the pilot
bandwidth g should be selected. Note also that Theorem 3 applies only to the
mean of the distributions, when a better choice of g would probably take into
account other distributional aspects as well. For example, some preliminary
calculations along this line show that the effect of g on the variances is of the
same order as the effect on the mean. We do not choose to pursue this further,
because deeper analysis appears quite complicated and seems too tangential to
the points we are trying to make in this paper.

All of the results in this paper have been stated in terms of the so-called
stochastic design model where the regressors X are thought of as realizations
of random variables. Since these results are all conditional on X,,..., X, our
ideas carry over immediately to the case where the X’s are fixed and chosen by
the experimenter.

In the case of binary regression [dose-response curves, Cox (1970), page 8],
where the response variable Y takes on only the values 0 or 1, there are more
natural ways of obtaining bootstrap confidence intervals than those described
here. A direct application of our method would give bootstrapped data Y*
which take on values different from 0 and 1. A seemingly more natural
approach would be to bootstrap from a Bernoulli distribution with parameter
m (X,).

3. Simulations and application. In this section we consider three main
points. The first is investigation of how much practical difference there is
between pointwise, simultaneous and Bonferroni confidence intervals. Second,
we compute the coverage probabilities of the bootstrap confidence intervals,
introduced in Section 2, in several simulation settings. Third, we give further
details concerning the example considered in Section 1.

To study the practical difference between the various types of error bars, we
consider the distribution of 7 ,{x) — m(x) at a grid of x values for some
specific examples. We chose the underlying curve to be mix)==x +
4e-2*" / 27 . To see what this looks like, consider Figure 2. The solid curve in
each part of Figure 2 is this m(x). This form is both convenient to work with
when caleulating various constants, and also is challenging for the methodol-
ogy, hecause the hump is an interesting feature to be detected.

We chose the marginal distribution of X to be N(0,1) and took the
conditional distribution of Y |X to be N(m(X), ¢?), for ¢ = 0.3,0.6,1, 1.5. For
each of these four distributions, 200 observations were generated.

To study the differences between the various error bars, for each setting,
500 pseudodata sets were generated. Then we calculated kernel estimates, at
the points x = —2,— 1.8,~ 1.6,..., 1.8, 2, using a standard normal density as
kernel. The bandwidth was chosen to be h, as previously discussed. Figure 2
shows, for the ¢ = 1 distribution, m(x) overlayed with error bars whose
endpoints are various types of quantiles of the distribution of M (x). The
centers of the error bars are at the means of these distributions and show
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Fio. 2. Owerlay of mix) with empirical (from 600 simulation runs} quantiles of i) (x)
distribution. Centers of bars are means of distributions. Error bars are B0% simultaneous.

clearly the bias that is inherent to nonparametric regression estimation. Note
in particular how substantial bias is caused by both the curvature of m(x)
near the hump and by the curvature of f(x), near x = —2,2. The bars in
Figure 2 are simultaneous bars.

For easy comparison of the lengths of these intervals with the other types,
consider Figure 3. This shows, for the same x values, the lengths of the four
types of bars. Of course these bars are all shorter near the center, which
reflects the fact that there is more data there, so the estimates are more
accurate. As expected, the lengths increase from pointwise, to actual simulta-
neous, to neighborhood, to Bonferroni. Also note that, as stated in Section 2,
the difference between the actual simultaneous bars and the neighborhood
simultaneous bars is really quite small, while the pointwise are a lot narrower.
The one perhaps surprising feature is that the Bonferroni bars are not very
much wider than the neighborhood bhars.

To see how the bootstrap methodology proposed in Section 2 performed for
the simulation settings considered here, we calculated estimates of the simul-
taneous coverage probabilities for 21 equally spaced error bars on [—1,1].
These estimates were calculated by applying the methodology to 500 psuedo-
data sets, for each of the various settings. For each data set we used 500
bootstrap replications. The pilot bandwidth g was taken to minimize a global
version of the asymptotic representation given in (2.7), where the quantities
that depend on x were replaced by their integral over [—1, 1]. The bootstrap
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Fic. 3. Lengths of the bars in Figure 3, x locations are the same.

distribution was then used to derive the four types of error bars: pointwise,
actual simultaneous, neighborhood simultaneous and Bonferroni. Then for
each type of bar, the estimated simultaneous coverage probability is the
proportion of times that the 500 bars cover the true curve m(x) at each x
value. The estimates are given in Table 1. To give an idea of the Monte Carlo
variability in these estimates, also included are the radii of approximate 95%
confidence intervals, of the form 1.56\/ p(1-p)/ V500, where p is the
estimated probability. Such confidence intervals are of course rather poor for p

TasLE 1
Estimated ( from 500 simulation runs) coverage probabilities for bootstrap error bars

Pointwise Simultaneous  Neighborhood  Bonferroni
or=03h=h, 0.03 + 0.02 0.52 + 0.04 0.55 + 0.04 0.65 + 0.04
or=06h=h, 0.09 + 0.02 0.56 + 0.04 0.59 + 0.04 0.69 + 0.04
o=10h=h, 0.10 + 0.03 0.59 + 0.04 0.63 + 0.04 0.74 £ 0.04
o=15h=h, 0.16 + 0.03 0.56 £+ 0.04 0.65 + 0.04 0.79 + 0.04
og=10h=~Hh,/2 0.04 + 0.02 0.57 £ 0.04 0.60 + 0.04 0.65 + 0.04
c=10hkh="h, 0.10 + 0.03 0.59 + 0.04 0.63 + 0.04 0.74 + 0.04
or=10,h=2+h; 001+001 0.10 + 0.03 0.16 + 0.03 0.33 + 0.04
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close to 0, but in most cases suffice to give a decent idea of the variability
involved.

This table looks somewhat disappointing since the observed coverage proba-
bilities are all significantly below the desired value of 80%. Careful investiga-
tion revealed that this was due to problems with the estimated bias. More
precisely it was caused by a systematic underadjustment in our bias correction
(i.e., bias in the estimated bias adjustment). In Figure 4 the difference between
the solid curve m(x) and the dashed curve Eri;(x) is the true bias for our
simulation setting in the case ¢ = 0.3, h = k. This bias is estimated for each
data set by the difference between 72 ,(x) and E*mj(x). The bias in this
estimation process is then the difference between the curve made of dots and
dashes Em (x) and the dotted curve E(E*m}(x)). Observe that because
Er _(x) has less curvature than m(x), the estimated bias will typically be
smaller than the actual bias. The effect does not look very large, but simulta-
neous coverage turns out to be a very sensitive quantity. Note that this also
explains why the A =2+ h; line of Table 1 has much smaller coverage
probabilities than the others, since such a large h value means more bias than
in the other settings. Of course this bias effect goes away asymptotically, but in
the example considered here, Figure 4 shows that it is not negligible (and we
believe this problem will exist quite often). Experiments with different values

1 L A "t i 1 e I i L L

-1.0 -0.5 0.0 0.5 1.0

-1

Fic. 4. Comparison of true bias (Ert;, — m) with expected estimated bias (E(E*m}) - Er,) for
or = l],a, .I'i- = p‘!-n.-
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TABLE 2
Estimated ( from 500 simulation runs) coverage probabilities for bootstrap error bars with bigs
correction

Pointwise Simultaneous Neighborhood Bonferromi

o=03hk=n"h, 0.09 + 0.02 0.85 + 0.03 0.87 + 0.03 0.94 + 0.02
oc=08,k="hy 0.15 + .03 0.83 + 0.03 0.86 £+ 0.03 0.94 + 0.02
oc=10h="h, 0.20 + 0.03 0.83 £+ 0.03 0.88 + 0.03 0.94 + (.02
o=15h=h 0.24 + 0.04 0.82 + 0.03 0.87 + 0.03 0.94 + 0.02
=10 h=hy/2 0.05 + 0.02 0.87 + 0.03 0.89 + 0.03 0.93 4+ 0.02
=10k =h, 0.20 + 0.03 0.83 + 0.03 0.88 + 0.03 0.94 + 0.02
a=10h=2%h, 0.37 + 0.04 0.79 + 0.04 .86 £+ 0.03 0.95 + 0.02

of g failed to alleviate this problem. An approach to the problem motivated by
Figure 4 is to replace h by ¢ h for some ¢> 1 in the bias estimate.
Determination of ¢ and further analysis is beyond the scope of this paper.

To further verify that the problem here was with the bias, as indicated in
Figure 4, and not with the wild bootstrap technique, we reran the simulations
with the following bias adjustment. The bootstrap residuals £* were replaced
by unbiased residuals £**, which were resampled as previously indicated,
except that £, was replaced by ¥; — m(x;). Then the bootstrap data Y, was
replaced by unbiased data ¥;** = m(x;) + ¢7*. Table 2 shows the resulting
coverage probabilities.

Observe that now most of the coverage probabilities for the simultaneous
bars are essentially 80%, with those that are off being slightly larger. This
indicates that if the previously discussed bias problem did not exist, then the
bootstrap methodology proposed here would give very slightly conservative
performance (i.e., error bars too wide) for the example we have considered.
Note that as expected from the previous analysis, the neighborhood bars
exhibit coverage probabilities which are slightly bigger than the simultaneous
(not a significant difference in most cases), but the Bonferroni are quite a bit
larger. Also as expected, the coverage probabilities for the pointwise bars are
far too small.

In the example on demand theory treated in Figure 1, the functional form of
this so-called Engel curve is of specific interest for theoretical economists. In
particular the concavity of the curve at about two times the mean income
(x = 2.0, as these data have been normalized by dividing by their mean) has
important implications regarding the law of demand, see Hildenbrand and
Hildenbrand (1986). The error bars for this potato/income example were
constructed using the previous bootstrap method. Figure 1b indicates the
nonmonotonicity of this Engel curve and supports other functional forms than
those traditionally used, such as linear or working-type forms.

The previously described problems with bias are not a major problem in this
example, because if the underadjustment of bias were improved, then our

Hardle, W. and Marron, J.S. (1991) Bootstrap Simultaneous Error Bars for Nonparametric
Regression



Annals of Statistics, 19, 778-796

conclusion of concavity near x = 2.0 is in fact strengthened. Also as the sample
size in much larger now, it seems reasonable to hope that the asymptotic
negligibility of the bias problem is closer to being realized.

4. Proofs.

Proor oF THEOREM 1. For notational simplicity, the proof is given explic-
itly only for the case d = 1. The theorem is an immediate consequence of the
following lemmas.

LEmma 1.  Along almost all sample sequences,
Vah [,(2) — m(x)] = N(B,V),
uniformly in h and g, in the sense that for ail z € RV,

sup sup | PY{ynh [y(z) — m(x)] <z} — 5 p(2)| 0,
hel, ged,

where ©y \ denotes the normal cumulative distribution with mean B and
covartance V and where

, . f(x)
K® - a?
V= {(uvu), Vpr = (Ckf(:; (%o)

for K'® the convolution of K with itself.

Lemma 2. Along almost all sample sequences,
Vak [t (x) - iy(x)] - N(B,V),

uniformly in h and g, in the same sense as in Lemma 1 (except that the Y1X
distribution is replaced by the * distribution).

Proor oF LEMMa 1. The Cramér-Wold device is used in this proof. We will
show that for all £ € RY and all z € R,

\PY'X{!T(VH[%(;] - m(z)]) <z

~o((z - 7B) [yt )| - 0.

uniformly over h € H,_, where ® denotes the univariate standard normal c.d.f.
To obtain uniformity over & requires some modification of the Cramér-Wold

(4.1)
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device. In particular, Theorems 7.6 and 7.7 of Billingsley (1968) need to be
extended in a straightforward fashion. To establish this, following Hérdle and
Marron (1985), we first make the linear approximation

(4-2) Vah [, (x) — m(x)] =L, + 0,(L,),
where
17 Kylx _Xi)[Yi - m{ﬂ] }
. M{FEL' f(x) '

The term o,(L,) is of lower order uniformly over H, by (5.1} of Hérdle and
Marron (1985) and by Lemma 1 of that paper. Now write

L,=V. +B,,
where
1 i K.ﬁ-(:! —X,-]EE}
V. = ynk{—
" v {.’1:§1 f{‘E]

and £, = Y, — m(X)),

B, = i | Ly Ko - X)) [m(X;) — m(x)] }

|\ nioh - f(x)
The proof of Lemma 1 follows from
(4.3) tTV, = N(0,£7Vt),
(4.4) {"B, - ("B,

uniformly over h € H . .

To prove (4.1), we use Esseen’s inequality for arbitrary independent random
variables given, for example, on page 111 of Petrov (1975). For this purpose
define W, (x) = n V2h'?K (x — X,)/f(x),

Sy = L Var(iTW, ()6 %o X,)

i=1

and
San = ¥ E(|f" Wi(x)e:[1Xs, . X).
i=1

The Esseen inequality completes the verification of (4.3), when we show that
sup, S,,/53/% =0(1) as.

To evaluate S,,, note that E*S,, = 7V, t, where the (k, !) element of V), is
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by the assumption on x,
[Ew(xx = w)Kp(x; = w) f(u)o(w) du/( f(x3) F(x))
= hTIK (e, — ¢, )o*(x,) /f(x,) + O(R?).
Since §,, — ES,,, a.s. by Theorem 1 of Feller [(1970), page 238] we have that

Sy, = h KB e, — ¢)o%(xy) /f(x5) +0(1) as.

Uniformity over k is obtained by a suitable strengthening of the previous
theorem. In the same manner the term S,, can be evaluated to see that

sup, n'/*h1/28, = 0(1) as.

Thus the statement (4.3) follows.
For the proof of (4.4), see the bias evaluation in Collomb (1981) or Hirdle
(1989). O X

The proof of Proof of Lemma 2 is similar in spirit to that of Lemma 1, but is
slightly more complicated because more terms arise,

Proor oF THEOREM 3. The proof of (2.7) uses methods related to those in
the proof of Theorem 1, so only the main steps are explicitly given. The first
step is to decompose into variance and squared bias components,

(4.5) E[(8s,(x) - 04(0))| X0 K| = %+ B2,
where
7, = Var(b, ()| X,,..., X,),
B, = E(by (x) - by(x)|X,,..., X,,).
Using the same linearization technique as at (4.2) together with
‘fgﬂ = 'c‘anl + ﬂ(ﬁﬂl)l
where
B = [[Kelx - %0 e - 0] 720
for
Uy(x) = [Ky(x — s)[m(s) — m(2)] f(s) ds.

Now by first integrating by substitution, then differentiating and finally Taylor
expanding and collecting terms,

wi(x) = B2 (3dg)[(mf)® = (mf")"|(x) + o(h2).
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Hence, by another substitution and Taylor expansion,

B,y = g0 (2 ) [ (m)® — (mf")](x) + o(g?h?).
Thus, along almost all sample sequences,
(4.6) B2 = Cygth® +o(g'h?)

for C, as defined in the statement of Theorem 3.
Calculations in a similar spirit show that

¥, = n thig ®C, + o(n 'h*g7%),

where C, is defined in the statement of Theorem 3. This, together with (4.5)
and (4.6) completes the proof of Theorem 3. O
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EMPIRICAL EVIDENCE ON THE LAW OF DEMAND

By WoLrGaNG HArRDLE, WERNER HILDENBRAND,
AND MicHAEL JERISON'!

A sufficient condition for market demand to satisfy the Law of Demand is that the
mean of all households’ income effect matrices be positive definite. We show how this
mean income effect matrix can be estimated from cross section data under metonymy, an
assumption about the distribution of households’ characteristics. The estimation proce-
dure uses the nonparametric method of average derivatives. Income effect matrices
estimated this way from U.K. family expenditure data are in fact positive definite, This
result can be explained by a special form of heteroskedasticity in the data: houscholds’

" demands are more dispersed at higher income levels.

Kevworps: Law of demand, income effect, average derivatives, nonparametric estima-
tion, metonymy.

1. INTRODUCTION

WHEN GENERAL EQUILIBRIUM MODELS are used to make comparative static
predictions ‘they cease to be general. This is necessarily so. Without a specific
structure of the demand and supply system one cannot expect any definite
comparative static results. However, in most analyses; conclusions depend upon
structure imposed either by aggregating consumers into a single representative, -
or by assuming restrictive forms for utility or production functions. Such
analyses therefore deal with special cases. The present paper considers an
alternative way of imposing structure on a general equilibrivmm model. It
considers sufficient .conditions for the multimarket version of the “Law of
. Demand” in a consumption sector; cf. Hicks (1956). The sufficient conditions
are a hybrid, combining standard theoretical restrictions with restrictions that
do not come from a theoretical model. The latter restrictions can, under certain
conditions, be tested and we provide such a test usmg U.K. famlly expenditure
data.

The Law of Demand concerns effects of price changes when households’
budgets (total expenditures) are fixed. It is a condition referring to a counter-
factual, asking how mean demand wouild differ if prices were different. As such
it cannot generally be tested using time series data. If the observation period
were long enough to reveal significant price variation, it would probably also
show changes in households’ budgets, preferences, and demographic character-
istics. Our analysis describes a way of relatmg the Law of Demand to cross
sectlon data

! Supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303 der Univer-
sitiit Bonn. We thank Kurt Hildenbrand, Rosa Matzkin, and Thomas Stoker for stimulating
discussion, Sigbert Klinke and Berwin Turlach for computing assistance. We also thank Robert.
Porter and three referees for comments on earlier versions of the paper. We especially thank
Whitney Newey for formulating a statistical test of the metonymy assumption.
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The Law of Demand is essentially equivalent to negative definiteness of the
Jacobian matrix of price derivatives of mean demand. Note that this is much
stronger than the requirement that demand for a good be downward sloping
with respect to its own price. The Jacobian matrix can be decomposed into a
mean of individual Slutsky substitution matrices and a mean of income effect
matrices. Standard theory implies that the former matrix is negative semidefi-
nite, but says nothing about the latter. A sufficient condition for the Law of
Demand is positive definiteness of the mean income effect matrix. However, for
a single consumer, the income effect matrix cannot be positive definite. It can be
positive semidefinite, but only in the restrictive case of homothetic preferences.
Hildenbrand (1983) and Hildenbrand and Hildenbrand (1986) have shown that
when households have identical demand functions, dispersion in the income
distribution contributes to the positive definiteness of the mean income effect
matrix. In this paper we show that dispersion in tastes can also help. In
particular, if the Engel curves of different consumers.spread out at higher
income levels, the income effect matrix is likely to be positive definite. This type
of spreading of demands, a special form of heteroskedasticity is well supported
by the expenditure data examined below. Our cross section estimate of the
mean income effect matrix is indeed positive definite.

Our estimation procedure is nonparametric. Such nonparametric estimates
are ordinarily less efficient than parametric ones when the parametric forms are
known. However, the functional forms of the households’ demands are in fact
not known and cannot be accurately estimated from our data given that they
differ across households. The potential advantage of parametric estimation is
likely to turn out to be a disadvantage if the hypothesized parametric family is .
misspecified. More important, even this potential advantage is illusory in our
framework. We estimate a matrix of derivatives averaged over households, and
for these average derivatives, nonparametric estimates achieve the same rate of
convergence as parametric ones; c.f. Stoker (1986) and Hirdle and Stoker
(1989). ‘

There is another subtler reason for avoiding assumptions about functional
form. Suppose we assume that households of a particular type have identical
demand functions with a form commonly used in empirical analysis. The Engel
curves for such demands are quite smooth, i.e. do not wiggle much. It can be
shown that if the distribution of the households’ budgets is sufficiently
dispersed, then the mean income effect matrix is positive semidefinite; c.f.
Chiappori (1985) and Grodal and Hildenbrand (1989). The sufficient degree of
budget dispersion depends on the form of the Engel curves but for most
commonly used forms it is not large, and the dispersion in our data is larger.
Thus by assuming one of the standard functional forms for household Engel
curves one effectively obtains the Law of Demand by assumption (with no
further restrictions on households’ demands). Among the standard forms we
have in mind are polynomials of degree less than 5 or the forms proposed by
Leser (1963). The nonparametric approach permits us to relax an assumption:
that is clearly too strong since it implies the conclusion we are investigating.
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The paper proceeds as follows. In Section 2 we present a model of a large -
consumption sector. We define the Law of Demand and the mean income effect
matrix and show how a closely related matrix can be estimated using cross
section data. In Section 3 we discuss the latter matrix, estimated using the
method of average derivatives. The estimation procedure is described in the
Appendix. .

2, THE LAW OF DEMAND AND THE MEAN INCOME EFFECT MATRIX
2.1. A Sufficient Condition for the Law of Demand

We consider a group (population) of households. Each household spends its
exogenously given budget (total expenditure), b >0, on the demand. for /
consumption goods. The consumption behavior of a household is described by
an individual demand function f: (p,b) — f(p,b) € R!,, where p € R’,, denotes
the vector of prices of the / commodities. By deﬁnitlon we have p f( p,b)=b
for all price vectors p. In empirical literature, demand is commonly treated as a
function of current budget and prices although household decisions during the
- period of observation depend on expectations about conditions after the period.-
The above formulation is appropriate if the household has preferences for
goods during the period that are separable from later consumption, or alterna-
tively if the household faces a binding constraint on borrowing and the budget is
fixed in advance. More generally, the household could face a longer term budget
constraint, and price changes could affect the total expenditure b during the
observation period. The Law of Demand concerns the effect of price changes
with b held fixed, and this effect can be induced by changing prices and the long
run budget by the proper amount. Then long run optimization does not imply
the usual Slutsky conditions for the short run demand function f, but as noted
below, we will not need to assume that all households’ demands satisfy the

Slutsky conditions.

" Typically, different households may have different individual demand func-
tions f and different budgets b. The class of all admissible individual demand
‘functions f is denoted by . For example, F might be the class of demand
functions which are generated by all (or a certain subset of) strictly convex and
continuous (or smooth) preference relations on R’+ or, more generally, the class
of all demand functions which satisfy the Weak Axiom of Revealed Preference.
It will be convenient in the following to label the demand functions in % by an
index a (we then write f*(p, b)) with (-, -) #f¥(-, ) if @ # o. The index set
& may be a finite set, any subset of Euclidian space or, more generally, any
metric space. We shall assume that f*(p, b) depends continuously on the index
a. (This representation of % entails no loss of generality since we can always
choose  itself as an index set.)

With this notation every household i is descnbed by a pair (b;,a;) € R X &,
that is to say, by its budget b; and its demand function f%. A populatxon of
households is described by a joint distribution of budgets b and individual
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demand functions f. Let p be any probability measure on the space of
consumption characteristics R, X &. The mean demand F of a consumption
sector described by the distribution y is then defined by

poF(p)=[  f(p.b)dueR,.

We say that the Law of Demand holds in the consumption sector p if the
mean demand function F is monotone, i.e., ,

(p—aq)-(F(p)-F(q)) <0
for every. p,g <R/, with p+gq. This says that for any two different price
vectors p and g, the vector ( p — q) of price changes and thé vector (F(p) — F(q))
of corresponding demand changes point in opposite directions. Thus, in particu-
lar, every partial demand curve is downward sloping. "There is no need here to
emphasize the importance and the implications of the Law of Demand (see, for
example, Hicks (1956, p. 59)).

The Law of Demand holds trivially if all individual demand functions f are
monotone in p for every given budget b. The standard example for this case is
the set of demand functions which are derived from homothetic preferences.
For a general characterization of utilities or preferences which lead to mono-
tone demand functions we refer to Mitjuschin and Polterovich (1978) or Kannai
(1989). Another case where one obtains the Law of Demand quite easily is given
by a consumption sector with a decreasing density of budgets and a common
demand function which satisfies the Weak Axiom of Revealed Preference
(Hildenbrand (1983)). These cases, however, are examples; they cannot be
considered satisfactory foundations for the Law of Demand.

In this paper we shall proceed as follows; in a first step we derive, under -
suitable assumptions on the individual demand functions, a sufficient condition
for the monotonicity of the mean demand function F. There is no reason to
suppose that this sufficient condition is implied by any reasonable restriction on
the individual consumption characteristics and /or assumptions on the distribu-
tion u. Then, in a second step, we develop for this sufficient condition, under
suitable assumptions on the distribution u, an empirical test based on cross-sec-
tion data.

We assume from now on that the individual demand functions in & are
continuously differentiable in prices and budget. It is well-known that the
differentiable mean demand function F is monotone if the Jacobian matrix

dF(p) = (épka( P))j,k=1,...,l

. is negative definite for every p € R’ . Define the Slutsky (substitution) matrix
of the demand function f*(p,b) by

S(psb,@) =3,f*(p,b) +3,f*(p,b) f*(p,b)"
where f*(p,b) and d,f*(p, b) are column vectors and the superscript T
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denotes the transpose. For the Jacobian matrix of the mean demand function F
we then obtain

0F(p) = 5(p) - M(p),
where

S(p) =fR ><MS(p,b,az) dp  (mean Slutsky matrix)
and V
M(P)=.I;I X‘Ml?,,f“(’p,b)f“‘(p,b)Td,_L

(mean income effect matrix).

Consequently, a sufficient condition for the monotonicity of the mean de-
mand function F is that the mean Slutsky matrix § is negative semidefinite and
the mean income effect matrix M is positive definite. If one is willing to accept
the hypothesis that individual demand functions f(p, b) are either derived from
preference maximization or, more generally, satisfy the Weak Axiom of Re-
vealed Preference, then it is well-known that every individual Slutsky matrix
S(p, b,a), and hence the mean Slutsky matrix S(p); is negative semidefinite.

Of course such hypotheses are made throughout the theoretical and empirical
literature. As noted above, they could be problematic when the consumers’ time
horizon is longer then the observation period. There is little empirical evidence
concerning whether individual demands satisfy the revealed preference axioms.
Battalio, et. al. (1973).describe individual consumer expenditure data in which
violations of the Strong Axiom are fairly common but are small in a well-defined
sense. Even if some consumers violate the Weak Axiom slightly, their effect on
“the Slutsky matrix S can be counterbalanced by other consumers who satisfy the:
axiom. B

‘In conclusion, assuming that the mean Slutsky matrix S(p) is negative
semidefinite, a sufficient condition for monotonicity of F is that the mean
income effect matrix M(p) is positive definite. This property does not follow
from an assumption on “rational” individual behavior. Our goal is to develop a
better understanding of the class of consumption sectors p that lead to a
positive definite mean income effect matrix M(p). For the remainder of the
paper we fix the price vector p and omit it as an argument. '

2.2. The Mean Income Effect Matrix Jor Metonymic Consumption Sectors

The mean income effect matrix M cannot be estimated directly. In this -
section we describe a closely related matrix A, that can be estimated from cross
section data, Note that the matrix M is positive definite if and only if the
symmetrized matrix

M=M+MT
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has this property. The matrix M is given by
M= ([, o 70 F0)) )

“To simiplify notation, let g, (b, a) =f(b) - fi(b). We call the matrix G(b, a) =
(g;,(b, @) the product matrix of the demand function f* at expenditure level b.
Thus, in matrix notation,

M= 3,G(b,a) du.
E _/';wab(a)l"

In order to define a matrix 4 which will be shown to be related to the matrix
M and which can be estimated from cross section data we need the following
properties of the distribution u on R, X &7 .

(i) The marginal distribution of budgets is absolutely continuous, i.e., there
exists a density for the budget distribution, which we denote by p. In addition
we shall assume that the density p is smooth.

(ii) Let ulb denote the conditional distribution of « given the budget level b
and consider the functions

f,-(b)=fML-"(b)dulb _ (i=1,...1)
and ’

Bab) = [ £7(6) fe(o)duls (ok=1,...0).
We shall assume that the statistical Engel curve f ) and‘the conditional rﬁéan

product function g, are continuously dlfferentlable
‘Let G(b) be the matrix with components 8j and deﬁne the matrix 4 by

A =[ a,,G(b))p(b) db.
ThlS matrix can be estimated from cross section data since the element a w of A
is the average derivative of the regression functxon b [, gy lb,a)dulb. For

details we refer to the Appendix.
. The matrices M and A are closely related. Indeed, since

M= |[ 8,G(b,a)dulb|p(b)db,

|, 26b.@) aute ooy

they are in fact identical, if for every b,

¥) [ 9,G(b,a)dulb=d,[ G(b,a)dulb,
(1) [, 3G, dulb =0, G(b,a)dl

i.e., the pulb conditional mean of the derivatives of [i(b,a) £, (b, a) is equal to
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the derivative of the conditional mean [, f{(b, @)fi(b, @) dulb. Thus, in partic-
ular, if the conditional distribution u}b of individual demand functions does not
depend on the budget level b (i.e. u is a product measure), then M = A.

The case in which M =A.is particularly interesting since it permits the
estimation of the symmetric mean income effect matrix M from cross section
data. This motivates the following definition.

Derinition: A distribution g of households’ characteristics (b, @) with prop-
erties (i) and (ii) is called metonymic if M = A, which is impled by (*).

To obtain a better understanding of the metonymy assumption we shall now
clarify the general relationship between the two matrices M and A. For this it is
helpful to imagine a Gedanken experiment in which the initially given house-
hold budgets are perturbed. Households with initial budget b will be called
b-households. The derivative 3,G(b, a) in the expression for M is determined by
comparing the product matrix of b-households to their product matrix when
their budgets chaﬁge ‘The derivative d,G(b) in the definition of A4 is deter-
mined by comparing the mean product matrix for a dlfferent set of households.
Deﬁne

G(b,8) = [ G(B,a)dulb,

the mean product matrix that b-households would have if their budgets were
“changed to B. Then we obtain :

M=4-U

where Cae
U=/[a,é(b,b)]p(b) db.

(9, G denotes the partial derivative of G with respect to the first argument)
Metonymy requires that the matrix U vanish. The left-hand side of (%) is
3,G(b,b) and the right-hand side is 8,G(b,b) + 3,G(b, b). Thus the equality
(), which is equivalent to 9 G(b b) = 0, implies that U = 0. Note that for a
product measure u the mapping G(b B) is constant in its first argument, hence
the matrix U vanishes. The property (*) is weaker since it only requires that the
partial derivative of G with respect to the first argument is zero on the diagonal
b = B. Metonymy is weaker still, requiring only that the integral U be zero.

Roughly speaking, under the condition (#) the distribution of demands by
B-households can be used to represent what the corresponding distribution for
b-households would look like if their budgets changed to B, for B near b. We
will make this more precise. Define

f(o.B) = [_se(B) dule
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and let v be the corresponding unit length eigenvector. Consider the composite
commodity formed by weighting the commodities by the components of v.
 Mean demand for this composite commodity at the price vector p is v+ F(p).
When prices change in the direction v, the directional derivative of demand for
the comiposite derivative is :

v-oF(p)v=v-Sv—v-Mv
< —v-Mv=—%v My,
and this last term under metonymy is —A /2. For a discrete price change, say

from g to p =g+, the effect on demand is F(p)—~ F(q) = taF(q)v, 50 the
effect on demand for the composite commodity is -

(p—4q)(F(p) - F(q)) =tv-3F(q)v = _,%,_

Table I shows that in each year the maximal eigenvalue A is near 0.2. This

-implies ‘that if prices change from g to p in the direction of the eigenvector -

corresponding to A, then the term ( p- q)(F(p) — F(q)) is bounded above by
—( l)lp al.

3.3. Sensitivity of Estimates

Computation of the estimate of A involves estimating p, the density of
households’ budgets, using a kernel estimator. The smoothness of this estimator
is controlled by a “bandwidth” parameter. A second parameter is used to delete
observations at which the estimate of p is very small. (See Hirdle and Stoker
(1989) for discussion of these parameters.)

The estimated components and eigenvalues of A4 are not very sensitive to the
choice of bandwidth and cut-off parameters. Variations in these parameters
never overturn the positive definiteness of the estimated A. Concerning sam-
pling variation, there is to our knowledge no theory of the distribution of
eigenvalues of a matrix with correlated random components. However, one gets
an idea of the distribution of the estimated minimum eigenvalue of A4 by
considering the sample dlstrlbutlon of minimum eigenvalues computed from
bootstrap estimates of A. One selects randomly (with replacement) n observa-
tions from the original sample, and estimates 4 using the constructed bootstrap
sample. Figure 1a,b shows smoothed kernel density functions for the smallest
" eigenvalues of the matrices estimated in this way from 100 bootstraps of the
1969 and 1983 samples. All the eigenvalues computed from the bootstrap
samples were strictly positive. The Appendix contains an argument relating the
bootstrap distributions to the sampling distribution of minimum eigenvalues. An
elaborated theory can be found in Hirdle and Hart (1989).
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Ficure 1.—Estimated smallest eigenvalue kernel density functions from bootstrapping.

3.4. Subpopulations

The metonymy condition is more plausible the more: “homogeneous” the
population. For this reason we tested the _positive definiteness of the matrix A
for subgroups of the population, considering stratifications by age and occupa-
~tion of the household head, and household. composition. Table IV lists the

smallest eigenvalues of the estimates of A X 100 for each age group. Nearly all
of the estimated matrices are positive definite and most of the others beloug to
the age group 80-89 with the smallest sample size.

"~ The sum of the 4 matrices for the subgroups, weighted by the’ sample size
provides an alternative estimate for M, and the minimum eigenvalue of this

estimate is bounded below by the sum of the eigenvalues for the subgroups,
- weighted by sample size. These weighted sums are strictly positive for all years.
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and

C(b,B) = G(b,B) - f(b,B)f(,B)",
respectively, the mean demand and the covariance matrix of the demands by
b-households whose budgets are changed to. 8. By the budget identity we have
-G(B, a)p = Bf*(B), so (*) implies

0=0,G(b,8)p =3, Bf*(B)dulb
where the derivatives are evaluated at b = B. Thus (*) implies}v

(+.1)  9,f(b,b)=0,
and by definition of C,
(+.2) 38,C(b,b)=0. : i
These conditions say that the mean demand and the covariance matrix of
demands by (b + Ab)-households are essentially equal respectively to what the
mean demand and covariance for the b-households would be if their budgets
expanded by Ab. Conditions (*.1) and (*.2) together imply (*) and hence are
equivalent to (*). Thus a distribution u satisfying (*) looks locally like a
product measure at least in so far as its first and second conditional moments
are concerned. In fact, if the individual demand functions are homogeneous of
degree zero then f (b, B) is independent of b.

In summary: Let the individual demand functions in & be continuously
differentiable and satisfy the Weak Axiom of Revealed Preference. If p is a
metonymic distribution on R, X &7, then a sufficient condition for the mean
demand

F)=[ f(p.b)du

"to be monotone is that the matrix A4 be positive definite.

Given the importance of the metonymy assumption it is worthwhile consider-
ing an example in which it is violated. Let the consumption sector have a finite
number of household types. All households of the same type a are assumed to
have the same demand function f“. The types of households might be identified
by demographic characteristics such as the number of household members, their
ages, etc. Among the households with budget b, the fraction that are of type f o
will be denoted by »,(b). If u is a product measure, then the functions v,(-) are
constant. On the other hand for certain demographic characteristics these
functions cannot be assumed - constant. In our example we obtain for the
matrix U:

U= T [(f5(5)(b)")vib)p(b) db.

~ The matrix U may be positive or negative definite or indefinite. The example
shows that it might well happen that metonymy is not satisfied for the whole
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population but that after appropriate stratification the subpopulations satisfy it.

The violation of metonymy poses no problem in the above example. If the
household types can be identified, then the mean income effect matrix for the
entire population can be calculated from the corresponding matrices of
the various household types. More generally, we can consider the case in which
the population is partitioned into subgroups that each satisfy metonymy. The
mean income effect matrix is then a weighted average of the average derivative
A matrices of the subgroups. To be more precise, let v; be the fraction of the
population in subgroup i and let p; be the (condltlonal) distribution of house- .

‘hold characteristics within that subgroup. The average derivative matrix for

subgroup I is

A= [, (@G(5))pi() db

_where G{b) has jk component

[, 7o) -fiee) dudb

" and where p,.(b) = [ dpib. Metonymy for subgroup i implies that the matrix

A; equals the subgroup’s symmetrized mean income effect matrix
M= f G a) du

Since p = L,u;1;, the symmctnzed mean income effect matrix for the entire
population is M= YXu;M;=YXuv,A,. So the matrix M can be estimated by
estimating the average derivative matrices A, for all the subgroups. In this case,

" ‘metonymy for the entire population can be tested by comparing A to Lv; A, If

they are not equal, the population or some subgroup must violate metonymy. A
statistical test based on estimates of 4 and A, is described and carried out in

_the Appendix. Whitney Newey has pointed out that average derivatives can be

computed conditioning on any covariates of the households’ demands. The tests
based on stratification are simply special cases of such conditioning.

We conclude this section with a brief discussion of the matrix A. In order to
isolate the factors that contribute to its positive definiteness, it is useful to
compare’ A to the income effect matrix estimated by Hildenbrand and
Hildenbrand (1986). In a consumption sector described by the distribution u on

‘R, X &, the statistical Engel curve is defined by the function

b [ f(p,b)dulb=f(p,b).

Hildenbrand and Hildenbrand (1986) estimate the symmetrized mean income
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effect matrix of f, i.e., the matrix

B = [4,(7(p,5)f(p,b)")p(b) db.

This matrix turns out to be “approximately” positive definite. More precisely,
_the matrix B is typically ill-conditioned; some eigenvalues are very small in
magnitude (positive or negative), however the larger eigenvalues are always
positive, It is easy to imagine consumption sectors for which the matrix B is
singular. For example, if p is the uniform distribution on the interval [0, 8], then
B =f(B)f(B)", which is a positive semidefinite matrix of rank one. Under
appropriate assumptions on the form of the statistical Engel curves one can
show, as mentioned above, that the matrix B is always positive semidefinite
provided the variance of the budget distribution is sufficiently large (for details
see Chiappori (1985) and Grodal and Hildenbrand (1989)).
The matrix B differs from the above matrix A by the average derivative of a
conditional covariance matrix. To see this, we note that the jk component of
the conditional covariance matrix C(b) of the demands of b-households is

cov, |b(f, (), f2(b)) = ff;(b)fk(b)dl-"lb f(b)fk(b)

Hence we obtain
' A=B+V.
where

V= [3,C(b)p(b) db

is the average derivative of the conditional covariance matrix C(b) Note that
C(b)p =0 and hence, Vp =0, so V is singular.

The jth diagonal component of C(b) is the variance of the demands for good
j by b-households. The magnitude of the jth diagonal component of V mea-
sures the heteroskedasticity of the households’ demands for good j since it is an
average derivative with respect to b of the conditional variances of demands for
good j. In a typical cross-section, demand for each good is heteroskedastic

(variance increases with total expenditure b), so the diagonal components of V
are strictly positive.

Positive semidefiniteness of the matrix ¥ means roughly that on average the
dispersion in consumer demands rises with the size of the budget b. A closely
related type of increasing dispersion was shown by Jerison (1982) to be the
weakest Engel curve restriction ensuring that mean demand satisfies the Weak
Axiom (see also Freixas and Mas-Colell (1987)). Increasing dispersion has a
simple geometric representation. Given a budget b, the dispersion of the
b-households’ demands for, say, the first m goods is measured by the principal
minor matrix C(b) formed from C(b) by deleting its last / ~m rows and
columns. When C(b) is nonsingular, this demand dispersion can be represented
geometrically. There is a unique ellipsoid (called the ellipsoid of concentration)
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centered at the origin in R™ such that a uniform distribution over the ellipsoid
has the variance-covariance matrix C(b). The ellipsoid consists of the set of x
satisfying

x-C(b) 'x=m+2;

of. Cramér (1946, Ch. 22). The ellipsoid gives a simple description of the form of
the dispersion of the b-households’ demands for the m goods. Larger variances
correspond to a larger ellipsoid. A strong form of increasing dispersion can be
represented by nested ellipsoids, with the ellipsoid at budget b contained in the
one at B > b. The formal requirement for this is that x - C(B) 'x <im + 2 for
each x with x- C(b)~'x <lm +2. This is equivalent to the positive semidefi-
niteness of E(b)~1 - €(B)~", which is equivalent to positive semidefiniteness of
&(B) — C(b), cf. Dhrymes (1984, Prop. 65, p. 76). This last condition implies
that the matrix of derivatives d,C(b) is positive semidefinite, so the correspond-
ing principal minor matrix of V is also positive semidefinite. Note that the
matrix C(b) cannot be taken to be C(b) in the argument above since the latter
matrix is singular with C(b)p = 0. However if C(b) has maximal rank / ~ 1 then
C(b) can be taken to be its leading principal minor matrix of order / — 1. This
principal minor is positive definite and hence nonsingular. If the ellipsoids of
concentration for the first / — 1 goods are nested, then as above C(B) — C(b) is
positive for 8 > b. But this implies that C(B) — C(b) is positive semidefinite and
hence V also. (To see this, note that any J-vector x can be written as v + Ap,
where A is a scalar and the last component of vis 0. Then x:[C(B) — C(D)lx =
u-[C(B) — C(b)lu > 0, where u is obtained from v by removing its last compo-
nent.) Thus, for V-to be positive semidefinite it is sufficient but not necessary
that the ellipsoids of cencentration for the first / — 1 goods be nested, expanding
with the budget level. Sections of estimated ellipsoids projected on the plane
are illustrated in Figure 4 below.

3. EMPIRICAL EVIDENCE

In this section we present estimates of the matrix 4 for various populations,
along with other empirical evidence that will help in interpreting the results.

- 3.1. The Variables and Data

"We consider expenditures on nine commodity aggregates:

1. Housing (HOU) 6. Services (SER)
2. Fuel, light and power (FUE) 7. Transport (TRA) ~
3. Food (FOO) 8. Other goods, and miscellaneous

4, Clothing and footwear (CLO) (OGM)
5. Durable household goods 9. Alcohol and tobacco (ATQ)
(DUR) _ v

by each sampled household in the U.K. Family Expenditure Surveys (FES) from
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1969 to 1983. Each year the expenditures of approximately 7000 houscholds are
reported. For details concerning the samples and commodity classification, see
Family Expenditure Survey (1968~1983), Kemsley, Redpath, and Holmes (1980),
and Schmidt (1989). In order to interpret the results, it is convenient to
normalize the mean budget and the price indices of all the commodity aggre-
gates to equal 1. This is legitimate since the estimation of a given 4 matrix
involves observations from a single period. The demand for a good by a -
particular household is therefore the household’s expenditure on the good
-divided by the mean budget for the whole population. '

3.2. Estimates ofA

The procedure for estimating A4 by the method of average derivatives is
described in the Appendix. The estimate A= (a]k) is symmetric, and is positive
definite if all of its eigenvalues are strictly positive. Table I contains the smallest
and largest eigenvalues of A estimated from the entire FES sample in each of
the years 1969-1983. These eigenvalues are all strictly positive, so the matrices
are positive definite.

The ratio of the largest to the smallest eigenvalue in Table I is never greater
than 200. So the estimated matrices are well conditioned and their positive
definiteness cannot be attributed to numerical (rounding) errors. In order to
interpret the magnitudes of the eigenvalues-in Table 1 it is helpful to consider
“the components of A. Tables I1a and IIb show the components of the 1969 and
1983 A matrices multiplied by 100

The diagonal components of A yield estimated bounds on the own price
elasticities of demand. To see this, recall that 4, F = § — M. Under the assump-
tion that the mean substitution matrix S is negative semidefinite, the own price
effect dF;/dp; is bounded above by the jth diagonal component of —M. Under

TABLE 1

N A
MinmaL anp MaxiMAL EIGENVALUES OF A.

Year Sample Size Amin X 100 Apax X 100

1969 7007 0.31 25
1970 6391 0.24 25
1971 7238 0.31 25
1972 7017 0.28 25
1973 . 7125 0.26 24
1974 6694 0.29 24
1975 7201 0.33 24
1976 7203 0.29 24
1977 7198 0.26 24
1978 7001 0.20 24
1979 6777 0.14 23
1980 6943 0.28 24
1981 . 7525 0.18 23
1982~ 7428 0.20 24
1983 6973 0.13 . 23

(1991) Hardle, W., Hildenbrand, W. and Jerison, M.
Empirical Evidence for the Law of Demand



Econometrica, 59, 1525-1550

LAW OF DEMAND 1537

TABLE IIA
A % 100 For 1969.

HOU FUE FOO CLO DUR TRA SER OGM ATO
291 . 086 3.84 1.75 1.40 291 1.65 1.33 1.47
0.74 2.03 0.92 0.60 1.50 0.80 0.67 0.85
- 10.03 424 - 273 6.54 - 3.56 3.13 410 .
3.53 1.27 - 2.60 1.58 1.41 1
4.10 1.64 0.96 0.94 1.10
8.84 2.56 PA 2.56
3.74 1.26 1.39
1.75 1.22
3.00
TABLE liB

A % 100 For 1983

HOU FUE FOO CLO DUR TRA SER OGM ATO
5.12 1.18 421 1.76 - 1.87 4.13 2.63 2,01 1.67
0.52 1.53 0.67 0.68 1.45 0.94 0.72 0.63

6.48 2.66 - 240 5.29 331 2.77 2.56

2.34 1.03 2.24 1.47 1.28 1.05

4.23 2.04 1.29 1.16 0.94

8.86 3.23 2.36 212

5.62 1.53 1.33

242 110

1.89

metonymy, A =M + M7, so this diagonal component is a i/ 2, and the own
- price elasticity ¢; of-demand for good j satisfies

p; OF(p)| a; b
E(p) 9 2 F(p)

Since we normalized prices to equal 1 and divided each household’s demand by
the mean budget, the mean demand F,(p) equals the budget share for good j
for the entire consumption sector. The estimate of a;;/2F(p) is an estimated
lower bound on the magnitude of the jth own price elasticity, the bound due to
income effects. The set of estimated bounds is given in Table III for 1969 and
1983.

" The eigenvalues of A yield similar bounds for the effects of price changes on
the demand for certain composite commodities. Let A be an eigenvalue of 4

8,'( p)=

TABLE 1II
Lower Bounbs For OwN Price ELasTICITIES, 1969 AND 1983.

Year HOU FUE. FOO CLO DUR TRA SER OGM ATO

1969 0.12 0.06 0.19 -0.20 0.35 0.33 0.22 0.11 0.16
1983 0.15 0.04 0.15 0.17 0.32 0.31 0.27 0.15 0.12
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TABLE IV

. N o
MinmmAL EIGENVALUES OF A FOR THE STRATA “AGE.”

20-29 30-39 40-49 50-59 60-69 70-79 80-89

Amin Amin Amin Amin Amin Amin Amin
Year n x100 n X100 n X 100 n X100 n X100 »n X100 n X 100
1969 825 0.30 1275 0.25 1380 0.34 1292 0.29 1310 0.20 706 0.29 198 —0.30
1976 874 —0.49 1106 0.19 1216 0.20 1125 0.21 1192 0.47 659 .0.44 190 —-0.23
1971 980 0.24 1245 0.26 1336 0.31 1307 0.36 1309 0.30 820 ~0.13 209 . 0.85
1972 998 0.11 1244 0.15 1268 0.17 1299 0.42 1239 0.38 750 0.55 186 -0.11
1973 1003  0.14 1180 0.30 1167 -0.29 1309 0.47 1354 0.68 844 0.50 229 0.12
1974 912 0.16 1211 025 1109 0.28 1179 0.91 1248 0.16 775 0.35 227 —0.76
1975 1034 049 1296 0.75 1173 037 1217 0.20 1348 0.19 828 —0.20° 264 . —0.37
1976 1026 = 0.17 1270 0.16 1140 0.24 1244 0.16 1332 0.36 905 0.83 249 —0.96
1977 991 0.14 1361 0.29 1174 0.19 1216 0.15 1282 0.16" 888 0.29 246 0.29
1978 940 —0.13 339 0.78 1103 0.87 1268 0.15 1220 0.32 832 0.57 252 -0.91
1979 957 0.75 1313-0.10 1079 —0.15 1143 0.18 1078 -0:13 903 0.11 260 -0.90
1980 912 0.62 1416 0.69 1107 0.74 1170 0.16 1169 0.62 851 0.61 285 -0.16
1981 918 0.13 1594 0.10 1212 0.20 1229 0.27 1290 0.19 973 0.22 271  0.34
1982 987 045 1533 0.56 1201 0.85 1225 0.70 1194 0.42 939 0.63 295 —0.19
1983 898 0.78 1451 0.75 1147 0.44 1089 0.14 1170 0.33 927 - 0.50 254 —0.11

Thus the minimal eigenvalues of the weighted sum of the subpopulation
matrices are positive also. The weighted sums of these subpopulation matrices
are statistically different from the 4 matrix estimated from the entire popula-
tion. However, this difference is not large in magnitude; see the Appendix.
Similar results obtain for the stratifications by occupation in Table V and by
household composition in Table VI. The categories for the latter stratification

TABLE V

A
MinIMAL AND MAXIMAL EIGENVALUES OF A FOR THE STRATA “PROFESSION”

Pensioneer Worker Self-employed Others

Amin Amax Amin Amax Amin Aax Amin Amax

Year n X100 X100 n x100 X100 n X100 X100 n X100 X100

1969 1200 019 26 3193 033 - 25 529 013 23 2085 038 25
1970 1127 049 25 2899 016 26 486 015 24 1879 025 25
1971 1332 0.13 24 3102 039 25 580 027 24 2224 032 26
1972 1282 041 25 3065020 26 468 014 22 2202 026 25
1973 1422 033 24 3010 026 25 492 009 21 2201 034 24
1974 1343 039 24 2735 011 25 561 050 23 2055 021 24
1975 1521 033 25 2901 035 25 497 011 24 2282 044 23
1976 1568 0.70 25 2951 022 25 454 =212 23 2230 032 25
1977 1567 034 25 2884 024 25 506 014 22 2241 023 24
1978 1529 0.62 25 2764 0.15- 26 434 027 23 2274 014 24
1979 1565 0.13 24 2567 0.11 23 429 -090 23 2216 0.18 24
1980 1584 046 26 2571 046 26 462 012 23 2326 016 25
1981 1774 016 24 2659 015 24 564 009 20 2528 022 24
1982 1725 052 26 2474 002 25 491 -0.16 22 2737 014 24
1983 1719 046 24 1982 0.04 24 509 024 22 2763 010 24
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TABLE Vi

A
. MiniMAL EiGENVALUES OF A FOR THE STRATA “HousenoLp Type”

M 1F iA+1 2A 2A+1 2A+2 2A+3 2A+ +3

) Amin Arin Amin Amin Amin Ammin Amin Amin
Yearr n X0 n X100 n *x 100 n X100 n X100 =n X100 n XW0 n X100
1969 334 0.15 777 0.27 101  0.00 2120 0.22 723 031" 839 0.12 -322 030 206 0.27
1970 307 0.13 752 0.12 132 0.02 1909 0.22 621 0.07 787 0.12 339 0.04 168 0.07
1971 365 0.15 863 0.24 157 0.18 2209 022 695 0.12 832 0.08 359 0.10 194  0.07
1972 373 0.06 820 0.05 143 —0.01 2118 0.28 735. 0.14 831 0.11 362 0.18 189 -0.0}
1973 410 0.40. 909 0.20 175 0.00 2196 0.14 796 0.20 858 0.15 410 023 212 014
1974 368 0.19 881 0.03 200 0.02 2075 0.38 664 0.06 872 031 392 021 203 021
1975 400 0.02 1020 0.45 185 0.04 2139 0.29 668 0.19 1025 035 373 0.15 204 0.17
1976 476 0.11 985 0.05 240 0.13 2277 0.42 668 027 961 0.25 354 0.06 168 0.15

are:
1male(1M) 2 adults + 1 child QA + 1)
1 female (1 F) 2 adults + 2 children QA + 2)
1 adult + 1 child 1A + 1) 2 adults + 3 children 2A + 3)
2 adults 2A) 2 adults + more than 3 .children
QA+ +3)

For all stratifications, the only negative eigenvalues occur in small subpopula-
tions. '

3.5. Further Evidence

The estimates presented above support the hypothesis that the cross section
matrix A is positive definite. Rather than present a theory consistent with such
a result we will discuss further evidence that makes the above estimates more
understandable. The jk component of A was shown in Section 2 to be the
average derivative of the regression function g; that associates with each
budget level b the average of the products of demands for goods j and k by
households with budget b.

The larger the diagonal components of A the more likely is the matrix
positive definite. Kernel estimates of the functions g;; for 1969 are shown in
Figure 2, where the index j runs over the commodity aggregates food, fuel, and
transport. Estimates of g for cross products of the same commodities (j # k)
are shown in Figure 3. The household budgets and demands have been
normalized, so the unit on the horizontal axis is the mean budget.

All the curves have positive slopes. What is important is that the slopes of the
cross product curves are sufficiently small compared with the slopes of the
corresponding (own) product curves. For example, consider the curves for food
and fuel in Figures 2 and 3. The distribution of household budgets is concen-
trated on the interval from 0 to twice.the mean budget and we can see that the

(1991) Hardle, W., Hildenbrand, W. and Jerison, M.
Empirical Evidence for the Law of Demand



0.6

0.5

0.1

0.3 04

0.2

Econometrica, 59, 1525-1550

1542 WOLFGANG HARDLE, WERNER HILDENBRAND, AND MICHAEL JERISON

0.0

‘o
o
TRANSPORT 3t FOOD
<L
o
g.
NE
o
g.
<
o. “o. 1 2
™
o o E3
3f  FUEL
3
g.
op
(-]
.'o-.h
a . P
©g, 1 2 . 3

FiGURE 2.—Mean product functions §;; .for 1969. The unit on the horizontal axis is total

‘expenditure divided by its mean.

slopes of the food, fuel, and food-fuel cross product curves are approximately .1,

.01, and .02 respectively. These are essentially the values appearing in the 2 X 2

minor matrix for food and fuel in Table 1IA, and this minor matrix is positive

semidefinite. The graphs of g for other commodity aggregates have shapes and .

slopes similar to the ones shown here. .

As discussed in Section 2, the positive semidefiniteness of 4 can be better
understood by comparing it to the matrix of income effects of the cross section
(statistical) Engel curve estimated by Hildenbrand and Hildenbrand (1986). The
difference between these two matrices is the matrix V, the average derivative of
theé conditional covariance matrix. The V' matrices estimated from the entire
sample for the years 1969-83 are all positive semidefinite. By construction
V, =0 so V' cannot be positive definite. However all the estimated matrices ¥
are positive definite on the space orthogonal to p. Unlike the product matrices,
they are nearly dominant diagonal. The matrix estimates for 1969 and 1983 are
shown in Table VIIa,b. '
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FIGURE 3.—Mean cross product functions g;, for 1969. The unit on the horizontal axis is total
expenditure divided by its: amean.

e

The matrices for all the years are quite similar. Since the matrices are
symmetric by definition, they have 45 components which can vary indepen-
dently. All the components remain of the same order of magnitude during the
-sample period, and only two change sign. The spectrum of eigenvalues is also

- quite stable over time. For example, the eigenvalues vary by less than 30
percent. The strong positive definiteness of the estimates of  on the orthogo-
nal component of p can be explained along lines suggested in Section 2.
Positivity of the diagonal components follows from the heteroskedasticity of the
households’ demand for each good. This is sufficient to make ¥ nearly dominant
diagonal because the conditional correlations of households’ demands for pairs
of goods are rather small (generally below .2 in magnitude) and do not vary
systematically with total expenditure.

Kernel estimates of the conditional covariance matrices C(b) for budget
levels of 0.5, 1, 1.5, and 2 times the mean budget have been computed using
1983 data and a bandwidth equal to 0.2 (see Appendix). As discussed in Section
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TABLE VII
a. ENTRIES OF V FOR 1969.

HOU "FUE FOO CLO DUR TRA SER OGM ATO

1.09 000 -015 -022 -010 -025 -006 -—-007 -025
0.31 001 -005 -008 -011 =004 -0.02 .-004

0.98 002 -034 -~052 -022 -0.03 0.18

162 -026 -071 -024° -—003 =0.08

239 -070 -046 -0.16 ~0.29

366 -054 -033 -—044

194 ~013 -024

086 -—0.14
1.30
b. ENTRIES OF V FOR 1983.
HOU FUE  FOO CLO DUR TRA SER oGM ATO

142 006 —0.14 -024 -024 —037 =014 =016 -—021
0.14 002 -003 -0.05 -008.  -003 -002 -0.02

0.82 0.12 -~030 -035 -036 005 0.14

.19 -023 -040 =035 000 -0.04

276 —075. -0.76 -021 -0.18

343 076 035 —0.29

294 =025 -023

.02 -0.05

0.89

0.3

0.1

FOOD

I -03 -0.1 ! 0.1 0.3
- FUEL ;
FiGure 4.—Ellipses of concentration for 1983 at budget levels 0.5, 1.0, 1.5, 2.0 times the mean
budget. ’ : :
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2, these matrices determine ellipses of concentration for each pair of goods.
(The coordinates of the ellipsoid that correspond to the other goods. are set
équal to zero.) These ellipses are not always nested, but are nearly so. Figure 4
shows the ellipses for food and fuel. The conditional variances of demands for
nearly all goods are larger for 8-households than for b-households when B > b.
The only exception is for fuel with b =1 and g = L.5. On average, the disper-
sion of the consumers’ demands clearly increases with the budget level.
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" APPENDIX
ESTIMATloﬁ oF A

In this section, we describe thé procedure used to estimate the matrix
A= ]R (3,G (b)) p(b) db.
+

The data consist of households’ expenditures on each of the 9 commodity aggregates during a given
period. ) -

We normalize the prices of all commodity aggregates to be 1. A household’s demand for a good
is then equal to its expenditure on the good. The characteristics (b;,a;) of a randomly sampled
Household i have the distribution u. The mean budget in the sample is denoted b. We consider a
fixed pair of goods j and k, and define X;=b,;/b and Y, =f(p, b)fi(p, b,)/(b)*. Then we can
interpret X; as the biidget of household i.and Y; as the jk component of the household’s product
matrix when the mean budget is normalized to 1. Since b is a sample mean, the pairs (X, Y;) are
correlated for different houscholds. However, since the sample is large, the correlation is slight, and
we will ignore it, treating the (X, Y;) as i.i.d. These random variables have a distribution induced by
#, and the regression function is denoted m(x) = E(Y]X;=x). The jk component of A is then b,
where - D '

8 =Eym'(X)

= [m (x)p(x) dx

is the average derivative of m. By construction, the sum of the components of f*(p,b,) is b;, and
the b; variables are distributed with compact support. Thus the distribution of (X, Y;) has compact

support.
Our approach to estimation of the average derivative & is based on the simple observation that if

p vanishes at the boundary of its support, then partial integration gives

8= [m(x)L(x)p(x)dx

with : )
4.1) L= —dlogp/dx= —p'/p. .
Since L(-) is not known we have to estimate it. We use the kernel technique and estimate the

(1991) Hardle, W., Hildenbrand, W. and Jerison, M.
Empirical Evidence for the Law of Demand



Econometrica, 59, 1525-1550

1546 WOLFGANG HARDLE, WERNER HILDENBRAND, AND MICHAEL JERISON

e)

—

Density

FIGURE 5.—The estimated densities of total expenditure p,(x), 1968-1983. - ;

density function p(x) by a Rosenblatt-Parzen kernel density estimator

n
(42) ﬁh(,x):n—l Z Kh(x__Xi)
i=1

where K,(-)= h7IK(- /h) is a kernel function with bandwidth h. We use a quartic kernel,
K(u)=(15/16)(1 = u?)? for lul<1; see Hirdle (1990). Figure 5 shows the estimated density
functions p, for the entire sample period. .

From the estimates 5,(x) we obtain as an approximation to L(x) the ratio L,(x) — g(x)/p,(x).
(To avoid a zero denominator in low density regions we compute this only for budgets in the interval
from 0.1 to 3 times the mean budget.) The Average Derivative Estimator § is then defined as '

(4.3) §=n~t 2": Y.L (X))

i=]

. The argument in Hardle and Stoker (1989) yields the following theorem.

Averace DerivaTive EstivaTioN THEOREM: There exists a sequence of bandwidths h, -0 with
corresponding average derivative estimator 5, dgﬁned in (4.3) such that \/n_ (6 —8) has a limiting
Normal distribution with mean 0 and variance o*, where

(4.4) o2 =var[m'(X)+ (Y = m(X))L(X)].

This version of the theorem can be proved by modifying the proof of Hirdle and Stoker (1989)
slightly to allow for nonnegative kernels. The yn rate of convergence is remarkable in that all the
components of & are nonparametrically estimated without any structiral assumptions on p and m. .
Thus, although nonparametric estimation typically exhibits slower rates of convergence, the specific
structure of the average derivative functional makes it possible to achieve the rate of convergence
that is typical for parametric problems. _

The computations for the A-matrix have been performed with a variety of values for the
bandwidth 4. All of the results reported in Section 3 use 4 = 0.2 (i.e. two tenths of the mean
budget). This is the optimal value of h minimizing the mean square error (MSE) of (4.3). Hirdle,
Hart, Marron, and Tsybakov (1991) analyzed this mean square error and showed that there exist
constants C; and C, such that MSE =21~ + C;n"2h~3 + C,h*. From this expression a “plug-in”
estimate for the optimal s can be derived. The optimization of the kernel function for Average
Derivative Estimation has been considered by Mammitzsch (1989) who showed that the Quartic
kerne! used in our studies is optimal.

(1991) Hardle, W., Hildenbrand, W. and Jerison, M.
Empirical Evidence for the Law of Demand



Econometrica, 59, 1525-1550

LAW OF DEMAND 1547

In order to emmale the variability of the average derivative estimates we used the sample based
terms given in Hardle and Stoker (1989, formula (3.6)),

Y;
. (45) r,“~L,,(X)Y+n—' E [K,,(X X) Kh(X X)L,,(X)] (X)
S

The sample variance of these terms approximates the variance given in (4.4). The formula (4.5) is
based on a linearization of the average derivative estimator in (4.3). The fact however that we used a
fixed smoothing parameter for the whole range of income created high estimated variances for the
entries of the .4 matrices. This becomes evident from Figure 5 which shows the estimated densities
of total expenditure over time: at the far end (near the value of total expenditure 3.0) the estimate
p,,(x) is very small. Therefore the score function L, although we used the cutoff technique described
in Hiirdle and Stoker (1989), must become rather unc!able To overcome this difficulty we could, of
course, use a varying bandwidth / = A(x) but this is still an open problem.

An alternative method of measuring the standard error of the average derivatives is to compute
the interquartile range (or F-spread) of the terms #;; in (4.5). The F-spreads (times 100) for the
diagonal elements of the 4 matrix of 1983 for instance are

(2.3,0.6,3.8,1.9,2.2,7.4,2.6,1.0,1.1).
The variances (times 100) of the terms 7; for these diagonal elements are
(19.4,2.14,11.9, 11.0,29.5,32.4,36.7,7.1,6.9).

The variances are much larger than the F-spreads because the distributions are highly skewed. For
normal data the standard deviation is 1.39 times the F-spread.

Using these measures of variation we can consider the gquestion of metonymy of the fuil
population and each subclass defined by stratification. As an example we consider the age strata.
Metonymy requites that A equal the weighted average of the A, matrices estimated from the strata;
see Section 2. For simplicity we consider the comparison of the diagonal elements. The weighted
average matrix had the following diagonal elements in 1983:

(4.82,0.46,4.13,1.81,3.23,7.29,5.17,1.41,1.08).

As a first step one could treat these diagonal elements as given and apply a ¢ test for each element.
However, this procedure is inadequate because the two matrices are computed from the same data.
‘The resulting correlation is accounted for in the following test suggested by Whitney Newey. Let ¢
denote the vector of elements of A. Then

T=n(é-£)-27' (6 - &)
is an asymptotic chi- -square statistic for the difference between the stratified and unstratified
estimates of A. Here § 1 is the vector of components of A fz is the vector of components of the

weighted average of A estimates from the strata and 3 denotes a consistent variance estimator for
the difference. Formula (4.5) can be used to-caiculate T

n(£-£)= Zr,‘.”/s/" j=1.2,

i=1

where rf’ denotes the vector of terms in (4.5} for the stratified and unstratified case. The
covariance matrix of the difference can be estimated by

S=nt 3 (A=) (A=)

i=1

We performed this test for the diagonal of A4 and obtained the value of T = 0.046 for the year 1983.
The other years had T values in the range 0.03 to 0.1. So the hypothesis that the matrices are equal
cannot be rejected. ’ )

Bootstrapping the Distribution of the Smallest Eigenvalue of A

The distribution of the smailest eigenvalue of Ais asymptotically normal, as is seen below in
Theorem A. In the context of estimating covariance matrices similar asymptotic normality have been
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derived. To our knowledge such a result for general random matrices is not available. In the
following presentation we follow the paper by Hirdle and Hart (1991). A column vector of 0’s and a
k X k identity matrix will be denoted, respectively, 0 and 1. The eigenvalues of A are A; <A, < -+

< Ay, while those of A are /\ <A2 s <Ak =[¢;;] will denote a k X k matrix wrth typical
element c;;. For any k Xk symmetric matrix C, uvec( ) is the k(k + 1)/2 component column
VECtOr (Cyyy.vvsCiprCansenrsCorenvrCpp)- Let V denote the asymptotic covariance matrix - of

u vec(A).

THeorEM A: Define A;(A;) to be the cofactor of the ijth element of A— M. LetB= Z[AU()\ )N-
diag(A,(Ay),..., AA ), and let D(x)=|A ~xI|. 7hen

Vi (A, -1,) 3 N(0,02),
where
u vec(BYVu vec(B)
(oY

Although an estimator ¥V of V can be constructed to use™this result for testing A >0 the
procedure for domg so will be quite complicated. Therefore a bootstrap approximation to ‘the
distribution of \/~(/\1 — A,) seems to be an attractive alternative, The bootstrap we used resamples
from the data {(b;, f*i(p, b L for a given year. More precrsely n new observations are sampled
‘with replacement. T‘re bootstrap sample determmes for each pair of goods a pair (X* Y;*) defined
the same way as (X, Y)).

To define the bootstrap distribution P* of the smallest eigenvalue ‘we have to compute A¥; the
matrix A computed from a bootstrap sample (X7, Y;*). Now calculate A%, the smallest eigenvalue

ot=

of A*. Repeated sampling allows one to approxrmate the bootstrap drstrrbutron P* of (Af ~A) and

then to conduct a test of the relevant hypothe5|s Theorem B in Hiardle and Hart (1991) shows, in
fact, that the bootstrap distribution of \/‘(A* A 1) is asymptotically close to that of \/_()\1 =2y
A bootstrap test can now be condycted as fo!lows One determines .an interval [ —~B*, C*} from
the bootstrap distribution of A, —‘/\, which has probability, say, .95. Then one computes a
conﬁdence interval for A, as (X, -C*, X + B*]. The hypothesis of positive definiteness is rejected if
— C* > 0. (Of course, the nominal level of this one-sided test is .025.)
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Cross Section Engel Curves over Time

Wolfgang HARDLE (*)
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1 Introduction

The shapes of estimated cross section Engel curves are similar
for many different countries and subgroups within countries. These
regularities are sometimes referred to as empirical laws of demand
behaviour. However, they might simply be consequences of the limited
functional forms used in estimation. The present paper describes a fra-
mework for comparing cross section Engel curves using nonparametric
techniques. These techniques permit flexible estimation and statistical
comparison of curves without a priori assumptions about their funce-
tional form. We use the techniques to study Engel curves for a given
population over time,

The theoretical and applied demand literature has devoted little
attention to the evolution of cross section Engel curves. This is sur-
prising since comparison of Engel curves from different periods can
provide information about sensible interpretations and uses for cross
section expenditure data. For example, cross section Engel curves are
commonly used to classify goods as necessities or luxuries and to pre-
dict which income classes are most likely to benefit from small changes
in commodity taxes. However, if the Engel curves change substantially
over time —even during periods of stable prices and incomes — com-
modity classifications are likely to vary as well. This would cast doubt
on the corresponding inferences about tax incidence.

Cross section data are also used to estimate income elasticities in
order to predict effects of changing incomes. This approach is useful

)This paper was written at the University of Bonn. We would like to ex-
press our gratitude to the Deutsche Forschungsgemeinschaft,SFB 303 for
financial support. We are also grateful for numerous discussions with Kurt
Hildenbrand,Werner Hildenbrand, Heinz-Peter Schmitz and Tom Stoker.
We thank Angus Deaton, Arthur Lewbel and three anonymous referees for
comments on earlier versions of the paper.The data were made available by
the ESRC Data Archive at the University of Essex.
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if the evolution of cross section Engel curves is predictable, for then
knowledge of the new distribution of income is sufficient to determine
market demand. If all households have the same demand function,
then the cross section Engel curves do not vary in response to changes
in income. Stoker (1986 a,b) furnishes efficient methods for estimating
effects of distributional changes in this case. If in addition the income
density is determined by its mean, then mean demand is determined by
mean income and prices, so income distribution effects can be omitted
from a time series analysis of mean demand, Hildenbrand (1985).

As we show in the next section, when cross section Engel curves or
certain transformations of them are invariant, properties of the curves
imply corresponding (though not necessarily similar) properties of the
individual Engel curves even in the case of heterogeneous household
demands. This is important because in the heterogeneous case, without
some kind of invariance, there need not be any relationship between the
individual household Engel curves and the cross section. Cross section
invariance makes it possible to test nonparametrically a large class of
microeconomic demand models that arise in aggregation theory and are
employed in nearly all empirical work and applied general equilibrium
analyses, see Jorgenson, Lau and Stoker (1982).

The tests we discuss rely on kernel smoothing methods and are
not related to the nonparametric demand analysis of Afriat (1967) and
Varian (1982, 1983). Hildenbrand and Hildenbrand (1986) have estima-
ted cross section Engel curves using a variety of other nonparametric
methods. We describe the kernel smoothing techniques and apply them
to estimate and compare Engel curves for 9 commodity groups using
the U.K. Family Expenditure Survey (FES), 1969-1977. Engel curves
have been estimated with the kernel method by Bierens and Pott-Buter
(1990) using Dutch data, and by Gozalo (1989) using U.S. data.

The nonparametric estimates are of interest in their own right. In
addition, the kernel method provides a new way of evaluating the qua-
lity of fit of parametric Engel curve estimates. In classic cross section
consumption analyses such as Leser(1963) and Prais and Houthakker
(1955), individual household data were partitioned into 6 to 12 groups
according to total expenditure level. Then parametric functional forms
were fitted to the group means. Besides throwing away a lot of infor-
mation, this procedure is liable to give the wrong impression about how
well the various functional forms fit the individual data. When stan-
dard parametric forms are fit to group means the R? is often above .5,
but when they are fit to individual data the R? very low (in our data,
below .04). Yet such studies are still referred to in order to justify the
selection of particular functional forms in modeling individual demand.
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The kernel method generates a uniform confidence region for the es-
timated Engel curve. The size of the region describes the precision of
the estimate of the conditional mean. The region can be used to test
hypotheses concerning the form of the underlying regression function.

The way Engel curves vary over time clearly depends on the
way they are defined. For example, the nominal Engel curve for food,
obtained by plotting mean food expenditure by households at each level
of total expenditure, would probably shift up if food prices rose rapidly
while other prices and incomes were fixed. We focus instead on the
real Engel curve, obtained by plotting a quantity index of demand for
the good at each level of real total expenditure in the cross section.
If all prices and all households’ total expenditures rose by the same
percentage from one period to the next, homogeneity of individual
demands would require the quantities demanded to remain fixed. This
prediction could be tested by comparing real Engel curves from the two
periods. One would expect real Engel curves to change in response to
changes in relative prices. In fact we find that the estimated real Engel
curve for a good generally moves in the direction opposite the change
in the relative price of the good. Comparison of entire Engel curves
allows one to observe the change in demand throughout the income
distribution.

As noted above, cross section data can be used to test restrictions
on microeconomic models if cross section Engel curves or transforma-
tions of them are invariant. We define mean normalized Engel curves
which turn out to be more nearly invariant than the real Engel curves
for our sample. Mean normalized curves are obtained from the nomi-
nal Engel curves by rescaling the axes, dividing = and y variables
by their sample means. Invariance of the mean normalized curve for
a particular good implies that households whose total expenditure on
all commodities is a given fraction of economy-wide total expenditure
spend a fixed fraction of economy-wide expenditure on the given good.

In the next section, we will describe some theoretical implications
of invariance of real or mean normalized Engel curves when relative
prices and household shares of total expenditure are fixed. These im-
plications concern microeconomic models in which individual Engel
curves lie in low dimensional subspaces of commodity space. Such mo-
dels arise in the theory of income, preference and commodity aggre-
gation, cf. Lau (1982), Jerison (1984), Lewbel (1991). The subspaces
spanned by the Engel curves of different households need not be the
same, so in general there is no connection between the individual and
cross section Engel curves. However, if the real or mean normalized
cross section curves are invariant when total expenditures of all hou-
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seholds change by the same proportion, then the dimensions of the
individual and cross section Engel curves are related. Because of this
relationship one can learn from analyses of the dimension of cross sec-
tion Engel curves (e.g. Hausman, Newey and Powell, 1988, and Lewbel,
1991) even when demand functions differ across households.

The model and results on dimension are described in section 2. In
section 3 we discuss the kernel estimation procedure. The application
to U.K. expenditure data is presented in section 4. Section 5 suggests
some ways the analysis could be extended.

2 Some Consequences of Engel Curve Invariance

This section provides some theoretical motivation for studying En-
gel curve invariance. In particular, we show how standard microeco-
nomic demand models can be related to cross section Engel curves if
the latter do not vary during a period when relative prices and hou-
sehold shares of aggregate expenditure are fixed. Let ¢*/(x,p) be the
demand for good j by a household of type a with total expenditure z
at prices p. Although ¢*/ is a single valued function, this formulation
can allow for random household demands by supposing that the type of
a particular household is a random variable. The economy at time ¢ is
represented by a joint density function z(a,z|p) of household types a
and total expenditures z given the prices p. Let ¥{ and X, be random
variables on the space of households at time ¢ representing respecti-
vely expenditure on good j and total household expenditure. Then the
cross section Engel curve for good j at time ¢ is ¢ (-,p.) where

dlzp) = E(Y!|X:=2)/pi
= fq“j[x,pl]zt{a]a:,p,]da,

with p? the price of good j. Speaking in statistical terms the cross sec-
tion Engel curve is the graph of the regression function for conditional
mean demand with argument total expenditure z. Note that unless the
households are identical there is no reason to expect any relationship
between the individual and cross section Engel curves.

In order to investigate some of the theoretical consequences of
invariance we assume that household demand is modeled in the follo-
wing additive form used in virtually all empirical work and all applied
(numerical) general equilibrium models:

L
¢*(z,p) = _ ok(z,P)CE(p) 2y
k=1
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where g, is scalar-valued and C}(p) is an l-vector, ! denoting the
number of goods. The individual Engel curve ¢*(x, p) is then contained
in the linear space spanned by the vectors {Cg(p)}L_;, a proper sub-
space of commodity space if L < [. This exhausts the implications of
(2.1) at the individual level. The famous rank theorem due to Gorman
(1981) states that the vectors {C¢(p)}_, span a space of dimension no
greater than three; but this theorem applies only to the case in which
the g, functions do not depend on p and the ¢°.

Functions satisfy Slutsky symmetry. We do not make either of
these assumptions.

In particular, we do not need to assume that the consumers have
consistent preferences for the goods consumed in the current period.
Since the vectors C?(p) depend on a, the space they span can vary
across household types. The functions g, however, are assumed to be
the same for all households. Special cases of the form (1.1) include
homothetic preferences, the linear and quadratic expenditure systems
(Pollak and Wales, 1978) demands derived from translog indirect utility
(Jorgensen, Lau and Stoker, 1982), the AIDS (Deaton and Muellbauer,
1980), minflex-Laurent systems (Barnett and Lee, 1985), and the
Fourier flexible forms actually used in estimation by Gallant (1981).
For most “flexible” functional forms there are no more than three terms
in the sum (2.1), i.e. L < 3. However it is worthwhile considering
whether such a low dimensional model can be adequate when there
are many commodities.

While the form (2.1) might be chosen in applied work for the
sake of simplicity, the theory of income and preference aggregation
suggests additional reasons for being interested in such a micro mo-
del. Lau (1982) shows that if the distribution of income is unrestricted,
the form (2.1) with g, constant in p, is necessary in order for mean de-
mand to be a function of prices and L—1 symmetric summary statistics
of the income distribution. If mean demand depends only on prices and
mean income and the distribution of income is unrestricted, individual
demands must have the form (2.1) with L < 2 (see Antonelli, 1886,
Gorman, 1953 and Nataf, 1953). If households receive fixed shares of
aggregate income, income aggregation imposes no restrictions on in-
dividual demands, since mean demand is automatically a function of
mean income and prices. On the other hand preference aggregation
is still restrictive. Existence of a representative consumer whose pre-
ferences and demand depend on the income distribution implies that
individual demands have the form (2.1) with L < 2, Jerison (1992h).
In household production models, L is an upper bound on the number
of intermediate goods, Lewbel (1991),
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Direct tests of the form (2.1) require longitudinal data on house-
hold expenditures and such data are rarely available. What we have
instead are pooled data containing only a single observation of the de-
mand vector of any particular household. However, appropriate inva-
riance makes it possible to test certain implications of the micro model
(2.1) using cross section expenditure data.

Consider first the invariance of real cross section Engel curves
with respect to proportional changes in total expenditures. Suppose
that in period t each household’s total expenditure is o¢ times what
it was in a base period 0. The population density for period ¢ then
satisfies

(e P11 [ﬂ-, ﬂ;.’l’:h?} - zﬂl:ﬂl IIP]

and thus

z(alr, p) = zo(alz/ae, p).
Define Cii(z,p) = [ C2(p)z(alz,p)da, the mean of the Ci(p) vectors
for households with total expenditure r at time ¢. Note that

Cuelz, ) = f C2(p)zo(ale/or,p)da = Crol(z/0t,p).

Suppressing the subscript ¢ = 0 representing the base period, we can
write the cross section Engel curve as

alz,p) = D o(z,p)Chila,p)
k

= E gx(z, p)Cx(z /01, p).

k

Under the invariance hypothesis this must be equal to

wo(z,p) = > gx(z,p)Cil(x,p)
k

and hence

Y gx(z, p)Cx(z/ae,p) = Y g(2,p)Ci(z, p). (22)
k

k

By fixing the ratio z/o, and varying = and o; in (2.2) we see that
the cross section Engel curve qo{-,p) is contained in the linear space
spanned by the fixed vectors {Ci(z/c¢,p)}f_,. In addition, the cross
section Engel curve q(-,p) is a linear combination of the functions
g(-,p), so it is appropriate to use the same class of functions for
estimating the cross section and individual Engel curves. O
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Theorem 2.1 If individual Engel curves have the additive form (2.1)
and if the cross section Engel curve does not change when all house-
holds’ total expenditures change by the same proportion, then the cross
section Engel curve is contained in an L dimensional subspace of com-
modity space and has the form (2.1) with the superscript a removed.

Theorem 2.1 provides a nonparametric test of the model (2.1) for
individual demands. If the cross—section Engel curve does not change
when households’ total expenditures change by the same proportion
then the dimension of the span of the cross-section Engel curve is a
lower bound on the number of terms L in the sum (2.1). This test
is nonparametric since it does not require specifying the forms of the
functions gx and C? in (2.1).

Consider now the “macro” effect of the proportional increase in
total expenditures by all households, Mean demand in period ¢ is

[ oo pICE0)a0(a, slp)ida da

a function of ¢, that is also a linear combination of the functions
gr. This function is in general different from the cross section Engel
function ¢, p) but the images of the two functions lie in the same L
dimensional space.

The hypothesis that the total expenditure of each household
changes by the same percentage is restrictive, but of course the in-
variance assumption would be even stronger if it were to hold with
respect to a larger class of changes in household budgets, The case of
proportional changes is important since the distribution of total ex-
penditures can in fact nearly be parametrized by its mean (see Hilden-
brand, 1985). If households’ budgets do not move in fixed proportion the
effects on mean demand would be as described above if the deviations
from proportionality were uncorrelated with the households' marginal
propensities to consume.

Note that the test applies even if prices are not constant. Constant
relative prices are all that is needed. (See section 4.b.) Since the
data we analyze in the next section exhibit significant relative price
changes, they do not provide sharp tests of (2.1), The data appear
to be more compatible with invariance of transformed Engel curves
than they are with invariance of the real Engel curves themselves.
For this reason we consider the consequences of a second invariance
concept. We say that Engel curves exhibit mean normalized invariance
with respect to some change in the population density if the Engel
curves with = and y variables divided by their sample means do not
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change. For the density change considered above (proportional changes
in all households’ total expenditure) mean normalized invariance is
equivalent to the requirement that for each good j,

qg{otxrp)!Qf{P}
is independent of ¢, where

Qip) = f ¢*(z,p)z:(a, zlp)da dz

is economy-wide mean demand for good ; at time ¢ with prices p.
Jerison (1992a) proves that if individual demands satisfy homogeneity
and the budget identity and have the form (2.1) with g, constant
in p, then under mean normalized invariance plus a weak regularity
condition the cross section Engel curve lies in an { - L+ 1 dimensional
subspace of commodity space R'. We will prove this result for the
special case when the functions g, are power functions (see Appendix).

Theorem 2.2 Suppose all households’ demands have the form

L

¢°(z,p) = 3_=™Ci(p) (2.3)

k== 1

and satisfy the budget identity. If the cross section Engel curve for each
good satisfies mean normalized invariance with respect to proportional
changes in households’ total expenditure then the cross section Engel
curve at prices p lies in a linear subspace of dimension {— L* +1 where
L* is the rank of the moments matrix with k-th column Ep(z"™Ci(z,p)),
where the expectation is with respect to x in the base period.

By considering perturbations of economies with demands of the
form (2.3) we can say that generically the moments matrix has full
rank. This implies that generically L* = L, so the cross section
Engel curve lies in an [ — L + 1 dimensional subspace. As shown
above, the “macro” function associating mean demand with mean total
expenditure is a linear combination of the functions gi(-, p) and hence
its image lies in an L dimensional space. Theorem 2.2 thus shows that
this macro function and the cross section Engel curve are in a sense
complementary to each other. When one has high dimensional span the
other’s span must be of low dimension. This illustrates the importance
of the evolution of the cross section when one tries to interpret the form
of the Engel curves.

Gorman (1981) showed that if a demand function of the form (2.3)
satisfies the budget identity and Slutsky symmetry then at each p the
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rank of the matrix with columns C§(p) is at most three. Of course the
rank cannot be greater than L, but this does not prevent L from being
greater than three. Under the invariance hypothesis of Theorem 2.2, if
for some good the individual households’ Engel curves are high degree
polynomials then the span of the cross section Engel curve must be low
dimensional.

Finally, there is a large literature concerning the treatment of zero
expenditures in the estimation of Engel curves, cf. Keen (1986), Pud-
ney (1987). Household s have a variety of reasons for not purchasing a
commodity during a particular period. They might never purchase the
commodity, or they might purchase it rarely but in large quantities.
It is possible that such variation in purchasing behaviour could lead
to violations of the invariances defined above. However, if either inva-
riance holds, we have a theorem relating the observed cross section En
gel curves to the Engel curves of individual households. Thus, if the
hypothesized invariance is satisfied, no adjustment is needed to take
account of zero expenditures,

3 Kernel Smoothers and Cnnﬁder_me Bands

In this section we give some background on the statistical theory
of nonparametric smoothing techniques that will be used to compare
Engel curves. The basic framework is to treat the joint observations of
household expenditure ¥ on a particular good and total expenditure X
as a sample {(X;, ¥;)} , ofindependent identically distributed random
variables with density g(z,y). Given this sample the aim is to estimate
the mean expenditure given income, i.e. the conditional expectation

Mﬂ=HHX=ﬂ=]wmm@ﬁm

where

Hﬂ=/ﬂmﬂ@

denotes the marginal density of X. The graph of m is the nominal
Engel curve for the good during the given period. In this paper we use
kernel smoothers for the sake of statistical and methodological as well
as numerical simplicity. Kernel smoothers provide an estimate of m(x)
as a weighted average of the observations Y;. The weights also depend
on the sample size. As the sample grows the number of observations
X; within a certain distance from a given z increases, so in estimating
m(z), increasingly heavy weight can be placed on observations with
Xi's nearer to . The weights are constructed via a kernel function K,
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a symmetric probability density on [—A, 4]. From K one constructs a
rescaled density Ki(-) = h~1K(-/h), a “delta function sequence” with
“handwidth” h = h, tending to zero as the sample size increases, see
Nadaraya (1964) and Watson (1964). For h < 1 the density K, has
smaller variance and a higher mode than K. Given the bandwidth &,
the i-th observation receives weight Wj(z) = Ka(z — X:)/ (nfn(x)),
where "
fh(m] = ﬂ-_l zf{h[:r . X.,)

i=1
is the kernel density estimator of the marginal distribution of X. The
kernel smoother of m(z) is then

L

mp(z) =n"1 ) [Knlz - X:)/ fu(@)Ye.

i=1
In this paper we use the so-called “quartic” kernel,

_Js/16)(1-u?)?, ifjul<1;
K(u) = {0, otherwise.

The support of the corresponding K, is [—h,h], so observations with
X, farther than the bandwidth h from = receive zero weight in the es-
timate s (z). The choice of the smoothing parameter h = hy is crucial
for the behaviour of the kernel smoother. The following assumptions on
the band width sequence h,, and on the distribution of the data ensure
the pointwise consistency of the kernel smoother, i.e. at a fixed =z we
have, ag n — oo,

P(lia(z) — m(z)| > €) = 0 Ve >0.
For simplicity we assume that X is confined to the unit interval.
(A1) m(z), f(z) and o(z) = E(Y?|X = z) — m*(z) are twice differen-
tiable;
(A2) B(Y|*|X =2) < Ck, k=12,..
(A3) f(-) is strictly positive on [0,1];
(Ad) h=n"%1/5<6<1/3

The specification of A in condition (A4) says that the bandwidth
must tend to zero, but not “too fast” and not “too slow”. The reason
for this is that in a shrinking interval around z enough observations
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must be collected to ensure that the variance of the estimator tends to
zero. A proof of consistency is given in Hérdle (1990, Proposition 3.1).
Pointwise confidence intervals may be constructed from the following
result on asymptotic normality of the estimator, see Schuster (1972).

Theorem 3.1 Suppose that (A1-5) hold and let =, s, ...,z be distinct
points in (0,1). Define

. (ma(z) — m(x))
Zn(z) = (mh)!/" { E-J“{x;fff“f?}l{j}jlﬂ } :

Then for the kernel smoother vi,(-) the vector (Zn(x)),...,Za(zk))
converges in distribution to a multivariate normal random vector with
zero mean vector and identity covariance matrix.

The theorem depends on the sample being random. Adjustments
can be made for stratified samples, but we will not discuss them here,
cf. Bierens and Pott-Buter (1990). A crucial step in applying the kernel
smoothing technique is to find a reasonable bandwidth Ak for the given
data set. Qualitatively speaking, the kernel smoother () tends to
“follow the observations” closely if this smoothing parameter is chosen
too small. On the other hand if this parameter is chosen too big, the
kernel smoother will “flatten out” local fluctuations in the regression
curve. The former choice, with a bandwidth that is too small, leads
to an increase in variance of the estimator but a decrease in bias,
whereas the latter choice with too large a bandwidth will result in
an increased bias and decreased variance. A way to deal with the
trade-off between these two effects, which are typical for nonparametric
smoothing methods, is to choose the bandwidth by cross validation, see
Hirdle and Marron (1985). One selects the smoothing parameter such
that the cross validation function

CV(h) =n""Y (¥ — i 4(X,))?

i=1

is minimized. Here 1, ;(-) denotes the kernel smoother computed from
the subsample {(X;,Y;)};«, leaving out the i-th observation. The
method of cross validation automatically selects the best smoothing
parameter possible (in a squared error sense) as was shown by Hardle
and Marron (1985). It turns out that in an asymptotic sense the optimal
bandwidth has the speed n~1/®* which is just at the border of the
range of bandwidths % allowed in Theorem 3.1. The graph of the cross
validation function for the data set (X = total expenditure/mean total
expenditure, ¥ = housing expenditure) is depicted in figure 1.
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Figure 1
The cross validation function for the housing Engel curve. UK Family
Expenditure Survey,1973.

The cross validation function above indicates that one should
choose the bandwidth roughly equal to 0.3 times the mean of total
expenditure to optimize the tradeoff between bias and variance. Ho-
wever, the bandwidth chosen in this way is sample dependent, which
makes Theorem 3.1 inapplicable. Therefore in selecting the bandwidth
for a given sample, we use ¢ ross validation scores from the samples
drawn in adjacent years. This procedure is justified by the invariance
of the cross validation functions over time. In fact the optimal band-
widths for all goods and all years fall in the range [0.2,0.3] (times the
mean of total expenditure) so we set h = 0.25 (times the mean of total
expenditure) as an overall reasonable smoothing parameter.

The construction of uniform confidence bands

The idea in constructing uniform confidence bands is to approxi-
mate the suitably standardized process vnh(rin(z) — m(z)) by a cer-
tain Gaussian process. Consider the above kernel weights. Define
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ol(x) = n [0, Kn(z — X:)Y2/ falz)] — i} (x), an estimate of the con-
ditional variance function. Then

Vh(ia(z) — m(2))/ (@ (@)/(fa(2)'/?)

has approximately the same distribution as the stationary Gaussian
process

G(z) = [ K(x — u)dW (u)

with covariance function [ K(z)K(u—z)dr and W(z) a standard Wie-
ner process. Bickel and Rosenblatt (1973) derived the asymptotic dis-
tribution of sup|G(z)| which allows then construction of approximate

confidence bands, see Liero (1982), Hirdle (1990),

Theorem 3.2 Suppose that the above conditions (A1-5) hold. Then

W2 up (O 20 ) ()] — d) < 2)

P{(Enﬂﬂgn 1’”{{ {K:] .'|:E[I'.I 1] ﬂh( }

— exp(—2exp(—z)), asn— oo

with
oK) = [ Ky
and 1 C,
dp, = (26logn)V/? 4 {Eﬁo_gn}”z{ Q{m}lﬁ}
where
Co = [(K'(z))*dzx
2 2up(K)

From this theorem one obtains the approximate confidence region
for mm bounded by the graphs of my, — A, and 7y, + A, where

An(z) = [ca/(2og(1/h))"/? + du)lok(z)p2(K)/(fu()nh)]'/*
and where ¢, satisfies
exp{—2exp(—ca)) =1 — .

The region asymptotically contains the whole function m with proba-
bility 1 — o.
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Figure 2 ‘ _
Sunflower Plot of Food Expenditure vs. Total Expenditure, unit: pence
per week, 1981, FES
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Note that for a given sample size n and bandwidth h, the size of
the confidence band 2A(x) depends only on the density estimate f,(x)
and the conditional variance estimate o2(z) of expenditure ¥ on the
good. It is proportional to the standard deviation ox(z) and inversely
proportional to the square root of the density.

4 Empirical Results

In this section we apply the techniques described above to U.K.
Family Expenditure Survey (FES) data from 1969 to 1977. Cross sec-
tion Engel curves for nine commodity aggregates have been estima-
ted on the entire sample of households in each odd numbered year.
The commodity aggregates are housing, fuel, food, clothing, durables,
transport, services, alcohol and tobacco, and “miscellaneous and other
goods”. The curve for each agpregate 7 was estimated using the quartic
kernel, the Working (1943) parametric model

#(x) = (8; + a;lnz)z (4.1)

and a cubic polynomial in 2, where « is total expenditure. We compare
the parametric and nonparametric estimates for the same data from
a given year. We then compare transformed versions of the parame-
trically and nonparametrically estimated Engel curves from different
years, using transformations appropriate for testing the invariance dis-
cussed in section 2.

Figure 2 is a sunflower plot of the 1981 distribution of households’
total expenditures and expenditures on food. The density of observa-
tions in a region is represented by the number of petals on the flowers
there. Expenditures are measured here and below (unless otherwise
noted) in pence per week. The dispersion in Figure 2 is striking. Hou-
seholds in the same column, i.e. with weekly total expenditure within a
few pence of each other differ by a factor of fifteen in their food expen-
ditures. This is undoubtedly related to the fact that the expenditures
are observed during a period of only two weeks.

Figure 3 shows the 1971 nominal cross section Engel curve along
with the uniform 95% confidence band described in section 3. Although
the scatter plot for the year 1971 is as dispersed as in Figure 2,
the conditional mean food expenditure is estimated very precisely at
total expenditurelevels near the sample mean of 3099. The confidence
bands spread out at higher total expenditure levels since there are few
observations above twice the mean. Thus one cannot hope for precise
Engel curve estimates over this high range of expenditure levels.
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Figure 3

Cross section nominal Engel curve for food with confidence bands, year
1971

4.1 Comparison of Parametric and Nonparametric Estimates

The confidence bands defined in the last section can be used to
test the hypothesis that data (X}, Y;) from a given year were randomly
drawn from a distribution on the positive orthant with a given curve
as its conditional expectation function m(z) = E(Y|X = z). The test
is simply whether the given curve lies within the confidence bands.
In this way we see that the parametric Working (1943) form of Engel
function (4.1) is nearly always rejected at a 95% confidence level. The
main exception is for the durables aggregate, which has the largest
coefficient of variation of expenditure at most levels of total expenditure
z. This implies that its confidence bands are wider than for other goods
(relative to the level of expenditure on the commodity). Examples of
the above tests are given in Figures 4a,b and ¢ which illustrate kernel
estimators and their confidence bands along with Working parametric
estimators of the 1971 Engel curves for food, housing and fuel.

For many goods and years the rejection of the Working fit is small
in the sense that the parametric estimate lies outside the confidence
bands only over a small interval of total expenditures, and its distance
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from the confidence band is relatively small. For example, the rejec-
tion for transport occurs only at low levels of total expenditure. In
other cases, e.g. food and housing in Figures 4a and 4b, the parametric
fit leaves the confidence bands over a larger set of total expenditures,
but the distance from the bands remains relatively small. The compari-
son of parametric and nonparametric estimates yields a new test of the
quality of fit of parametric estimates. As the dispersion in Figure 2 sug-
gests, the R? for the Working Engel curve estimates is extremely low
(often below 0.03). However, what matters is the difference between the
estimated Engel function ¢ in (4.1) and the population Engel function
q for the period. The comparison of nonparametric and parametric es-
timates gives an idea of the distance between the parametric estimate
and the conditional mean at each level of the independent variable x.
If parametric forms are needed for theoretical or computable economic
models, the analyst has a basis for trading off simplicity of functional
form against goodness of fit.

rson |

oo

s00

a S04 oo

Figure 4.a
Nonparametric nominal Engel curve for food, and Working fit,1971, FES

The Working model is generally thought to provide a good fit for
food (cf. Leser, 1963), yet in Figure 4a it appears to underestimate

Hardle, W. and Jerison, M. (1991) Cross Section Engel Curves over Time



Recherches Economiques de Louvain, 57, 391-431

1500

1000

e e e e ——————— et

0 5000 10000

Figure 4.b: Nominal Engel curve for housing, and Working fit, 1971, FES
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Figure 4.c: Nominal Engel curve for fuel, and Working fit, 1971, FES
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the concave curvature of the regression function in the range from .5
to 3 times the mean total expenditure, and it is too rigid to permit a
convex portion as appears in the kernel estimate below .5 times mean
z. The Working regression (4.1) is strictly convex [concave ] depending
on whether o; > [<]0.

For housing in Figure 4b, the parametric estimate is too concave
to fit the confidence bands since the nonparametric estimate is convex
over an interval beginning slightly above the mean total expenditure.
The difference between the parametric and nonparametric estimates
for fuel in Figure 4c is even more striking. The Working estimate is
downward sloping above 1.5 times mean total expenditure, whereas
the average slope of the nonparametric estimate is positive and large
in magnitude over this interval. The curvature of the parametric esti-
mates is quite sensitive to outliers at high and low levels of total expen-
diture. It is possible that the Working model provides a more adequate
mod el of the cross section Engel curves for more homogeneous strata
of the population. For narrowly defined strata the Working model of-
ten cannot be rejected. However this follows from the imprecision of
the estimated mean in small samples and cannot be viewed as offering
support for the parametric model.
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Figure 4.d: Nominal Engel curve for fuel, and Working fit, 1969, FES
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We have also compared the nonparametric estimates to parame-
tric estimates from the family of cubie polynomials. The comparisons
were made for all commodity aggregates during odd years from 1969
to 1979. The cubic polynomials nearly always fit better than the Wor-
king model, which is not surprising since they have an additional pa-
rameter. On the other hand cubic polynomial fits still fall outside the
95% nonparametric confidence bands in several cases. Kneip (1991)
has shown that the generalization of the Working model in which the
budget shares are fourth degree polynomials in the logarithm of total
expenditure cannot be rejected at standard significance levels.

The qualitative differences between the parametric and nonpara-
metric estimates persist over time, as we see for example by comparing
the fuel estimate for 1969 in Figure 4d with that for 1971. We consider
the evolution of the estimated Engel curves more systematically below.

4,2 Invariance and Nonparametric Estimates Over Time

In this section we describe the evolution of cross section Engel
curves estimated with the quartic kernel, The main conclusion is that
the real Engel curves shift over time while the mean normalized curves
(with = and y coordinates divided by their sample means) are much
more stable.

We use the terms “budget” and “total expenditure” interchangea-
bly. In order to test the hypothesis that Engel curves do not shift over
time one must specify more precisely which curves are to be compared.
It seems natural to decompose the effects of changes in budgets and
relative prices (represented by changes in the population density z)
into effects of proportional changes in prices and budgets, and effects
of deviations from proportionality. The effect of a proportional change
in prices and budgets can be formalized by letting z:(a|z,p) be homo-
geneous of degree zero in x and p. This assumption is required in
order for the analysis to be consistent with the standard model of a
private ewnership economy in which income from profits and initial
endowments rises by the factor -« if all prices rise by that factor. Ho-
mogeneity of z;(a|-) and of the individual demands ¢* implies that the
cross section function

e f &°(z,p)z:(alz, p)da

is homogeneous of degree zero. The meaning of Engel curve invariance
with respect to changes in the distribution of income is then clear as
long as relative prices are fixed. For example, if the price index for every
good in period ¢ is A, using period 0 as base, then p; = A;pg and the
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cross section Engel function of period ¢ evaluated at expenditure level
Aer is qi{Aex, pr) = qu(x, po). Invariance of the real cross section Engel
curve with respect to the actual changes in income requires that the
right-hand side equal go(z, pg). Thus when relative prices are constant,
such invariance implies

QE{}"!I!I}!} = f]’ﬂff-ﬁ-PﬂL [31}

and it can be tested by comparing the two sides of this equation. If
relative prices or income shares change, the invariance hypothesis
of Theorem 2.1 no longer implies (3.1). However one can still ask
whether the difference between the left and right-hand sides of (3.1)
can plausibly be explained by the changes in relative prices and income
shares. We will refer to (3.1) as expressing real invariance.

Kernel estimates of the real Engel curves r,rf (Aez, pe) for food,
clothing, housing and fuel, 1969-77, are plotted in Figures 5-8. There is
considerable variation over time, however relative prices also changed
during the period. Table 1 shaws the values of relative price indices
pl/X: for odd numbered years, where A, is a consumer price index
with base year 1969. The second column contains an index of the mean
real household budget: M,/(A\.My) where M, is the mean budget in
vear t, and ¢t = 0 denotes the base year. The price indices were taken
from Employment Gazette(1982), The direct impact of the 1973-74 rise
in real energy prices is reflected mainly in the price indices for fuel
and transport. It is notable however that of all the aggregates, food
experienced the most rapid price inflation during the period.

Table 1

Mean real total expenditure and relative price indices
{1969, 71, 73, 75, 77, FES)

Good
Year M,/(A\M;) HOU FUE FOO CLO DUR TRA SER
1969 1.0000 10000 1.0000 10000 1.0000 10000 10000 10000
191 1.0082 10088 10032 10205 09650 09833 10207 10026
1973 1.0083 10650 09506 10030 09681 09235 00784 10435
1975 10543 08793 10280 11239 09068 08945 10350 10307

1977 10277 08352 10915 11884 08400 08423 10146 00754

The real Engel curve for food in Figure 5 generally shifts down
over time. It is tempting to interpret the shift as the result of the rapid
food price inflation. However, the percentage difference between the
curves of different years is very close to the corresponding percentage
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Figure 5: Real Engel curves for food 1969, 71, 73, 75, 77, FES

change in the relative food price. Thus if relative prices are responsible
for the differences among the curves and if cross price effects on the
demand for food are small or cancel each other out, then the own-
price elasticity for food is approximately -1. This seems quite large.
It suggests that implausibly large price and income effects might
be required for the data to be consistent with the real invariance
hypothesis in Theorem 2.1.

Changes in the real Engel curve for a good cannot be explained
by contemporaneous changes in the relative price of that good alone.
For example the relative price of clothing hardly changed from 1971
to 1973. Yet in Figure 6 we see that the real Engel curve for clothing
dropped significantly (by over 17%) at the real total expenditure level
3500, roughly 1.3 times the 1969 mean total expenditure.
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Figure 6: Real Engel curves for clothing 1969, 71, 73, 75, 77, FES
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Figure 7: Figure 7. Real Engel curves for housing 1969, 71, 73, 75, 77, FES
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The real Engel curve for housing (Figure 7) shifted steadily up-
ward during the period, whereas the relative cost of housing rose from
1969 to 1973 then fell from 1973 to 1977. The real Engel curve for fuel
(Figure 8) shifted down from 1973 to 1975 as the relative price rose.
But from 1975 to 1977 the curve shifted upward over much of its range
while the relative fuel price rose by another 6 percent.
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Figure B: Real Engel curves for fuel 1969, 71, 73, 75, 77, FES

Examination of the evolution of Engel curves in principle permits
a much richer analysis of price and income effects than is possible in
the traditional time series modelling of mean demand. In particular,
it is possible to study the way price changes affect different income
classes. Such a study provides a middle ground between aggregate
time series analysis, in which distributional issues eannot be raised,
and a completely disaggregated study in which it can be difficult to
develop intuition about the way conclusions depend on the choice of
parametric models (see for example Blundell, Pashardes and Weber,
1988). Figures 5-8 show clearly that real Engel curves shift during a
period of changing relative prices. It is remarkable, however that the
shifts are nearly monotonic in the sense that there are relatively few
crossings of curves. A second point is that the shifts are small from
1969 to 1971 when relative price changes were small. This might not
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seem surprising. However, since the sample populations for the two
years are different many factors could have accounted for larger shifts.
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Figure 9: Real food Engel curves, 1969, 71, 73, 75, 77, FES
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Figure 10: Real food Engel curves, 2 Adults, 1 child, FES
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Real Food Curves, 2A,2C
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Figure 11: Real food Engel curves, 2 Adults, 2 children, FES

Hardle, W. and Jerison, M. (1991) Cross Section Engel Curves over Time

7500

2500



Recherches Economiques de Louvain, 57, 391-431

Since demand for durables depends on expectations and is subject
to costs of adjustment, such goods are often treated as exogenous in
models of demand for nondurables. Figures 9-11 show real food Engel
curves with housing and durables removed from total expenditure
on the r-axis. The pattern is similar to that in Figure 5. Figure 10
[respectively, 11] shows curves for households with two adults and one
child [resp. two children] and household head less than 40 years old.
In these and other subgroups the real food Engel curves for 1973 and
1975 are roughly 10% below the curve for 1969, and the 1977 curve is
20% below.

The invariance hypothesis g, = go implies that if prices are con-
stant and incomes rise, the mean expenditure of households with in-
come = does not change even though the set of households with income
x changes. An alternative possibility is that mean normalized Engel
curves do not vary. In that case, mean demand for consumers with
a given share of mean total expenditure can be accurately predicted
if mean demand for the whole population is known. Households with
budgets equal to Mpz in the base year have the same position relative
to the mean budget of that year as households with budget M;z in
year t. Mean normalized invariance requires that

mi( Mz, py) /M7 = md( Mo, po) /M§ (3.2)

where mj(-,p:) = piqi(-,p:) is the nominal cross section Engel curve
for good 7 in year ¢t and M; is the mean expenditure on that good.
The left-hand side of (3.2), treated as a function of z is the mean
normalized Engel curve for good j in year t. Invariance with respect
to the observed changes in budget and prices implies that this Engel
curve does not depend on ¢.

The mean normalized curves for food, fuel and durables are plot-
ted in Figures 12-14 for the odd years from 1969 to 1977. The shifts
over time are remarkably small, particularly in the region below 1.7
times mean total expenditure (which contains nearly 90% of the ob-
servations). Above that expenditure level the small kernel bandwidth
leads to variable estimates of the conditional mean expenditure. The
graphs for fuel and durables, Figures 13 and 14, are included here be-
cause their mean normalized curves display more variation than any
of the other commodity aggregates. Durable purchases are notoriously
volatile, Yet for total expenditures less than 1.7 times the mean, the
mean normalized curves never differ from each other by more than
10% over an eight year period.
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Figure 12: Mean normalized Engel curves for food 1969, 71, 73, 75, 77, FES
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Figure 13: Mean normalized Engel curves for fuel 1968, 71, 73, 75, 77, FES
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Figure 14
Meaan normalized Engel curves for durables 1969, 71, 73, 75, 77, FES

The approximate invariance of the mean normalized Engel curves
shows that the real Engel curve shapes are very stable during the sam-
ple period even though their positions change. This is an important
result if the curves are to be used to classify goods as necessities or
luxuries for different income classes. If household budget levels were
nearly constant throughout the sample period and relative prices chan-
ged, then mean normalized invariance would imply that the conditional
mean price elasticity of demand for households with a given budget le-
vel z is independent of =z, i.e. that average price elasticities are the
same throughout the budpget distribution (see Jerison, 1992a).

Many other economically plausible invariance hypotheses can
be formulated. For example the mean budget share of a group of
households for a good might depend on their total expenditure relative
to the mean total expenditure in the population. More precisely, the
mean budget share m](x,p;)/z, of households with total expenditure
r; in year t would equal the mean budget share for households with
total expenditure z¢ in year 0, where z,/M, = xo/Mo. This budget
share invariance implies p,(z) = mi(Mz, p )/ M, = m{( Moz, po}/ Mo,
and can be tested by comparing the functions y, for different years.
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In the diagrams discussed so far, the competing invariance hy-
potheses cannot be compared since the axes are not scaled uniformly.
Uniform scaling can be achieved by comparing the nominal Engel curve
in year t with the base year Engel curve transformed according to an
invariance hypothesis. Figures 15-17 show food Engel curves for 1971,
1973 and 1975 along with their confidence bands and the following
transformations of the 1969 curve:

(@) @(z/Ae),
b} (Mp}/Mop]) (Mo /M),
(e} (M]pl/MIpl)g(Mox/M,),

where M; and M, are respectively mean expenditure on good ; and
mean total expenditure in year t. The curve (a) must be close to the
year ¢ Engel curve if the real Engel curve did not shift from the base
period 0 (taken to be 1969) to period ¢, i.e. under real invariance. Under
budget share invariance [resp. mean normalized invariance]. The curve
(b) [resp. (c)] must be close to the year ¢ Engel curve. Since the mean
value of the (c) curve (weighted by the population density) is mean
expenditure on good j, the same as the mean of the year ¢t Engel
curve, the (c) curve cannot be everywhere above or everywhere below
the Engel curve. On the other hand, there is no further theoretical
restriction implying that these curves must be close to each other. For
example they could cross each other many times and differ greatly
under the sup norm.

The 1969 Engel curve transformed according to the budget share
(b) and mean normalized (c) invariance hypotheses fits the quantity
food Engel curves of other years more closely than do the real 1969
Engel curves transformed according to (a). In 1971 the (¢) curve lies
inside the confidence bands, so invariance with respect to the obser-
ved changes in prices and incomes cannot be rejected. Similarly, the
hypothesis is not rejected in 1973. In 1975 the (c) curve falls slightly
below the confidence band at a total expenditure level of 9,000 pence
per week. Note however that the (c) curve never diverges by more than
5% from the kernel estimate of the true Engel curve at total expendi-
ture levels below 2.5 times the mean. The curves can be expected to
diverge at high levels of total expenditure where the population den-
sity is low. In this region the bandwidth, which is constant over the
entire domain, is lower than optimal, and the variance of the estima-
ted conditional mean is higher than optimal. The transformation (b),
based on budget share invariance, fits the nominal 1971 Engel curve
better than (a) but not as well as (c).
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Figure 15: Nominal 1971 food Engel curve and transformed 1969 curves, FES
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Figure 16: Nominal 1973 food Engel curve and transformed 1969 curves, FES
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Figure 17. Nominal 1975 food Engel curve and transformed 1969
curves, FES

The confidence bands in Figures 15-17 are 95% bands around the
untransformed Engel curves. However they must be interpreted as 87%
bands in a comparison of the conditional means of two curves. This is
because both curves are estimated. Since the distributions from the
two years are independent but the densities of the real budgets are
essentially the same, the asymptotic variance of the difference between
the conditional means is twice that of a single mean.

Figures 18 and 19 show similar comparisons for housing and fuel,
where transformed 1969 Engel curves are again graphed with the
quantity Engel curve of 1971. In each case mean normalized invariance
leads to a better prediction of the 1971 curve than does the real Engel
curve invariance hypothesis. The real Engel curve transformation (a)
leaves the confidence bands over a large region for each commodity

aggregate.
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Figure 19
Neminal 1971 Engel curve for fuel and transformed 1969 curves, FES
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4.3 The Working Model over Time

Finally we have compared Working model estimates of real Engel
curves from different periods. The Working model for year t relates real
expenditure Y7 /p{ on good j to real total expenditure X,/\, according
to the relation

(Y2 /e])/(Xe/ M) = cudn(Xe/Ae) + Be + € (4.2)

where Y7 and X, are the random variables described in Section 3 and
£ is a random variable with zero mean, uncorrelated with X,;. We
wish to test the hypothesis that the real Engel curve does not shift
from period 0 to period ¢. Since the samples for different periods are
independent we can use a standard F test of the hypothesis ap = o
and Gy = 3, (see, e.g. Neter and Wasserman, 1974, Section 5.6). Let
S; denote the sum of squared residuals from the OLS estimate of the
model (4.2) for period r with n. observations and {n, — 2) degrees
of freedom. The combined sample from periods 0 and ¢ is then used
to estimate the model (4.2) restricted by the null hypothesis. This
regression has n = ng + n; — 2 degrees of freedom and the resulting
sum of squared errors is denoted S. The statistic

S'—{Sﬂjf‘*gl} So + S

EY =
ﬂ“—{ﬂu+ﬂ;—4} TE(}+'?'I-|:—4

/(

has an F(2,ng +n, —4) distribution, and we reject the null hypothesis
of Engel curve invariance at significance level a if F > F(1 —a; 2, ng +
n, — 4). Since the sample sizes are close to 7000 in each period,
the left hand side is approximately F(1 — a;2,00) which equals 2.3
and 3.0 at confidence levels 1 — a = .90 and .95 respectively. The
conclusions from these tests turn out to be generally similar to those
based on comparison of the nonparametric estimates. For example, for
t = 1971 and base period 1969, F; takes the values 12.3, 3.1, 25.8
for food, housing and fuel respectively. This means that the hypothesis
of invariance of the real Engel curves estimated by (4.2) is rejected
at the 95% level in all three cases. The same conclusion holds for the
nonparametric estimates since the 1969 curves transformed according
to (a) leave the confidence bands in Figures 15, 18 and 19.

5 Conclusion

We have described nonparametric techniques for estimating and
comparing cross section Engel curves. In applying the techniques to
U.K. expenditure data we found that real Engel curves (with real total
expenditure and quantity demanded on = and y axes) do change over
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time. The Engel curve for a commodity aggregate typically shifts in
the direction opposite the change in the relative price index for that
aggregate. However, this is not always the case, and the magnitude of
the shift is sometimes too large to be interpreted as a contemporaneous
“own price” effect. More work needs to be done to understand the effects
of price and income changes on household demands. For example,
commonly used parametric forms of price dependence imply invariance
of the entire set of Engel curves under alternative transformations.
Thus, invariance tests similar to the ones considered here could be
applied to test these for standard forms of parametric price dependence.
The advantage of the approach presented above is that it allows one to
observe effects of price and in come changes on the mean demands of
households throughout the income distribution.

The shapes of the nonparametrically estimated Engel curves are
remarkably stable over time. This is reflected in the approximate mean
normalized invariance found in section 4. It follows that in our sam-
ple the commodity aggregates can be classified as necessities or luxu-
ries over intervals in the relative distribution of household budgets,
and that the classifications are stable over time. Moreover, this result
does not depend on restrictions on functional form. Mean normalized
invariance requires that from one period to the next, the percentage
change in the mean demand of households with a given relative share
of economy-wide expenditure is independent of that share. Such inde-
pendence could be treated as a standard for comparison. This would
call attention to interesting situations in which the invariance fails. For
example, when the relative price of a particular good rises, a temporary
change in the shape of the mean normalized Engel curve for that good
could indicate that households at different budget levels have different
speeds of adjustment to the price change.

If real cross section Engel curves are invariant when the house-
holds’ budgets change, then the time series effects of those changes
can be estimated from cross section data. Furthermore the functional
forms that fit the cross section Engel curve also fit the curves of the in-
dividual households and fit the “macro” expansion path that is followed
by mean demand when the household budgets rise. The dimensions of
the cross section and individual Engel curves and of the macro expan-
sion path are the same, and this holds even when the individual Engel
curves differ across households and the households’ demand vectors
collectively span the entire consumption space. In this case, the diver-
sity of household behaviour does not enter the analysis of the effects of
budget changes on mean demand. It is only the mean demand at each
budget level (i.e. the cross section Engel curve ) that matters, just as
if the household s’ demand functions were identical.

Hardle, W. and Jerison, M. (1991) Cross Section Engel Curves over Time



Recherches Economiques de Louvain, 57, 391-431

Mean normalized invariance, on the other hand, is not sufficient
to permit one to estimate time series budget effects using cross section
data. However, if this type of invariance holds when household budgets
rise in fixed proportion , then there is still a relationship between
the “macro” expansion path traced by mean demand and the cross
section Engel curve: the curves are opposites in the sense that if one of
them spans a high dimensional space then the other must have a low
dimension span.

Mean normalized and real invariance with respect to proportional
budget changes are rarely compatible with each other. Jerison (1992a)
shows that if both invariances hold for a single good, the cross section
Engel curve for that good must be a power function. If both invariances
hold for all goods, the cross section Engel curve must be a ray through
the origin.

These theoretical conclusions are important for the interpretation
of recent estimates of the dimension spanned by cross section Engel
curves. One of the main reason s for studying the dimension of the
cross section Engel curve is to obtain information about the dimen-
sions of the individual curves in the corresponding micro model. This
paper describes the connection between these dimensions under mean
normalized and real invariance. Either type of invariance would allow
one to relate the cross section Engel curve dimensions estimated by
Hausman, Newey and Powell (1988), Lewbel (1991) and Kneip (1991)
to dimensions of individual ECs. The kernel methods described above
can be used to obtain alternative procedures for estimating the dimen-
sion of the cross section Engel curve . One such procedure has been
proposed by Kneip (1991). He finds that cross section Engel curves
have dimension four or five when estimated from U.K. FES data with
the same nine commeodity groups used in the pre sent paper.

It would be interesting to know whether mean normalized inva-
riance persists over longer periods and applies to populations other
than the one considered here. As we showed in section 2, it would be
especially worthwhile finding out whether any of the invariances dis-
cussed above hold during periods when relative prices and household
shares of economy-wide total expenditureare nearly constant. Varia-
tions in transformed Engel curves during such periods could be the
result of unobserved expectations of future changes in relative prices.
Alternatively they could be due to changes in the demographic com-
position of the population. The latter explanation could be tested by
looking for invariance of Engel curves of subpopulations. If any of the
invariances discussed above appear to be satisfied, one must ask why.
This remains a completely open question.
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APPENDIX
Proof of Theorem 2.2

The budget identity implies that Z£=1 T pCl(p) = z for all (z,p) and
a and hence that -y = 1 for some k. Letting this k be 1, we have pCf{(p) = 1
and pCi(p) = 0 for k > 1. Therefore pC(z,p) =1 and

pCi(x,p) =0 for k> 1. (A1)

Mean normalized invariance implies that for each good 7 = 1, ..., { there
is a function 97 satisfying

@ (oex, p)/QL(p) = ¥W(z,p).

Therefare

(o, p)nlalz,pide = Wiz,p) f ¢ (00w, p)2o(a, wip)da dw

= D (o)™ Cl(z,p) (4.2)
k

= V@R Y [(lew)Clw e,
k

where f(w|p) = [ 2(alw, p)da is the density function of households’ total
expenditure in period 0. Since {A.2) must hold for all oy,

™ Cl(x,p) = ¥ (z,p)El(p) Vi k,z,p

where

Bi(p) = [ w™Ciw,p)f(wlp)dw.

By (A.1),
0 =z™pCil(z,p) = )_ ¥ (2, )P BY(p) Vk>1 (A.3)
j

Let Ex(p) (resp. i(x,p) ) be the vector with the j-th component E(p) (resp.
Y (x, p) ). Fix p. If the matrix (Ei{p]} has rank L* then there mustbe L*—1
linearly independent vectors Eyx(p),k = 2...L, since pEy(p) =0 for k > 1
and pFi(p) # 0. Letting P be the diagonal matrix with p on the diagonal,
(A.3) implies that y(z, p) PE(p) = 0 for L* — 1 linearly independent vectors
PE(p). Thus ¢(z, p) is contained in a linear space of dimension 1 —(L* —1).
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KERNEL REGRESSION SMOOTHING OF TIME SERIES
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Abstract, A class of non-parametric regression smoothers for times series is defined
by the kernel method. The kernel approach allows flexible modelling of a time series
without reference to a specific parametric class. The technique is applicable to
detection of non-linear dependences in time series and to prediction in smooth
regression models with serially correlated observations.

In practice these estimators are to be tuned by a smoothing paramerer. A
data-driven selector for this smoothing parameter is presented that asymptotically
minimizes a squared error measure. We prove asymptotic optimality of this selector.
We illustrate the technique with a simulated example and by constructing a smooth
prediction curve for the variation of gold prices. In both cases the non-parametric
method proves to be useful in uncovering non-linear structure.

Keywords. Prediction: time series analysis: autoregressive processes; data-driven
bandwidth, kernel, a-mixing.

1 INTRODUCTION

Prediction of observations yet to be made is an important task in the
statistical analysis of economic time series. By far the most common tech-
nique is to model the dependence of future observations on the past by a
parametric class of functions. A typical example of such an approach is the
Gaussian linear autoregressive scheme. The parametric model typically de-
scribes the whole distribution of the data, or the conditional distribution given
exogenous variables. However, it may be able to describe only partial
features of the time series. Research interest in recent years has therefore
concentrated on non-parametric or semi-parametric analysis. Robinson (1988)
surveyed semi-parametric methods. A striking example of a non-linear time
series is given by Freedman er al. (1988, p. 14).

In the present paper we investigate a model of the form Y = r(X)+ ¢
where r(X) is an unspecified function not restricted in its functional form. In
the context of prediction X may denote a lag | observation of ¥ and a future
observation would be predicted by r(x). The function r can be estimated by a
variety of techniques, e.g. running medians, splines or orthogonal poly-
nomials. In this paper, we concentrate on the conceptually simple kernel
smoothers (Robinson, 1983; Collomb, 1984; Bierens, 1985).

For a bivariate time series (X, ¥,), (X, Y,), .... (X,.Y,), ... e R*, a
kernel smoother is defined as (assuming that 0/0 = 0)
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Pa(x)=n"'h;' D K (I X') Y,-/n_'h;I > K (I X’) (1.1)
) i=1 hn i=1 hu
where K is the kernel and h, is a sequence of positive real numbers called
the bandwidth sequence. This estimator was proposed by Nadaraya (1964)
and Watson (1964); for an introduction into basic statistical properties of this
estimator for independent and identically distributed (i.i.d.) observations, see
Collomb (1981) or Hirdle (1990, Chapter 3).

Convergence properties of this kernel smoother have been considered
under certain dependence concepts for the process (X, Y;) (see, for example,
Collomb, 1984; Roussas, 1989; Truong and Stone, 1989; Gyorfi et al., 1990).
In this paper we assume that the observations are generated by a stationary
a-mixing process (see Section 2), thus relaxing the mixing conditions usually
made by Collomb. The concept of a-mixing extends the independence
assumptions by allowing dependence among neighbouring observations with
‘vanishing memory’.

The basic problem of applying this estimator to a given time series is the
choice of the bandwidth A, which we shall abbreviate from now on as k. The
selection of this smoothing parameter decides the form of the predictor
function 7,(x). A value of & which is too small will give predictions with too
high a variance, i.e. it will result in undersmoothing. A value of h which is
too large will lead to an oversmooth function with high bias. A mathematical
quantification of these effects can be obtained by considering the average
squared error

da(h) = n7' 3 {Fu(X) — r(X)}Pw(X) (1.2)
i=1

where w(.) denotes a weight function. An estimator 7, that balances the
trade-off between the squared bias and the variance component of d(h) is
certainly desirable. The main result of this paper is the construction of a
data-driven bandwidth & that asymptotically minimizes the above measure of
accuracy. More precisely, we construct a bandwidth selector that is asymptot-
ically optimal, i.e. ~
d»‘-\(h) P
infﬁe H, dA(h)

where H, is a set of possible smoothing parameters. (For related results in
the setting of independent data, see Shibata (1981) and Hirdle and Marron
(1985).)

The present a-mixing concept applies to the prediction of univariate time
series { Z,, i = 1}. If R denotes the autoregression function, so that

Zn = ‘R(zi'l-l) + Eys (1'3)

> 1,

the adaptive predictor ¥, then provides smooth estimates of R.
Extensions of this technique to more than lag 1 predictions are possible but
require more tedious calculations and run into the problem of sparsity of

(1992) Hardle, W. and Vieu, P.
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data. Therefore we restrict ourselves here to one-term prediction and delay
multi-term prediction (using additive structure) to a future paper.

In Section 2 we discuss the dependence structure and define the bandwidth
selector by cross-validation. Applications of the adaptive predictor are pre-
sented in Section 3. In particular, we examine the optimization method on a
simulated data set and construct the adapted kernel smoother for a time
series concerning the variation of gold prices (for a different approach see
Frank and Stengos (1987)). In Section 4 we give conditions that ensure the
asymptotic optimality of the algorithm. Section 5 contains the proofs. In the
Appendix we give the detailed calculations that are used in the proofs.

2. ADAPTIVE SMOOTHING FOR TIME SERIES

Let {(X,Y,):i=1} CR X R be a two-dimensional time series. We assume
throughout that this process is a-mixing. Rosenblatt (1956) defined this
mixing condition as follows:

|P(A N B) — P(A)P(B)| = a(k) (C.1)
holds for any n e N (k e N) and any set A (or B) which is ¢{(X, YY), ...,
(X,. YD} (or of(X,ip, Yyep), ...}) measurable, with the sequence of

positive numbers {a(n)} being such that lim,_ . a(n) = 0. This dependence
structure is one of the least restrictive of the different mixing conditions
discussed in the literature (see, for example, Bradley 1985; Gyorfi et al.,
1990, Chapter II). If the process is stationary the best predictor (in a
quadratic sense) for Y given X = x is the conditional expectation

r(x) = E(Y|X = x).

Our aim is to estimate r(.) from data {(X,, Y;)}'L,. What does this estimation
technique look like for {Z;: i =1}, a real-valued process, given that we are
interested in predicting Z,,, from Z, for some s >0? The predictor is
provided by the autoregression function

R(z) = E(Z,.,|Z,=2) (Yn=1). (2.1)
The autoregression function R can then be interpreted as a regression curve
of Y on X if we define X, = Z,, Y, = Z,,, (Vi=1). Clearly, {(X,Y);), =1}
is a-mixing when {Z;, i = 1} has this property.

For examples of processes satisfying this a-mixing condition we refer to
Gyorfi et al. (1990), Chapters II.2 and III.4. For instance, any Markov
process satisfying Doeblin's conditions is a-mixing with coefficients that verify
(C.1) above. Also, linear processes of the form

Zu = z }'iTn—h
i=0

where (7)), is a sequence of i.i.d. variables, can be shown to be a-mixing

(1992) Hardle, W. and Vieu, P.
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under appropriate summability conditions on (y;) (see Chanda, 1974;
Gorodetskii, 1977).

A measure of the closeness of 7,(x) to the curve r(x) is provided by the
average squared error da(h) (see (1.2)). We shall state in Lemma 8 that,
under suitable assumptions on A,

da(h) = n'h™'Cy + B*Cy + 0,(n" A" + h*). 2.2)

Here, C, and C, denote constants depending on the kernel, conditional
moments and higher-order derivatives of r. Formula (2.2) specifies that the
variance of 7, asymptotically tends to zero proportional to n~'h~' and that
the squared bias of 7, is a multiple of #*. This fact is interesting from the
point of view of the asymptotic behaviour of d, and A. It tells us that we
should select a bandwidth k= (n"'C,/4C,)"" in order to minimize the
leading term in (2.2). Unfortunately, this optimization procedure has the
drawback that it involves functionals of the underlying distribution.

There seem to be two ways out of this dilemma: first, we could estimate
the unknown quantities; second, we could estimate the distance d,(h)
(probably up to a constant) directly from the data. The first approach is
usually called the ‘plug-in’ estimation procedure and is discussed in the setting
of independent observations (e.g. Scott and Terrel, 1987). In this paper we
follow the second route. In order to use the ‘plug-in’ recipe it is necessary to
estimate higher derivatives of r which creates yet another smoothing para-
meter selection problem. This problem is avoided in our approach. To give
some insight into how the adaptation works, decompose the average squared

Error
n

n n
da(h) = n™" {E PUXIW(X) = 2 3, r(X)PW(X)w(X) + r?(x;)w(x,)]
=1 i=l i=1
and note that the final term is independent of A. The problem of minimizing
d, over a set of bandwidths is thus the same as that of minimizing the first
two terms. The first term can be computed from the data, but the second one
needs to be estimated since it involves the unknown regression function r. A
first attempt could be to plug in Y, for r(X,), but it is not hard to see that
this estimate of the cross-term is of the same order as the variance term of
Ed A(h). Therefore the following leave-out estimate of the cross-term will be

considered:

n=t Y Y X)w(X)
=1

where
Y—K;(I = X)
= R __Ay=1 A i
Fri(x) = (n 1) ;2#:1 -—__f;,,,(-l’)
fh.f(-") =(n-— 1) 2 Ky(x — X))
FEi

Ky() = h ' K(./h).

(1992) Hardle, W. and Vieu, P.
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We call 7,, the leave-out estimator of r. The leave-out technique ensures
that the estimate of the cross-term is asymptotically unbiased. Note that

adding the random variable n'> ", ¥?w(X,) does not change the minimiza-
tion problem. We therefore consider

CV(h) = 7' 2 {Y, = 71 (X)}w(X)
i=1
which is commonly called the cross-validation function.

The adaptive estimation then works as follows:

(i) compute the leave-out estimator 7 ;(X;) for any h;
(ii) find the h that minimizes CV(h):
(iii) predict r(x) using 73(x).

The optimality result stated in this paper ensures that 7;(x) has the
asymptoucally smallest distance to r(x). From now on we shall abbreviate

r.‘n )asr(}andfh:asf(]
3. ADAPTIVE SMOOTHING IN PRACTICE
We simulated an autoregressive process as in (1.3) with

R(x) =

-l=x=1

14 x*° ( )

where the innovations were uniformly distributed over the interval (-—, -
Such a process is a-mixing with geometrically decreasing a(n) as shown by
Doukhan and Ghindés (1980) and Gyorfi et al. (1990, Chapter I11.4.4). The
sample size investigated was n = 500. The quartic kernel function

{{15/16)(_1 — u?)? lu| =1

K(u) =
[u] > 1

was used.

All computations were done in GAUSS 2.0. A plot of the generated time
series (Z, uniform in (-3, 1)) is given in Figure 1 as a function of the time
index. We are interested in finding the dependence structure between Z,_;
and Z,. When we plot Z, ; versus Z, we obtain Figure 2. The (uniform)
error structure becomes quite visible here, but the shape of R(x) can be
guessed to be linear from this figure. Only at the far ends do we seem to see
a curved structure of this point cloud.

We now apply the smoothing parameter selection technique described in
this paper. Since this is a simulated example we can also compute the distance

da(h). The cross-validation function CV(A) was computed using the discret-
ization lechmque of Hiérdle (1990, Chapter 3). Both functions are shown in
Figure 3. The minimum CV(A) is A = 0.18, and the optimum of d,(h) is at

(1992) Hardle, W. and Vieu, P.
Kernel Regression Smoothing of Time Series.



0.6 0.8 1.0

0.4

=02

—0.6

—1.0

Journal Time Series Analysis, 13, 209-232

214 W. HARDLE AND P. VIEU
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Ficure 1. The simulated time series with R(x) = x/(1 + x%), e~ U(—3 = 1)

0.17. The curve d(h) is very flat for this example since we recall that there
is almost no bias. (For this display d,(/#) has been shifted by an amount
minCV(h).) The comparison of the optimally estimated 7, with the time
regression function gives an impression of how well the smoothing method
works. This comparison is displayed in Figure 4 where we find good
coincidence with the time regression curve.

It might be reasonable to leave out more than just one observation,
especially when the time series is strongly correlated. Such a leave-out
estimator, where, in fact, we sum over indexes |i — j| > p, for a slowly
increasing sequence p,. is also covered by our theory (see Remark 1). This
‘leave-out-more’ technique is sometimes also appealing in the independent
setting (see the discussion of Hirdle et al. (1988)). The examples treated by
Hart and Vieu (1990), in the setting of density estimation, also discuss this
point.

We also applied the algorithm to an economic time series: gold prices from
1978 to 1985. This series was kindly provided by D. Sendermann, University
of Bonn. The data set consists of daily (log) gold prices in (in Deutschmarks)
from 1978 to May 1986. The sample size n was 2041.

(1992) Hardle, W. and Vieu, P.
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Ficure 2. The simulated series from Figure 1 plotted as Z, | versus Z,.

Let Z; denote the price at time /. Then an interesting quantity for

prediction is the elasticity in this series which is defined by
Y, :Zi+l = 24 - z£+l —t
zZ Z,

Thus the series Y, indicates whether the price at the next time point will be
relative to X; = Z, below or above X,. Certainly for high X, we expect a
tendency for Y; to fall below zero and the other way around for smaller
values of X. This tendency is hard to see in Figure 5 where we show a scatter
plot of {(X;, Y)}®Y. However, it will become clearer when we compute
7i(x).
_The cross-validation function CV(h) for this example had a minimum at
h =0.45 and the corresponding optimal regression smoother 7; is shown in
Figure 6. As predicted, this curve is downward sloping but shows some
non-linearities at the ends. It is interesting to analyze the residual structure in
this example. We constructed the estimated residuals &, = Y, — 7j;(X;) and

~

regressed € on X, to obtain an estimate for the conditional variance

(1992) Hardle, W. and Vieu, P.
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Ficure 3. The functions d,(h) (broken curve) and CV(h) (full curve) for the simulated
example.

function. The cross-validation function CV(h) for this problem is shown in
Figure 7.

Using the parameter that minimized CV(/i) we obtained an optimal
estimate for the variance function. The variance function is shown in Figure
8. It is apparent that it has a pronounced heteroscedasticity in the medium
region of the observations.

4. ASYMPTOTIC OPTIMALITY OF THE ADAPTIVE ESTIMATOR

In view of (2.2), a reasonable candidate for a smoothing parameter s should
be proportional to n ', The bandwidths are therefore selected in

<

H, = [an~""¢, bn~'5*], for some 0 < a < b w and 0 < ¢ <

1/10. (C.2)

Assume that the kernel function satisfies

(1992) Hardle, W. and Vieu, P.
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Ficure 4. The time regression function R(x) = x/(1 + x?) for the simulated example (full curve)
and the asymptotically optimal kernel smoothers (broken curve).

K is symmetric, Lipschitz continuous and has
an absolutely integrable Fourier transform (C.3)

[ K(u)du =1 K()=0 jn:K(u)du < oo, (C.4)
Assume that the weight function w is bounded and that its support § is
compact. Let f denote the marginal density of X. Make the following

assumptions:

f has a compact support containing S; (C.5)
r and f have two continuous derivatives on the interior of §;  (C.6)
E|Y|* < ® (k =1). (C.7)

To make our proofs shorter and clearer we have assumed that
s € 0, + =, r € 10, 1], a(n) = st" (Vn=1). (CZ8

This assumption of a geometrically decaying mixing coefficient is quite
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Ficure 5. Values of X, versus Y, (1 = i = 2040) for the gold price data.

common in such problems (e.g. Truong and Stone, 1989). However, it would
be possible, but with more tedious proofs, to obtain Theorem 1 under less
restrictive assumptions that include some algebraically decaying rates. These
assumptions would be similar to (L.1) and (L.2) in Hart and Vieu (1990).

Tureorem 1. Under conditions (C.1)—-(C.8) the adaptive non-parametric pre-
diction algorithm is asympiotically optimal in the sense that

da(h)

da(hy) (&1
where
hy = arg min d,(h)
heH,
and

h = arg min CV(h).
he H,

(1992) Hardle, W. and Vieu, P.
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Figure 6. The optimal kernel smoother #,(x) for the gold price data.

Remark 1. In the proof of this theorem we use the more general leave-
one-out estimator already mentioned in Section 3. More precisely we use a
sequence p, such that

1< p, < p*, where pf = n" forsome 0 < r < 1/15 — ¢/3. (C.9)

It thus follows from our proof that Theorem 1 is also valid for the adaptive
estimator when we leave out more than one observation.

4.1 Application to non-parametric prediction of time series
The kernel estimator of the s-step predictor of Z,,, given {Z;}/, is defined
by
SIFZ Kix = Z)
}::'.—_1" (x = Z)

Ry(x) =
and A is selected to minimize

CV(h) = (n - S')_IE {Zis = R(Z)Yw(Z)),
i=1

(1992) Hardle, W. and Vieu, P.
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Figure 7. The cross-validation function CV(#4) for the residual pattern.

where
DItz Ki(x — Z)
S‘}:P K.h{x - Z,l) l

e

Rix) =

From Theorem 1 we have the following theorem.

Tueorem 2. If {Z,, n=1} is a stationary process, and if (C.1)-(C.8) are
satisfied by
XI = Zl Yl = Z]+.f r = R‘

h is optimally selected to estimate R, in the sense that (4.1) is satisfied for
;’h = RPI'
5. PROOF OF THEOREM 1

We prove the asymptotic optimality property (4.1) in the more general case
when we do not necessarily leave out just one point. In this case, the
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Figure 8.  The variance function for the gold price data.
leave-out estimator 7; is defined by
YKr(X B X:)
PR =hr et i} i A
i~ iT=pn fi(x)
where
fiy=n7" X Kiy(X; - X)
[F=t=pm
o= #j e {L...on} |j— il > pu}
and where p,, is defined in (C.9).
To check (4.1) it is enough to show that
da(h) — da(h') — {CV(h) = CV(h")
p aU) = () = (V) VOB _ gy
hh'eH, d:‘-\“‘.}

Notation. The average squared error based on the leave-out estimator is

defined as

(1992) Hardle, W. and Vieu, P.
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da(h) = n7' X {F (X)) — r(X)}w(X).

i=1
In the following we shall denote by C any finite real constant and we shall
write £; in place of ¥; — r(X)).

Lemma 1. Under the conditions of Theorem 1 we have for any compact
subset G of R

sup sup |f4(x) — f(x)| = 0,(n™)

xes he Hy
and
J(

sup sup |7,(x) = f(x)| = 0,(n""

xeGG he H,

LemmMa 2. Under the conditions of Theorem 1 we have
da(h) — da(h)| _

g 4 dn(h) = 0,(1)-

Statement (5.1) now follows from Lemma 2 and
|[da(h) — da(h") = {CV(h) — CV(h")}]
: = 0,(1). 52
e, d(h) A B

Decompose

da(h) + n7t D ew(X,) = CV(h) + 2C,(h)

=1

where

U

C,(h) = n""! z (FiX)) = r(X)}w(X)).

Then (5.2) is true if we show that

lcn
b “da(h)

= 0,(1). (5.3)

Let us define

F:0X)
JX)

C,(h) = n™' D, g{7(X) — r(X)} w(X,)
=1

and decompose

Er:(h) = C_:‘H.l(.h) + Cu.:(h.L

where

Coi(h)y=n"13 nit X e, KX, — X)w(X)f (X))

i=1 lj=i=pn

(1992) Hardle, W. and Vieu, P.
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and
Coa(h) =n~' 3, n! Zl g{r(X)) — r(X)}Ku(X; — X)w(X)f (X))
P

Define H, to be a finite subset of H, consisting of equally spaced elements
and such that

#H| = n" for some 1; > 8/5 + 2¢.

Then (5.3) follows from the following lemmas,

LeEMMA 3. Under conditions (C.1)-(C.9) and if p, = p} we have

St |C'n.](h)| =6 (1}
bei da(hy OV

Lemma 4. Under conditions (C.1)-(C.9) and if p, = p¥, we have
1EM "(h)|
sup —>— = o,(1).
::IE; dA(h) op(1)
Lemma 5. Under conditions (C.1)-(C.9) and if p, = p;, we have

C.(h) = C,(h)
Cath | _ o0

vk da(h)

Lemma 6. Under conditions (C.1)-(C.9) and if p, = p¥, we have
|C.(h) = C,(h*)| ()
su = 0,(1).

he.g;. (f,\(h) 3

where, for any h € H,, h* is defined to be the element of H), that is closest to
h.

LemMa 7. Under conditions (C.1)-(C.9) we have
sup 1CR) = Cah)| _
vetty  da(h)

where C)} denotes the quantity C, which applies when p, = p*.

0,(1)

An important tool which will be used throughout the proofs of these
lemmas is the following variance-squared bias decomposition of the error d,.

Lemma 8. Under the conditions of Theorem 1, we have

da(h) = Cy(nh)™" + Coh* + 0,1da(R)}

(1992) Hardle, W. and Vieu, P.
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where C, and C, are real positive constants. Similarly, we have for some real
positive constants C; and C5

7t Y {FiX) = f(X))w(X) = Ci(nh)™" + Cih* + o,{d(h)}.

i=1

APPENDIX

Proor oF LEmMa 1. Lemma 1 is in fact a weaker version of Theorems 3.3.6 and
5.3.3 of Gyorfi et al. (1990), observing that the bounds given in these theorems are
mdependcnt of h e H,. See also Roussas (1989) for similar results. |

Proor oF Lemma 2, Consider

0=

da(h) = da(h) = =2n7" X {Fa(X) — r(XDHFH(XD) = Fi(X)}w(X)

=7

+ a7 DUFAXD) — Fa( X)) w(X)).

i=1
By the definitions of 7 and 7, we obtain
A
e .l [— PulX, )} S
-Xr') i fi(x)
where

Ai=ni' D KX — X)Y,.

Ji=fl=pm
Then it follows that

da(h) = da(h) = 2T (h) + Ta(h),

with

_, o fu(X) n } A, l
= 1 N . 2 ===t =
Ti(h) = n™" 2 {7u(X)) = r(X)) In,(x,){ T T e

i=1

and

a _?JI(XI) n } 44! ]2
i(h) = = — =1~ A
T_{ 1) N 2 [ h( : { fl{ xr) n; }}‘(XJ) W(X)

It is enough to show that

sip ) s, (A1)
J.sP:. dalh) ™=
and
Ts(h
o (a2
Using Lemma 1 we have
sup|Py(x) = r(x)| = 0,(n'F).. (A.3)
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We also have

(A, < n2p,h~ 1sup|Y sup K(u)
which gives

A
w—— =0,(pan"'h7"). (A4)
S:;]‘P fr(“’l} ;(p" I }
f,—(z\’,) is bounded below from zero with probability approaching 1 in view of (C.5)
and Lemma 1. Similarly we have

|nf;,[X,] - n,f,-{Xr-)'[ = lp,,h"sgp&'(u]

and so it follows that

- 1| = o,(pan 'h 7). (A.5)

FXom,
Then (A.1) (or (A.2)) follows from (A.3), (A.4), (A.5) and Lemma 8 (or (A.4), (A.5)
and Lemma B).

Proor oF LEmma 3. It suffices to show for some b; > 0 that we have for any integer
k

C"_;[h]]”" - — kb,
RO = O(n ). (A.6)

#H:,Fsp E [

Let us define

"

Ct(h)y=n22 2 U()

i=1 j=i+ph

and :
C(h)=n"? 2] 2 UG
i=1 j<i—ph
where
o ) w( X))
Ui, j) = Ky(X; = X)eigj —— X
Since, for any i, n; is of the same order of magnitude as n, (A.6) will follow from
#H,, sup {—*(ﬂ]n = O(n*) (A.7)
"he da(h)

where C* is either C* or C~. We show (A.7) for C* = C*. The analysis of C™ is
similar. Defining U(i, j) to be equal to zero when (i, j) is not in the set {(i, ),
i+ pf<j=n}, we can write C*(h) as

C*(h)

R A (N TR |
3

ra

I
> U{j« + 2(m = Dp¥ + spk, ji + (2 — Dp§ + 1p%)

=0 =0 j
where n, is the greatem integer less than or equal to n/2p%. Therefore, in fact, we

have to prove that

3 2%
(nh)*# H(n~' pE)y* sup F[E S U(m', g )} = O(n~%) (A.8)

Jiefzssal g=1 m=|

it
|'1 M
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where, for j;, j», 5 and ¢ fixed, we use the notation
m'=ja+2m—Dpz +sp5  q' = ji+ (29 — Dpi + tp}
and where we bounded dA(h)~' by (nh) because of Lemma 8.
Define now
F=AS=(my, q,....ma, qu) 1l =m < g < n,Vi=1,...,2k}
and decompose it into 7/ = (/; U (/> where
h=U=(m,...qu)ed, ue{my,... .qu}l, Yo e{m,. .. ,qgu} lu=-10vl =2}

and ¢/, =7/ — .
Therefore what we have to deal with in fact is

L] 2k )
E[E 3 U(m’.q')] = > EW(J) + 3 EW()) (A.9)

g=1 m=1 Jeth Jed
where, for J e 7/, W(J) is defined by
2k

W(J) = Hl U(mi, gq}).

Let us first consider the case when Je7/;. Let my be an element of {m, ..., g}
which differs from all others by at least 2. (The proof would be the same if the index
was some ¢¢.) By definition of the m; and ¢g], we have that, for any

we{my, ..., qu} = {m}, [u' —my| = p}. and so by applying Proposition 1 of Hart
and Vieu (1990) we obtain

|[EW(D)| =

J {_[q’(f}dpt.\'m,.,.r,",-,p} dP x; v, i my,....gsa} = mo}
+ o{h ¥a(ph)).

Conditioning now with respect to X, and using the fact that the &; have mean zero,
we obtain

[W(2)dP s, v, = 0.

Finally, since #¢7, is of order n*f we have

> E‘I’U)‘ = O{n*(p}) " h ¥ a(p})). (A.10)
Jedy

Let us consider the case when J € /5. For this we write
ik

gi= ) &
I=1
where
Gy ={J €, #{mi,....q%} = 1}.

Again applying Proposition 1 of Hart and Vieu (1990), we have

E

ue{mi,....q2)

Integration by substitution (see Marron and Hirdle, 1986, formula (3.4)) leads to

’ [woy T aPwy

HE{ M. ...qik)

|[EW(J)| = + O{h *a(p)}.

= O{h~ %12} for J e (Ji.

(1992) Hardle, W. and Vieu, P.
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Finally, noting that #//4 = O(n™2%), we have

4k
3 E‘w)l = O{n**(p5) * alp})h ) + o{ S n(pt) --w-m]

Jedy =2k
3k
+ Olg "f(pﬁ}—fh —2#“;’2]‘
=1
Then we have

> Eww‘ = O{n™*(g}) Halph)h ) + O{n*(pf)*h~*}. (A1)
Jedds

It follows from (A.9), (A.10) and (A.11) that
mooq 2k
E{Z > Um', q')] = O{h™ " n* (o) *a(pR)} + O{n*(p}) **h~*},
g=1 m=1
and (A.8) follows by using (C.2), (C.8) and (C.9). This completes the proof of Lemma
3.

Proor oF Lemma 4. The main body of this proof is the same as that of Lemma 3.
Proceeding similarly we have to show that

Hy q 2k
(nh)*#H \,(n " p5)* sup E{z > V(m'.q'}] = O(n~"¥) (A.12)

Jisj2esat g=1 m=1

for some b > 0, where

; w(Xi)
Vi, J) = Kn(X,, X){r(X) = r(X)}e; (X))

and where n;, m' and ¢’ are defined as in Lemma 3. The set ¢/ is defined as before.
and we decompose it in the following way:

= ffau(g -//75)
where
Ts={S={my,....qu} €,
i€ {L,....2k}, g #q;, V) € {L,....2k} — {i},
lgi — my| >1, ¥j e {1,...,2k}}
Ge=9—1h
Jo={J = {my, ..., qu} € Jg #{my,...,my} = 1},

Similarly to the proof of (A.9), application of Proposition 1 in Hart and Vieu (1990)
leads to
2k
b3 E{ V(mi, q:)} = O(n* (p§)*h~**a(p})}. (A.13)
i=1

Jeiky =

Now let J be an element of (/{. Because K is compactly supported we have that

Yhe H,, Kiy(X; — X){r(X) — r(X))} = 0,(1), (A.14)
and we also have, by well-known bias expansions (Parzen, 1962), that
Vh e H), sx_x&)E|K;,(Xk — 0{r(Xx) = F()}| = O(h?). (A.15)

(1992) Hardle, W. and Vieu, P.
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In the product HL"I V(m|. q}), we first bound all the terms
KXy — XgH{r(Xmy — r(X )}
for which m] is not in the set
A={ue(my,....mu}, Yoe {m,...,mu}l, u# v}
by using (A.14). Then, we apply Proposition 1 of Hart and Vieu (1990) and obtain for
some 0 < C < +=

2k
E[lj[! V(m, q:)] = C{snglK».(X = ){r(X) - r(r)}lJ + O{h**a(p}))
(A.16)
and finally we have by (A.15)
2k
vJ e @, E{ﬂ V(m], q;)] = O{h**a(p})) + O(h¥). (A.17)

Noting that #7/; = O(n{*) and #7J}=O(nf"'), we finally obtain from (A.13) and
(A.17)

noog 2% 2k
E{E b V(m'.q'}] =Y E{l_[ Vim,, ,}+ >y E[H Vimi, q]]
Jeily

g=1 m=1 2 =1 -‘ 1 Jedd i=1
= O{n*(p}) " **h**a(p})} + O(n* p,*h* ).

As for Lemma 3, we complete the proof by observing that (A.12) follows from this
equality together with (C.2), (C.8) and (C.9).

Proor or LEmma 5. We have

Calh) = C,(h) = Dy(h) + Da(h) (A.18)
where
= f(X}{f f(X)}
= o (¥ —
Dihy=n % edFi( X)) — r(X)Iw( X)) F(X) (%)
and

L

Dy(h) = n”! E {Pl(X:) — r(X,HH‘(‘Y.){

F(x) - f(x,a]l
(X)) :

If follows from Lemmas 1 and 8 that

|Ds (h}| = 0,(1) (A.19)
wek da(h) - OPV) '
Note now that D, has roughly the same structure as C,.. Therefore we can write D, as
D\(h) = Dy(h) + Dp(h) (A.20)
where, using the same notation as in Lemmas 3 and 4,
AX) - f (X)
(hy=n! n\uG, ) ———=
b 2:1 2 (X))
and
% fX) = Fux)
Duh)=nt 2 2 ni'V(i, ) —F=—
l = =t f(X)

(1992) Hardle, W. and Vieu, P.
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Proceeding as in Lemmas 3 and 4 we can show that
;’PB,. J—f:—% = 0p(1) (A.21)
and
| D (b))
heh, da(h)
The proof of Lemma 5 is now complete by (A.18)-(A.22).

= 0,(1). (A.22)

Proor oF LEmma 6. Write C,(h) as
Cih)=n"' I ni Ku(Xi — X)w(X)f(X)ee;
[j=i>ph

+at XY nl KX — X)w(X)F T (XD dr(X) — r(X)}.

| f=if==pn

We have for some 0 < C < +=
|Cu(h) = C-n(h*” = C{ Kﬁ(f\’: = X;] == K?J'{Xx == X_J')}

-5
%)« (55

Since the points in H, are equally spaced, we have by (C.2)
I 1

kT on

and because K is Lipschitz continuous and compactly supported

- X — ‘kr) ,( Xi— ‘Yj‘) —= { t(L L)}
h( A =K m =0{h h pry £

Finally, we have for any h in H,
|Cu(h) = Cu(h*)| = O{(#H ) n3Ft2p~1),
and by Lemma 8 we obtain
|Ca(h) = Cu(h*)|
weh, dalh)

= O{(#H}) 'n"2*2p7 1),

O{ no ot 3/54 35] = O( n- 1 Y
This completes the proof of this lemma.

Proor oF Lemma 7. Let us define

1
gi(X) = = ; Y, Ky(X; — X))
b f=1=py

and denote by g% f% n¥the quantities g, f;, n; that apply when p, = p}.
We have, for some 0 < C < =,

= O(sup|,( X)) — BXX)| + |FdX) = Fax)).

(1992) Hardle, W. and Vieu, P.
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We have

(: ) > YA:.(X,—X,)|

[f=il=pk

|§:‘(Xi_] - E}'(_X.)I =

1 o v ok
— ¥ Y, Ky(X, — ‘\‘]’

i po<|j~il=ph

o) of)
n; n

The same maximization holds for if,(X,) - f}’[ X,}|, and so we finally have, by Lemma
8,

+

|Cal(h) — Ci(h)|
da(h)
Using (C.9) the proof of Lemma 7 is complete.

= O(hpf).

Proor oF Lemma 8. We prove the first part of this lemma. The second part is
shown similarly. Let us define

n

d{(h) = n' 3 {r(X)) — Fu(X))? [

i=]

.fh
X3

di(h) = [{r(u) = P4} Fw(u) du

} w(X;)

di"[h}=J.{r{u} Fulu))? }; }u{u}dn

di(h) = Edih).

We have to prove that

c
%(h) = j + Coh* + olda(h)) (A.23)

and that we have for any d and d" among d. d,, d%. di and d§

|d(h) — d'(h)]

-E:lﬁ,, d(h) - uf'{l)‘ (A24)

Proof of (A.23). Let us denote by E' the expectation that would apply if the
variables were independent, and by djy the quantity d*y that would apply in such a
case. From Proposition 1 of Hart and Vieu (1990) we obtain

|d¥(h) — d¥(h)| = l(nh‘}'1 > i — j|)}.
i=1j=1

We have
n=1

Salli-jh=2F a(j-i)=22 ka(k)
k=0

8 =}

The last sum is bounded because of (C.8) and therefore we have

d*y(h) = d&y'(h) + o{(nk)'}. (A.25)

(1992) Hardle, W. and Vieu, P.
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Regression Smoothing Parameters That Are Not Far

W. HARDLE, P. HALL, and J. S. MARRON*

From Their Optimum

It is well known that data-driven regression smoothing parameters / based on cross-validation and related methods exhibit a

-1/10,

slow rate of convergence to their optimum. In an earlier article we showed that this rate can be as slow as n~'/'% that is, for a
bandwidth £, optimizing the averaged squared error, n'/'® (A — hy)/h, tends to an asymptotic normal distribution. In this article
we consider mean averaged squared error optimal bandwidths &,. This (nonrandom) smoothing parameter can be approximated
much faster. We use the technique of double smoothing to show that there is an A such that, under certain conditions, n'/*(h —

ho)/ho tends to an asymptotic normal distribution.

KEY WORDS: Automatic smoothing; Double smoothing; Kernel estimation; Nonparametric regression.

Data-driven smoothing methods are a necessary tool for
a variety of statistical procedures. For a data analyst, a look
at smoothed data often provides useful insight into features
of the data. Many examples of this approach are given in
Tukey (1947), Eubank (1988), Miiller (1988) and Hirdle
(1990). For such applications an automated choice of the
amount of smoothing is useful. For certain procedures, this
automation is essential: Projection pursuit and additive model
approaches to the analysis of high-dimensional data require
repeated application of effective one-dimensional smooth-
ing. Intensive use of one-dimensional smoothing is made
by the backfitting algorithm for generalized additive models
[see Hastie and Tibshirani (1986)]. In an earlier article
(Hérdle, Hall, and Marron 1988), we addressed the issue
of how far an automated data driven smoothing parameter
is away from its optimum. We showed there that smoothing
parameters optimizing the averaged squared error can be
approximated with the rate of n~'/". In the present work
we improve on this by showing that the mean averaged
squared error optimal smoothing parameter can be approx-
imated with the much better rate of n~"/?

A nonparametric regression model with given design is
formulated as

Y, = mx) + €, I=si=n

’

where each x; € (0, 1) and the errors are iid with mean
zero and variance o2. Our goal is to estimate the curve m(-)
from these n observations. In this article we use the Na-
daraya—Watson kernel smoother

3, YKI[(x — x)/h]
3 Kl(x — x)/h]

with a kernel function K. It is well known that the statistical
precision of this estimator crucially depends on the band-
width h. A common measure of accuracy for studying the
influence of varying A on how close #, is to m is the Mean
Averaged Squared Error (MASE); see Hirdle, Hall, and
Marron (1988). It is the aim of a practitioner to find a good

my(x) =

* W. Hirdle is Professor, CORE, Université Catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium. P. Hall is Professor, Department of
Statistics, Australian National University, Canberra ACT 2601, Aus-
tralia. J. S. Marron is Professor, Department of Statistics, University of
North Carolina, Chapel Hill, NC 27514, U.S.A. This research supported
by Deutsche Forschungsgemeinschaft, SFB 303, and by CORE.

bandwidth # when using the preceding kernel smoother for
approximating m(-).

A matter that inevitably arises in this context is that of
apportioning the smoothness assumptions between the curve
estimation part of the problem and the bandwidth estima-
tion part. In theory this is a perplexing issue since there are
no clear empirical guidelines for resolving it. In practice,
however, the order of the kernel used for the curve esti-
mation part would usually be determined by prior prefer-
ences (e.g., a disinclination to use high-order kernels hav-
ing negative side lobes) and by the need to ensure good
performance in problems involving small samples or high
error variances (since high-order kernels exacerbate the
problem of variability). Thus, we contend, practitioners
would very often take kernels to be of second-order kernel,
even in the fact of evidence suggesting that the mean func-
tion has considerably more than two derivatives.

Widely studied methods for automatic smoothing param-
eter selection include cross-validation, Generalized Cross
Validation (GCV), Akaike’s Information Criterion (AIC),
and C,; see Hirdle, Hall, and Marron (1988) for definitions
and references. In that article it was demonstrated that each
of these methods is subject to an unacceptably large amount
of across-sample variability, which is probably why the
methods have not become widely used data-analytic tools.
In this article the technique of double smoothing is used to
provide a data-driven smoothing parameter that has much
better stability properties than these earlier methods. The
main features of double smoothing and theoretical proper-
ties will be discussed in Section 1, and the results of nu-
merical trials of double smoothing will be described in Sec-
tion 2.

1. DOUBLE SMOOTHING

For the technique of double smoothing we need two dif-
ferent kernel smoothers of the form

3 Y,K[(x — x)/h] _ n"' I, Y,Ky(x — x)
3, K[(x — x)/h] oK)

i (x) = my(x) =
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Here f‘h(x; K) denotes a density estimate with kernel K, and
K,() = h"'K(: /h). The double smoothing operation is per-
formed with a second kernel smoother with different kernel
L and different bandwidth g:

5 VLI — x)/g]l _ nT' 3 Y,L(x — x)
S, LI(x — x)/g] fiL)

Note that we abbreviated the kernel smoother r,(x) as ri(x).
We assume that the kernels are of orders r and s respec-
tively, that is, the kernel constants

My (x) =

Kk, = (—1)()7! f WK (u) du
and

A = (—l)s(s!))_1 f w'L(u) du

are not equal to zero and moments between orders 1 and r
or s, respectively, vanish.

We consider the MASE as a distance between 71 (x) and
m(x),

M = M) = n"' Y, Elm(x) — mx)P,

where X} denotes summation over indices i such that ¢ <
x; < d, where 0 < ¢ < d < 1. (The reason for this restricted
range of summation is the occurrence of enlarged bias near
the boundary.) It is well known that the MASE splits up
into a stochastic and a squared bias part. At each point x,

the bias is given by
b(x) = E[mi(x)] — m(x). (1.1)

The idea of double smoothing is to estimate this bias us-
ing the second kernel smooth #,. More precisely, we are
going to estimate b(x) by
Ej rhg(xj)K [&x — xj)/ h] _

b(x) =
2 K[(x — x;)/h]

hy(x). (1.2)

Note that this bias estimate can be thought of as an iterated
smoothing algorithm. The pilot smooth ri1,(x) (with kernel
L and bandwidth g) is resmoothed with kernel K and band-
width 4. A similar bias estimate has been employed in Hérdle
and Marron (1991) in a bootstrap technique for constructing
confidence bands.

The stochastic part of M(h) is defined by

V=V =n") var [hx)]

=o’n! 2 n~? z Kﬁ(xi - xj){fh(xi; K)}_2~

The systematic bias part is B = B(h) = n~' =} b(x;))*. To
simplify the formula for the estimated bias b, put

Afx) =n Y K[(x - xk)/h]{L[(xk — x)/8]
k

X {2 L[(x, — xl)/g]}
1

(1992) Hardle, W., Hall, P. and Marron, J.S.
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— L[(x - xj)/gl{Z L{(x — x,)/g]} }
l

X {2 Klx — x,)/h]} :

Then the estimated bias can be written more simply as

b(x) =n"" E YA/(%).

J

The quantity
B=BMm =n") bx)

estimates B. It will turn out later that there is a variance
term in this estimate, n"’0* =} =; A(x,)’, that must be al-
lowed for. Therefore, by subtracting this variance twice,
we estimate B by

B—n¢ Y, > A

where 6% is an estimator of o>. The variance V is esti-
mated by

. i
V=¢6n" 2 2 KI(x; — x,.)/h]z{}k: KI(x; — xk)/h]} .
Hence our ﬁr;al ;stimate of M is
M=V+B- n_3ézi > A=V, +B,
where o
f=n'S S
r G )
x {K[(xi - x,)/h]z[; Kl(x; — xk)/hl]

- n_zAj(x,-)z}.

Let A, denote the minimizer of M. It is our goal to es-
timate this s, as well as possible. Our proposal is to use
the minimizer of M(h) an estimate of M(h). We call this
data-driven bandwidth A. Before discussing asymptotic
properties of h, we state some assumptions.

Assumption 1. K and L are compactly supported kernels
of orders r and s, respectively; K’ and L’*" are bounded.

Assumption 2. Let r' = max (r, 5). Assume that mot
is continuous on (0, 1).

Assumption 3. Assume 62 is \V/n consistent for o2, that
is, 6% = a” + 0,(n"').

The availability of a \/n-consistent estimator of o is well
known; see, for example, Hall and Marron (1989a) or Gas-
ser, Sroka, and Jennen-Steinmetz (1986).

It can be shown [as in Hardle, Hall, and Marron (1988)]
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that, under Assumptions 1-3, there exist positive constants
¢, and ¢, such that

M'(ho) = c\(nhg)™" = by 2.

Define

i =ci'd—c) f K,
2
Y, = 26, %(d — or’kjo’ f [ f LOyL(y + 2) dy] dz,

d
- 272
v = 4c; 2"2'(‘:0'2 f (m( r)) ’
(4
and

d
Yo = —4c; 'riA, J mT9m®.
c

The following result gives an expression of h in terms of
¢ and then bandwidths ~ and g. The proof is deferred to
the Appendix.

Theorem 1. Under the assumptions above,
(h = ho)/hoy = 1(67 = 0?)
+ (g™ 4 i YZ, + g+ oo(g)),  (1.3)

—@r+1) _

where Z, is asymptotically normal N(O, 1). If g
o(n), then we may replace the term (y,n 2g”“*" +
ysn~ 'z, by (=1 (y;n™")/*Z ¥, where

d -1/2 %
Z¥ = |:na'zf (m(zr))2:| 2 m®(x)e;
c j
and is asymptotically normal N(O, 1).
Remark 1. The last part of the theorem enables us to

compute the asymptotic variance of (A — ho)/h, in cases of
V/n consistency as follows. Suppose that

nigTUrD g2 — () (1.4)

(see Remark 2 for a discussion of the circumstances under
which this is attainable), and assume for the sake of defi-
niteness that 6° = (1/2n) Z'_, (¥; — Y;-)*. Then

1 n
6*—o*=— z [(e; — €-1)° — 20°] + o,(n”"/?
2n 5
1 : 2 2 1 ¢ -1/2
=_‘2(€j_0')_—26j€j—1+0p(n )'
n =1 N j=2
Hence
R 1 .
(h = ho)/ho = = > (€] — o)
ni0 '
+ (= 1)"2¢; 'ritm® (xI(c < x; < d)e]]

1 n
Y 4| 2 €€ t Op(n 1/2),
n i3
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whence it follows that n'/?(h —hy) /hy is asymptotically nor-
mal with zero mean and variance

YIE(E) + 5 + s,
where

s = (= 1) AN E(E)C; rillm®(d) — m® (o).

Remark 2. Condition (2.4) holds if s = 2r + 1 and g
is of larger order than n~"/“*" but of smaller order than
n~'%_ In this circumstance we may deduce immediately
from (2.3) that (A — ho)/hy = O,(n""7).

Remark 3. Here we discuss optimal choice of g and the
convergence rate of h in the case r = s. There, the terms
involving g in (1.3) are balanced when (n_zg_“'”))'/ % is of
the same size as g". That demands that g be of size n™ %",
Then both (n~2g~“*)!/2 and g" are of size n~*/®*" which
is of larger order than n~'2. Hence, by (1.3),

(’; — ho)/ho = (72"_28_(4r+1))l/2 Z,+ vg.
The asymptotic mean square error of the right side equals

Y%n—2g—(4r+1) + ,yzg2r

=2/(6r+1)

and is minimized by taking g = Cn , where

C = [(@4r + )y3/Qry]/e™P.
For this choice of g,
(h = ho)/ho = [(7,C" 42 Z) + y,C"In~ 276D,

where Z, is asymptotical}y normal N(O, 1). In particular,
the convergence rate of (A — ho)/hg is n~>/®*_which re-
duces to n~*'* when r = 2.

Remark 4. A version of double smoothing in the con-
text of nonparametric density estimation has been discussed
by Hall and Marron (1989b). There the technique may be
viewed as a smoother form of cross-validation. However,
the links between double smoothing and cross-validation
are much more tenuous in the case of nonparametric regres-
sion.

2. THE METHOD IN PRACTICE

The proposed method of double smoothing has been in- ’
vestigated in a simulation study. As the regression function
we have chosen the one also used by McDonald and Owen
(1986),

m(x) = sin® 2mx*), 0<x<l.

Observations Y; were taken at x; = (i — 1/2)/n, for n =
50, with € normal (0, o® and with different o. As the
kernel K we selected the quartic kernel, which is of order
(0, 2, 2) in the terminology of Miiller (1988, table 5.7). In
our notation, K is of order r = 2. As can be seen from.the
preceding theory, the kernel L should be chosen of higher
order s. From table 5.7 of Miiller, we have selected the
kernel

L(u) = (105/64)(1 — 54 + Tu* — 3u®)I(ju| < 1),

which is of order (0, 4, 2); in our notation, s = 4. For

Regression smoothing parameters that are not far from their optimum.
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Figure 1. The Curve i, (x) With MASE Optimal h,, the Observa-
tions (x;, Y;), and Normal Errors With o = .05.

practical reasons, we also investigate the choice of K = L.
To give some insight into the shape of this curve, consider
Figure 1. It shows the observations for one of the data sets
together with the estimated curve evaluated at the points x;
between ¢ and d. One sees that the estimated curve is able
to model the hardly visible inflection point at x = .8.

The distance measure M(h) for this setting is shown in
Figure 2. We actually estimated M(h) by Monte Carlo in-
tegration; that is, we averaged the averaged squared error
n! ¥ (m(x) — m(xj))2 over repeated (N = 50) simulated
samples. The cutoff points were chosen as ¢ = .1, d = .9.
The variability of this (stochastic) measure of accuracy is
made visible through the dotted lines in Figure 2, denoting
two standard deviations (2 * STD) bands around M (k). The
bandwidth minimizing M(h) is hy = .054. We could have

computed M directly, by integration, but chose not to, since

M with 2 sigma—bands

0.006

0.004

0.002

o
O 1
Qe
o

0.2

Figure 2. The Mean Averaged Squared Error M(h) as a Function of
h. The dotted lines denote 2 * STD Bands.
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Mh with 2 sigma—bands
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0.002

0.000

0.0 0.1 0.2

Figure 3. The Variation of the M Curves Around Their Means. The
solid line is the (Monte Carlo) average of M, and the dotted curves
are the 2 x STD bands around it.

the error bands in Figure 2 provide an illuminating com-
parison with those for M. See Figures 3 and 4.

For the sake of economical presentation, it is convenient,
in our figures, to fix a relationship between g and h. There
is no “canonical” way of relating these two bandwidths,
since they are for quite different kernels with quite different
scales. See Marron and Nolan (1988). Empirically, we found
that for the particular distribution and sample size under
investigation, the ratio g/h = 1/2 gave reasonable results,
and so we present that case.

For each of the N = 50 Monte Carlo samples, we esti-
mated the curve M by M. Figure 3 shows the variation of
the N = 50 M curves around its means for g = h/2 when
g is varied with A.

M with 2 Mh—sigma—bands

(<]

o

e

o

<+

o

8t

o

=

N

o

St

S

o

o I

o

o 0.0 0.1 0.2
h

Figure 4. The Curve M(h) and the 2 « STD Bands from Figure 3
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Figure 5. The Average CV Curve and 2 * STD Bands.

One sees that the averaged M curve has a clear minimum
at the point where M is also minimized. Of course, these
are only the averaged M curves. To give an impression of
how M varies across the Monte Carlo setting, we added 2
* STD bands to this curve. These same bands overlayed
with the mean averaged squared error are shown in Figure
4. One sees again that M approaches M.

The often used cross validation (CV) method is shown
in Figure 5. The same display techniques as for the other
figures is used. The minimum of the averaged CV(h) = n”’
¥ (¥, — my(x))* iy, is a leave-one-out smoother) is at
h = 0.085, quite far away from the optimal h,. This be-
havior of CV(h) confirms our experience, which was dis-
cussed in our earlier article, Hardle, Hall, and Marron (1988).
From looking at Figure 1 we can imagine why CV(h) will

M with 2 Mh—sigma—bands
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Figure 6. The Curve M(h), o = (.1)% and 2 * STD Bands.
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Table 1. Results of the Monte Carlo Simulation for N = 100

Interval for M(h)/M(h,) 1 1.33 1.66 2.33

1.00 4
1.00-1.01
1.01-1.02
1.02-1.03
1.03-1.04
1.04-1.05
1.05-1.10
1.10-1.20
1.20-1.30
1.30-1.40
1.40-1.50
1.50-2

>2

H
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3
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24 33
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-
- 20O
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- N ey
A2 OO =01 =2N—==

oversmooth the data. The small shoulder at the right end
will, with the leave-one-out-method, be treated as part of
the noise structure.

The effect of increasing o* and g is shown in Figure 6.
This plot is constructed in the same way as Figure 4, but
now with o = .1 and g = h. Note that this setting has two
effects. First, the 2 * STD bands are enlarged, and, second,
the too-large bandwidth g causes the right branch of M (k)
to be flatter in Figure 4. This has also been observed in our
experiments with o = .05, but we do not report this here.
Of course, the minimum of M(#) lies more to the right than
in Figure 4 since o is increased.

In practical studies one would probably choose K = L,
for the sake of convenience and because K and L would
often both be selected as symmetric density functions.
Moreover, one would leave g at a fixed value. We have
done this with the quartic kernel by varying (over a) the
bandwidth g = ahy; hy = 0.054 (o independently of h).
The results are presented in Table 1. The figures in this
table show how many times out of the N = 100 Monte
Carlo simulations the ratio M(k)/M(h,) was in the interval
indicated in the first column.

It is obvious that choosing a too-high g, leading to an
extremely oversmoothed bias estimate, has the effect of
shifting the data driven A to the right.

A criticism that can reasonably be leveled at our proce-
dure is that it requires selection of the initial smoothing
parameter g. This difficulty arises with all other
W-consistent methods of which we are aware, and there
seems to be no entirely satisfactory way of removing it.
However, the arbitrariness can be eliminated by specifying
g by a formula such as g = n™°, for an appropriate constant
c. Such a choice allows good asymptotic performance but
is not necessarily appropriate for real, finite data sets. In
practice, there appears to be no substitute for trying a small
number of different g’s.

APPENDIX: PROOF OF THEOREM 1

Assume that K and L vanish outside (—C, C). In the case of
fixed design, if x = m/n for an integer m and for ¢ < x < d,
then K[(x — x)/h] = O unless ¢ — Ch < x, < ¢ + Ch. And, if
x, does satisfy this constraint, then L[(x, — x;)/g] = O unless ¢

Regression smoothing parameters that are not far from their optimum.
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-~ Ch+ g <x <d+ Ch + g). It follows that, for x = m/ and so we must investigate the asymptotic properties of M’ —
n, ¢ < x < d, and large n, the terms M'. In view of (A.1) and (A.2),

M —M =@6*—0®D, +T,+T,+T,+ 2T, (A.4)

As a prelude to examining the terms on the right side, we next

nhy = > K[(x — x)/h]
=1

and develop approximate formulas for a number of series. Note that
ng, = ; L[(xc — xp/81 = ; L[(x — x)/gl hy = fK[(x —y)/hl dy = h,
appearing in the definition of A;j(x) do not depend on x or x;.
Therefore, &= f Li(x - y)/gldy =g,
AfX) = (nhig)™" D, KI(x — x)/h] and
k=1 —_
Ax) =Ax) = g_l fK()’)
X AL[Oo — x)/g] — LI(x — x)/gl}.
Observe that X {Llg™"(x — x) — hg”'y] — LIg™'(x — x)1} dy.
* Put
M(h) = n~" > Elm(x) — mx)I . .
! y=nT DAY, =nT' ) A,
=n"'(nh) 20 Y, >, KI(x; — x)/h1 + B(h), . .
and so Lo e =n"' D AAR), e =nT" D AG)ALR),
M(h) — M(h) = (6 = 0™)D\(h) + Dy(h), A1) d _ u _
where B() =n7' > mxdAx), B =n"' Y mx)ALx),
* n * n k=1 k=1
Dy(h) = n”(nhy) ™ ) D) K[ = x)/h = n7> ) ) Ay’ -
= ’ =i Bi=n"2 Y, > mxA AL,
and i k=1
. L and
Dyh) = B(h) — B(h) — n™%0 D, >, Ax)". .
i j=1 _ 8 - =
Since Y; = m(x;) + €, then B=n"’ E ; M)A ) Ax).-
* n 2
D,=n" 2 2 [m(x) + €JA(x) We first develop approximations to a;, @, ..., and use those
il = results to approximate a;, ay, . ... Since
B * * n —' ~ -1 rL(r) -1 - x)1,
—n! E b(xi)2 — n 32 Z E Aj(xi)z Aj(x) K8 (h/g) g7 x xj)]
i i j=1 then
=T, +T,+ T;+ 2T,, A2 _
where S ) A2 a; = Kkg '(h/8)" f LYI(c < x < d),
* n 2 d
Ti=n"2, {[”_l E ”‘<xf>Af<xf)] B b(x")z}’ e = J [~ (h/g) L Lg™ (= x)L7Lg™"(x — x)] dx
i i= c
T,=n") > (& - e)A ), = K2 \(h/g)* f LOYLOLy + g7\ — x)1 dy
i j=1
e X I(c <x,x<d),
T,=n"? 2 Z > e A, ~ oo
and Lo Bx) =g f f m()K(YNLIE™'(x — 2) — hg™'y]
* n n - L[g_l(x - Z)]} dy dz
—_ 3
T,=n Z FE. ; €m)A;(x)A(x;). _ ff [m(x — gu — hy) — m(x — gu)K()Lw) dy du
From this point we only sketch the proof, with the aim to ex- = k,h'm"(x),
plain to the reader why the main terms admit the asymptotic for- *
mulas that we claim for them. Our argument is readily made rig- B =n" E Zj x)Bx)
orous, although at the expense of considerable additional algebra. i
Since M'(h) = M'(ho) = 0, then 4 _
. = f Aj(x)B(x) dx
0=M —M)h) + MKk e
= (M — M)'(ho) + (h = ho)M"(ho) + ol(h — ho)/ho. = (~D)'ich" m®(x)l(c < x; < d)s,
Hence ) . Ej’(h) ~ 2rK2h2r—lg—(2r+l) f (L(r))ZI(c < x; < d), (A.5)
h = ho = — [M'(ho) — M’ (ho)1/M"(ho), (A.3)
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n Z Z aj(h)? = 4d — r’xint " 2gmW D

JEk
2
X f [J LOY)L(y + 2) dy] dz, (A.6)
d
n7t Y Bl = articht J' (m®)?, (A.7)
J ¢
B(x) — B(x) = kAHEm (),
* * d
nt 2 Bl = n7t Y b = 26\ g f m™om?,  (A.8)
n' Y@= wid — kg Y f @y,
and
h 2r+1
Dy(h) = (nh)"'(d — c)[ J' K* - Kf(—) J' (L"))Z]. (A.9)
g
Define
Cou=d-20) f K?, Co, = 2r(d — 0K} J' @ry,
d
C, = 4ridA, j mTOm®,
2
C;=2(d — o)r’ict J' [ f LOYL(y + 2) dy] dz,
and
d
C, = 4r’‘o? j (m®2,
Noting (A.8), we have
oT, 9 -1 - 2 1 -
= ) —n b i2
it [n Z By’ — ™t 3 bx)
a -1 . N, 2 -1 - 2
=— | > B —n7Y bx)
= Ch¥" g% (A.10)
noting (A.9),
8/0hD(h) = —(nh*)'[Co; + Co(h/8)**'1;  (A.11)
noting (A.5),
var (3T,/h) = o[n“‘ > a;(h)z]
Jj=1
= o[n“‘ > E}(h)2]
Jj=1
— O(n—3h4r—2g—(4r+2)); (A.12)

noting (A.6),

var (3T3/0h) = 40*n™* 3, D' a(h)’ = 4a*n™ >, Y, wih)*

J<k <k

~ C3n_2h4'_2g_(4'+l); (A 13)
and, noting (A.7),
var (3T,/0h) = o’n™2 Y, Bi(h)* = o’n™2 Y, B/(h)?
Jj=1 j=1
= Cn 'h* 2 (A.14)
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Since ng — =, then, by (A.12) and (A.13),
var (0T,/0h) = o[var (8T5/dh)].

The variables 975/0h and 9T,/0h are symptotically independent
and normally distributed with zero means and their respective
variances, and so, by (A.4), (A.10), (A.11), (A.12), and (A.13),

Ve
M —m' = (& — o)k [Co + Cor(h/g)**"]
+ 1 eg + (Cin7 g4t + Cin™H)Z,),

where Z, is asymptotically normal N(O, 1).
Finally we return to formula (A.3), take 2 = h,, and observe
that since 2/g — 0 and M"(ho) = ¢ (nh3)™' = c,h¥ 2

(h = ho)/ho = (67 — d)ci 'Co — 3

X [cg" + (Can g™ "D + Can™1'7Z,].

The theorem follows from this formula. Should

-@rt)) = o(n),
then the term Csn~2g~“*? is asymptotically negligible relative to

Cyn™" and so may be dropped. Then, —c51 (Cun™")'’Z, derives
from

—[M"(ho)ho] 'Tih) = —c5'hg ' n™" > Bl(h)e;
j=1

*
=G (=122 D, mP(x)e;
i

= (=1 (yn™)Z}.
[Received May 1990. Revised January 1991 .]
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ON BOOTSTRAPPING KERNEL SPECTRAL ESTIMATES

By J. FRANKE AND W. HARDLE

University of Kaiserslautern and Université Catholique de Louvain

An approach to bootstrapping kernel spectral density estimates is
described which is based on resampling from the periodogram of the
original data. We show that it is asymptotically valid under suitable condi-
tions, and we illustrate its performance for a medium-sized time series
sample with a small simulation study.

1. Introduction. During the last years, Efron’s (1979) bootstrap has
been recognized as a powerful tool for approximating certain characteristics,
that is, variance or confidence limits, of statistics, which cannot at all or only
with undue effort be calculated by analytical means. In time series analysis,
due to the complicated data structure, this kind of difficulty quite often crops
up, particularly if one is not willing to assume Gaussianity of the data. In spite
of the need for an improved evaluation of the performance of spectrum or
parameter estimates for stationary processes, the bootstrap has only recently
been applied to problems from time series analysis. Most authors, like Freed-
man (1984), Efron and Tibshirani (1986), Swanepoel and van Wyk (1986) and
Kreiss and Franke (1989), consider resampling the estimated innovations of
parametric time series models, whereas Kiinsch (1989) discusses resampling
blocks of data from a stationary process. In this paper, we discuss an intuitive
approach to bootstrapping kernel spectral estimates based on resampling from
the periodogram of the data, an idea which has been pursued independently in
a quite different manner by Hartigan (1990). We prove a theorem asserting
that our procedure works provided we take care of the bias in a particular
manner. This result is related to similar observations of Romano (1988) for
bootstrapping kernel probability density estimates. Some simulations illustrate
that our procedure works for moderate sample sizes.

2. Kernel estimates for spectral densities. Let X,,..., X, be a sam-
ple from a strictly stationary real-valued process {X,, —® < n < «} with mean
0, finite variance and spectral density f(w). Let
2

—m<w<T,

T
Z Xkezkw
k=1

1
Ip(w) = T

denote the periodogram of the sample. Let N denote the largest integer
less than or equal to T/2. Let the discrete frequencies w, be given by
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2wk/T, —N <k < N. We consider estimation of f(w) by a kernel spectral
estimate of the form

A 1 X ® — w,
(1 floim) = g5 T K557 Jin(o,

where the kernel K(9) is a given symmetric, nonnegative function on the real
line. We stress the dependency of f on the bandwidth £, as the performance of
the estimate essentially depends on this smoothing parameter. As the func-
tional measuring the local performance we consider the mean-square percent-
age error (MSPE), originally proposed by Parzen (1957),

f(w; k) - f(w) }
flo) |

Here, we have taken into account that f(w) is a scale parameter of the
asymptotic distribution of I(w). Under suitable assumptions on the process
{X,} and on the kernel K,

MSPE(w; k) = E{

"(w 1
(2) MSPE(w; h)—{— ’;(( ))} o f K2(0)d0E+o( h)

and T~ /% is the rate at which 2 has to go to 0 if we want to minimize
MSPE(w; h) asymptotically [compare Priestley (1981), Chapter 7.2]. In this
paper, we direct our attention to this most common situation in kernel
spectrum estimation.

Hardle and Bowman (1988) apply the bootstrap to kernel estimates for
regression curves, and Romano (1988) discusses the related problem of boot-
strapping kernel estimates for probability densities. We use the familiar device
of interpreting the spectral estimation problem as an approximate multiplica-
tive regression problem, starting from

(3) Ip(w,) = f(wy)e,, k=1,...,N.

The residuals are approximately independent and identically distributed for
large T'. There are several precise formulations of this vague statement which
differ with respect to the—always finitely numbered—frequencies at which
the periodogram is considered and with respect to the assumptions on the
process {X,} [compare, e.g., Brillinger (1981), Chapters 4 and 5].

3. The bootstrap procedure. In this section, we apply the bootstrap
approach of Hardle and Bowman (1988) to (3) by pretending that ¢,,..., &y
are really i.i.d. As we want to resample from the residuals, we need an 1n1t1al
estimate of f(w). For this purpose, we consider a kernel estimate f(w; ;) of
the form (1) with an arbitrary initial bandwidth 4,. In the resampling step, we
use another kernel spectrum estimate f(w g) of the form (1) to get the
bootstrap approximation of the law of f(w; k). The bandwidth A, which we
want to use in spectrum estimation, the resampling bandwidth g and the

(1992) Franke, J. and Hardle, W.
On Bootstrapping kernel spectral estimates.



Annals of Statistics, 20, 121-145

BOOTSTRAPPING SPECTRAL ESTIMATES 123

initial bandwidth %; may all be different subject to some conditions which we
shall discuss later. We now consider the following procedure for getting a
bootstrap approximation for f(w; k).

Step 1. We choose an initial global bandwidth %; > 0 which does not
depend on w. We estimate the residuals ¢,, £ = 1,..., N, of (3) as
I (w
g, = M E=1,...,N.
f (@ h;)

We rescale these empirical residuals and consider

A

k 1 &
é,=—, k=1,...,N, whereé.=ﬁ2

Step 2. We draw independent bootstrap residuals 7,...,&% from the
empirical distribution of £,,..., €&y, thatis, forall j =1,..., N,
1
pr{e}‘=€k}=ﬁ, k=1,...,N.

Keeping (3) in mind, we define bootstrap periodogram values as

If(wp) = If(—wy) = f(w4;8)ef, k=1,...,N,

with some resampling bandwidth g. For convenience, we set I;:(0) = 0, which
corresponds to the periodogram value at 0 taken from a mean-corrected
sample. Finally, we get a bootstrap spectral estimate as

)1 ().

roner - & K%

The rescaled empirical residual ¢f has mean 1 with respect to the empirical
distribution of £,,..., £y. This is asymptotically the correct value as the true
residual ¢; is asymptotically distributed as an exponential variable with pa-
rameter 1. Like recentering in additive regression models [Freedman (1981)],
rescaling avoids an additional bias at the resampling stage. Apart from this
appealing property, we need this device also from a theoretical point of view.

Without rescaling, a proof of the validity of the bootstrap procedure would

require more detailed information about the asymptotic properties of ¢;,..., ey
than given by Chen and Hannan (1980), and, presumably, Theorem 1 would
not even be true in general for resampling directly from &,,...,&y.

‘ Resampling from the periodogram is considered independently by Hartigan
(1990). He appeals to the fact that the I (w;) asymptotically are independent
exponential variables and derives resampling estimates for the variance of
linear combinations of the periodogram ordinates by systematically perturbing
the I(w;). However, his procedure has bias problems for non-Gaussian data.
Exploiting our knowledge about the asymptotic distribution of the ¢, we
can modify the preceding bootstrap procedure by replacing &7,..., % with
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independent exponential variables x,, ..., xy With parameter 1. As in Step 2,
we get modified bootstrap periodogram values

I;(wk) = I;‘-(_wk) =f(f"k;g))(k’ k=1,...,N, I;(O) =0,
and a modified bootstrap spectral estimate
N

(w3 h ¥ k(=)
(w’ ’g) - Th b N h T(wk)‘
As we see in the next section, the bootstrap principle holds for f* as well as
for f*. Higher-order asymptotics and/or elaborate Monte Carlo studies would
be needed to detect differences between both methods. Up to now, some scant
simulation results support the intuition that f* is to be preferred for not too
large samples and, in particular, for non-Gaussian time series.

4. The bootstrap principle holds. The basic idea of bootstrapping, as
applied to the spectral estimation context, is to infer properties of the distribu-
tion of the estimate f(w; k) from the conditional distribution of its bootstrap
approximation f*(w;h, g), given the original data. To prove the theoretical
validity of this bootstrap principle, we follow Bickel and Freedman (1981) and
consider the Mallows distance between the pivotal quantity VTh {f(w h)—
f(w)}/f(w) and its bootstrap approximation VTh {f*(w;h, g) — flw; g}/
f(w; g). Here, the Mallows distance between distributions F and G is defined
as

dy(F,G) = inf{E(X - V)% 7,

where the infimum is taken over all pairs of random variables X and Y having
marginal distributions F and G, respectively. We adopt the convention that
where random variables appear as arguments of d, these represent the
corresponding distributions. In particular, bootstrap quantities represent their
conditional distribution given the original data X,..., X;.

For our main result, we need the process generating the data to show
sufficiently weak dependence between observations taken at time points far
apart. To make this statement precise, we restrict our attention to linear
processes, and we assume that the coefficients of the infinite moving average
representation decrease sufficiently fast. Furthermore, we consider only the
most common situation in kernel spectrum estimation by assuming that the
spectral density f(w) which we want to estimate is twice continuously differ-
entiable and by choosing a kernel K for which T-1/% is the optimal rate of
decrease for the bandwidth % if one is interested in a small mean-square
percentage error. This fact is guaranteed by condition (C4) [compare, e.g.,
Priestley (1981), page 5111]. ‘

 If we want the bootstrap principle to hold in the simple form described in
Section 3, we have to make the crucial assumption that the resampling
bandwidth g, which we use for defining the bootstrap spectral estimate,
converges to O a bit slower than T~ !5 The reference estimate f(w;g),
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therefore, is a bit smoother than an optimal estimate of f(w). However, this
should not worry us as we do not use f(w;g) for estimating f(w) but only for
inferring information about the distribution of f' (w; h), which itself is a kernel
estimate with bandwidth 4 decreasing to 0 with optimal rate T~ 1/3.

We make use of the following notational convention: A ~ a, if and only if
there are constants c,c’ such that 0 <c <h/a,; <c' <o for all T large
enough.

THEOREM 1. Let {X,, —» < n < »} be a real-valued linear process:

Xn= E bkgn—k’ —0°<n<00,
k=—o
where £, —© < n < o, are independent identically distributed random vari-
ables satisfying
(c1) E¢, =0, E¢2 =1, E|¢,|° <, the characteristic function
q(u) of ¢; satisfies sup{lq(u)l; lul = 8} < 1 for all & > 0.
Assume that the spectral density f of {X,} is nonvanishing and twice continu-
ously differentiable on [—m, 7], and

oo

(C2) L |kby| <o

k= —x

Let K be a symmetric, nonnegative kernel on (—«,®) satisfying
1 = 1 .=
- - 2 _
(C3) o f_wK(B) do=1, f_we K(6)do =1,

where K has compact support [—«k,«] and K is uniformly Lipschitz with

constant L.
Let k(u) denote the Fourier transform of K(6), and assume that it is locally
quadratic around 0:
k(0) — k(u)

(C4) lim ———5——— euxists, is finite and not 0.
u—0 u

For T — «, let the bandwidth h of the estimate of interest, the initial
bandwidth h; and the resampling bandwidth g satisfy
h~T"15 h,—> 0 such that (Th?)"1 =0(Q1), g > 0 such
that h/g — 0.
Then, using the preceding definitions, the bootstrap principle holds:

. f(w; k) — f() f*(wsh,8) —f(w;8)
d,|VTh . VTh k R
@ [ T @ F(wr8) ] °
in probability,
.. f(o;h) - f(w) fr(w;h,g) — f(w;8)
i) d,|VTh . VTh . >0
® F() F(wig) ]

in probability.
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The proof of the theorem, which is deferred to the Appendix, crucially
depends on a theorem of Chen and Hannan (1980) which states the almost
sure uniform convergence of the empirical distribution function Fy of the
sample Ir(w;)/f(w;), j =1,..., N, to the distribution function 1 — exp(—x)
of the exponential distribution with parameter 1. To make use of this theorem,
we need finiteness of the fifth moment and the condition on the characteristic
function in (Cl). Theorem 1 is presumably correct, assuming E¢? < o
only, because, for our purposes, the weaker convergence in probability of
sup|Fy(x) — (1 — e™*)| suffices. We do not try to prove this assertion, as (C1)
does not appear excessively restrictive.

To cope with the bias part of the Mallows distance in (i) and (ii), the kernel
K must decrease sufficiently fast to 0. For simplicity, we even assume that its
support is compact. Some of the kernels which are frequently used in applied
spectral analysis satisfy this assumption, for example, the Bartlett—Priestley
window [compare Priestley (1981), Chapters 6.2 and 7.5], and restricting
attention to kernels with compact support gives rise to considerable simplifi-
cation of already quite technical proofs.

In the literature, rescaled kernel estimates of the form

£ (o _f(w;h) ST(M:%kﬁ_NK(w;wj)

sometimes are considered. As we shall show in the appendix, ; < S;(w) < 2
for all w, if T is large enough. Therefore, the results of this paper hold for
f(w; h) too if they are appropriately rephrased.

As already mentioned, Hirdle and Bowman (1988) propose a similar proce-
dure for bootstrapping kernel regression estimates. In contrast to our Theo-
rem 1, they consider resampling regression function estimates with bandwidth
g ~ T~ /5 only. In this case, the bootstrap principle does not hold in the
straightforward form of Theorem 1 as the bias of the bootstrap approximation
does not approach the bias of the kernel estimate fast enough. However, it is
possible to handle this difficulty by essentially bootstrapping only the variance
part of the bootstrap approximation and by introducing the bias part by means
of an explicit estimate of f”(w), remembering the asymptotic relation (2). The
same idea works in the spectral estimation context too, and we formulate the
result as Theorem 2. We do not give the proof, as its larger part is identical
and the rest is quite similar to the proof of Theorem 1. Details can be found in
a technical report [Franke (1987)].

THEOREM 2. Let {X,, —® < n < «} be a real-valued linear process satisfy-
ing the assumptions of Theorem 1. Let the kernel K satisfy the assumptions of
Theorem 1, too. Let f"(w) be a weakly consistent estimate of f"(w). Let

w

. . 1 N W .
fc(w5h’g)=E*f*(w;h,g)=ﬁk_z‘iNK( h j)f(wj;g)

be the conditional expectation of f*(w;h,g) and of f*(w;h,g) given the
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original data. Then, for T —» o, h ~T /5 g~ T Y5 h,—> 0 such that
(Th)~! = 0Q1), we have

, f(0;h) = f(w)
@ 4| T =y
\/Th—f*(w;h’g) folw;h, ) + (B*/2) (o) 5o
f(w;8)
in probability,
(i) dy| VTR —f(w;?()w_) f(),
L wihg) ~ fwih. ) + (h2/2)f"(w)]
f(w;8)
in probability.

Here and in the following, E* denotes the expectation with respect to the
empirical distribution of £,,..., .

As a consistent estimate for f”(w), we can choose, for example, a kernel
estimate of the simple form

0 Pk = g T W[ b,

where W is a kernel of order (2,4) as defined by Gasser, Miiller, Kéhler,
Molinari and Prader (1984).

5. Simulations. In this section, a small simulation study illustrates the
performance of our bootstrap approach for a medium sample size T = 256. We
consider data from an autoregressive process of order 5:

X,=05X, , — 06X, ,+03X, ,— 04X, ,+02X, , +¢,

where the ¢,, —o < ¢ < o, are independent standard normal variables. The
process parameters have been chosen such that the spectral density has a
specified shape: one major peak, one minor peak, and local minima between
the peaks, at 0 and at . We consider estimating the spectral density at the
discrete frequencies w, = 27wk /256 for k = 42, 84 (approximately at the two
peaks), for & = 30, 54 (at the left and right slope of the major peak) and for
k = 67 (approximately at the trough between both peaks). For those w,, we
consider the density and skewness of the law of the asymptotic pivot
VTh {f(w,; h) — f(w,)} /f(w,), or, to be precise, a kernel probability density
estimate p, , with Gaussian kernel and bandwidth b = 0.4, chosen by a
cross-validatory argument, and the sample skewness s, ,, both based on 500
simulated data sets. For the spectral estimate, we used the parabolic
Bartlett—Priestley kernel [Priestley (1981), Chapters 6.2 and 7.5], scaled such
that condition (C3) of Theorem 1 is satisfied. Inspection of various spectrum
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estimates showed that a good global bandwidth selection lies somewhere
between 0.10 and 0.15.

We compare five approximations of p, , and s, ,, three of them derived
from the bootstrap principle angd the other two from asymptotic normality. All
are based on one particular sample, X;,..., X,55. To get something like a
representative data set, we chose that one out of nine independent samples for
which the average mean-square percentage error of f(w;0.1) assumed its
median value. The three bootstrap approximations are provided by the condi-
tional laws of VTh{f*(w;h, g) — f(w; )} /f(w; g) for bootstrap bandwidths
g = 0.2,0.3,0.4 and initial bandwidths A; = g in all three cases. Based on 500
resamples, we calculated kernel probability density estimates pj , , with,
again, Gaussian kernel and bandwidth b = 0.4 as bootstrap approximations of
D, 5, and sample skewnesses sj ;, , as approximations of s, ,,.

Using asymptotic normality of f(w;h), as in Proposition A2, and the
asymptotic bias expansion, contained in (2), we know that VTh {f(w,; h) —
f(w,)}/f(w,) is also approximately normally distributed with mean w, , and
variance o2 given by

wan = O5VTHS f'(0,) /f(w,), o = [K*6)d6/(2m).

To cope with the additional smoothing introduced by kernel probability density
estimation, we have to compare p, , with the normal density ¢, , with mean
K, », but with larger variance o2 + b% The normal approximation to the
skewness s, ; is, of course, 0.

To get ¢, ,, we have to know f and f”. As a realistic competitor for the
bootstrap, we therefore consider &, ,, a plug-in normal approximation with
mean

g n = 0.5VTH® f"(w; hy) /f (w3 hy)

and variance o2 + b2 f(w; h,) denotes again a spectral estimate, given by (1)
with Bartlett—-Priestley kernel K and bandwidth A&, = 0.15; F(w; h,) denotes
a kernel estimate of f"(w), as in (4), where the kernel W has the same support
as K and, there, equals {c, cos*(c,u)}’ with suitable constants c;,c,. The
bandwidths %, h, are chosen to give a visually good correspondence between
the true functions and their estimates.

Figures 1 and 2 show plots of p, , and its approximations for £ = 42 (peak)
and %k = 30 (slope) and bandwidths A = 0.05 and h = 0.10, respectively.
Among all these selections of w, and h which we have considered, Figure 1c is
typical for the majority of those situations: Visually, the bootstrap provides a
better fit to the true density than its competitor, the plug-in normal approxi-
mation. In a few cases, for which Figure 2 is an example, the bootstrap
approximation is not better than the plug-in normal approximation, but it
never was considerably worse. A bit surprising was the observation that the
bootstrap densities pj , , did not depend as much on the chosen bootstrap
bandwidth g as we originally expected, as can be seen from Figures 1b and 2.
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Fi6. 1. (@) Probability density p; j, (solid line) of the asymptotic pivot and its normal approxima-
tions ¢, , (dotted line) and §, ) (dots and dashes) for k = 42 and h = 0.05. (b) Bootstrap
approximation p¥. , for k = 42 and h = 0.05 and g = 0.2 (long dashes), g = 0.3 (short dashes)
and g = 0.4 (dots).

In some cases, only the heavily oversmoothed reference spectral estimate
(g = 0.4) deviated considerably from the p} , . for smaller g = 0.2 and 0.3.

Table 1 compares the skewness s, , of the asymptotic pivot and its boot-
strap approximations sj , , for g = 0.2, 0.3 and 0.4. The bootstrap manages
to reproduce the skewness of the distribution, which we want to approximate,
quite well.

We also have repeated the simulation study with innovations ¢, drawn from
a centered and scaled x? distribution. Qualitatively, the results are the same
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F1G. 1. (c) Probability density p,, ;, (solid line), its plug-in normal approximation &, , (dots and
dashes) and a bootstrap approximation p¥ j, o4 (dots) for k = 42 and h = 0.05.
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Fi16. 2. Probability density p,, , (solid line) of the asymptotic pivot, its normal approximations
@5, (narrowly spaced dots) and @, ;, (dots and dashes) and its bootstrap approximation p}, j, .
for k=30 and h = 0.10 and for g = 0.2 (long dashes), g = 0.3 (short dashes) and g = 0.4

(widely spaced dots).
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TaBLE 1
Skewness of asymptotic pivot for various bandwidths h and its bootstrap approximations for
several values of g taken from one representative sample

k
30 42 54 67 84

h=0.05 Skn 0.800 0.606 0.866 1.055 0.674
¥ hoz 0.852 0.795 0.963 0.610 0.352

$¥hos 0.930 0.759 0.726 0.721 0.702

¥ o4 0.719 0.895 0.665 0.869 0.978

h=0.10 Skn 0.426 0.613 0.560 0.542 0.287
SE hoz 0.557 0.642 0.630 0.511 0.491

st h 03 0.417 0.546 0.532 0.583 0.372

SE ho4 0.330 0.701 0.625 0.494 0.428

R =015 Shh - 0.414 0.489 0.467 0.554 0.330
$E o2 0.426 0.507 0.309 0.351 0.337

¥ hos 0.454 0.566 0.323 0.539 0.499

SE o4 0.495 0.425 0.457 0.399 0.470

as in the Gaussian case, that is, the bootstrap outperforms the plug-in normal
approximation in approximating the probability density and the skewness of
the law of interest.

6. Confidence intervals and bandwidth selection. Once we know
that the bootstrap principle holds for spectral density estimation we can apply
it in the usual manner to get estimates for statistical quantities of interest. For
the sake of illustration, we have a look at the problem of getting a confidence
interval for f(w) and of selecting a local bandwidth A = h(w) of the kernel
estimate f(w;h) at a given frequency w. In this entire section, we implicitly
assume that the conditions of Theorem 1 are satisfied.

Let ¢, be characterized by
" wfﬁ-f(w,h) f(w) <c.
f(w)

that is, {1 + ¢ (Th)~ /% f(w; k) is the upper bound of a (1 — 2a)-confidence
interval for f(w). A bootstrap approximation for the generally unknown
quantity c, is given as c*, defined by

[k, 8) ~fosg) Sc*]

._a,

pr* =

[(w;8) : ’

where the bootstrap distribution pr* corresponds to drawing the bootstrap
residuals 5, ..., ey from the empirical distribution of the rescaled residuals as
described in Section 3. From Theorem 1, we know that ¢ — ¢, in probability
if T — o. Explicit calculation of ¢* will be quite difficult, and, therefore, we
propose to estimate it by the familiar Monte Carlo algorithm, as described, for
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example, by Efron and Tibshirani (1986), which usually is associated with
bootstrap procedures. Analogously, we can get a bootstrap approximation for
the lower bound of a confidence interval for f(w).

A major problem with kernel spectral estimates is the choice of bandwidth
h. Until quite recently, the literature contains only rough guidelines for
choosing ~ which often depend on some prior information on the shape of f.
An extensive discussion of this problem has been given by Priestley [(1981),
Chapter 7]. In a recent paper, Beltrdo and Bloomfield (1987) have investigated
the problem of selecting a global bandwidth which minimizes the average
mean-square percentage error,

AMSPE(h) = i Y. MSPE(w; h),
J 1
where MSPE(w; k) is defined as in Section 2. They have proposed a cross-
validatory choice of bandwidth, and they have shown that their procedure
produces a bandwidth which approximately minimizes AMSPE(A).

We consider the problem of selecting a good local bandwidth 4 = h(w)
which minimizes approximately the mean-square percentage error MSPE(w; /)
for a given frequency w. Following Rice (1984) who considered bandwidth
choice for the related nonparametric regression estimates, we restrict the
minimization to an interval By = [aT /5 bT '/%] of bandwidths which
shrinks to 0 at the optimal rate. Here, 0 < @ < b < « are suitable constants.
Let k,, depending on the sample size, be defined by

MSPE(w; hy) = min MSPE(w; h).
07 heB
€br

As we shall discuss in proving Theorem 3,

(o)

provided f"(w)+ 0 and a, b are chosen such that a < z, < b. Notice that
2, T~1/® minimizes the dominating part of the asymptotic formula (2) for
MSPE(w; k) considered as a function of k. As MSPE(w; ) depends on the
unknown spectral density f, we cannot calculate &,. Therefore, we propose to
estimate MSPE(w; &) by its bootstrap approximation,

F*(w3h,8) — (o3 8) }
f(w;8) ’
and then to choose the bandwidth A% which minimizes MSPE*(w; k),
MSPE*(w; h}y) = ’freuBnT MSPE*(w; h).

(5) TYPhy > 2, = [%f Kz()\)d)t{ o )}] , for T — o,

MSPE*(w; k) = E*

The calculation of k% can be accomplished easily, as MSPE*(w; &) can be given
explicitly. We do not have to resort to Monte Carlo methods in this case. A
straightforward calculation, using the independence of the bootstrap residuals
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ef and E*ef = 1, shows
var*(e¥) XN
T TR )y Kz(
J=—N

L)

{1 fK(“’_ ) f(os58) - (w;g)}2,

7%(w; g)MSPE* (w; h) = ) 2(as;8)

(6)

Th ;=

where, by Proposition Al of the Appendix,

N
var*(et) = E*(eX — 1) = i Y §2—-1-1 in probabilit
1 T N p probability.

Restricting minimization to a finite subset of B, which is allowed to
increase with the sample size at a certain rate, Hardle and Bowman (1988)
have shown that the analogous bootstrap selection of the bandwidth of a
kernel regression estimate is asymptotically optimal in the sense that the ratio
of the minimum of the bootstrap error estimate and the minimum of the true
error converges to 1 in probability. Using the explicit formula (6), we are able
to prove the same result without restrictions to B; and, furthermore, to prove
consistency of A% in the sense that T'/5(h% — h,) — 0 in probability.

THEOREM 3. If the conditions of Theorem 1 are satisfied and if, addition-
ally, f"(w) # 0 and 0 < a <z, <b < , then, for h,, h¥ defined as before,

(1) TY5(h% — hy) = 0 in probability for T — ,
N MSPE*(w; k) 1 in orobabili T
(ii) MSPE(w; hy) - in probability for T — .

The proof of the theorem is again postponed to the Appendix.

7. Concluding remarks. We have shown that a rather straightforward
approach to bootstrapping kernel spectrum estimates works. Our procedure is
quite similar to the bootstrap for both parametric and nonparametric regres-
sion with fixed design. Some care has to be taken if the bootstrap principle is
to hold. Either one has to restrict the bootstrap essentially to flw; B) —
Ef(w; h), estimating the bias Ef(w; k) — f(») explicitly as in Theorem 2, or
one has to choose a preliminary estimate f(w;g) which is asymptotically
smoother than an optimal kernel spectrum estimate. If & /g does not converge
to 0, then the assertion of Theorem 1 does not hold. As can be seen from a
careful look at the proof, the critical quantity is

(7 VTh (E*f*(w; h, g) — Ef*(w; k, g)),
which dominates the left-hand side of (A7) of the Appendix, and which
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converges to 0 in probability if A/g — 0. Now, remark that

E*f*(w;h,g)=Tig g {?%kﬁNK(w"‘le)K(wj;wk)}IT(a)j)~

j=-N

By the compactness of the support of K and by the asymptotic properties of
the periodogram, exhibited in (A6), E*f*(w; h, g) behaves asymptotically like
the mean of Tg independent random Varlables with uniformly bounded vari-
ance. Therefore, (7) converges to 0 only if the scaling factor (Th)!/2 converges
to « slower than (Tg)'/2. The necessity to oversmooth in resampling kernel
type function estimates is not a particular feature of spectrum estimation.
Similar results have been found by Romano (1988) for probability density
estimates and by Hardle and Bowman (1988) far regression function esti-
mates.

Finally, let us remark that our results do not strongly depend on the
particular assumptions on the stationary process. Essentially, we need asymp-
totic normality of f(w; k), as stated in Proposition A2 of the Appendix, and the
empirical distribution function of the Ir(w;)/f(w;), j =1,..., N, must con-
verge uniformly to 1 — e™* in probability.

APPENDIX

Some auxiliary results and proofs of the theorems. For real num-
bers a; and random variables Z;, we write Zr =o,(ay) for T > » [Z, =
O,(ay) for T - ] if Zy/ar — 0 in probability [Z;/br — 0 in probability for
all sequences b, such that a; = o(b;)]. For analyzing the bias of the kernel
spectrum estimate, we repeatedly consider

- 2 £ 157

If the kernel K satisfies the assumptions of Theorem Al, we have

w+771 0
820) = 1] =|82(0) = 5= [ 5K (] o
(A1) “
< Th I |lw| <7 —Kn,

where [ —k, k] contains the support of K, and, for any bounded function ¢,

@) |z T K2k

<chpsuply(0)], m=1,
Th j=-N 0

with a suitable constant c},, because only about 2«Th summands do not
vanish.

(1992) Franke, J. and Hardle, W.
On Bootstrapping kernel spectral estimates.



Annals of Statistics, 20, 121-145

BOOTSTRAPPING SPECTRAL ESTIMATES 135
THEOREM Al. Let {X,, —© < n < »} be a linear process,

Xn= Z bkgn—-k’ —°°<n<°0,

k= —o a

satisfying assumptions (C1) and (C2) of Theorem 1. Let the spectral density f
of {X,} be nonvanishing and satisfying a uniform Lipschitz condition. Let K
be a symmetric, nonnegative kernel satisfying assumption (C3) of Theorem 1.
Let I.(w) and f(w; k) denote the periodogram and the kernel spectrum esti-
mate based on X, ..., X, as in Section 2.

If, for T - », we have h — 0, (Th*)"1 = OQ1), then

sup | f(w;h) = f(@)Sp(@)| = O,(A7'T~V3) + O,(h).

—T<WT

Proor. The theorem is related to Theorem 2.1 of Woodroofe and van Ness
(1967) who, under assumptions on K which are too restrictive for our
purposes, give an exact rate for the convergence in probability of sup|f(w; h) —
Ef(w; h)| /f(w). Referring to the similarity of arguments, we only sketch the
proof of our theorem. Let J,, ¢ denote the periodogram and spectral estimate

of &,,..., &

T

Z lkm

Tr(@) = saih) = T K222 )dna).

Th j=-N

Because f is bounded, it suffices to show that the assertion of the theorem
holds for the independent ¢; and that the supremum of |f(w; k) — $(w; k) f(w)]
is of the order O,(h), for

| F(@;h) = f(0)Sp(w)]
<|F(@;h) = $(w;h) f(@)| +|$(w; h) = Sp(w)|f(w).

(i) We split sup|¢(w; h) — Sp(w)| into two parts and show that both of
them converge in probability to 0 with the desired speed. Let a, = hT~1/3,
myp=I[az;!l,and 0, = mk/my for —mp <k < my:

sup|$(w; h) — Sp(w)|

sup  sup  |$(w;h) — Sp(w)]

|kl<mp lo—0,l<mar

sup |§(8,;h) — Sr(8,)]

|kl<mp

+ sup  |§(8;h) — Sp(6) — p(w;h) + Sp(w)|.

lo—0l<marp

IA

Both terms on the right-hand side are of order O,(A~'T~'/?). For the second
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term, using Lipschitz continuity of K, we have

RT3  sup |$(6;h) — Sp(8) — $(w;h) + Sp(w)|

lw—8l<mar Y

1 N
< TLK{'T_'—h Z JT((OJ) + 1} d 2'7TLK a.s.,
Jj=—N

for T — «, by results of Chen and Hannan (1980) on the empirical distribu-
tion of the Jp(w;), j = 1,..., N. For the first term, we have by Chebyshev’s
inequality, for all 6 > 0,

pr{th/3 sup |$(0,;h) — Sp(8,)] > 6}
|k|5m7~
h2T2/3

T E(3(0,; 1) - Sp(6,))’

< X

|k|SmT

1/3
=< (2mT + 1)T,

and the right-hand side is bounded for T' — «. We have used
E(p(w; k) = Sp(w))’

c
<7 for all w € [ —m, w] and suitable constant ¢ > 0,

which follows from independence of the £; and then from using (A2).
(i) From (A2) and part (i), we know that &(w; k) is O,(h) uniformly in w.
Using this result and Lipschitz continuity of f, we can show that

A 1 X
Floih) ~b(wih) (o) = g T KT |{In(ey) = In(s) f(o)
R

is O,(h) uniformly in . For this purpose, we use the approximation of the
discrete Fourier transform of the X, by the discrete Fourier transform of the
¢, as given by Hannan [(1970), page 246]. O

Theorem Al and (Al) immediately imply Corollary A1, from which, together
with (A2) and the compactness of the support of K, Corollary A2 follows.

CoRrROLLARY Al. Under the assumptions of Theorem Al

sup | f(w;h) = f(w)| = 0,(RT~13) + O,(h).

lwl<m—Kh
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COROLLARY A2. Let the assumptions of Theorem Al be satisfied. If for
T - », g > 0 and (Tg*)™! = 0(1), we have, for  + +,

2
™, _z:Nxz( NP0 8) - F@) = 07T + 0,(g”).
Relation (5) of Chen and Hannan (1980) on the empirical distribution
function of the IT(w /flw)), j = , N, implies for N = [T /2] - «
1 I I
el r(%;) -1, — Z r(® ) -2 as.
] 1 f(wj) f(wj)

under the assumptions of Theorem 1. (Al), (A2) and Theorem Al allow us to
replace f(w) by its estimate f(w; h) if we settle for eonvergence in probability.

ProrosITION Al. Under the assumptions of Theorem 1, we have, for
=[T/2] » © and h — 0 such that (Th*)"! = O(1),

1N In(e) L, L N { Ip(o;) }2 9
N 21 f(e;h) 7 1| F(w;h) ’

N T(“’j) _ IT(“’j)
§ o ~ Floyih)

2
} — 0 in probability.

PROPOSITION A2. Let{X,, —© < n < »} be a linear process,

o]
X, = Z bLé, ks —o < n <o,
k= —o

satisfying the assumptions of Theorem 1, and let f(w;h) denote a kernel
spectral estimate with a nonnegative symmetric kernel K satisfying assumption
(C3) of Theorem 1. If, for T — », we have h — 0 and Th? — «, then, for
lw| < 7r:

a 1 .
. . o 2 _ £2 T 2 5
(i) Thvar(f(w;h)) = 0® = f*(w)5— f_wK (8)do, forT — o,
(ii) VTh {f(w;h) — Ef (w;h)} = Z in distribution,
where Z is a Gaussian random variable with mean 0 and variance o2.

Proor. Using the compactness of the support of K and the asymptotic
properties of the periodogram I;(w;), j = 1,..., N =[T/2], as given in Theo-
rem 6.2.3 of Priestley (1981) we have, for a suitable constant C,

“Thvar{f(w; k)} < Z K2( - ’)fz(wj)+cs§(w)h for o > kh.
_]——N

As, by (A2), S;(w) is bounded, (i) follows.
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Part (ii) can be shown by the same methods used in the proof of Theorem
V.11 of Hannan (1970), which states a stronger result for a slightly different,
but asymptotically equivalent spectral estimate. O

LEmmA Al. (i) Let K satisfy the assumptions of Theorem Al, and, for
lw| < 7 — kh, let p be twice continuously differentiable on [w — kh, w + kh].
Then, for T — », h —» 0 such that Th — «,

2

2 )p(e)) ~p) - T4 (0)

N ®
Th N

C
< E{St;plp(ﬂ)l +h sgplp (B)I}‘

2
+—sup|p"(6) — p'(@)],
0
where ¢ is a suitable constant and the suprema are taken over the interval
[w — kh,w + kh].

(ii) Let the assumptions of Theorem 1 be satisfied. Then, for T — », h — 0
such that (Th*)~1 = O(1), the bias of f(w; h) satisfies

h? log T
Ef (w; k) - f(w) = ———f”(w) + o(h?) + 0( T )
uniformly in lw| < 7 — kh.

Proor. (i) The compactness of the support of K, its Lipschitz continuity
and the differentiability of p imply, uniformly in |w| < 7 — «h,

Z K( . )p( )—2 | K@p(o + ok) do

J—N

c
+ 0
< 7 {500 |p(®)] + k suplp'(0)]).
The assertion follows from the Taylor expansion of p(w + 6h), using that
K(0)/(2m) and 6%2K(0)/(27) integrate to 1 and 8K(8) integrates to 0.
(ii) Replacing p by f in (i) and noting that, under our assumptions,

log
(A3) El(w;) = f(w;) + 0| —7—

uniformly in j [Priestley (1981), page 418], the second assertion follows. O

Proor oF THEOREM 1. (a) To prove (i), we use Lemma 8.8 of Bickel and
Freedman (1981) and split the squared Mallows metric into a variance part
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and a squared bias part,
f(w;h) — Ef (0;h) TR f*(w;h,g)A— E*f*(w;h, g)
f(w) . f(w;8)

B% = Th|by(w) — b (w) [,

V2 = d2|VTh

where

{Ef (0;h) = f(w)} oo+ {E*f*(0;h,8) ~ F(0;8))
() and Bhle) = F(w:8)

Throughout the proof, we use the abbreviations I ; = I(w)), IF ; = I}(w;)
and

br(w) =

a;(w;h) = iK(w _wj),

Th h
N
yi(w;h,g) = x ap(w,h)a(w,;8) —a;(0;8).
j=-N

(b) We first prove that V; — 0 in probability. For this purpose, let x;,
|jl = 1, be independent, exponentially distributed variables with parameter 1,
and let x, = 0. We remark that I,(w)/f(w) converges to y, in distribution.
We define

N
fo(w;h) = ¥ aj(w;h)f(e;)x;, D°=vVTh{f°w;h)—Ef°w;h)},

j=-N
D = VTh {f(w; h) ~ Ef (@ b))},
D* = VTh{f*(w; h,g) ~ E*[*(ws;h, 8)}.
We use that d, is a metric, and we get
d,(D, D°) D° D° d,(D°, D*)
"= fw) 2(f(w) " fw;8) f(w;g)

To prove d,(D, D°) — 0 in probability, consider a zero-mean Gaussian vari-
able Z with variance o2 given in Proposition A2. By this proposition, D
converges to Z in distribution, and ED? — EZZ. Exactly as in proving the first
part of Proposition A2, E(D°)? - EZ? follows. Using boundedness of f and
the regularity conditions on K, it is easy to show that D° satisfies Liapounov’s
condition [Shiryayev (1984), page 331] and, therefore, converges to Z in
distribution, too. Now

dy(D,D°% <dy(D,Z) +d,(Z,D° - 0,
where the convergence holds by Lemma 8.3 of Bickel and Freedman (1981).
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Theorem 8.1 of Major (1978) provides an explicit formula for the Mallows
metric of real-valued random variables which implies

f(o) F(w;g)| [flo)  F(og)

as, for example, by Theorem Al and (Al), f(w;g) — f(w) > 0 in probability,
and as, by (A2) and the boundedness of f, E(D°)? is bounded.

(¢) To finish the proof that V; — 0 in probability, it suffices to show that
d,(D° D*) - 0 in probability, as f(w;g) — f(w) > 0. As D°, D* are sums of
independent random variables (conditional on the original data), we have, by a
slight modification of Lemma 8.7 of Bickel and Freedman (1981),

D° DO 1 1 77 .
d: = E(D°)” - 0 in probability,

N
(Af)  d¥D°,D*)<Th ¥ aX(w;h)d3[f(w){x,~ 1), If, — E*I} .
j=-N

As the distributions of x;, £} do not depend on j, we have, using the definition
of If ;,

di[ Flop){x; = 1}, IF ; — B*I} ]

< 2d3[ f(w,){x; - 1}, F(0;;8){x; - 1] +27%(w;:8)d3(x,; — L&} — 1)

2 2 2 A2 2 *
= 2| f(w;) = F(w;:8)| B(xs — 1)* + 2%, 8)d3(x1, €7).

Therefore, using Corollary A2 and (A2), we conclude that the right-hand side
of (A4) converges to 0 in probability if d,(x;, €f) — 0 in probability. To prove
the latter convergence, we use

d2(X178>1k) < d2(X178?) + d2(8(1)7 é\)f) + d2(§>1k7 ET)y

where the distributions of ¢ and & are the empirical distributions of the true
residuals ¢4, ..., &5 and of the unscaled empirical residuals &, ..., £y, respec-
tively.

Theorem 1 and relation (5) of Chen and Hannan (1980) imply that the
distribution function of ¥ converges to the distribution function of y; uni-
formly a.s. for N — » and that

IT(wj)

2
—_— Ex? as.
Fla, ]ﬁ oo

0/.0\2 1 X 2 1 X
E (81) = ﬁzlaj = NZI
Jj= Jj=

Therefore, d,(x;,£y) — 0 a.s. by Lemma 8.3 of Bickel and Freedman (1981).
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To get an upper bound for d,(¢?, 8}), we choose the joint distribution of
(2, £F) such that it assumes the value (¢}, ;) with probability 1/N, j =
1,..., N. Then, by Proposition Al,

1 XN 'y
dg(«‘??,s’f) = N Y (e —28)
k=1
! f‘, L ! 212 0 i babilit
= — - = — 0 in probability.
N2 [ f(@)  Feoph)] "
By exactly the same argument, we also get
20 A% % 1 X A =~ \2
d3(&,e7) < = X (&, — Ek)
N2y

1 N 1 N -1
— 211 - [= & 0 i bability,
[Nk§184 [Nk§1gk] — 0 in probability
by Proposition Al, using &, = I(w,)/f(w,; h;).

(d) We now start to discuss the bias part Bj. First, we remark that we may
neglect the denominators of bp(w) and bi(w), as f(w;g) — f(w) > 0 in
probability, and as, by Lemma Al and Proposition A2,

f(w)
VvTh - = br(w
{1 f(w;g)} r(®)
(A5) f(w;8) — Ef (w;8) + Ef (0;8) — f(w) ; _,
= VTh A Ef(w;h) — f(w
f(w)f(w;g) [f( ) =K )]
= p(gz)'

By Theorem 6.2.3 of Priestley (1981) we have, with I'7(/, £) uniformly bounded
in j, k,T and with &7, = 1 for j = +k and &}, = 0 otherwise,

1
(A6)  cov(Ip,j, Ip,) = 854 f*(w;) + =Tr(j,k) forall 1< |jl, Ikl <N.

Using this relation, (A3), Lemma A2 and the compactness of the support of K,
a straightforward calculation shows
2

N c* 3
(A7) ThE{ Y. y/(w;h,8)[Ir,,; —f(0)]} <—5 -0
j=-N g
for suitable c* > 0. As E*I} ; = f(wj;g), we have
b bi(w) = ! Ef (w;h ! > sh,g)l
T(w) - T(w) = m{ f(w’ ) _f(w)} - f(w;g j=Z_N‘YJ-(a), ,g) T,j*
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Therefore, using (A5), (A7) and f(w;g) — f(w) > 0 in probability, we finally
get By = VTh (bp(w) — b%(w)) — 0 in probability by proving vTh ap(w) — 0
with
N . N
ar(w) = .ZNaj(w; h)f(w;) = X vi(w;h,g)f(w)).

Jj=- Jj=-N

For this purpose, we split @ ;(w) into three parts and show that the first and
third parts are of order O(1/(Tg)) and the second is of order o(h2):

N 1

ar(w) = ¥ a(w;8)f(e) = 5= [ K(6)f(w+0g)ds
j=-N -
N
+ p(w; 8) — __Z_N“j(w§h)p(wj;g)
(A8) N -
+ ¥ ajw;h){ 5= [ K(0)f(w;+6g)do
j=-N -
N
- Z ak(wj;g)f(wk) ,
j=-N
where

1 =
p(w;8) = 5= [ K(0)f(w+0g)do ~f(o).

As in the proof of Lemma Al, the compactness of the support of K and the
Lipschitz continuity of K and f imply that the first part of (A8) is bounded by
a constant multiple of 1/(Tg) for T large enough. This upper bound is
uniform in |w| < m — kg. Therefore, the third line of (A8) is asymptotically of
order 1/(Tg) too, because only summands with o — w;| < xh do not vanish.

Because f is twice continuously differentiable and K is bounded, p(w; g) is
twice continuously differentiable on [—7 + kg, m — kg]. Using Lebesgue’s
theorem on dominated convergence, we conclude that p(w;g), p'(w;g) and
p"(w; g) converge to 0 uniformly on [w — 8, w + 8] for all § < 7 — |w|. Apply-
ing the first part of Lemma Al, we get that the second line of (A8) is
asymptotically o(A2).

(e) The proof of (ii) follows exactly the same lines as the proof of (i), but is
easier. In particular, defining D* as D* with f* replacing f*, (A4) would be
replaced by

N
d3(D°,D*) <Th ¥ aX(w;h)d[ f(w){x; -1}, f(w;8){x;—1}] » 0
j=-N

in probability by Corollary A2, and the rest of part (c) of the proof is not
necessary.
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LEmMMA A2. Let K, h, g satisfy the assumptions of Theorem 1.
Then vy(w;h,g) = O(h/(Tg?) uniformly in |w| <7 —«h. In particular,
'yj(a);h,g) =0 if lo — w;| > (h + g)k.

.

Proor. By definition of vy;,

1 N 0 —w
n(oih @) < e ¥ K[“]

) )

T?hg , " g g
k(22 isp(o) - 1
o w) — 1|.

Tg g T

The first term on the right-hand side is of order h/(Tg?) by Lipschitz
continuity of K and (A2). The second term is of order 1/(T2gh) by (Al).
The compactness of the support of K implies y;(w;h, g) = 0 for |o — ;| >
(h+g)k. O

Proor orF THEOREM 3. The proof is a combination of arguments given by
Rice (1984) and of results which we have already obtained in the course of
proving Theorem 1. We, therefore, only give a sketchy outline of the argu-
ments. We use the notation

2*f"(w) |
2f(w)

which is the asymptotically dominating part of T*® MSPE(w;h) for h =
2T~ '/% [compare (2) of Section 2]. Using (A7) and a Taylor expansion argu-
ment as in the proof of Lemma Al,

(A9) sup |T*5 MSPE(w;2T"'%) —I(z)| - 0 for T — «

a<z<b
for arbitrary 0 < @ < b < . A calculation of derivatives shows that [(z) is
strictly convex and infinitely often differentiable on (0, ), and that it has z, of
(5) as a unique minimum, provided f”(w) # 0. These properties and (A9)
imply T'/5h, — 2, for T — o, provided a < z, < b. As the next step, we prove

sup T4/5|MSPE*(a);h) - MSPE(w;h)| -0
(A10) heBr

1 e 1
I(z) = Ef_mﬂz(e) do— +

in probability for T' — .

This convergence is shown separately for the variance part and for the bias
part of the mean-square percentage error, noticing also that we can forget
about the denominators as f(w;g) = f(w) > 0 in probability. The conver-
gence of the variance part of (A10) follows rather easily from Corollary Al,
using (A2) and the asymptotic properties (A7) of the periodogram. To prove
that the difference of the bootstrap bias and the bias of f(w; k) itself converges
to 0 faster than T'~2/%, one has to repeat the arguments of part (d) of the proof
of Theorem 1, remarking that all of them hold uniformly in ~ € B.
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Now (A9), (A10), (5) and the regularity of I(z) imply T'/5(h% — h,) — 0 in
probability, using exactly the same arguments as by Rice (1984) in the proof of
his Corollary 2.2. By the first part of Theorem 3, we immediately conclude the
second part of Theorem 3 because [(z) is continuous and because, by (A9) and
(A10), MSPE*(w; ) and MSPE(w; ) can both be approximated by
T-*/51(hT'/®) uniformly in h € By. O
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Bandwidth Choice for Average Derivative Estimation
W. HARDLE, J. HART, J. S. MARRON, and A. B. TSYBAKOV*

The average derivative is the expected value of the derivative of a regression function. Kernel methods have been proposed as
a means of estimating this quantity. The problem of bandwidth selection for these kernel estimators is addressed here. Asymptotic
representations are found for the variance and squared bias. These are compared with each other to find an insightful represen-
tation for a bandwidth optimizing terms of lower order than n~'. It is interesting that, for dimensions greater than 1, negative
kernels have to be used to prevent domination of bias terms in the asymptotic expression of the mean squared error. The extent
to which the theoretical conclusions apply in practice is investigated in an economical example related to the so-called “law of

demand.”
KEY WORDS: Bandwidth optimization; Kernel estimators.

1. AVERAGE DERIVATIVES

The average derivative is the mean slope of a regression
curve. A non-parametric formulation of this problem is to
use (X;, ¥), ..., X,, ¥,) € R*" independent identically
distributed, with regression function

mx) = EY | X =x):R‘> R,
to estimate
& = Ex[m'(X)],
where

m'(x) = [0m/dx, ..., dm/dx,)(x).

The average derivative provides useful generalizations of
binary response -models, as discussed in Manski and
McFadden (1981), because it allows modeling the link
function in a nonparametric fashion. One such generaliza-
tion is of one-term projection pursuit type, as defined in
Friedman and Stuetzle (1981). This models the regression
curve as a function of the form m(x) = g(x"B) for some
parameter vector 3 (identifiable up to scale). If g is non-
trivial, then the average derivative is a projection vector in
the same direction as 8.

In an econometric context this model is called a single
index model. For another setting in economic modeling,
which can be effectively analyzed by the average derivative
technique, we refer the reader to Powell (1986). Average
derivatives occur also in the empirical verification of the
“law of demand.” The law of demand is a condition for
the uniqueness of economic equilibria. Uniqueness of equi-
libria of economic situations is vital for so called compar-
ative statics, where one compares two economies with dif-
ferent price systems. A sufficient condition for the law of
demand to hold is that some random matrix (related to “in-
come effects,” see Section 3) is positive definite. The ele-

* W. Hardle is Professor, C.O.R.E., Université Catholique de Lou-
vain, 34, Voie du Roman Pays, Louvain-la-Neuve, Belgium. J. Hart is
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Forschungsgemeinschaft, Sonderforschungsbereich 303 and CORE. We
thank the associate editor and the referees for careful readings and useful
suggestions concerning the presentation of this article.
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ments of this random matrix are average derivatives; for
details, see Hildenbrand (1989).

These and other applications were also presented in Hérdle
and Stoker (1989), where the method is called average de-
rivative estimation (ADE). There it was also shown that &
can be estimated at the rate n~'/2. Equipped with this “para-
metric” rate of convergence of ADE, one sees that the ad-
ditive model just given allows a one-dimensional rate of
convergence for estimation of m. The variance in the
asymptotic distribution of the ADE is the best obtainable,
as shown by Samarov (1990). However, although the first-
order rate for ADE is independent of smoothing parame-
ters, these have to be properly chosen from the data in
practice.

The average derivative is a functional of the joint distri-
bution of X and Y. If full information about the regression
function m(x) were available to the experimenter, an ob-
vious estimate of 8 is a sample average of m'(x) over the
X values. However, in general, it is necessary to estimate
m(x) or some other nonparametric component of & as well.
In this article we base estimators of the nonparametric com-
ponents of the average derivative on the kernel method. We
use the kernel technique because it is straightforward to im-
plement, easily understood on an intuitive level, and math-
ematically tractable to analyze. Other possibilities include
spline and orthogonal series methods. With any nonpara-
metric method there is a smoothing parameter to be se-
lected, called the bandwidth in the kernel case.

The main point of this article is an analysis of how this
should be done in the ADE case. Empirical motivation for
our theory in a slightly different setting was provided by
Hsieh and Manski (1987, p. 551) who stated that “the per-
formance of (adaptive semiparametric) estimates has been
shown to be rather sensitive to one’s choice of smoothing
parameter.”

An interesting feature of our results is that the best choice
of bandwidth for ADE is substantially smaller (under-
smoothed) than the typical bandwidth for curve estimation.
This is due to the fact that our goal is estimation of a func-
tional, not the curve itself [see Hall and Marron (1987) or
Carroll and Hirdle (1989) for the same phenomenon].
Moreover, unlike the curve estimation problem, we will see

© 1992 American Statistical Association
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that n~'/? rates of convergence are obtainable for estimation

of the average derivative functional.

We explicitly state our results in terms of the one-di-
mensional case, d = 1. Generalization to higher dimen-
sional cases is straightforward but involves more refined
arguments. One part of this extension is that, to obtain an
n~ /2 rate of convergence, one must use a higher order ker-
nel. More precisely, the second-order term in the mean
squared error expansion for d = 1 and a p = 3 times dif-
ferentiable marginal density f of X is n™%/7 = p("%*9/Crd)
Thus one sees that, for d > 1, only for p > (d + 4)/2 is
the next expansion term indeed of lower order. When d >
1, the dominant term in a mean squared expansion con-
verges at a slower rate than n~', unless one uses a higher
order kernel, that is, one that takes on negative values.

Section 2 contains a mathematical formulation of the es-
timator and a statement of the theorem that provides an
asymptotic analysis of the bandwidth selection problem, to-
gether with a discussion of the practical implications. It is
seen that, under common technical assumptions, the rate of
decrease of the best bandwidth optimizing second-order terms
is of the order n™%/ 7 which results in a mean squared error
(MSE) rate of convergence of n~'. Section 3 offers an ap-
plication to some economic data. The proof of the theorem
in Section 2 is given in the Appendix.

2. CHOICE OF BANDWIDTH FOR ADE

If the marginal density f(x) of X vanishes at the bound-
ary, and if we apply partial integration, we can then write
the average derivative as

6 = E[lm'(X)] = E[YIX)],

where I(x) = —f'(x)/f(x). If the score function ! were known,
the average derivative could be estimated by a sample av-
erage over Y/(X)). In general, the score function is not
available to the experimenter, and, therefore, it is necessary
to estimate it from the data as well.

The kernel estimator of the marginal density f(x) is given
by

Fy=n"' Y Kilx = X)),
j=1

where K,(+) = K(-/h)/h for K a kernel function, which will
be taken to be a bounded symmetric probability density,
and where the scale factor & is called the bandwidth. The
subscript of ~ on the estimator is used because choice of A
is crucial to the efficiency of the estimator; see, for ex-
ample, section 3.4 of Silverman (1986). In the multidi-
mensional case d > 1, a product kernel is to be used in the
preceding formula for the density estimate. The gradient
f'(x) = (9f/dxy, ..., of/dx,) would then be estimated com-
ponentwise by

A " — X,
Fan =n"" 2 [ Klx; = Xph K’ (x"_h_">

i=1 j#k
Rates of convergence and asymptotic limiting behavior of

multivariate density estimators are well known; for an ac-
cess to the literature, we refer to Silverman (1986).
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The estimate of the derivative f’(x) is, in fact, obtained
by differentiating f,(x) with respect to x. We thus form the
estimate

Ix) = —F 1) /7).

The average derivative can then be estimated by
& =n7' > vix).
i=1

A different approach could be based on a samle average of
kernel estimates of m'(-), the derivative of the regression
function. It is not hard to see that a sample average of a
kernel regression estimator leads to a very similar expres-
sion. Indeed, this approach leads to the same variance
expressions as has been shown by Stoker (1989). The pre-
ceding representation was, historically, developed first and
is slightly more tractable since it contains less terms to
analyze.

It seems likely that our estimator could be improved by
using different bandwidths for Foand f;. A drawback to this
approach is that then there are two bandwidths to be se-
lected. For the sake of simplicity in this analysis, we choose
to work only with a common bandwidth for the two esti-
mators. It will be apparent from the proof that, after li-
nearization of /(-), only the bandwidth for estimating ' is
of interest.

Note that, in the construction of § ,, the quantities f, and
f » are evaluated only at the points X, ..., X,. In each in-
stance, this results in one term of the form K,(0) in the
denominator of ih(Xi) (in the numerator such terms vanish
since K4(0) = 0 for symmetric kernels K). While these
terms will be asymptotically negligible, as discussed (in a
related problem) by Hall and Marron (1987), there can be
a small sample difference that makes it desirable to elim-
inate these terms. Hence define the leave-one-out estimators,

) B . For i)
D =0m—-D"> Kx-X), )=
fui) = (n g WX — X)) (%) 7o

A modified estimator of & is given by

8h =n"' 2 Yiih,i(Xi)-
i=1
Inspection of the proofs shows that 8, is also easier to work
with mathematically than &} because the “diagonal terms”
of the form K,(0) in &} need to be handled separately.

As with many related estimators, &, is technically tricky
to handle because of the random denominator appearing in
lA,,,,-(x). The approach to this problem taken here is similar
to the linearization method used in chapter 3 of Hirdle
(1990). It will become apparent from the proof of the next
lemma that &, may, for purposes of analysis, be replaced
by the “linearized” version

8= n"' D VLX),
i=1
where L,(x) = f 1 0)( f,,,,-(x) — 2f(x))/f(x)*. Technical as-
sumptions used here are:
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Al. The kernel K is bounded, continuously differentia-
ble, symmetric, and compactly supported.

A2. [ K(u) du = 1.

A3. There exists k, k¥’ > 0, such that K*(x) = k'I(ju| =
1/k).

A4. f(x) has three continuous derivatives on its support,
and support (f) = (a, b), for —o < a < b < <.

A5, f"(a) # 0, and f"(b) # 0.

A6. support[f'@E(Y] | X = x)] < .

A7. h, = hon™ %7, where h, is some positive number.

The first four conditions are common conditions in the
setting of kernel smoothing ensuring regularity of both X
and f. In the multidimensional case, d > 1, assumption A4
has to be replaced by a cube, for example, (a, b)?. As-
sumption A5 is introduced to control the curvature at the
boundary; again it can be modified for the multidimensional
case; see formula (A.1.1) in the Appendix. Assumption A6
is a growth condition necessary to control the random de-
nominators. Assumption A7 is a condition on the rate of A
already predefining the optimal range of . It could be mod-
ified to a slightly larger range at the expense of more com-
plicated mathematics.

The following Lemma guarantees that the replacement of
lA,,.,- by L,; is possible.

Linearization Lemma 1. Under assumptions A1-A7,

\/1;(3,, -8, = op(n“l/”), n— o,
In the multidimensional case the rate n~"/'* has to be re-
placed by n~'/12%*i,

_ That this bound is enough to enable replacement of , by
&y, and that the bandwidth speed given in A7 is reasonable,
are a consequence of the following theorem, which is the
main result of this article. Additional technical assumptions
are:

B1. m(x) is three times continuously differentiable on R,
and m(x){(x) is Lipschitz.
B2. The conditional variance o*(x) = m,(x) — m*(x) and
the function m(x)/f(x) are continuous, and the integrals
o ML () /f(0))dx and [5 [my(x)/f*(x)ldx are finite.
Here my(x) = E(Y? | X = x).

Theorem 1.
Bl1, and B2,

EG, — 8= Qi + 0n 7k + Qs + o(nThP + KD,
where

Under assumptions Al, A2, A4, A6, A7,

Q, = var(m'(X)) + E(c*(X)I* (X)),
0, = J' o *(x)dx f (K'(9) dt,

m(x)

and 2 2
0, =< f(—x)(f’(x)f”(x) = fxf"(x) dx) (%ftﬁ((t)dt) .

Corollary. The asymptotically optimal A, is given by
he=hEn™7, B = (30./409)"".

Journal of the American Statistical Association

Under this choice of #,, the first two terms of the asymp-
totic expansion are

-1 a1 (4 i 3\ -8/7
on + 07 '0s 5 + 1 n . (2.1

The theorem and the corollary generalize to dimension
d > 1, as explained in the Appendix.

Note that the second term is not particularly small in
comparison to the first one, since their ratio is of order n™'/".
Therefore, recalling the preceding observation by Hsieh and
Manski (1987), while the choice of 4 is asymptotically neg-
ligible, extremely large n will be required before its influ-
ence disappears in a practical sense. The constants in (2.1)
can be optimized.

Optimization of @,

The n~! term with constant Q, is the leading term in the
MSE expansion of the ADE. This constant cannot be im-
proved upon in a minimax sense due to Levit (1974). Sa-
marov (1990) proved that this first-order term @, is the
smallest achievable for any possible estimate of the average
derivative.

Optimization of K

The second-order terms in (2.1) involve the kernel XK. So,
it is natural to ask whether the factor Q‘;/ 7 i/ 7 can be op-
timized over the choice of kernel. Note that this is the same

as seeking to minimize

o= ]

Mammitzsch (1989) has solved this problem by showing
that K’ is of order (1, 3), in the terminology of Gasser,
Miiller, and Mammitzsch (1985). Integrating K’ leads to
the quartic kernel K(u) = (15/16)(1 — u®)*I(|u| < 1) as the
kernel optimizing T(K).

Optimization of h for d > 1

The proof of the Theorem can be extended to the case
of higher dimensional X variables. The rate in the stochastic
term will be, as known from other semiparametric prob-
lems, of the order n™ 22772, It is interesting that the bias
for three-times differentiable f would be of the order as in
the one-dimensional case, namely, #*#™", where p = 3 de-
notes the degree of differentiability of f. Observe now that
p = 3 as a degree of smoothness of f is no longer feasible
for d > 1. To speed up the rate of convergence for the bias
term, we hqve to assume that more derivatives exist, and
we have to use higher order kernels (Gasser, Miiller, and
Mammitzsch 1985) to obtain a rate #*»~? faster than n™"'.
If, for example, we are in a d = 4 dimensional setting, we
should use a kernel of, say, order p = 6 > 4, since then
the bias term is of order A*7~V = A'°, yielding a rate of
n~#*4@*d The h optimizing the second-order terms would
be, in this setting, # ~ n~"/® More generally, for p > (d +

4)/2, the best bandwidth is given by h ~ n~®*%_ yielding
a rate of n-@Pra/aertad)
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3. THE METHOD IN PRACTICE

Empirical verification of the so-called law of demand,
see Hicks (1956), provides one motivation for the average
derivative estimation method. The law of demand concerns
effects of price changes when a household’s budget is fixed.
A sufficient condition for the law of demand to hold is pos-
itive definiteness of the matrix of mean income effects. The
(k, 1) component of this matrix is the demand for good !/
multiplied by the derivative of demand for good &, with
respect to income, all averaged over the population. Hil-
denbrand (1989) used nine goods and showed that this is
equivalent to checking positive definiteness of the matrix

d
au:fd_xE(zkzl|X=x)f(x)dx, k,l1=1,...,9.

Here Z, and Z, denote demands for goods k and / and f(x)
is the density of the income distribution. The matrix ele-
ments a;, are thus average derivatives computed for ¥ =
ZZ,.

To give some insight into this data structure, consider
Figure 1. It shows an estimate of E(Z,Z, | X = x) for k =
FOOD and / = TRANSPORT. The data are from the Fam-
ily Expenditure Survey from the Department of Employ-
ment, Statistics Division (1968—1983) for the year 1973.
The average derivative for this example, with a quartic ker-
nel and b = .2, was & = .06. For a picture of the income
density f(x), see Hardle (1990, chap. 1). _

The bandwidth selection procedure was performed for a
variety of those matrix clements for different years. We
give an example from the year 1973 based on plugging in
estimates O, and O, of Q, and Qs in Theorem 1. To esti-
mate the constants in Theorem 1 most conveniently, we
used kernel estimates with the Gaussian kernel K(u) =
(1/V2m) exp (—i’/2).

The reason for choosing the Gaussian kernel was that
derivative estimates as occurring in (J; can be easily com-
puted without referring to other special derivative kernels.

w
o T T T T T T T T T T

St FOOD ]
TRANSPORT

T T T T

0.4

0.3

0.2

0.1

0,' L L I . 1 I I Il 1 1 1
©o. 1 2 3

Figure 1. The Estimated Mean Product Function E(ZZ, | Z = x) for
Food and Transport for 1973 (X and Z are normalized by their mean).
From Hildenbrand (1989).
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Figure 2. The Bandwidth Selection Function Q.n~2h2 + Qsh* for the
Food and Transport Example.

We used numerical quadrature methods to compute the in-
tegral (f [m(x)/f()] (f' () "(x) — FEOF"(0))dx)*, which is
part of Q;. The bandwidths for estimating the unknown
curves in this constant Q; were chosen by cross-validation,
using the techniques of Hirdle, Marron, and Wand (1989).
We are aware of the fact that this introduces further noise
in a third-order level, but we varied the bandwidths for es-
timating @, and Q; and found little difference in the esti-
mated optimal 4. One might suggest that optimizing a choice
of bandwidths for estimating f', etc., as in Hirdle, Marron,
and Wand (1989), is not reasonable, given the perspective
of this article. (It does not solve the very complicated prob-
lem of finding a “best” bandwidth for estimating Q). But
note that this is yet another theory for optimizing estimation
of Q,. The selected bandwidths for estimating @, and Q;
were around .2.

Figure 2 shows the curve O,n k™ + Q;h* for the Food
and Transport example (r = 7,123). For this curve we also
used the Gaussian kernel to compute f(K’)* and fu*K most
easily. The curve has its minimum around h = .1. This
bandwidth of # = .1 does not, of course, correspond di-
rectly to the bandwidth used for Figure 1, where we used
the quartic kernel. To obtain an interpretable value of this
bandwidth in the scale of the quartic kerne] used previ-
ously, we refer the reader to the canonical kernel technique,
as described in Hardle (1990, chap. 4.5).

APPENDIX: PROOFS OF THE THEOREM AND LEMMA

A1 Proof of Theorem 4
Write the estimate & as & = (1/n) 2, (m(X,) + €)L,(X;), where
€ = Yi - m(X,) Since E(f,‘ I X,) = O,

n

2
- 1
E — 5)2 = E(; S, EiLhi(Xi)>

i=—1‘l ) ,
+ E(— > mX)LuX) — 6)
ni=y

=V, + V, — 28E(5) + 82, (A.1.1)
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where V, = E((1/n) 2L, &L (X)) and V, = E((1/n) Zi,
m(X,)L,(X))*. Note that

LX) = X)) ——; 2 Ry(X),
(n - 172 %,
k, j#i

where Ry;(x) = Kj(x — Xo(Ky(x —

n. Hence

X) — 2o, fork,j=1,...,

1
ey f T XDELLX)NSX) dX,

SIEES R )
- f o(x)f (x)[ L E,z Ry0R; ;) | | dx

(A.1.2)
The sum Z;; »—, can be represented as
> =r+ M+ 0+ 1V,
fii =2
where I = 3%, Ri(x) corresponds to the case i = j = i' = j/, Il

is the double sum over i, j that contains the products R;R;, R;R;;,
Ri, RiRy;, IIT is the triple sum over i, j, i’ that contains the prod-
ucts R;R;, R R ;i RiRjs, RyRy », and IV is the sum over the quad-
ruples (i, j, i, j ) with i, j, i’, j' pairwise different from each

other. (A.3.2)—(A.3.5) imply that

1
E[(— 2 Ryx)Ry; (x)]

_1)1]112

= (f@f@) + n” 'R J’ K'Y dt + o(n” k).

. (A.1.3)
Substitution of (A.1.3) into (A.1.2) yields
1 ' 2
vV, =— J’ o(x) de +n %3 J o*(x) dx
n fx)
X j (K' (O dt + o(n"*h™3). (A.1.9)
Next,
13 2
V,= E[— m(Xi)Lhi(Xi)]
n =
E E[m(Xi)Lhi(Xi)m(Xj)th(Xj)]
i, j=Li#j
n2 Y ElmX)LuX) =B, + B,.  (A.1.5)

i=1

Equation (A.1.3) implies that

1 2 2
B, = ;E(m X)Ly (X1))

1 n
. f mA)f (x) - 1)4 [22 Rij(x)Ri','(x)] dx

1 1
=- (Wl + - Wz) + o(n*h7Y,
n n (A.1.6)
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where W, = [ m*(0)[(f'x))*/f(x)] dx and W, = h™> [ m*(x) dx
[ (K2 Using (A.3.1) we obtain

E(mX,)L (X)) = E6)

J m)f (x) - [2 Rf,-(x)] dx
=
n—2
= Q:h + O(n”'h Y
n—1

=81 -n+ V@ +0n'hh.
(A.1.7)
Rewrite B, as

n—-1 1 =
B, = i [ss > RiX) D) Ry Xn)]

n $,1=2 r,p=1

1
- U+ L+ 1),
n— 1)3(‘ 2+ b (A.1.8)

where S; = [m(X)/f*(X))] and
n—1 n—1
= E[slsn > RuX)) >, R,p(x,.)],
$,1=2 rp=1
2E{S S, 2 RS,(XI)[E Ry(X,) + 2 Rl,,(xn)]}
s,4=2
and

I= E[sls,,(Z R, (X))
s=2
n—1 n—1 n—1
+> Rn,(Xl)) (2 RaX) + Y, Rl,,(xn)] :
=2 r=1 p=2

Denote

Uy= Exl(SlR.rl(Xl )]

m(x)
= | — K}(x — X)K(x — X)) dx + 2m'(X,) + O(WP).
fx)
Then I, = ECY;) - UJU,,)) = =5, I, where
hi=E| > Us,U,,,] = > EWUWYEU,),
re#Es,ral p#s p#l r#s,r#l, pts, p#l
- n—1
In=E| > US,E U] Iy [ 2 Uslz U,,,],
_s,/=2 p=2 §,1=2,1%s
n—1 n—1
La=E| D> Us D, U,S] and
L s,/=2 r=2r7#s,r#l
- n—1 n—1
15 = EL 2 Ua 2 Url:|~
$,{=21#s r=2r#*s,r#{
By Lemma 2.1
U = E(Uy) = Ex(SiER, | X,) | Xo))

=8+ Vi + o), s # 1,

and
U = EWU.,,) = O(h™).

It can be easily seen that

=n-2" (U+ 1 _)2 602+0(~1—)]
n= n—2 n—2 ) |
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and hence

e[ oY)
nin — 1)° " n n’

[(o255) 25 ol
x |0+ - +0|—=5
n—2 n—2 n’n’
r 2

= 8+\/Q3h2+o(h2)+0(—-1}—l)]

B n

118° n
+0O|l—+ =
n nh (A.1.9)
The main term of [, is that with s ¥ [ and [ # p. Direct calcu-
lation shows that

n

EUUy) = j(m'(x))zf(x) dx + O(h), l#p,s#1,

EWU%) = Wi(1 + o(1)), s#,

2
W,=h"? J mP(u) du[ f K'OK@ + 9 dt] dv,

and

1 1
[ f (m' () ’f(x) dx

—___.I = —
n(n — 1)° 2

1 1
+;1W3:| +0(n2—h3). (A.1.10)

Similarly, the main term of /;; contains the summands with s #
land s # p:
EUU,) = W, +28° + O(h),
where W, = [ m'()m(x)f'(x) dx, E(UyU,) = —W5(1 + o(1)), for
s # [, and
! 1 1(W 1W)+262-+- (1) (A.1.11)
— ;= - = — + ol ——=|. .1,
nn —1)° Y fon? n nh
Note that 14 is just the part of [;; corresponding to the case s #
p. Therefore,
1 1

1 W, + 28° + ( !
I S ool —
nn — 1)° et n n’h’

). (A.1.12)

Moreover,

1 1
—  ILs=-W,+o|l—], A.1.13
nn—17" n! (n2h3) ( )

since E(UU,) = W, + Oh), fors # 1, s # r, and r # [. To
evaluate 7, we split it into three terms: I, = I, + I, + I, where

n—1
I =2E[slsn > Rs,(XI)R,l(Xn)],

s,br=2

n—1
122 = 2E|:Slsn 2 RsI(Xl)Rlp(Xn):I’

s,1.p=2
and

n—1
Ly = 2E[S,S,, > Rs,(xl)Rn(xn)].
s,i=2

Using Lemma 2.1 and the Lipschitz condition on m(x){(x), one
obtains

ES R XDU,) = —W, + 267 + O(h), s#ELIF#r, r#s.
and

E(S\RAX)U,) = —Ws,

223

where

Ws = —% [j mz(x)dxffK’(w)K’

X (w—t)K(t)dwdt+0(1)], s#I,
and
! I 2W 2W+482+(1) (A.1.14)
— L= — - — — + ol ==|. .1.
nin — 1° 2w n*h’
Next, the main term of I,,/2 corresponds to s # [, [ # p, and
s # p, and its summands are E(S\R (X ,)U;,) = —W, + O(h) and
E(SRy(X)U,) = Ws.
Therefore,

1 2 2 a3
——— = =Wt S5 Ws+on"h). (A.1.15)
nn—1) n n

Finally, using Lemma 2.1 and the fact that U;; = O(4™%), we
obtain
1
n(n — 1y

Considering I;, we see that the nonnegligible part of it is

Ly = o(n *h™>). (A.1.16)

n=1
E (Slsn > Rnl(Xl)Rlp(Xn)) = (n = 2)(n = 3) (=W + 0(1)),
I.p=2
I#p

and thus
1

—1

nn—1°°
Summing up (A.1.6), (A.1.9)—(A.1.17), and using (A.1.8), we
have

V2:BI+BZ

1 —23 -3
= =W, + o(n?h7Y). (A.1.17)
n

2

2
1
= (8 + V@i + o(h?) + 0(—})) L o(n"*h7>).
n

n
(A.1.18)

(Note that all W;, j = 1, 2, 3, 4, cancel out.) Finally, substitute
(A.1.4), (A.1.7), and (A.1.18) into (A.1.1). This proves the
theorem.

A.2. Proof of Lemma 1

Introduce the following notation,
&) = f K*(w)f (x + uh,) du, Konax = max |K(x)],

D = diam supp K, and d = max f(x),

and put without loss of generality 2§ = 1. In the following, C;
denote positive constants and 4, is abbreviated as h.

Note that Assumption (AS5) entails that there exist A, B, and A
> 0 such that

Alz — o> =f(z) = Bz — o, asz<a+A,

and
b—A=z=bh.
To prove Lemma 1 we need some preliminary steps.
Under (A4) and (A5)

lim sup P{f(X) = 7}/7*/* < o0,
710

Alz — b* = f(z) < B|z — bf, (A.2.1)

Lemma 1.1.
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Proof. Assume that 7 is small enough so that
. fo=nClasx=a+AU{bP—-A=x=b}
Then

a+A

PfX)=1= f Kf(x) = 7} f(x) dx

a

b
+ f Kfix) = 11 f(x) dx.

Next, apply (A.2.1).
Assume (A1) to (AS5). Then
Ex) = C\i.
Proof. Let L be the Lipschitz constant for f. Then

Lemma 1.2.
(A.2.2)

£(x) = f(x) J K*(u) du — Lh f |u|K*(u) du.  (A.2.3)

If f(x) = [2L | [ulK*(u)du/] K*(u)du)l h = C,h, then £(x) = (C,/
2)h, so that (A.2.2) holds.
Now suppose that f(x) < C,h. If n is large enough, then
{fO)<ChlClasx=a+AlU{b-A=x=b)}

and we can apply (A.2.1). Suppose, as before, that we are on the
set {@ = x = a + A}. Here again we have two cases: (1) x — a
< Csh/k, and (2) x — a > Csh/k, where

B
C3:1+ _—
2B

First estimate ¢ in the case (1). In view of Assumption A3 and

(A.2.1), one obtains
17k

Ex) =k fx + uh) du

—1/k

K x+h/k x—hfk
= ; [[ f@) dt — f f® dt]

K ath/k a+(Cy—Dh/k
ZZI:AJ (t—a)zdt—Bf (t—a)zdt].

Computing the integrals and using the definition of C;, we obtain
the assertion of the Lemma in the case (1). If case (2) is true,

then
x+h/k x+h/k
f fdir=A f ¢ —a)ldt

x—h/k x—h/k

24
= = <5 — ’n’

Lemma 1.3. Under Assumptions (A1-A7) we have

. ) logn
Py ([ Xy — fXD/EX) = 717
=2exp(—Cs Vnlogn), (A.2.4)

for all n > O large enough.
Proof. Set € = m log n/(nh). Then

P{(fh,i(Xi) _f(Xi))2/§(Xi) = ¢}
= Ex(P{(/X) — FXDY'/6X) = €| X}).
Fix some i and denote for brevity x = X; and 7, X;) = f,(x). Now

it is sufficient to prove that the right side of (A.2.4) bounds, from
above, the probability

Pn = Py, J(Full®) = f(0))*/§(x) = €}
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Here

(Fulx) = F0))* = 2(filx) — E(fx)))*

+ 2E(fix) — f@).  (A.2.5)
Now, by Assumptions Al, A2, and A3,
ESfHx) = f0))
d 2
= (~ + fK(u)(f(x + uh) — f(x)) du)
n
d2
=< 2(—5 + C5h“> = Cen ¥, (A.2.6)
n

Note that, by Lemma 1.2,

£0e _£6) logn
2 2 K nh

=C, g (log mn~%" > 2Cen™%""

if n is large enough. Using this (A.2.5), (A.2.6), and applying
the Bernstein inequality, (Serfling 1980, p. 95) we obtain

P = P{(F'h(x) - E(f(0)) = % - Csn_sﬁ}

= P{(fh(x) ~ E(h)) = G—gf‘—)}

(n — DN(VeE®)/2)? )
207 + e Vet@/30,)
for n large enough. Here o, = E{(1/k, K*[(x — X)/h,J} = (1/
h,)é(x). By Lemma 1.3 the last expression in (A.2.7) does not

exceed
( (n — Dh,e/4
2 exp
eCy'h,’?

for n and 7 large enough.

=2exp (— (A.2.7)

) =2exp(—C, \/:) log n)

2 + Koax

Lemma 1.4.
where

If n is large enough, then P{®B} = o(1), n — o,

f 2 log n
B = _gxax (FudX) — FXN/EXD) = n 1.

Proof. Using Lemma 1.3 we have

n

1
Py <Y P{(ﬁ,,.-(xi) — FKI/EX) = 7 ﬂ}

=1 nh
=2nexp (—C, \/—7-] log n) = o(1),
for 7 large enough.
Under Assumptions (A1-A7),
max |74, = O,(D),

i=1...n

Lemma 1.5.

n—> o,

This is proved by standard techniques of nonparametric esti-
mation (see, for example, Stone 1982).

Lemma 1.6. Let Assumptions (A4), (AS), and (A7) hold. Then
P(A) = o(1), n — o, where

A = {f(X;) = C;log n/(nh) for some i}.
Proof. Use the Bonferroni inequality and Lemma 1.1. Then
P(A) = nP{f(X) =< C; log n/(nh)}

32
log n
= Cgn = o(1), n— o,
nh

(1992) Hardle, W., Hart, J., Marron. J.S. and Tsybakov, A.B.
Bandwidth Choice for Average Derivative Estimation.



Journal of the American Statistical Association, 87, 218-226

Hardle, Hart, Marron, and Tsybakov: Bandwidth Choice for Average Derivative Estimation

Proof of Lemma 1 (Linearizafion Lemma)

Suppressing dependence on x, &, and i for notational simplicity,
observe that

[-L=-f"/f~7"(F-20)/f7
= —F'(f =Y.

Hence we have to prove that

P{7|=n"" >0,  n—w,
where
5 XN kXD — fX))?
J,=n"1" : : Y,
LY I X))
Now

P{J,| = n V% = P{st} + P{B)}
+ P = n7 " N oA N B

It follows from Lemmas 1.4 and 1.6 that the first and the sec-
ond terms in the right side of this inequality tend to zero. There-
fore, it suffices to prove that the third term also vanishes.

Define the slices U, = {x : D/2" =< f(x) = D/2""'}. Then

= P X G i XD — f(X)) ]
J,=n"'"? [ : : AR
8 Eo {i:;(,.EEU,} Tl 17X
On @ we have

fh,i(Xi) > fX) — V néX)) log n/(nh),
If X; € U,, then

fh,i(Xi) =D/2" — Vnlog n/(nh)

i=1,...,n.

X VCy(D/27 + k), (A.2.8)
since
D
X)) = sz(u) du[F + LDh]. (A2.9)
Define
r*=max{r=1,2,...:(D/2") = Cyol(log n)/nh],
where Cjp = 10Cym. It can be easily seen that
ﬁl,i(Xi) >D/2r+]a X,E Uanr*,
if n is large enough and B holds.
Note that
D nh
r¥*<log, | — . (A.2.10)
Cyplogn
For X; € U,, r > r*, by definition of r¥,
X)) =D/27 "' < AC,,[(log n)/nh]. (A.2.11)

Set C; = 5C,o. Then (A.2.11) is impossible on . Therefore, the
sets {i : X; € U}, r > r*, are empty. Hence we have to bound

P{ {n_m Sy PR - e YA}
oukeuy | HAXIFA0) '

= n*]/"‘} NN %}
Since we are on the set %, this probability is smaller than
il log n ¥} | £1.00|ECX:
p{{n-vz S oy ke | [lfh,( 2)|§( )
Il X) XD

=0 ixevy hh

= n‘”“‘} nsin 9_75}
Substitute (A.2.11) into the preceding expressions and use Lemma
1.5. Then

225

nlog n || | F1X)l2 " €(X)

Pyqn717?

= n'/"‘}n AN @}

Cimlogn < cafEClT
SP{—;;/T—'E > 2 = a4 o).
n'h r=0 {i-X,€U,} f X))

Now it remains to prove that

logn X)\|Y|
n”l“%zE[ > '“‘E(Z—)H] (A.2.12)
nw’h 15 {iX€U} [ X)

tends to zero. Using Assumption A6 one obtains

f(x,-)lY,-l) f " EE(Y] X = x)
E el reuv)————— "
({>;> Fay ) n e

b
< Cpn f Iix € UM(x) dx.

(A.2.13)

Together with (A.2.9) this entails that the left side of (A.2.13)
is bounded by

d ’ —3r/2 —r/2
Cun Y= + LDh Hx € U} dx < CunQ>"? + n277%.
Hence (A.2.12) does not exceed
logn o<y . logn .,
C15n1/14m Z) @ /2 4 o /zh) = Clﬁnl/m F 2 /z,

which tends to 0, by the definition of r*.

A3. Auxiliary Results

Define Kj(u) = h’K'(u/h), dx = [ ®K@) du, cx = [ KX(w)
du, and ¢ = [ (K'(w))? du. Also define

A= j (Ky(x — u) = 2f))f () du,
A= j Ki(x — w)f(u) du,
A; = f (Kix = w) — 2f(x))’f(u) du,

A= f K ix — w)f(u) du,

and
As = f Kix — w)(Ky(x — u) — 2f(x))f(u) du.
We have
Ay = f K(0)f(x — th) dt — 2f(x)
W
= —f(x) + f'(x) By dy + o(h), (A.3.1)
and, by similar techniques and partial integration,
Ay =f1(x) + f(%) h;z dg + o(h%), (A.3.2)
Ay =0, (A.3.3)

(1992) Hardle, W., Hart, J., Marron. J.S. and Tsybakov, A.B.
Bandwidth Choice for Average Derivative Estimation.



Journal of the American Statistical Association, 87, 218-226

226

A, = h‘3[f(x) j K'(0)* dt + 0(1):l, (A3.4)

and
As = O(h™). (A.3.5)

In the multidimensional case the asymptotic expressions for A;—
As get more complicated. Recall the multidimensional kernel den-
sity estimator, as defined in Section 2. The second term in (A.3.1)
would thus change to (dx =, 9f*/dx]) h*/2. If kernels of order
p are used, as in Hirdle and Stoker (1989), this changes to a
multiple of 4” the constant depending on pth partial derivatives
of f. The term A, changes in a similar fashion, since it is the
expected value of a kernel estimator for the gradient of f.

[Received March 1989. Revised January 1991.]
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Abstract

Nonparametric smoothing techniques are generating much interest not only among theoret-
ical statisticians but among applied workers in biostatistics, economics, and engineering. The
benefits of this more flexible method come at the cost of greater computation. In higher dimen-
sions, the computational burden can also be enormous when resampling methods for confidence
intervals are used. One idea for reduction of computational cost is to do a data compression.
In the case of multivariate density estimation, for example, the averaged shifted histogram is
such an algorithm with significantly reduced computational effort. The ideas of the averaged
shifted histogram algorithm can be extended to other nonparametric estimation problems such
as regression and also to algorithms for additive modeling of high dimensional surfaces. In this
paper the common framework for the so-called Weighted Averaging of Rounded Points (WARP-
ing) is presented in these situations and examples are given with real data from LANDSAT
observations and from a study of binomial response variables. The reduction of computational
cost is discussed versus the loss in statistical efficiency.

1. The need for computationally efficient smoothing algorithms

Smoothing of data is a method of re-expressing the data points in a form that is easier
to understand than the raw point cloud itself. In a regression smoothing problem a (d+ 1)-

dimensional point cloud is observed consisting of observations {¥;}7; at values {X;}2 , of the

predictor variable, where X; € IR®. It is assumed that with observation errors {e:}n

=i

(1.1) Y =m(X;) + &

0723-712X/92/2/97-128 § 2.50 @ 1992 Physica-Verlag, Heidelberg
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The goal of regression smoothing is to re-express the point cloud by approximating the function
m. In a density smoothing problem a d-dimensional point cloud is observed and one is inter-
ested to understand the structure of the data by estimating the unknown density f(z) from
observations {X;}L,.

Nonparametric techniques for regression and density smoothing are known for their flexibil-
ity and their ability to detect structures deviating from a postulated parametric model. For
an overview of nonparametric techniques, see the recent monographs of Eubank (1988), Hardle
(1990), Miiller (1988), Silverman (1986), and Wahba (1990). A drawback, however, of nonpara-
metric smoothing techniques is that they face rapidly increasing computational complexity as
the dimension increases beyond one dimension, or when the sample size is bigger than some
threshold, say several thousand points in one dimension. This computational burden is espe-
cially handicapping when resampling techniques are used to determine the smoothing parameter

or to construct error bars.

In this paper nonparametric smoothing of data points by Weighted Averaging of Rounded
Points will be discussed. This approach is based on discretizing the data which allows efficient
computing in low and high dimensions. The approach is entirely natural for raw data automat-
ically collected in rounded form. For example, each datum collected by the LANDSAT remote
sensing satellite is stored in just eight bits; see section 4. We consider smoothing in “low and
high” dimensions. A dimension will be called “low” if it is less than three or four since the
smoothing operation can be interactively visualized on modern computing systems. At present,
it seems reasonable to call dimensions beyond 10 “high” since our experience indicates that one
rarely has enough observations to explore spaces of that dimension. The dimensions from 4 — 10
are the subject of intense study, and it is not clear exactly where “high” begins; see Scott and
Wand (1990).

Smoothing in high dimensional spaces results in an inherent lack of sufficient statistical pre-
cision. Huber (1985) has discussed the so-called “curse of dimensionality.” Practically speaking,
observations in higher-dimensional spaces are very sparse. This sparseness limits the applica-
tion of smoothing methods since they are all basically constructed by local averages over sample
points. To illustrate this surprising sparseness, we recall the small example by Friedman and
Stuetzle (1981) who considered a uniform distribution on a 10-dimensional unit cube. How
sparse are the points in this cube?

(1992) Hardle, W. and Scott, D.W. Smoothing in Low and High Dimensions
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If the dimensions of the neighborhood are chosen to cover 10 percent of the range of each
coordinate, then it will (on the average) contain only (.1)*° of the sample, and thus will nearly
always be empty. If, on the other hand, one adjusts the neighborhood to contain 10 percent of
the sample, it will cover (on the average) (.1)Y/1° ~ 80 percent of the range of each coordinate.
This problem of sparsity basically limits the success of direct d-dimensional local averaging.

Should we give up now that we know that smoothing in high dimensions is almost impossible
unless we have billions of data points that we can’t analyze effectively? No, we could still try to
pursue the goal to extract the most interesting low dimensional feature. One very attractive class
of such models that greatly improve statistical efficiency are the additive ones (Stone, 1985). A
simple additive model is, for example, one where the regression function m is decomposed into

a sum of simpler one-dimensional functions, i.e.,
d
m(z) =Y g5(z5),
j=1

see Hastie and Tibshirani (1987). A more general class of additive models are those that are
based on projecting the z € IR onto the real line, i.e.,

N
m(Z) . Z g; (BT;.:}!
i=1

see Friedman and Stuetzle (1981). A similar model has been recently studied by Duan and Li
(1990). They use Sliced Inverse Regression (SIR), a method of discreting the response variable
in order to find interesting projections.

The assumption of additivity significantly improves statistical convergence properties but
does not eliminate the complexity of computation. The additive model algorithms proposed
in the literature are heavily based on efficient smoothing algorithms since most of them are
iterative or optimize the smoothing parameter. Friedman's (1984) supersmoother, for example,
used in the alternating conditional expectation (ACE) algorithm (Breiman and Friedman, 1985)
needs three pilot symmetrized k~-NN “smooths” (the tweeter, woofer and midrange).

Current algorithmic techniques in typical smoothing scenarios in low or high dimensions
involve stepping through some of the following operations.

SMOOTHING. A nonparametric “smooth” is first computed for a particular smoothing
parameter. This smooth may be a one-dimensional building block for a higher dimensional
additive model or the smooth may be a simple possibly multivariate exploratory computation.

OPTIMIZATION. Often a functional of “interestingness” is optimized over a set of parame-
ters. Huber (1985, Chapter III) presents several projection indices for projection pursuit. In the

(1992) Hardle, W. and Scott, D.W. Smoothing in Low and High Dimensions
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specific projection pursuit technique the optimization is performed simultaneously over linear

combinations of the (transformed) data and a nonparametric regression smooth.

ITERATION. The process of extracting interesting features often involves changing the in-
terestingness functional, or running an optimization technique from residuals or transformed
statistics in order to find good approximations to additive models. For instance, the “local
scoring” algorithm of Tibshirani and Hastie (1987, Section 2) to fit generalized additive models
(GAM) by “backfitting” is highly iterative. It loops over the elements of the predictor variable
and uses the Aitken-weighted least squares technique in each element.

CALIBRATION. A necessary operation in nonparametric smoothing is to calibrate the
smooth by finding a good smoothing parameter. There are several concepts for defining an
optimal smoothing parameter but all have the goal of construction of narrow confidence bands
for comparison with alternative (possibly parametric) models. Cross-validation or related re-
sampling methods have been used both for regression and density smoothing, see Hardle, Hall
and Marron (1988), Silverman (1986), or Scott and Terrell (1987). A nonasymptotic way to set
up confidence bands is to use some sort of resampling scheme. Hirdle and Bowman (1988) and
Hirdle and Marron (1989) use the bootstrap from estimated residuals to calibrate the smoothing

parameter and construct variability bands.

Most of these operations involve computations that are typically a function of the squared
sample size, O(n?), if one uses straightforward implementations of the formulae. Improved
computation may be obtained either by reducing the number of arithmetic operations or by
using novel approaches that eliminate one or more of the above four basic operations. For
example, equation (2.11) below illustrates a method that avoids an optimization step. Our plan
is to demonstrate how the Weighted Averaging of Rounded Points (WARPing) method achieves
the goal of improved computational efficiency. We have intentionally chosen this abbreviation
because of the connotation of speed, although it might lead the reader to the conclusion that we
distort the data. Later, we will show that the asymptotics of this method are not unreasonable.

WARPing consists of first rounding the data points, i.e., to reduce the complexity in a step
that is linear in the sample size, O(n), and then performing a weighted average of these rounded
points. A significant benefit of this prebinning step is that the resulting array of estimates, which
falls on a uniform grid, is precisely in the form required for surface visualization algorithms such
as marching cubes (Lorensen and Cline, 1987). Thus the decision to prebin is directly related to
the final visualization desired (Scott and Hall, 1989) and enhances the speed of interpretation
and analysis of data.

(1992) Hardle, W. and Scott, D.W. Smoothing in Low and High Dimensions
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Other authors have used prebinning for one-dimensional smoothing problems. Silverman
(1982) has given an algorithm based upon the Fast Fourier Transform (FFT) for computing a
Gaussian kernel density estimate by rounding data to a mesh with 2M points. At least three
examples of prebinning from regression exist. Cleveland's (1979) LOWESS algorithm bins the
z data in order to take advantage of a clever updating scheme for computing a sliding series
of local linear regressions. O’Sullivan’s unpublished BART smoothing spline implementation
uses the same trick. Hardle (1987) prebins the z and y data to apply the FFT for one step
M-smoothing.

Our purpose in this paper is to illustrate the effectiveness of prebinning. The usefulness of
multivariate prebinning is not widely acknowledged. An alternative approach is to use any of
the efficient algorithms that exist for computing k-th nearest neighbor (k-NN) estimate, which
is a particular example of an adaptive kernel estimate. We hope to expand the use of the simple
but significant trick of prebinning, which Marron has suggested “could make nonparametric
methods accessible to a PC."

2. Weighted Averaging of Rounded Points (WARPing)

2.1 Density and regression smoothing

It is easiest to demonstrate our approach in the univariate density
smoothing context. The simplest density estimator for data {X;}", is the histogram with
bin width A,

(2.1) HG(z;20) = nl—h Y I(X; € B(z;z0,h))
i=1

where B(z;zp, h) denotes the unique bin containing z of the form [zq + kh, zy + (k + 1)A) for
some integer k. Note that the histogram is a function of the origin zp. It is well known that
different choices of zo may result in quite different shapes of density estimates. Figure 1 shows
several histograms of the Buffalo snowfall data (Parzen, 1979). Depending on the origin, the
histogram HGp(z; o) has one, two, or three modes and looks skewed to either the right or lef.
A quite drastic difference can be observed between the estimates with bin origin 2.5 (secondary
mode at left) and bin origin 10.0 (secondary mode at right).
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Figure 1. Six histograms with bin width h=13.5 and bin origins zp=0,2.5,5,7.5,10,12.5 for the Buffalo
snowfall data.
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A natural way of eliminating this nuisance parameter is to construct an average of histograms,
each with bin width h, over a collection of “origin” choices (Scott, 1985a). In particular, consider
the set {zo¢ = ¢h/M,£=0,..,M — 1}. Then our estimate is simply

) 1 M-1
(22) Ju(@) =57 3 HGW=,700)-

£=0

It is straightforward to see that formula (2.2) may be written as

: 1 %
Im(z) =3¢ S pftlic Xi € B(zizo,e, h)}
=0

1

& = nh

M-1
E %ﬂ#{i: Xi € B(z;zoe, h/M)}
=1-M

Another way to view formula (2.3) is to say we are weighting points aggregated or rounded into
the smaller bins of width § = h/M. In formula (2.3), observe that the data enter only in the
form of frequencies in the bin B(:;zq, §).

The averaged shifted histogram (ASH) in (2.3) is a special case of WARPing. As M — oo,

formula (2.3) can be written in the familiar form of a kernel estimate

T

(2.4) ful@) = nfthK( ;I‘),
§=]

where K(u) = (1 — [u)I(ju| < 1).

The triangular weights (1 — |£|/M) = wp(€) in formula (2.3) can be generalized in an
obvious way to other kernel weights. A simple way to generate weight sequences is to discretize
a continuous weight function that is defined on the interval [-1,1]. For example, K(u) =
18(1 = v?)?I(ju| < 1), the so-called biweight or quartic kernel, corresponds to the weights
war(€) = $3(1 - 2/M?)? for |£| < M. In practice we would normalize this weight sequence by
a constant Cag,x 50 that M~' 3", wps(€) = 1. This technique has been applied to the Buffalo
snowfall data (Parzen, 1979). The sequence of WARP density estimates as the number of

averages increases is shown in Figure 2.
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using the biweight kernel. Bandwidth h fixed.
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Using this generalization we can rewrite formula (2.3) in the general form

(WARP) g(z) = % z war () RPyz)4e »
[l <M

where «(z) is the bin in which z falls and where, in the above case of density smoothing, RF; is
the frequency of rounded points (= RP) in the j-th bin. We will show that the above notion is
not restricted to estimating the density itself, but also related functionals such as a regression
smooth. By allowing the weight sequence to take on negative values, we can estimate other quan-
tities such as the derivative of the density. For the biweight kernel, K’ (u) = 2u(u?-1)I(ju| < 1)
so that the effective WARP weight was(€) for derivatives is %é’/l\a‘(“?/l\d2 — 1)7 Further gen-
eralizations to multivariate data are accomplished by rounding along each coordinate axis. For
example, the multivariate version of the ASH in equation (2.3) converges to a multivariate
product triangle kernel estimate as M — cc.

Let us give an overview and summary of this technique for this introductory example of

density smoothing.
e One has a small bin width § defining a sequence of bins
Bi=[(j-1/2)5(+1/2)8), j€Z

and the inder function t(z) =) < z € B,.

e The approximation parameter M = h/é determines how many adjacent bins enter into the

averaging process.

e The WARPed density estimate is
; _ Cuk v iz) - -'»{Xi))
fute) = S ke (AR,

where the factor Cy,x is introduced to guarantee that fu integrates to one. The constant

Cu x is given by
M-1 ]
Cux=M/ ¥ K (_) .
t=1—-M M
The discretized quartic kernel
15 242
K(u) = 5 -v)I(jul = 1),

for example, has the effective weight

2
¢ 15M* A
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For regression smoothing, we wish to approximate m(z) by a weighted average of the re-
sponses for which the predictor values are in a neighborhood of z (Stone 1977). Using the
WARP approach this amounts first to rounding the predictor values to the closest bin center
and computing the average response in each bin; then second, appropriately weighting these
bin averages in a neighborhood of = to estimate m(z). For the regression case we consider two

different estimators, a step function approximation

2. K l;zt—l.lx‘! Y
25) Y i

éx(tgxl—ag.‘l’.[)

and a polygon through the midpoints of the steps of ﬁzfg)(z). For the latter, define d; =
«(z) — z/6 the distance between z and the bias center «(z)6. The polygon approximation is
defined through

e (2) = (1= |dz]) ml3 (u(z)8)
+ |d=|(I(z € [(«(z) — 1/2)8),¢(z)8)) iy ((u(z) — 1)6)
(2.6) + I(z € [1(x)5, (Uz) + 1/2)8)) M ((e(z) + 1)8)).

To give some insight note that by construction

(X
k(A=K _ 5~ ko) x 1 € Beaya)
e
and therefore
M-1
Z K(e/M)Yl,l(:H-Z
@7 iy (@) = S :
T KM
where

n
Yo; =Y Y. I(X; € By),

i=1
n; = ZI(X,- € BJ)
i=1
The rounded points RP; are here the sum of the response variables and the frequency of the pre-
dictor variable in bin B;. In principle, the ¥; values can be binned, but there is no computational
advantage in doing so.
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Figure 3 shows ﬁtf,f,) (z), r‘n%‘;’ (z), and the Nadaraya—Watson kernel estimator

7 {I) = Z?:iK (#") Y‘.‘
E:;l K(E:h—'&)

80 90

‘60 70

50

Figure 3. WARPing approximations (solid lines) and the Nadaraya-Watson kernel estimator (dashed
line) for the Geyser data-set. Bandwidth h=0.8, M=15.

Qualitatively, the general WARP formula says that we first discretize the data and then
smooth; compare equations (2.5) and (2.7), for example. Thus the computational advantage of
the WARP method results from the partial decoupling of the sample size and the smoothing
computation. The first step of binning is a computational burden of order O(n) that produces a
data compression into 1/6 bin counts on a mesh that can be easily maintained. The smoothing
is then applied to this smaller bin object taking advantage of the regular spacing of bins which
in particular pays off if we use a kernel with compact support. Such a kernel allows fast
computation since we know from the regularly spaced bin points where the weighting scheme
gives weight zero outside the support of the kernel. Alternative degrees of smoothing can be
tried without having to rebin the data.

(1992) Hardle, W. and Scott, D.W. Smoothing in Low and High Dimensions
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2.2 Comparison of computational costs

To have some insight into the computational advantage of the WARP method, consider a
comparison of three possible procedures for estimating a density. Assume that the density is to
be computed at §~! equidistant points. The brute force kernel method amounts to averaging the
rescaled kernel functions K((z — X;)/h) over the whole sample at §~! points resulting in §'n
operations. If the kernel has compact support and d = 1, a presorting can reduce this to 2nh/é
but, in general, the cost is n/é. The method of Silverman (1982) and of Hardle (1987) consists
of first discretizing the data into §~! bins (assumed to be a power of 2) and then using the FFT.
After the FFT of the discretized data, smoothing is performed in the frequency domain (671
multiplications for a low-pass filter). Then the back FFT is applied. The discretization cost is
n and that of the two FFT's is 26~" log, 6=, which results in the number given in Table 1.

As explained above, the WARP method is performed in two steps: first n steps to discretize
the data and, then, in a window of 2M — 1 the rounded points RF, ()., are averaged, resulting
in 6=1(2M - 1) + n total cost. We have excluded comparison with other smoothing methods
such as discrete maximum penalized likelihood estimators (DMPLE or DiMPLE) (Scott, Tapia,
and Thompson, 1980) and orthogonal polynomials (Cencov, 1962), since they require iterative
solution or are equivalent to a particular kernel method, respectively. The k-NN estimator is
also relatively efficient, O(nlogn+4§~" logn), but is deficient for many purposes since it is often
too bumpy and visually rough (Silverman, 1986). Observe that the O(nlogn) work for sorting
is replaced by prebinning, which is essentially a sorting operation.

Method Operation Count
Kernel 5 n
WARP 612M —1)+n

FFT 511+ 2log,6Y) +n

Table 1. Operation counts for some univariate nonparametric density estimators.

Of course, the costs of the WARP and FFT are quite similar since they are both based on
discretization ideas. For example, when we discretized into 1000 bins the factor of 6! is 21 for
the FFT method and 19 for M = 10. Such an M is already rather big, we work mostly with
M =5 in practice. The differences become much more drastic if we consider high dimensional
smoothing problems or data with many empty bins. While the FFT technique of Silverman
(1982) extends to bivariate (z,y) regression smoothing (see Hirdle, 1987), it does not extend so
easily to higher dimensions. By keeping the pointers to nonempty bins the discretization can be
performed only for the nonempty bins so that the computation count for WARPiIng is in fact

smaller, namely, dependent upon the number of nonempty bins, N B(§, n).
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Method Operation Count
Kernel 2(6~)%n
WARP | 2NB(6,n)4(2M —1)¢ + nd

Table 2. Comparison of operation counts between brute force kernel smoothing in d dimensions and
the WARP method.

Of course, the number of nonempty bins NB(4,n) is in {1,...,n}, but in most cases the
number is much smaller than n. To see this in the case of d = 1, denote by R = X(») — X()
the span of the data and [R/6] the next integer larger than R/8. Of course, NB(§,n) <
min(n, [R/6]), but let us look more closely at the random variable NB(é,n) for the case of
uniform X-variables, i.e., P(X; € B;) =~ 1/[R/6]. This assumption is rather conservative in the
sense that other X-distributions will produce a smaller NB(§,n).

Proposition 2.1 The number of nonempty bins N B(8,n) can be represented as a homogeneous
Markov chain with transition matrix

1 [R/8]-1 O 0
0 2 [R/§|-2 0 .. .. 0
1 N
P=—— k 8-k 0 0
w3 | ° (R/el
0 0 [R/S]-1 1

0o ... . .. 0 [R/.

The starting distribution is given by

From this proposition we can compute the expectation
E(NB(§,n)) =p] P"'(123 --- [R/8))".

Figure 4 shows the increase of computational cost for the kernel smoother as a function of
n. Figure 5 shows the computational cost for WARPing. One clearly sees that the cost stays
relatively constant as n increases.
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Figure 4. Computational cost of the kernel smoother as a function of n for R=1, h=0.27, M=l (long
dashed line), M=3 (short dashed line), M=9 (short-long dashed line), M =27 (solid line). M is here
the number of grid points per h.
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Figure 5. Computational cost for WARPing as a function of n for R=1, h=0.27, M=1 (long dashed
line), M=3 (short dashed line), M=90 (short-long dashed line), M=27 (solid line). M is here the
number of grid points per h.
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The operation counts for density or regression estimation for one-dimensional z's will be
glightly high, since empty bins require no operations. For bivariate x's, usually a substantial
number of bivariate bins are empty, so that an operation count estimate of §~! may in fact be
only 0.36~!. For three-dimensional z's, it is possible to proceed exactly as in the previous two
cases, accepting & large number of empty bins. However, if n is not too large, then it may be
more attractive to keep an unarrayed list of bin counts, specifically, three integers pointing to a
trivariate bin plus the integer bin count (with an additional real variable containing the sum of

the bin responses in the regression case).

When the dimension d > 4, it is almost always sensible to store the data in such an inter-
mediate compressed form, since only three-dimensional slices will be computed and displayed.
It is possible to maintain 30 < 10° bins in memory in the quadravariate case, which may be
necessary when using animation techniques (Scott, 1986). Only rarely would it be sensible to
estimate at one instant the density on a full mesh in R? for d > 5. In such cases graphical
display is not the goal but rather estimates at the sample points may be desired.

It is interesting to mention the symmetrized k-NN smoother that is used in supersmoother,
Friedman’s (1984) variable span smoother. This smoother is only defined for one-dimensional
scatterplot smoothing and requires pre-sorting which results in n(1+logn) operations altogether.
By contrast, the WARP kernel smoother requires n + §~' M operations to produce a smooth
curve. In fact, Friedman has tried substituting a one-dimensional WARP estimator for a k-
NN smoother not for any computational reason but because the smoothness of the WARPing
approach greatly improved the iteration in one version of the ACE algorithm.

As we will see in Section 3 below, the discretization step does not affect, in an asymptotic
sense, the statistical accuracy of the WARP smoother. The decoupling of the sample size by
introducing the rounded points makes the optimization of the nonparametric smoothers much
more efficient. This becomes apparent when regression and density smoothers of any kind have
to be calibrated by a smoothing parameter. In the WARP-estimator above this smoothing
parameter is the number of bins M over which the average is performed. The difference in
computational cost becomes drastic if cross-validation or related scores are to be computed
for optimization of smoothing parameters. Scott and Schmidt (1988) in an analysis of British
income data compared the least-squares and biased cross-validation techniques to optimize the
smoothing parameter. Using the direct formulae used up as much as 8 CPU hours on an IBM
3081 mainframe for n = 7123. Using the WARPing approach brought the computation of these
scores down to 30 seconds on an IBM AT (Processor 80286, 10MHz).

(1992) Hardle, W. and Scott, D.W. Smoothing in Low and High Dimensions
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For regression smoothing, ordinary cross-validation requires multiple computation of the
smoother at all the sample points of the cross-validation score at several bandwidths, although
efficient algorithms exist for certain linear smoothers associated with spline smoothers (Eubank,
1988). The WARP estimator has the advantage that once the discretization step is performed,
all further smoothing operations are linear in § 1.

2.3 Smoothing in high dimensions by means of additive models

In this section we illustrate the use of WARPing in high dimensions by an additive model
example. The process of modeling high dimensional point clouds by additive models typically
involves iterative approximations in order to minimize some score function. Adopting the addi-
tive model (Breiman and Friedman, 1985), construct nonparametric functions *, {¢}}7_, such

that

E{[y(Y) -T2 X2
(2.8) 2 (%, 21, Pa) = (v )Ew):;(;’l)%( )17}

is minimized. Alternating conditional expectations have to be computed based on an efficient

one-dimensional scatterplot smoother. In this context, the WARP kernel smoother has to per-
form 26— M +n operations for this task. Depending on § and M it can be made highly efficient

compared to a kernel or symmetrized k-nearest neighbor smoother (Carroll and Hirdle, 1988).

The projection pursuit regression (PPR) algorithm of Friedman and Stuetzle (1981) requires
an efficient one-dimensional scatterplot smoother as well. The PPR algorithm searches first for
the best pair (3, g) such that with a suitably normalized direction 3 the residual sum of squares

(2.9) > (Y- g(XT B))?

i=1

is minimized. This task is done by iterating over several smoothing operations. In a further
step residuals are fitted and the same procedure is run for the set of estimated residuals. Then
another set of residuals is computed and this iteration is continued until a convergence criterion

is met.
The direction 8 of a one-step PPR can also be estimated without optimization or iteration
by proving that [ is proportional to a certain expectation:
(2.10) n= Ex[Vm(X),
where Vm(z) denotes the gradient vector of partial derivatives. The so-called average derivative,

7, can be estimated by

. =l fr(X)
2.11 ==V ydaldd
(2.11) fjam ; (X
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where f-;‘(-) denotes the vector of partial derivatives of the kernel estimate with bandwidth A.
This can be done effectively with WARPing since averaging has to be performed only over
nonempty bins. Once the estimate 7 is obtained, the one-dimensional function g is estimated by
smoothing the bivariate scatterplot {(77 X;,Y;)}/.,. The estimator 7} from (2.11) has desirable
root-n convergence properties, and the additivity of the models enables a rate of convergence
for m that is typical for one-dimensional problems; for details, see Hirdle and Stoker (1989).

The average derivative is also helpful in estimating parameters in the partial linear model
Y=5Tx+m(z)+e, zelR? z2eRF;:

see Spiegelman (1976), Rice (1986), and Heckman (1986). The first d components of the average
derivative are equal to £.

Generalized additive modeling involves, similarly to ACE, finding functions {g; }:zx such
that

d
m(z) =G (Zgg (r—j))
i=1

with a nonlinear (inverse) link function G(-). The functions g; are determined by a combination
of the backfitting and the local scoring algorithm. For a definition of this algorithm, see Hastie
and Tibshirani (1987). We applied this algorithm to a data-set of simulated side-impacts with
Opel Kadetts. The response variable was Y =0 or 1 for survival or nonsurvival, respectively,
as determined by examining the occupants after impact. The predictor variables for survival
were X; = AGE, X, = VELocity, X3 = ROSYM, a measure of acceleration at the chest. A
draftsman’s graphic of this four-dimensional data-set is presented in Figure 6. We will return
to these data in Section 4.
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Figure 6. A draftsman’s plot of the four side-impact variables. Made with XploRe (1990). X;= AGE,
Xa= VEL, X3= ROSYM, Y= response.
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3. Asymptotics of WARPing

3.1 How precise is WARPing?

Since WARP algorithms are identical to kernel smoothing when the fine bin width § =
h/M — 0, it is not surprising that the asymptotic bias and variance expressions of WARP and
kernel estimators are quite similar. For example, with a univariate WARP density estimator
with asymptotic triangular kernel K (u) = (1 |u|)J(|u| < 1), the mean integrated squared error
is given by
(3.1) MISE ~ hih(l - ﬁlﬁ) + %5‘ f(f')2 + ﬁ(l - 33'5 + &) /(f”)’.

The second and third terms are bias terms, with the second being a histogram-like bias term.
Clearly, the fine bin width § should be chosen sufficiently small (or, equivalently, M sufficient
large since h = M$§ with h conceptually fixed near its optimal value) so that the second term
is negligible compared to the third term. In practice, the data are often presented with finite
precision so that § (and hence h) cannot be made arbitrarily small. When & can be chosen
arbitrarily small and assuming a reasonable choice of h is known, then a (é, h) pair should be
specified so that M > 5 but not so large to eliminate the benefit of binning. Scott (1985a)
also showed that the histogram-like bias term could be eliminated by the additional work of
constructing a piecewise linear interpolant of the WARP estimates at the bin centers, for which

ity igrest By o RN 18 n2
MISE_:thrmh(1+w+20w)f(f').

This expression is much easier to understand and for relatively small M > 3, the WARP estimate
is both theoretically and graphically virtually identical to the triangle kernel estimate. This
particular issue is discussed in greater detail in Scott and Sheather (1985) and Jones (1989).
Hjort (1986) has developed expressions for multivariate averaged shifted histograms using a
linear blend interpolation procedure.

The mean squared error expansion is more complicated for the WARPed regression smoothers.
Let o2(z) = var(e | z). Breuer (1990) proved the following propositions.

Proposition 3.1 Ash~n"'/5 M ~n? B> 1/5,

MSEm (z)]

23: hz
g {z) Il K lI3 +Fd‘2‘

o -1
=~ (nh) z)

(m'(z))?
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3
—d, (pz(KMJ e Izlﬁt;;l) m'(z) { m(z) + 2m’'(z) J;((z))}

4 1+ 255) o )

where
02 14
A MK Z 2
and

pa(Kng) = %{i g K (ﬁ)

Proposition 3.2 Leth~n~13 M ~nf, >0,

MSE[miy (z)

~ (nh)—laz(:ﬂ

7
4
+ 5 ["@) (matknn) +

f'(z)
f(z)

ek, 2% ¢ +1
-G 5 x(4)n(5)
I=1-M

(I e 13 241 = 1) Kone 13 ~7(Kne)))

L2delL~ ) + 1
12M2

(#2(}(}\«!) + 1211”2 )]2

+ 2m/(z)

where

These two propositions are remarkable. They show the basic difference between the step
function m(S) and the continuous polygon approximation m( ) One sees that if binning is done
so that M ~ n'/% the terms depending on M have the same speed as those depending solely
on h. Thus if M ~ n'/® the MSE of WARPing is different from that of the kernel smoother
my. By contrast the estimator m(P:' will reflect the correct MSE properties of s provided
M~nf g>0.

3.2 The price of discretization

An example of the MSE of rh(s) is plotted as a function of z in Figure 7. One sees especially
in the right half of the interval the increased bias of m( ) for the fact of not being directly in a
bin center. The effect is, of course, here made very drastic since we are averaging over a very
large bandwidth and use only M = 5 bins for this h.
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Figure 7. MSE(xz) for rp(x) (solid line) and '3’ (dashed line) for a simulated example m(z)=
zsin(2nz), zeU(0,1), :~N(0|a’}_ o?=0.25, h=0.25, M=5, n=100, K= Quartic.

Figure 8 shows the MSE as a function of z for the estimator 7};. Note that the scale is

different here. We can see how much better Ths:) is compared to r‘ng). For more details, in

particular how to bound the difference between the MSE curves, see Breuer (1990).

Figure 8. MSE(z) for v (z) (solid line) and 1l (short dashed line) together with bounds on the
difference between the two MSE curves. m(x)=z sin(2xx), x€U(0,1), e~N(0,0%), 6°=0.25, h=10.25,
M=5, n=100, K= Quartic.
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4. WARPing in practice with visualization

The WARP technique was applied to an analysis of laboratory-simulated car side-impacts,
see the data in Section 2. Figure 9 shows the WARP deunsity estimate of three biomechanical
variables for 29 dummies. The visualization technique has been discussed in Scott and Thompson
(1983). The “flying duck” shape of the distribution of the dummy’s variables is substantially
different from the “frozen duck” shape in Figure 10 that was computed for a different group of
experiments. Interestingly there are two clusters at the “drumsticks” of the frozen duck. Both
density contours are plotted on the same scale and show very different shapes due to the fact
that the frozen duck has higher z-values and lower z-values than the flying duck. Note that the
contours would be spherical if the data were independent and normal.

Figure 9. WARP dummy estimates (biweight kernel) for the variables (ROSY M, RUSY M, T12RM)=
(x,,2) giving maximal acceleration (in g) at different regions of the thorax of the dummy's bodies.
The contour is at a level 5% of the modal level.

To investigate these data further the GAM/WARP approach has been used. Note that this
model generalizes related concepts like logistic regression models where the link function G is
known. Figure 11 shows the fifth iteration of the local scoring algorithm (done with XploRe
(1990)) using the logistic link function G(u) = ezp(u)/(1 + exp(u)). It is interesting that the
lower left curve shows a typical nonlinear structure. Figure 12 finally shows the functions g;(z;),
J =1,2,3. These functions are not linear and not all monotone as might be assumed. However

with such small samples, such conclusions can only be tentative.
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Figure 10. WARP estimates (as in Figure 9) for & different group.
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Figure 11. Fifth step of the local scoring algorithm applied to the side-impact data. The info box
shows the decrease in deviance as the iteration proceeds. Behind the info box one sees the current

estimate ):‘:_‘ 4i(zy) plotted versus Y with the link function G.
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Figure 12, The WARP estimated function, §;(z;), 7=1,2,3 for the side-impact example.

The WARP technique also applies directly to four-dimensional data, but one has to look at
a sequence of contour slices with one variable fixed (Scott 1986). We re-examined the classical
Iris data with variables (z1, 2, z3, 4) given by sepal length, petal width, petal length, and sepal
width, respectively. The contours of f'{zl,zg,zg, 4 = 3.14 cm) (not shown) clearly reveal three
separate spherical contours representing the three clusters of Iris flower varieties present. Other
analyses show that the data for two of these varieties are not well-separated. This example is

provocative since the sample size is so small.

The final example illustrates the application of WARPing to large data-sets. The simpler
visualization techniques used previously can be replaced by more sophisticated surface rendering
methods, since large-sample estimates warrant closer inspection (Scott and Hall, 1989). These
data were derived from LANDSAT IV measurements taken in summer 1977 on segment 1663,
a 5 by 6 nautical mile region in North Dakota in primarily agricultural use (Scott, 1983; Scott
and Jee, 1984; and Scott, 1985b). Each segment contains 117 scan lines each with 196 picture
elements (pixels), for a total of 22,932 1.1 acre pixels. Five acquisitions were obtained by the
4-channel satellite, which measure light reflectance intensities in fairly narrow bands. These 20
dimensions of data (ignoring any spatial information) were projected into 3 dimensions by the
nonlinear model of Badhwar (1980). For agricultural pixels, the three transformed variables
have the following interpretations; z, the time of peak “greenness”; y, the ripening period; and
z, the peak greenness level.
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‘Figure 13 shows raw 256~bin histograms of these variables. (Image data are usually digitized
into 8 bits, numbered 0 to 255, for obvious reasons.) Two features are apparent from these
histograms: first, the z-variable is strongly bimodal; second, much of the “bandwidth” in the 8

bits is wasted, particularly in the first two channels.
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Figure 13. Histograms of the 3 channels of transformed LANDSAT data.

Figure 14 shows the pairwise scatter diagrams of these data. To improve the visualization,

the data have been “blurred” by adding uniform noise to the integer values. More multivariate
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structure is apparent in this diagram than in Figure 13, but it is well to remember that the
features away from the central cluster represent less that 10% of the data

Var 2

Figure 14. Pairwise scatter diagrams of the 3 channels of traasformed LANDSAT data.
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A WARP density estimate was computed over the region [65,130] x [0, 75] x [0, 113], which
excluded 474 points (< 2.1%). Each axis was divided into 40 bins and M; = 3 was chosen
subjectively. Figure 15 displays the & = 20% density contour, which is clearly bimodal. The
left ellipse, which represents primarily sunflower crops, actually leans towards the viewer, while
the right ellipse, which represents small grain crops, leans away and is further from the viewer.
Observe that the WARP bin structure and triangulation of the marching cube algorithm are both
readily visible. Some further surface shading algorithms may be contemplated, but smoothing

away the bin edges and local noise information is not to be recommended generally.

Figure 15. Density shell Szpu for the WARP estimate of the LANDSAT data.

Figures 16-18 display the Syg%, Ss%, and Sag contour shells. (Conceptually, these shells
are nested, and a transparency visualization algorithm could be employed.) The bump towards
the lower right in Figure 17 actually protrudes more than the bump towards the bottom left,
as is clear from a stereo or animated representation. Figure 18 displays not only the beautiful
structure arising from the complex mixing of different pure crop data, but also begins to show
some small bumps in the tails of the data. Given the very large sample, the detailed structure
is most likely real and not an artifact.

We believe these surface renderings will become commonplace in nonparametric density and
regression applications and that WARPing is essential to implement interactive versions of such

applications.
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Figure 16. Density shell Syp% for the WARP estimate of the LANDSAT data.

Figure 17. Density shell S5y for the WARP estimate of the LANDSAT data.
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Figure 18. Density shell S;g for the WARP estimate of the LANDSAT data.

5. Discussion

The WARPing algorithm was originally devised to handle the very large trivariate LANDSAT
data. Exploring even the bivariate data in Figure 14 proved infeasible with ordinary kernel
estimates. A bivariate histogram was a partial solution, but the MISE of the corresponding
kernel estimate is an order of magnitude smaller for a sample of this size. The MISE advantage
for the trivariate data is similar. The LANDSAT example illustrates the substantial difference
in exploring large raw trivariate scatter diagrams and smooth functionals of those data.

WARPIng has proven appropriate even with small multivariate data-sets such as the Iris
example. The coupling of the estimation algorithm and the visualization scheme simplifies the
understanding of the roles and interactions of statistical errors and (numerical) approximation
errors. The WARP estimates carry along the interpolation machirery so no further consideration

of numerical approximation errors of visualization is required.

Computational efficiency of the algorithms is acutely felt when hundreds of repetitions are

required for bootstrapping, animations, or cross-validation. In the latter case, numerous convo-
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lutions are often required. WARPing simply substitutes discrete convelutions on rounded data
for the exact calculations. Such an approach has been commonplace in time series analysis for
many years. [Many spline-based estimators have exact representations for solutions with ex-
actly n basis functions. Using rounded points could reduce the solution sizes as well; see Wahba
(1990).]

For data in more than four dimensions, a two-stage analysis is often most appropriate. Asin
the LANDSAT example, the high dimensional data are projectec! to four or fewer dimensions.
The projected data are then analyzed using a8 WARP estimator. In many cases, WARPing can
be used in the projection stage.

Our goal is to encourage the use of the growing array of nonparametric ideas by stimulating
the development of computationally feasible algorithms such as those provided by the WARPing

framework.
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