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Abstract 

>onparametric curve estimation resampling methods have a long tradition. 

Cross-Validation is used for instance to optimize the smoothing parameter. In 

this paper a resampling method is studied that is helpful in drawing inferences 

from cur17es. More specifically a variant of the Bootstrap is proposed to con- 

struct errorbars and to compare with parametric curves. This so-called Wild 

Bootstrap is easy to i~nplenient and does not require complicated plug-in esti- 

mation. 
RF SUME 

F66chantillonner pour f a i r e  de l 'estimation non paretrique, 
est une technique ancienrre. 

Les d t h c d e s  de validation crois& sont u t i l i s&s ,  par exemple, 
pour optimiser le par&* de lissage. 

Dans ce papier, on 6tudie me &thode de rSchantillonnage 
u t i l e  pour f a i r e  de l ' inf6rence sur les courbes de m s s i o n .  

Plus spfkialerent, une variante du Bootstrap ( fac i le  mttm 
en o e u m ) ,  appel6e Wild-Bootstrap est proposk pour construire des 
intervalles de confiance et est canpar& avec les techniques p a r d t r i q u e s .  
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1. The need for computer assistance 

A typical task for a statistician is that of model construction and compari- 

son with known or traditional models. In curve estimation a common approach 

to this task is to start with a nonparametric curve estimate and then to an- 

alyze its qualitative features. Certain shape characteristics (e.g. the locat ion 

of peaks) guide and help in proposing and constructing a suitable (parametric) 

model. Z 

A good example for this approach is the human growth curve study by 

Gasser et al. (1984). They compared a nonparametric regression growth curve 

with a traditional parametric model and found that the parametric model did 

not model a pre-pubertal growth spurt. In the field of density estimation Mar- 

ron arid Schmi tz  ( 1989) describe the evolution of income distributions over time. 

They found that, in contrast to more traditional log normal density estimates, 

the nonparametric curve shows two distinct modes that were changing height 

and location. 

A typical scenario in these studies was the interactive graphical comparison 

of the curve estimates. Curves have been compared for example with parametric 

fits or among each other when a smooothing parameter varied. Of course this 

is only a method of "graphcal inference" but it helps in developing a sense for 

the real shape of a curve. Usual methods for the inference in curve estimation 

include error bars or measures of distance between curves. For sensible inference 

these error bars should be constructed with simultaneous coverage probability. 

Both approaches for inference in curve estimation have been done theo- 

retically, see e.g. Konakov and Piterbarg (1984); Hardle and Mammen (1989). 

A drawback of this theoretical approach is that its use in practice requires 

"plug-in" estimation of complicated functionals of the data distribution. The 

purpose of this paper is to show how resampling techniques help in finding 

asymptotically correct error bars or the distribution of a test statistic for com- 

paring nonparametric with parametric regression models. These nlodels are 

completely automatic resampling lrlethods and require no knowledge ahou t the 

functionals entering the asymptotic distributions of the test statistics. 

In section 2 I describe the Bootstrap in the setting of curve estimation. It 

is called the Wild Bootstrap since resampling is done from one single residual 
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to infer the conditional distribution. Section 3 is devoted to the problem of 

comparison between nonparametric and parametric regression models. The 

construction of simulated simultaneous error bars with the wild bootstrap is 

described in Section 4. 

2. The Wild Bootstrap in Curve Estimation 

Stochastic design regression is based on iid. observations {(Xi, Yi)}y=l E 

Rd+' and the goal is to estimate n ( s )  = E(YIX = x) : IRd -t IR. The form of 
the nonparametric kernel regression estimator, developed by Nadaraya (1964) 

and Watson (1964) is 

where 

and where Iih(u) = h - d ~ c ( u / h )  is a kernel weight function with bandwidth h. 

All results of this paper are given in terms of this estimator. The essential ideas 
though carry over to other regression estimators. 

Resampling methods in nonparametric regression are used for a variety of 

purposes. Asymptotically optimal bandwith sequences for example are found by 

cross-validation, see Rice (1984); Hardle and Marron (1985). I concentrate on 
the Bootstrap resampling method here. Bootstrap techniques are well known 
tools for assessing variability. In the present context a little care has to be 

taken to properly account for smoothing bias. In particular the so-called naive 

Bootstrap 

Resnmple f rom the pairs {(Xi, Y,)}:.l 

is not appropiate for the questions I deal with here. The naive bootstrap does 

not reflect the bias correctly. Indeed 

where E* denotes expectation under the bootstrap distribution and m i ( x )  de- 

notes the above (2.1 ) computed from the bootstrap observations {(Xi, Yi)} :=I. 
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My approach to this problem is to resample on the basis of the residuals 

Note that at each Xi we may have a different conditional distribution Gi of 
(Y ,  [Xi) ,  so we should not resample from the whole set of residuals as in Hardle 
and Bowman (1988). 

In order to retain the characteristics of G, I will use the Wild Bootstrap 
which is a resampling method based on the single residuals ii. More precisely I 

define a two point destribution Gi which has mean zero, variance equal to the 
square of the residuals, and third moment equal to the cube of the residual. 
Some algebra reveals that if di = 76, + (1 - ~ ) 6 ~ ,  then a = ii(l - &)/2, 

b = t i ( l  + &)/2 and y = (5 + &)/lo. These parameters ensure that if 
E :  - G ~ ,  then EE* = 0, E E * ~  = Z:, E E * ~  = 2:. In a certain sense the resampling 
distribution can be thought of as attempting to reconstruct the distribution of 
each residual through the use of one single observation. Therefore it is called 
the Wild Bootstrap. More formally we have the following 

Wild Bootstrap Algorithm 

1. Def ine  a t  each  Xi t h e  two p o i n t  d i s t r i b u t i o n  G ~ .  
2.  Genera te  B o o t s t r a p  e r r o r s  ~f mGi .  
3. Def ine  B o o o t s t r a p  o b s e r v a t i o n s  

Y,' = m , ( X i )  + E : ;  

f o r  e r r o r  b a r  cornputat i o n ,  r e s p e c t i v e l y  

Y,' = m,(Xi) + ~f 

f o r  comparison w i t h  a  p a r a m e t r i c  model {ms : 6 E 0 )  

Here mg denotes the kernel smoother (2.1) with bandwith g >> h and 
rns the least squares estimator for a parametric model {ms  : 8 E O )  of the 
regression curve. A related resampling technique was considered by Wu (1986). 

3. Resampling for comparison with a parametric model 
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Suppose that one has computed a nonparametric curve estimator together 

with a parametric fit from a model {me : 6 E O} to explain the regression of Y 
on X. A possible way to compare these two curves is to compute the integrated 

squared differences 

where X = {Xi} :=, 

between mh and a parametric fit mg. Since 

E ( m h ( x ) l X )  = I < h , n m ( x )  

and 

n  

it makes more sense to compare fhh(@) with l ih,nme(@). Therefore 1 propose 

to consider 

as a teststatistic to test the parametric hypothesis m E {m8 : 6 E O}. Here w 

denotes a weight function. 

This test statistic will be small under the hypothesis and can be interpre- 

tated as a smoothed variant of the x~-statistic. For linear regression models, 

it is easy to see that the Least Squares estimate rns can be expanded as 

with bounded functions p, q .  Assume now that the kernel K is a bounded 

symmetric probability density function with compact support and that h - 
n-11(4+d), the optimal rate for estimating m nonparametrically (Stone, 1982). 
Under smoothness conditions on m, f,a2(x) = v a r ( Y l X  = x) and moment 

assumptions on E , ,  Hardle and Mammen (1989) have shown 

Theorem 1. Under the hypothesis "rn E {mo : 6 E 0)" and validity o f  
expansion (3.2) 

d ( w n  ), W b h  , V ) )  -, 0, 
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where 

d ( e ,  e )  denotes the Mallows metric and I<;) denotes the j-times convolution 

product of Kh. 

For a practically oriented statistician an application of this theorem might 
be a nightmare: He has to estimate all those rather complicated constants in 

Theorem 1 and then to plug them in into the asymptotic distribution to obtain 

level cr sets for hypothesis testing. -4 way to avoid such obstacles is an automatic 

resampling method which yields the desired rejection regions. In a first attempt 
we could try to simulate the distribution of T, by using the naive bootstrap. 
Unfortunately this method fails in approximating the N (bh  , V) distribution of 

T,, see Theorem 1. The reason lies in the fact that the regression function is not 
the conditional expectation of the observation under the bootstrap distribution. 

Therefore the bias is not correctly reflected. 

The Wild Bootstrap works though: The statistic T,' computed from sim- 
ulated data as described in the above wild bootstrap algorithm has the correct 
asymptotic normal distribution. More formally we can write for a resampling 

scheme over B replications: 

FOR b = l  TO B DO BEGIN 

1 Generate  Wild B o o t s t r a p  o b s e r v a t i o n s  ( X i ,  Y,') . 
2 .  C r e a t e  T: l i k e  T,,. 
E N D  

From L*(T,*) d e f i n e  t h e  (1 - a )  q u a n t i l e  i: 
and REJECT, I F  T, > t̂ :. 

A proof for the correctness of this procedure can be found in Hardle and 

Manlmen (1989). How well the bootstrap distribution L* (T,' ) approximates 
L(T,) in seen from the plot below. It shows from M = 1000 Monte Carlo runs 

and B = 100 resampling steps four distributions approximating L(Tn).  
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Figure 1. Four densit ies of T,,. T h e  line with label 1 denotes  t h e  (kernel) density 
of t h e  distr ibution of T, over ALL Monte Carlo runs  (M = 1000).  T h e  line 
with label 2 is t h e  (kernel) density of T, from ONE Monte  Carlo run  using t h e  
Wild Boots t rap  method from B = 100 boots t rap  curves. T h e  curve labelled 3 
is t he  Normal theory  density from Theorem 1 with t h e  KNOWN constants  b h  

and  V. T h e  curve labelled 4 is t h e  Normal theory density from Theorem 1 with 

ESTIMATED cons tants  b h  and V .  From Hiirdle and Mammen (1988). 

The thin line (label 1) denotes the Monte Carlo kernel density estimate 
of the T,-distance from the M runs. The medium thin line (label 2) is the 

kernel density of one bootstrap sample out of the M runs (taken at random). 
The thick line corresponds to the Normal theory density as given in Theorem 

1 based on the true bh and V (label 3). The dashed line finally shows the 

Normal theory density based on estimated bh and V (label 4). In all four cases 
the bootstrap estimates the distribution of the distance quite well. The normal 

approximations are totally misleading. Power estimates and an application of 

this technique to the determination of the functional form of demand curves 

are presented in Hardle and Mammen (1989). 
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4. Simulated Siindtaneous Error Bars. 

Simultaneous error bars are intervals I ( x j ) ,  j = 1 , .  . . , N such that at  dis- 

tinct design points X I ,  . . . , X N  with probability at  least (1 - a )  

-4 quite common approach to this problem is to work with the limiting distribu- 

tion of Jnh"[7iih(s,) - rn(s,)] at the gridpoints = { x , } ~ ! ~ .  From the limiting 

Normal distribution one can obtain via the "plug-in" method quantiles at the 

gridpoints and can correct for the level via the Bonferroni method. 

Thc essential ( l ~ * n ~ ~ l ) : t c l i  of this approach is that it rrquirrs t:stinmtiori of 

asyxnptotic bias ant1 variance. In particular the bins of the Nadarayn-\\;atsoxl 

c-stinlator (2.1) is a rather co~nplicated filnctional of the joint distribution o f  

(X. Ir ). see Collornh ( l%l). A computer assisted automatic resampling nlet,hod 

for finding error bars may resolve these practical proble~ns. Consider the Wild 

Bootstrap again. Given a bootstrap sample {(X,. I.;* ) }  :=, one can compute a 

kernel smoother i i r ; ( . r )  from (2.1).  The hope is now that a number of replica- 

tions of 7% E ( x )  can he uscd for ap1)rosimating the distribution of 

This hope can be fulfilled if 7%; (.x) is correctly centered as t,he following theorem 

shows. 

Theorem2. GiventheassumptionsofTheoreml (except (3.2), wehavealong 

almost all sample sequences and for all g E R" 

Here 12 and g run over sets 

respectively. 
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For an intuitive understanding of why the bandwidth g used in the con- 

struction of the bootstrap residuals should be oversmoothed, consider the means 

of ??zh(x) - n2(x) under the Y I X -  distribution and f h i ( x )  -ih,(x) under the *- 
distribution in the simple situation when the marginal density f (x) is constant 

in a neighborhood of x. Asymptotic analysis as in Rosenblatt (1969) shows that 

Hence for these two distributions to have the same bias we need ( 2 )  -+ 

m" ( x  ). This rcq~~ires choosing y tending to zero at a rate slower than the optimal 

bnndwidth h for estimating m(x) ,  see Gasser and Miiller (1984). A data-driven 

method for chosing g is also reported in Hardle and Marroll (1989). 

As a practical method for finding the actual pointwise levels /3, at each x, 

I suggest the following "halving" approach. In particular, motivated from the 

Bonferroni method, first try ,f3 = a / 2 M ,  and calculate a@. If the result is more 
than a / M ,  then try ,B = a/4M, otherwise next try ,8 = 3cr/4iM. Continue 

this halving approach until neighboring (since only finitely many bootstrap 

replications are made, there is only a finite grid of possible P's available) values 
,B, and p* are found so that wp* < cr/M < as*. Finally take a weighted average 

of the a, and the ,B* intervals where the weights are (aq* - a / M ) / ( a p  - cuq* ) 

and ( a / M  - a p *  ) / ( u p  - orp* ) respectively. 

More formally we can write the algorithm for finding error bars as follows. 

FOR b = l  TO B DO BEGIN 

1. Genera te  Wild B o o t s t r a p  o b s e r v a t i o n s  {(Xi, q*)}:=l. 
I<* = ?iz,(.Yi) + ~ f , g  >> h. 

2 .  C r e a t e  r ? i z ( g )  like rbh(z). 

END 

From ~* {Jnhd~ [& i (~ )  - - r k g ( ~ ) ] }  d e f i n e  t h e  e r ro r  b a r s  u s i n g  t h e  above 

h a l v i n g  approach .  

For an illustration of these ideas, consider Figure 2. Figure 2a shows a 

scatter plot of the expenditure for potatoes as a function of income for the year 
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1973, from the Family Expenditure Survey (1968-1983). Figure 2b shows a 

nonparametric regression estimate which was obtained by smoothing the point 

cloud, using the kernel algorithm. As a means of understanding the variability 

in'the kernel smooth, Figure 2b also shows some error bars, constructed by 

the boostrap met hod proposed here. These bars are estimated simultaneous 

SO % confidence intervals. Note that the error bars are longer on the right 
hand side, which reflects the fact that there are fewer observations there, and 

hence more uncertainty in the curve estimate. Note also that the error bars are 

asymmetric since the bootstrap method correctly corrects for the bias of the 
Nadaraya-Watson kernel smoother. 

Figure 2 b .  Potato espenditure vs .  income (a) Scatter plot ( b )  Regressiorl snlootll 
and error bars , 
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Abstract 

This is a discussion of sliced inverse regression. 
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The  paper by Professor Ker-Chau Li proposes a new and very useful approach 

t o  dimensionality reduction in multivariate nonpar ametric regression. The advan- 

tage of this approach as compared t o  others is the exceptional simplicity both of 

the idea and of the computational tools. We suppose that this would give rise t o  

a wide implementation of slicing inverse regression (Sf Rj. 
As many simple ideas, of course also Sliced Inverse Regression will have its 

pitfaIIs in "nonsirnple" situations. In particular, SIR depends very much on the 

probability structure of the x-variables described by 

For my b in W, the conditional expectation E(bx I Pix,. . . ,fix) is 
linear in Pix, . . . , &x; that is, for some constants co,  e l , .  . . , CK, 

A "nonsimple" situation might be where the distribution of x is a mixture 

of two normal distributions or has a more complicated nonelliptical structure, In 

this case a nonpararnetric technique based on estimating the multivariate density 

of x = (xl,. . . ,xp) might be reasonable t o  check the assumption (3.1). We discuss 

later an approach based on this (more complicated) technique. 

There are a t  least two questions that are important for a practioner: how 

to choose the number of principal directions IC and how to choose the number 

of slices H? These questions are addressed to some extent but we feel that  they 

deserve some more comments. 

I t  is said that the ~ ~ o t  n consistency property in estimation of directions holds 

no matter how H is chosen and that i t  even holds when each slice contains only 

two observations. ~ 1 l i s  is probably sornewl~at misleading. If H can be chosen 

arbitrarily, then it seems possible t o  use the simplest estimate, i.e., t o  put H = 1. 

But 'this is, of course, bizarre since in this case pl, = 1, and the estimate wiI1 be 

close t o  mh = E(Z)  = 0. When H increases the number of nontrivial eigewectors 

of the matrix V will aho  increase. Although, it will not be evident for what H a11 

the IC principal eigenvectors are present. This could suggest that H sl-lould rather 

be chosen large to make sure that we catch all the principal directions. Thus one 

might incline t o  the other extreme, i.e., to choosing only two observations per 

slice. To understand this extreme, let us think of one observation per slice, then 
= 2 ,  Thus the principal directions are chosen from the covariance 

structure of x as in principal components analysis. Thus, between these two 

extremes of SIR, there is a lot of freedom which makes alternative approaches 
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interesting. One of them is based on a different identification method of the e.d.r. 

space, the second is based on average derivative estimation (ADE). Finally, we 

propose a nonpararnetric version of factor analysis. 

Let us consider instead of V the matrix 

B = Eu[E(x I y ) J q x T  I y)l 

(assume here that x is already standardized). Elements of B can be expressed as '0 

aj k = J mj ( y ) m *  ( y ) ~ ( d i J )  
1 

where ~ ( y )  is the regression function of y on the jth component of x, and F 

is the marginal distribution of y. To estimate bjk, replace F by the empirical 

distribution F,, and mj ,  r n k  by the nonpararnetric regression estimates Gj , Gk. 
Thus 

* 

The functions Gj ,  6ik may be kernel, orthogonal series or any other estimates. If 

iii is regressograrn, then we get something very similar to SIR, namely, 

where 

This estimate will of course have a bias decreasing with H --+ oo. Similar func- 

t ional~ like the average derivative have a variance proportional to l/n. We suspect 

therefore that a careful choice of H will yield a fi-convergence of B  ̂ to B. 

All the eigenvectors of B that correspond to nonzero eigenvalues are contained 

in the e.d.r. space. In fact, it follows from Corollary 3.1 that 

E(x I y) = cl f  PI + . . + CK (Y)PK 

K where cj (y) are some functions. Therefore B = xj,,,l cjmpjp;fi where Ejm = 
E(y (y)c,(y)). Thus if b is not in e.d.r. space, i.e., b I {a,. . . ,PK), then 

Bb = 0. 

Ass 

cori 

whc 

X :  
be c 

cerr 

mo 

earl 

whe 

leas 
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unc- 

pect 

ined 

In the simplest case of K = 1 one gets 

Assume that Ol is normaIized so that llPlll = 1. Then P1 is the eigenvector of B 

corresponding to the maximal eigenvalue Ell : 

Another approach first developed for the case I< = 1 is ADE, see Hardle and 

Stoker (l989), Hardle, Hart, Marron, and Tsybakov (l99O). The average derivative 

is defined by 

J V ~ W X  ~ d x  

where Vm(x) is the gradient of the unknown regression function m(x)  = E(Y I 
X = x) and fx(x) is the marginal density of x. The average derivative can 

be estimated fi-consistently. Although a11 the previous work on ADE was con- 

cerned with the case of I< = 1, its extension to the more general model y = 
m ( ~ T x ,  . . . , @Ex, E )  is straightforward. In fact, the average derivative is then 

where 
2 %  

Define the matrix B1 = AD AvT.  This matrix is an analogue of B defined 

earlier since all the eigenvectors of B that correspond to nonzero eigenvafues are 

in the e.d.r. space. Thus, in the same way as earlier, we can choose the estimates 

& , . . . , pK of principal directions as the first I< eigenvectors of 

where 3 is an average derivative estimator. 

The choice of the number of principal directions Ii' can be addressed in at 

least three different ways: 
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(iij the candidates for principal directions are known and ordered; the first K 
directions are principal; I< must be estimated; 

, (i) the candidates for principal directions are known; the number K of prin- 

I cipal directions and their positions are unknown; these directions must be 

estimated; 

(iii) the candidates for principal directions are unknown, their number is also 

unknown. 

I Professor Ker-Chau Li proposes an interesting way of treating the problem 

1 in case (iii) for normally distributed x .  His approach is based on the correlation 

I structure of x only. This can be viewed as an analogue t o  sequential hypothesis 

testing techniques in linear regression. However, the extension'to the case of non- 

Gaussian x seems to be somewhat difficult. 

Note that (i) is solved if one has a solution of (ii). Under (ii) we can assume in 

general that  possible candidates for principal directions are $1 the coordinate axes. 

For example, this assumption is quite reasonable if one thinks of a nonparametric 

version of factor analysis. Thus, the unknown regres&n function m(x), x = 

(XI,. . . ,x,) E RP, is of the form 

where I(; < p is some integer, Ii' > 1. the problem is to estimate the set J = 
{jl,. . . , jK). Given a sample (xl, Yl), . . . , (x,,Y,) define 

Here Lj is the kernel estimate of the marginal density fi of j t h  component, xij's 

are the components of vectors xi = (xil,. . . , x ip ) ,  I? is a kernel and h, > 0 is a 

bandwidth. Consider the following procedure of estimating J .  
1) CalcuIate the quantities 

2) Arrange S,j in the decreasing order: 

sill 1 sp) 1 - . . 2 s!?. 

the 

whe 

It c: 
and 

norr 

unih 
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; also 

)bIem 

ation 

ihesis 

non- 

me in 

axes. 

Let (I), be the integer that equalts to j with maximal value Snj = sill, (Z), 

be the integer that equals to j with Snj = s?), ete. Thus 

Without loss of generality assume that all sik) are different (thus ( I < ) ,  is 

uniquely defined). In particular we have 

3) Choose IC, as the minimizer of the following statistic 

where b, is a sequence that tends to zero as n oo and nbi -+ oo. 

The estimate of the set { j l ,  . . . , jK) is defined as Jn = {(1),, . . . , (Kn)n), and 
the corresponding estimate of the regression function is 

where 

It can be proved that under suitable assumptions P { J ,  = J )  -, 1, n -+ ca (Hiirdfe 
and Tsybakov (1990)5. Moreover, the estimate m,(x) is pointwise asymptotically 

normal and converges to m(x)  with the rate that is achievable for the case of 
univariate regression function estimation. 

This idea of estimating "principal components" can be viewed as a modifica- 

tion of AIC-BIC criteria with the additional reordering of components according to 

some stochastic criterion. Note that instead of we could take for reordering 

any other data-dependent quantities that are asymptotically nonzero for "principal 

components" and are zero for negligible components. 
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Abstract 

The difficulty in selecting s~noothing paramct.crs is discussed. A proposed selector by Hall and 

Johnstone avoids the negative correlation with the desired s ~ n o o  thing parameter. This selector is 
a 

compared with cross-validation and extended to the case of regression with non uniform covariates. 
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1. Efficient smoothing parameter select ion 

The  difficulty of assessing accurate smoothing parameter selectors has long been underestimated. 

This is mainly due to the fact that in the last few years a large toolbox of data driven selectors has 

been developed. The size of this tool box c r c i ~ t d  an ovcropbi mistic approach in using automated 

smoothing procedures: All these mc:bl~ocls ;I re asy I ~~j) t .o t . i~a l ly  opt! mil, some are even root-n con- 

vergent, so why care about a specific one? 1'11t? pnlwr by I-IaIl and Johnstone has given us a very 

precise quantification of the difficulties inhcrent in s~noothing parameter selection and has shown 

us relative merits of different methods. Moreover, the proposed efficient selector works much better 

than classical tools like, for example, cross-validation. For this and for the insight into the apparent 

circulus vitiosus, namely the negative correlation of data driven selectors and the desired optimal 

selector, we would like t o  thank the authors. They have combined brilIiant mathematical analysis 

with important empirical and practical questniotls and have made a deep problem of nonparametric 

statistics accessible for a wide readership. 

An implementation of the proposed efficient selector needs a fine tuned estimator of J,+,IZ, see 

Section 5. In fact, some accuracy is required in the stage of estimating this tuning constant, see 

Park and Marron(l991). One needs more than consistency, 

for some small positive a. This is because g ~ P + " " t l  is c l ~ o s e ~ ~  l o  cancel the two leading bias terms 

of J,, and a bit of mistuning for this consl.ms yicltls some bias, so that one can not get the full 

advantage of Jones and Sheather's device. Hence just replacing n by Amo in the first tuning stage, 

as in the present paper, may not work too well when rn is far different from rno in its shape. We 

suspect that the simulation gave good results since nao was used which is the same as rn except for 

a scale factor. 

2. An argument for cross-validatioll 

The  technical approach t o  describing the difficulties of data driven bandwidth choice is to assume - 

that  the object under study, the density or the regression function, has  more than two derivatives. 

Thus, in a sense, one employs higher ortlcr s111oot.11 ~lt:ss to describe a problem typical for lower order 
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smooth functions. This is somewhat unsa.tisfac tory since for the higher order smooth functions one 

knows how to construct better esti~rmtors based on higher order kernels. Is this another circulus 

vitiosus that we can not avoid? 

Cross-validation does not fa.cc t.llis pt'ohJr:111 ~ i i~c ' r '  il rail 1 ) ~  a.ppIied independent of the knowledge 

of the smoothness class: I t  is asyrnpt.ot-ic:dly opt.ir~~n t for kcrnel tlensity estimates provided the density 

f is bounded. In the mind of many statist.icia.rls c.ross-va.li<la.tio~~ plays the role of "2" for smoothing 

parameter selection. So one can imagine that a number of statisticians will still use cross-validation 

in the future. 

3. An extension for regression with non unifos1-n covariates 

The theory developed in the present pa.per may be estended to the case of regression with non 

uniform covariates. Suppose we are given ohserva Lions or independent identically distributed random 

variables ( ( X i ,  x))rz1, where X i ,  Yj E R. For a simple extension to this case, let us assume that the 

marginal density function, f ( x ) ,  of the covariates is Iinown to us. An estimator of the conditional 

expectation m(x) = E(Y 1.X = x), similar t.o the one proposed by Nadaraya(l964) and Watson(1964), 

is given by 

where 

Note that in contrast to the Nadaraya-Watson estimator we divide here by the irue and known 

density and not  by an estimate of the rna.rgi nal ( h s i  t.y j( x ) .  It is known that these estimators have 

different variances, but we have not been able tLo exbend the results of the present paper to this full 

generality. 

An appropriate measure to assess the perfornmnce of ?inh in this case is 

By paralleling arguments i n  the p r & e ~ ~  t [,apcr. the same representat ion 
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Abstract 

The problem of robust nonpararnetric regression estimation is considered. We 

study pointwise asymptotic normality of variable bandwidth M-smoothers. A locally 

optimal bandwidth is derived, and the "plug-in" method is used for data-driven local 

bandwidth selection. Asymptotic optimality of local bandwidth selectors based on 

robust pilot estimators is proved. The work improves upon earlier contributions since 

we get the estimates that have smaller mean squared error under weaker assumptions 

on the error distribution and on the +function of M-smoother. 
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I. Introduction 
. . 

Let ( X I ,  Yl ) ,  , (X,, , Y,) be i.i.d. bivariate random variables such that 

I 
where m is an unknown regression function and Ei  are i.i.d. random errors. 

Define 'a smoother m,(x) as a solution of the following optimization problem 

where p ( - )  is a convex function, K ( - )  is a nonnegative function (a kernel) and h, > 0 
is the smoothing parameter or the bandwidth. Let II, be the left-side derivative of p. 

If $ is continuous then the smoother (1.1) satisfies the equation 

The estimates (1.1) are called M-smoothers. They are straightforward generalizations 

of kernel regression estimates based on the idea of M-estimation see HHdle and 
Tsybakov (1988). The so-called Nadaraya-Watson regression estimate is a special 

case of M-smoother for p(u) = u2. Other possibilities are the median smoother 

(p(u) = 1uI) and Huber-type srnoothers with 

where c is some positive number. 

The asymptotic properties' of M-srnoothers have been studied by several au- 
I 

1 thors. Pointwise consistency ,and asymptotic normality are investigated in Tsybakov 
i 
I 

(1982a, b; 1983) and Hiirdle (1984a). The fixed z-design case is considered by Hardle 
4 

i and Gasser (1984). A recursive modification of M-smoother is introduced and anal- 
ysed in Tsybakov (1983). Locally-polynomial M-smoothers has been considered by 
(Katkovnik (1985)). For asymptotic normality of locally polynomial M-smoothers, 

including the case of discontinuous +-functions, and for optimal bandwidth selection 
see Tsybakuv (1986). Other possibilities of robust data smoothing is based on M-type 

splines (Huber ( W g ) ,  Cox (1 983)). Also nunparametric regression M-estimates on 

1 
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functional classes have been introduced (Nemirovskii, Polyak and Tsybakov (1983, 
1985)). They have the advantage to be robust estimates that inherit qualitative be- 
havior of the unknown function m (e.g. convexity, monotonicity, e t ~ . ) .  In neither of 

these papers the data-driven choice of smoothing parameter has been considered. 

This paper is concerned with this problem. The asymptotically optimal band- 
width calculated in Tsybakov (1982b) depends on some a priori constants that in 
practice are unknown. This raises the point of data-driven bandwidth selection for 

M-smoothers. For the fixed design case HLdle (1984b) proposed to use the cross- 

validation technique and related global bandwidth selectors based on the residual sum 

of squares. More recently Hall and Jones (1989) proved the asymptotic optimality of 
cross-validation bandwidth selector for random design robust nonparametric regres- 

sion with the Huber-type function p. They also considered the adaptive choice of 

tuning parameter c ocurring in the definition of p .  Proofs of asymptotic optirnality in 
  all and Jones (1989) are based on the assumption that all momepts of Ei are finite. 

It is conjectured that cross-validation and related bandwidth selection criteria are not 
asymptotically optimal unless some higher moments of Ei are finite. This comes from . 

the fact that such criteria contain oscillating terms that are linear in x. The higher 
moments assumption, however, is not reasonable in our view if one believes in gross 
errors. 

Thus there exists the problem of finding adative bandwidth selectors that are 

asymptotically optimal in a sense to be defined here under milder assymptions on the 

error distribution. Another problem is data-driven bandwidth selection for a wide 
class of M-smoothers including the case of discontinuous $-functions (e.g. the median- 

smoother). These problems are addressed here. We study a variable bandwidth 
M-smoother and we introduce the "plug-in" technique to construct locally adaptive 

stochastic bandwidths. The use of variable bandwidth kernel smoothers is motivated 
by the simple observation that in asyrnptotics the mean integrated squared error 

(MISE) of the best variable bandwidth estimator is smaller than MISE of the best 
constant bandwidth estimator (see e.g. Miiller and Stadtmiiller (1987), Tsybakov 
(1987)). This property can be explained intuitively by the possibility to reduce the 
bandwidth and therefore the local mean squared error near peaks, and to increase the 

bandwidth in flat parts of the curve. 

The "plug-in" technique i.e. the use of of estimated asymptotically optimal 

bandwidths goes back to Woodroofe (1970) who used it in density estimation (see 
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<, 

Devroye and Gyijrfi (1985); chapter 6, for further references). Mack and Miiller (1987) 

, and Tsybakov (1987) proved the asymptotic optimality of "plug-in" bandwidth choice 
for the Nadaraya-Watson regression estimator. 

In this paper we extend to robust M-smoothers the results of Tsybakov (1987) 

concerning data-driven local bandwidth selection. The class of M-smoothers studied 
I 

here is rather broad, also smoothers with discontinuous $-functions such as the median 

smoother satisfy our assumptions. 

2. Main Results 

First consider the asymptotic normality of variable bandwidth M-smoothers at 

a fixed point x. Assume the following. 

( A l )  The kernel K is nonnegative, bounded, compactly supported, and 

(A2 ) The regression function m is twice continuously differentiable in some neigh- 
borhood of x. 

(A3 ) The marginal density f(-) of XI is continuously differentiable in some neigh- 

borhood of x ,  f (x) # 0, and 

(A4 ) The function $ is nondecreasing. 

(A5 ) The function p(u) = J $ ( u + v ) d F ( v )  where F is the distribution of errors E i  * 

is twice continuously differentiable in some neighborhood of the point u = 0, 

(A6 ) The function v2(u)  = J' $ 2 ( ~  + v)dF(v)  is continuous and positive in some 

neighborhood of the point u = 0. 

(A7 ) The bandwidth h, is of the form h, = ~ ( x ) n - ' i 5  where P(X) > 0 is a constant. 
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In the following we use th 

Assumption (A7) is introduced since it guarantees the optimality of the rate of 

convergence for the class of regressidn functions rn with bounded second derivative 

(Ibragimov, Hasminskii (198 I), Stone (1980)). 

THEOREM 1. Let (Al )  - (A7) be satisfied. Then, as n m, the sequence 
nZ/5(m,(x) - m(z))  is asymptotically normal with mean 

and variance 

Remark 1: Note that the bias of M-smoother is the same as the bias of the Nadaraya- 

Watson regression estimate (Collomb (1977)). The variance differs in that we have 

now pz(~)/(v'(~))2 = V($ ,  F) instead of conditional variance Vat (Y IX = x ) .  
\ 

Remark 2: Theorem 1 is closely related to the earlier results by Tsybakov (198%) 
and Hardle (1984a) although it is not the direct consequence of these. 

For the following we need some more concepts. Denote R(P(r), I(, I )  = b 2 ( t )  + 
oZ(z) the MSE of M-smoother at afixed point x calculated fromethe asymptotic 

, 

distribution. We call the M-smoother m,(x) with bandwidth h, = h,(x)  pointwise 

optimal if h, = ~ * ( x ) n - ' / ~  where 

The MSE of pointwise optimal M-smoother is 

R*(K,x)  = R(P'(z),K,z) = 

= (514~~') V ( ~ ,  F ) ~ / =  b:15(t)  f-4/5(2) (dK)'/' ( c ~ ) ~ / ~  
Define the locally adaptive M-smoother as 

. 'I' 
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Ir where k, = hn(~l,-*,Xn, , Y,, I) is a sequence of stochastic bandwidths such 

that 

a for every point z where P(I) > 0. The sequence h, satisfying (2.1) can be constructed 
using consistent pilot estimators of b l ,  f and V- Such estimators are presented in 
Section 3. 

To prove asymptotic normality of locally adaptive M-smoother we need the  fol- 

lowing additional assump tion. 

THEOREM 2. Let (Al )  - (A8) and (2.2) hold. Then for any solution k , ( x )  of 

(2.1) the sequence n2I5(m,(x)  - m(x)) is asymptotically normal with mean b(x )  and 

variance u2 (3). 

Thus rit, is pointwise asymptotically equivalent to rn, provided (2.2) is true. In 
P particular, the locally adaptive estimate fh, with h, = , & ( ~ ) n - ' / ~  where fin@) - 

@'(I) , n -, oo, is asymptotically equivalent to the pointwise optimal M-smoother. 

3. Pilot Estimators. 

(0) To estimate P* (z) consistently we need consistent estimators f, ( x ) ~  fi1I(x), 

rn:)(z),rni2)(c),V, of f, f',rnt,mtr,V respectively. The estimates of f and f' are 

standard (see e.g. Devroye and Gyorfi (1985)). For example we can take 

where the kernel KO satisfies (Al),  K1 is such that 

and a, -, 0 so that na: + m. 
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The estimation of mt(x) and mM(x) is somewhat more sophisticated since robust 
estimators are to be used here. The standard kernel pilot estimates of m' and rn" as in 
Tsybakov (1987) are linear in arid hence they are sensitive to outliers. A possible 

way of consis tent robust derivatives estimation is the local approximation met hod 

(Katkovnik (1985), Tsybakov (1986)). However this method is rather involved from 

the computational point of view. Some simple estimates are preferable. For example, 
define 

where a, + 0 and m,(x) is the robust estimate (1.1). 

It follows from Hb 
distribution 

(3.1) lim sup P{b, 
n 

Ile, Collomb (1986) that under mild conditions on the error 

where b,  = O((n/log n)'I3) , n -+ oo, and 6 > 0 is small enough. Note that 

P ( x )  - ( x )  €1 5 

The second probability in the RHS of this inequality vanishes if n is large enough. 

The first probability does not exceed 

for n such that a, < 6. If a l l  = o((n/logn)'I3) then this probability tends to 0 as 1 

11) n -r co. This proves consistency of mn (I). Consistency of rni2)(t) follows from the 
4 

same arguement (here, however, we have to choose a;' = o((n/  log n)'I6). el 

As the estimate of variance V choose 
I 
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where 

The estimate V, converges in probability to V as n -+ oo under some choice of a, 

provided + is bounded and Lipschita continuous and (3.1) holds. In fact under these 

conditions 

- This entails convergence of the numerator of V, to 92(0). Similarly 

Here and in the sequel ci, i = 1,2, are positive constants. Convergence of the de- 

nominator of Vn to (# follows now from the same arguement as the convergence 

rni1)(z) 5 rn1(z) that has been just proved. 

Note that consistent estimates of V can be constructed also for the case of discon- 

tinuous 1/1. For example, if we want to use the median smoother (i.e. $ (u )  = sign u )  

we have to estimate V = (4p2(0))-1 where p(*)  is the density of €1. A possible esti- 

mator of V is now V, = (4pi(0))-1 where 

Assuming that a, tends to 0 slowly enough, imposing Lipshitz condition on Ii' and 

using (3.1) we easily get consistency of p, (0). 
<, 

4. Proofs 

To simplify the notation set w.1.o.g. m(x) = 0, u(c) = o, b ( x )  = b ,  P ( X )  = 
P ,  hn(x) = hn = /3~t-~/'. Since $ is monotone and K is nonnegative we obtain 
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where u E R is arbitrary, and 
l 

Denote 

where E > 0,0 < 6 < 1. It is clear that 

and 

where Cni = (x - U G ~ - ~ / ~ ) I C ( ( X ~  - ~ ) / h , ) .  

Note that Yni are standardized - i.i.d. random variables. 

If h, is not random and h, =. h ,  = pn-'i5 then (4.2) and (4.3) hold with 

E = O,pln = pzn = 0. Theorems 1 and 2 follow from (4.1) - (4.3) and the next 
relations:. 
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I 

where is the standard normal cdf. In fact, Theorem 1 is the consequence of (4.1) - 
(4.4,  (4.6) with E = 0, in = h, = pn-1/5. To prove Theorem 2 note that by (2.2), 
(4.2), (4.5) and (4.6) 

b & 
lim sup P ( w ~ )  < @(u - - + 

n ~ 2 ( O ) f  (4 J K 2 ( W  1 

1. 
for any E > 0. Similarly, 

b & 
lim inf P(w~) 2 @(u - - - 

n ~dO)f (2) $ K2(v)dv ) 

Since E > 0 is arbitrary we get 

This together with (4.1) and (4.4) entails Theorem 2. Thus it remains to prove (4.4) 

to (4.6). 

Proof of (4.4). Denote r]l = 2 f ( x ) .  We have 

J The first probability in the RHS of (4.9) tends to 0 as n -+ c4 since 

(Parzen (1962)). The second probability tends to 0 by Lemma 1 of Tsybakov (1987) 
if 6 > 0 is chosen to be small enough. The third probability pan tends to 0 by (2.2). 
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If 8, = hn then only the first probability in the RHS of (4.9) is nonzero, and (4.4) 
follows directly from (4.10). In this case condition (A8) is redundant. 

Proof of (4.5). Use the following result of Prokhorov (1956). Let f ( t )  be a contin- 
uous random process on T = [-S,6] and 

(4.11) E . ( f ( t + h ) - f ( t ) ) 2 < ~ h u ,  t , t + h € T , a € ( 1 , 2 ]  h > 0 ,  - 
where > 0 is a constant. Then 

(4.12) P{sup If(t)  -- f ( 0 )  I 2 E )  5 Q K E - ~ ~ ( ~ - ~ ) / ~ , E  > 0. 
t E T  

Define 
4 n 

2 - 2  2 - 2  
Kln(2, h) = %(l+ t + h) ) 

We prove now that the process f ( t )  satisfies (4.11) for n large enough. This entails 

(4.5) since the LHS of (4.12) equals to p&6) in our case. We have 

Assume that 6 E (&I) is small enough that 26/(1 - 6) < € 0 .  This guarantees that 
- 11 < € 0  for any t , t  + h E T. By (A8) 

It follows easily from (A8) and from Cauchy inequality that 

Using (4.15) and the fact that pz(u) is bounded in some neighborhood of u = 0, and 
f (z )  is bounded in some neighborhood of z = x we get 

2 E{+'(Y~ -  an-^/') K : ~  (x, , h) )  = 
hn 
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Moreover 
E{$(Yl - ~ a n - ~ l ~ ) ~ 1 , ( & ,  h ) )  = 

' where 

mtt ( x )  
I3 = J (z)~+(o) (mf ( z ) ( z  -- 2) + 7 (1 -- 2)' -- u ~ n - 2 / 5 ) ~ G & ,  h)dr ,  

Note that (4.15), (A2) and the boundedness of supp K entail 

Using (Al)  we get 

Hence 
1131 < csn-3/5(h + ha/'). 

The derivatives m', f' are finite and continuous in some neighborhood of x ,  and the 

derivative cp' is finite and continuous in some neighborhood of zero. This together 

with the condition ~ ( 0 )  = 0 gives that 

Finally, the condition yo@) = cp"(O) =. 0 and continuity of 9'' in some neighborhood 

of zero entail 
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Using this inequality and (4.15) we obtain 

(4.17) IE{+(Yl - U ~ - ~ / ~ ) K ~ , ( X ~ ,  h))l 5 q ~ n - ~ / ~ ( h  + ha/') 

It follows from (4.13), (4.16), (4.17) that 

E(f (t + h) - f (q2 I c1s(h2 + ha).  

This yields (4.11) since by (A8) CY E (1,2]. 

Proof of (4.6). We have 

Here 

Using (4.1) we obtain 
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where O 5 8 ,  B1 5 1 and a, = ~ ( h z )  by (Al)  and by boundedness of ff(z + t )  and 

H M ( t )  for small t .  

Now . 

(4.20) H(0)  = p(-uun 4 / 5 )  = 
=  an-^/^^'(^) + 0( *-4/5) 

= cp'(-uan-2/5)rn'(z) = 

Since K is bounded and compactly supported and f ' , H N  are continuous we get 

where by continuity of 9' and cp" 

Combining (4.18) - (4.22) we find 

where ' 
E{&) = J v2(m(z + vh,) - u a n - 2 / 5 ) ~ 2  (a)  f ( X  + vh.)dv 
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This together with (4.23) entails 

From (4.23), (4.24) one obtains i 
I 
1 

b .  (-t/;iE{c*l)lsn) = u-bla* 1 j i 
To prove (4.6) it remains to show that the distribution of ELr Yni converges 

I 

towards the standard normal. By the normal convergence criterion, as given in Loeve 
1 
? 

(1960), p.295, it suffices to prove that 
I 

i 
I 

(4.25) - l i r n ~ { ~ ~ J ( ~ ~ , ~ ~ ~ ~ ) )  = O,V&>O. 
n 

Using (4.23), (4.24) we get 1 
1 

Now we prove (4.26). By (Al)  we have 2) = max{lrl : K ( r )  # 0) < co. The 
monotonicity of $ entails 

sup I$(( + m(z) - ~ a n - ~ / ~ ) 1  - < 
I z - o l ~ P h n  

5 I+(€ + 4 I, l+(C - 4 I} ~ ( 0 ,  v € & 

where 0 < u' < ca is chosen such that + rnax(,-,l<~h, lm(r) - m(x)l 5 u' - 
for n large enough. Using (4.23), (4.24), (4.27) and the boundedness of I< we find 

Hence 

(4.28) 

It follows from (A6) that the integral Jw2(E)dF(t)  is finite for u' > o enough. Thus 
(4.28)tendstoOasn--+oc,andtherefore(4.26)istrue. Thisconcludestheproofof , 

(4.6). 
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1. introduction and Motivation 

Iri this paper we consider classes of statistical models that a r r  riattml gmcralixations of 

g~rteralized linear models. Generalized lincar rnodels cover awry broad i .h -s  ,f c.lassic;ll statistical 

models including linear regression, ANOVA, logit, and probit rnodcls. An i r r  iportant chrtcnt of 

gimeralized linear models is that t hcy contain parametric componcrits of wh id1 thr irlfluensc has 

to be determined by the expcrimeritator. Here we describe some 1irir.s of t hi )light arid rcsearch 

relaxing thc parametric structure of these components. 

In  generalized linear mod& response variable and explanatory variahltls arc rdntcd by prc- 

determined functional forms, e.g., the logit model with a logistic link hmrtiorr anti a linear form 

or1 the explanatory variables, s w  MsCullagh and Nelder (1989). Iri this c:xarriplc t.hc fixed para- 

nwtric struc:turcs arc the logistic distribution function and thc (linrar) forrri o f  tlic iriflucmcc of the 

explanatory variables. Gcnerahing such a type of model mcans to ahrldcm t hc* forrn of either of 

thcse fixed components, i.e., the logistic (inverse) link function or thc Iinr nr prrdzrtol: Generalizing 

thv form of the link funcfion mcans to allow fix a flexible or paramctcr f t w  f tmr i .  Cmcralizing the 

forrn of t hc linear predictor means to allow for any unknown function of  r hc explanatory variables. 

Allowing for any funct iqnal form of influence for the predictor varia t tlcs 11~ads into well known 

dirnerlsioriality problems, comrnonly caHcd the curse of dimensionality 1Hubrr 1985). In  order to 

avoid this curse of dimensionality Hastie and Tibshirani (1990) proposcd to gmeralize thc linear 

prcdictor try a sum of non-parametric mivariate functions. This leads to so called generalized 

additiue models. They contain generalized linear models as a speciat case whcri the link function 

is known arld the univariate fur~ctiorls operating on the explanatory variables are linear. 

Relaxirag the form of the link function means to keep the linear prcdictor but to  replace, in 

ttlrnis of our previous example, the logistic function by a non-parametric (preferably monotone) 

furic.tic-111. More generally several of these types of response models can be added, each using a 

diffcrtmt. 1irica.r predictor and (non-parametric) link function. These rnodcls arc known as projection 

pr~rs~iit rt1gwssion (PPR) rnodcls d u c k  to an algorit hrn developped by Fricdrnari and Stiitxlc (1981). 
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If we take just on term, i x . ,  an unknown (inverse) link function operating on a linear combination 

of the explanatory variablm, this is called a one term projection pursuit model, in econometrics 

also called a single index rnodeL Stoker (1992a, pp. 17 20) from an eritircly cconomic point of 

view, considers labor supply Ieading to such a single index model. 

2. Nonparametric Approaches to generalized linear models 

We have argued that natural generalizations of generalized linear mudcls are weakening and ' 

relaxing the Iink function ur the lj~iear form of thc: explanatory variables. To fix ideas lct X E EZd 

denote the explanatory variable and Y E lR be the response: variat~lc. A gcmeralixcd linear model 

(GLM) connects the mean 11 of Y with thv predictor = X T o  via a link frlrirtion G, i.e., /L = G(q). 

As a running examples wvc shall usr: the riisc of binary rcsporise rnorlc:ls, LC., Y E (0, 1). The GLM 

then reads as P[Y = l I ~ ' ~ ' , j  = x] = G(2"'d). The aim is to estiriiatr 0 when the Iink function G is 

fixed. Here and in thc following we use t hc term link where McCdlagh arid Ncldcr (1089) mean 

the inverse link. Since in our examples this link is moriotonc there is no problem of conhsion. 

Single Index Models 

Single Index Modch krvlp the linear rornponc~lt but generalize thc link. In our rmrning example 

this reads as 

P I Y  - ~ J x  = sj = Il.(s7'fi) I 2 4  

with g an unknown ~inivariate "smooth" function. h t e  that hat! some standardixation of the 

parameter P is asked for, sin& as such, (2.1) docs not identify (j but rat her tht: direction of 0. 

The aim here is to est ir~iatc P and the urtknown link. For illustration of st atistic-al and numerical 

procedures to be dest:ribcd later we woukl like to  introduce 

example I .  

This model is almost a Logit model, only the skew deviation term p l p 1 ( ~ )  makes it different 

from a GLM. For p = O it falls into the (-lass of GLMs. For later illi~strations w8 have set p = 0.6 
. 
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- - - - -  

and have generated n = 200 datapoints (xi, pi) according to (2.2). A graphical insprrtation of tht: 

data gives a taste of ntlnpararnetric structure, Figure 1 shows a three dimensional scatterplot of 

the data. If we project the X variables in the 45" line we obtain Figure 2. This picture shows 

the projected data x r o  against y, together with the link ~ ( J I ) .  All these graphics and futurr 

computations were done in XploRe (1992). 

I 30 View of Sampte 

Figure I: A three-dirncnsional scatterplot of thk sam$c {(z,' , x:, yi) j::; for clxam- 
p k  1. 

Generalized Additive Models 

Generalized Additive Modds keep the link but generalize the linear predictm to a sum of 

noriparamet ric frmctions. In our running example this reads as 

whrre X j  denotes the j th  component of the vector X = (X1,. . . , and the g, are unknown 

ur~ivariate "smooth" functions. Again some standardization is necessary since the niodel as such 

dors not identify the unkrlown {gj)$d=l. The aim here is to estimatc! the nonparamrlrir functions 

g,. For ill~istrations of later terttrriques let 11s introduce 
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Figure 2: The olmrvations yi fur exanqlle 1 plotted against I )  = xTP = X I  1 ~ f .  
The link g ( x )  = L{rl) + 0.6vi(q) is shown i is  the solid line. 

Figure 3: A four picture display with {(qi, li)):zt and G ( p )  in the upper left. The 
nonparametric components are in the lower left and upper right. A rotated vhw of 
the surface {(xi, sf, qi))!s is givcn in thc lower right. 
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example 2. 

PLY = 1IX = xj = G ( ~ ~ ( X ' )  + g2(z2)) 

This model is almost a Logit model, only the second predictor variable has a nonlinear in- 

fluence on q. Figure 3 shows a four picture display with the data { (v,, Y,)):!!! in the upper left 

corner together with the Logistic link. Note that the predictor is r), = gl(zt) + 9 2 ( ~ : ) .  ~ h e " n o n -  

parametric" components gj are shown in the8Iower left und the upper right An impression of the 

nonlinear components can be gained by rotating the three dimensional surface { (x: , z:, t7i))!z!. 

3. Single Index Models 

Model (2.1) is called a single index model or a one term projection pursuit model. This 

terminology is due to Friedman and Stiitzle (1981) who considered the morr general model: 

where the Oj E d are unknown parameters and the gjYs are unknown funrtions, satisfying some 

"smoothness" assumptions. In order to make the Pj's and the gj's identifiable one has to impose 

restrictions on the scale, usually IlPJI = I ,  or DL = 1. 

Fkiedrnan and Stiitde (1981) proposed to estimate K,  Pj and gj by the method of "Projection 

Pursuit Regression" (PPR) algorithm. This. procedure estimates terms gj (XTPj) as long as the 

fraction of unexplained variance is below a userspecified treshhold. In each step that Oj is chomn 

which maximizes the fraction of unexplained variance given the previous terms (pmjection pursuit). 

The fitted model after convergence is 

From a mathematical point of view, a drawback of this method is, that it is not clear which value 

of K is to be chosen. Research has therefore focussed on one term projection pursuit models. In 

this line Hall (1989) constructs a root-n consistent estimator of P. A different method is that of 

Hiirdle and Stoker (1989) also called ADE for Average Derivative Estimation. It is h a d  on the 
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following idea. Define m(x) := g(xTP)  and observe that for the average derivative 6, as defined 

below, we have 

Thus b determines up to scale. Let f ( x )  denute the density of X and 1 its vector of the negative 

log-derivatives (partial), l = -- = - f ( I  ~II dso called aeon vectw).  Under assumptions on 

f this enables us to write 

6 = EIm'(X>) = E[lY] (3.2) 

and to estimate 6 by 6 = n-I C:=, &(~i)~i .  Here ih is an estimator of 1 based on a kernel density 

smoother with bandwidth h. For an easy access to kernel density smoothing see the book by 

Silvermen (1986). With root-n estimates for d precise stirnates for the link can be obtained. 

The convergence rate for g is one dimensional, however in practice there remains thc problem of 

selecting the bandwidth h. This was investigated in Hiirdle, Hart, Marron, and Tsybakov (1992) 

and for a weighted average derivative by Hiirdle and Tsybakov (1991). Stoker (1991) proposed 

alternative estimators for 6. A Monte Carlo comparison of these different methods was done by 

Stoker and VillasBoas (1992b). 

The estimation of the score vector 1 via a kernel density estimator involves a number of 

intensive calculations, especially when we optimize over h. Therefore discretization or WARPing 

ideas should be beused (Turlach 1992). For our simulated example Figure 4 shows the result of this 

method. We calculated 8 and used the Nodampa- Watson regression estimator to estimate 9. Note 

that the horizontal scale on this figure is different since (3.1) suggest that 6 has different scale 

then p. In fact for ADE the scale of d changes with g but it does not matter for the statistical 

interpretation of the link g that we are interested in. 

The estimation of 6 and its asymptotic cowiance matrix g6 for example 1 was done with 

Program 1 in Section 5. Note that for this example we have 6 = (:::::). The binning parameter 

d was chosen in such a way that maximal 20 bins were used in each coordinate, i.e., d (ti:). 
The estimate for the average derivative and the asymptotic covariance matrix was calculated using 

the three d a c e n t  bins which equals a bandwidth h = (::g). As result we have 

These results allow us to test some hypothesis formally using a Wald statistic ( s e  Stoker (1992a), 

pp. 53-54). In particular, to test the restriction Rb = ro, the Wald statistic 

W = n ( ~  - r o ) T ( ~ & ~ T ) - l ( ~ b  - ro) 

is compared to a  rank R) critical d u e .  Table 3.1 gives some examples for this technique. 
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Restriction Value W d.f. PIX2(d.f.)> W ]  

6' = b2 = 0 25.25 2 O 

6' = d2 = 0.135 0.365 2 0.83 

61 = d2 0.126 1 0.72 

Table 3.1: Wald Statistics for some restrictions on 6. 

ADE projection 

Figure 4: For the simulated data sct of example 1 zTb vs. yi and two estimates of 
j(zTd) are shown. The thick line shows the Nadaraya-Watson regression estimstor 
for 4 with a bandwidth of h = 0.3, for the thin line h = 0.1 was chosen. 

Another method to estimate g and 0 in (2.1) was proposed by Ichimura (1992). Let E denote 

the error term inherent to the response variable. Observing that (& denotes the true para'r;leter): 
-., 

(1) The variation in Y results from buth the variation in XTA and the variation in E. 

(2) On the contour line X T P ~ ,  = C, where c is a given constant, the variability in Y results 

only from the variation in E .  

(3) Observation (2) does not necessilrily hold on a contour line defined by XTP = c for 

P # Po. Along this contorir line, the value of x*& changes and therefore the variability - 
in Y again results from thc miat ion in both XTb and e. 
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. - -.- 
To identify Po Ichimurrr thus .proposes to estimate the conditional variance 

by estimating E [yIxTfl = c] by a kernel estimator and to find than the vector f l  that mini- 

mizes (3.3). Hiirdle, Hall and Ichimura (1991) proposed a simple and effective crossvalidation 

method for this setting which yields a mot-n consistent estimator of Po and an asymptotically 

optimal estimator of ho, the bandwidth which should be used to calculate the kernel estimate of g. 

A way of testing s GLM against this specific single index alternative has been given by 

Horowitz and Hiirdle (1992). They constructed a conditional moment tcst based on ideas of 

Bierem (1990) and Newey (1985). Another approach for such a test via Bootstrapping ideas was 

investigated by Rodriguez-Campos and C w  Abad ( 1992). 

4. Generalized Additive Models 

A generalized additive model differs from a GLM in that an additive predictor replaces the 

linear predictor q. The estimation of this model is usually a highly iterative procedure. Estimation 

of a and 91,. . . ,gd in (2.3) is accomplished by replacing the weighted linear regression in the 

adjusted dependent variable by an appropriate algorithm for fitting a weighted additive model 

(Hastie and Tibshirani 1990). This iterative fitting of a weighted additive model is known as locd 

scoring since it generalizes the Fisher scoring proceduril. Each estimation of a weighted additive 

model is done in an iterative process known as hckfittiug. In the backfitting step non-parametric 

&mates for gl,. . . , g d  are ccalculated. The properti<-; of the backfitting dgorithm have been 

studied by Craig and Kohn (1991) dr Hikdle and Ha11 ( 1992) for example. 

More specifically we haw. to estimate functions g, in the model 

The explicit algorithm of finding the nonparametric coirlponents is given by (see Hastic and Tib 
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shirani 1987): 

Local Scoring Algorithm 

Initialization jjo' r 0 for j = 1, . . . , d, &('I =logit (g). 

Loop over outer interation counter rn 

q(m) (zi) = b(m) + ~5 j!m) (4) 
J - 1  3 

fii =logit -'(*(") (~ i ) )  

~i = @ ( m ) ( ~ i )  + (pi - fii)/Ei(l - fii)l 
wi = f i ( l - a > ,  i = l , . , . ,  rt. 

Obtah dm+'), j,(m+l), j = 1, .  . . , d  by applying the hackfitting 

algorithm to zi with explanatory variables xi and observation wtsights tui .  

the deviance D(p, f i )  = - 2 xi [ ~ i  log(fii) + (1 - pi) log(1 - 8,)) ctmvcrgm. 

Backfitting Algorithm 

Initialization f,(O) 1 0 for j = 1, . . . , dl do) = a 
Repeat for j = 1,. . . , d repeat such cycles: 

Here S(rlw, <) denotes the value of the function obtained by smoothing the scat terplot (r ,  s) with 

weightswatthepointxi. + 
Since non-parametric_estimation methods are used in the backfitting step two main problems 

arise. The first problem is how to choose the smoothing parameter in this non-parametric fit regard- 

less whether splines, kernel estimators or others are used, see Buja, Hastie and Tibshirani (1989). 

The second problem is, since the whole process is iterative, how to make the calculations of thc  

non-parametric fits as fast as possible. 

For kernel regression estirnrttes this leads to WARPing (see Scott 1985, Hiirdle and Scott 1992, 

and Fan and Marron 1992). A third problem is how to incorporate the weights in the non- 

parametric smoothing step (see Hastie and Tibshirani 1990, pp. 72-74). Especially in logistic. 

rnodeh, as we discuss them here, these weights can cause numeric problems. If the estimated 

probability fii = P[Y, = 11x1 is very cbse to 0 or 1 the weight for this o k n a t i o n  in the backfitting 

step will be very smdl. But the adjusted dependent variable will be very big resulting in a b& 

partial residual. This can result in a bad fit within the b&fitting algorithm which leads in the 

, next step of thr local scoring to the same problem. 
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Figure 5: A four picture display with the results of the fitting procedure for the 
Generalized Additive Model. Legend is the same as for Figure 3 where t7, is replaced 
by iii. 

Program 3 in Scrt ion 5 dkmonstrates how the Generalized Additive Model can be estimated 

in XploRe (1992). Tlw result of this fitting is visualized in Figure 5. The backfitting algorithm 

provides estimates o f  the function g, in the multiple additive regression model E[yls] = a + 
xj g j ( x J )  with EbJ(3-J)]  = 0 for j = 1,. . . ,d. It is easily seen that in example 2 given by (2.4) we 

have Eb,  (d)J = 0, j = 1,2. Thus for our example we would expect that o is estimated as 0. In 

fact the result is d = 0.25. 

5. The implementation in XploRe 

The above cahlations have bmn performed ir t  the language XploRe (1992). In this section 

" we give some programs that are useful in solving the iterative procedure for Generalized Additive 

Models for example or for ADE. The Single Index Model for example I has been estimated using 

the ADE technique with the following program. 

library (smoother) 
library(addm0d) 
randomize (0) 

;load the necessary libraries 
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x = norml(200 2) ;generate t h e  explanatory variable 
rho = 0.6 
beta = f (1 1)' 
e t a  = x*beta ;e ta ,  notation as i n  (2.2) 
g = 1. / (l+exp(-eta) ) - rho * eta.  +pdfnCeta) ; calculate g(eta) 
u = miform (200 2) 
y = u.<g ;generate the response variable 
d - (max(x)-min(x)) /20 ;choosing a binning parameter 
(xb yb) = bindata(x d 0 y) ;binning t h e  data 
(del dvar) - adsiad(xb yb d 3) 

;estimate the average derivative and the asymptotic covariance matrix 
est  = (x+db l )  'y ;calculate the  projection 
ghi = r rgsr t (ea t  0.1) ; f i n d  estimates for g 
gh2 = regest (est 0.3)  
show(est ghl gh2 82d) ;show result6 (Picture 4) 

Program 1: This program generates and estimatvs cxarriple 1 

The commands of XploRe (1992) are similar to GAUSS but murc fine tuned for smoothing and 

nonparametric methods in high dimensions. The Generalized Additive Modcl (GAM) of example 2 

was created using the following code: 

randomize ( 0 )  
x = norma1(200 2) 
gl = xC,lI 
g2 = xt,23 .*xC,2]-1 
e t a  = gl+g2 
px = l./(l+exp(-px)) 
u = unfform(200) 
y = u.cpx . -. 
createdisplay(pic3, 2 2, sZd e2d s2d d3d) 
show (eta'y eta'px s2d1, x 1, l] 'gl s2d2, x [, 23 -g2 aZd3, 

Program 2: This program generates Picture 3 

The estimation of the GAM was done by 

proc(fx alpha dev)-lscore(x y) - 

dim = cols(x) 
gx = matrix(rous(x) dim 0) 
XB = 1 

ybar - meaa(y) 
alpha = In(ybar/(l-ybar)) 
loop = 1 
devold = 0 
dev = 100000; 

; i n i t i a l i z e  g-j 
;used t o  store information 
; to  so r t  the cooariatee 
; i n i t i a l i z e  alpha 
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while( (abs(dev-devold) > 0.01) && (loop < 6) ) 
eta = alpha + sumr (gx) 
p = 1 ./(l+exp(-eta)) 
w = p.*(l-p) ;calculate the weights 
z = eta + (y-p) . /w ;calculate the adjusted 

;dependent variable 
(gx alpha xs)=backfit(x z xs w 0.4) ;the backfitting step 
devold = dev 
dsv = -2*sum(y.+ln(p)+(l-y) .*ln(l-p)) ;calculate the deviance 
loop = loop+l 

endo 
end p 

Program 3: This program implements the Local Scoring Algorithm 
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EMPIRICAL EVIDENCE ON THE LAW OF DEMAND 

A sufficient condition for market demand to satisfy the Law of Demand is that the 
mean of all households' income effect matrices be positive definite. We show how this 
mean income effect matrix can be estimated from cross section data under metonymy, an 
assumption about the distribution of households' characteristics. The estimation proce- 
dure uses the nonparametric method of average derivatives. Income effect matrices 
estimated this way from U.K. family expenditure data are  in fact positive definite. This 
result can be explained by a special form of heteroskedasticity in the data: households' 
demands are more dispersed at  higher income levels. 

KEYWORDS: Law of demand, income effect, average derivatives, nonparametric estima- 
tion, metonymy. 

1 .  INTRODUCTION 

WHEN GENERAL EQUILIBRIUM MODELS are used to make comparative static 
predictions they cease to be general. This is necessarily so. Without a specific 
structure of the demand and supply system one cannot expect any definite 
comparative static results. However, in most analyses, conclusions depend upon 
structure imposed either by aggregating consumers into a single representative, 
or by assuming restrictive forms for utility or production functions. Such 
analyses therefore deal with special cases. The present paper considers an 
alternative way of imposing structure on a general equilibrium model. It 
considers sufficient conditions for the multimarket version of the "Law of 
Demand" in a consumption sector; cf. Hicks (1956). The sufficient conditions 
are a hybrid, combining standard theoretical restrictions with restrictions that 
do not come from a theoretical model. The latter restrictions can, under certain 
conditions, be tested and we provide such a test using U.K. family expenditure 
data. 

The Law of Demand concerns effects of price changes when households' 
budgets (total expenditures) are fixed. It is a condition referring to a counter- 
factual, asking how mean demand would differ if prices were different. As such 
it cannot generally be tested using time series data. If the observation period 
were long enough to reveal significant price variation, it would probably also 1 
show changes in households' budgets, preferences, and demographic character- 
istics. Our analysis describes a way of relating the Law of Demand to cross 
section data. i 

' Supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303 der Univer- 
sitat Bonn. We thank Kurt Hildenbrand, Rosa Matzkin, and Thomas Stoker for stimulating 
discussion, Sigbert Klinke and Berwin Turlach for computing assistance. We also thank Robert 
Porter and three referees for comments on earlier versions of the paper. We especially thank 
Whitney Newey for formulating a statistical test of the metonymy assumption. 

Econometrica, 59, 1525-1550

(1991) Härdle, W., Hildenbrand, W. and Jerison, M.
Empirical Evidence for the Law of Demand



1526 WOLFGANG HARDLE, WERNER HILDENBRAND, AND MICHAEL JERISON 

The Law of Demand is essentially equivalent to negative definiteness of the 
Jacobian matrix of price derivatives of mean demand. Note that this is much 
stronger than the requirement that demand for a good be downward sloping 
with respect to its own price. The Jacobian matrix can be decomposed into a 
mean of individual Slutsky substitution matrices and a mean of income effect 
matrices. Standard theory implies that the former matrix is negative semidefi- 
nite, but says nothing about the latter. A sufficient condition for the Law of 
Demand is positive definiteness of the mean income effect matrix. However, for 
a single consumer, the income effect matrix cannot be positive definite. It can be 
positive semidefinite, but only in the restrictive case of homothetic preferences. 
Hildenbrand (1983) and Hildenbrand and Hildenbrand (1986) have shown that 
when households have identical demand functions, dispersion in the income 
distribution contributes to the positive definiteness of the mean income effect 
matrix. In this paper we show that dispersion in tastes can also help. In 
particular, if the Engel curves of different consumersr spread out at higher 
income levels, the income effect matrix is likely to be positive definite. This type 
of spreading of demands, a special form of heteroskedasticity is well supported 
by the expenditure data examined below. Our cross section estimate of the 
mean income effect matrix is indeed positive definite. 

Our estimation procedure is nonparametric. Such nonparametric estimates 
are ordinarily less efficient than parametric ones when the parametric forms are 
known. However, the functional forms of the households' demands are in fact 
not known and cannot be accurately estimated from our data given that they 
differ across households. The potential advantage of parametric estimation is 
likely to turn out to be a disadvantage if the hypothesized parametric family is 
misspecified. More important, even this potential advantage is illusory in our 
framework. We estimate a matrix of derivatives averaged over households, and 
for these average derivatives, nonparametric estimates achieve the same rate of 
convergence as parametric ones; c.f. Stoker (1986) and Hardle and Stoker 
(1989). 

There is another subtler reason for avoiding assumptions about functional 
form. Suppose we assume that households of a particular type have identical 
demand functions with a form commonly used in empirical analysis. The Engel 
curves for such demands are quite smooth, i.e. do not wiggle much. It can be 
shown that if the distribution of the households' budgets is sufficiently 
dispersed, then the mean income effect matrix is positive semidefinite; c.f. 
Chiappori (1985) and Grodal and Hildenbrand (1989). The sufficient degree of 
budget dispersion depends on the form of the Engel curves but for most 
commonly used forms it is not large, and the dispersion in our data is larger. 
Thus by assuming one of the standard functional forms for household Engel 
curves one effectively obtains the Law of Demand by assumption (with no 
further restrictions on households' demands). Among the standard forms we 
have in mind are polynomials of degree less than 5 or the forms proposed by 
Leser (1963). The nonparametric approach permits us to relax an assumption 
that is clearly too strong since it implies the conclusion we are investigating. 
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The paper proceeds as follows. In Section 2 we present a model of a large 
consumption sector. We define the Law of Demand and the mean income effect 
matrix and show how a closely related matrix can be estimated using cross 
section data. In Section 3 we discuss the latter matrix, estimated using the 
method of average derivatives. The estimation procedure is described in the 
Appendix. 

2. THE LAW OF DEMAND AND THE MEAN INCOME EFFECT MATRIX 

2.1. A Sufficient Condition for the Law of Demand 

We consider a group (population) of households. Each household spends its 
exogenously given budget (total expenditure), b >  0, on the demand for 1 
consumption goods. The consumption behavior of a household is described by 
an individual demand function f: (p,  b) -+ f(p,  b) E IW:, where p E R!++ denotes 
the vector of prices of the 1 commodities. By definition we have p . f(p, b) = b 
for all price vectors p. In empirical literature, demand is commonly treated as a 
function of current budget and prices although household decisions during the 
period of observation depend on expectations about conditions after the period. 
The above formulation is appropriate if the household has preferences for 
goods during the period that are separable from later consumption, or alterna- 
tively if the household faces a binding constraint on borrowing and the budget is 
fixed in advance. More generally, the household could face a longer term budget 
constraint, and price changes could affect the total expenditure b during the 
observation period. The Law of Demand concerns the effect of price changes 
with b held fixed, and this effect can be induced by changing prices and the long 
run budget by the proper amount. Then long run optimization does not imply 
the usual Slutsky conditions for the short run demand function f ,  but as noted 
below, we will not need to assume that all households' demands satisfy the 
Slutsky conditions. 

Typically, different households may have different individual demand func- 
tions f and different budgets b. The class of all admissible individual demand 
functions f is denoted by 9. For example, F might be the class of demand 
functions which are generated by all (or a certain subset of) strictly convex and 
continuous (or smooth) preference relations on R: or, more generally, the class 
of all demand functions which satisfy the Weak Axiom of Revealed Preference. 
It will be convenient in the following to label the demand functions in F by an 
index a (we then write fa(p, b)) with fa(., - ) #fa'(., .) if a #a1. The index set 
d may be a finite set, any subset of Euclidian space or, more generally, any 
metric space. We shall assume that f "(p, b) depends continuously on the index 
a. (This representation of F entails no loss of generality since we can always 
choose F itself as an index set.) 

With this notation every household i is described by a pair (bi, a i)  E R+X .d, 
that is to say, by its budget bi and its demand function fa#. A population of 
households is described by a joint distribution of budgets b and individual 
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demand functions f. Let p be any probability measure on the space of 
consumption characteristics R+X d. The mean demand F of a consumption 
sector described-by the distribution p is then defined by 

We say that the Law of Demand holds in the consumption sector p if the 
mean demand function F is monotone, i.e., 

( p - q ) - ( F ( p )  - F ( q ) )  < O  

for every p ,q  E @,.+ with p f q. This says that for any two different price 
vectors p and q,  the vector (p - q )  of price changes and the vector (F(p) - F(q)) 
of corresponding demand changes point in opposite dinrections. Thus, in particu- 
lar, every partial demand curve is downward sloping. There is no need here to 
emphasize the importance and the implications of the Law of Demand (see, for 
example, Hicks (1956, p. 59)). 

The Law of Demand holds trivially if all individual demand functions f are 
monotone in p for every given budget b. The standard example for this case is 
the set of demand functions which are derived from homothetic preferences. 
For a general characterization of utilities or preferences which lead to mono- 
tone demand functions we refer to Mitjuschin and Polterovich (1978) or  Kannai 
(1989). Another case where one obtains the Law of Demand quite easily is given 
by a consumption sector with a decreasing density of budgets and a common 
demand function which satisfies the Weak Axiom of Revealed Preference 
(Hildenbrand (1983)). These cases, however, are examples; they cannot be 
considered satisfactory foundations for the Law of Demand. 

In this paper we shall proceed as follows; in a first step we derive, under 
suitable assumptions on the individual demand functions, a suficient condition 
for the monotonicity of the mean demand function F. There is no reason to 
suppose that this sufficient condition is implied by any reasonable restriction on 
the individual consumption characteristics and/or assumptions on the distribu- 
tion p. Then, in a second step, we develop for this sufficient condition, under 
suitable assumptions on the distribution p ,  an empirical test based on cross-sec- 
tion data. 

We assume from now on that the individual demand functions in F are 
continuously differentiable in prices and budget. It is well-known that the 
differentiable mean demand function F is monotone if the Jacobian matrix 

aF(p)  = (aP,~k(~))j ,k-l , . . . , I  

is negative definite for every p E R:,. Define the Slutsky (substitution) matrix 
of the demand function f "(p, b) by 

S ( p , b , f f )  =%fa(a9b)  + a , f * ( p , b ) f " ( ~ , b ) ~  

where fn(p ,  b)  and 8, fa(p,  b)  are column vectors and the superscript T 

denotes the trar 
we then obtain 

aF( P: 

where 

and 
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on the space of denotes the transpose. For the Jacobian matrix of the mean demand function F 
of a consumption we then obtain 

a q p )  = S(P)  - m p ) ,  
where 

m sector p if the S( P) = lRLxd S( p ,  b,  a )  d p  (mean Slutsky matrix) 

and 

ro different price 
tor (F(p)  - F(q)) 
. Thus, in particu- 
r no need here to 
Demand (see, for 

d functions f are 
~ l e  for this case is 
ietic preferences. 
:h lead to mono- 
(1978) or Kannai 
iite easily is given 
s and a common 
:aled Preference 

they cannot be 

we derive, under 
dficient condition 
: is no reason to 
ble restriction on 
r on the distribu- 
condition, under 
~sed on cross-sec- 

ctions in F are 
-known that the 
:obian matrix 

(mean income effect matrix). 

Consequently, a sufficient condition for the m_onotonicity of the mean de- 
mand function F is that the mean Slutsky matrix S is negative semidefinite and 
the mean income effect matrix a is positive definite. If one is willing to accept 
the hypothesis that individual demand functions f (p ,  b) are either derived from 
preference maximization or, more generally, satisfy the Weak Axiom of Re- 
vealed Preference, then it is well-known that _every individual Slutsky matrix 
S(p,  b, a), and hence the mean Slutsky matrix S(p), is negative semidefinite. 

Of course such hypotheses are made throughout the theoretical and empirical 
literature. As noted above, they could be problematic when the consumers' time 
horizon is longer then the observation period. There is little empirical evidence 
concerning whether individual demands satisfy the revealed preference axioms. 
Battalio, et. al. (1973Ldescribe individual consumer expenditure data in which 
violations of the Strong Axiom are fairly common but are small in a well-defined 
sense. Even if some consumers violate the Weak Axiom slightly, their effect on 
the Slutsky matrix S can be counterbalanced by other consumers who satisfy the 
axiom. 

In conclusion, assuming that the mean Slutsky matrix S(p) is negative 
semidefinite, a sufficient condition for monotonicity of F is that the mean 
income effect matrix m(p) is positive definite. This property does not follow 
from an assumption on "rational" individual behavior. Our goal is to develop a 
better understanding of the class of consumption sectors p that lead to a 
positive definite mean income effect matrix M(p). For the remainder of the 
paper we fix the price vector p and omit it as an argument. 

2.2. The Mean Income Effect Matrix for Metonymic Consumption Sectors I 

Mitution) matrix The mean income effect matrix cannot be estimated directly. In this 
section we describe a closely related matrix A, that can be estimated from cross 
section data. Note that the matrix @ is positive definite if and only if the 
symmetrized matrix 

e superscript T M = Z ~ + % ~  
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has this property. The matrix M is given by 

To  simplify notation, let g (b, a) =fP(b) - f,"(b). We call the matrix G(b, a) = 
jk. (gjk(b, a)) the product matrvt of the demand function f"  at  expenditure level b. 

Thus, in matrix notation, 

In order to define a matrix A which will be shown to be related to the matrix 
M and which can be estimated from cross section data we need the following 
properties of the distribution p on IW+X a'. 

(i) The marginal distribution of budgets is absolutely continuous, i.e., there 
exists a density for the budget distribution, which we denote by p. In addition 
we shall assume that the density p is smooth. 

(ii) Let plb denote the conditional distribution of a given the budget level b 
and consider the functions 

the derivative of 
ular, if the condi 
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We shall assume that the statistical Engel curve A(.) and the conditional mean where 
product function Elk are continuously differentiable. 

Let c ( b )  be the matrix with components gjk and define the matrix A by u = /  

A = / (dbG(b))p(b) db. (a@ denotes tt 
R+ Metonymy requ 

This matrix can be estimated from cross section data since the element a,, of A a,&b,-b) and t 

is the average derivative of the regression function b - /, g,,(b, a)dpIb.  For (*), which is ec 

details we refer to the Appendix. product measur 
the matrix U va The matrices M and A are closely related. Indeed, since partial derivativ 

M = /  R+ [ j d d b c ( b , a ) d ~ l b ] ~ ( b ) d b ,  b = Roughly p. Metonyn: spea 
p-households cz 

they are in fact identical, if for every b, b-households wc 
will make this n 

* L a b ~ ( ~ , f f )  d ~ l b  =ab/ d G(b,f f )  d d b ,  

i.e., the plb conditional mean of the derivatives of f,(b, a )  fk(b, a )  is equal to 
f ( b 4  
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matrix G(b, a) = 

penditure level b. 

~ t e d  to the matrix 
zed the following 

nuous, i.e., there 
by p. In addition 

i e  budget level b 

( j , k = l ,  ..., 1). 

zonditional mean 

matrix A by 

dement aj, of A 
,(b, a) dplb. For 

b, a) is equal to 

the derivative of the conditional mean j, f,(b, a) f,(b, a )  dplb. Thus, in partic- 
ular, if the conditional distribution p ( b  of individual demand functions does not 
depend on the budget level b (i.e. p is a product measure), then M =A.  

The case in which M = A  is particularly interesting since it permits the 
estimation of the symmetric mean income effect matrix M from cross section 
data. This motivates the following definition. 

DEFINITION: A distribution p of households' characteristics (b, a) with prop- 
erties (i) and (ii) is called metonymic if M =A, which is impled by ( *  ). 

T o  obtain a better understanding of the metonymy assumption we shall now 
clarify the general relationship between the two matrices M and A. For this it is 
helpful to imagine a Gedanken experiment in which the initially given house- 
hold budgets are perturbed. Households with initial budget b will be called 
b-households. The derivative a,G(b, a) in the expression for M is determined by 
comparing the product matrix of b-households to their product matrix when 
their budgets ~hange.  The derivative a,,c(b) in the definition of A is deter- 
mined by comparing the mean product matrix for a different set of households. 
Define 

the mean product matrix that b-households would have if their budgets were 
changed to P. Then we obtain 

where 

(a& denotes the partial derivative of d with respect to the first argument.) 
Metonymy requires that the matrix U yanish. The- left-hand side of (*)  is 
a2&b, b) and the right-hand side is a,G(b, b) + a2G(b, b). Thus the equality 
(*), which is equivalent to a,&b, b) = 0, implies that U = 0. Note that for a 
product measure p the mapping G(b, P )  is constant in its first argument, hence 
the matrix U vanishe? The property (*)  is weaker since it only requires that the 
partial derivative of G with respect to the first argument is zero on the diagonal ~ 
b = p. Metonymy is weaker still, requiring only that the integral U be zero. 1 

Roughly speaking, under the condition ( * )  the distribution of demands by 
/.?-households can be used to represent what the corresponding distribution for 
b-households would look like if their budgets changed to p,  for near b. We 
will make this more precise. Define 
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and let u be the corresponding unit length eigenvector. Consider the composite 
commodity formed by weighting the commodities by the components of u. 
Mean demand for this composite commodity at the price vector p is u . F(p). 
When prices change in the direction u, the directional derivative of demand for 
the composite derivative is 

and this last term under metonymy is -A/2 .  For a discrete price change, say ' 

from q to p = q + tv, the effect on demand is F(p)  - F(q) = taF(q)u, so the 
effect on demand for the composite commodity is ; 

Table I shows that in each year the maximal eigenvalue A is near 0.2. This 
implies that if prices change from q to p in the direction of the eigenvector 

I corresponding to A, then the term ( p  - q)(F(p) - F(q)) is bounded above by I 
-(.l)Ip -ql. I 

I 
I 

3.3. Sensitivity of Estimates 

Computation of the estimate of A involves estimating p, the density of 
households' budgets, using a kernel estimator. The smoothness of this estimator 
is controlled by a "bandwidth" parameter. A second parameter is used to delete 
observations at which the estimate of p is very small. (See Hardle and Stoker 
(1989) for discussion of these parameters.) 

The estimated components and eigenvalues of A are not very sensitive to the 
choice of bandwidth and cut-off parameters. Variations in* these parameters 
never overturn the positive definiteness of the estimated A. Concerning sam- 
pling variation, there is to our knowledge no theory of the distribution of 
eigenvalues of a matrix with correlated random components. However, one 8ets 
an idea of the distribution of the estimated minimum eigenvalue of A by 
considering the sample Pistribution of minimum eigenvalues computed from 
bootstrap estimates of A. One selects randomly (with replacement) n observa- 
tions from the original sample, and estimates A using the constructed bootstrap 
sample. Figure la, b shows smoothed kernel density functions for the smallest 
eigenvalues of the matrices estimated in this way from 100 bootstraps of the 
1969 and 1983 samples. All the eigenvalues computed from the bootstrap 
samples were strictly positive. The Appendix contains an argument relating the 
bootstrap distributions to the sampling distribution of minimum eigenvalues. An 
elaborated theory can be found in Hardle and Hart (1989). 
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LAW OF DEMAND 

(a) 1969 

EIGENVALUES 

(b) 1983 
FIGURE f .-Estimated smallest eigenvalue kernel density functions from bootstrapping. 

3.4. Subpopulations 

The metonymy condition is more plausible the more "homogeneous" the 
population. For this reason we tested the positive definiteness of the matrix A 
for subgroups of the population, considering stratifications by age and occupa- 
tion of the household head, and household composition. Table IV lists the 
smallest eigenvalues of the estimates of A X 100 for each age group. Nearly all 
of the estimated matrices are positive definite and most of the others belo.~g to 
the age group 80-89 with the smallest sample size. 

The sum of the A matrices for the subgroups, weighted by the sample size 
provides an alternative estimate for M, and the minimum eigenvalue of this 
estimate is bounded below by the sum of the eigenvalues for the subgroups, 
weighted by sample size. These weighted sums are strictly positive for all years. 
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and J ovulation but . - 
The violatior 

C(b,B) = G(bYp)  - f ( b , P ) f ( W T ,  household type 
respectively, the mean demand and the covariance matrix of the demands by entire popdat 
b-households whose budgets are changed to P. By the budget identity we have the various hou 

P G(P, d p  = p f a(p)y so ( *) implies the population 

.- 

where the derivatives are evaluated at b = P. Thus ( * implies 

( * .l) a,f(b, b) = 0, 
and by definition of c, 

population in I 

hold character 
subgroup i is 

( * .2) a,C(b, b) = 0. 

These conditions say that the mean demand and *the covariance matrix of 
demands by (b + Ab)-households are essentially equal respectively to what the 
mean demand and covariance for the b-households would be if their budgets 
expanded by Ab. Conditions ( *  .l) and ( *  .2) together imply (*)  and hence are 
equivalent to (*). Thus a distribution p satisfying ( * )  looks locally like a 
product measure at least in so far as its first and second conditional moments 
are concerned. In fact, if the individual demand functions are homogeneous of 
degree zero then f (b, p)  is independent of b. 

In summary: Let the individual demand functions in 9 be continuously 
differentiabke and satisfy the Weak Axiom of Revealed Preference. If y is a 
ntetonymic distribution on R+x d, then a sufficient condition for the mean 
demand 

to be monotone is that the matrix A be positive definite. 

Given the importance of the metonymy assumption it is worthwhile consider- 
ing an example in which it is violated. Let the consumption sector have a finite 
number of household types. All households of the same type a are assumed to 
have the same demand function f *. The types of households might be identified 
by demographic characteristics such as the number of household members, their 
ages, etc. Among the households with budget b, the fraction that are of type f a  
will be denoted by va(b). If p is a product measure, then the functions va(.) are 
constant. On the other hand for certain demographic characteristics these 
functions cannot be assumed constant. In our example we obtain for the 
matrix U: 

The matrix U may be positive or negative definite or indefinite. The example 
shows that it might well happen that metonymy is not satisfied for the whole 
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population but that after appropriate stratification the subpopulations satisfy it. , 

The violation of metonymy poses no problem in the above example. If the 
household types can be identified, then the mean income effect matrix for the 

f the demands by entire population can be calculated from the corresponding matrices of 
t identity we have the various household types. More generally, we can consider the case in which 

the population is partitioned into subgroups that each satisfy metonymy. The 
mean income effect matrix is then a weighted average of the average derivative 
A matrices of the subgroups. To be more precise, let ui be the fraction of the 

:s population in subgroup i and let pi be the (conditional) distribubion of house- 
hold characteristics within that subgroup, The average derivative matrix for 
subgroup i is 

ariance matrix of 
:tively to what the 
le if their budgets where G,(b) has jk component 

: * ) and henceare 
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Since p = Ciuip,, the symmetrized mean income effect matrix for the entire 
population is M"= Cu,M,= Cv,Ai. So the matrix M can be estimated by 
estimating the average derivative matrices Ai for all the subgroups. In this case, 
metonymy for the entire population can be tested by comparing A to CuiA,. If 
they are not equal, the population or some subgroup must violate metonymy. A 
statistical test based on estimates of A and A, is described and carried out in 
the Appendix. Whitney Newey has pointed out that average derivatives can be 
computed conditioning on any covariates of the households' demands. The tests 
based on stratification are simply special cases of such conditioning. 

We conclude this section with a brief discussion of the matrix A. In order to 
isolate the factors that contribute to its positive definiteness, it is useful to 
compare A to the income effect matrix estimated by Hildenbrand and 
Hildenbrand (1986). In a consumption sector described by the distribution p on 
R+X @', the statistical Engel curve is defined by the function 

6 - /  f " ( ~ , b ) d p I b = f ( p , b ) .  
d 

Hildenbrand and Hildenbrand (1986) estimate the symmetrized mean income 
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1 effect matrix of % i.e., the matrix 

This matrix turns out to be "approximately" positive definite. More precisely, 
the matrix B is typically ill-conditioned; some eigenvalues are very small in 
magnitude (positive or negative), however the larger eigenvalues are always 
positive. It is easy to imagine consumption sectors for which the matrix B is 
singular. For example, if p is the uniform distribution on the interval [0, PI, then 
B = f ( p ) f ( ~ ) ~ ,  which is a positive semidefinite matrix of rank one. Under 
appropriate assumptions on the form of the statistical Engel curves one can 
show, as mentioned above, that the matrix B is always positive semidefinite 
provided the variance of the budget distribution is sufficiently large (for details 
see Chiappori (1985) and Grodal and Hildenbrand (1989)). 

The matrix B differs from the above matrix A by the average derivative of a 
conditional covariance matrix. To see this, we note that the jk component of 
the conditional covariance matrix C(b) of the demands of b-households is 

Hence we obtain 

where 

is the average derivative of the conditional covariance matrix C(b). Note that 
C(b)p = 0 and hence, Vp = 0, so V is singular. 

The jth diagonal component of C(b) is the variance of the demands for good 
j by b-households. The magnitude of the jth diagonal component of V mea- 
sures the heteroskedasticity of the households' demands for good j since it is an 
average derivative with respect to b of the conditional variances of demands for 
good j. In a typical cross-section, demand for each good is heteroskedastic 
(variance increases with total expenditure b), so the diagonal components of V 
are strictly positive. 

Positive semidefiniteness of the matrix V means roughly that on average the 
dispersion in consumer demands rises with the size of the budget b. A closely 
related type of increasing dispersion was shown by Jerison (1982) to be the 
weakest Engel curve restriction ensuring that mean demand satisfies the Weak 
Axiom (see also Freixas and Mas-Colell (1987)). Increasing dispersion has a 
simple geometric representation. Given a budget b, the dispersion of the 
b-households' d5mands for, say, the first m goods is measured by the principal 
minor matrix Cib) formed from C(b) by deleting its last 1 - m rows and 
columns. When C(b) is nonsingular, this demand dispersion can be represented 
geometrically. There is a unique ellipsoid (called the ellipsoid of concentration) 

In this sectic 
along with othc 

centered at the 
has the varianc 
satisfying 

cf. Cramtr (194 
the dispersion ( 
correspond to ; 
represented by 
one at p > b .  'l 
each x withn x 
niteness ~f C(b 
&p) - C(b), c 
that the matrix 
ing prin$pal n 
matrix C(b) ca 
yatrix is singul 
C(b) can be ta 
principal minoi 
concentration f 
positive for p : 
hence V also. ( 

whece A is a:c, 
u . [C(p) - C(b 
nent.) Thus, fa 
that the ellipso 
with the budge 
are iliustrated 

We consider 

by each sample 

Econometrica, 59, 1525-1550

(1991) Härdle, W., Hildenbrand, W. and Jerison, M.
Empirical Evidence for the Law of Demand



LAW OF DEMAND 1535 

centered at the origin in Rm such th$ a uniform distribution over the ellipsoid 
has the variance-covariance matrix C(b). The ellipsoid consists of the set of x 
satisfying 

:. More precisely, 
are very small in 
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cf. Cram& (1946, Ch. 22). The ellipsoid gives a simple description of the form of 
the dispersion of the b-households' demands for the m goods. Larger variances 
correspond to a larger ellipsoid. A strong form of increasing dispersion can be 
represented by nested ellipsoids, with the ellipsoid at budg5t 6 contained in the 
one at p > b. Th? formal requirement for this is that x . c (~ ) - ' x  < lm + 2 for 
each x withA x . C(b);'x < lm + 2. This is equivalent to the positive semidefi- 
niteness of ~ ( b ) - '  - C(P)-', which is equivalent to positive semidefiniteness of 
& ? )  - &b), c.f. Dhrymes (1984, Prop. 65, p. 76). This last condition implies 
that the matrix of derivatives a,C(b) is positive semidefinite, so the correspond- 
ing prin$pal minor matrix of V is also positive semidefinite. Note that the 
matrix C(b) cannot be taken to be C(b) in the argument above since the latter 
matrix is singular with C(b)p = 0. However if C(b) has maximal rank 1 - 1 then 
&b) can be taken to be its leading principal minor matrix of order 1 - 1. This 
principal minor is positive definite and hence nonsingular. If th? ellipsojds of 
concentration for the first 1 - 1 goods are nested, then as above C(P) - C(b) is 
positive for /3 > b. But this implies that C(P) - C(b) is positive semidefinite and 
hence V also. (To see this, note that any 1-vector x can be written as v + Ap, 
where A is a scalar and the last component of v is 0. Then x [C(P) - C(6)lx = 
u . [&) - e(b)]u > 0, where u is obtained from v by removing its last compo- 
nent.) Thus, for V to be positive semidefinite it is sufficient but not necessary 
that the ellipsoids of concentration for the first 1 - 1 goods be nested, expanding 
with the budget level. Sections of estimated ellipsoids projected on the plane 
are illustrated in Figure 4 below. 

3. EMPIRICAL EVIDENCE 

In this section we present estimates of the matrix A for various populations, 
along with other empirical evidence that will help in interpreting the results. 

3.1. The Variables and Data 

We consider expenditures on nine commodity aggregates: 

1. Housing (HOU) 6. Services (SER) 
2. Fuel, light and power (FUE) 7. Transport (TRA) 
3. Food (FOO) 8. Other goods, and miscellaneous 
4. Clothing and footwear (CLO) (OGM) 
5. Durable household goods 9. Alcohol and tobacco (ATO) 

(DUR) 

by each sampled household in the U.K. Family Expenditure Surveys (FES) from 
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1969 to 1983. Each year the expenditures of approximately 7000 households are 
reported. For details concerning the samples and commodity classification, see 
Family Expenditure Survey (1968-19831, Kemsley, Redpath, and Holmes (19801, 
and Schmidt (1989). In order to interpret the results, it is convenient to 
normalize the mean budget and the price indices of all the commodity aggre- 
gates to equal 1. This is legitimate since the estimation of a given A matrix 
involves observations from a single period. The demand for a good by a 
particular household is therefore the household's expenditure on the good 
divided by the mean budget for the whole population. 

3.2. Estimates of A 

The procedure for estimating A by t i e  method of average derivatives is 
described in the Appendix. The estimate A = (s,,) is symmetric, and is positive 
definite if all of its eigenvaluzs are strictly positive. Table I contains the smallest 
and largest eigenvalues of A estimated from the entire FES sample in each of 
the years 1969-1983. These eigenvalues are all strictly positive, so the matrices 
are positive definite. 

The ratio of the largest to the smallest eigenvalue in Table I is never greater 
than 200. So the estimated matrices are well conditioned and their positive 
definiteness cannot be attributed to numerical (rounding) errors. In order to 
interpret the magnit~fdes of the eigenvalues in Table I it is helpful to consider 
the coyponents of A. Tables IIa and IJb show the components of the 1969 and 
1983 A matrices multiplied by 100; 

The diagonal components of A yield estimated bounds on the own price 
elasticities of demand. To see this, recall that a,F = 3 - M. Under the assump- 
tion that the mean substitution matrix is negative semidefinite, the own price 
effect aF,/apj is bounded above by the jth diagonal component of -a. Under 

TABLE 1 

MINIMAL AND MAXIMAL EIGENVALUES OF 2. 

Year 

1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 

Sample Size 

HOU FUE 

HOU FUE 

metonymy, . 
price elastici 

Since we no1 
the mean bu 
for the entir 
lower bound 
income effec 
1983. 
' The eigem 

the demand 

Year HOU 
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TABLE 1IA 

A x 100 FOR 1969. 

HOU FUE FOO CLO DUR TR A SER OGM A T 0  

TABLE JIB 

a x 100 FOR 1983. 

HOU FUE FOO CLO DUR TRA SER OGM A T 0  

metonymy, A = +aT, so this diagonal component is aj1/2, and the own 
price elasticity E~ of "demand for good j satisfies 

Since we normalized prices to equal 1 and divided each household's demand by 
the mean budget, the mean demand 4 ( p )  equals the budget share for good j 
for the entire consumption sector. The estimate of aJj/2F,(p) is an estimated 
lower bound on the magnitude of the jth own price elasticity, the bound due to 
income effects. The set of estimated bounds is given in Table 111 for 1969 and 
1983. 
' The eigenvalues of A yield similar bounds for the effects of price changes on 

the demand for certain composite commodities. Let A be an eigenvalue of A 

Year HOU FUE FOO CLO DUR TRA SER OGM A T 0  
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TABLE IV 

MINIMAI. EIGENVALUFS OF A WR THE STRATA "AGE." 

20-29 30-39 40-49 50-59 60-69 70-79 80-89 

Amon L n  &I, Amm Amin Amin Amm 
Year n XI00 n XI00 n x lOO n XlOO n XI00 n XlOO n XI00 

1969 825 0.30 1275 0.25 1380 0.34 1292 0.29 1310 0.20 706 0.29 198 -0.30 
1970 874 -0.49 1106 0.19 1216 0.20 1125 0.21 1192 0.47 659 0.44 190 -0.23 
1971 980 0.24 1245 0.26 1336 0.31 1307 0.36 1309 0.30 820 0.13 209 0.85 
1972 998 0.11 1244 0.15 1268 0.17 1299 0.42 1239 0.38 750 0.55 186 0.11 
1973 1003 0.14 1180 0.30 1167 -0.29 1309 0.47 1354 0.68 844 0.50 229 0.12 
1974 912 0.16 1211 0.25 1109 0.28 1179 0.91 1248 0.16 775 0.35 227 -0.76 
1975 1034 0.49 1296 0.75 1173 0.37 1217 0.20 1348 0.19 828 -0.20 264 -0.37 
1976 1026 0.17 1270 0.16 1140 0.24 1244 0.16 1332 0.36 905 0.83 249 -0.96 
1977 991 0.14 1361 0.29 1174 0.19 1216 0.15 1282 0.16' 888 0.29 246 0.29 
1978 940 -0.13 339 0.78 1103 0.87 1268 0.15 1220 0.32 832 0.57 252 -0.91 
1979 957 0.75 1313 0.10 1079 -0.15 1143 0.18 1078 30.13 903 0.11 260 -0.90 
1980 912 0.62 1416 0.69 1107 0.74 1170 0.16 1169 0.62 851 0.61 285 -0.16 
1981 918 0.13 1594 0.10 1212 0.20 1229 0.27 1290 0.19 973 0.22 271 0.34 
1982 987 0.45 1533 0.56 1201 0.85 1225 0.70 1194 0.42 939 0.63 295 -0.19 
1983 898 0.78 1451 0.75 1147 0.44 1089 0.14 1170 0.33 927 0.50 254 -0.11 

Thus the minimal eigenvalues of the weighted sum of the subpopulation 
matrices are positive also. The weighted sums of these subpopulation matrices 
are statistically different from the A matrix estimated from the entire popula- 
tion. However, this difference is not large in magnitude; see the Appendix. 

Similar results obtain for the stratifications by occupation in Table V and by 
household composition in Table VI. The categories for the latter stratification 

TABLE V 

MINIMAL AND MAXIMAL EIGENVALUES OF A FOR THE STRATA "PROFESS~ON" 

Pensioneer Worker Self-employed Others 

h 

1M 

Amm 
Year n XlW 

1969 334 0.15 
1970 307 0.13 
1971 365 0.15 
1972 373 0.06 
1973 410 0.40 
1974 368 0.19 
1975 400 0.02 
1976 476 0.11 

are: 

1 m 
1 fe 
1 ac 
2 ac 

For all strati 
tions. 

The estirn: 
matrix A is I 
a result we v 
understandal 

h m m  &nax Amm Amax Amm hmax Amm Amax 
Year n xlM) xlOO n XIM) XIW n XlOO XlW n XI00 XlOO 

1969 1200 0.19 26 3193 0.33 25 529 0.13 23 2085 0.38 25 
1970 1127 0.49 25 2899 0.16 26 486 0.15 24 1879 0.25 25 
1971 1332 0.13 24 3102 0.39 25 580 0.27 24 2224 0.32 26 
1972 1282 0.41 25 3065 0.20 26 468 0.14 22 2202 0.26 25 
1973 1422 0.33 24 3010 0.26 25 492 0.09 21 2201 0.34 24 
1974 1343 0.39 24 2735 0.11 25 561 0.50 23 2055 0.21 24 
1975 1521 0.33 25 2901 0.35 25 497 0.11 24 2282 0.44 23 
1976 1568 0.70 25 2951 0.22 25 454 -2.12 23 2230 0.32 25 
1977 1567 0.34 25 2884 0.24 25 506 0.14 22 2241 0.23 24 
1978 1529 0.62 25 2764 0.15 26 434 0.27 23 2274 0.14 24 
1979 1565 0.13 24 2567 0.11 23 429 -0.90 23 2216 0.18 24 
1980 1584 0.46 26 2571 0.46 26 462 0.12 23 2326 0.16 25 
1981 1774 0.16 24 2659 0.15 24 564 0.09 20 2528 0.22 24 

j 
1982 1725 0.52 26 2474 0.02 25 491 -0.16 22 2737 0.14 24 t 

1983 1719 0.46 24 1982 0.04 24 509 0.24 22 2763 0.10 24 ! 
! 

I 

average deri 
budget level 
households v 

The large 
positive defi~ 
Figure 2, whl 
transport. Ez 
are shown I 

normalized, 
All the cul 

cross produc 
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TABLE Vi 

1M I F  1A+ 1 2A 2 A +  1 Z A + 2  2 A f 3  Z A + + 3  

Amon Am,, h r n  Amtn Amm A,n+n Amm Amm 
Year n X l W  n XlUO n XlUO n X I 0 0  n X I W  n XlUO n X l W  n ~ 1 0 0  

are: 

1 male (1 M) 2 adults + 1 child (2A + 1) 
1 female (1 F) 2 adults + 2 children (2A + 2) 
I adult + 1 child (1A + 1) 2 adults + 3 children (2A + 3) 
2 adults (2A) 2 adults + more than 3 children 

(2A + + 3) 

For all stratifications, the only negative eigenvalues occur in small subpopula- 
tions. 

3.5. Further Evidence 

The estimates presented above support the hypothesis that the cross section 
matrix A is positive definite. Rather than present a theory consistent with such 
a result we will discuss further evidence that makes the above estimates more 
understandable. The jk component of A was shown in Section 2 to be the 
average derivative of the regression function gjk that associates with each 
budget level b the average of the products of demands for goods j and k by 
households with budget b. 

The larger the diagonal components of A the more likely is the matrix 
positive definite. Kernel estimates of the functions gii for 1969 are shown in 
Figure 2, where the index j runs over the commodity aggregates food, fuel, and 
transport. Estimates of gjk for cross products of the same commodities ( j  $: k) 
are shown in Figure 3. The household budgets and demands have been 
normalized, so the unit on the horizontal axis is the mean budget. 

All the curves have positive slopes. What is importanl is that the slopes of the 
cross product curves are sufficiently small compared with the slopes of the 
corresponding (own) product curves. For example, consider the curves for food 
and fuel in Figures 2 and 3. The distribution of household budgets is concen- 
trated on the interval from 0 to twice the mean budget and we can see that the 
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FIGURE 2.-Mean product functions gjj for 1969. The unit on the horizontal axis is total 
expenditure divided by its mean. 

slopes of the food, fuel, and food-fuel cross product curves are approximately .l, 
.01, and .02 respectively. These are essentially the values appearing in the 2 x 2 
minor matrix for food and fuel in Table IIA, and this minor matrix is positive 
semidefinite. The graphs of g for other commodity aggregates have shapes and 
slopes similar to the ones shown here. I 

I 

As discussed in Section 2, the positive semidefiniteness of A can be better 1 
understood by comparing it to the matrix of income effects of the cross section 
(statistical) Engel curve estimated by Hildenbrand and Hildenbrand (1986). The 
difference between these two matrices is the matrix V, the average derivative of 
the conditional covariance matrix. The V matrices estimated from the entire 
sample for the years 1969-83 are all positive semidefinite. By construction 
V ,  = 0 so V cannot be positive definite. However all the estimated matrices V 
qre positive definite on the space orthogonal to p. Unlike the product matrices, 
they are nearly dominant diagonal. The matrix estimates for 1969 and 1983 are 
shown in Table VIIa, b. 
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FIGURE 3.-Mean cross product functions g,k for 1969. The unit on the 
expenditure divided by ilwmean. 

horizontal axis is total 

The matrices for all the years are quite similar. Since the matrices are 
symmetric by definition, they have 45 components which can vary indepen- 
dently. All the components remain of the same order of magnitude during the 
sample period, and only two change sign. The spectrum of eigenvalues is also 
quite stable over time. For example, the eigenvalues vary by less than 30 
percent. The strong positive definiteness of the estimates of V on the orthogo- 
nal component of p can be explained along lines suggested in Section 2. 
Positivity of the diagonal components follows from the heteroskedasticity of the 
households' demand for each good. This is sufficient to make V nearly dominant 
diagonal because the conditional correlations of households' demands for pain 
of goods are rather small (generally below .2 in magnitude) and do not vary 
systematically with total expenditure. 

Kernel estimates of the conditional covariance matrices C(b) for budget 
levels of 0.5, 1, 1.5, and 2 times the mean budget have been computed using 
1983 data and a bandwidth equal to 0.2 (see Appendix). As discussed in Section 
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TABLE VII 
a. ENTRIES OF V FOR 1969. 

HOU FUE FOO CLO DUR TRA SER OGM A T 0  

HOU FUE FOO CLO DUR TRA SER OGM A T 0  

1.42 0.06 -0.14 -0.24 -0.24 -0.37 0 . 1 4  -0.16 -0.21 
0.14 0.02 -0.03 -0.05 -0.08 -0.03 -0.02 -0.02 

0.82 0.12 -0.30 -0.35 -0.36 0.05 0.14 
1.19 -0.23 -0.40 -0.35 0.00 -0.04 

2.76 -0.75 -0.76 -0.21 -0.18 
3.43 -0.76 -0.35 -0.29 

2.94 -0.25 -0.23 
1.02 -0.05 

0.89 

FIGURE 4.-Ellipses of concentration for 1983 at budget levels 0.5, 1.0, 1.5, 2.0 times the mean 
budget. 
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-0.16 -0.29 
- 0.33 -0.44 
-0.13 -0.24 
0.86 -0.14 

1.30 

1.5, 2.0 times the mean 
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2, these matrices determine ellipses of concentration for each pair of goods. 
(The coordinates of the ellipsoid that correspond to the other goods are set 
equal to zero.) These ellipses are not always nested, but are nearly so. Figure 4 
shows the ellipses for food and fuel. The conditional variances of demands for 
nearly all goods are larger for P-households than for b-households when P > b. 
The only exception is for fuel with b = 1 and P = 1.5. On average, the disper- 
sion of the consumers' demands clearly increases with the budget level. 

CORE, Universite' Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium, 
Department of Economics, Universitat Bonn, Adenauerallee 24-26, W-5300 

Bonn I,  Germany, 
and 

Department of Economics, State University of New York, Albany, NY 12222, 
USA 

Manuscript received September, 1988;final revision received February, 1991. 

APPENDIX 

ESTIMATION OF A 

In this section, we describe the procedure used to estimate the matrix 

A = 1 (abc(b))p(b) db. 
R+ 

The data consist of households' expenditures on each of the 9 commodity aggregates during a given 
period. 

We normalize the prices of all commodity aggregates to be 1. A household's demand for a good 
is then equal to its expe~diture on the good. The characteristics (h,,a,) of a ra_ndomly sampled 
household i have the distribution p. The mean Ludget in the sample is denoted b. We consider a 
fixed pair of goods j and k, and define Xi = b,/b and Y, = fF(p, b,)f?(p, b,)/(%)'. Then we can 
interpret X, as the bfidget of household i and Y, as the ik component of the household's product 
matrix when the mean budget is normalized to 1. Since b is a sample mean, the pairs (X,,Y,) are 
correlated for different households. However, since the sample is large, the correlation is slight, and 
we will ignore it, treating the (X,, x )  as i.i.d. These random variables have a distribution induced by 
p, and the regression function is denoted m(x) = E(Y;IXi =x). The jk component of A is then Sb, 
where 

is the average derivative of m. By construction, the sum of the components of fal(p, b,) is b,, and 
the bi variables are distributed with compact support. Thus the distribution of (Xi, Y ; )  has compact 
support. 

Our approach to estimation of the average derivative S is based on the simple observation that if 
p vanishes at the boundary of its support, then partial integration gives 

with 

(4.1) L = - d  log p/dr = -p1/p. 
Since L(.) is not known we have to estimate it. We use the kernel technique and estimate the 

Econometrica, 59, 1525-1550

(1991) Härdle, W., Hildenbrand, W. and Jerison, M.
Empirical Evidence for the Law of Demand



FIGURE 5.-The estimated densities of total expenditure p ,̂,(x), 1968-1983. 

density function p(x) by a Rosenblatt-Parzen kernel density estimator 

where ~ , , ( . )=h- 'K( . /h )  is a kernel function with bandwidth h. We use a quartic kernel, 
K(u) = (15/16)(1 - u2)2 for Iul< 1; see Hardle (1990). Figure 5 shows the estimated density 
functions 6, for the entire sample period. 

From the estimates @,,(x) we obtain as an approximation to L(x) the ratio i,,(.r) - &;,(X)/@~,(X). 
(To avoid a zero denominator in low density regions we compute this only f y  budgets in the interval 
from 0.1 to 3 times the mean budget.) The Average Derivative Estimator S is then defined as 

The argument in Hardle and Stoker (1989) yields the following theorem. 

AVERAGE DERIVATIVE ESTIMATION THEOREM: There exists a sequence of bayiwidths h,, -+ 0 with 
corresponding average d e r i ~ ~ a l i ~ e  es!itna!or S, de ned in (4.3) such that f i ( 6  - 6) has a limiting 
Normal distribution with nuan U and wriance off w h m  

This version of the theorem can be proved by modifying the proof of Hardle and Stoker (1989) 
slightly to allow for nonnegative kernels. The 6 rate of convergence is remarkable in that all the 
components of 6 are nonparametrically estimated without any structural assumptions on p and m. 
Thus, although nonparametric estimation typically exhibits slower rates of convergence, the specific 
structure of the average derivative functional makes it possible to achieve the rate of convergence 
that is typical for parametric problems. 

The computations for the A-matrix have been performed with a variety of values for the 
bandwidth h. All of the results reported in Section 3 use h = 0.2 (i.e. two tenths of the mean 
budget). This is the optimal value of h minimizing the mean square error (MSE) of (4.3). Hardle, 
Hart, Marron, and Tsybakov (1991) analyzed this mean square error and showed that there exist 
constants Cl and C, such that MSE = 02n-I  + ~ , n - ~ h - ~  + C,h4. From this expression a "plug-in" 
estimate for the optimal h can be derived. The optimization of the kernel function for Average 
Derivative Estimation has been considered by Mammitzsch (1989) who showed that the Quartic 
kernel used in our studies is optimal. 

In order to esti 
terms given in Ha 

The sample varia 
based on a lineari 
fixed smoothingap 
entries of the A I 

of total expenditi 
&,(x) is very smal 
in Hardle and St( 
course, use a vaq 

An alternative 
the interquartile 
diagonal element 

The variances (ti 

The variances ar 
normal data the 

Using these 
population and 
Metonymy requi 
see Section 2. F 
average matrix 1 

As a first step 0 

However, this p 
The resulting cc 
denote the vectl 

T =  

is an asymptot 
estimates of A 
weighted avera~ 
the difference. 

where r k )  de 
covariance ma1 

We performed 
The other yea1 
cannot be reje 

The distrih 
Theorem A. 11 

Econometrica, 59, 1525-1550

(1991) Härdle, W., Hildenbrand, W. and Jerison, M.
Empirical Evidence for the Law of Demand



: use a quartic kernel, 
s the estimated density 

ti0 - ri6(x)/bi,(x). 
er budgets in the interval 
5 is then defined as 

f bayiwidths h,, - 0 wit11 
6 ( 6  -6)  has a limiting 

Iardle and Stoker (1989) 
emarkable in that all the 
issumptions on p and m .  
convergence, the specific 
the rate of convergence 

ariety of values for the 
two tenths of the mean 
r (MSE) of (4.3). Hardle, 
I showed that there exist 
)is expression a "plug-in" 
nel function for Average 
showed that the Quartic 

LAW OF DEMAND 

In order to estimate the variability of the average derivative estimates we used the sample based 
terms given in Hardle and Stoker (1989, formula (3.6)), 

The sample variance of these terms approximates the variance given in (4.4). The formula (4.5) is 
based on a linearization of the average derivative estimator in (4.3). The fact however that we used a 
fixed smoothinaparameter for the whole range of income created high estimated variances for the 
entries of the A matrices. This becomes evident from Figure 5 which shows the estimated densities 
of total expenditure over time: at the far end (near the value of total expenditure 3.0) the estimate 
&(x) is very small. Therefore the score function L, although we used the cutoff technique described 
in Hardle and Stoker (1989). must become rather unstable. To overcome this difficulty we could, of 
course, use a varying bandwidth h = h(x) but this is still an open problem. 

An alternative method of measuring the standard error of the average derivatives is to compute 
the interquartile range (or F-spread) of the terms ?,,, in (4.5). The F-spreads (times 100) for the 
diagonal elements of the A matrix of 1983 for instance are 

The variances (times 100) of the terms ?*, for these diagonal elements are 

The variances are much larger than the F-spreads because the distributions are highly skewed. For 
normal data the standard deviation is 1.39 times the F-spread. 

Usine these measures of variation we can consider the question of metonymy of the full - 
population and each subclass defined by stratification. As an example we consider the age strata. 
Metonymy requires that A equal the weighted average of the A,  matrices estimated from the strata; 
see Section 2. For simplicity we consider the comparison of the diagonal elements. The weighted 
average matrix had the following diagonal elements in 1983: 

(4.82,0.46,4.13,1.81,3.23,7.29,5.17,1.41,1.08). 

As a first step one could treat these diagonal elements as given and apply a t test for each element. 
However, this procedure is inadequate because the two matrices are computed from the same data. 
The resulting correlation is accounted for in the following test suggested by Whitney Newey. Let 6 
denote the vector of elements of A. Then 

is an asymptotic chi-square statistic for the difference !eiween the stratified and unstratified 
estimates of A. Here$, is the vector of components !of A,cz is the vector of components of the 
weighted average of A, estimates from the strata and 2 denotes a consistent variance estimator for 
the difference. Formula (4.5) can be used to calculate T: 

n 

( - )  j = 1 , 2 ,  
, = I  

where rfi) denotes the vector of terms in (4.5) for the stratified and unstratified case. The 
covariance matrix of the difference can be estimated by 

We performed this test for the diagonal of A and obtained the value of T = 0.046 for the year 1983. 
The other years had T values in the range 0.03 to 0.1. So the hypothesis that the matrices are equal 
cannot be rejected. 

Bootstrapping the Distribution of the Smllesr Eigenualue of A 

The distribution of the smallest eigenvalue of d is asymptotically normal, as is seen below in 
Theorem A. In the context of estimating covariance matrices similar asynlptotic normality have been 
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derived. To our knowledge such a result for general random matrices is not available. In the 
foflowing presentation we follow the paper by Hardle and Mart (1991). A column vector of 0's and a 
k x k identity matrix wi!l he denot~d,  respectively, 0 and I. The eigenvalues of A are A ,  < A 2  < . . . 
<Ak, while those of A are A ,  <A, < . . . < A , .  C = [c, ] will denote a k x k matrix with typical 
element c,,. For any k x k symmetric matrix C, u v e c ( ~ )  is the k(k + 1)/2 component column 
vector Ic,,,. . . , elk,  cZ2,. . ., cZk, .  . . , ckk)'. Let V denote the asymptotic covariance matrix of 
uvec(A). 

THEOREM A: Define A,,(,+,) to be the cofactor of the ijrh element ofA - A I I .  Let B = 2[At,(Al)I - 
diag(Al,(A,), ..., Akk(Al)), and let D(x)=  IA -XI/. 'lhen 

where 

u vec (B)'Vu vec (B) 
u: = 

(D ' (AI) )~  
# 

Although an estimator of V can be constructed to use-this result for testing A ,  > 0 the 
procedure for doin? so will be quite complicated. Therefore a bootstrap approximation to the 
distribution of \/;;(A, - A , )  seems to be an attractive alternative. The bootstrap we used resamples 
from the data {(b,, faa(p, b,))),'-, for a given year. More precisely n new observations are sampled 
with replacement.  be bootstrap sample determines for each pair of goods a pair (X: ,Y,*)  defined 
the same way as (X,,Y,). 

To define the bootstrap distribution P* of the smallest eigenvalue we have to compute A*, the 
matrix A computed from a bootstrap sample (X;L,Y,*). Now calculate A:, the smallest eigepvalue 
of A*. Repeated sampling allows one to approximate the bootstrap distribi~tion P* of (AT -A,) and 
then to conduct a test of the relevant bypothesi? Theorem B in Hardle and Hart (1991)Arhows, in 
fact, that the bootstrap distribution of &(A: -A,) is asymptotically close to that of f i ( ~ ,  -A,). 

A bootstrap test can now be conducted as follows. One determines an interval [-B*,C*] from 
the bootstrap distribution of A";AlA which has probability, say, .95. Then one computes a 
confidence interval for A ,  as [A^,  - C*, A ,  + B*]. The hypothesis of positive definiteness is rejected if 
A,  - C* > 0. (Of course, the nominal level of this one-sided test is .025.) 
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Bandwidth Choice for Average Derivative Estimation 
W. HARDLE, J. HART, J. S. MARRON, and A. B. TSYBAKOV* 

The average derivative is the expected value of the derivative of a regression function. Kernel methods have been proposed as 
a means of estimating this quantity. The problem of bandwidth selection for these kernel estimators is addressed here. Asymptotic 
representations are found for the variance and squared bias. These are compared with each other to find an insightful represen- 
tation for a bandwidth optimizing terms of lower order than n- I .  It is interesting that, for dimensions greater than 1, negative 
kernels have to be used to prevent domination of bias terms in the asymptotic expression of the mean squared error. The extent 
to which the theoretical conclusions apply in practice is investigated in an economical example related to the so-called "law of 
demand. " 

KEY WORDS: Bandwidth optimization; Kernel estimators. 

I. AVERAGE DERIVATIVES 

The average derivative is the mean slope of a regression 
curve. A non-parametric formulation of this problem is to 
use (XI, Y,), . . ., (X,, Y,) E Rd+' independent identically 
distributed, with regression function 

m(x) = E(Y I X =  x): Rd+ R, 

to estimate 

where 

The average derivative provides useful generalizations of 
binary response models, as discussed in Manski and 
McFadden (1981), because it allows modeling the link 
function in a nonparametric fashion. One such generaliza- 
tion is of one-term projection pursuit type, as defined in 
Friedman and Stuetzle (198 1). This models the regression 
curve as a function of the foml m(x) = g ( ~ T p )  for some 
parameter vector p (identifiable up to scale). If g is non- 
trivial, then the average derivative is a projection vector in 
the same direction as p .  

In an econometric context this model is called a single 
index model. For another setting in economic modeling, 
which can be effectively analyzed by the average derivative 
technique, we refer the reader to Powell (1986). Average 
derivatives occur also in the empirical verification of the 
"law of demand." The law of denland is a condition for 
the uniqueness of econon~ic equilibria. Uniqueness of equi- 
libria of econon~ic situations is vital for so called compar- 
ative statics, where one compares two economies with dif- 
ferent price systems. A sufficient condition for the law of 
demand to hold is that some random matrix (related to "in- 
come effects," see Section 3) is positive definite. The ele- 

* W. Hirdle is Professor, C.O.R.E., Universit6 Catholique de Lou- 
vain, 34, Voie du Roman Pays, Louvain-la-Neuve, Belgium. J. Hart is 
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Grant DMS-8701201. This research was also supported by the Deutsche 
Forschungsgemeinschaft, Sonderforschungsbereich 303 and CORE. We 
thark the associate editor and the referees for careful readings and useful 
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ments of this random matrix are average derivatives; for 
details, see Hildenbrand (1 989). 

These and other applications were also presented in Hiirdle 
and Stoker (1989), where the method is called average de- 
rivative estimation (ADE). There it was also shown that S 
can be estimated at the rate n-1'2. Equipped with this "para- 
metric" rate of convergence of ADE, one sees that the ad- 
ditive model just given allows a one-dimensional rate of 
convergence for estimation of m. The variance in the 
asynlptotic distribution of the ADE is the best obtainable, 
as shown by Samarov (1990). However, although the first- 
order rate for ADE is independent of smoothing parame- 
ters, these have to be properly chosen from the data in 
practice. 

The average derivative is a functional of the joint distri- 
bution of X and Y. If full information about the regression 
function m(x) were available to the experimenter, an ob- 
vious estimate of 6 is a sample average of mr(x) over the 
X values. However, in general, it is necessary to estimate 
m(x) or some other nonparametric component of 6 as well. 
In this article we base estimators of the nonparametric com- 
ponents of the average derivative on the kernel method. We 
use the kernel technique because it is straightforward to im- 
plement, easily understood on an intuitive level, and math- 
ematically tractable to analyze. Other possibilities include 
spline and orthogonal series methods. With any nonpara- 
metric method there is a smoothing parameter to be se- 
lected, called the bandwidth in the kernel case. 

The main point of this article is an analysis of how this 
should be done in the ADE case. Empirical motivation for 
our theory in a slightly different setting was provided by 
Hsieh and Manski (1987, p. 551) who stated that "the per- 
formance of (adaptive semiparametric) estimates has been 
shown to be rather sensitive to one's choice of smoothing 
parameter. " 

An interesting feature of our results is that the best choice 
of bandwidth for ADE is substantially smaller (under- 
smoothed) than the typical bandwidth for curve estimation. 
This is due to the fact that our goal is estimation of a func- 
tional, not the curve itself [see Hall and Marron (1987) or 
Carroll and Hiirdle (1989) for the same phenomenon]. 
Moreover, unlike the curve estimation problem, we will see 
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that n-'I2 rates of convergence are obtainable for estimation 
of the average derivative functional. 

We explicitly state our results in terms of the one-di- 
mensional case, d = 1. Generalization to higher dimen- 
sional cases is straightforward but involves more refined 
arguments. One part of this extension is that, to obtain an 
n-''2 rate of convergence, one must use a higher order ker- 
nel. More precisely, the second-order term in the mean 
squared error expansion for d = 1 and a p = 3 times dif- 
ferentiable marginal density f of X is nP8I7 = n'-4p+4'/'2p+d'. 
Thus one sees that, for d > 1, only for p > (d + 4)/2 is 
the next expansion term indeed of lower order. When d > 
1, the dominant term in a mean squared expansion con- 
verges at a slower rate than n-', unless one uses a higher 
order kernel, that is, one that takes on negative values. 

Section 2 contains a mathematical formulation of the es- 
timator and a statement of the theorem that provides an 
asymptotic analysis of the bandwidth selection problem, to- 
gether with a discussion of the practical implications. It is 
seen that, under common technical assumptions, the rate of 
decrease of the best bandwidth optimizing second-order terms 
is of the order K217, which results in a mean squared error 
(MSE) rate of convergence of n-I. Section 3 offers an ap- 
plication to some economic data. The proof of the theorem 
in Section 2 is given in the Appendix. 

2. CHOICE OF BANDWIDTH FOR ADE 

If the marginal density f(x) of X vanishes at the bound- 
ary, and if we apply partial integration, we can then write 
the average derivative as 

where l(x) = -f '(x)/f(x). If the score function 1 were known, 
the average derivative could be estimated by a sample av- 
erage over Yil(X,). In general, the score function is not 
available to the experimenter, and, therefore, it is necessary 
to estimate it from the data as well. 

The kernel estimator of the marginal density f(x) is given 
by 

n 

fh(x) = n-' C. K,(X - x,), 
j= 1 

where Kh(.) = K(./h)/h for K a kernel function, which will 
be taken to be a bounded symmetric probability density, 
and where the scale factor h is called the bandwidth. The 
subscript of h on the estimator is used because choice of h 
is crucial to the efficiency of the estimator; see, for ex- 
ample, section 3.4 of Silverman (1986). In the multidi- 
mensional case d > 1, a product kernel is to be used in the 
preceding formula for the density estimate. The gradient 
f '(x) = (af/dx,, . . . , af/dx,) would then be estimated com- 
ponentwise by 

Rates of convergence and asymptotic limiting behavior of 
niultivariate density estimators are well known; for an ac- 
cess to the literature, we refer to Silverman (1986). 

The estimate of the derivative f '(x) is, in fact, obtained 
by differentiating fh(x) with respect to x. We thus form the 
estimate 

The average derivative can then be estimated by 

A different approach could be based on a samle average of 
kernel estimates of mr(.), the derivative of the regression 
function. It is not hard to see that a sample average of a 
kernel regression estimator leads to a very similar expres- 
sion. Indeed, this approach leads to the same variance 
expressions as has been shown by Stoker (1989). The pre- 
ceding representation was, historically, developed first and 
is slightly more tractable since it contains less terms to 
analyze. 

It seems likely that our estimator could be improved by 
using different bandwidths forfh and$;. A drawback to this 
approach is that then there are two bandwidths to be se- 
lected. For the sake of simplicity in this analysis, we choose 
to work only with a common bandwidth for the two esti- 
mators. It will be apparent from the proof that, after li- 
nearization of I ( . ) ,  only the bandwidth for estimating f '  is 
of interest. 

Note that, in the construction of 6 ,, the quantities fh and 
$I, are evaluated only at the points XI, . . . , Xn. In each in- 
stance, this results in one term of the form Kh(0) in the 
denominator of lh(x,) (in the numerator such terms vanish 
since Kh(0) = 0 for symmetric kernels K). While these 
terms will be asymptotically negligible, as discussed (in a 
related problem) by Hall and Marron (1987), there can be 
a small sample difference that makes it desirable to elim- 
inate these terms. Hence define the leave-one-out estimators, 

A modified estimator of 6 is given by 

Inspection of the proofs shows that 8, is also easier to work 
with mathematically than a,* because the "diagonal terms" 
of the form Kh(0) in 8,* need to be handled separately. 

As with many related estimators, 6, is technically tricky 
to handle because of the random denominator appearing in 
lh,i(x). The approach to this problem taken here is similar 
to the linearization method used in chapter 3 of Hiirdle 
(1990). It will become apparent from the proof of the next 
lemma that 6h may, for purposes of analysis, be replaced 
by the "linearized" version 

where Lhi(x) = $~,~(x)($~,~(x) - 2f(~))/f(x)~. Technical as- 
sumptions used here are: 
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Al .  The kernel K is bounded, continuously differentia- 
ble, symmetric, and compactly supported. 

A2. J K(u) du = 1. 
A3. There exists k, k' > 0, such that K ~ ( u )  2 kll(luI 5 

l/W. 
A4, f(x) has three continuous derivatives on its support, 

and support(f) = (a, b), for - w  < a < b < m. 

A5. fU(a) # 0, and f"(b) # 0. 
A6. support,[ f -'(x)E()YI I X = x)] < w .  

A7, h, = h0n-2/7, where h, is some positive number. 

The first four conditions are common conditions in the 
setting of kernel smoothing ensuring regularity of both K 
and f. In the multidimensional case, d > 1, assumption A4 
has to be replaced by a cube, for example, (a, b)d. As- 
sumption A5 is introduced to control the curvature at the 
boundary; again it can be modified for the multidimensional 
case; see formula (A. 1.1) in the Appendix. Assumption A6 
is a growth condition necessary to control the random de- 
nominators. Assumption A7 is a condition on the rate of h 
already predefining the optimal range of h. It could be mod- 
ified to a slightly larger range at the expense of more com- 
plicated mathematics. 

The following Lemma guarantees that the replacement of 
i,,i by Lhi is possible. 

Linearization Lemma I.  Under assumptions A1-A7, 

In the multidimensional case the rate n-'/I4 has to be re- 
placed by n- l / [ 2 ( 2 ~ + 4 1  

That this bound is enough to enable replacement of 6, by 
&, and that the bandwidth speed given in A7 is reasonable, 
are a consequence of the following theorem, which is the 
main result of this article. Additional technical assumptions 
are : 

B 1. m(x) is three times continuously differentiable on R, 
and m(x)l(x) is Lipschitz. 

B2. The conditional variance a2(x) = m2(x) - m2(x) and 
the function m(x)/f(x) are continuous, and the integrals 
Jj: m2(x)[( f '(~))~/f(x)]dx and J,b [m2(x)/f 3(x)]dx are finite. 
Here m2(x) = E(y2 I X = x). 

Theorem I. Under assumptions A l ,  A2, A4, A6, A7, 
B1, and B2, 

E(& - = Q,n-l + + Q3h: + ~ ( n - ~ h , ~  + h:), 
where 

Ql = var(ml(X)) + E ( a 2 ( ~ ) 1 2 ( ~ ) ) ,  

and 

Corollary. The asymptotically optimal h, is given by 

Under this choice of h,, the first two terms of the asymp- 
totic expansion are 

The theorem and the corollary generalize to dimension 
d > 1, as explained in the Appendix. 

Note that the second term is not particularly small in 
comparison to the frst one, since their ratio is of order r~ - ' /~ .  
Therefore, recalling the preceding observation by Hsieh and 
Manski (1987), while the choice of h is asymptotically neg- 
ligible, extremely large n will be required before its influ- 
ence disappears in a practical sense. The constants in (2.1) 
can be optimized. 

Optimization of €2, 

The n-' term with constant Q1 is the leading term in the 
MSE expansion of the ADE. This constant cannot be im- 
proved upon in a minimax sense due to Levit (1974). Sa- 
marov (1990) proved that this first-order term Q1 is the 
smallest achievable for any possible estimate of the average 
derivative. 

Optimization of K 

The second-order terms in (2.1) involve the kernel K. So, 
it is natural to ask whether the factor Q:/~ Q:/~ can be op- 
timized over the choice of kernel. Note that this is the same 
as seeking to minimize 

Mammitzsch (1989) has solved this problem by showing 
that K' is of order (1, 3), in the terminology of Gasser, 
Muller, and Mammitzsch (1985). Integrating K' leads to 
the quartic kernel K(u) = (15/16)(1 - u~)~I(IuI 5 1) as the 
kernel optimizing T(K) . 

Optimization of h for d > 1 

The proof of the Theorem can be extended to the case 
of higher dimensional X variables. The rate in the stochastic 
term will be, as known from other semiparametric prob- 
lems, of the order n-2h-d-2. It is interesting that the bias 
for three-times differentiable f would be of the order as in 
the one-dimensional case, namely, h2'p-1', where p = 3 de- 
notes the degree of differentiability off. Observe now that 
p = 3 as a degree of smoothness off is no longer feasible 
for d > 1. To speed up the rate of convergence for the bias 
term, we hqve to assume that, more derivatives exist, and 
we have to use higher order kernels (Gasser, Muller, and 
Mammitzsch 1985) to obtain a rate h2(p-') faster than n-'. 
If, for example, we are in a d = 4 dimensional setting, we 
should use a kernel of, say, order p = 6 > 4, since then 
the bias term is of order h2'p-1' = hlO, yielding a rate of 
n-"+4"2p+d'. The h optimizing the second-order terms would 
be, in this setting, h - n-'I8 More generally, for p > (d + 
4)/2, the best bandwidth is given by h - n-2/'2p+d', yielding 
a rate of n-(4~+4) / (2~+d)  
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3. THE METHOD IN PRACTICE 

Empirical verification of the so-called law of demand, 
see Hicks (1956), provides one motivation for the average 
derivative estimation method. The law of demand concerns 
effects of price changes when a household's budget is fixed. 
A sufficient condition for the law of demand to hold is pos- 
itive definiteness of the matrix of mean income effects. The 
(k, I )  component of this matrix is the demand for good 1 
multiplied by the derivative of demand for good k, with 
respect to income, all averaged over the population. Hil- 
denbrand (1989) used nine goods and showed that this is 
equivalent to checking positive definiteness of the matrix 

Here Z, and Z, denote demands for goods k and 1 and f(x) 
is the density of the income distribution. The matrix ele- 
ments a,, are thus average derivatives computed for Y = 

ZkZl. 
To give some insight into this data structure, consider 

Figure 1 .  It shows an estimate of E(Z,Z, I X = x) for k = 
FOOD and I = TRANSPORT. The data are from the Fam- 
ily Expenditure Survey from the Department of Employ- 
ment, Statistics Division (1968-1983) for the year 1973. 
The average derivativ? for this example, with a quartic ker- 
nel and h = .2,  was 6 = .06. For a picture of the income 
density f(x),  see Hiirdle (1990, chap. 1 ) .  

The bandwidth selection procedure was perfomled for a 
variety of those matrix elements for different years. We 
give an example from the year 1973 based on plugging in 
estimates $, and Q, of Q2 and Q, in Theorem 1 .  To esti- 
mate the constants in Theorem 1 most conveniently, we 
used kernel estimates with the Gaussian kernel K(u) = 

( 1  /fi) exp (- u2/2) .  
The reason for choosing the Gaussian kernel was that 

derivative estimates as occurring in Q, can be easily com- 
puted without referring to other special derivative kernels. 

Figure 1. The Estimated Mean Product Function E(ZJ, 1 Z = x) for 
Food and Transport for 1973 (X and Z are normalized by their mean). 
From Hildenbrand (1989). 

Figure 2. The Bandwidth Selection Function ~ f l - " h - ~  + Q3h4 for the 
Food and Transport Example. 

We used numerical quadrature methods to compute the in- 
tegral ( S  [m(x)/f (x)] ( f  ' (x)f "(x) - f (~ ) f '" (x ) )dx )~ ,  which is 
part of Q,. The bandwidths for estimating the unknown 
curves in this constant Q, were chosen by cross-validation, 
using the techniques of Hardle, Marron, and Wand (1989). 
We are aware of the fact that this introduces further noise 
in a third-order level, but we varied the bandwidths for es- 
timating Q2 and Q3 and found little difference in the esti- 
mated optimal h. One might suggest that optimizing a choice 
of bandwidths for estimating f ', etc., as in Hardle, Marron, 
and Wand (1989), is not reasonable, given the perspective 
of this article. (It does not solve the very complicated prob- 
lem of finding a "best" bandwidth for estimating Q,). But 
note that this is yet another theory for optimizing estimation 
of Q,. The selected bandwidths for estimating Q2 and Q, 
were around .2. 

Figure 2 shows the curve + $,h4 for the Food 
and Transport example (n = 7,123). For this curve we also 
used the Gaussian kernel to compute S ( K ' ) ~  and SU'K most 
easily. The curve has its minimum around h = . l .  This 
bandwidth of h = . 1  does not, of course, correspond di- 
rectly to the bandwidth used for Figure 1 ,  where we used 
the quartic kernel. To obtain an interpretable value of this 
bandwidth in the scale of the quartic kernel used previ- 
ously, we refer the reader to the canonical kernel technique, 
as described in Hiirdle (1990, chap. 4.5) .  

APPENDIX: PROOFS OF THE THEOREM AND LEMMA 

A1 Proof of Theorem I 
Write the estimate 6 as 6 = (1 /n) Zy= '=, (m(Xi) + e,)Lhi(Xi), where 

E, = Yi - m(X,). Since E(E, ( Xi) = 0,  
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where V l  = E(( l /n )  Zy=l E ; L ~ ; ( X , ) ) ~  and V2 = E(( l /n )  Z:='=, where W l  = $ m2(x)[(f ' (x))2/f(x)] dr and W2 = h-3 $ m2(x) dr 
~ ( x ~ ) L ~ ~ ( x ~ ) ) ~ .  Note that $ (K'12. Using (A.3.1) we obtain 

( A .  1.7) 

The sum C;j,ir,f=2 can be represented as 

( A .  1.2) 
n-1 n - 1  1 

B1=-- 
n (n  - 114 r ,p=l  

- - 
1 

n(n - 113 
(I1 + I2 + 131, 

(A.1.8) 

where Si = [m(Xi)/f 2 ( ~ i ) ]  and 

[ 
n-1 n- 1 

where I = Z:=, R;(X) corresponds to the case i = j = i' = j', 11 
is the double sum over i, j that contains the products R,Rij, RiiRji, 

I1 = E SISn C RSl(X1) C R&")] 7 

s,l=2 r,p=l 

Ri ,  RijRjj, 111 is the triple sum over i ,  j, i' that contains the prod- n- I n- I "-I 
ucts R,,Rij., RjjRi,,,RVRji,, RijRj.,,., and IV is the sum over the quad- 
ruples ( i ,  j, i f ,  j ' ) ,  with i ,  j ,  i f ,  j' pairwise different from each 

I2 = ~ E { S I &  s,1=2 z R s l ( X l ) [ ~  r= I Rrl(Xn) + p=2 z RIp(Xn)]} ,  

other. (A.3.2)-(A.3.5) imply that and 

= (f '(x)f(x)12 + n-'h-3f3(x) ( ~ ' ( t ) ) ~  dt + ~ ( n - l h - ~ ) .  I 
Denote 

(A.l .3)  

Substitution of ( A .  1.3) into ( A .  1.2) yields 

Next, 

Then I ,  = E(Z:,~;,,=, UJJ,) = C&, I,,, where 
( A .  1.4) r 1 

( A .  1.5) 
i= 1 By Lemma 2.1 

Equation ( A .  1.3) implies that 
u = E(Us/) = E,Y,(SIE(R, I X I )  I Xd)  

= 6 + a h 2  + o(h2), s f 1, 
and 

I 
- 

E[  i Ri(x)RiY(x) dr 
U = E(U,) = ~ ( h - I ) .  

= 1 I m2(xy-3(x) - 
n (n  - i,j,i,,j.=2 It can be easily seen that 
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and hence where 

1 

n(n - 113 Ill = [ l  - : + o($)] 
6 0 2  

x [ ( o + & ) ~ - -  n - 2 

11s2 
-- + o  - + -  

n (r n2k2)' ( A .  1.9) 

The main term of l I 2  is that with s # 1 and 1 # p. Direct calcu- 
lation shows that 

E(Us/Usp) = (m1(x))2f(x) dx + O(h), 1 # P ,  s # I ,  I 
~ ( ~ : ~ ) = W , ( l + o ( l ) ) ,  s # 1 ,  

W3 = h-' I m2(u) d u [ l  K1(t)K(u + t )  dt du, I' 
and 

Similarly, the main term of I,, contains the summands with s # 
1 and s # p: 

E(UslUIp) = W4 + 2S2 + O(h), 

where W4 = S m'(x)m(x)f'(x) dx,  E(UsIUlS) = -W,(l + o( l ) ) ,  for 
s # 1, and 

Note that I,, is just the part of I,, corresponding to the case s # 
p. Therefore, 

Moreover, 

since E(UslUrl) = W 1  + O(h), for s # 1, s # r, and r # I. To 
evaluate I2 we split it into three terms: I2 = I,, + I,, + I,,, where 

n-1 

s,l,r=Z 

Using Lemma 2.1 and the Lipschitz condition on m(x)l(x), one 
obtains 

and 

x (W - t)K(t) dw dt + o(1) , s # I, 

and 1 
Next, the main term of IZ2/2 corresponds to s # I, 1 # p ,  and 
s # p, and its summands are E(SIRs~Xl )Ulp )  = -W4 + O(h) and 
E(SlRSl(X1)~lS) = W5. 

Therefore, 

Finally, using Lemma 2.1 and the fact that U l l  = ~ ( h - ' ) ,  we 
obtain 

Considering I,, we see that the nonnegligible part of it is 

and thus 

Summing up ( A .  1.6), ( A .  1.9)-(A. 1.17), and using ( A .  1.8), we 
have 

V2 = B1 + B2 

(Note that all W,, j = 1, 2 ,  3 ,  4 ,  cancel out.) Finally, substitute 
(A.1.4), (A.1.7), and (A.1.18) into ( A . l . l ) .  This proves the 
theorem. 

A.2. Proof of Lemma I 

Introduce the following notation, 

D = diam supp K,  and d = max f (x ) ,  
X 

and put without loss of generality h$ = 1. In the following, Ci 
denote positive constants and h,, is abbreviated as h.  

Note that Assumption (AS)  entails that there exist A ,  B ,  and A 
> 0 such that 

Alz - aI2 f ( z )  5 B I Z  - aI2, a 5 z 5 a + A ,  
and 

Alz - bI2 5 f (z )  5 Blz - bI2, b - A 5 z 5 b. (A.2.1) 

To prove Lemma 1 we need some preliminary steps. 

Lemma I .  I. Under (A4)  and (AS)  

lim sup P { ~ ( x )  5 T } / T ~ ' ~  < m. 
710 
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Proof. Assume that T is small enough so that 

{X : f (x)  5 T)L  {a 5 x 5  a + A} U {b  - A 5 x 5  b}. 

Next, apply (A.2.1). 

Lemma 1.2. Assume ( A l )  to (A5). Then 

( (x)  2 Clh2. (A.2.2) 

Proof. Let L be the Lipschitz constant for f. Then 

5(x) 2 f (x)  I K 2 ( ~ )  du - Lh lulK2(u) du. (A.2.3) I 
If f (x)  r [2L $ lulK2(u)du/J K2(u)du] h = C2h, then ( ( x )  2 (C2/ 
2)h, so that (A.2.2) holds. 

Now suppose that f (x)  < C2h. If n is large enough, then 

and we can apply (A.2.1). Suppose, as before, that we are on the 
set {a 5 x 5 a + A}. Here again we have two cases: ( 1 )  x - a 
5 C3h/k, and (2) x - a > C3h/k, where 

First estimate ( in the case (1).  In view of Assumption A3 and 
(A.2.  I ) ,  one obtains 

= [ [ + h P  f(d dt - rh/l f(t)  dt] 
h 

a+h/k 

( t  - a12 dt - B ( t  - a)' dt . I 
Computing the integrals and using the definition of C3, we obtain 
the assertion of the Lemma in the case (1). If case (2)  is true, 
then 

I x+h/k I x+h/k 

f ( t )  dt 2 A (t  - a)' dt 
x-h/k r - h / k  

Lemma 1.3. Under Assumptions (A1 -A7) we have 

5  2 exp (-C4 vq log n) ,  (A.2.4) 

for all q > 0 large enough. 
Proof. Set E = q log n/(nh). Then 

~ { ( . f h , i ( ~ i )  - f ( ~ i ) ) ~ / ( ( ~ i )  €1 
= ~ ~ , ( ~ { ( . f h , i ( ~ i )  -f(xi)>'/Wi) 2 E I Xi}). 

Fix some i and denote for brevity x = Xi and&,Jxi) = &(X). Now 
it is sufficient to prove that the right side of (A.2.4) bounds, from 
above, the probability 

pn = ~ X , , , + , ( ( f h ( ~ )  - f (x))2/&x) €1. 

Here 

( f h M  - f(xN2 5  2 ( f h ( ~ )  - ~ ( f h ( ~ ) ) ) ~  

+ 2 ( ~ ( h ( x ) )  - f(x))'. (A.2.5) 

Now, by Assumptions A l ,  A2, and A3, 

( N h h ( ~ ) )  - f ( ~ ) ) ~  

r (' + I K(u)(f(x + uh) - f ( x ) )  du 

Note that, by Lemma 1.2, 

Il 
2 C I  - (log n)n-'I7 > 2 ~ ~ n - ~ / ~  

2 

if n is large enough. Using this (A.2.5), (A.2.6), and applying 
the Bemstein inequality, (Serfling 1980, p. 95) we obtain 

for n large enough. Here a)?, = ~ { ( l  /hi K2[(x - Xj)/h,]) = ( 1  / 
h,)((x). By Lemma 1.3 the last expression in (A.2.7) does not 
exceed 

for n and q large enough. 

Lemma 1.4. If q is large enough, then P{%} = o ( l ) ,  n + m, 

where 

Proof. Using Lemma 1.3 we have 

5 2n exp (-C, G log n) = o ( l ) ,  

for q large enough. 

Lemma 1.5. Under Assumptions (Al-A7),  

m a  I.fL,i(xi)I = Op( l ) ,  n + m. 
i=l ... n 

This is proved by standard techniques of nonparametric esti- 
mation (see, for example, Stone 1982). 

Lemma 1.6. Let Assumptions (A4), (A5), and (A7) hold. Then 
P ( d )  = o ( l ) ,  n + m, where 

d = { f (XJ 5 C7 log n/(nh) for some i}. 

Proof. Use the Bonferroni inequality and Lemma 1.1. Then 

P ( d )  5 nP{ f ( X )  5 C7 log n/(nh)) 
312 

log n ( )  n + m  

Journal of the American Statistical Association, 87, 218-226

(1992) Härdle, W., Hart, J., Marron. J.S. and Tsybakov, A.B.
Bandwidth Choice for Average Derivative Estimation.



Hardle, Hart, Marron, and Tsybakov: Bandwidth Choice for Average Derivative Estimation 

Proof of Lemma I (Linearization Lemma) 

Suppressing dependence on x ,  h ,  and i for notational simplicity, 
observe that 

i - L = - f l / f  - f l ( f  - 2 f ) / f 2  

= - f ' < f  - f ) ' / t f i2) .  

Hence we have to prove that 

P{~J,,[ 2 n-''l4} -+ 0, n+ W, 

where 

Now 

P "  2 n- } 5 P { d }  + P{%} 

+ P({JJ,J 2 n-I/l4} n 3 n %}. 
It follows from Lemmas 1.4 and 1.6 that the first and the sec- 

ond terms in the right side of this inequality tend to zero. There- 
fore, it suffices to prove that the third term also vanishes. 

Define the slices U, = {x : D/2' 5 f (x)  5 0 / 2 ' - I } .  Then 

On % we have 

If Xi E U,, then 

fh,i(xi) 2 D/2' - 1/77 log n/(nh) 

x VC,(D/~'-' + h) ,  (A.2.8) 
since 

ax$ r I K2(u) du [ --+ " + LDh ] . ~ 2 . 9 )  

Define 

r* = max {r = 1, 2 ,  . . .: (D/2') 2 Clo[(log n) /nh] ,  

where Clo  = 10C97. It can be easily seen that 

fhSi(xi) > 0/2'*l ,  Xi E U,, r 5 r*, 

if n is large enough and % holds. 
Note that 

r* % log, - - [::.I. 
For Xi E U,, r > r*, by definition of r*, 

f(Xi) 5 0/2'*-' < 4Clo[(log n)/nh].  (A.2.11) 

Set C, = 5Clo. Then (A.2.11) is impossible on 2. Therefore, the 
sets {i : Xi E u,}, r > r*, are empty. Hence we have to bound 

Since we are on the set %, this probability is mailer than 
' 

Substitute (A.2.11) into the preceding expressions a d  use ~ e m & a  
1.5. Then 

Now it remains to prove that 

tends to zero. Using Assumption A6 one obtains 

5 c12n I{x E UrIHx) h. 

(A.2.13) 

Together with (A.2.9) this entails that the left side of (A.2.13) 
is bounded by 

Hence (A.2.12) does not exceed 
r* 

log n log n 
~ ~ ~ ~ 1 / 1 4  - 2 (2-r/2 + 2'/2h) 5 c ~ ~ ~ ~ / ~ ~  - 2'*/' 

n1/2h ,=, n1/2 ' 

which tends to 0, by the definition of r* 

A.3. Auxiliary Results 

Define KA(u) = h-'K1(u/h), dK = $ u2K(u) du, CK = $ K ~ ( u )  
du, and c,. = $ ( ~ ' ( u ) ) '  du. Also define 

AI  = (Kh(x - u)  - 2f(x)lf(u) du, I 

and 

We have 

Al = K(t) f ( X  - th) dt - 2f (x )  I 
1 2  

and, by similar techniques and partial integration, 

h2 
A2 = f ' ( x )  + f "'(x) - dK + o(h2), (A.3.2) 

2 
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and 
A, = O(h-I). (A.3.5) 

In the multidimensional case the asymptotic expressions for A,- 
A, get more complicated. Recall the multidimensional kernel den- 
sity estimator, as defined in Section 2. The second term in (A.3.1) 
would thus change to (dK I:;=, df ' / a $ )  h2/2.  If kernels of order 
p are used, as in Hkirdle and Stoker (1989), this changes to a 
multiple of hP the constant depending on pth partial derivatives 
off. The term A2 changes in a similar fashion, since it is the 
expected value of a kernel estimator for the gradient off. 

[Received March 1989. Revised January 1991 .] 
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