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XploRe - An Interactive Computing Environment 

W, Hiirdf e and T. Kotter 

Summary 

XploRe is an interactive statistical software for PCs. The design 

of XpioRe is performed in a way that encourages immediate inter- 
action with the data. Non-parametric smoothing methods in high 

dimensions are feasible through additive models and massive use 

of automatic smoothing methods. XploRe has highly interactive 
graphics and alIows windows of different types. 

1 Introduction 

XploRe was designed as computational tool for statisticians. The aim was to offer facilities 

for easy access to and development of statistical algorithms (e.g. higher data objects, ma- 

trix computation, basic statistical routines, graphics) that also run on low cost computers. 

f Cs were selected as the appropriate hardware base. += 

The first two releases of XpIoRe were coded in Pascal as menu driven software. The 

advantage was the easy handling of the software. However by the development of release 
3 the wish for more flexibility caused the implementation of an interpreter and an inte- 

grated high level programming language. Many algorithms and all libraries of XploRe 
are coded in this incorporated language. Due to some perfomance advantages and better 
standardisation the development language of XploRe 3.0 was switched to C .  

Nowadays additional features are necessary and important , especially in the domain of 

interaction and graphics. Today's statistical software should also provide integrated tools 

(e.g, an editor) and a help system. 

The current version, XploRe 3.1, meets a11 above mentioned demands as they are 

a statisticd interpreter including a high level statistical programming language 

0 matrices as basic data objects 

various graphical output (static, dynamic, 2- and 3-dimensional, multiple windows) 

including PostScript interface 
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262 W. Htlrdle and T. Kurter 

e' an editor for macros and data 

libraries for different statistical topics 

- smoothing facilities 

- highdimensional fitting techniques 

- teach ware 

- a complex matrix library 

0 a help system 

In order to have a convenient handing special emphasis was given to an easy switching 
between the three components "editor", "interpreter" and 'I help system". The integration 

of all necessary tools avoids the need of using external help when working with XploRe . 
Nevertheless it is possible e.g. to write macros with an own editor. Data can be loaded and 

saved in two different formats. One is the ASCII-format which allows an easy exchange 

between other software or even editing by hand, The other one is a space and speed 

optimized internal format. 

2 Basic Window 

When starting XploRe the screen is divided into three parts: 

1. the action screen 

2. the command line (last line) 

3. the icon list (last column) 

The action screen which covers nearly the whole screen shows data, macros and graphics; 

essentially all output of XploRe is displayed here. The command line where the user types 

in his cpmmands allows also to copy lines from the editor into it. Further on all previous 
commands can be retrieved through a 'last commands buffer'. On the icon list current 

available function keys are represented by small symbols. Since the function keys have 

different meanings in different parts of the XploRe software the icon list is meant to give 

the user a symbolic display of functions ac tudy  available. 

3 Graphics in XploRe 

One of the most important features of XploRe is the wide range of facilities to Iook at 

data. 

The action screen can be divided into different plot areas with various graphical styles. 

Apart from different possibilities to present the data the user may furthermore link them 
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XploRe 263 

or execute brushing operations like highlighting, masking, etc. which effect the single plots 

si mu1 taneousl y. 

The following picture shows the action screen divided into six different subscreens (text, 
scatterplot, projection of a 3-dimensional point cloud, 2-dimensional density estimation, 
line plot, box plot). 

I 

2:  Y1,3) 

density estimation 

Further graphics types are sunflower plot, jitter plot, Chernoff-Flury faces, Draftman's 
plot, 2- and 3-dimensional contour plots (lines or surfaces, respectively) etc. . 

The graphical options are chosen with the help of the function keys, which are repre- 

sented here again by an icon list. 

The choice of the graphical options are stored in the graphical display and automatically 
applied to graphics of the same kind (e.g. static 2-dimensional) so that they are displayed 

in an equal manner (e.g.  useful by graphical output of an iteration process). 

The following picture shows the contour surfaces for 20%, 50% and 80% of a simulated 
data set (six 3-dimensional normal distributions on the angles of a hexagon) and four 
Chernoff-Flury faces. 

SoftStat '93, Advances in Statistical Software 4, 261-266

Härdle, W. and Kötter, Th. (1994) XploRe - An Interactive Computing Environment.



264 W. Hdrdle and T. Kotfer 

4 The Help System 

Much effort was directed to implement not only a keyword sensitive help system b u t  also 

t o  allow the user to look behind macros and data. Additional the user is able to extend 

the help system, e.g .  for own written Iibraries. 

The heIp system consists essentially of two keys: 

shows general help (e.g. in the interpreter an ordered list of all available co~nrnands 

or in a graphical display a list of operations which are invoked by function keys). 

( PI0 I works as 'content operator', an operator giving the "content" of a keyword known by 

XploRe , where the cursor is currently on. This means that: 

- pressing ml on an XploRe command shows the appropriate. help file. 111 this 

help file the user can call further help by applying the same procedure. 

- pressing on an XploRe macro shows the macro itself. Since all macros 

belonging to XploRe start with helpful comments they are self-explaining to the 
user. In addition, the help sys tern can be easily extended to user writ ten macros 

or libraries. 

- pressing [El on an XploRe variable invokes the data editor to show the actually 

data values held by this variable. 

5 The Macro Language 

XploRe provides a high level statistical programming language which allows the user to 

add further statistical algorithms, which then appear like regular XploRe commands. This 
open system strategy ensures that XploRe can be used in different research domains. The 
language contains fuH flow control and due to the management of local variables it allows 
even recursion. 

Macros consist of 
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addmod 

complex 
csse 

glm 
highdim 

smoother 
tware 

xplore 

6 Final 

additive modelling 

complex numbers and complex matrix routines 

constraint spline smoothing 

generalized linear modelling 
highdimensional data analysis 

density and regression estimation 
interactive teach ware 

basic statistical tools 

Remarks 

The foregone version, XploRe 3.0, is now public domain which can be obtained via anony - 

rnous-ftp as well as the libraries complex and xplore and the documentation from the 

ftp-server amadeus. wiwi . hu-berlin.de (i4i.ZO.lUO. 2 ) .  

The main difference between the versions 3.0 and 3.1 lies only in the new memory 

management in XploRe 3.1 which is able to overcome the 640 KB limit of PCs and to 
manage virtual memory. This enables XploRe 3.1 to handle large data sets, 

XploRe is a living software project. The design phase of XploRe 4.0 has recently been 

started. However an implementation will likely not be available before mid of 1991. The 
new features of XploRe 4.0 will be: 

"optimized" macro language (faster execution) 

integrated in graphical user interfaces (e.g. Windows 3.1) 

more debugging and editor tools 

more graphical inter-action 

a either running on PCs or SPARCs (using X/Windows) 

7 Literature 
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Nonpararnetric Time Series Analysis, a selective 
review with examples 

Wolfgang Hasdle Rong Chen 
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Humboldt- Universit at zu Berlin Texas A& M University 
10178 Berlin College Station, TX 77843 

Germany 

Abstract 

Nonlinear time series analysis has drawn much attention recently and has showp to be 
the appropr'iate tool in many fields, in particular in financial time series analysis. Following 
the principle of 'letting data speak for themselves ,' researchers have developed nonpararnet- 
ric models for nonlinear time series. This article gives a survey on these nonparametric 
procedures in time series analysis. We also report on applications on the analysis of several 
real data including gold prices and foreign exchange rates. 

L'analyse des skries tempordles non linkaires a r e p  beaucoup d'attention dans les 
derni6res ann6es. Les moddes non linkaires sont utilisb, not amment , dam l'analyse fi- 

I 

nancikre. Cet article prksente un survey des proc6dures non param6triques en analyse des 
s6ries.temporelles. Nous l'illustrons au moyen d'exemples portant sur l'analyse de s6ries du 
prix de 1'0s et de s6ries de taux de change. 
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1 Introduction 

Nonparametric smoothing techniques have been first studied in spectral density estimation. 
The major thrust in theoretical results came in the last ten to fifteen years, fueled by eas- 
ier computing environments. Research in t he nunparamet sic area has been concent rated 
on independent observations and researchers have long waited to extend these techniques 
to dependent observations and time series. Especially in financial markets, nonlinear and 
nonparametric time series analysis is useful in order to overcome limitations of the autore- 
gressive moving-average models with const ant volatility. Readers are referred to Tong (1 990) 
and Priestley (1988) for details on nonlinear time series analysis. Tj~stheim (1994) g' lves an 
excellent review on rec&t developments in nonlinear time series analysis . 

In this article, we review nonparametric model building procedures in time series anal- 
ysis. Particularly we focus on nonlinear autoregressive models which assume the form of 

where { E ~ )  is a sequence of i.i.d. random variables. Typically, the random shock ~t is inde- 
pendent of x,, for s < t .  This model can be extended to nonlinear autoregressive conditional 
heteroscedastic models of the form , 

which is of particular interest in financial time series analysis, see Gourieroux and Monfort 
(1992) and Massy and Tj~stheirn (1992). There are two different approaches to applying . 

these models. 
The first approach is to formulate parametric models for the mean functions f ( 0 )  and the 

volatility function g(- ) .  Often this can be done based on the physical dynamic background 
and other substantive information of the data. Many models of this form have shown to 
be successful. The most common ones are the threshold autoregressive (TAR) models of 
Tong (1978, 1 983), the exponential autoregressive (EXPAR) models of Haggan and Ozaki 
(1981), the smooth-transition autoregressive (STAR) models of Chan and Tong (1986) and 
Granger and Terasvirt a (1992), the bilinear models of Granger and Anderson (1978), Subba 
Rao (1981) and Subba Rao and Gabs (1980), the random coefficient models of Nicholls and 
Quinn (1 982), the autoregressive conditional heteroscedastic (ARCH) models of Engle (1 982) . 
and the generalized ARCH models of Bollerslev (1986) and Bera and Higgins (1993). Many 
other related references can be found in Tong (1990) and Priest ley (1988). 

The second approach is to use nonparametric techniques to estimate the unknown func- 
tions f and g. Following the principle of 'letting the data speak for themselves,' this approach 
avoids the subjectivity of choosing a specific parametric model for a time series. Based on 
the estimated nonparametric functions, one can either make inference directly or formulate 
reasonable parametric functions, and hence, build a parameterized nonlinear model for the 
process. This approach only became practical in %he recent years, attributable to powerful 
computers and easy-to-use interactive statistical and graphical softwares such as S (Becker, 
Chamber and Wilks, 1988) and XploRe (Hardle, Klinke and Turlach, 1995). 

Since our emphasis is on model building related procedures, we present here a selective 
review of the literature on nonparametric time series analysis. We apologize for any omission 
of other relevant work in this area, especially on probabilistic aspects. Complimentary 
references can be found in Gyorfi, H;irdle, Sarda and Vieu (1989), Tj~stheim (1994) and 
Hart (l994a). 

ISI meeting in Beijing, proceedings, IP10.2, 375-394

Härdle, W. and Chen, R. (1995) Nonparametric Time Series Analysis,
a selective review with examples.



In the next sect ion, we review some nonparametric approaches to nonlinear time series, 
mostly focusing on additive modeling. Practical implementation issues are discussed by 
analyzing real data. We give examples on river flow, chickenpox data, gold prices and foreign 
exchange rates. Section 3 is devoted to related nonlinear time series analysis methods which 
use nonparametric smoothing tools. 

2 Nonparametric Approaches 

2.1 The Whitening by Windowing Principle 

Many nonparametric techniques have been developed under independent observations. For 
example, with independent random sample XI, . -, X,, a popular method of estimating the 
density function f (x) is the kernel estimator 

where K ( * )  is a kernel function, typically with finite support and h > 0, the so-called 
bandwidth. Note that, if the kernel function has support on [-I, 11, the estimator only uses 
the observations in the interval (x - h, x + h). This is an important feature when we extend 
this method to dependent observations. That is, when the estimator is used on dependent 
observations, it is affected only by the dependency of the observations in a small window, 
not that of the whole data set. Hence, if the dependency between the observations is of 
'short memory' which makes the observations in a small window almost independent, then 
most of the techniques developed for independent observations apply in this situation. Hart 
(1994a) calls this feature the whitening by windowing principle. Various mixing conditions are 
commonly used for proving asymptotic properties of the smoothing techniques for dependent 
data. Basically these conditions try to control the dependency between Xi and Xj as the 
time distance i - j increases. For example, a sequence is called to be a-mixing (strong 
mixing) (Robinson, 1983) if 

where ah --+ 0 and F! is the 0-field generated by Xi, .-. , X j .  A stronger condition is the 
&mixing (uniformly mixing) conditions (Billingsley, 1968) where 

for any A E F'?, and B E FZk and (bk tends to zero. The rate at which a k  and q5k go to zero 
plays an important role in showing asymptotic behavior of the nonparametric smoothing 
procedures. We note that generally these conditions are difficult to check. However, if 
the process follows a stationary Markov chain, then geometric ergodicity implies absolute 
regularity, which in turn imply strong mixing conditions. There are developed techniques in 
checking the geometric ergodicity, see Tweedie (1975), Tj~stheim (1990), Pham (1985) and 
Diebolt and Guegan (1990). 

2.2 Nonparametric Model Building Procedures 
In this section we list some common nonparametric approaches to inference the functions f (-) 
and g( - )  in (2). In the case of many lags, one uses high-dimensional smoothing.techniques, 
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which are very general and straight forward. This approach, however, suffers from the 
'curse of dimensionality.' To overcome this difficulty, researchers have proposed restrictions 
on the functions f and g. Common restrictions are additive of single index type and/or 
introduce functional-coefficients in a linear model. These approaches have better convergence 
rate and are easier to interpret, especially with graphics support from interactive statistical 
environments. 

Local conditional mean (median) approach 

Consider the general nonlinear AR(p) process Xt = f (Xt-1, . . . , Xt-,) + ~ t .  Let Yt = 
(Xi-1, . . ., Xt-,), and choose 6, > 0. For any y E IRP, let i,(y) = {i : 1 < i < 
n and _y l l  < d,) and N,(y) = #In(z). The conditional mean function estimator 

is given by f,(y) = {N,(y))-I Xi and the local conditional median estimator is 

given by f"(t~) = median{Xi, i E I,(Y)). Under a strong mixing condition, Truong (1993) 
provides the strong consistency and asymptotic normality of the estimator, along with the 
optimal rate of convergence. 

Nonparamet ric kernel estimation approach 

Robinson (1983), Auestad and Tjflstheim (1990), Hardle and Vieu (1992), and others used a 
kernel estimator (or robustified versions of it) to estimate the conditional mean and variance 
under model (2). The function f is estimated by the Nadaraya-Watson estimator with 
product kernels: 

and the conditional variance g2 is estimated by 

where I<(-) is a kernel function with bounded support and the hi's are the bandwidths. 
Robinson (1983), Singh and Ullah (1985) and Masry and Tjgstheim (1992) show strong 

consistency and asymptotic normality for a-mixing observations. Bierens (1983, 1987) and 
Collornb and Hardle (1986) proved the uniform consistency of the estimator under the as- 
sump tion of a +-mixing process. 

Hgrdle and Vieu (1992) applied the method to a gold price series, from 1978 to May 
1986 (n = 2041). In figure 1, the returns rt = (xt - X ~ - ~ ) / X ~ - ~  are plotted against the 
prices xi+ The model rt = f (xt-1) + ~ ( X ~ - ~ ) Q  is estimated and the resulting plots for the 
conditional mean and variance are shown in figure 3 and 4, respectively. The bandwidths 
h were selected using the cross validation technique of Hzrdle and Vieu (1992). The cross 
validation function for estimating f in (4) is shown in figure 2. The cross validation function 
for the first term in (5) has its minimum at h = 0.31. (not shown). All computation are 
done in XploRe, using the WARPing technique (Hardle, Klinke, Turlach, 1995). 

Local polynomial regression approach 

Tsybakov (1986) and Hardle and Tsybakov (1994) used local polynomial nonparametric 
regression techniques to estimate the conditional mean and conditional variance in time 
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Figure 1: Gold price returns from 1978 Figure 2: CV function for the condi- 
to May 1986 tional mean problem, hmin = 0.45 

series. They considered the model = f (&-1)  +g(Y&t where ct has mean 0 and variance 
1. The functions f and g are estimated by minimization of 

n 

c ~ ( x )  = arg min C(x - c ~ u ~ ~ ) ~ K { ( & - ~  - x)/h,) 
CEH t,l 

and 

where I< is a kernel function, h, is a positive bandwidth, and 

Utn = F(utn) ,  F ( u )  = (121 * * o ~ ' - l / ( l -  U t n  = (K-1-  x)/hn. 

The estimators f ( z )  and i (z )  are given by 

f(x) = c & ) ~ F ( o )  and 3 2 )  = s , ( x ) ~ F ( o )  - { c , ( x ) ~  ~ ( 0 ) ) ~  

They proved asymptotic normality of these estimators under conditions satisfying the as- 
sumptions of Tweedie (1975) and Diebolt and Guegan (1990). 

This procedure was applied to the YEN/DM exchange rate series from Oct. 1, 1992 to 
Sept. 30, 1993 with 23814 observations. The series is obtained by taking averages of the 
spot rate, defined as (In At + In Bt ) /2  where At and Bt are ask- and bid- quotes, respectively, 
within nun-overlap 20-minute window, adjusted for activity. The series is shown in figure 5. 
The conditional mean and variance functions f and g are estimated by the local polynomial 
method. We display the estimate of the function g in figure 6. This result is interesting 
since it shows that the volatility is increasing in high/low return situations. The increasing 
behavior at the extreme horizontal scale is due to boundary effects. 

2.3 Nonlinear Additive AR Models 
A nonlinear additive autoregressive (NA AR) model 

xt = c + fi(Xt-1) + fi(X,-2) + 
is defined as 
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Figure 3: Conditional mean of gold Figure 4: Conditional variance of gold 
prices returns prices returns 

These models have been studied extensively in the regression context by Hastie and Tibshi- 
rani (1990). It is a generalization of the first-order nonlinear AR model of Jones (1978) and 
is very flexible as it encompasses linear AR models and many interesting nonlinear models as 
special cases. The models naturally generalize the linear regression models and allow inter- 
pretation of marginal changes i.e. the effect of one variable on the mean function. They are 
also interesting from a theoretical point of view since they combine flexible nonparametric 
modeling of many variables with statistical precision that is typical for just one explanatory 
variable. Note that the NAAR model can be easily extended to include exogenous variables. 

Backfitting Algorithms 

Chen and Tsay (1993a) used backfitting algorithms such as the Alternating Conditional 
Expectation (ACE) algorithm of Breiman and Friedman (1985) and the BRUT0 algorithm 
of ~ a s G e  and Tibshirani (1990) to fit the additive model (6). Note that the AVAS algorithm 
of Tibshirani (1988) can also be used here. The main idea of backfitting is that if the additive 
model is correct, then for any i we have f i (Xi)  = E{Y - Cj+ fj(Xj) I Xi). Consequently, 
we can treat Y - C j f i  f ( X j )  as the conditional response variable and use nonpararnetric 
smoothers to estimate fi. In practice, all fi's are unknown so that the estimates are iterated 
until they all converge. The effective hat matrix of this algorithm is computed in Kardle and 
Hall (1993), showing that the iteration results depend on the starting index. 

The ACE algorithm has been applied to the riverflow data of the River Jokulsa Eystri in 
Iceland. This is a multiple time series data set, consisting of daily riverflow (K),  precipitation 
(Zi), and temperature (Xt) from January 1, 1972, to December 31, 1974 (n = 1096). For 
further information see Tong (199 0) , who used threshold ant oregressive models. The time 
series are plotted in figure 7. A procedure similar to the best subset regression is suggested 
by Chen and Tsay (1993a) to select the lag variables in the model. They found {K+ Y+-z, 
Zt ,  Xt-l, Xt-3) to be an appropriate explanatory set for the response variable K .  The 
transformations fl(x-l) ,  f2(5-,), f3(&), f 4 ( Z t J ,  fS(Xt-l), f6(Xt-3) are shown in figure 8. 
Linear functions are suggested for the precipitation and piecewise linear functions for the 
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CONDITIONAL VARIANCE EST. 

Figure 5: Time plot of YEN/DM ex- Figure 6: Conditional variance of 
change rate YEN/DM exchange rate 

lagged riverflow and t emperatuse variables. In comparison to Tong's threshold model, the 
obtained model improves out-of-sample forecasts and is preferred by the AIC criterion. 

Projection Estimator 

One of the problems associated with the backfitting algorithms is that with highly corre- 
lated observations, the convergence can be slow, as noted in Chen and Tsay (1993a). Linton 
and Nielson (1994) and Chen and Hgrdle (1994) proposed a projection estimator for esti- 
mating the functions in additive regression models without using backfitting. At the same 
time, Tjgstheim and Auestad (1994a) and Masry and Tj~stheirn (1994) proposed the same 
estimator for NAAR models. Specifically, the 'projection idea' is based on the following 
observation. If the model is of the additive form ( 6 ) ,  and m(x l , .  --, x,) = c + C7=l fj(xj) 
is the mean function, and p-j(.) is the joint density of XI ,-. .,Xj-l, Xj+1, - * *,Xd, then for a 
fixed x E E, 

provided Ex, fs(Xs) = 0, s = 1,- ,p. Using the Nadaraya-Watson estimator to estimate 
the mean function m ( . ) , we average over the observations to obtain the following estimator. 

Let Kh(.) = h-lIl(-/h) where K(.)  is a Kernel function with finite support. For 1 5 
j 5 p and any a: in the domain of fj(.), define, for h, > 0, h: > 0, 

; I n  71 nszj (Xts - Xis) 
= K h x  i=1 

- 

[E i=l X:_,msij Kh;(xts  - xiS)]Khn(xtj - X) I 
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Figure 7: Time plots of riverflow data. (a) Daily riverflow X(rn3/s ) .  (b) Daily precipitation 
Zt (mmlday). (c) Daily temperature Xt (Co). 

where 

Note that, under proper conditions, 1 /w( l ,  t , s) converges to pj (x I Xl l ,  , X i d ) ,  the 
conditional density of XJj given Xu, . . ., Xi(j-lj, Xl(j+l), . a ,  Xld evaluated at X. 

The asymptotic normality of the estimator was established by Chen and Hardle (1994) 
= under independent observations and by Masry and Tj~stheim (1994) under a strong mixing 
condition. The rate of convergence for estimating m ( *)  is n2/5 typical for regression srnoot hing 
with just one explanatory variable. Hence the estimator does not suffer from the 'curse of 
dimensionality. ' 

Spline Estimator 

Wong and Kohn (1994) used spline nonparametric regression to estimate the components of 
an NAAR model. They adopted an equivalent Bayesian formation of the spline smoothing 
and used Gibbs sampler to estimate the components and the parameters of the model, 
through Monte Carlo simulation of the posterior distributions. The procedure essentially 
belongs to the backfitting family, but is shown to provide a truly O(n)  algorithm, where n 
is the sample size. 
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Figure 8: Results of the ACE algorithm for the riverflow data. The plots show the suggested 
transformations. First row: x-l and l54; second row: Zt and t,hiir row: Xt-l and 
xt-3 

Functional coefficient AR model approach 

A functional coefficient autoregressive (FAR) model can be written as 

The model generalizes the linear AR models by allowing the coefficients to change ac- 
cording to a threshold lag variable Xt-d .  The model is general enough to include the TAR 
models (when the coefficient functions are step functions) and the EXPAR models (when 
the coefficient functions are exponential functions) along with many other rnbdels (e.g., the 
STAR models and Sine function models). Chen and Tsay (1993b) use an arranged local re- 
gression procedure to roughly identify the nonlinear function forms. For y E lR and 6, > 0 ,  
let I,(y) = {t  : 1 < t < n, IXt-d - yI < 6,). If we regress Xt on Xi+. . . , Xt-, using all the 
observations Xt such that t E I&), then the estimated coefficients can be used as estimates 
of fi(y). One can then make inference directly or formulate parametric models based on the 
estimated nonlinear function forms. Chen and Tsay (199313) proved the consistency of the 
estimator under geometric ergodicity conditions. Note that the locally weighted regression 
of Cleveland and Devlin (1988) can also be used here as well. 

For illustration of the ALR procedure, we consider the chickenpox data used by Chen 
and Tsay (1993b) and described by Sugihara and May (1990) with 533 observations. Natural 
logarithms are taken for variance stabilization. In the implementation in XploRe, we require 
the sample size within each window to be at lkast I( (> p) to ensure the accuracy of 
the coefficient estimates. Lacking an optimal selection criterion, we select the structure 
parameters heuristically to be K = 30 and the window width c = (x,,, - xmin)/lO. Several 
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Figure 9: Local estimates of fl (x) Figure 10: Local estimates of f2(x) 

nonlinearity tests indicate strong nonlinearity for the threshold lag d = 12, which is plausible 
because we have monthly data. The most significant lags are 1 and 24. The resulting model 
is 

xt = f@,-I,)&-1 + f2(Xt-12)Xt-24 + Et.  

The scatterplots of the estimated functions are shown in figures 9 and 10, respectively. 
To formulate a parametric model based on the estimated functions, we note a level shift 
around the value Xt-12 = 7.2. Hence a TAR model is suggested, for details see Chen and 
Tsay (1993b). 

Adaptive spline threshold AR model approach 

Lewis and Stevens (1991) proposed the adaptive spline threshold autoregressive (ASTAR) 
model with the form Xi = & cj l i j . (X)  + ~ t ,  where {Icj(~)}g=l are product basis functions 
of truncated splines T-(x) = (t - x)+ and T+(x)  = (x - t)+ associated with the subregions 
{Rj),S,I in the domain of the lag variables (Xt-l, - -  - , Xt-,). For example, 

Xt = CI + ~2Xt-I + c3(al - Xt-5)+ + cdXt-l.(Xt-3 - a 2 ) + ( ~ 3  - Xt-4)+ $ E t ,  

where u+ = u if u > 0 and u+ = 0 if u 5 0, is an ASTARmodel. 
The modeling and estimation procedures follow the Multivariate Adaptive Regression 

Splines (MARS) algorithm by Friedrnan (1988). It is basically a regression tree procedure 
using truncated regression splines. 

Hermite expansion approach 

Gallant and Tauchen (1990) used Hermite expansion to approximate the nonlinear one- 
step-ahead conditional density of the process given its past. Letting z denote an M-vector, 
the particular Hermite expansion employed has the form h(z)  oc [P(z)12+(z), where P ( z )  
denotes a multivariate polynomial of degree K, and 4(z )  denotes the density function of the 
(multivariate) Gaussian distribution with mean zero and the identity matrix as its covariance 
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matrix. The model is fitted using maximum likelihood procedures on a truncated expansion 
together with a model selection strategy that determines the truncation point Ii',. Note that 
we can view the truncation point as the smoothing parameter. 

2.4 Implementation Issues 

One of the important implementation issues* of the nunparametric smoothing tools is the 
bandwidth selection method in finite sample. There have been many dat a-driven methods 
proposed for independent data, e.g. the cross-validation method of Rudemo (1982) and 
Bowman (1994) and the plug-in rules of Sheather (1983, 1986), Park and Marron (1990) and 
Park and Turlach (1992). 

One of the usual criteria for selecting the bandwidth is the averaged squared error 

which is an approximation of the integrated squared error 

Note that the criteria still involve the unknown function m(.). Hence it has to be estimated. 
For the nonparamet sic kernel estimator, Hardle and Vieu (lg!JZ), Hardle (1990) proposed 

to use the leave-out cross-validation function 

where 

to select the bandwidth. Let L be the bandwidth that minimizes CV(h) .  They proved that, 
under a a-mixing condition, 

da ( k )  -+ 1 in probability 
infh da (h )  

Similar results for density estimation were obtained by Hart and Vieu (1990). These band- 
width selection methods are efficiently implemented in the XploRe smoother library, see 
Hardle, Klinke and Turlach (1995). 

3 Tests and Prediction with Nonparametric Techniques 

3.1 A Nonparametric Nonlinearity Test 

Hjellvik and Tjgstheirn (1994) proposed a nonlinearity test based on the distance between 
the best linear 
of Xi based on 

predictor pkXt-k and the best nonlinear predictor M k ( X t - k )  = E[Xt  I Xt-k] 

Xt-+ The index is defined as 

where w(x) is a weighting function with compact support and pr, is the autocorrelation 
between Xt and Xt-kr assuming Xt has zero mean. The function Mk(.)  is estimated using 
the Nadasaya-Watson estimator. 
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3.2 Additivity Tests 

Additivity is commonly used in the statistical literature to simplify data analysis, especially 
in analysis of variance and in multivariate smoothing. Chen, Liu and Tsay (1994) proposed 
three nonparamet sic procedures for testing additivity in nonlinear time series analysis. 

The first procedure combines some smoothing techniques with analysis of variance. First, 
a shrunken range, 6(y,,, - ymin) is partitioned into m equal intervals, (a i ,  ai+1) for i = 0, .  . ., 
(m  - 1) where ai = ymin + (1 - 6)(gmm - ymi,)/2 + id(y,,, - y,i,)/m and 6 E ( 0 , l )  is a 
shrinking factor. This avoids the complication of the "boundary effect" often encountered 
in nonparametric smoothing procedures. For t = 3, --• ,n, an observation is classified into 
the ( i , j ) th  cell if x-l E ( ~ i - ~ ,  a i )  and 1$-2 E (aj-1, a j )  and is denoted by Xijk where k is used 
to distinguish different observations in the same cell. If x-l or K-2 is outside the shrunken 
range, is dropped from further consideration. Finally, an unbalanced two-way analysis 
of variance procedure is carried out to obtain an F statistic for testing the null hypothesis 
Ho : fij = O for all i and j in the model Xijk = /L + ai + pj + fij + Ei jk ,  where fij denotes a 
non-additive function. 

The second is a Lagrange multiplier test using nonparametric estimation. It consists of 
three steps. 

An additive model & = fi(&+) +. -g+fp(x-kp)  + E ~  is estimated using the ACE algo- 
rithm with the restriction that the response variable can only be linearly transformed. 
Denote the estimates of fi(.) by fi(.) and the residuals by it = & - x:=, fi(x-ki). 
Regress the cross-product terms &-kjl Y,-kj, on . - * ,  &+ for 1 5 jl < j2 5 p, 
and the third-order cross-product terms Y,+ x-kj2x-kjB on &+, . -., for 1 5 

? A 5 j2 5 j3 5 p except for jl = jz = j3 uslng the ACE algorithm. This procedure 
results in I( = ~ ( p  - 1)/2 + { p ( p  + l )(p + 2)/6 - p )  = ( p  - l ) p ( p  + 7)/6 residual 
series, say, el ( t ) ,  , e K ( t ) .  Here the transformations of the response variables are also 
restricted to be linear. 

Linearly regress the residual series tt obtained from Step 1 on el (t ) , - - - , eK (t ) obtained 
from Step 2. Compute the test statistic nR2 where n is the sample size and R2 is the 
conventional coefficient of determination in linear regression analysis. 

The third is a permutation test which uses smoothing techniques to obtain the test 
statistic and its reference distribution. 

1. As for Step 1 of the Lagrange multiplier test. 

2. Regress the estimated residuals tt from Step 1 on the cross-product terms l&Y+kJ 
for 1 5 i < j 5 p using the ACE algorithm and obtain the sum of squares of residuals 
of this regression. 

3. Form a new series of residuals e ( t )  by permuting the it. Regress it on the same cross- 
product terms as those of Step 2 using the ACE algorithm and obtain the sum of 
squares of residuals. Repeat this step N times. 

4. The p-value of the permutation test is determined by the proportion of the sum of 
squares of residuals in Step 3 that is smaller than sum of squares of residuals in Step 
2. 

Theoretical justification and simulation evidence of the tests are given in Chen, Liu and 
Tsay (1994). 
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3.3 Lag Selection and Order Determination 

The lag selection and order determination problem is important for effective implementation 
of nonlinear time series modeling. Often the set of lag variables and exogenous variables is 
too big and we wish to select those most significant components. 

For linear time series models, lag selection and order determination are usually done 
using information criterion such as FPE, AIC and BIG (Altailte 1970, 1974, 1979), along 
with other model checking procedures such as residual analysis. 

In fully nonpararnetric approach to time series analysis, Auestad and Tj flstheim (1990) 
and Tj~stheim and Auestad (1994b) proposed to use the FPE criterion and Cheng and Tong 
(1992) proposed to use the cross validation criterion. 

More specifically, Tj~stheim and Auestad (1994b) proposed to use an estimated FPE 
criterion to select lag variables and to determine the model order of the general nonlinear 
AR model in (1). Let x, t = 1,. O m ,  N be a stationary strong mixing nonlinear AR process. 

where 

and f*(xt(i)) is the kernel conditional mean estimator in (4). Note that the F B E  is es- 
sentially a penalized sum of squares of residuals, where the last term in (8) penalizes small 
bandwidth h and large order p. 

I 

Cheng and Tong (1992) used leave-one-out cross validation procedure to select the order 
of a general nonlinear AR model. Let Xt(d)  = (&+ -. , K - d )  and i~ 

where f-t is the kernel conditional mean estimator with deleted. They proved that, under 
some regularity conditions, 

CV(d)  = RSS(d){l + 2 l i ' ( 0 ) ~ h - ~ / ~  + op(l/hd N)) 

where y = J W ( x ) d x / J  W ( x )  f(x)dx and h is the bandwidth. Again, we can view this as a 
penalized sum of squares of residuals. 

In additive model approach, using the ACE algorithm, a procedure similar to the best 
subset regression is suggested by Chen and Tsay (1993a) to'select the lag variables in the 
NAAR model. Chen and Hkdle (1994) proposed a procedure for selecting the most signif- 
icant lags in an additive model. This variable selection procedure is based on the size of 
Sj = Ex, [ ff(Xj)] for model (6). Let J be a subset of (1, . . - , p )  such that J = {j : Sj > S )  

for some s > 0 and assume for j @ J, Sj = 0. Define Sj = Y L ~ ~ C ~ = , { ~ ~ ( . X ~ ~ )  - 6)' = 
n-' ~ ~ = ,  f;(xij) - c, where fj = n-' Cy=L=, fj(xlj)  and fj's are estimated using the projec- 
tion es'timator (7). Note that Sj. estimates the quantity Sj. Hence, a large Sj implies that 
the variable X j  should be included in the model. The variable selection procedure selects 
the indices j such that i!?j > b, where b, is some prescribed level. Denote j = { j  : Sj 2 bn). 
Chen and Hardle (1994) proved, with i.i.d. observations, under suitable conditions and as 
b, satisfy certain constraints, P ( ]  # J) + 0. 
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3.4 Prediction 

Consider the nonlinear AR(1) model Xt = q5(Xt-I) + E ~  Since the conditional mean E(Xi+k I 
Xt = x) is the least squares predictor for k-step ahead prediction, Auestad and Tj~stheim 
(1990) and Hkdle  and Vieu (1992) and Hkdle (1990) proposed using the ordinary Nadaraya- 
Watson estimator 

to estimate E(Xt+k I Xt = z) directly. 
Note that the variables . . . , Xt+k-l consist of substantial information about the 

conditional mean function E(Xt+k I Xi). Chen and Hafner (1994) proposed a multistage 
kernel smoother which utilizes these information. For example, consider two-step ahead 
forecasting. Due to the Marltov property, we have 

Define f (y) = E(Xt+2 I Xt+l = y). Ideally, if we knew f (-), we would use the pairs 
(f (Xi+1), Xi), i = 1,. . . , (n-1) to estimate E(Xt+2 I Xi), instead of using the pairs (Xi+z ,  Xi )  
as the estimator in (9). Note that the error between Xt+2 and f is O(1). Hence, if we 
can estimate the function f (*)  with an estimator f ( - )  that has a smaller error rate and use 
the pairs ( f ( ~ ~ + ~ ) ,  xi) to estimate E(Xt+2 I Xt ) ,  we should achieve a smaller error. This 
observation motivated the following estimator, which is called 'multistage smoother'. It is 
defined as 

The new smoother is proved to have a smaller mean squared error. 
The estimators in (9) and (10) are applied to the gold price example. Because the 

returns are very small in absolute value, the figure for a two-step prediction does not look 
very different from figure 3. For this reason and to show that multi-step prediction is easily 
adaptable, we computed a ten-step prediction with both estimators. For the multistage 
smoother we need a recursive algorithm, which computes at the kth step a smoother of the 
(k - 1) th smoother, beginning with the simple one-step predictor. At each step the optimal 
bandwidth according to the cross validation criterion is obtained. The estimates are shown 
in figures 11 and 12. 

Collomb, Hardle and Hassani (1987) proposed to predict future observations based on 
the mode function m(x) = arg max, f (y I x) where f (y I x) denotes the conditional density 
function of Y given X.' They estimated the conditional density function from a sequence 
of +-mixing observations using kernel estimation and showed uniform convergence of the 
estimator. 

3.5 Trend Estimation 

Suppose {XI, , X,) is a possibly nonstationary time series with trend p ( j )  = E(Xj).  
Under the assumption that the trend is smooth, a traditional way of estimating the trend 
function is the running mean estimator of Chatfield (1974). H;irdle and Tuan (1984) proposed 
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Figure 11: 10-step prediction using the Figure 12: 10-step prediction using the 
direct Nadaraya-Watson estimator multistage smoother 

I 

to use a robust M-estimator to estimate the trend and they showed the consistency of the 
estimator. Hart (1991) uses the kernel smoother of Gasser-Muller (1979) form 

Hart (1 994b) proposed a method called time series cross-validat ion for selecting the band- 
width for trend estimation. He noted that the ordinary leave-one cross-validation tends to 
select a bandwidth many orders of magnitude too small, if the data are highly positively 
correlated. 

3.6 Serial Dependency Test 

Skaug and Tjflstheim (1993) proposed a nonparametric test for independency between two 
variables. This test can be used in checking the residual behavior of an estimated nonlinear 
time series model. They propose to estimate the quantity 

1 = IM., ZI) - P~(X)P~(Y)}~P("> Y ) W ( X ~  y)dxdy 

where p(x,  y) is the joint density and pl ( * ) , pz ( 0 )  are the marginal densities while w is a weight 
function with compact support. Using kernel density estimators, we obtain an estimator 

which, under the null hypothesis that X and Y are independent, should be small. For 
detailed implementation, see Skaug and Tjvrstheim (1993) 

3.7 Density Estimation with Correlated Observations 

There is a rich literature on density estimation for independent observations, see Silverman 
(1986) and the references therein. A popular method is the kernel estimator of the form 
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(3) where the kernel function K ( - )  is typically a probability density function. The key 
in density estimation is the bandwidth selection. There are a number of different methods 
proposed, including the cross-validation (Rudemo 1982, Bowman 1984) and the plug-in rules 
of Sheathes (1983, 1986), Park and Marron (1990) and Park and Turlach (1992). 

The earliest work on density estimation for stationary process is that of Roussas (1969) 
and Rosenblatt (1970). The properties of the kernel estimator under dependent observations 
were investigated by Robinson (1983) and Hall and Hart (1990). They found that the bias of 
the estimator is not affected by the serial correlation. However, the variance is affected. The 
cross-validation method for dependent observations are studied by Hart and Vieu (1990), 
under certain regularity conditions. Detailed information and references can be found in 
Gyorfi, Hardle, Sarda and Vieu (1989) and Hart (1994a). 
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Abstract 

T h e  statistical properties of three foreign exchange rate series are analyzed using a redef- 

inition of the  t ime scale t o  cope with the  inherent seasonal heteroskedasticity. A conditional 

heteroskedastic autoregressive noillinear (CHARN) model is estimated by local linear regression 

techniques. T h e  results show significant nonlinearities for the mean function as  well as  for t he  

variance function. 

1 Introduction 

The behaviour of foreign exchange (FX) rates has been subject of many recent investigations. This 

is, of course, partly due to  the fact that the market for foreign currencies is by far the largest 

financial market. A correct understanding of the foreign exchange rate dynamics has important 

implications for international asset pricing theories, the pricing of contingent claims and policy- 

oriented questions. 

The most important exchange rates to analyze are, of course, the US Dollar, the Japanese 

Yen and the Deutsche Mark. European cross rates are of limited comparability to  the "big7' rates 

because of restrictions in the European Monetary System (EMS), at least before October 1992, 

when the variability bands were quite narrow. 

High frequency financial data analysis is a booming research field. This is due to improved real- 

time information systems, relatively cheap data supply by institutions such as Olsen & Associates 

and improved storing facilities. Also, a,fter having found that GARCH(1,l) processes fit daily and 

weekly FX rates well in most cases, the topic of temporal aggregation (Drost, Nijman (1993)) arose 

and the question if ARCH-type models still fit high-frequency data. The literature is still very 
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short. Recently, some papers by people associated with Olsen appeared, of which a review is given 

by Guillaume et al. (1994). 

A GARCH(1,l) model has at least two drawbacks: it imposes a symmetrical influence of lagged 

residuals on the volatility (this plays a minor role in FX markets), and leptokurtocity not only in the 

unconditional but also in the conditional density. Engle, GonzAlez-Rivera (1991) compute relative 

efficiencies (as variance ratios of MLE and QMLE) for a variety of distributional assumptions. For 

example, if the true conditional deilsity is a Student's t with 5 df, the relative efficiency is as low 

as 41%. This situation becomes worse when dealing with intra-daily data, because it is known 

that the deviation of the unconditional return density from normality increases when the sampling 

interval is decreased. 

In this paper a nonparametric approach is chosen. After a short explanation of the data and 

a necessary deseasonalization, both conditional mean and conditional variance are estimated local 

linearly. 

2 The Foreign Exchange Market and the Data Set 

The foreign exchange market is by far the largest financial market. According to  the Wall Street 

Journal of March 1 1990, the average daily FX trading volume is $ 650 billion. Compared to  this, 

the NYSE's largest volume day, Oct. 19 1987, only had $ 21 billion of volume. 

The market is decentralized with the main trading locations being New York, London and Tokyo. 

It is an electronic market, active 24 hours a day. Banks act as market makers and place bid- and 

ask-quotes on the screen. ('entral information collectors such as Reuters provide the quotes for 

the market makers. Actual trade takes place over the phone. This is the reason why there is no 

information about actual prices ailcl trading volume. By far the largest part of trading occurs in 

US Dollars, which assumes in a. way the role of the numkraire for the minor rates. Although there 

is some important central-bank intervention money, by far the largest part of the FX market is 

pure speculation by the market makers. 

The data set was acquired from Olsen & Associates, Ziirich. It contains the following numbers 

of quotes during the time Oct 1 1992, 0:00:00 and Sept 30 1993, 23:59:59 GMT: 

DEMIUSD : 1,472,241 records 

JPY/USD : 570,840 records 

JPY/DEM : 158,979 records. 

For each pair of bid- and ask-quotes, the time in GMT, the quoting bank and the location of the 

bank are notated. 

3 Seasonal Heteroskedasticity and the Time Scale 

First it is necessary to deal with the seasonal volatility. We use a deformed time scale, which 

seems to  be more flexible than the dummy-variable method by Baillie, Bollerslev (1990). For the 
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Figure 1: Smoothed activity, defined as the number of quotes, as a function of 20-minute intervals 

during a week for the DEM/USD rite. A Quartic Kernel with bandwidth h = 10 was used. 

statistical properties of a time series under deformed time see Stock (1988), who analyzes US-GNP 

and interest rates, and Ghysels, Gourikroux and Jasiak (1994). 

Usual time series analysis is based not on a physical time scale, but on a business one. For 

intra-daily data,  we can analogously define the time intervals to  be longer in low business periods 

and shorter in busy ones. This idea is not new: Mandelbrot, Taylor (1967) defined the transaction- 

based "clock" referring t o  the transaction volume in stock markets, using the fact that  volume and 

volatility are highly correlated. Without information about volume in FX markets, we redefined 

time based on activity, which is also highly correlated with volatility. 

For each 20-minute interval, activity is measured by the number of quotes. Activity is averaged 

over the weeks and smoothed by a Kernel smoother. The obtained activity function is shown in 

Figure I. It is seen that  the five major peaks correspond to  the working days Monday to  Friday, 

whereas within one day there is a trimodal pattern, corresponding to  the openings of the main 

market centers Tokyo, London and New York. 

Denote the activity function in Figure 1 by a ( . ) .  The new time scale t * ( t )  is defined as 

where t denotes physical time, and the constant c is chosen such that  one week in deformed 

time corresponds t o  one week in physical time, i.e. 

I11 some cases, there is no quote in the new time interval. This happens because an  averaging 

method is used. The numbers of records are thus reduced from 26280 20-minute intervals per year 

t o  25434 for the DEM/USD ra.te. 
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FX rate 12. mean std.dev. skewness kurtosis 

DEM/USD 25434 5.73E - 06 7.96E - 04 0.17 12.25 

JPYIUSD 25247 -4 .893  - 06 7 .983  - 04 0.09 15.71 

JPY/DEM 23814 -1.13E - 05 8.26E - 04 -0.14 10.66 

Table 1: distributional characteristics of the three exchange rate returns 

Figure 2: Correlogram for the DEMIUSD returns and the first hundred lags. The horizontal lines 

correspond to  the 95% confidence ba,nd of a Gaussian white noise. 

4 Properties of foreign exchange rates under redefined time 

In table 1, four characteristics about the distributions of the returns are given. The skewness is 

not significantly different from zero for all three rates and the sign changes. The kurtosis, however, 

reveals substantial differences to  a normal density, which has a kurtosis of 3. The return distribution 

is leptokurtic, i.e. it has fatter tails and a higher peak than a normal distribution. 

In Figure 2 the correlograrn for the return series is given for the first hundred lags. The first 

two autocorrelations are significantly negative. However, this does not imply that the market is 

inefficient. To claim this, one would have to  assume a certain equilibrium model for the foreign 

exchange market. One might interpret this result as a mean reversion effect, which was reported in 

various papers for asset markets. For foreign exchange markets, Goodhart and Figliuoli (1991) and 

Guillaume et al. (1994) report negative autocorrelation for ultra-high frequencies. Two economic 

explanations are possible: 

1. traders have at  the same time different information sets (this would imply market inefficency) 

or interpret the same news differently, and 

2. banks have to  perform inventory rebalancing if they hold open positions longer than just a 

few minutes. This is confirmed by the fact that negative autocorrelation disappears when the 
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Figure 3: Correlogram for the DEhIIIUSD rate and the first hundred lags of the squared returns. 

The horizontal lines correspond to a 95% confidence band of Gaussian white noise. 

da ta  are aggregated. 

The modified Box-Ljung statistic 

is rejecting the null hypothesis of Gaussian white noise for k = 20: Q1(k) N Xi as. for Gaussian 

white noise, Q1(20) = 167.6 for DEMIUSD, significant at 1%. 

In order to  get an impression of' the immanent conditional heteroskedastic effects, regard Figure 

3. This gives the correlogram of the squared returns. 

The ACF shows a typical declining structure of an autoregressive process. But now the au- 

toregression is in the squared return, which has a close relationship t o  the variance. Whether the 

autoregression in the variance is linear or nonlinear cannot be answered yet, but a t  least we know 

tha,t there is some kind of conditional heteroskedasticity in the return series. 

The Box-Ljung statistic for the squared returns rejects the Null hypothesis of Gaussian white 

noise: 

Q2(k)  N Xi for Gaussian whitc. noise, Q2(20) = 2445.7 for DEM/USD, significant a t  1%. 

5 Local linear estimation of a CHARN model 

This section deals with local h e a r  estimation of the conditional mean ("mean function") and the 

conditional variance ("variance function") of the three return series. Local linear estimation is 

a special caae of local polynonlial estimation (LPE). For details about LPE see Fan and Miiller 
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(1995) and the monograph by Fan and Gijbels (1995). The Nadaraya-Watson estimate, also a 

special case, is equivalent to  local constant estimation. 

A parametric extension of ARC'II is the QTARCH model by Gourikroux and Monfort (1992). 

Consider the simplest case of a univariate QTARCH(1) model. Also, let {yt) denote a onedimen- 

sioiial process, {Aj, j E J )  a pa,rtition of R, and {Et) an IID sequence with mean zero and variance 

one. Then a QTARCH(1) can be written as 

where cxJ E lR, j = 1,. . . , .J, and ~ j ,  E lR+, j = 1,. . . , J.  

In this model, the mean and variance functions can be considered as stepwise constants. A 

natural generalization now is to  allow for any smooth functions f and a and estimate both functions 

nonparametrically. This leads us to  the following model: 

Is is known that  ARCH models can be used as approximations of diffusion models, see Gouri6roux 

(1992). (3) can also be viewed as a general diffusion process in discrete time, allowing for any type 

of nonlinearity in the mean a,nd va.riance function. 

The use of nonparametric methods in time series analysis has been extensive since Robinson 

(1983) provided consistency results for a-mixing processes. It is known that  stationary Markov 

chain processes have the cr-niixing property, so for the model in (3), where {yt) is a Markov chain, 

it is sufficient t o  show that  it is also stationary. For a nonlinear model like (3) it is not straight- 

forward t o  check if the series is stationary. As a complementary result, however, we computed the 

Augmented Dickey-Fuller (ADF) test statistic for a linear model. The usual result for financial 

time series is achieved: the log-levels have a unit root and the returns do not. Only for the log- 

levels of DEM/USD the test just rejects a t  1%. To conclude, we can assume the returns t o  be 

stationary. 

The local linear estimator (LLE) was chosen in favor of the Nadaraya-Watson (NW) or Gasser- 

Muller (GM) estimator. Under fixed design, the Gasser-Muller estimator is preferrable t o  NW 

because of its better bias behaviour. Under random design, however, the variance of GM is higher 

by the factor 1.5. Asymptotically, local linear estimation combines the advantages of GM and NW, 

having the same bias as GM and the same variance as NW. For details see Kneip and Engel (1994), 

who also derive an estimator similar to  a Kernel estimator with WARPing but asymptotically 

equivalent to  LLE. The LLE performs better than NW and GM especially a t  the boundaries. 

A more practical reason is that the LLE corresponds to  a local least squares problem, and for 

these ltinds of problems easy and fast efficient algorithms are available. Also, not only the regression 

function, but all of its derivatives up to the (p - l)th order are estimated simultaneously. 

Consider again the CI-IARN model (3). The task is to  estimate the mean function f ( x )  = 
2 E(ytlyt-l = x)  and the variance function a2(x)  = ~ ( ~ , 2 1 ~ ~ - ~  = x )  - E (ytlyt-l = x) ,  where 

yt -- AS, denotes the exchange rate return. For details about assumptions and asymptotics of the 
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Figure 4: The estimated mean f'unction for DEM/USD with uniform confidence bands. Shown is 

the truncated range (-0.0025,O.O025). 

LPE procedure used here see Tsybaliov (1986) and Hardle and Tsybakov (1995). In general, local 

polynomial estimation (LPE) is based on computing the following weighted least squares 

n 

arg inin x ( y ?  - rT/Jt,)2~< 
yt-1 - n: 

q x )  = 
d R P  t=l ( hn 1 

where li is a kernel, h, a bandrviclth, Utn = F(ut,), utli = , and 

Denoting the true regression function of ~ ( y : l y ~ - ~  = x) by g(x), the estimators of f ( x )  and 

g(x) are the first elements of the 13-dimensional vectors en(.) and ?,(.I. Consequently, the variance 

estimate is 

6 " ~ )  = gn(x) - .fi(x), 

with f7,(x) = c , (x )~F(o)  and & , ( x )  = C ~ ( X ) ~ F ( ~ ) .  

The estimated functions are plotted together with approximate 95% confidence bands, see e.g. 

Harclle (1990). The cross-validation optimal bandwidth h = 0.0028 is used for the local linear 

estimation of the mean function in Figure 4. As indicated by the 95% confidence bands, the 

estimation is not very robust a t  the boundaries. Therefore, Figure 4 covers a truncated range. The 

result corresponds t o  the negative autocorrelation reported and explained above. 

Analogously, the variance estimate is shown in Figure 5, using the cross-validation optimal 

bandwidth. 
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Figure 5: The estimated variance f~mction for DEM/USD with uniform confidence bands. Shown 

is the truncated range (-0.0025,0.0025). 

To save space, just the plots for DEM/USD are given. The basic results across all rates are 

the mean reversion (although not very distinct for JPY/DEM) and the "smiling" shape of the 

conditional variance. Conditional l~eteroskedasticity appears to  be very distinctly. The smile is 

almost exactly symmetrical fbr JPY/USD, whereas for DEM/USD and DEM/JPY a "reverted 

leverage effect" can be observed, meaning that the conditional variance is higher for positive lagged 

returns than for negative ones of the same size. But the difference is still within the 95% confidence 

band. 

5.1 Residual Analysis, DEM/USD 

Table 2 shows the autocorrelations of the residuals and squared residuals of the fitted model. 

Especially the second la,g reveals some linear dependence. It seems that  just the first order 

autocorrelation has been capt,ured. To see how the ARCH effects behave, regard the autocorrelation 

analysis of the squared residuals. Indeed, ARCH effects are present, but smaller than in the returns. 

Becxuse the fitted model, which we will call now S1 model, does not yield satisfactory residuals, 

another a.rgument was introduced into the volatility function, namely the bid-ask spread. This 

model will be called S2 model. 

It is known that  the spread is closely related to  "risk". The economic reason for this lies in the 

nature of bid-ask spreads. Basically, the spread can be considered as a compensation for the market 

maker, having two components: thc transaction costs and the risk component. Risk is higher in 

less active markets and thus the bic2-ask spread widens, because the bank takes the risk of having 

an open position for a longer time interval than in busy hours. 

Let BAt denote the bid-ask spread a t  time t .  Then the S2 model can be written as: 
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residuals squared residuals 

Lag AC'I" PACF &-Stat ACF PACF Q-Stat 

1 -0.003 -0.003 0.1790 0.075 0.075 144.64 

Tablc 2: Residual analysis of the estimated model. 

First, .f was estimated local linearly, a with a two-dimensional Nadaraya-Watson estimate with 

various bandwidths. The re5ults <Ire not reported here, but the improvement to  S1  was not very 

high. 

Then, a was estimated with a txvo-dimensional local linear estimator. The bandwidths were 

chosen to  be the same as for the "best" Nadaraya-Watson estimator, namely hl = 0.001 for yt-1 

and = 0.0005 for the bid-ask hpread. Also, the number of bins - 40*40=1600 - was the same. 

The autocorrelation of the residuals and squared residuals of the S2 model are given in Table 3. 

The residuals reveal that  a t  lag 2 some negative autocorrelation remains. As the squared 

residuals show, ARCH effects still are present, but smaller than for the S1 model. This indicates 

that  the bid-ask spread is a persistence factor for the volatility, although not a sufficient one. Thus, 

being better able t o  cope with the long memory in the process, the S2 model improves the S1 model 

to  some extent. It needs t o  I I ~  further investigated how sensitive this result is to  the choice of the 

bandwidths. Our choice of global bandwidths can, of course, be generalized to  adaptive bandwidths 

as in Fan and Gijbels (1995). First results on this topic look promising. 

Also, the optimal number of included lags has to be determined by selection criteria. The 

resulting multi-dimensional model can then be reduced t o  an additive model. 

6 Conclusion 

A CHARN model was fitted to  three major foreign exchange rates via local linear estimation on 

the hasis of a redefined time scale. The results show for all rates mean reversion and conditional 

heteroskedasticity. For two rateh, the "smile7' is slightly skewed, but not significantly. 

Uy adding the bid-ask spread to the conditioning set one is able t o  improve the squared residual 
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residuals squared residuals 

Lag ACF PACF Q-Stat ACF PACF &-Stat 

1 -0.002 -0.002 0.12439 0.005 0.005 0.64717 

2 -0.034 -0.034 29.2413 0.061 0.060 93.7255 

3 -0.007 -0.007 30.3563 0.096 0.096 327.786 

Table 3: Residual analysis of the estimated S2 model. 

autocorrelations. Thus, persistence of  the variance as another stylized fact is partly captured. 

Contrary to  IGARCH models, where the variance is nonstationary, the degree of persistence is not 

determined but driven by a htochastic process. 

The model is planned to  be estentied mainly in two directions: 

I. More lags can be included in the mean function as well as in the variance function. This, 

of course, would bring up the "curse of dimensionality" one usually has in nonparametric 

estimation. A solution could be the additive model class, for which Chen and Tsay (1993) 

have given algorithms and applications. 

2. The bid-ask spread can also he included into the mean function in order t o  get a relationship 

between mean and variance (analogously to  GARCH-M models). 

Further research will concentrate on goodness-of-fit tests of these models and on the predictive 

power of ('HARN-type models. Above all, it is aimed to  get a better understanding of the dynamic 

behaviour of the volatility, which plays a major role in theoretical finance models. 
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Abstract 

Local Polynomial Estimation (LPE) is implemented on a dataset of high-frequency foreign exchange 

(FX) quotes. This nonparametric technique is meant to provide a flexible background against which 

to evaluate parametric time series models. Assuming a conditionally heteroscedastic nonlinear au- 

toregressive (CHARN) model, estimates of the mean and volatility functions are reported. The 

mean function displays pronounced reversion. Surprisingly, the volatility function exhibits asym- 

metry. The CHARN model, however, captures only the short-run behavior of conditional volatility. 

Nevertheless, part of the evidence of persistent conditional volatility appears in reality to be the ef- 

fect of conditional kurtosis. Stochastic volatility models are ideal to capture this time series feature. 

Keywords: Local Polynomial Estimation, Conditional Volatility, Conditional Kurtosis, Nonlinear 

Autoregressive Models, Foreign Exchange Markets. 
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1 Introduction 

Conditional volatility of asset prices in general and foreign exchange (FX) rates in particular have 

been the subject of intense investigation over the last few years. Virtually all estimation has been 

parametric. Most popular are the GARCH family (e.g., Baillie and Bollerslev [1989]), as well as 

stochastic volatility models (e.g., Mahieu and Schotman [1994]). In this paper, we report estimates 

from the application of a new, nonparametric technique t o  high-frequency FX quote data,  namely, 

Local Polynomial Estimation (LPE).  This leads t o  surprising insights on the dynamics of FX rates. 

In their analysis of the shape of the volatility of foreign exchange rates and stock returns as a 

function of lagged, exogenous information, Pagan and Ullah [I9881 and Pagan and Schwert [1990] 

have already pointed out tha t  nonparametric modelling is urgent. While it is not meant t o  displace 

parametric modelling, it reveals important information with which t o  enhance the parametric esti- 

mation. For ease of analysis, the extant parametric models (the ARCH family, as well as models of 

stochastic volatility) are all linear after suitable transformation. Misspecifications are accomodated 

for by the addition of explanatory variables, a t  the cost of making the analysis less parsimonious. 

What  we provide here is a simple nonparametric and nonlinear analysis of the volatility function. The 

result is not only a descriptive account of the data,  but also a framework with which one can evaluate 

the suitability of the existing parametric models. A similar approach has recently been taken by 

Fournie [1992], fit-Sahalia [1994], Hutchinson, Lo and Poggio [I9941 and Kit-Sahalia and Lo [1994], 

in continuous-time modelling, and by Hardle and Mammen [1993], in regression analysis. 

One could argue that  there are few theoretical reasons to expect nonlinearities in the volatility 

function of F X  rates. In particular, there are no "leverage effects," unlike with common stock prices 

(see, e.g., Christie [1982], Pagan and Schwert [1990]). Yet, a closer inspection of the mechanics of 

the FX market reveals a potential for nonlinearities. Foremost, one should mention central bank 

intervention. Bossaerts and Hillion [1992], for instance, find a pronounced effect of eminent central 

bank intervention on bid-ask spreads. The nonlinearity of typical policy reaction functions (Neumann 

[1984], Hsu and Kugler [1994]) is likely t o  be reflected in the process of FX rate changes. 

Moreover, as far as FX rates are concerned, it is attractive t o  be able t o  capture the stochastic 

nature of persistence in conditional volatility. There appear t o  be two types of events in high-frequency 

FX rate changes: those tha t  induce volatility and those that  have no effect on subsequent volatility (see 

Bewley, Lowe and Trevor [1988], who analyzed intraday Australian dollar quotes). CHARN modelling 

allows for such phenomena. Of course, it would ultimately be desirable t o  identify the nature of these 

different events. 
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We explicitly fit the mean function as well, allowing it t o  be nonlinear. In some recent analyses, 

the mean change in the FX rate is even constrained t o  be zero (e.g., Mahieu and Schotman [1994]). 

The mean function is not unimportant, even if the purpose of the modelling of time-varying volatility 

is option pricing. As Lo and Wang [I9941 illustrate, misestimation of mean changes in asset prices 

(let alone failure t o  account for a mean) leads to  substantial biases in option prices and hedges. In 

continuous time, the mean function is irrelevant. But since estimation necessarily takes place in 

discrete time, biases enter whenever time-variation in volatility is estimated without accounting for 

the mean function. 

We obtain estimates of the mean and volatility functions of the CHARN model by means of Local 

~ o l ~ n o m i a l  Estimation (LPE). As its name indicates, LPE is based on locally fitting polynomials. 

This means that  polynomials are estimated by weighted least squares, where the weights depend on 

the distance of an observation from the values of the arguments of the mean and volatility function 

a t  which an estimate is t o  be obtained. Kernel functions localize the weights in the space of predictor 

variables. The bandwidth of the kernel function determines the smoothness of the fit. For consistency, 

the bandwidth must be lowered appropriately as the number of observations increases. 

LPE has a long tradition in regression estimation for cross-sectional data. Stone [I9771 and Cleve- 

land [I9791 seem t o  have been the first t o  suggest the technique. Tsybakov [I9861 proved asymptotic 

normality. For an application in finance, see Bossaerts and Hillion [1995], where LPE is used t o  

obtain estimates of dynamic hedge portfolio weights. Recently, Hardle and Tsybakov have analyzed 

the properties of LPE in the context of CHARN models (Hardle and Tsybakov [1995]). Crucial in 

the analysis is the concept of geometric ergodicity, which ensures the existence of a time-invariant 

distribution and sufficiently strong mixing such that  laws of large numbers and central limit theorems 

hold. The conditions for geometric ergodicity are familiar t o  option pricing theorists, where these are 

needed t o  prove existence of solutions t o  stochastic differential equations (e.g., Karatzas and Shreve 

[1983]). Duffie and Singleton [I9921 also appealed t o  geometric ergodicity in order t o  show consistency 

and asymptotic normality of their simulation estimator of Markov models. 

Other nonparametric procedures have been suggested for the analysis of time series, such as stan- 

dard kernel estimation (see, e.g., Gyorfi, e t  al. [1989]). LPE has the advantage, however, of featuring 

improved smoothing bias, as well as being computationally straightforward (local least squares; also, 

derivatives are obtained in a straightforward way). Closely related t o  the nonparametric techniques 

are the (parametric) threshold ARCH models of ZakoYan [I9901 and Gouribroux and Monfort [1992], 

which are in fact nonparametric modelling procedures, whereby mean and volatility functions are 
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approximated by step functions with a fixed number of steps. 

The LPE technique is implemented on the Olsen high-frequency FX quote data. Substantial mean 

reversion is discovered, as well as asymmetry in the volatility function. Long-run autocorrelation in 

squared residuals, however, remained even after introducing additional conditioning variables, such as 

the bid-ask spread. These were meant t o  capture volatility persistence. The problem did not disppear 

after (admittedly timid) implementation of HARCH modeling (Miiller, et al. [1995]). Undersmoothing, 

however, indirectly revealed pronounced evidence of conditional kurtosis. Stochastic volatility models 

(e.g., Mahieu and Schotman [1994]) are well-tailored t o  capture such time series properties. 

The remainder of the paper is organized as follows. The next section briefly introduces LPE 

of CHARN models. Section 3 discusses the dataset. Section 4 reports the LPE results. Section 5 

concludes. 

2 LPE of CHARN models 

Let { y t )  be a Markov time series, satisfying the following stochastic difference equation: 

where tt are i.i.d. random variables with mean zero and unit variance. Here f and s are unknown mean 

and volatility functions, respectively, with s(x) > 0 for all values of x, and yo is a random variable 

independent of the series &. The model (1) is a heteroscedastic nonlinear autoregression (CHARN). 

We estimate the volatility function v(x) (= s2 (2)) from a sample yl, ..., y~ by means of Local 

Polynomial Estimation (LPE) . The procedure will simultaneously generate an estimate of f (x) . Define 

T vector functions uT (z), as follows: 

where hT is a parameter t o  be referred t o  as the bandwidth parameter and 1 denotes the degree of 

the polynomial. For consistency, the bandwidth parameter should decrease with the sample size (T) .  

Consider now the minimization problems: 
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where K is a kernel function and hT the bandwidth. The estimate o f f  a t  x, f^(x), is then given by: 

The estimate of v a t  x, 6(x),  on the other hand, is given by: 

From these equations, it is clear that  the estimates are obtained as the intercepts of polynomials 

which are fit by weighted least squares, where the weight t o  be put on an observation is determined 

by its distance from the target value, x. In other words, our procedure can also be described as local 

weighted least squares. 

There are plenty of valid kernel functions (see Hkdle  [1990]). The bandwidth parameter, however, 

should be chosen carefully, in order t o  avoid overfitting. Crossvalidation is a simple procedure, albeit 

computationally intensive. The "out of sample" average squared prediction error of the estimated 

model is minimized with respect t o  the bandwidth. The "out of sample" prediction error for an 

observation is obtained from estimates of the mean and volatility functions based on all the data  

except the observation at hand.' 

Hardle and Tsybakov [I9951 establish the theoretical properties of LPE estimation in the Markov 

model (1). They show that  the estimates of the mean and volatility functions converge and are 

asymptotically normally distributed. The conditions stated there guarantee asymptotic stationarity. 

The effect from initial sampling from another distribution than the stationary one thereby dies out 

fast enough for central limit theorems t o  continue t o  hold even in the nonstationary case. 

3 Data 

The dataset was compiled by Olsen and Associates, and consists of bid and ask quotes from Reuter7s 

FXFX page. The sample covers the period 1 October 1992 at 0:00:00 GMT till 30 September 1993 

at 23:59:59 GMT. The da ta  were filtered by Olsen t o  remove erroneous quotes and other outliers 

(less than 0.5% of the data).  Quotes for two currencies are available: DEM/USD and YEN/USD. 

Obviously, this is a huge dataset: the DEM/USD file, for instance, contains 1,472,241 records. We 

focused on transactions ten and twenty minutes apart, so that  we could safely use the average of the 

bid and ask quotes in our analysis. Over shorter intervals, temporary skewness in bid-ask spreads 

 he estimations were performed with XploRe. For a description, see XploRe Systems [1995]. 

4 

Athens Conference on Applied Probability ad Time Series Ted Hannan memory Volume. LNS 115, p 55-72 
Editor: P. Robinson, M Rosenblatt Springer Verlag

Bossaerts, P., Härdle, W. and Hafner, Ch. (1996) 
Foreign exchange rates have surprising Volatility.



because of inventory rebalancing by market making banks become important (see Guillaume, et al. 

[1994]), so that  the average of the bid and the ask is devoid of economic meaning. Profit opportunities 

are obviously higher a t  shorter frequencies, because of the possibility t o  trade against banks' inventory 

rebalancing. But we set out to focus on the volatility effects net of such short-term inventory redressing. 

Incidentally, the impact of market making on short-term autocorrelations invalidates the analysis of 

FX quote changes as diffusion processes, for in that  case, the importance of the mean function ought 

t o  decrease with the discretization mesh. Because of profit opportunities induced by market making, 

the mean function becomes actually more important with reductions in the length of the sampling 

interval. 

Hence, if bt denotes the bid at t and at the ask, the price at t ,  pt, is defined to  be 

pt = [log bt + log at]/2. 

We model the time series behavior of the change in the price, i.e., 

At one point, however, we also report results involving the bid-ask spread itself, defined as: 

log at - log bt . 

We did not, however, sample quotes over intervals of ten or twenty minutes in calendar time. There 

is substantial seasonality in FX data,  due t o  seasonalities in trading intensity. Volatility, for instance, 

is highest during the period of the 24 hour trading day when the European markets are open. In 

contrast, there is little activity, and, hence, little volatility, on Sunday mornings (measured relative 

t o  GMT). Therefore, time was first deformed, after which sampling took place in this newly-defined 

measure of time. Effectively, time intervals were shortened during busy periods, while the real-time 

equivalent of ten or twenty minutes was lenghtened over periods of low activity. 

We used our own time deformation, where activity is measured as the kernel fit through the 

sample average number of quote revisions over twenty-minute intervals of the trading week. Quotes 

were obviously not always available a t  exactly twenty-minute marks. Whenever that  happened, we 

took the first subsequent quote. Of course, sometimes no quote change is forthcoming even beyond 

the next time interval (this obviously occurs often during holidays which fell on an otherwise regular 

trading day). The empty intervals in deformed time are then skipped in order t o  match consistently the 

intervals in real and deformed time. The skipping of intervals in deformed time because of absence of 
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quote changes meant that  of the theoretical 26,280 quote changes, we sampled only 25,434 (DEMIUSD) 

and 25,247 (YENIUSD). 

We also used da ta  sampled in Olsen's own redefinition of time ("theta time"; see, e.g., Dacorogna, 

et al. [1993]), which the Olsen Research Group graciously sent us. Theirs are quotes sampled over ten 

minutes in redefined time. Time deformation is not only based on a simple measure of activity (as 

ours was), but included other conditioning variables which are not directly available from the Reuters 

FXFX page (which provides only a limited picture of the state of the market). When comparing the 

CHARN estimation results, however, no differences could be found.2 Because the dataset has become 

standard, we decided t o  report here only the results from LPE estimation on Olsen's series in "theta 

time."3 

4 LPE Results 

LPE was implemented on the samples discussed in the previous section. We fitted first-order poly- 

nomials (i.e., linear functions) locally, using a quartic kernel, with bandwidth selected by means of 

crossvalidation. Figure 1 displays our estimate of v, the variance function, for the DEM/USD, together 

with 95% confidence bounds. Most surprising is the asymmetric shape, as if there were a leverage 

effect (albeit inverted) in F X  similar t o  that  found in stock prices, with volatility increasing after 

increases in the DEM/USD rate. 

We suspect that  this "leverage" effect is caused by the asymmetric nature of central bank reaction 

policies, with more uncertainty about imminent intervention after increases in the DEM/USD rate. 

The asymmetry in the variance function is significant. To make this clear visually, Figure 2 plots the 

variance function against the absolute value of lagged spot quote changes. 

Figure 3 plots the estimate of the mean function for the DEM/USD. It  displays substantial mean 

reversion. The functional relationship is close t o  linear. 

Figures 4, 5 and 6 repeat this exercise for the YEN/USD. Mean reversion is even stronger for this 

currency; asymmetry in the variance function is less pronounced for large lagged changes in the FX 

quote. 

While CHARN modelling is able t o  capture interesting short-term mean and volatility patterns, 

it captures only part of the persistence in absolute values and squares of FX quote changes. Table 1 

20nly when differencing over longer intervals could clear seasonalities in our own dataset be discovered. These 

seasonalities are absent in Olsen's data in "theta time". 

3For some estimation results on the first dataset, see Bossaerts, Hardle and Hafner [1995]. 
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documents this. I t  lists serial correlations of the signed change in the exchange rate quotes (yt), as 

well as of absolute and squared values. In comparison, it displays the same autocorrelations for &,  the 

residual in the CHARN model. This residual is white noise, and, hence, should not be autocorrelated. 

Whereas the CHARN model is able t o  capture all the serial correlation in signed FX quote changes, 

it fails t o  account for most of the autocorrelation of absolute and squared values. 

We tried t o  accomodate this persistence by adding conditioning variables t o  the volatility function, 

namely the lagged bid-ask spread (a persistent variable as well, which theory would claim changes 

systematically with conditional volatility) and more lags of quote changes. This had little effect on 

the higher-order autocorrelation of the noise. It does indicate that  the autocorrelation in conditional 

volatility is mostly deterministic, reducing the importance of one of our conjectures, namely that  large 

FX quote changes which fail t o  generate subsequent spells of high volatility are important. 

The addition of the bid-ask spread as conditioning variable did generate the expected effects. In 

particular, a higher bid-ask spread predicted higher conditional volatility. The effect was nonlinear, 

however: small increases in the bid-ask spread are associated with minimal changes in conditional 

volatility.4 

We also implemented Miiller, e t  al. [1995I1s idea of HARCH modelling, whereby the sum of FX 

quote changes over several lags is used as conditioning variable in the variance function. Unlike Miiller, 

et al. [1995], we only went up t o  twenty-four lags (four hours in redefined time). This failed to  address 

satisfactorily even low-order serial correlation in absolute and squared residuals of the CHARN model. 

In the LPE estimation, bandwidths were selected by means of crossvalidation. This provides op- 

timal smoothness, in the sense that  it balances bias against variance. When reducing the bandwidth, 

a better fit is obviously obtained. Surprisingly, however, it not only reduced first-order serial corre- 

lation in absolute and squared values of the residuals, but also higher-order autocorrelations. Table 1 

illustrates this. The bandwidth was set equal t o  0.0001 (about 1160th of the optimal bandwidth). 

In an attempt t o  discover the cause of this effect, we plotted the estimated volatility function for 

the reduced bandwidths. The estimates were extremely erratic, indicating that  the improved higher- 

order serial correlation of the residuals was generated by mixing the residual of the original model with 

a random variable whose distribution depends on the lagged value of the FX quote change. Formally, 

the resulting model can be written in terms of the original CHARN model, as follows: 

'See Bossaerts, Hardle and Hafner [I9951 for estimation results. 
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where qt is a mixing variable with mean one and variance depending on yt-1. Of course, ~ ( y ~ - ~ )  and 

qt could be merged t o  one random variable, thus obtaining a stochastic volatility model (see, e.g., 

Mahieu and Schotman [1994]). 

The main effect of the use of a mixing variable is that  it introduces explicitly conditional kurtosis. 

Conditional kurtosis is also present in the original model (Equation (I)), provided the unconditional 

distribution of tt is not normal. But it changes as a function of yt-1 only indirectly, through the effect 

on the conditional volatility. Equation (7) has the potential of disentangling the impact of yt-1 onto 

future volatility and future kurtosis. 

There is evidence in the da ta  that  the impact of lagged FX quote changes on future volatility 

and kurtosis are different. In particular, they are inverted. Whereas higher conditional volatility is 

associated with large changes in exchange rate quotes (see Figures 1 and 4), conditional kurtosis is 

higher for small FX quote changes. Figures 8 and 9 show this. They display plots of conditional 

kurtosis as a function of yt-1. The plots were generated as follows. FX quote changes are allocated t o  

"bins". The bins are formed after sorting the data  with respect t o  the lagged FX quote change. Each 

bin contained 100 observations, in ascending order. The sample kurtosis was computed per bin, and 

plotted in Figures 8 and 9 against the sample mean lagged FX quote change. One should smooth the 

estimates across bins, but we wanted t o  provide the reader with the raw results. No matter how one 

smooths, the effect would be the same: conditional kurtosis is far higher for small changes in exchange 

rates.5 

5 Conclusion 

We presented results from local polynomial estimation of the mean and volatility function in a condi- 

tionally heteroscedastic nonlinear autoregressive (CHARN) model of foreign exchange quote changes. 

The da ta  were sampled over intervals of time that  were deformed t o  remove seasonalities. To estimate 

the mean and volatility functions, linear functions were fit locally by least squares, using a kernel 

function t o  determine the weights t o  be put on each observation. The resulting estimates show clear 

(i) mean reversion, (ii) nonlinearity and asymmetry in conditional volatility. 

The biggest challenge t o  the model came from the high persistence in absolute and squared resid- 

uals. In part, this appeared t o  be the result of conditional kurtosis that  could not be captured by 

5The estimates of conditional kurtosis are valid only if fourth moments really exist. Incidentally, the same applies to 

the estimates of the serial correlation of squared exchange rate changes. For a critical view on this, see Dacorogna, et 

al. [1992]. 
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changes in the volatility parameter. It appears that parametric modelling could be improved by dis- 

entangling conditional volatility and conditional kurtosis. Stochastic volatility models may be ideal 

to attain this goal. 
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Table 1 
Serial correlations of FX quote changes 

and residuals of the CHARN model 

order 
DEM/USD 

1 
2 
3 
6 
12 
24 
48 

YEN/USD 
1 
2 
3 
6 
12 
24 
48 

FX quote changes CHARN residuals 
(optimal bandwidth) 

rt lrtl (rtla 

CHARN residuals 
(low bandwidth) 

rt lrtl w 
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Volatility DMUS 10min 

Figure 1: Estimated conditional variance function with 95% confidence bands in a conditionally het- 

eroscedastic nonlinearly autoregressive model of changes in DEM/USD quotes over ten-minute inter- 

vals in deformed time during the period 1 Oct 92/30 Sep 93. The estimates were obtained by locally 

fitting linear functions using a quartic kernel. Crossvalidation determined the bandwidth size. 
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VOLATILITY Asymmetry DMUS 

Figure 2: Estimated conditional variance function against absolute values of its argument, with 95% 

confidence bands in a conditionally heteroscedastic nonlinearly autoregressive model of changes in 

DEM/USD quotes over ten-minute intervals in deformed time during the period 1 Oct 92/30 Sep 93. 

The estimates were obtained by locally fitting linear functions using a quartic kernel. Crossvalidation 

determined the bandwidth size. 
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DMUS mean fct 
I I I I I I 1 L 

Figure 3: Estimated conditional mean function with 95% confidence bands in a conditionally het- 

eroscedastic nonlinearly autoregressive model of changes in DEM/USD quotes over ten-minute inter- 

vais in deformed time during the period 1 Oct 92/30 Sep 93. The estimates were obtained by locally 

fitting linear functions using a quartic kernel. Crossvalidation determined the bandwidth size. 
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Volatility Fct. JPUSlOmin 

Figure 4: Estimated conditional variance function with 95% confidence bands in a conditionally het- 

eroscedastic nonlinearly autoregressive model of changes in YEN/USD quotes over ten-minute intervals 

in deformed time during the period 1 Oct 92/30 Sep 93. The estimates were obtained by locally fitting 

linear functions using a quartic kernel. Crossvalidation determined the bandwidth size. 
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Volatility Asymmetry JPUS 

Figure 5: Estimated conditional variance function against absolute values of its argument, with 95% 

confidence bands in a conditionally heteroscedastic nonlinearly autoregressive model of changes in 

YEN/USD quotes over ten-minute intervals in deformed time during the period 1 Oct 92/30 Sep 93. 

The estimates were obtained by locally fitting linear functions using a quartic kernel. Crossvalidation 

determined the bandwidth size. 
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Figure 6: Estimated conditional mean function with 95% confidence bands in a con1 ditionally het- 

eroscedastic nonlinearly autoregressive model of changes in YENIUSD quotes over ten-minute inter- 

vals in deformed time during the period 1 Oct 92/30 Sep 93. The estimates were obtained by locally 

fitting linear functions using a quartic kernel. Crossvalidation determined the bandwidth size. 
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DMUS Volatility h=0.0001 

Figure 7: Estimated conditional variance function with 95% confidence bands in a conditionally het- 

eroscedastic nonlinearly autoregressive model of changes in DEM/USD quotes over ten-minute inter- 

vals in deformed time during the period 1 Oct 92/30 Sep 93. The estimates were obtained by locally 

fitting linear functions using a quartic kernel. Bandwidth size (h): 0.0001. 
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Conditional Kurtosis DMUS 
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Figure 8: Estimated conditional kurtosis of changes in DEM/USD quotes over ten-minute intervals 

in deformed time during the period 1 Oct 92/30 Sep 93. The estimates were obtained by binning the 

da ta  and computing the sample kurtosis per bin. 
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Figure 9: Estimated conditional kurtosis of changes in YEN/USD quotes over ten-minute intervals in 

deformed time during the period 1 Oct 92/30 Sep 93. The estimates were obtained by binning the 

da ta  and computing the sample kurtosis per bin. 
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Summary 

Additive regression models have been shown to be useful in many situ- 
ations. Numerical estimation of these models is usually done using the 
iterative back-fitting technique. This paper proposes an estimator for ad- 
ditive models with an explicit 'hat matrix' which does not use iteration. 
The asymptotic normality of the estimator is proved. We also investigate 
a variable selection procedure using the proposed estimator and prove that 
asymptotically the procedure finds the correct variable set with probability 
1. A simulation study is presented investigating the practical performance 
of the procedure. 

1 Introduction 

An additive nonparametric regression model has the form 

d 

m ( x )  = E(Y I X = x )  = c +  fa(.,), 
a=l  

( 1 )  

where Y is a scalar dependent variable, X = ( X I , .  . . , X d )  is a vector 
of explanatory variables, c is a constant and { fa ( . ) )$=l  is a set of unknown 

functions satisfying E [ f  (X, )]  = 0 ,  and x = ( x l ,  . . . , zd ) .  Additive models of 
this form have been shown to be useful in practice: they naturally generalize 
the linear regression models and allow interpretation of marginal changes i.e. 
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the effect of one variable on the mean function m holding all else constant. 
They are also interesting from a theoretical point of view since they combine 
flexible nonparametric modeling of many variables with statistical precision 
that is typical for just one explanatory variable. This paper is concerned 
with variable selection and direct estimation of the functions fa(.) and m ( . )  
in an additive regression model (1). 

To our knowledge model (1) has been first considered in the context of 
input-output analysis by Leontief (1947) who called it additive separable. In 
the statistical literature the additive regression model has been introduced 
in the early eighties, and promoted largely by the work of Buja, Hastie and 
Tibshirani (1989) and Hastie and Tibshirani (1990). It  has lead to the de- 
velopment of a variety of theoretical results and to many applications im- 
plemented using modern software. Stone (1985, 1986) proved that model 
(1) can be estimated with a one-dimensional rate of convergence typical for 
estimating a single function fa of one regressor only. 

Buja, Hastie and Tibshirani (1989, eq (18)) consider the problem of find- 
ing the projection of m onto the space of additive functions representing the 
right hand side of (1). Replacing population by sample, this leads to a sys- 
tem of normal equations with n d  x n d  dimensions. To solve this in practice, 
the backfitting or Gauss-Seidel algorithm, is usually used, see Venables and 
Ripley (1994). This technique is iterative and depends on the starting values 
and convergence criterion. It converges very fast but has, in comparison with 
the direct solution of the large linear system, the slight disadvantage of a 
more complicated 'hat matrix', see Hardle and Ha11 (1993). Unfortunately, 
not many statistical measures of this procedure like bias and variance have 
been fully derived in closed form. 

We assume that model (1) holds exactly, i.e. the regression function is 
additive. For this case, Linton and Nielsen (1995) proposed a method of esti- 
mating the additive components fa. Their method is to estimate a functional 
of rn by marginal integration; under the additive structure this functional is 
fa up to a constant. Their analysis is restricted to the case of dimension 
d = 2. Tjprstheim and Auestad (1994) proposed a similar estimator, mistak- 
enly called 'projector', for time series but did not fully derive its asymptotic 
properties, specifically its bias. 

The same model has been examined by Hardle and Tsybakov (1995) for 
general d under the assumption that the covariates are mutually indepen- 
dent. They introduced a principal component-like procedure for selecting 
important variables based on the variance of the estimated components, see 
also Maljutov and Wynn (1994). 

The present paper improves upon these earlier results in various ways. 
First, a direct estimator based on marginal integration is proposed thereby 
avoiding iteration. Second, the explanatory variables are allowed to be cor- 
related with a joint density p that does not factorize. This improves upon 
the paper by Hardle and Tsybakov (1995). Third, the dimension of X is 
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not restricted to dimension d = 2 as in Linton and Nielsen (1995). Fourth, 
the 'hat matrix' of the proposed estimator is of less complicated form than in 
backfitting. Fifth, we give the exact asymptotic bias of our estimator thereby 
improving Tj~s the im and Auestad (1994). In addition to extending results 
on the estimator a procedure is given for selecting significant regressors. 

The 'integration idea' is based on the following observation. If m(x) = 
E(Y I X = x) is of the additive form ( I ) ,  and the joint density of Xi,  - = 
Xil, . . . , . . . , Xid is denoted as p,, - then for a fixed x, E R, 

where x, = (XI, . . . , x,-I, X,+I . . . , xd) , provided E[fp(Xp)] = 0, P= 1 , .  . . , d. 
The idea is to estimate the function m(-) with a multidimensional kernel es- 
timator and then to integrate out the variables other than X,. We shall 
establish the asymptotic normal distribution of the estimator for f, and de- 
rive explicitly its bias and variance. In obtaining this result we shall see that 
the rate of convergence for estimating the mean function m is n2f5, typical 
for regression smoothing with just one explanatory variable. 

The variable selection problem is important for practical use of additive 
regression modeling. It has been addressed by many authors. Often there 
are many predictor variables and we wish to select those components that 
contribute much explanation. We analyze here a procedure based on the size 
of S, = E[fi(X,)]. A component function f, will be called significant if 
S, 2 s o ,  where s o  is a defined threshold level. We give an estimator for the 
set of significant functions and derive an upper bound (inverse to the sample 
size n) of the probability of misspecifying this set of significant component 
functions. 

The rest of the paper is organized as follows. In section 2, we introduce 
the technique of estimating the functions in the additive model. In section 3, 
we propose a variable selection procedure which uses the estimator proposed 
in section 2 and prove that asymptotically it finds the correct variable set 
with probability 1. Section 4 provides a simulation study and a real example. 
The detailed conditions and proofs of the theorems are given in the appendix. 

2 The Estimator 

Let (Xil,  . . . , Xid, x ) ,  i = 1, . . . , n be a random sample from the following 
additive model 

where the ci have mean 0, finite variance a2(Xi), and are mutually indepen- 
dent conditional on the X's. The functions fa(.) are assumed to have zero 
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mean J f,(w)p,(w)dw = 0, where pa(.) is the marginal density of X, . Let 
d m(x1,.  . . , xd) = c + Cazl f,(xa) be the mean function. Then for a fixed x ,  

the functional 

is f,(x,) + c. Let K ( . )  and L (.) be kernel functions with finite support. Let 
Kh(.)  = h-lK(. /h)  and define Lg (.) similarily. Using a multidimensional 
Nadaraya-Watson estimator (Nadaraya 1964, Watson 1964) to  estimate the 
mean function m(.), we average over the observations to  obtain the following 
estimator. For 1 5 a 5 d and any x in the domain of fa(.), define, for h > 0, 
g > 0, 

If the X 's  were independent, we might use ! Cr=l YI 
t = 1  K h ( X t , - x , )  

to estimate f,(x,). This is a one-dimensional Nadaraya-Watson estimator. 
However, this estimator has larger variance in comparison to our estimator 
even in this restricted situation, see Hardle and Tsybakov (1995). 

To illustrate our method, we simulated a data set (Xil ,  . . . , Xjd, k;.), i = 
1 , .  . . ,200, according to model (3) with Ei distributed as N(O,0.5'), fl(x1) = 
x: - 1, f2(x2) = 2212 and X1,X2 - N ( 0 , l )  with cov(X1,X2) = 0.2 and 
c = 0. The data  points are shown on top of the needles in Figure 1. The 
parabolic shape of f l  is quite visible but the linear form of f2  is less evident 
from the projection onto the (x2, y) plane. This becomes more clear from 
Figure 2 where we apply the estimator (4) to  estimate the additive component 
functions. In the Figure we show the estimated curves dashed lines and the 
true curves as solid lines. Both fl and f2 show some smoothing bias a t  
the boundary of the support but capture the general form of the component 
functions quite well. In both cases we used the bandwidth h = 0.5 and 
g = 1.5 and a Normal kernel. We also applied the backfitting procedure to  
this data set and obtained almost identical curves, see HLdle, Klinke and 
Turlach (1995, chapter 1). 

The bias and variance of the integration estimator are given in the fol- 
lowing theorem. Denote by p(x l , .  . . , xd) the joint density of X11,. . . , Xld. 
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THEOREM 1.  Suppose that conditions (Al) - (A6) given in section 5 hold. 
Let h = yon-'/5. Assume that the bandwidths g and h satisfy nhgd-'1 logn + 

oo, and that the order of L is q > v. Then 

From this theorem, we see that the rate of convergence to  the asymptotic 
normal limit distribution does not suffer from the 'curse of dimensionality.' 
To achieve this rate of convergence, though, we must impose some restrictions 
on the bandwidth sequences. This condition is needed for bias reduction of 
components /3 # a. Note that the above bandwidth condition does not 
exclude the 'optimal one dimensional smoothing bandwidth' g = h = n-lI5 
for d 5 4. More importantly one can take g = o(n-'I5), leaving only the first 
two terms in the bias expression. For higher dimensions, d 2 5, though we 
can no longer use g at the rate n-lI5 and the terms involving g dominate. 
To avoid this problem and obtain the one-dimensional rate of convergence 
we must reduce bias in the directions not of interest. This can be done by 
taking L to be a higher order kernel. 

d A  Define m(xl ,  . . . , xd) = C,=, f,(x,) - (d - l)?, where i. = n-l xy=l x. 
The following theorem gives the asymptotic distribution of m and shows that 
asymptotically the covariance between f,(z,) and fp(xp) is of smaller order 
than the variances of each component function. 

THEOREM 2. Under the assumptions of Theorem 1, 

71~/~{7i2(x1, . . . , xd) - m(x1, . . . , xd)) L+ N (b(x), v2(x)) , 
d d where b(x) = C,=' b,(x,) and v2(x) = C,=, V;(X,). 

3 Variable Select ion Procedure 
To establish a variable selection procedure we first show that S, = J f:(w)p,(w)dw 
can be estimated n1I2 consistently. The following theorem establishes this 
result. 
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THEOREM 3. Suppose that conditions ( A l )  - (A6) given in  section 5 hold. 
Let h = Assume that the bandwidths g and h satisfy nhgd- ' /  log n -+ 

co, and that the order of L is q > 9. Then, 

As in the linear regression, it is important to select a suitable subset 
among all the available predictors for building an additive model. We propose 
the following variable selection procedure. Let A be a subset of ( 1 ,  . . . , d) 
such that A = {a : S, > 0 )  so that for a $! A, S, = 0. Note that since A 
is finite {S, I a E A) is bounded away from zero. Since Sa estimates the 
functional S, a large S, implies that the variable X, should be included in 
the model. Our variable selection procedure selects the indices a such that 
jh. > bn where b, is some prescribed level. Denote by A = {a : j6. 2 b,), 
the set of estimated coefficients. The following theorem states the asymptotic 
correctness of this selection procedure. 

THEOREM 4. Under the assumptions of Theorem 3 and b, = ~ ( n - l / ~ ) ,  

for some constant C. 

d 
Since S, estimates S, we can view s,/ ~p as an estimate of the 

p=1 
portion of variation in Y explained by X,. This allows for a meaningful 
finite sample interpretation of the test statistic. 

4 Simulation Study and Application 
In this section we investigated some small sample properties of our estima- 
tor through a simulation study. We concentrated on the following questions. 
First, how variable is the estimator and how much bias do we have to expect? 
Second, how does the precision depend on the bandwidth choice? Third, how 
much more variable is the estimator in higher dimensions. We also applied 
the additive estimator in an econometric context investigating livestock pro- 
duction of Wisconsin farms. 

First we continue with our introductory example with parabolic - linear 
functions. We simulated 250 data sets of size n = 200 with f l ( x l )  = x:-1 and 
f2 (x2)  = 2212. The covariance structure of X and the error distribution were 
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as in the introductory example. The simulated 90 % confidence intervals for 
fi and f2 are shown as thin lines in figure whereas the mean values are shown 
as thick line. For all simulations we used the bandwidths h = 0.5 and g = 1.5 
and a Normal kernel. In both graphs the true curve has been subtracted for 
better bias judgment. The smoothing bias becomes visible in figure at the 
boundaries due to the parabolic shape. It is less a problem for the linear 
f2 as Theorem 1 suggests. In both cases the true curve lies well within the 
computed confidence limits and the shape of the true curve is well reflected by 
the confidence intervals. The intervals become wider at the boundaries since 
we have less observations there. We also investigated the effect of bandwidth 
choice on the above findings and found that,  for example, at  x = 0, the center 
of the confidence interval increases as the bandwidth increases and the band 
becomes smaller. This is in full accordance with Theorem 1 showing the 
dependence of the asymptotic bias on the curvature and the variance as a 
function of bandwidth. We observe the same phenomenon for dimension 
d = 5 ,  through simulation. 

Next we consider a real example. We consider the estimation of a pro- 
duction function for livestock in Wisconsin. A typical economic model in this 
context is a Cobb-Douglas production function, 

The model is additive with parametric linear components. We replace the 
linear components in the model with arbitrary, up to smoothness conditions, 
nonlinear functions. This gives a very flexible model of a strongly separable 
production function. 

We use a subset (250 observations) of an original data set of over 1000 
Wisconsin farms collected by the Farm Credit Service of St. Paul, Minnesota 
in 1987. The data were cleaned, removing outliers and incomplete records 
and selecting only farms that only produce animal outputs. The data consists 
of farm level inputs and outputs measured in dollars. The output (Y) used 
in this analysis is livestock, and the input variables used are family labor, 
hired labor, miscellaneous inputs (repairs, rent, custom hiring, supplies, in- 
surance, gas, oil, and utilities), animal inputs (purchased feed, breeding, and 
veterinary services), and intermediate run assets (assets with a useful life of 
one t o  10 years) resulting in a five dimensional X variable. 

We applied the additive kernel estimator to  the farm data set. The results 
are displayed in Figure 4. The curves are shown together with their marginal 
scatterplots. They are all quite linear except for the component X 2  (hired 
labor). Note that the smooth curves do not reflect the form of the scatterplots 
since our estimator does not use marginal smoothing. 
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A Appendix 
We assume the following conditions hold: 

( A l )  The kernel function I((.) is bounded, nonnegative, compactly supported, 
Lipschitz continuous, with J I<(u)du = 1 and J uI<(u)  = 0. Let IIKII; = 
J ~ ~ ( u ) d u  < oo and p2(I<) = J u21<(u)du < 00. 

( A 2 )  The kernel function L ( . )  is bounded, nonnegative, compactly supported, 
Lipschitz continuous and J L ( u ) d u  = 1. Let pi ( L )  =J u%(u )du ,  then 
pi ( L )  = 0, i = 1 , 2 , .  . ., q-1, while pq ( L )  < oo and IILII$ = J L 2 ( u ) d u  < 
00. 

(A3) The densities pa( .) ,  p,(.) and p( .)  are bounded, Lipschitz continuous 
and bounded away from zero by a constant po. 

( A 5 )  The variance function, n2( . ) ,  is Lipschitz continuous. 

( A 6 )  The functions f a ( . )  have q Lipschitz continuous derivatives. 

Proof of Theorem 1: We use the following notation. Define Ei [ W ]  = 
E [W I X i]  and E, [ W ]  = E [ W  I X I , .  . . , Xn]  . Let 

and 

To simplify the notation we always write the o'th component first. 
Note that by ( 2 )  

since m ( x , ,  Xi,) are i.i.d. random variables with finite second moments. 
Then we can write 

Statistical Theory and Computational Aspects of Smoothing. Härdle, W. and Schimek, M. (eds.)
Physika Verlag, Heidelberg. ISBN 3-7908-0930-6

Chen, R., Härdle, W., Linton, O. and Severance-Lossin, E. (1996) 
Nonparametric Estimation of Additive Separable Regression Models.



where Pi = xj"=l Lg(Xi, - Xla)Kh(Xlu - - zcr)Y. It suffices to work with 
the first term on the right hand side, ignoring the op(n-If2)  remainder. We 
separate this into a systematic "bias" and a stochastic "variance". 

Then, 

A 

1 T2n = K ~ ~ = l ~ { l + ~ p ( l ) } ,  
A 

since, by Silverman (1986), sup W = op (1). It remains to work with the I PlPl I 
first order approximations. 

Let 
- l n E i ( G i )  1 Zi - Ei(Gi) 
TI, = -c- ; n n = - ~  

i=l  Pi i=l  Pi 

We prove the theorem by showing: 

- 
I. TI, = be (x,) + ~ ~ ( n - ~ f ~ )  

P"'~'") and n2f5 2 wj,cj obeys a Central where wja = !&(x. - Xi.)-> 
j=1 

Limit Theorem with asymptotic variance as stated in Theorem 1. To see this 
note that 

since wjacj are mean zero and i.i.d., and 
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Changing variables to u = gives 

p2 ( w )  
E [w:,t:] = J u2(x, + hu, w ) K 2 ( u ) ~ p ( x f f  + hu, w)dudw 

by assumption (A5) and the bandwidth conditions. The Lindeberg condition, 
required for the CLT, follows from the existence of the fourth moments and 
the compact support of the kernels. 

We now establish the approximations in I and 11. 

I. Consider p i ' ~ i ( Z i ) ,  which is, in fact, an approximation of the condi- 
tional bias of the Nadaraya-Watson estimator a t  (x,, Xi,). This is, 

w - X , ,  since E, [ci] = 0. We now change variables to u = and v = - 
9 '  

where v is a d - 1-dimensional vector with typical component up, and find 

by assumptions (Al) ,  (A2), (A3), and (A6). Since the p;l Ei(Zi) are inde- 
pendent and bounded we have 
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11. We now turn to the stochastic term, 

We further write 

* 
ai - Ei(Bi) = Bi - E* (Gi)  + E* (Zj) - Ei(Zi). 

* 

11.1, We show that fC1 = 5 q , r j  + op where 
j = 1  

Therefore, 

The last equality is demonstrated as follows. Let 
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Also, 

By a change of variables we get 

by the assumptions (Al ) ,  (A2), (A3) and the conditions on the bandwidths. 
Thus the last line in (7) is shown. 

- * 

11.2. Next we show ! Cr=l E*(a')-E'(a'l 
P s  

= ~ , ( n - ~ / ~ ) .  Let 

C.. - 1 
ZJ - -I(h(~a - Xja)Lg(Xig - Xj,) {m(Xja, Xjg) - m(xa,  Xi,)) . 

n2pi 

The double sum Uon is mean zero. When i = j, we have 

and Cy=l Cii = Op((nh)-1/2(ngd-1)-1/2). We now calculate the variance of 
C C zj; this involves the following calculations 

i # j  

- - 
since all other terms are mean zero by a conditioning argument. Now E(CijCik) = 
E[E:(&~ )], for i # j ,  i # k, j # k using conditional independence. But 
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and so 
E(ZjS;h) = O(n-')0(h4 + g 2 q ) .  

i # j , i # k J # k  

Also, 

Then the total contribution to  the variance of Uon from these terms is 
O(nz$- l  ). By similar arguments we get 

Then by (8), (9), (10) and ( 1 1 )  and the assumptions on the bandwidths, 

This completes the proof of 11. rn 

Proof of Theorem 2: To simplify the notation we always write the 
ath component of the density first and the Pth component second. In or- 
der t_o prove the theyem we show that the asymptotic covariance between 
n2I5 f ,  (z,) and n2I5 f p ( z p )  is o ( 1 ) .  By I1 in the proof of Theorem 1 we need 
to show that 
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since E [ c i c j ]  = 0 for i # j and wj,wjpr; are i.i.d. 

by a change of variables argument and assumptions (Al) ,  (A2), (A3), and 
(A5). This establishes the negligible asymptotic covariance of n2I5fl, (x,) 
and n2l5& (xp), thus proving the theorem. 

Proof of Theorem 3 : We break ,?, into the following terms, 

Since the Xi's are i.i.d., 

UI,, = S, + oP(n-'/'). 

By Theorem 1, Uzn can be approximated by 
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by the bandwidth conditions. From the proof of Theorem 1 and an applica- 
tion of the Cauchy-Schwarz inequality, U3,, = ~ ~ ( n - ~ l ~ ) .  Hence, 

Proof of Theorem 4: If S, = 0, then note that 

0 and E [ -  S: ] = 0 ( n-6/4 ) . Therefore, there 

E [?,I . Then, 

2 
E [S,] = 0 (&) = 

exists n such that b > 

If S, > 0 then there exists an n such that b < E [?,I. Then, 

Pr [S, < b]  = Pr [g, - E [S,] < b -  E [S,]] 

= O (n- l )  1 = O (n- l )  . 
( E  [gel -b)' 

The theorem follows from (13) and 
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Zinsprognose mit univariat er nicht paramet rischer 
Zeitreihenanalyse 

Wolfgang Hardle und Christian Hafner 

16. Marz 1995 

Die Prognose von Zinsniveaus und Finanzzeitreihen allgemein erweist sich als schwierig , da man 

nach Differenzenbildung meist keine signifikanten Autokorrelationen und darnit nicht rnehr vie1 
Struktur im Mittelwert der Zeitreihe hat. Der Random Walk ist haufig uber kurze Zeitriiume 
eine hinreichend gute Approximation. 

Aus diesem Grund sind die klassischen ARMA-Modelle fur die Prognose dieser Daten wenig 
geeignet . Es zeigt sich, daB auch nichtpararnetrische autoregressive Modelle, von denen hier 

eines angewandt wird, keine groBe Verbesserung gegeniiber einer naiven Prognose liefern. 
Wie in einem anderen Beitrag dieser Autoren beschrieben, ist es haufig fiir die Praxis ebenso 

wichtig, die Volatilitut und damit das Risiko zu prognostizieren. Neben der direkten Anwendung 
der geschat zten Volat ilit iit en auf die Bewertung von Derivativen lassen sich die zeit abhangigen 

S chwankungen fiir genauere Prognoseint ervalle heranziehen. Die Varianzfunktion s (. ) in dem 

Modell 

~t = f ( ~ t - I )  + s ( ~ t - ~ ) E t  (1) 

kann wie in Hardle, Tsybakov (1995) mit nichtparametrischen Methoden geschatzt werden. [ 
ist hier eine unabhangig und identisch vert eilte Zufallsvariable mi t Mi ttelwert Null und Varianz 
Eins. Hat die Mi ttelwertfunktion f ( a )  keinen groaen EinfluB, ist dieses Model1 interpretierbar 

als Verallgemeinerung von klassischen ARCH-Modellen . 
Fur die Prognose der Zinsniveaus hat eine geschgtzte Varianzfunktion jedoch keinen Einflufl, 

da der bedingte Erwartungswert f (.) die beste Prognose im Sinne des rnittleren quadratischen 
Prognosefehlers ist. Insofern haben wir uns auf die Schatzung und Prognose eines sehr einfachen 

Modells beschrankt . 
Es geht urn die Prognose der 10 Jahres DEM Zinsen r jeweils auf At = 60 Wochentage. Der 

Prognosezeitraum erstreckt sich vom 23.12.1993 bis zum 23.12.1994. Elf fehlende Werte im 

Prognosezeitraum wurden eliminiert . Somit bleiben fiir die unten erwahnten Gutekriterien 

T = 262 - 11 = 251 relevante Prognosen. 
Die Zeitreihen der Zinsen und der Zinsdifferenzen, jeweils inklusive Prognosezeitraum, sind in 

Bild 1 und 2 geplottet. 
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Table 1 : Giitekrit erien fur Modelle mit verschiedenen Bandweit en 

MSD: mean standard deviation 
IR1: corresponding information ratio 

MAD: mean absolute deviation 
IR2: corresponding information ratio 

Als nichtpararnetrische Schiitzmet hode wurde hier wie in Bossaerts, Kardle und Hafner (1995) 
der Lokale Polynomschatzer angewendet. Der klassische Nadaraya-Watson Schatzer ist als 

Spezialfall mit dem Polynorngrad Null enthalten. Die Methode ist interpretierbar als gleitende 
gewichtete Durchschnittsbildung mit Polynomen, wobei als Gewichte meistens Kernfunktio- 
nen genomrnen werden. Die Glattheit der geschatzten Funktion wird durch die Bandweite h 
bestimmt . Fur kleinere Bandweiten erhijht sich die Varianz des Schatzers und die Funktion 
wird rauher, urngekehrt erhoht sich der Bias fiir grij8ere Bandweiten und zunehmend glatterer 

Schatzfunkt ion. 
Das Model1 

~t = f (yt-ao) + ~t ( 2 )  

wurde fiir verschiedene Bandweiten h mit dern Local Linear Estimator (LLE) geschatzt, wobei 
yt = Art. Als Gewichtsfunktion wurde der Quartic Kern verwendet. 
In Bild 3 und 4 sind die Datenpaare ( y t ,  yt_,,) und die geschatzte Funktion fur h = 0.05 
dargest ellt . 

Gutekrit erien der Prognose fur verschiedene Bandwei ten h sind in Tabelle 1 gegeben. 

Die Residuenvarianz ist deutlich kleiner als die Varianz der Zinsdifferenzen: 

Finanzmarktanalyse und -prognose, 329-333

(1996) Härdle, W. and Hafner, Ch. Zinsprognose mit univariater nichtparametrischer Zeitreihenanalyse.



V a r  (it) 0.00 1849 1633 
- = 0.9396. 

V a r ( y t )  0.0019678 

Allerdings scheint die Erklarungskraft des Modells fiir die Prognose keine groBen Vorteile zu 

bringen, wie die Giitekriterien zeigen. Als Erweiterung dieses Ansatzes wird von Chen, Tsay 

(1 993) ein nichtparametrisches additives Model1 mit mehreren Lags als erklkende Variablen 

vorgeschlagen. 
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DEM interest rates 1987-1994 

Figure 1: Zeitreihe der 10 Jahres DM-Zinsen iiber den gesamten Zeitraum 1.7.1987 bis 
23.12.1994. Der Prognosebereich ist farblich abgehoben. 

interest rates differences 
I I I I I I 1 

Figure 2: Zeitreihe der erst en Differenzen der 10 Jahres DM-Zinsen iiber den gesamten Zeitraum 

1.7.1987 bis 23.lZ.1994. Der Prognosebereich ist farblich abgehoben. 
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Data f o r  LLE Estimation 

Figure 3: Datenpaare (yt, fiis den Schatzzeitraum 1.7.1987 bis 30.9.1993, a = 1631. 
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Figure 4: Geschiitzte Funktion ]h(Yt-BO) fiir h = 0.05 iiber den Schiitzzeitraurn 1.7.1987 bis 

30.9.1993. 
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This paper describes a method for testing a parametric model of the mean of 
a random variable Y conditional on a vector of explanatory variables X against 
a semiparametric al~ernative. The test is motivated by a conditional moment 
test against a parametric alternative and amounts to replacing the par3me:ric 
alternative model with a semiparametric model. The resulting semiparametric 
test is consistent against a larger set of alternatives than are parametric condi- 
tional moments tests based on finitely many moment conditions. The results 
of Monte Carlo experiments and an application illustrate the usefulness of the 
new test. 

1. INTRODUCTION 

Consider a parametric .model for the mean of a scalar random variable Y 
conditional on a random variable X E R L  ( L  r 1):  

where f is a known function and 0 E RK (K 2 1) is a parameter whose 
value must be estimated from data. For example, f might be the mean func- 
tion in a linear or noniinear regression model, or it misht be the probabil- 
ity that Y = 1 conditional on X = X in a parametric binary response model. 
The problem addressed in this paper is to test the hypothesis that (1) is true 
for the specified function f and some 0. 

One way of testing (1) is to specify a parametric alternative to it and test 
f ( X ,  0) against the alternative. Most familiar methods for testing ( l )  against 
a parametric alternative belong to a large class called conditional mrnenrs  
tests [14]. These tests can have high power against specific alternatives, but 
a parametric conditional moments test based on finitely many moment con- 
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822 JOEL L. HOROWITZ AND WOLFGANG HARDLE 

ditions is not consistent against all alternatives. In particular, a test of f(x,O) 
against a parametric alternative model may be inconsistent if the alternative 
is misspecified. 

A second possibility is to comparethe parametric model with a nonpara- 
metric estimate of E(Y ( X = X). Let B, denote a n 1'2-consistent estimator of 
B in (1) based on a random sample of the distribution of (Y, X). If (1) is true, 
the nonparametric estimate and f(x,8,) are equal up to random sampling 
error. See Eubank and Spiegelman [3], Gozalo [4], H%dle and Mamrnen [8], 
Hong and White [9], le Cessie and van Houwelingen 1121, Whang and 
Andrews [19], Wooldridge [201, Yatchew 1211, and Zheng [22] for specifica- 
tion tests based on this idea. Bierens 121 gives a conditional moments test of 
a parametric model against a nonparametric alternative. These tests are con- 
sistent in all directions. However, some apply only to restricted classes of 
functions f(x,  B). -F or example, Eubank and Spiegelman [3] assume that 
f (X, B) is linear and X is scalar. Other tests have characteristics that can cause 
them to have low power or other kinds of poor behavior in finite samples. 
For example, the tests of Gozalo [4], Hardle and Mammen [8], Hong and 
White [9], and le Cessie and van Houwelingen [l21 lose power through the 
so-called curse of dimensionality [ l ] ]  if L > 1. The tests of Whang and 
Andrews [l91 and Yatchew [211 require splitting the sample into two equal 
pans, which reduces power and can result in poor small-sample behavior. 

This paper describes a test that aims at avoiding these problems while 
achieving consistency against a larger set of alternatives than is the case with 
parametric conditional moments tests based on finitely many moment con- 
ditions. The intuition behind the test is simple. If E(Y I X = X )  = f(x,O), then 

Therefore, a nonparametric estimate of E[Y I f (X, 8,) = f l ,  considered as 
a function off, differs from a 45" line only by random sampling error. One 
can test (1) by determining whether the difference between the nonparamet- 
ric estimate and the 45" line is larger than can be explained by random sam- 
pling error. 

More generally, consider the model 

where F and v are known functions. If (3) is correct, nonparametric estima- 
tion of E [ Y  u(X, 8,) = v ]  gives an estimate of F(v). Thus, (3) can be tested 
by comparing the nonparametric estimate of E[YI v(X,8,) = v ]  with F(v). 
One way of obtaining (3) is to  specify v(x,O) = f(x,O) and F ( v )  = v, but 
other specifications may be useful in applications. For example, suppose the 
parametric model to be tested has the form (3) with F a nonmonotonic func- 
tion. If the model is misspecified, it is possible that 
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whereas 

In this case, comparison of a nonparametric estimate of E( Y  I F [  v ( X ,  B ) ]  = f  1 
with f yields an inconsistent test, whereas comparison of a nonparametric 
estimate of E[YI v(X,B) = v ]  with F ( v )  yields a consistent test. 

A test of ( 1 )  obtained by comparing a nonparametric estimate of 
E[YI v ( x , ~ , , )  = v ]  with F ( v )  avoids the curse of dimensionality by using 
the index function v(x, B )  to aggregate a multidimensional X. Because one can 
always set v(x ,8)  = f (x .8)  and F ( v )  = v, any model of the form ( 1 )  can be 
placed into the single-index form of (3). Thus, the test is not restricted to 
models that can be estimated in single-index form. 

The remainder of this paper describes a formal test of ( 1 )  that consists of 
comparing a nonparametric estimate of E[YI v(x,&) = v ]  with F ( v ) .  We 
call this a test of the parametric model ( 1 )  against a semiparametric alterna- 
tive because the alternatives against which the parametric model is tested and 
against which the test is consistent have the form E[YI v ( X , 8 )  = v ]  = H ( v ) ,  
where H is an unknown function but v(x.8)  is known up to the finite- 
dimensional parameter B. Because the semiparametric alternative may not 
include the true mean of Y  conditional on X,  there are directions in which 
the semiparametric test is inconsistent. However, in a sense that is defined 
in Section 2, the test is consistent against a larger set of alternatives than are 
parametric conditional moments tests based on finitely many moments. The 
results of Monte Carlo experiments and an application based on real data 
illustrate the usefulness of the semiparametric test. 

The paper is organized as follows. The test statistic is presented in Section 2, 
and its asymptotic distributions under the null hypothesis and local altema- 
tives are derived. Section 3  presents the results of the Monte Carlo experi- 
ments and the application. Concluding comments are presented in Section 4. 
The proofs of theorems are in the Appendix. 

2. THE TEST STATISTIC AND ITS ASYMPTOTIC DISTRIBUTION 

2.1. The Null and Alternative Hypotheses 

Formally the null hypothesis that we test is 

where Y  is a scalar random variable, X  E 61L, F  and v ( - , . )  are known real 
functions, and B E RK is a parameter whose value is unknown and esti- 
mated from data. For example, if Y  follows a linear-index binary probit 
model under H,,, F and v(x ,  B), may be specified as the cumulative normal 
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824 JOEL L. HOROWlTZ AND WOLFGANG HARDLE 

distribution function and 8  'X, respectively. As was discussed in Section 1, ( 1 )  
can always be put into the form (5) .  The alternative hypothesis is 

HI:  E[YI v(X.8)  = V ]  = H ( v ) ,  (6) 

where H is an unknown function. 
E [ Y ]  v (X ,8 )  = v ]  = F ( v )  is a necessary but not sufficient condition for 

E(YIX  = X )  = F[v(x ,B)] .  It is possible that E[Y(o(x ,B)  = v ]  = F ( v )  but 
E(YIX = X )  # F[v(x ,B)] ,  in which case the test of ( 1 )  presented here is 
inconsistent. This possibility is discussed further in Section 2.4. 

2.2. Motivation 

Suppose for the moment that H and 8  were known. Consider a conditional 
moments test of H, against HI based on the following moment condition, 
which is assumed to hold under Ho: 

where p is a scalar function. Let ( v , X ,  : i = 1,. . . , n ]  be a random sample 
of ( Y , X ) .  Following Newey [14], the conditional moments test statistic is 
proportional to 

Under Ho, E(&)  = 0. Under H I ,  E(&) = nl '2Ep(X,8) [H[o(X.8) ]  - 
F [ v ( X , B ) ] )  = F.  The test can be expected to have power against HI onlyif 
p + 0. This happens if 

where W(.) is a nonnegative weight function that is chosen so that 

Thus, the conditional moments test in this simple case can be based on the 
statistic 

Since H and 8  are unknown, one might consider forming a test of H. 
against Hi by replacing H and 8  in (8) with consistent estimators. This is 
the approach taken here. We replace 8  with the n"2-consistent estimator 
6, and H [ v ( X i , 8 ) ]  with a kernel nonparametric regression estimator of 
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E [ Y ( V ( X ,  8,) = v(xi,8, ,)l .  Denote this estimator by # " i [ v ( ~ i ,  &)I. The test 
statistic is 

where h is the bandwidth used in the kernel nonparametric regression. The 
normalization factor of h'" is needed because (pni - Fni) = O,[(nh)-'l2] 
rather than 0,,(n-'/2) as in parametric models. It is shown below that, like 
the test based on (8). Tn is consistent against HI if (7) holds. In contrast to 
(8),  however, T, does not require a priori knowledge of H and 8.' 

2.3. The Kernel Nonparametric Regression Estimator 

We require Fn,( . )  to be independent of Y ,  and asymptotically unbiased. 
Independence is achieved by omitting the observation ( Y , ,  X,) from the 
computation of pm,. Asymptotic unbiasedness is achieved through the use of 
the jackknife-like method proposed by Schucany and Sommers [l61 for non- 
parametric density estimation and Bierens [I] and Hardle [6] for nonpara- 
metric regressi~n.~ The resulting estimator is as follows. 

Let K ( . )  be the kernel function used in the nonparametric regression. 
Assume that K is an order r kernel. That is, for each integer i between 0 and 
r s 2 ,  

Let h = ~ n - ' / ( ~ ' + ' ) ,  where c r 0. Let s = ~ n - ~ / ( ~ ' + " ,  where 0 < 6 < 1. 
Define 

b)]/J$ .[v - v(%, h ) ]  
S 

jei j t i  
The kernel nonparametric regression estimator used in T, is 

Bierens [l] derives the properties of this estimator and proves that it is asymp 
totically unbiased and has the optimal rate of convergence. 
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826 JOEL L. HOROWITZ AND WOLFGANG HARDLE 

2.4. The Asymptotic Distribution of T, 

Define 02(v )  = var[Y]v(X,O) = v ] .  The following theorem gives the 
asymptotic distribution of Tn under Ho. 

THEOREM 1. Under H. and Assumptions 1-8 of the Appendir, Tn is 
asymptotically distributed m N(0, a$), where 

and 

The proof of Theorem 1 is lengthy, but the concepts on which it is based 
are easily described. First, the rate of convergence in probability of the nv2- 
consistent estimator 8, is faster than the rate of convergence in probability 
of Fn,, which is (nh)-1'2. As a result, the asymptotic distribution of Tn is 
unaffected by replacing 8, with 0. Thus, Tn = T,' + o,(l), where 

and Fn,[v(Xi,B)]  is the nonparametric regression estimator obtained by 
replacing v (x i , 8 , )  with v(X,,O) in (9)-(11). See Lemmas 1-6 of the Appen- 
dix for the proof of this result. Second, it can be shown that T,' is asymp- 
totically equivalent to a certain degenerate U statistic. See Lemma 7 and the 
proof of Theorem 1 in the Appendix. Although degenerate U statistics ordi- 
narily are asymptotically distributed as linear combinations of x2  variates 
(see Serfling (171, for example), the one corresponding to T: has a special 
form that causes it to be asymptotically normally distributed by a central 
limit theorem of Hall [5] .  Theorem 1 is a consequence of the asymptotic nor- 
mality of this U statistic. 

Let 5; be a consistent estimator of U:, and let CT = (5:)1'2. It follows 
from Theorem 1 that H,, can be accepted or rejected at the l level according 
to whether Tn/tT exceeds the 1 - l quantile of the standard normal distri- 
bution. The proposed test is one-sided because, as is shown in Theorem 2 
later, Tn diverges to + W  under alternative hypotheses against which it is 
consistent. In addition, as is shown in Theorem 3 later, the mean of the 
asymptotic distribution of Tn is nonnegative under local alternative hypoth- 
eses. Let C2(v) be a consistent estimator of (r2(v). Then, under Assump- 
tions 1-8 of the Appendix a# is estimated consistently by 
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where finhi is the following nonparametric estimator of the probability den- 
sity function of v(X, ,  B ) :  

j t i  

Methods for estimating a2(v )  are discussed in Section 2.5. 
The next theorem establishes consistency of T, under H,. 

THEOREM 2. Let Assumptions 1-8 of the Appendix hold. Suppose that 
H I  is true and that Ew(V)  ( [ H ( V )  - F ( v ) ] ~ )  > 0, where V  = v ( X ,  B )  and 
B is the probability limit of B,. Then, plim,,, T, = 03. 

Suppose that H. is false and that E(YIX  = X )  = H*(x)  for some function 
H'. Let E x I ,  denote expectation relative to the distribution of X conditional 
on v(X,B) = v. It follows from Theorem 2  that the test based on T, is con- 
sistent if Ex,, H ' ( X )  # F ( v )  on a subset of the support of W [ u ( X ,  B ) ]  that 
has positive probability. The test is inconsistent if P ( H 8 ( x )  = F[u(x ,8)] )  < 1 
but Ex l ,H*(X)  = F ( v )  almost everywhere on the support of W(.) . '  

Although T, is not consistent against all alternatives, there is a sense in 
which it is consistent against a larger set of alternatives than are paramet- 
ric conditional moments tests based on finitely many moment conditions. 
Specifically, T, is consistent against all alternatives H[v(x ,B)]  such that 
Ew[u(X,B)] (H[u(X ,B) ]  - F [ u ( x , B ) ] ] ~  > 0, whereas a parametric condi- 
tional moments test is not. To see this, observe that if (3) is true, then 

for any function p E @Q for some finite q > 0. Accordingly, consider using 
the moment conditions of (12) to test ( l ) .  Suppose that ELY1 u(X,B) = U ]  = 
H ( v ) ,  where H satisfies Ew[v(X,O)] ( H [ v ( X , B ) ]  - F[u(X,B)I)' > 0 and 
Ep(X,B) ( H[v(X.B)]  - F[v (X ,B) ] )  # 0. Then, T, and the conditional 
moments test based on (12) are both consistent against the alternative H. 
Now let A ( V )  be a scalar-valued function such that Ep (X, @ ) A  [ v ( X ,  B ) ]  = 0. 
Assume that Ew [ u ( X ,  B ) ]  A [ v ( X ,  @) lZ  > 0. Because p is finite-dimensional, 
there are infinitely many such functions A. Set H * ( v )  = F ( u )  + A ( v ) .  
Then, T, is consistent against H* but the conditional moments test based on 
(12) is not. 

We now consider the distribution of T, under local alternative hypoth- 
eses. Define the sequence of local alternatives H, [ v ( x ,  B ) ] ,  by 

where ( A ,  : n = 1.2,. . . ) is a sequence of uniformly bounded functions that 
converges uniformly to a limit function A ( v ) .  Note that in this sequence 
IH,(v) - F(v)l = O(n- l / zh - l f i )  uniformly over v, whereas in tests d 
parametric models against local parametric alternatives the "distance" 
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between the null and local alternative hypotheses is O(n-1 /2 ) .  We assme 
that there are an estimator 8,, of 0 and a nonstochastic sequence (8,)  such 
that n 1/2(8n - 8.1 = O,,(l) and n '''h '"(B, - B )  has a finite limit, y, as 
n -. a. For example, if 8, is the least-squares estimator of B under the false 
model E(Y I X = X) = F[v(x,B)I, 8, minimizes the expected value of the 
error sum of squares. 

THEOREM 3. Let Auumptions 1-4 and 8-12 of the Appendir hold as 
well ar the parts of Assumption 5 that pertain to F. Define 

Under the sequence of local alternative models H,, T, is asymptotically dis- 
tributed as ~ ( p , a f . ) ,  where p = E [  w[v(X,O)] A*(X,O)~ ). 

Theorem 3 implies that T, has power against alternatives whose distance 
from H. is O(n-'/2h-'"). If K is a second-order kernel, this distance is 
~ ( n - ~ ' ~ ~ ) ,  which is close to the distance O(n-l/ ')  that holds in tests 
against parametric alternative hypotheses. Subject to the regularity conditions 
given in the Appendix, the distance O(n-"'h-'") can be made arbitrarily 
close to O ( n - 1 / 2 )  by using a kernel K of sufficiently high order. 

2.5. Choosing W ( - )  and i 2 ( v )  

The regularity conditions in the Appendix require W ( S )  to be continuous and 
independent of the sample ( Y,.X, ) . They also require the support of W ( . )  
to be contained within that of v(X,B) .  The continuity requirement is not 
important in applications; with a finite sample there is no difference between 
the values of T, obtained with a W ( . )  that has jump discontinuities and a 
W (.) in which the discontinuities have been "slightly" smoothed. The restric- 
tion on the support of W ( . )  can be important. Depending on how U: is esti- 
mated, use of a W ( . )  whose support exceeds that of v(X,B) may cause 
substantial overestimation of U: and a corresponding loss of power. In prac- 
tice, it can be difficult to choose a W ( . )  that satisfies the condition on sup- 
port without looking at the data. We suggest using the observed values of 
v(X,,d,) to choose the support of W ( . )  but not otherwise adjusting W ( . )  to 
the dafa. In the Monte Carlo experiments and application described in Sec- 
tion 3, we found that the Tn test works well if W is chosen to be 1 over an 
interval that contains 95-99'70 of the observed values of V ( X , ~ , )  and 0 
elsewhere. 

Another possibility is to choose W to maximize power against a specified 
sequence of local alternatives. There seems to be little advantage in doing 
this, however. If high power against a specific alternative is desired, one 
should use a parametric conditional moments test that has high power against 
this alternative. 
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The main consideration involved in estimating 02(v) is that the estimator 
must be consistent under H. and, t o  avoid loss of power, should not 
become excessively large under H , .  For example, suppose that Y is homo- 
skedastic so that var[Yl v(X.0) = v ]  = a', where a2 is a constant. Two pos- 
sible estimators of a* are 

and 

Both of these estimators are consistent under Ho, but 6: may be very large 
under H,. Accordingly, the test based on 7 .  is likely to have higher power 
if 622 is used. 

If Y has heteroskedasticity of unknown form,-a2(v) can be e:rimated by 
the nonparametric regression of ( Y, - F,, [v(X,,B,)])' on v(X,,Bn). In some 
cases, the form of heteroskedasticity of Y may be known, and this informa- 
tion can be used to estimate a2(v).  For example, if Y is a binary variable, 
var[Ylo(X,B) = v ]  = P[Y = I ( v ( X , 6 )  = v]  ( l  P[Y = l J u ( X , 6 )  = U ] ] .  

Therefore, a2(v) can be estimated by p,, [ u ( x , , ~ , ) ]  [ l  - P, , , [V (X , ,~ , ) ] ) .  

3. MONTE CARLO EXPERIMENTS AND A N  APPLICATION 

3.1. Monte Carlo Experiments 

The purpose of the Monte Carlo experiments was to investigate the small- 
sample size and power of the test based on T,,. To provide a basis for judg- 
ing whether the performance of the test is good or bad, we also computed 
the sizes and powers of Bierens' [2] test against a nonparametric alternative, 
the RESET test, and the most powerful test against the correct parametric 
alternative model." 

The hypothesis H. tested in the Monte Carlo experiments is 

where X is a L X 1 random variable, L = 1 or 3 ,  v(x,O) = B'x, and p. is a 
constant. The data were generated by random sampling from the model 

where 4 is the standard normal density function, PO = 1, 0, = L-'I2 ( i  = 
1,. . . ,L), b is a parameter whose value varies according to p experiment, 
X - N(O,l), and u - N(0,0.25). If b = 0, H. is true. Otherw~se, H. is false, 
and E[YI v(X.0) = v ]  has the shape of a straight line with a bump centered 
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at v = 0. The height of the bump is governed by the value of b. Figure 1 
illustrates the shape of E[YI v(X.8) = v ]  for b = 1 or 2. The mean function 
E[YI v(X,8) = v ]  in (16) is poorly approximated by the parametric models 
typically used in applications (e.g., low-order polynomials in v ) ,  so it is 
unlikely that a most powerful or nearly most powerful parametric test of (15) 
would be carried out in an application if (16) were the true data-generation 
process. Hardle [7] gives several applications in which the shape of  
E [ Y  I v(X,B) = v] is similar to Figure 1. 

The experiments were carried out a t  the nominal 0.05 level using sample 
sizes of n = 50 for L = 1 and n = 50 and 100 for L = 3. There were 500 rep- 
lications in each experiment. Random numbers were generated with the 
pseudo-random number generators of GAUSS. 

In the computation of T,, K is the standard normal density, F ( v )  = v, 
( h , s )  = (0.1,0.8) if L =  1, (0.3,l.O) if L = 3  a n d n = 5 0 ,  and (0.2,O.g)if 
L = 3 and n = 100. &, and B were estimated from (15) by ordinary least 
squares (OLS), W ( . )  = 1 on an interval containing 98% of observed values 
of Do + B'X and 0 elsewhere, and u2(0) is given by (14).' The semiparamet- 
ric test is one-sided for the reasons discussed in Section 2.4. 

Solid line: b = 2 
Dashed line: b = l 
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Implementation of the test of Bierens [2] requires choosing several param- 
eters of the test statistic and a function. We made choices similar to those 
used in Bierens' (21 Monte Carlo experiments. In his notation, we set y = 
P = 0.5, T = [l,$], K,, = 10, and + ( X )  = tan-' (x /2 ) .  Note that Bierens' 4 
is different from t$ in (16). 

RESET consists of first estimating and the B's in (15) by OLS and 
computing the predicted value of Y for each observed X. Denote the predic- 
tion by p.   hen, one of the following two models is estimated by OLS: 
E(YIX = X) = + B'x + aP2 (RESET2) or E(YIX = X) = 80 + B'x + 
cr, P2 + a2P3 (RESET3). Finally, in RESET2 the hypothesis H, : a = 0 is 
tested with a t-test. In RESET3, the hypothesis HA: a, = a2 = 0 is tested 
with a Wald test, Model (15) is rejected by RESET2 if H, is rejected and by 
RESET3 if H: is rejected. 

The most powerful parametric test of the null hypothesis (IS) against the 
alternative (16) is the 1-test of b = 0 based on least-squares estimation of PO, 
B ,  and b in (16). We assumed that the argument of 4 in (16) is known when 
computing the power of this test. 

Table 1 shows the results of the experiments with L = 1. The empirical sizes 
of the tests are close to the nominal sizes of 0.05. The test based on Tn is 
considerably more powerful than Bierens' test and both versions of RESET. 
Not surprisingly, Tn has less power than the most powerful parametric test. 
Of course, the power of the parametric test would be available in an appli- 
cation only in the unlikely event that (16) were known to be the correct alter- 

TABLE 1. Results of the Monte Carlo experiments with L = 1 

Pr(reject H, at nominal 0.05 level) 

Most powerful Bierens' 
b parametric test T, ' test RESET2 RESET3 

0 0.05 0.03 0.05 0.06 0.07 
0.25 0.90 0.37 0.18 0.19 0.17 
0.50 0.99 0.86 0.42 0.33 0.23 
0.75 1.00 0.98 0.56 0.41 0.33 
1.00 1 .OO 0.98 0.73 0.51 0.36 
1.25 1.00 l .00 0.78 0.58 0.46 
1 .SO 1.00 0.99 0.78 0.60 0.47 
1.75 1 .00 0.99 0.81 0.62 0.43 
2.00 1 .OO 1.00 0.87 0.64 0.49 
2.25 1 .W 0.99 0.89 0.66 0.47 
2.50 1.00 1.00 0.89 0.66 0.47 

m e  fluclurtions in the rejection probability when b z 1.25 arc not naliuically signif~ant at the 0.10 level. 
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native model, whereas T, does not require a priori knowledge of the 
alternative. 

Table 2 shows the results of the experiments with L = 3. One striking fea- 
ture of these results is that the powers of the semiparametric and RESET tests 
are nonrnonotonic functions of b. The reason for this is that the precision 
with which the B's are estimated decreases as b increases. As a result, the val- 
ues of v(x.4) and v(X.8) tend to be ordered differently, which causes the 
"bumpn in (16) to spread and, if B is very imprecisely estimated, shatter into 
isolated spikes. Shattering makes it difficult for the semiparametric and 
RESET tests to detect the difference between the null hypothesis model (15) 
and the true data-generation process (16). As can be seen by comparing the 

TABLE 2. Results of the Monte Carlo experiments with L = 3 

Pr(reject H. at nominal 0.05 level) 

Most powerful Bierens' 
b parametric test Tna test RESET2 RESET3 

p- 

? h e  flunuations in the rcjmion probabili~y when b a 1.25 arc not statinically significant at the 0.10 level. 
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results in Table 2 for n = 50 and n = 100, this problem diminishes as n 
increases since the B's are estimated more precisely at large values of n. Non- 
monotonic power functions are not unusual in econometrics. See Nelson and 
Savin 1131 for further discussion and examples. Another noteworthy feature 
of the results in Table 2 is that the empirical size of the semiparametric test 
is well below nominal whereas the empirical sizes of the RESET tests are 
somewhat larger than nominal. Despite these difficulties, the power of the 
semiparametric test exceeds the powers of Bierens' test and the RESET tests 
for all but the largest values of b. 

3.2. An Application 

Horowitz [l01 estimated a binary probit model of the choice between auto- 
mobile and transit for the trip to work. The estimation data set consisted of 
842 trip records drawn from the Washington, D.C., area transportation 
study. The specification of the probit model is 

where @ is the cumulative normal distribution function, X is a vector of 
explanatory variables, and B is a conformable vector of estimated parameters. 
The components of X are an intercept, the number of automobiles owned 
by the traveler's household, the difference between automobile and transit 
out-of-vehicle travel times, the difference between automobile and transit in- 
vehicle travel times, and the difference between automobile and transit travel 
costs. Horowitz 1101 carried out parametric likelihood ratio. Wald and La- 
grangian multiplier tests of (17) against a random coefficients probit model. 
This model is obtained from (17) by replacing @(O'x) with @ [ O ' X / ( X ' C X ) " ~ ] ,  
where E is a positive-definite matrix. All of the tests rejected (17) (p < 0.01). 

To investigate the performance of T, in an application, we tested (17) 
using both Tn and Bierens' [2] test. Bierens' test was carried out using the 
parameter and function choices described in Section 3.1. The value of the test 
statistic was 0.43. Under the hypothesis that (17) is correctly specified, Bie- 
rens' test statistic is asymptotically distributed as x 2  with 1 degree of free- 
dom. Therefore, Bierens' test does not reject (17) and, thus, does not detect 
the misspecification of (17) found by the tests against the random coefficients 
probit model. 

In computingthe T, test statistic, 8, was estimated by maximum likelihood 
using (17). v(x.8) = B'x, W(.) = 1 on an interval containing 98% of the 
observed values of &,X and 0 elsewhere, and b2(v )  = $"!(v) [ l  - $nl(v)].  
As is explained in note 5 ,  there is no known systematic method for select- 
ing bandwidth values for &. We used several bandwidths that were found 
through graphical examination of S,, to span the range of reasonable 
choices. Values outside of this range caused the graph of Fa, to be either 
excessively wiggly or excessively flat. The value of T,& was in the range 
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2.45-3.26, depending on the bandwidth. Thus, the T, test rejects (17) (p c 
0.007). This is consistent with the results of the tests against the random cwf- 
ficients probit model. 

4. CONCLUSIONS 

This paper has described a method for testing a parametric model of the 
conditional mean against a semiparametric alternative. The test is motivated 
by a parametric conditional moments test and amounts to replacing the 
parametric alternative model in the conditional moments test with a semi- 
parametric model. The resulting semiparametric test is not consistent against 
all alternatives, but in a sense that has been explained it is consistent against 
a larger set of alternatives than are parametric cond;!ional moments tests 
based on finitely many moment conditions. The results of Monte Carlo 
experiments and an application using real data illustrate the usefulness of the 
semiparametric test. 

NOTES 

1. The tests in Hong and White [9], Whang and Andrews [19], and Yatchew 1211 are also 
motivazed by (8) but aim at consistency against all alternatives and do not use a parametric index 
function to reduce the dimension of the nonparametric model. 

2. At the cost of lower asymptotic local power, asymptotic unbiasedness also could be 
achieved by using an undersmoothed "ordinary" kernel estimator for F,,. 

3. A referee has pointed out that the test also can be inconsistent if v(x .9)  is a constant, in 
which case Assumption 2 of the Appendix is violated. 

4. We originally intended to include the test of Whang and Andrews 1191 in the compari- 
son. This test is based on comparing the mean square residual from parametric and nonpara- 
metric estimates of the conditional mean of Y. We dropped the test from consideration after 
finding that, in our Monte Carlo experiments, its empirical size at the nominal 0.05 level was 
between 0.24 and 0.50 for a wide range of bandwidths in the nonparametric regression. 

5. A systematic procedure for choosing h and s for g,,, with finite samples has nor been 
developed. Because the estimator is asymptotically unbiased, the tradeoff between asymptotic 
bias and variance that underlies bandwidth selection methods such as cross validation does not 
exist. We ~ l c c t t d  h and s graphically. With the values we used, the graph of l?., is neither exm- 
sively wiggly, as happens when h and s are too small, nor excessively flat, as happens when they 
arc too large. The regularity conditions in the Appendix require K to have bounded support. 
but this is not essential. as is noted there. 
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APPENDIX 

This appendix contains regularity conditions and the proofs of theorems. 

A l .  NOTATION 

In addition to the notation defined in the text: 

N, = a neighborhood of 0; 
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Sx = the support of X; 

3, = an open subset of the support of v ( X , e ) ;  

S, = a compact subset of 3,; 
S, = [ X :  v (x .e )  E S , ] ;  

h = ~n- ' /~* '+" ,  where c > 0 and r 2 2 is an integer; 

S = where 0 C 6 < 1 ; 

K ( . )  = an rth order kernel function. 

For I = h or S, 

. . 
j t i  it i 

A2. ASSUMPTIONS 

1. Sx is compact. At least one component of X has a probability distncution that 
is absolutely continuous with respect to Lebesgue measure. 

2. For every 7 E Ng and X E Sx,  v  satisfies the following: 
a. I v (x,r) l  c M for some M C W that does not depend on 7 or x 
b. The probability distribution of v (X .7 )  is absolutely continuous with respect 

to Lebesgue measure. 
c. V ( X ,  7 )  is differentiable with respect to s. a ~ ( x , r ) / a 7 ~  (k = 1 . .  . . , K )  is 

uniformly bounded and Lipschitz continuous with respect to 7 and the con- 
tinuous components of X.  

3. Let p, denote the probability density function of v ( X , r ) .  For each 7 E Ng:  
a. m, S p , ( v )  S MP for some m, > 0 and MP C W that do not d w n d  on 7. 
b. p, has r continuous derivatives that are uniformly bounded over r  E N, 

and v  E 3,. 
4 .  W ( . )  has compact support S, C int(S,) and satisfies the following: 

a. 0 S W ( V )  < M, for some M, < 0 and all v  E S,. 
b. I w ( v 2 )  - w(uI)I S M:[ v2 - v ,  I for some M: < W and all v,, v , .  

5.  a. IF[v(x ,z ) ] l  and I H [ v (x , r ) ] l  are uniformly bounded over X E S, and 
7 E No. 

b. F ( v )  and H ( v )  have r continuous derivatives that arc uniformly bounded 
over v  E S,. 
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6. Let Ex denote the expectation over the distribution of X. Define 

Let r k  ( k  = 1,. . . ,K)  denote the kth component of r. There is a finite num- 
ber Mr, not depending on T or X, such that for all r E No, x E S,y, vI , v: E So, 
a n d k =  I,  ..., K, 

7. &v) 1 Var[YIv(X,B) = v] is a uniformly bounded, continuous function of 
v E S,. E [  Y - E[Y(v(x,8)jl4 is uniformly bounded over v E S,. 

8. K is an r th  order kernel ( r  r 2) with bounded support. Also. K is uniformly 
bounded, continuous, and symmetrical about 0. The derivative of K, K', is uni- 
formly bounded and has an absolutely integrable Fourier transform. G(.). 

These assumptions are mainly boundedness and smoothness conditions. The 
requirement that K has bounded support can be removed at the cost o f  additional 
technical complexity in the proofs. 

A3. THE ASYMPTOTIC DISTRIBUTION OF T, UNDER H, 

Lemmas 1-6 show that asymptotically 8, can be replaced by 0 in T,. Lemma 7 ghes 
a result that is used in deriving the U-statistic form of T*. 

LEMMA 1. Define 

Gnhr( v) = [gnh,( v) - F ( ' J ) P ~ ~ ~ ( U ) ~ / P O ( ~ )  (A.1) 

and  

Jnh(v) = I p n k ( u )  - p g ( ~ ) l l [ g n h , ( ~ )  - F ( V ) P R ( U ) ~  

- F ( v ) [ P ~ ~ , ( v )  - P ~ ( u ) I I / [ P ~ ( ~ ) I ' .  ('4.2) 

A s n + w ,  

SUP Sup IFnhi(v) - F ( v )  - Gnhr(v) + Jnh,(V)I 
I s i d n  uES. 

= O,,[(log n)/(n3'*h2)]. (AS) 

These relarions also hold if h is replaced by S. 

Proof. Only (A.3)-(A.5) are proved. The proofs with h replaced by s are identi- 
cal. (A.3) follows from 
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for some M < (by Assumption 8) and 

almost surely [IS]. 
To prove (A.4), define 

Observe that 

for some LW < m because K is bounded uniformly. The first term on the right-hand 
side of (AA) is ~~[ (nh ' ) - ' / ' ]  [ l ] .  Now consider the second term. Let Py  denote the 
marginal c.d.f. of I YI. Given any a > 0, 

logP[ sup n-l/ZI]:I < a] = nlog(l - [ l  - Pr(n1"e)]] 
I s i s n  

(A.'?) 

by a Taylor series expansion, where is between Py(nl"'a) and l. E(Y') < W. 

Therefore, lim,,, u2[l - PY(u)] = 0. the right-hand side of (AS) converges to 0 as 
n -  m, and 

(A.4) follows from (A.6) and (A.9). 
To prove (A.51, expand Fnhi = gnhi/pnh, in a Taylor series about gnhi = Fps and 

pnhi = p B .  Then apply (A.3) and (A.4). m 
LEMbW2. F o r a n y p a r i t i ~ L < = , d ~ n e 8 ~ = ( t ~ @ ~ : n ~ / ~ I t - ~ ~  s L ] . F o r  

each P = l.. . . ,n, 

as n -. m. The same relation holds when h is replaced by S. 

Proof. Only (A.lO) is proved. The proof with s in place of h is identical. Define 
&d.) and?,,d-), rapectively, by replacing 6 with 8, in the definitions of g,,(.) 
and p,,,(.). It suffices to prove that 

and 

We prove only (A.l I). The proof of (A.12) is similar. 
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Define 

(A.13) 

A,, ( X )  = D , ( x )  - ED,(x) ,  and A n Z ( x )  = ED,(x) .  Then 

(nh)'/'[&he(x) - g,he(.r)I = An, ( X )  + A n Z ( x ) .  

Consider An,.  By a Taylor series expansion of the summand of (A.13).  

D , ( x )  = n1/2(8 ,  - B)'(nh')-"2B,t(x), 

where 

8,' is between B and B,, and 

By Assumption 8, K '  has an absolutely integrable Fourier transform. $, so 

Let Bnrk(.r) and ZVk, respectively, denote the kth components of &,(X) and Z,. 
Then for each k. 

dr. (A.14) 

I*( 

By Lemma 2.37 of Pollard [l51 with 6, = I and a, = n-1'2 log n in Pollard's nota- 
tion, the sum in the integrand is o p ( n  log n )  uniformly over X E 3 , ~  and (B,' : 
n 1 B: - 8 11 5 L) .  Therefore, 

because 1J.J is integrable. Since n"Z(e, - 8) = 0 ( 1 ) ,  

IAnl(x)l S O [ ( n h 3 ) - 1 / Z ] ~ p ( l ~ g n )  I O ( h r - l ) ~ p ( l o g n )  = ~ ~ ( h ' ' ~ ) '  (A.15) 

uniformly over X E  3% and ~ e , , : n ~ ' ~ ~ e ,  - 81 S L). 
. Now consider L\,'. By the Taylor series expansion of (A.13). 
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by a change of variables and symmetry of K. By Assumption 2, v(x,e,') E 3, and 
v(x,O:) + hf E 3, for any E, any X € SX,  and all sufficiently large n. Therefore, by 
Assumptions 2, 3, and 6, 

[ ~ [ x , v ( x , ~ ; )  + h t , e : l ~ ~ , - [ ~ ( ~ , e ; )  + h£] 

- r[x,v(x.s:).e;l~~,-[v(x,8:)1 ll I M ~ I E I  ~4.17) 

for each E ,  all sufficiently large n, and some M < 00, where 1 .  ( denotes the Euclidean 
norm. By symmetry of K. (A.16), (A.17). and Lebesgue's dominated convergence 
theorem, AnL (X) = O(h  'I2) as n -r uniformly over X €  Sx and 18, : n ' I2  18, - 8 [1 S 
L ) .  (A. 11) follows from this result and (A.15). 

LEMMA 3. For any L > 0 and a s n  -. CO, 

uniformly over 8, E 8' = 18, : n 18, - 8 11 S L I .  The same relotion holds with h 
replaced by S. 

Proof. It suffices to prove that uniformly over 8, E 8' 

and that (A.18) and (A.19) hold with h replaced by S, where g and P are defined as 
in Lemma 2. The proof is given only for (A.18). The proofs of (A.19) and the rela- 
tions for S are identical. Define 

Because of (A.ll) and (A.12), to prove (A.18) it suffices to show that 
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where Zni is defined as in Lemma 2 and B,' is between 8, and 8. Therefore, by 
Assumptions 2 and 8. 

sup sup sup l h-l /Zd,h,(~)I I ~ ( n h * ) - '  sup I Y, I 
Isrsn e m e r  Islsn 

for some M C  m. But supIs,,,lY,( = oP(nv2)  by (A.9). Therefore, the right-hand 
side o f  (A.21) is o p ( l ) ,  and (A.20) holds. W 

LEMMA 4. D&ne 8, as in ' ~ e m m a  2. Define G ,  and Jmi by replacing h with 
in the def7nitions of Gnhi and J,,.. Dejine 

Gni(v) = [Gnhi( U )  - (h/s)'Gnsi(v)1 4 l - (h/s)'I 

and 

As n - W and uniformly over 0, E BL, 

and 

Proof. These results follow by combining the definitions o f  g,, and F,, with the  
results o f  Lemmas 1 and 3. W 

LEMMA 5 .  Let 18,: n = 1.2,. . . l be a sequence in CiK that converges ro 8. For 
all sufjicienrly large n and X E S x ,  v (x ,  8,) E S ,  implies rhar v ( x .  8 )  E S,. 

Proof. By Assumption 2, 1 v(x.8,) - v(x.8)( 112.1110, - 811 for some :Cl c ca that 
does not depend on X.  The result follows from the fact that S, C in t (S , ) .  H 

LEMMA 6. Define 
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Let (8,) be an arbitrary nonstochastic sequence in 6iK satisfying n " 2 ( ~ n  - B) = 
O(1) as n - m. Define R,- ( i  = 1,. . .,S) by replacing 8, with 8, in R,. It suffices 
toshow that R,, =op( l )  for i =  1 ...., 5, andRn6=oP(1).  

a. R, l : Given any c > 0, let Ani, denote the intersection of the eventsjj,,,, [ v ( x  B,,)] > e 
uniformly over x E 3x.  P,i[v(x,Bn)l > c uniformly over x f Sx, and 

where finhi is as defined in Lemma 2.  Define 

Let l(.) be the indicator of the event in parenthesa. By (A.3). (X.19), and Lemma I. 
P(AC,,) = o(1). By Lemma 5, x E Sx if w[v(.r,B,,)] > 0 and n is sufficiently 
large. Therefore, 

where 
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where 
n 

R:J = - h t n  ~ [ v ( X i , ~ n ) l I F [ v ( X i . B , ) 1  - F[v(Xi,B)l)Gni[v(xi,e)]. 
i-1 

Let F' denote the derivative of F. By a Taylor series expansion, 

where 8,' is between B and B,. By arguments identical to those of Bierens [ l ] ,  
EG,,[v(x.O)] = 0[(nh)-"~1 uniformly over X.  Therefore, E(R:,)  = o ( 1 )  by 
Assumptions 2,  4, and 5 .  In addition, 

n n 

(R;,)' MhIlQn - ~ ( ' E C  C (Gn,[v(x,,e)lG,[~(XJ.@)lJ. 
l=! J - l  

By the arguments of Bierens [ l ] ,  the expectation is O ( h - l )  uniformly over X. 
Therefore, E ( R : , ) ~  = o ( 1 ) .  It follows from Chebyshev's inequality that R',, I 
o p ( l )  and from this result and (A.26) that I?,, = o p ( l ) .  

f. Rn6: By Assumptions 2 and 5 ,  lF[u(X,@,I - F [ ~ ( X , O ) ] I ~  = O p ( n - l )  uniformly 
over [ X :  v  E S , ) .  Since, in addition, W is bounded uniformly, Rn6 = O p ( h l ' = ) .  

m 
S 

LEMMA 7. Define K = v(X, ,B) .  Then 

T,, = hV2 C w(V;) [Y ,  - F ( Y ) I G n i ( v )  + o p ( l ) .  
i s  1 

Proof. By Lemmas 4 and 6, 

where 

It suffices to show that Tnl = o , ( l ) .  E (Tn l )  = 0 because J.,(K) does not depend 
on  F. In addition, since EUiJ,,Jv) = o ( n - l )  uniformly over v, 
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almost surely by (A.3) and h/s < 1. By arguments similar to those of Bierens [l], 
E[g,,,(v) - p o ( v ) ~ ( v ) ] 2  = O[l/(nh)]  uniformly over v E S,. By the Cauchy- 
Schwaru inequality, E lg,,,,(v) -p,(v)F(v)j = ~ [ l / ( n h ) " ~ ]  uniformly over v E S,. 
Therefore, squaring (A.29) and taking expected values yields 

uniformly over v E S,. Substituting (A.30) into (A.28) and using Assumption 4 
yields E[T;, ] = o(1). TnI = op(l)  fol1ow.s from Chebyshev's inequality. 

ProofofTheoreml. F o r i =  I ,..., n,define U , =  Y,-F(C.;:)andZ,= (U,,K). 
Also, for v E S, and i, j = l , .  . . ,n ,  define 

K,(v) = [ l  - (h/s)']-'[K(v/h) - (h/s)'+'K( v/s)l, 

and 

It follows from (A.27) that 

L = * , +  a ( Z , ) + o , ( l ) .  (A.31) 
lS i< j l ;n  

Since E(U;) = 0 for all i = I,. . . ,n ,  and the U; are independent. E[e(Z, ) ]  = 0, and 
E [ P ( Z , ) ~ ( Z , ) ]  = 0 if i + j. Moreover, arguments similar to those of Bierens [ l]  yield 

p(Z,)  = [I/(nhl/ ')] w ( C . ; : ) U j [ p o ( Y ) ] - ' o ( h r + ' )  

uniformly over Z,. Therefore, E [ ~ ( z , ) ' ]  = o(h"+l/n2), so the second term on the 
right-hand side of (A.31) has mean 0 and variance o(h2'+'). It follows from Cheby- 
shev's inequality that this term o,(l) so that T, = 4, + op( l ) .  Therefore, to prove 
the theorem it suffices to show that Ik, 2 N(0,o;). Define 

Q,(Z;,Z,) = EIHn(Zt,Z;)Hn(Zt~zJ)lz,,Zjl. 

Lengthy but straightforward calculations show that 

and 

( f ) n 2 E [ H , ( ~ i , Z , ) ' ]  -.U: 

as n + a. Therefore, q,, 5 N(0,o:) by Theorem 1 of Hall [5]. B 

A4. PROPERTIES OF T, UNDER HI a 
Proof of Theorem L. Let (B,) be a nonstochastic sequence such that n '"(8, - B) = 

0 (  1 ). Let Tn be defined as T, with 8, replaced by B,. It suffices to show that plim.,, 
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Tn/(nh1'2) > 0. TO do this, let U = Y - H[v(X,O)] and ve = av/ae. Let 0; denote 
a point between On and B (not necessarily the same point in each usage). Some alge- 
bra and Taylor series expansions yield 

where 
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and 

RnI is n-' times the analogous quantity in Lemma 6 .  Therefore, R,, = o P ( l ) .  By 
Lemmas 4 and 6 ,  

Rnz = o P ( l )  now follows from a proof similar to that of Lemma 7. It is not diffi- 
cult to show that R,, L E ( w ( V )  [ H ( V )  - F ( V ) ] : )  and that the remaining R,, are 
o p ( l )  as n - m. Therefore. T n / ( n h l  ') L E w ( t ' ) ( [ H ( V )  - F(I . ' ) ] ' ]  > 0. 1 

Additional .4ssumptions and a Lemma Used in Proving Theorem 3. Under 
the sequence of local alternative models specified in Theorem 3, define R,(r.) = 
E [ Y I V ( X , & )  = C ] .  

9. p,, has r continuous derivatives that are uniformly bounded over I. E S,.. .4lso. 
p , ( v )  has r derivatives that are bounded. continuous functions of 7 E .V, and 
c E S,. 

10. Define 

Let r,, ( k  = 1,. . . , K )  denote the kth component of r,. There is a finite num- 
ber M,-, not depending on T or X, such that for all T E A$, x E S,.. P , .  I., E S,.. 
a n d k =  1 ,  . . . ,  K. 

I ~ , , ( X , V : , T )  - L k ( . ~ , t J , , T ) (  I MT.\ v l  - V , \ .  

I I .  0 2 ( v )  is a bounded. continuous function of v E S, and B E I*JH for all suffi- 
ciently large n. E [ Y  - E [ Y l  c(x.B)]  = v lJ  is bounded uniformly over L) E S,. 
and B E N, for all sufficiently large n. 

12. Define 

For some cr > 1/ (46) ,  finite constant C > 0, and all sufficiently large n, 

Assumptions 9-1 1 extend Assumptions 2 and 5-7 to the local alternative mean 
functions and the density of V ( X , & , ) .  Assumption I?, ensures that the bias of the 
kernel estimator of E [ Y I v ( X , B , )  = v ]  relative to its asymptotic distribution is 
o(n-"?h- ' /"  ). This property is needed for the result given in Theorem 3.  1 

LEMMA 8. Let the auvrnptionr of Theorem 3 hold. Under rhe sequence of models 
H,, rhe conclusions of Lemmas 1-4 hold when F and B are replaced by and 8,.  

Proof. It may be verified that each step of the proofs of  Lemmas 1-4 can be car- 
ried out under the assumptions of Lemma 8. 1 
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Proof of Theorem 3. Define [On], 6,'. and ?, as in the proof of Theorem 2 but 
with H,, and 8, in place of H and 6. It suffices to show that the conclusion of Theo- 
rem 3 holds for 7". To do this, let V = v ( x , ~ , ) ,  v, = av/ae,, U, = l', - E [ Y l V  = 
v(X,, B,)], and W,, = W [ v( X,, B,)]. Some algebra and Taylor series expansions yield 

where R,< ( P  = 1,. . . ,l') is obtained by replacing H and 6 with and R, in the cor- 
responding terms in the proof of Theorem 2. 

(nhl")RnI = op( l )  by a proof identical to that for R,, in Lemma 6 .  Convergence 
in distribution of (nhl/')R, follows from Lemma 8 and arguments identical to 
those used in proving Theorem 1 .  By using Chebyshev's inequality, it can be shown 
that nhl"R,, = op( l )  and nh"'R,, = o,,(l). nh" '~, ,  = op( l )  follows directly from 
Lemma 8. Also by Lemma 8, 

1 'R,, = h 1" w,,n-lt'h-l,J A"(P;)G",(v",) + 0 J l ) .  
,=I 

where V,, = v(X,,&),  and and 6, replace F a n d  6 in the definition of G,,. Under 
Assumprion 12. E[G,,(u)] = o[h' /" /(nhl , ' ) ]  and Var[G,,(v)] = 0 [ ( n h ) - '  ] uni- 
formly over v E S,. Also. Cov[G,,(v,),G,(vJ)] = O(l /n) .  Therefore, ( n h 1 ' ' ) 5 6  = 
o,(l). A Taylor series expansion may be used to show that (nl"h'")[EIYI u(X,B,) = 
~ . ( r ,  R,)] - ~ [ v ( . r , ~ ) ] )  -.~'[u(.r,R,)] uniformly o v e r x ~ ~ , ~ .  Therefore. (nh ' , ' )~ , :  = 
p + o,(l) by the strong law of large numbers. It is easily seen that ( n h ' " ) ~ , ~ ,  
( n h '  ' ) R , , ~ ,  (nhl"' )R,,,, , and ( n h " ' ) ~ ~ , ~ ~  are all o p ( l ) .  ( n h " ' ) ~ , , ~ ~  = R:.,, + 
o,(l). by Lemma S, where 

Also by Lemma S, E( R:, ,,) = o ( l).  Arguments similar to those made for n 'h "'Rn6 
yield Var(Rz,,,) = o ( l ) ,  so = op( l )  by Chebyshev's inequality. W 
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Wolfgang Hardle 

Der Sonderforschungsbereich 
Quantifikation und Simulation okonomischer 
Prozesse 

~konomische Prozesse sind sich im Wandel befindliche wirtschaftliche Systeme. 
Die Kenntnis der Quantifizierung und Modellierung einer solchen wirtschaftlichen 
Dynamik erlaubt etwa die Analyse der Entwicklung des Arbeitsmarktes, der Innova- 
tionsfahigkeit verzerrter iikonomischer Strukturen oder die Migration von Arbeits- 
kraften innerhalb Europas. Die Dynamik des Preiswettbewerbs, Entscheidungen 
uber Fusionen und Firmeniibernahmen, die Preisbildung auf den Finanzmarkten und 
die Stabilitat der Geldnachfrage sind wichtige Determinanten wirtschaftlicher Pro- 
zesse. Die flexible statistische Modellierung solcher Daten und die Elfassung die- 
ser Modellierungsinstrumente in  Daten- und Methodenbanken sind Voraussetzun- 
gen fur eine empirische Analyse okonomischer Prozesse. Eine solche quantitativ 
orientierte Analyse kann nur im Dialog mit okonomischen Konzepten, mit mathema- 
tisch-statistischen Methoden und durch computergestiitzte Simulation durchge- 
fuhrt werden. Hierzu ist 
ein verstarkter Einsatz Dcr Sondcrforscliungsbcrcich crrnijglichl diesen Dia- 
van vernetzten und paral- log: Die okonomisclie Theorie s le l l l  lclccn rur rneObarc 
lelen Hochleistungsrech- I lypolhesen bereil, die quanli lal iv-slal isl ischen Facher 
nern notwendig. enlwickeln die Werkzeuge zur rrnpirischen Uberprii- 

fung, die angcwandLe Mathemalik hilfl. be; der Bewer- 
lung der Ergebn isx  und der Enlwicklung neuer Melho- 
clcn. 

Die Projekte 
Das Gesamlkonzcpl cles Sondcrforschungsbcrciches 
als Dialog lheoretischer untl praklischer Fachcr 
komml in der Gliederung der drei Projeklbereiche zum 
Ausdruck: 
Projektbereicli A: Quanli lal ive Verfahren 
13rojcktbereich K: Malhematische ivlethoclcn 
Projektberc,ich C: Okonomische Modellierung. 

Irn rolgcndcn werdcn d ~ c  c~nzclnen Prolckle kurzvorgc- 
s lc l l l  h o n k r ~ l c  Zusammrnhangc der d r c ~  I'olck1hcrc1- 

Portfolio-Optimierung 

chc wcrticn ansclilie0end am Rcispiel *Akl icnrcnt l~-  
lcn. und ~I~raucnheschaf l igung. verdeulliclil. 

ltl/andel aul'dem !\rDeilsmarkl (Projekt C2) 
4rbeilnelirner mussen sich neuen !\rbeilsbedingungcn 
anpasscn. sei es durch Weiterbildung. 13eruI'swcchscl. 
Migralion oder Ausl.ritlaus dcm Erwerbslcben. Dic cm- 
pirischen Befundc in diesem Bercich dculen bisher dar- 
au l  hin, dal? die Dynamik der entstehentlen Arbeils- 
miirktc Osleuropas schon (nach knapp drci Jahrcn) 
rnehr und mehr wie die im Weslen funklionierl. Der 
.VIalchingAnsalz (s. Glossar) l i r re r l  eine befriedigendc 
Erkli irung fur clicsc Ilynamik. is1 aber thcoretisch 
nicht ausreichend I'undicrt, vor allem in Oczug auf clic 
'I'rennung \)on Malches und den Zusarnrnenhang xwi- 
schen Arbeilsplalzen und 13escharLigung. 

D j m r n i k  des M4~/eb1bewerbs und tier Preisbildung 
be i  kapazilalsl~eschrank~~ngcn (Projekl C4) 
Unlcr simulierlen Kedingungen (Laborexperimenle 
am Kcchncr) werden nichlkooperalive Auklionsspicle 
durchgcfu hr l .  

Empirische li;7pilalmarkl/brschung (Projckl  C1) 
I-lier werden klassische Modelle zur erwarlelcn Rcndi- 
le von Aklien. wie r l w a  das Capilal Assel Pricing Modcll 
(CAPM), rnehr und mehr in Frage geslelll. Die 
4rbeilsgruppe des Projekks C1 bel'alll sich m i l  dcr 
ISntwicklungund tberprurung neuer I-lypolhcsen zur 
l irklarung der ernpirisch beobachteten Anomalien 
(s.  dazu Abb. I und das Keispicl ~ A k l i c n r c n d i l c n ~ ~  auf 
Seile 20). 

Sbabililci'l der G?ldnachli;7gelbnklion (I'rojckl C3 )  
M i l  unterschiedlichen rnelhodischen Ansatzen wirt l  un- 
Ic r  anderern d i r  Slabil i tal der Geldnachfragc in 
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Deulschland für allernalive Gcldmengendefinilioncn 
sowie die Modellierung dcr Geldnachfrage nach dcr 
deulschcn Wiedervereinigung unlersuchl 

n/lalhemalisch? Theorie der Finanzmärkle (Projekl B2) 
In diesem Projekl werden in breitem Maße stocliasli- 
sche Prozesse mi t  steliger Zeil eingesetzl. Die cntspre- 
clienden Plodelle. z.B. für Börsenkurse. zeichnen sich 
dadurch aus. daß man viele der einschneidenden Vor- 
aussetzungen. wie Vollständigkeil des blarkles, auflok- 
kert. Im Ergebnis erhält man Exislenz- und Eindeulig- 
keilsaussagen für Preise von sog. contingenl claims (s. 
Glossar), insbesondere Oplionen (Termingeschäfte) 
und Absiclierungsslralegien. die Risiken dieser deriva- 
tiven Inslrumente (Aklien. Einlagen elc.) minimieren. 

Interoperable InformalionssysLeme (Projekt A3) 
Im Zusammenhang mit Projekl B2 is l  der effizienle. 
inlegrierte Zugriff auf Dalen und hlethoden. die an ver- 
schiedenen Orten auf untcrschiedlichcn Rcchncrarchi- 
lekluren und unler verschiedenen Betriebssystemen 
abgelegt sein können. von zentraler Bedeutung. In gc- 
planlen Forschungsarbeilen wcrden Überlegungen zur 
scmanlisclien Systemintegralion m i l  I- l i l lr von sog. 
~P le la in fo rma l i on~  angeslellt. die die Bedculung eines 
vorliegenden Datenbestandes bcschreibl. Die meislen 
vorlicgcnden Ansätze sind jedoch auf die Verwallung 
relativ cinfach slruklurierler Oateicn beschränkt: für 
die ivlodellverwallung im Bereich der ijkonomischcn 
Analyse sind noch wesenlliclie Erweilcrungen nolwcn- 
dig. 

Ein Sonderforschungsbereich (SFB) 
i s l  ein langfristig angelegtes Forschungsvorhaben 
m i t  mehreren fachübergreifenden Projekten. Seil Be- 
ginn dieses Jahres wird an der Humboldt-Universi- 
tät ein SFB (373) von der Deutschen Forschungsge- 
meinschaft (DFG) zum Thema ~Quantif i l tation und Si- 
mulation Ökonomischer Prozesse. gefördert. Der 
SFB umfaßl insgesamt 10 Projekle (s. Übersicht auf 
S. 21). wovon eines an der FU Berl in und eines an 
der Universilät Potsdarn durchgeführt wird. 
Berl in eignele sich besonders für dieses Forschungs- 
thcma, da sich in  den letzten Jahren die große Chan- 
ce ergab, gemeinsame Forschungsinleressen von 
bislang getrennt voneinander arbeitenden Forsclier- 
gruppen zu bündeln. Beteiligt sind die wirtschafts- 
wissenschai'lliche Fakullät und das Ins l i l i i l  Tür Ma- 
thematik der Humboldt-Universität. das Institut Für 
Angewandte Analysis und Stochastik (IAAS), der 
Fachbereich WirlschaPtswissenschafl der FU Berl in 
sowie das Institut für Mathematik der Universität 
Potsdam 

Nichlparamctriscl~? Zeil,reii1~naiialyst~ ( Proic k l  A2) 
In der nichlparamelrischen Zeilreilienanalyse gehl 
man davon aus. daß die vorliegenden Zcilrcihen (z.B. 
Aklienrenditcn. Zinssätze. Gcldmcngenaggrcgate. 
Uruttosozialprodukl) von slochaslischcn Prozessen 
aus einer sehr allgemeinen blodellklasse gcnerierl wer- 
den. Diese Prozesse oder spezifischen Charaklerislika 
werden auf sehr flexible Wcise aus den vorliegenden 
Dalen modellierl bzw. geschälzt und beispielsweise i'ür 
Prognosczwecke benu lzl. 
Wenngleich rnil diesem Verl'ahren bcreits gewisse Er- 
folge bei dcr I'rognose crziell worden sind. so bleiben 
derzeit doch eine Reihe von I'roblemen. wie z.B. Spezifi- 
lkationen und Moclellauswahl. ol'l'cn. lnshesontlerc isl 
d i r  asymplolischc Theoi'ir der hier int,(!ressiei'cndcii 
Scliälzcr untl 'I'rslwrrl\~erl'alircn noch unzureichentl 
enlwickcll. 

Semiparametriscl~r n/lodellc (Projekl I\ I ) 
werden in der quantitaliven ölionomisclien Forschung 
vielfällig (wi? etwa in blarkeling untl der Arheitsmarkl- 
lorschung) angewandt. Das Inslrurnc~nl ( I r r  scmipara- 
melrischen Modcllicrung erlaubl es. ökonomisclic 
Slrukluren untcr schwachen Annahmen über d i r  Da- 
Lenverteilung zu verslehcn. Der I'rcis. der fiir tlicse 
(ol'lmals exploralive) Ilcrangchenswcisc zu zahlen isl. 
i s l  dic enorme Kcchenintrnsitäi uritl die NoL~\;endigl<oil 
hochinlrraklivcr (;rapliiksyslcmo. 
IKin Kcispiel l'ür die explorativr graphische Modellir- 
rung ist in Abb. 2 tlargeslcll1. Die grüne und die rolc 
Obcrfläclie zeigcn zwei Oberflächen glcicher Dichlc 
von etwa 20 000 Dalcn der Sluclic Oualil'ikalion untl Bc- 
rufsvcrlau(' 8'5/86 des Lenlralinsli luls fiir cui'opäischr 
Soziall'orscliung. Die Achsen sind k=Belriebszugeliörig- 
keil. Y=Alter und %=BrullomonaLseinkoinincn. Die ex- 
lcrne gckrümmle Form der Obcrflächc zeigl die hohe 
Nichll ineari läl dieses Dalensatzcs. Die klassische 
quanlilalive Theorie würde hier ein clwa lr icl i lcrförini- 
ges Gebilde anntihmeii. Sehr tlwllich erkenn1 man j(l- 
doch rnil. dieser intc:raltli\i graphischm 'I'cchnilt das Pla- 
lcau Ikorislanl~er Einkommen für einen clwa tlr~ic,cl<i- 
gcn H ~ r c ~ i c l i  tlcr (x. y) Ebene. Offcnsiclitlich sind in tlic- 

HUMBOLDT-SPEKTRUM 1/94 19 

HUB - Spectrum. Zeitschrift der Humboldt-Universität Berlin

Härdle, W. (1994) Quantifikation und Simulation ökonomischer Prozesse.



Glossar 
I;uo/slrapping: Damit wird 
versucht. die Eigenschaften 
von Slatisliken (lCu%wmn 
von Reg~~ssionsschätzer~i. 
Veri.eilungen von Teslsrari- 
sliken u.a.1 in1 Simulalions- 
r~periment zu ermitteln. 
Aus einer anfänglich zu 
schätzenden Verteilungs- 
funktion werden dabei 
durch >Ziehen und Zuriickle- 
gen- sländig neue Slichpro- 
ben wfallig gezogen. die 
dann zur Ermittlung der 
inreressieren(1en SQtistik 
venvttndet werden. Auf die- 
se Ukise können unter be- 
stimmten Bedingungen effi- 
zientere Ergebnisse erzielt 
werden als auf Basis einer 
nur' asymplolisch gültigen 
stocl~astischen Theorie. 
h'rwmpling: bedeulel das 
mehrmalige Ziehen aus ein 
und derselben Sticliprobe. 
lioß der Stichprobe (Daten) 
11.ird zuerst eine Scliätzung 
(etwa des Risikos eines 
Porrfolios) gebildel. Dann 
ii.ir(l die Cenauigkeil dieser 
Schätzung durch Simula- 
tion. dh .  mehrn~aliges Zie- 
hen einer neuer] Stichprobe 
aus tlen i~orhandenen Da- 
ten. imtersochl. Dicws \,er- 
f a h ~ n  be1101igI hochlei- 
slungsfähige Rechner. ria 
sich mir der .Inzahl rler Si- 
mula~ionen auch die Genau- 
igkeii des Scliäl~zem i.erb~s- 
seri. 

ser Kombination von Bel,rieliszugeliörigIieil ~i i i t l  t\ll.er 
keine Einkommensäntlerungen vorgekommen. -\~ii 'Sei- 
1,e 22 geben wi r  ein Beispiel I'iir seiniparamelrisclie 
Single Intlex Modelle für tlie Frage tler Beschäftigung 
von Frauen. 

Theorie und i l  n~iiefldung ilon Rt.sa~nplingr ~t~r fa l~lo l  
(Projekt 131) 
Dieser Rereicli hai in tlen leiz1.cii Jal i lwi  eine rasanbe 
Entwickliinggenolnmen. wobei Veriahren t'iir tlie Scliät- 
zung von Charaki.erisi,iken \;on 12egressioiisscliätz~1n- 
gen bei identischen I;'elilervert,eil~~nge~i \iorgeschlageii 
westien. Dabei sind die esakl.eii Eigenscliai'i,en tler 
Bootstrapxrfahren (s. Glossar) und der zugehörigen 
adaptiven Schätzungen k a m  unt,ersucht. obwohl sie 
für die bei ökonoinisclien Anwendungen vorkommen- 
den kleinen und mittleren Beol~aditiingsumfänge von 
entscheidendem Interesse sind. 

Das Projekt B1 befa6t sich aiich mi t  I~Vaifelet-Metho- 
den. Damit können in verbesserter Qualität Zeitrei- 
henpliänomene erfaßl iintl bearbeitet werden. die st,ai'- 
kes räurnlicli oder zeitlich inhomogenes Vei'lialten auf- 
weisen. Dies finde1 insbesondere ilnwe,ndiing bei ab- 
rupten Oszillationen oder Sprüngen. wie sie typisch 
sind für Ökonomien. die sich iiii Wandel befinden. 

~ l i i c l~ t l jneare  i\/lo(lelle und I'erfa hren (Pro je k I B3) 
Dieses Projeki, befaßl. sich miL tlei' Eiit.wickluiiggeeigne- 
[,er Methoden zur Lösung nichtlinearer st,atisbische,r 
Probleme. Zusammen mi t  dem Projekl C4 Dynamikcles 
l&'e;tittbe~rwbs sollen tragfLäliige i4odelle für die Mana- 
garkompensat.ion. K R .  als Funkt,ion der I!nt,ernehmens- 
größe. entwickelt werden. 

Beispiel I: Aktienrenditen 
Steuerfreie Anleger. die Anfang 1953 insgesamt 
10 000 DM in Frankfur[.er i\kt.ieri anlegten. bre i l  slre,u- 
ten. nicht umscliichle~len ( ~ b u y  aiitl l i o l t l ~ )  uiitl Divicle.ii- 
den. Bezugsrechte und äIinlic,lie Vermögeiisvorleile 
reinvesfierteii. hätten Eiicle 1902 nach iiiisere,n Be- 
rechnungen über einen Kapitalbelrag von 777 986 DIM 
verfügen können. Anleger. die i\iifang 1933 ihr Kapital 
auf ein Sparbuch eiiigezalilt Iiätben. das für den gesani- 
ren Zeilrauin mi t  einem jälirlic,Iieii Zins von 11.5% 
ausgestattet gewesen wäre. Iiälleii es auf den gleichen 
Betrag gebracht. Sparbiiclier bzw. festverzinsliche 
Wert,papiere mii. einer solclieii Verzinsung existieren 
aber leider nicht,. 

Monatsgeld hätte im  betracht,eten Zeitmum in1 Schii i l l  
5,6% pro Jahr erbracht. 10 000 DM wären bei einer 
vollen Rei~ivest~it~ion der Zinszahluiigen in den geriann- 
ten 40 Jahren auf88 306 Dhl angestiegen. M i t  Euntles- 
anleihen oder ähnlichen laiiglrisbigeii i'cstverzinsli- 
chen Wertpapieren liäi.le eine Verziiis~iiig von 7.6% 
pro Jahr eraie.ll werden können. 
Als laiigfrist,ige Kapitalanlage waren t \ l i t ie~i  iiii genaiiii- 
ten Zeitraum deshalb weifaus vorteillial'ler als Fesiver- 
ziiisiiclie. Aktieiiliesitz isL iiaLürlicli i i i i l  einen1 nicht 
unheträclitliclien Risiko verbuntlen (vgl. Atib 3). 

Nach (lern nun sc,lion Iilassischen hilotlell tler moderneii 
Kapilalrnarkll.lieorie. dem Sliarpe/Lini.iier CapiiaI i\s- 
set Pricing Motlell (CAPM). Siir (las Sharpe I W  den 
liobelpreis erhielt. sollte tlie laiiglristige üi i rch- 
schii i t~tsre~it l i te eiiizeliiei' AIiLieii aui' lineare \\leise ri i i l  
ilireni (iiiclil,tli\;ersiSizierbi.ire~nj Risilio zusaniinenliän- 
gen. Iin wrgaiigeiieii Jalirzeliiii \\ ui~tlei i  iiii~i r i i i c  Reihe 
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von Anomalien eiilileckl. tlie au l  rast allen großen kapi- 
lalmärkten und bercits seit langei' Zeit esislieren lind 
tlie diesein Modell \viilerspi'echen. Dazu zählen: der 

3 ' .  ~ioRen-En'elii. dei' Jariuar-EKeki. der BuchwerV 
Marlii.\\~ert-ESI'[>kt und i lcr \l,'inner/Lciser-Effekt. 

GröBen-Ell'ekt: Datnib wird tlie empirische Regelmäßig- 
keit. bezeichnel. daß Akticn mi t  nicrlriger Marktkapitali- 
sierung in  der Vei'gangenlirit in Deiitscliland eine um 
durchscttnilllicli zwei Prozent Iiöhere Rendite erziel- 
ten als Akbien von Urilernehmen mit  Iioher Mark tbp i -  
Lalisieruiig. Es is l  also sinnvoll. auch AI<tien mitt lerer 
und kleirier C'ntetiieliinen ins Poi'tektiille aufzuneli- 
rnen und nicht nur die .&Lien dcrgröli len und bekannte- 
slen Gesellschafteii. 
Januar-EIPekl: Er bezeicliriel die Erscheiniing. tlaß Ak- 
tien iin Schnitl in den lclzlen Dezernberbagcn sowie im 
Januar/Fcbruar iingrwiihnlicli stark sleigen. Also, mit  
Aktienkäiilcn nicht wie beim Kauf von Weihnachtsge- 
schenken bis März warten. sondern noch möglichst 
Anfang Dezcrnber ordern. 
BuchwerVhilarkl~veri-Effekt: Er bezieht sich auf die, 
leicht höliereri D~ircl iscl i~i i i- t .sreriditcn von Aktien. bei 
deneii dieser Ountienl i*elalh I iodi  isi. also nahe bei 
Eins liegt. 
~VinnerlLosrr-ESftlktI: Danach is i  clie Dui'chsclinillsren- 
dite von ,Wien. d i w n  Liirs i,clal.i\'slat'kg?fatlen isl. hö- 
her als dir  von 4ktirr i .  deren Kurs irn letzten Jahr ge- 
stiege11 ist. 

1-iaiiplziel tles Pr 'v iekl~s C I ist es. dri 'arbig~ i\nomalien 
zu ülierpriifen iiiitl gci~~~l!tiricnfalls Ei'klärungsliypotl~e,- 
sen fiii' ihre li\isieiiz zii erai~heiirr i  untl zii lesten. 
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Frauenbeschäftigung 
Die Bestimmung von Einflußfakloren für die Beschäfti- 
gung von Frauen ist ein wichtiges Thema der quantitati- 
ven Wirtschaftsforschung. Diese Thematik wird in den 
Projekten Al ,  BI.  B3 und C2 mit verschiedenen Metho- 
den behandelt. Als Faktoren für die Beschäftigung wer- 
den etwa die allgemeine Arbeitslosenrate oder der 
Steuersatz bei Beschäftigung zu einem bestimmten 
Zeitpunkt betrachtet. Ebenso werden für die Frauenbe- 
schäftigung im allgemeinen Größen wie Alter, Ausbil- 
dungszeit. Gehalt des Ehepartners. Ausbildung von 
Mutter und Vater. die Zeiten früherer Beschäftigung 
und die lndikatorvariable .Kinder unter sechs Jahren- 
betrachtet. Eine Indikatorvariable ist gleich 1.  falls die 
Bedingung (hier .eine Frau hat Kinder unter sechs Jah- 
ren«) erfüllt ist. sonst 0 .  Die Tatsache der Nichtbe- 
scliäftigung der Frauen wird ebenfalls als Indikatorva- 
riable codiert (Y= I =4eschäftigt.; Y=O=micht be- 
schäftigt<<). Die Frage an den quantitativen Ökonomen 
ist nun die der Modellierung der Frauenbeschäftigung 
Y als Funktion von X = (XI.  X?. ..., X8. 2). wobei XI=nAI- 
tere. X2=~Ausbildung~~. X3=~Gehall des Ehepartners*. 
X4=4teuersalz<<. X5=~Ausbildung der Mutter.. 
XG=*Ausbilciung des Vaters.. X7=~Arbeitslosenrate~ 
X8=~Berufserfalirung<~, Z=mKinder(< bezeichnen. 
Das Interesse der Modellierung wird sich insbesonde- 
re auf das Stuclium des Einflusses von Einzelfaktoren 
konzentrieren. Exemplarisch möchten wir hier der Va- 
riablen Z (.Kinder unter sechs Jahren*) besonderes Au- 
genmerk schenken. Die Aufgabe der Modellierung kann 
folgendermaßen formuliert werden: Finde eine Appro- 
ximation an die Chance (Wahrscheinlichkeit) der Be- 
schäftigung von Frauen als Funktion der Faktoren X. 
Dies geschieht wie auch bei der Bestimmung anderer 
ökonomisclier Größen (wie Inflationsrate. D a .  Kredit- 
glaubwürdigkeit. ...) durch die Bildung eines Index. Die- 
ser  Indes ist eine Wichtung der Einflußfaktoren. 

Die Gewichte ßi und a bestimmen insbesondere durch 
ihr Vorzeichen die größere oder kleinere Chance Iür 
die Beschäftigung der einzelnen Frau. Ein positives 
Gewicht ß2 etwa besagt. daß die Ausbildungzeit die 
Chancen der Beschäftigung erhöht. Es ist klar, daß die- 
ser Index nur eine Approximation darstellen kann, 
selbst zwei Individuen mit den gleichen Faktoren X kön- 
nen verschiedene Beschäftigungsverhältnisse haben. 
Diese im Modell enthaltene Unsicherheit wird durch ei- 
nen Fehlerterm aufgefangen. Dieser Fehlerterm wur- 
de in bisherigen Studien mit einer theoretisch vorgege- 
benen Verteilung modelliert und führte zu sog. Probit- 
oder Logit-Modellen. Die Gründe dafür waren zualler- 
erst  praktischer Natur: Die Rechenkapazität war nicht 
ausreichend für die Analyse komplexerer und daten- 
treuerer Modelle. Empirische Befunde der letzten Jah- 
re deuten jedoch darauf hin. daß diese (parametri- 
schen) Modelle zu stark verzerrten Aussagen über die 
lndexgewichtung führen. Am SFB werden nun unter 
Einsatz von Hochleistungsrechnern (Workstations) die- 
se restriktiven Annahmen aufgelöst und damit eine rea- 
listischere Modellierung durchgeführt. Erste For- 
schungsergebnisse gibt e s  für das dargestellte Beispiel 
der Modellierung der Frauenbeschäftigung. 

Der lndexvektor (Gewichtsvektor) (ß,. .... ß8) kann 
durch die semiparametrische .Average Derivative Esti- 
niation (ADE)<<-Methode bestimmt werden. Im vorlie- 
genden Beispiel einer Stichprobe aus den USA vom Um- 
fang n = 193 ergab sich für ( ß I .  .... ß8): 

Alter ß l  Gehalt Ehe- Ausbildung Arbeitslo- 
Partner ß3 Mutter ß5 senrate ß7 

-0.3 88 -0.176 0.163 0.054 

Ausbil- Steuersatz Ausbildung Berufser- 
dung ß2 ß4 Vater ßG fahrung ß8 
0.445 -0.385 -0.269 0.697 

Dies zeigt z.B. einen negativen Einfluß der Faktoren 
Alter, Gehalt des Ehepartners und Steuersatz. Relativ 
großen, positiven Einfluß haben dagegen erwartungs- 
gemäß Ausbildung und Berufserfahrung. Die Ausbil- 
dung von Vater und Mutter der Frau haben gegensätzli- 
che Vorzeichen. Die (exogene) Arbeitslosenrate hat für 
die betrachtete Stichprobe kaum Bedeutung. 

Die Marginalanalyse von Z kann nun durch Aufspal- 
tung der Gesamtstichprobe in zwei Teilsticliproberi eqt- 
sprechend der Ausprägung von Z (0 oder I )  behandelt 
werden. Die folgende Abb. I (oben) zeigt nichtparame- 
trische Schätzungen der Beschäftigungswalirschein- 
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FORSCHUNG 

Teilstichproben 

1 i 

lichkeiten in Abliängigkeil vom Index ßIX, + ... ß8X8. 
D i r  blaue Kii ivc zu tlcn blauen Datenpunklen ent- 
spricht der Teilstichprobe *keine Kinder unler sechs 

Aktivitäten des Sonderforschungsberkiches 373 
Alle Aktivitäten des Sonderforschungsbereiches. 
wie die Einladung von Gästen, Veranstaltung von l'a- 
gungen und Workshops, werden vom Vorstand konzi- 
piert und entschieden. Mitglieder des Vorstandes 
sind alle Teilprojektleiter (ex olficio). die Geschäfts- 
führerin (Dr. Sibylle Sclimerbach) und vier wissen- 
schaftliche Mitarbciter. Der Vorstand wählt den 
Sprecher. der den SFB nach außen vertrit l .  Zu den 
wicliligslen Aktiviläten des SFB gehören: 

Projektübergreifeifde I.Vorkshops 
1993 ~Wir lschaftsslal is l ik~ (S. Schrnerbach) 
1993 ~Computeraided Semiparametric Modellingu 

(W. Härclle/B. Rönz) 
1994 vManagerkompensalion<< 

(J. Schwalbach/E. Wolfstctter) 
1994/ d3tatislics and numerics of stochaslic proces- 
1996 ses witl i  applications in f inance~ (U. Küchler) 
1994 >>Nonpararnelric Dynamic Modellinge 

(EC2-Tagung, H. Lütkepohl) 
1995 .Model Management and Metadatau 

(0 .  Günther) 
1995 ~ C u r v e  eslimation and resampling. (0.  Bunke) 
I996 ~Appl ied  Semiparametrics economicsa 

(M. BurdalW. Härdle) 

Jahren. (%=  0). tlie rolc k i r v r  %LI den i!oLcn Dalenpunk- 
Lcn gehört zur andcren 'I'eilslicli~~robt; ( %  = I ). Dcr tiocf- 
i'izienl ct kann dann als ))horizontale Differenz. der 
beidcn tiurvr.n besliininl werden. Im  vorliegenden 
Beispicl crgab sich ct = -0.332. Dies tlriickl den offen- 
sichLlicli negativin Einl'liiß von Kindern unt.er sechs Jah- 
ren auf die Chance zur Bcscliäfliguiig eiricir IVau aus. 

Verschiebt maii tlie i'ote tiiiiw tim den L k r t  ct. müßle 
sie in elwa tleckungsgleicli inil. dei' blaurn kurve sein. 
Diese Vcrscliicbung für die rolc Kui'vc untl d i r  zugeliöri- 
gen Ilai.cnpiinkLc i s l  in Ahl). 4 (unten) dargeslelll. Die 
scliwarzc. dui'chgczugrnc t i u i w  zcigl tlie nichlparame- 
Irische Schälzung (Irr Beschä~Ligii~igs\+~al~rschcinlich- 
keit in Abhängigk(iii vom entlgiiltigen Indes ß I X l  + ... 
lJRXH + cx %. (l.11. jt>l%l unlvr Einl!ezieliiing der lndikalor- 
variablen 7,. 
Dir  resu l t ie iwW hiii3ve zc.igl einen (IeiiLliclien .Buk- 
k e l ~  im liiikcn 'l'ril. der tlurcli tlic obcn genannten para- 
metrischen Vcrfaliren nichl  enltleckt wei'tlen würde. 
Dieser Effckl wird iliii~li pinigc I;'rauen erzeiigl. die 
lrotz m l i l e c h i c r  L'oraussrlzungen* ( im Sinne eines 
kleinen I n t l e ~ w c r ~ c s )  I)cscliäftigl sind. IDics kann 2.13. 
durch rlic l i inbczirhiing wcilei'ci' Faktoren in die Index- 
biidung analysieri ~ \ ~ r ~ l r n  uni1 tlainit Basis beschäiti- 
giingspolilisclicr LlaRnalirnrn \ \ r ~ ~ l c i i .  

d iscuss ion papers. 
Die Publikalions-Reihe iördert durch projeklbereich- 
übergreifendes Referieren den ~;issenschaftlichen 
Aust,ausch der Projekte. Dic discussion papersu 
sind über eleklronische Maildiensle abrufbar: anony- 
rnous FTP 'I4 1.20.100.2. Dircctory puWpaperslstb: 
Postscri()tfiles sfbtlpOO I .os.Z.... . 

Seminare 
Jede Woche wird in verschiedenen Seminaren für 
Empirische LVirtscliaftsforschting an der I-tuinboldt- 
Universität cin projektiibergreifendes Programm 
realisierl. das allen Teilprojeklen eine öiknt l iche 
Plattform zur Darstellung und oft auch kontroversen 
Diskussion ihrer E'orsch~ingsergebnisse bietet. 

SFB-Nci,vslcrber 
Diese wöchenllicli erscheinende Publikation machl  
alle wissenschaftlichen AktiviLät,en des SFB einer in- 
tcressierlcn Öffentliclikcit bekannt. Redaktion: Dr. 
Sibylle Schmerbacli. Eimear Kelly. BA.. D.B.S. 

Die Aktivitäten sind ein wesentliches Element der For- 
schungstätigkeit des SFB Sie werden maßgeblich dazu 
beitragen, Ost-Berlin als Wissenschaftsstandort auch im 
internationalen Bereich wieder zu etablieren. 

Prof. Dr. 
WoHgang Härdle 
'c'acli Promolion (Uniwrsi- 
lä1 Hcide.lberg) und Habiliki- 
lion (Uriiversiläl ßoiin) war 
\b.- tlärdlc zuiiäclisl Visiling 
Prolessor ( l 989-90). dann 
IProl'esseui 0i'diiiaii.e (C4). 
CORE, an der Univer'sile Ca- 

geliei zalilreiclirr Sarninel- 
I~ändc unrl Sclii.it'leiii'eiIicn. 

Kontakt 
Hum bald t-Universitä t 
zu Berlin 
Wirlschai'lswissen- 
schaftliche Fakuliät 
Institut für Statistik und 
Ökonomelrie 
Spantlaucr Slr. I 
11-10 178 ßerlin 
l'el.: 030/2408-23 U230 
Fax: 030/2468-249 
Bitnel: haerdle @ 
wiwi.liu-berlin.tlc 
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Increasing dispersion in regression analysis mans that with positive changes or the explanatory 
variable the residuai variance increases. Motivated by theuretical questions in stability of demand 
systems and by bandwidth selection problem in kernel scatterplot smoothing. we consider the 
question of increasing dispersion in a nonparametric way. It amounts to testing the positive 
definiteness of differences of covariancc matrices. The asymptotic distribution d the smallest cjgen- 
value of the estimator of this difference is rather complicated. and that is why we also apply 
boo~strapping The proposed method is appIid to family expenditure data from the United Kingdom. 

X. Introduction 

The residual pattern in regression analysis gives important information on the 
aptness of the model under investigation. Missing terms of a regression equation 
and heteroscedastic variance functions can be identified and estimated. OFten one is 
interested in the variance function itself to understand the error structure. Estima- 
tion of variance functions in the context of linear models with unknown residual 
structure has been considered by Carroll (1 982) and ~obinson (1986) for two stage 
weighted least squares estimation of parameters. In these papers the raiduals are 
computed from a parametric linear model. More generally the variance function 
may be computed from a nonparametric regression model, this is the situation we 
consider here. More precisely we are interested in increasing dispersion which is the 
property that the errors are more spread out as the value of the exptanatory 
variabk increases. 

* Comspondirrg author- 
* Research done while both authors were visiting &ER, Tilburg and Institut dc Statistiqut and 
CURE at Univmitk Catholique dt Louvain. 
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Suppose that we are given observations {Xi, ri)]lf l E Rd", !: = y,, . . . , G), 
independent and identically distributed with distribution function F and density5 
If d = 1, then increasing dispersion describes a fan-shaped variance pattern of 
a point cloud. For a specific application we have in mind, we shaIl consider the 
general case d 2 l. For a fixed X, define the bnditional covariance 
C(x) = C Q V [ ~ ~  X = X]. The property of increasing dispersion that we want to 
consider is 

Here "A > O" means that the matrix A is positive definite. We shitli also consider 
this property for the conditional second moment matrix D ( x )  = E[YrT I X = X], 

i.e. 

The motivation for consideration of these properties partly comes from theoret- 
ical work in economic demand theory. In connection with Hi1denbrandYs (1992) 
analysis of market demand, "increasing dispersion" of the form ( l .  I )  and (1.2) is 
a key element for stability of demand systems, see also (Hardle et al., 1991) for 
details. Of course not only in this specific economic application, increasing disper- 
sion is an interesting property to investigate in other contexts. For example, the 
mean squared errors of various scatterplot smoothers involve the residual variance 
function (see Jones, et al., 1994). Also the often used plug-in bandwidth selection 
rule requires estimation of this quantity, see (Hiirdle and Marrun 1993). At this 
stage. the estimation method would heavily depend on the variance pattern, a key 
question on which is whether changes in explanatory variable bring changes in 
variability. The problem of testing increasing dispersi~n also arises when one seeks 
better rt atisrical analysis. f n case of increasin_e dispersion, many standard statisrical 
procedures are inappropriate. This difficulty may be eliminated by taking proper 
transformations on either the response or both the response and explanatory 
variable to promote stable dispersion. For detailed discussion on this issue, we refer 
to (Hoaglin et al., 1983). 

How can we test the propenies (1.1) and (1.1)? A matrix is positive definite if its 
smallest eigenvalue is greater than zero. So a natural way to approach this problem 
is to derive the distribution of the smallest eigenvalue of &) - C(x,) resp. 
@X,) - b { x , )  where 6t.x) and &.l() are estimators of C(x) and D(x] .  A specific type 
of estimators investigated in this paper wilk be presented in the next section. 
Hypothesis of the form (1.1) or (1.2) can then be tested by plugging in the unknown 
parameters of the asymptotic distribution. An asymptotic analysis of the related 
problem on the average derivative of D(x)  has been camed out by HZrdIe and Hart 
( 1992) where also the bootstrap technique is advocated to overcome the difficulties 
arising with the "plug-in technique". The complications arising in this approach 
come from the fact that the asymptotic variance of the desired distribution of the 
smallest eigenvalue involves complex unknowns that by i tseK have to be estimated. 
For this purpose one could employ in a two step approach once more a non- 
parametric a thation technique. Secondader propenies then become questionable 
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since a second smoothing parameter has to be estimated. That is  why we also 
advocate the bootstrap technique which elegantly avoids the difficulties arising in 
plug-in technique. 
In the next section we give the theoretical framework to test (1.1) and (1.2). In 

Section 3 we apply our bootstrap test to data' from the Family Expenditure Survey 
(1968-1983). The last section is devoted to prook. 

2. Tests on inereasing dispersion 

We begin by considering the testing problem ( I  .l). The theoretical framework to 
test I.?] follows afterwards. 

For estimation of the conditional variances 

with mJx) = E [ &  I X = X], the kernel method is applied. Let K denote a continu- 
ous symmetric kernel function integrating to one. An estimator for the mar_pinal 
density g(x) of X is then given by 

where K,(-) = h- 'K( - /h )  denotes the rescaled kernel function with bandwidth 
h = h, 9. For theoretical and practical properties o l  this kernel density estimator, 
we refer to (Silverman, 1986). The regression functions m,(x) in (2.1) can be 
estimated by the kernel method as welt, 

For statisticaf details, in particular mean squared error expansions of this kerneI 
repression smoother, see (Hardle, 1990, Ch. 3). Based on these estimators the 
conditional covariances can now be approximated by 

Let C(X) = (2cL(~)), let be the vector of eigenvalues (ordered in magnitude] o l  
C(x,) - C[xl), and define ~correspondingly. Our testing procedure rejects the nun 
hypothesis H,: L ,  GO in favor of H,: i, >U if ;, is large enough. For this first we 
derive the asymptotic distribution of &,) - d(x,). From an analysis of variance 
of either or h,,, we see that, under smoothness assumptions on the moment 

'The data utilized in this paper wen made available by r he ESRC Data Archive at the University of 
Essex. 

Computational Statistics and Data Analysis, 19, 641-654

(1995) Härdle, W. and Park, B. Testing Increasing Dispersion



functions E[Y, Y, I X = I], the variance is of order (nh)-l. It is therefore reasonable 
to consider the distribution of 

where, for C = (cij), the vector uvec(C) denotes the vectorized matrix of size 
'd(d z + l), i.e. uvec(C) = ( C ~ ~ C ~ ~ ' ' * C ~ ~ ,  C Z I  - - C J ~ ,  -, cddIT. Even in the case of 
simple kernel regression smoothing, the bias is a complicated functionai of the first 
and the second derivatives of the regression function and the marginal density. To 
avoid complication of this form we derive the limiting distribution in (2.5) without 
a bias term that would be reflected as a nonzero mean in the asymptotic normal 
distribution. This can be achieved by slightly "undersmoothing" the estimator, i.e., 
by letting h = h, tends to zero fast enough so that nhqends to zero as well. 

The writing of the asymptotic covariance involves some more notation. Let 
zti(-xj = =( Y, - m,(..c))( & - m&)) and define 

Wirh these elements form the matrix V = ( &,,,.,,) with $d(d + 1) columns and 
rows. The following set of assumptions is needed. 

(AA) The kernel K(u) and l u K(u)l are bounded. 
(A.2) The first moment of the kernel is zero, j uK(u )du  =0. 
(A.3) The second kernel moment is finite, J ~ K ( U ) ~ U  cc. 
(AA) Let t,(x) = rn,(x)g(x), U&) = E [c & I X = x]g(x), 

v ~ C ~ ( . Y )  = EIYtYc&IX = x]~(x), wtrke(x) = EIYtYfGYkI X = x]g(x). 
The functions g (X), t, (X) U&), ul, l (?c), wttak &) have bounded first derivatives. 
(AS) The density of X is positive in xl,x,: g ( x , ) g ( x l )  > O  
(A.6) E[ZiY;'] a, for any C,k  and r,,r, = 0,1,2,3. 
(A.7) gl*(.x), $(X), u ~ ( x )  are bounded for any C, k. 
(AA) The bandwidth h tends to zero in such a way that nh5 -r 0 and nh3 -t K. 

Our first theorem states the asymptotic distribution of c@,) - @c,). 

In the statement of this theorem we have explicitly spelled out the distribution of 
F of the observations ((Xi, xi) :., since in a later theorem we employ the empirical 
distribution function Fn of the data to establish the same limit law for the bootstrap 
approximation. 
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In order to formulate the limit result for the estimated eigenvalue vector we need 
some more notation. Let D(') = det((Cx7) - C(xI - i 1 )  denote the characteristic 
polynomiat of the difference matrix C(x,) - C(x, and define b(j.1 accordingly. Let 
Bij(;L) be the cofactor of the (i,j)th element of C(x2) - C(xI) - >.I and let 

With this matrix define 

and Z = MT VM. The asymptotic distribution of the eigenvalues is given in 

Theorem 2. Under the assumptions (A)  and if all eigenvalues are distinct, lhen as 
R - - ,  X 

~ { & ( d  - 4) IF ]  + N(O, Z). 

The additional assumption that the elements i; are all distinct is important here 
since otherwise the bootstrap will not work as has been pointed out by Hall et al.. 
{ 1993) in rather general context. Beran and Srivastava (1985) also observed this for 
the covariance matrix of' i.i.b. random vectors. 

Boatstrapping the eigenvoiue distribution 

Theorems 1 and 2 give a Ravor that, for testing the positive definiteness of 
C(-Y~)  - C(xl), additional difficulties arise. Estimating the covariance matrix Z re- 
quires yet another smoothing method and in practice miscalculations might occur 
due to the complicated form of Z. An easier approach is called for. The bootstrap 
method is a nonparametric resampling scheme that uses the observed sample again 
and helps in constructing approximations to the limiting distribution. 

Let X = { ( X i ,  &]}l,! denote the observations and X* = ((Xi*, rF)}b, the 
bootstrap observations i.e., 

P[(X: , r : ) )  = ( X j , r j ) ] X ] = n - l ,  1 S i ,  j Sn.  

With these new observations construct now ?(X2)- 6*(xl) from X* as 
C[.X~) - E;,(x,) was constructed from X. We say that the bootstrap works if this new 
estimate C *(x2) - c * (q) centered around the already calculated - d { x I  ) 
tends to the same limit along almost all sample sequences. Since this last distribu- 
tion can be repeatedly simulated on the computer, we can compute statistics like 
confidence limits without knowledge oof the asymptotic nonnal distribution. Belore 
we do this, we need to show that the bootstrap works. This is done in the following 
theorem. 

Theorem 3. Under the assumptions of nteorem L, with probability equal to one. as 
n-+ E X ,  
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interval leads immediate1 y to a test of increasing - dispersion by checking whet her 
0 is in this interval. Table l shows the results of this bootstrap procedure. In the 
rows of Table l we see the results for the different years. in the columns the results 
for different X, ,X,. &, kUP denote the lower and upper 95%-confidence limits 
(computed from the bootstrap distribution) of Amin. 

The bandwidths h chosen for each location were on a logarithmic scale since the 
frequency of observations decreases rapidly as x increases over 1. (Note that the 
observations were scaled by mean budget, i.e. X = 1 denotes the households with 
average budget.) In particular the bandwidth for locations x = 0.5,1,1.5.2 were 
h = 0.1.0. l?. O.I69,O.X97 in a 30% increase of h as one moves to higher budget 
levek. These bandwidths have been orten used in the estimation of mean function 
for this particular data set. As we mentioned in the previous section. the bootstrap 
method for testing on Amin does not work when there are ties for the value of Amin. 
Although we did not report the second smallest eigenvalues of &X,) - d(q)  here. 
we observed that the two smallest eigenvahes are distinct enough to assume that 
there are no ties for i m i n m  

Note from Table 1 that the confidence interval for the smallest eigenvalue 
contains zero very often. Sometimes even the negative definiteness is evident since 
zero is even larger than the right bound of the confidence interval. This does not 
stand in contrast with the results of HIirdle et al., (1991). In that later paper, an 
average derivative (a weighted average of differences) is calculated. and it  is well 
possible that the average derivative matrix is positive definite although some 
difference AD = D ( x 2 )  - D ( x l )  is negative definite. 

Table 1 
Smallest cigcnvalucs of 6{x2) - 6[x,) with confidence limits. All entries multiplied by 10' 
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For the proofs we need some more notation. Let Tadk denote the 8 x l vector 

Then define rhe 8 X :d(d + 1) matrix 

We shall consider the vector Un = [ l ,  Yl,Yk, Y[Y# and the moments 

Define also the matrices 

and W = (W,,,,,.), C 5 k, C' 5 k'. The statistics will estimate 

and TB will estimate B = (B:,, BT2, . . . , OFd,  @I2, . . . , BZd, . . . , @&lT+ 

Proof of Theorem 1. The proof consists of the lollowing three steps. 
step 1:  Y(,/&T,, - EE(T.)IIFJ -, N(O,W) 
step 2: J;;T; CE(TJ - 01 = o(l)  
Srep 3 :  Application of the Mann-WaLd theorem to derive the distribution o l  

uvec [&) - )I 

Proof of Step 1. Let 

Note that T, = n -' El=, Tni and each G, from (4.1) can be writ ten as a sample 
-1 n average of 8 x  1 vectors i.e. ZIk= n Z j  T Let now c = 

T T (c,,, ..., c : ~ , c ~ ~ ,  ... &, ..., cIdjT, then 8 X $d(d + 1) matrix composed from the 
8 X l vectors ctk = (cltk, cz,,, . . . , c ~ , ) ~ .  Then we claim that 
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This can be seen as l'01lows. The observations are i.i.d,, therefore 
var(cTZn) = n var(cTZ,,) = h var(cT T J .  Now 

The first term in (4.5) is h-' W,,,,.,. + O(1). To see this, let us compute 
E [ &  Y ,  YrYKK,'(x - X)] and E[Y,  Y- I;.&.K,(x, - X ) K , ( x ,  - X ) ] ,  for example. 
Other terms can be handled in a similar way. 

The Iast equation follows from the assumptions (A.l) and (A.6). Now using the same 
arguments as in (Schuster, 1971, p.861, 

Since the second term in (4.5) is 0(1), we have 

which proves (4.4). Now 
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All the terms in the curly brackets are of order ~ ( h - ) )  by (A.6). Thus 

if nh3 s as n 4 X. Applying the Berry-Essbn theorem (LoCve, 1963, p. 289) to 
the triangular sequence {C~Z.~);- l, we obtain. 

for any c. By the Cramer-Wold device, this implies 

which proves Step 1. Note that W is  not positive &finite but rather positive 
semidefinite so that this limiting distribution is in fact improper. It  is not hard 
to see why W is not positive definite. Recall the definition of U.;,,,,. from (4.3). 
We can permute rows and columns o l  W to obtain det(W') = der(~p) for 
a 4 4 d  + I )  X 4d(d + I) matrix 

where = (LT, ,J&, . .. .C&, u:~, . .. ,u:~, . . . VL)? Certainly there e'xisrs a c + 0: 
C' U = 0, hence W and thus W is not positive definite. 

Proof of step 2 We claim 

Pu'ote E(7.)  = E(T.,) and E(TR1) has typical elements. EKh[x - X), EYfKh(x - X). 
EY,G&(x- X). We show [EY,Y,K& - X)- g(.x)E(Y,Y,IX =.X)[ = O(h2). 
The other terms are very similar to handle. 

C, 
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by (A.?). Hence 

-,U 

since nh5 0. 

Proof of step 3. Consider the transformation H : R ~ ~ ' ~ '  4 defined by ' 

It .  is straightforward to show that H ( T , ) = u v e c ( i ' ( x t ) - P ( x , ) )  and 
H(@ = uvec(C(x,) - C(x,)). Also going through some tedious calculations, we 
can see 

Proof of Theorem 2. Note that E(&) = (ii - li) 6' (zi) where zi lies in between ii 
and ;li. Using the same arguments as in (Hardle and Hart, 1992) 

This implies 

Proof of Theorem 3. We follow the triangular array approach described in [Beran, 
1984). Define 

We say that a sequence FM of distribution functions is in the class %(F) if and onIy if 
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Let c,, denote the empirical distribution function, then &[Ffi E w(F)] = 1. Note 
that E r ( T t )  = L If we show that, for any F.E%'(F), 

then this implies the theorem, going through the Step 3 described in the proof of 
Theorem 1. The prod of (4.7) can be done by the same arguments as in the Step 1 of 
the proof of Theorem 1. 

Proof of Theorem 4. This proof is completely analogous to that Theorem 2. 

Proof of Theorem 5. Consider the transformation H*: w"'~+')+ Wd(dC1)12 defined 
by 

H*()?) = W:,, H:,, * - m ,  m, H!*, - - a ,  Hfd, * m * ,  H&)($ 

with % ( y )  = ( . ~ a c d ~ ~ ~ ~ )  - (yJtk/yltx). Then by the Mann-Wald theorem again 

Note that H*[ TJ = uvec[B(.r,) - 6(1,)1 and H*(@ = uvec [ D ( x 2 )  - D ( x ,  )l. 
Straightforward but tedious calculations show that 
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1. INTRODUCTION 

Additive models are useful in a wide range of data analyses. They embody a key sim- 

plifying assumption that in some scale covariate effects are separable. This simplifying 

structure is present in many models of economic behavior, see Leontief (1947) for exam- 

ple. Combining separability with an unrestricted functional form for the covariate effects 

provides a very general class of models, that are collectively called additive nonparametric 

regression models. 

Let (X, Y) be a random variable with X of dimension d and Y a scalar. Consider the 

estimation of the regression function m(x) = E (Y I X = X )  based on a random sample 

{(X;, K));=, from this population. Stone (1980, 1982) and Ibragimov & Hasminskii (1980) 
e 

showed that the optimal rate for estimating m is n-ze+d with .Q an index of smoothness 

of m. An additive structure for m is a regression function of the form m(x) = c + 
C;=, mcu(xa), where X = (X,, .  . . , xd)' are the d-dimensional predictor variables and m, 

are one-dimensional nonparametric functions operating on each element of the vector or 

predictor variables with E {m,(X,)) = 0. Stone (1986) showed that for such regression 

curves the optimal rate for estimating m is the one-dimensional rate of convergence with 
e -- 

n ~ e t ~  . Thus one speaks of dimensionality reduction through additive modelling. 

In practice, the backfitting procedures proposed in Breiman & Friedman (1985) and 

Buja, Hastie & Tibshirani (1989) are widely used to estimate the additive components. 

These methods have been evaluated on numerous datasets and been refined quite consid- 

erably since their introduction. They are based on iteratively calculating one dimensional 

smoothers until some convergence criterion is satisfied. The resulting procedure is linear 

in Y, provided the one dimensional smoothers are linear; this is the basis for confidence in- 

tervals and degrees of freedom calculation. However, neither the bias nor the variance have 

been obtained explicitly. Recently, Linton & Nielsen (1995) and Tj~s the im & Auestad 

(1994) have proposed an alternative procedure for estimating the components of additive 

regression. These new procedures are based on direct integration of the initial multidi- 

mensional smoothers exploiting the following idea. Suppose that m(x, z) is any bivariate 

function, and consider the quantities pl (X) = S m(x, z)dQ(z) and p2(z) = S m(x, z)dQ(x), 

where Q is a probability measure. If m(x, z) = ml(x) + m2(z), then p,(.) and p2(.) are 

Biometrika, 83, 529-540

(1996)  Linton, O.B. and Härdle, W. 
Estimation of Additive Regression Models with known Links.



ml(.) and mz(.), respectively, up to a constant. In practice one replaces m by an estimate. 

The statistical properties of the integration method are straightforward to derive. 

For many situations, especially binary and survival time data, a more appropriate 

framework for modelling is, in the parametric case, provided by Generalised Linear Mod- 

els, see McCullagh & Nelder (1990). Hastie & Tibshirani (1991) extend these ideas to 

nonparametric modelling. We consider two different versions of this: the partial and full 

model specifications. In the full model specification, the conditional distribution of Y 

given X belongs to  an exponential family with known link function G and mean m, where 

where E { f,(X,)) = 0, a = l ,  . . . , d. This full model specification is what is usually 

called Generalised Additive Model. It implies for example that the variance is functionally 

related to the mean. In some respects we prefer the partial model specification in which 

we keep (1.1), but do not restrict ourselves to the exponential family. In this case, the 

variance function is unrestricted. This flexibility is. a relevant consideration for many 

datasets where there is overdispersion, see Cox (1983). When G is the identity function 

we have the additive regression model examined in Linton & Nielsen (1995). Other 

examples include the logit and probit link functions for binary data, and the logarithm 

transform for Poisson count data, see McCullagh & Nelder (1990), or more generally for 

when the regression function is multiplicative. 

The Backfitting procedure in conjunction with Fisher Scoring is widely used to es- 

timate Generalised Additive Models, see Hastie & Tibshirani (1991). These methods 

exploit the likelihood structure, but are even less tractable from a statistical point of view 

when G is not the identity, since the estimate is not linear in Y. 

We propose an integmtion based method of estimating the components f, based on 

(1.1). The main advantage of our method is that one can obtain its asymptotic properties. 

It is asymptotically normal at the optimal one dimensional convergence rate. One version 

of our procedure involves merely exploiting (1. l), but we also suggest how to take account 

of the additional information provided by the exponential family structure. We discuss 

the merits of imposing this additional structure. 
3 
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In $ 2 we define the estimation procedures. In $3 we give the asymptotic properties 

of the procedures. In 55 we give the results of an application to German migration data. 

2. ESTIMATION PROCEDURES 

2.1 Estimating the Additive Components 

Partition X = (X1, X2), where XI is the one dimensional direction of interest and X2 

is a d - l-dimensional nuisance direction, and let X = (xl, x2). For any regression function 

m and transformation G, define the functional 

where p2(x2) is the joint density of x2. We here consider estimation of this functional 

motivated by the fact that under the additive structure (1.1), q1 is fl up to the additive 

constant c.  The general strategy is to replace both m and p2 in (2.1) by estimates. We 

use the multidimensional Nadaraya- Watson kernel estimator 

where I< and L are compactly supported Lipschitz continuous kernels integrating to one. 

Here, Kh(.) = h-lI<(h-'.) and L,(.) = g-(d-l)~(g-l.).  We take I< to be a second order 

kernel and L to be a product of univariate kernels of order q, i.e. J L(u)ujdu = 0 for 

j = l , .  . . , q - 1. For large dimensions d it will be necessary to use bias reduction on 

the nuisance directions to achieve the optimal one-dimensional rate of convergence for 

depending only on the design. In principle any respectable smoother can be used in place 

of %(x17 x2), although we have only proven results for the Nadaraya-Watson estimator. 

We estimate cpl(xl) by the sample version of (2.1) 

n 

F1(xl) = n-I G {%(XI , X2i)) . 
i=l 

(2.2) 

When G is the identity function, &(xl) is linear, i.e. @l(xl)  = C;=1 zk(xl)Yk, where 

- 
wlc(x1) = n-I wk ( X I ,  X2;). In general however, +l (xl) is a nonlinear function of Y,. 

We are using the empirical weighting version of the Linton & Nielsen (1995) procedure. 
4 
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2.2 Estimation of the Regression Surface, Residuals, and Model Selection 

The above procedure is carried out 011 each direction by in each case redefining the 

j'th coordinate to be X1 and the rest to be X2. We obtain estimates of each cp, at  each 

sample point. Let C = d-ln-l ztZl @,(Xffi) and f ;(xl)  = &(xl)  - C. We reestimate 

m(x) by 

where F = G-l. Let F; = - %(X;) be the additive regression residuals which estimate 

the errors E; = Y,  - m(X;). These residuals, or alternatively the deviance residuals if a 

likelihood framework is adopted, can be used to test the additive structure, i.e. to look 

for interactions. When (1.1) is true, E; should be approximately uncorrelated with any 

function of X;. 

In some cases, especially with many candidate variables, one may wish to select 

an even more restricted model that excludes some variables from (1.1), depending on 

their importance in resolving variance. Let S, = S f;(x)p,(x)dx, then S, captures the 

magnitude of the effect of X, in an obvious way, not restricted to the likelihood framework. 
- 

Let S, = n-l C:=, f;(~,;). We might choose directions cu for which 3, is larger than some 

preselected threshold, as suggested by Hardle & Korostelev (1995), or at least report 

the magnitudes of these quantities. This is more informatively done in the ratio scale 

g,/ This is reminiscent of principal component or factor analysis. 

3. ASYMPTOTIC PROPERTIES 

3.1 Estimators of the additive components 

We first establish the asymptotic properties of at an interior point xl. The theorem 

is proved for the most general case where m is the .regression function of Y on X; no 

other structure such as additivity is being maintained. Only the interpretation of what 

is being estimated requires this structure. We work throughout with a design that has 

bounded support, and densities p l ,  p2, and p that are bounded away from zero. As far 

5 
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as smoothness is concerned, we assume that all the densities and component functions 

are continuously differentiable of order q .  These assumptions are fairly standard to the 

nonparametric regression literature. We also suppose that the link function G is twice 

continuously differentiable, and the variance function a2(x)  = var (YIXl = xl, X2 = x2) is 

Lipschitz continuous. The logit and probit link functions satisfy these latter restrictions. 

Let IIKII; = J I I ' 2 ( ~ ) d ~  and p2 (K)  = Ju2K(u)du.  

THEOREM 1. Let the order q of L satisfy q > d - l. Let h = pn-lI5, and assume 

that n2/5g4 -+ 0 and n2/5gd-1 + m. Then 

in distribution, where 

p 2 ( ~ 2 )  dx2. 
v1(x1) = S-lllKll: I G1 i m ( ~ ) } ~  g 2 ( 4  ;(%) 

Finally, vl(xl) can be consistently estimated by 

- 
where Sk = n-l Cjn=, G' {%(xl, Xzi)) wk(xl, X2j). 

PROOF. By a Taylor expansion 

where R = & C:=, GU(m:) {G(x1, XZi) - m(xl, x Z ~ ) } ~  , with m: intermediate between 
A 

m(xl,  X2i) and m(xl,  X2;). By the Cauchy-Schwarz inequality, 
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1 1  
IRI  < -- C { ~ ~ ~ ( ~ t ) ~ } ~ ~ ~  sup l ~ ( x l , x 2 )  - m(x1, x2)l , 

2 ;=l i F 
and the first term on the right hand side of (3.3) is of order one, while the second term 

is of order max {h4, g2q, n-I h-lg-(d-l)} by standard theory for regression smoothers, see 

Hardle (1990). Provided n2/5gd-1 

is asymptotically equivalent to 

which can be handled as in Linton & Nielsen (1995). This is done in the technical 

appendix. 0 

When d = 2, a second order kernel may be used in the nuisance direction for some 

choice of bandwidths, but in higher dimensions at least some bias reduction must be used 

in order to achieve the natural rate n2I5. This bias reduction strategy is similar to what is 

needed in certain semiparametric problems: Robinson (1988) showed that to obtain n1I2 

consistent estimates of the slope coefficients in the partially linear model, one must make 

the bias in the nonparametric estimator smaller than n-lI4 which for large dimensions 

requires higher order kernels and undersmoothing. The variance of the nonparametric 

estimator is taken care of by averaging. In our case, a weighted average of the variance 

of the d-dimensional pilot smoother affects Fl(xl) through R: this contribution is nec- 

essarily of order n-lh-lg-(d-l). Making this term smaller than n-2/5 requires the above 

restrictions on g. 

If the local linear smoother, see Fan (1992), were used as a pilot in place of the 

Nadaraya-Watson estimator, the asymptotic variance of Pl(xl) would be the same but 

the bias would take the simpler form 

The construction of asymptotic confidence intervals with coverage probability 1 - a 

unfortunately involves estimating the terms bl (xl) and vl (xl ) , although with under- 

smoothing, i.e. h = ~ ( n - l / ~ ) ,  it suffices to approximate the variance, see Hardle & Linton 
7 
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(1995) .  The bootstrap provides one alternative for approximating desired p-values. To 

find such a sample based approximation to the distribution of n2I5 {F1 ( 2 1 )  - $31 ( x l ) }  one 

can use, for instance, the wild bootstrap, see Hardle & Marron (1991) .  Finally, bandwidth 

choice can be based on a rule-of-thumb method as in Linton & Nielsen (1995) .  

3.2 Estimators of the Regression Surface 

Here, we work with the additive structure given in (1.1) .  Our theorem is not limited 

to the exponential family structure discussed in the introduction. The properties of % ( X )  

follow from Theorem 1 ,  the delta method, and from the fact that F j ( x )  and ( P k ( x )  are 

asymptotically uncorrelated for j # k. 

THEOREM 2. Suppose in  addition to the assumptions of the previous theorem that F 

is twice continuously diflerentiable and that ( l .  1) holds. Then 

in distribution, where 

It follows from Theorem 2 that the rate of convergence of % is free from the "curse of 

dirnensionality". We obtain the rate n2I5 that is achieved in estimation of scalar regression 

functions, see Stone (1986)  and Ha11 (1989) .  It is possible also to exploit the additional 

smoothness in the direction of interest by using a higher order kernel in place of K. Under 

appropriate restraints on the smoothness and dimensionality, one can obtain the optimal 

rate of convergence n-'/2e+1. 
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Now suppose that the exponential family structure discussed in the introduction is 

present. This restriction on the conditional distribution can be exploited in estimation. 

We consider two different approaches. The first approach is to use a pilot smoother that 

exploits the additional structure; for example the local likelihood procedure considered 

in the unpublished Standford dissertation of Tibshirani (1984) and in Fan, Heckman & 

Wand (1995). Let 

where l;(/?) is a likelihood function for observation i. In the binary data case 

where p = (,Bo, PI) is a d + l by 1 vector. Now choose $(X) to minimize &,(I; p) ,  and let 

%(I) be what is implied by p(x) ,  in the binary case F {po(x)}. We now integrate this 

new pilot estimator %(X) as before. 

An alternative method of exploiting additional structure works by producing several 

different estimates of the additive component and then combining them optimally through 

the minimum distance method. This method is widely used in econometrics; it allows one 

to be somewhat selective about the information that one uses, see Rothenberg (1972). In 

the binomial example, o2 = m(1- m), thus m = f - f ( l  - 4o2)ll2 for a2 < 114. Therefore, 

an alternative procedure is to integrate Gz(G2), where G2(t) = G {f - f (l - 4t)'I2} and 

G2(.) is a nonparametric estimate of the conditional variance function a2(.). One may 

then want to  combine the estimate obtained from the mean with the estimate obtained 

from the variance. The optimal way of doing this is through minimum distance. More 

generally, let 61 be a J by 1 vector of estimates of the additive components at a point 

xl ,  and define the minimum distance estimate of cpl ,  

where e is a J by 1 vector of ones, while is an estimate of the covariance matrix of 6. 
The question is, what do we gain from exploiting this additional information? Al- 

though the variance should improve, the bias may actually worsen. A similar point is 

9 
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addressed by Jones (1993); in particular whether one should take account of heteroskedas- 

ticity in estimating a nonparametric regression. He argues for the unadjusted smoother 

in this case. 

5. EMPIRICAL ILLUSTRATION 

We applied our procedures to the study of migration between East and West Germany 

using data from the 1991 Social and Economic Panel survey conducted by the Deutsche 

Institut Wirtschaftsforschung. The dependent variable is whether the individual intended 

to migrate from East to West Germany at this time. To explain this, we have four 

continuous variables: age, household income, rent, and a subjective measure of personal 

satisfaction on a scale of 1 to 10. Our sample consists of 315 individuals who all had at 

least Abitur education and had some friends in the West. Of these, 172 had the intention 

of leaving the East. 

We used the logit link function. In all procedures we took the same Gaussian kernel 

with bandwidths h = 0.5 and g = 1.0 (relative to the studentized design). We exper- 

imented with the choice of bandwidths but found that this choice worked well for our 

dataset. Below we present our estimates of the additive components along with symmet- 

ric 90% pointwise confidence intervals calculated as suggested by Theorem 1. 

AGE 

m 
Mooooooc X '.%X 

2.0 3.0 4.0 50 6.0 70 
AGE ('10 ) 

HOUSEHOLD INCOME 

L X X X X X  x x x m x  
l D 2.0 3.0 4.0 5.0 

HOUSEWLD INCOME IN 1WODhUMONTH 
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RENT IN 100DMNONTH 

The interesting curves are those for age and rent. The effect of rent is nonmonotonic: ini- 

tially the probability of migration increases with rent,.but this levels off and even declines 

after a certain point. This effect is not due to boundary issues, as can be seen from the 

design density. The probability of migration generally decreases with age but is effectively 

constant between 30 and 50. The relative importance (S,/ C S@) of the variables is as 

follows: rent (64.7%), income (14.5%), satisfaction (10.9%), and age (9.9%). 

Finally, for comparison we give the results of a parametric logit fit. 

TABLE 1 

Variable Coeff. Std.Err. P > lzl 

constant 0.21515 0.120979 0.07632 

age -0.02867 0.010997 0.00957 

hhinc 0.00022 0.000121 0.06827 

rent 0.01188 0.002765 2.3158e-5 

envsat -0.11613 0.05252'6 0.02777 

The coefficient on rent, 0.012, is quite close to the average slope of the rent component 

reported in Figure 3 above. Thus the two methods produce similar results in this average 

sense, but clearly the parametric method obliterates the structure apparent in Figure 1-4. 

Computer programs are available from the authors upon request. 
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The backfitting procedure produces the closest additive approximation to the regres- 

sion function whether or not the true model is additive. The integration procedure does 

not have this property except under (1.1). However, the functional y1 that we estimate 

always has a sensible interpretation: it is the effect of XI in the transformed scale after 

averaging with respect to the other variables. 

Finally, we would like to mention some semiparametric extensions of these models 

that are currently under investigation. One model of interest is 

i.e. partially linear inside the link, which generalizes the semiparametric regression model 

of Cuzick (1992). Using the integration method we can estimate the parameters 8 and 

the component functions fully exploiting the additive structure. 
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APPENDIX 

We use the following assumptions 

A l .  The function G has bounded second derivative over any compact interval. 

A2. g 2 ( x 1 ,  x 2 )  = var (Y IX1 = x l ,  X2  = x 2 )  is bounded and Lipschitz continuous. 

A3. The functions fl and f 2  are bounded and Lipschitz continuous. 

A4. The densities p l ( - ) ,  p2( . ) ,  and p ( . )  are bounded, Lipschitz continuous and bounded 

away from zero b y  a constant po. 

A5. The functions f l ,  f2 and all the joint densities are continuously q times difieren- 

tiable. 

A6. The kernel function K ( . )  is bounded, nonnegative, compactly supported, Lipschitz 

continuous and S K ( u ) d u  = 1 .  )JK))?j = K 2 ( u ) d u  < m, p 2 ( K )  = S u 2 K ( u ) d u  < 

00. 

A7. The kernel function L( . )  is bounded, compactly supported, Lipschitz continuous 

and J L ( u ) d u  = 1, J u i L ( u ) d u  = 0 ,  i = l , .  . . , q - 1. 

A8. h = ,8n-lI5. 

A9. The sequence of bandwidths g are such that gqn215 -+ 0 and n2I5gn-' + m. 

A10. The ,function F has bounded second derivative over any compact interval. 

Let E, and E; denote expectation conditional on the design and on the i 'th design obser- 

vation respectively. 

PROOF OF THEOREM 1. Let % ( X )  = S. We first write 

then the leading term T, can be decomposed into "bias" and "variance" terms 

The terms Tln and T2n can be further approximated by 
13 
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A 

since maxi<, 1- 1 = oP(l),  where p; = p(xl, X2;), by standard uniform convergence 
- Pips 

arguments, such as Silverman (1978). This follows from assumptions A4 and A6-A9; in 

particular, we require n4/5gd-1 + m. 
- 

It remains to  work with the approximations ?ln and Tzn. We deal first with the bias 

term 

where p(xl, X2;)-lEi(iii) is an approximation to the conditional bias of the Nadaraya- 

Watson estimator at  (xl,  Xz;). Its behaviour is well known from regression analysis. 

Therefore, the single sum TIn converges, on standardisation, to its population mean by 

Chebychev's Law of Large Numbers that holds by A1 ,A3-A9. In order for the Op(gq) bias 

term not to show up in the asymptotic approximation, it is necessary that n2/5gq -+ 0. 

We now turn to the stochastic term 

iii - Ei(iii) = Ei - E*(&) + E*(&) - E;(&)' 

with E, denoting expectation conditional on the design, and 
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and hence 

by the same uniform convergence arguments as above. The term 

provides the asymptotic variance of the estimator; it is ~ , ( n - l / ~ h - l / ~ ) ,  since only smooth- 

ing with respect to X1 is present. Moreover, T,*, satisfies the Lindberg-Feller Central Limit 

Theorem by virtue of AI-A9, see Hardle (1990). 

We now turn to the term involving E,(;;) - E;(;;). This double sum is 

- 
where Cij = C,j - Ci and (;, = Ei(i,j), with 

and the single sum Xi 6; is 0, {(nh)-1/2(ngd-1)-1/2). We now calculate the variance of 

the double sum X Xifj &,  which involves the following calculations 
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since all other terms are mean zero by a conditioning argument. Now 

E(C,Cik) = E[E;(Cij)l, 

for i # j ,  i # k, j  # k using conditional independence. But 

and so C E C = O(n-l h-1)O(h4+g2q). The other calculations follow similarly. 
i#j,i#k,j#k 

Finally, the uniform consistency of G and the conditions on G" ensure that n-' C G" {G*) = 

OP(l>. 0 

PROOF OF THEOREM 2. By Taylor expansion, 

d 

( 4  - ( 4  = F' [G l [ - ( X ) }  + E - .] + RI, 
a=l 

where the remainder R' depends on the second derivatives of F. The same arguments used 

above then apply. 0 
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Abstract 

Nonparametric additive regression is studied under the assumption that only a 

subset of nonparametric components is separated away from zero. Each of these 

non-zero components depends on its own particular explanatory variable called a 

significant variable. The search problem for significant variables is considered and 

the algorithm is proposed which guarantees the exponentially fast decreasing error 

probabilities as the sample size grows. We show that it is reasonable to use a rough 

estimator rather than to  estimate the nonparametric components with the fastest 

possible rate. 
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1 INTRODUCTION 

l Introduction 

Consider a nonparametric regression model with a d-dimensional explanatory variable 

X = (X('), . . . , x(~) )  and a one-dimensional response function Y. Assume that the re- 

gression function 

is a sum of nonparametric components gj  each depending on one particular explanatory 

variable ~ ( j ) .  

Let {(X;, k;))y=l be a sample of i.i.d. observations such that 

where the errors 6;'s are conditionally i.i.d. given the design points Xi's and 

E[c;IX1 ,..., X,] =0,  i = l ,  . . . ,  n, 

The additive regression model (1.1) is quite useful in the nonparametric regression theory 

since Stone (1985, 1986) proved that it can be estimated with the typical one-dimensional 

rate of convergence in estimating each function gj. This rate is free of the dimension d 

and the "curse of dimensionality" is, thus, avoided. Further extensions of the additive 

regression were studied in Buja, Hastie and Tibshirani (1989), Huber (1985), Hall (l%%), 

Hastie and Tibshirani (1990), Hardle et al. (1992), Hardle and Tsybakov (1993). In this 

paper we investigate the problem under an additional assumption on the structure of 

model (1.1). 

We consider the situation where some of the predictor variables have no effect on 

the response. That is we assume that there is a set J E {l , .  . . , d) of indices such that 

CJ~(X(~) )  0 iff j E J. The variables ~ ( j )  with j E J are called significant while the 

corresponding gj's are significant functions (components). The number of the significant 

variables is usually much less than the total number of variables, i.e. card(J)  << d. 

The case J = Q) is not excluded from our consideration. Our goal is to  detect these 

significant variables with the least error probabilities. The search is based on the sample 
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1 INTRODUCTION 3 

{(X;, , and an algorithm is proposed which guarantees exponentially fast decreasing 

error probabilities as n + m. The problem of choosing significant functions is important 

in practical situations where we often are confronted with too many predictor variables 

and are, thus, interested in reducing the statistical model (1.1) to a managable size. 

We will not suppose that the elements of X are independent. The selection problems 

for the significant variables in the situation of independent ~ ( j )  were studied in Hkdle 

and Tsybakov (1994), Chen, Hardle, Linton and Serverance-Lossin (1995), Maljutov and 

Wynn (1994). In the latter paper exponentially fast decreasing errors were obtained by 

means of a sequential search algorithm. 

Now we specify the model (1.1) more precisely. 

(Al)  The design points Xi's are i.i.d. with the continuous density cp = cp(t('), . . . ,dd)) in 

the cube Ii' = [0, lId; the density cp is separated away from zero. 

(A2) The functions gj, j E J, are continuous, bounded, i.e. 

and 

where f j  is the marginal density of X?), and go is a known constant. 

where a,$ is a given constant, a: > 0. 

To make the problem of search possible, the significant functions must be separated 

away from zero in some way. Let @(g) be a smooth functional of g such that 

@ ( g ) > O a n d @ ( g ) = O  iff g ~ 0 .  

Then we assume that the significant functions are defined by the restriction 
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1 INTRODUCTION 4 

In this paper we restrict ourselves to the two functional @(g) only: @(g) is either 

the sup-norm of g or the weighted &-norm. For this reason we do not specify the 

assumptions on the smoothness of this functional. 

(Bl )  For any j E J the inequality holds 

with a known positive constant CO. 

In Section 2 we give a tutorial example of testing hypotheses in the case of a one- 

dimensional location parameter. In Section 3 the search problem is considered under 

Assumption (Bl) .  Another possibility comes from the restrictions in L2-norm. 

(B2) For any j E J the inequality holds 

with a known constant cl. 

The search under Assumption (B2) is also discussed briefly in Section 3. 

Note that the smooth functional @(gj) usually can be estimated consistently as n -+ 

CO, e.g., this is the case under Assumptions (Bl)  or (B2). Thus, the corresponding 

estimate obtained from the observations can be used to test the null hypothesis: @(gj) = 0 

versus the alternative: @(gj) 2 c. for each j = 1,. . . , d. This would lead us to a consistent 

search of significant functions. Let be the chosen set of significant variables. There is a 

temptation to estimate the functional @(gj) with the fastest possible rate of convergence. 

Indeed, this was done in Hardle and Tsybakov (1994). Unfortunately, this does not always 

help to minimize the probability P T { ~  # J). Our goal here is to minimize the error 

probabilities pr{jn # J) uniformly over the class of regressions satisfying (A1)-(A3) 

with a prescribed modulus of continuity. 

As an illustrative example consider, @(g) = Ilglli. This smooth functional can be 

estimated root-n consistently, i.e. there is an estimator = & { ( X I ,  K) ,  . . . , (X,, Y,)) 
such that uniformly in g 

lim E[&{& - @(g) ) ]  = 0, 
n--+m 
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1 INTRODUCTION 

with some finite limiting variance a;. 

Now, if our decision rule (based on estimation of @ ( g ) )  is: 

then the Chebyshev inequality guarantees that 

4 4  
lim sup n ~ r { h  # J) I. d- 

n-+m 4 
(cf. Hardle and Tsybakov (1994)). The error probability, thus, decreases reciprocally to 

the sample size. Our objective is not to estimate @(g), but rather to study tests based 

on rough estimators of @(g) whose error probabilities decrease exponentially fast in the 

sample size n. We will prove the following 

T H E O R E M  1.1 Let Assumptions (A1)-(A3), and (Bl)  hold. Then, there exists a de- 

cision rule for significant variables and positive constants A. andAI independent of n 

such that 

PT-(~,  # J) < dAo e q ( - n A 1 ) ,  n 2 1 .  (1.4 
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2 BASIC IDEA 

2 Basic idea 

The idea of the inequality (1.2) is, in fact, very simple and can be seen from the following 

tutorial example. Let yi be i.i.d. observations of a one-dimensional location parameter Q 

in the model 

2 yi = 8 + c;, E[ei] = 0, E[€?] = no > 0, i = l , .  . . , n .  (2.1) 

The null hypothesis: 8 = 0 versus the alternative: go > 181 2 c0 > 0 can be tested 

based on the mean value yn = n-I y;. The null hypothesis is rejected iff y, 2 co/2  

in which case the Chebyshev inequality guarantees that the error probabilities are of the 

order O(n-l) as n -+ m. Take a positive value z the final choice of which is made below. 

Define the truncation of observations y; by 

Consider another test which rejects the null hypothesis iff 

L E M M A  2.1 Let q; be 2.i.d. random variables and 1q;I < y almost surely, y > 0. Then 

for any c > p = IEq;1 there exists a positive constant H = H ( c )  > 0 such that 

Proof: 

For any a > 0 

where q: = q; - Eq;. Now we show that for any random variable qlsuch that Eq' = 

0, IqlJ < y + p, the inequality holds 

~ [ e " ~ ' ]  < cosh(a(y + p)). (2.4) 

Biometrika, 83, 541-549

(1996)  Härdle, W. and Korostelev, A. 
 Search of Significant Variables in Nonparametric Additive Regression. 



2 BASIC IDEA 7 

Indeed, let v' be a discrete variable and P r { $  = X )  = p1 > 0 at a point X E [0, y + p).  

Consider some other random variable v'' which distribution coincides with v', but the 

mass p1 is divided in half between the points y + p and 22 - ( y  + p).  Then, 

~ [ e " ~ " ]  - ~ [ e " ~ ' ]  2 F e x p { a ( y  + p ) }  + F e x p [ a { 2 z  - (y + p ) ) ]  - p1 e x p ( a x )  > 0, 

since em" is convex in X .  The same is true if X E ( - (y + p) ,  01. Thus, the random 

variable 7" has a smaller mass inside the interval ( - ( y  + p) ,  y + p) and a higher value of 

the expectation: E [eaqi'] > E [eaqi]. Continuing this process, we come to the distribution 

concentrated at points f ( y  + p )  with the masses which are to be equal, since the expected 

value of all the variables is zero. Finally, any continuous distribution can be approximated 

by a discrete one. This proves (2.4). Substituting (2.4) into (2.3),  we come to 

Note that & [log cosh(a(y + p ) ) ]  I = 0. Hence 
ff=o 

H = max [ a ( c  - p) - log cosh{a(y + p ) ) ]  > 0 
a > O  

and (2.2) follows. CI 

COROLLARY 2.1 There exist a suficiently large truncation level z and H > 0 such 

that 

5 2 e x p ( - n H ) ;  P r  (g: < 10 2 co) 5 2 e x p ( - n H ) .  (2.5) 

Proof: 

Note that [E y:l < A for any 0, 101 < go, and (2.5) follows from (2.2) if we take 
2-5'0 

qi = yf and choose z : < a. 
2-90  2 

REMARK 2.1 The best choice of z is the maximizer of 

H = H ( z ) = a  (; --- !go)  - log cosh ( Z  + h) 
over r : z > go, & < 7 .  Note that there is a trade-off in  the choice of the truncation 

level z .  Larger values of z reduce the bias term & but increase the bound .z + & and 

vice versa. 
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3 ROUGH BIN ESTIMATORS AND DECISION RULES 

3 Rough bin estimators and decision rules 

Take an integer M and divide the interval (0,l) into intervals 

k - l  L), k = l ,  ..., M. 

We estimate gj by a bin piecewise constant estimator (see Hardle (1990)) 

and 

M 
n 

i j  ( ~ I M )  = - C xz n frn(xjrn') I(x/" E A ~ ) / ~ ( x ~ ) ,  j = l , .  . . , d, (3.1) 
i=1 m#j 

where 'S are truncations of observations (1.1). Define the decision rule by 

As shown below, the rule (3.2) satisfies (1.2). This decision rule still depends on the 

joint density p as well as on the marginal densities f,. As we will see from the proof, 

estimates of p and f j  can be plugged in. 

L E M M A  3.1 For any arbitrary small p0 > 0 and for any k, k = 1, . . . , M ,  there exist 

z and M such that 

Proof: 

We may consider z = m in the right-hand side of (3.1) since the expected value of this 

expression tends with z + m to 
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3 R 0  UGH BIN ESTIMATORS AND DECISION RULES 

where the cube K is defined in (Al).  

As follows from Assumption (A2), 

P 

Thus, the right-hand side of (3.4) equals M kk g j ( t ( j ) )  dt(j) and 

Sinc,e the modulus of continuity of gj  is vanishing at zero, the lemma follows. 

Proof of Theorem 1.1: 

For the decision rule (3.2) we have 

Applying Lemma 2.1 to the bounded random variables 

and choosing p0 < co/2  in Lemma 3.1, we come to the inequality 

This proves the theorem. 0 

R E M A R K  3.1 A priori knowledge of the density y is not crucial in (3.1) for it may be 

substituted b y  a proper estimate as well as the marginal densities f j .  

Now we turn to the case of Assumption (B2) on the L2-norms of significant variables. 

Note that 
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3 ROUGH BIN ESTIMATORS A N D  DECISION RULES 

and the decision rule (3.2) is applicable to this case. 

In some applications it is interesting to derive the decision rules from a proper es- 

timator of the functional Qj(gj) - Ilgjfilli. Let n be even. Split the whole sample 

{(X,, K)}:=l into the parts with odd and even indices. Let jydd be the estimator of g, 

obtained similarly to  (3.1) from the odd subsample. Consider the following estimator: 

The idea of (3.5) is that the expected value of the sum in the right-hand side asymptotically 

equals 

t g t t ,  a s r - m .  

The bias term 

in practical implementations may be smaller than that in the uniform norm. The expo- 

nential bounds on the error probabilities in this case are, of course, the same as above. 
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Direct Semi parametric Estimation of Single-Index 
Models With Discrete Covariates 

Joel L. HOROWITZ and Wolfgang HARDLE 

Others have developed average derivative estimators of the parameter f? in the model E(Y \X = X) = G(xS), where G is an unknown 
function and X is a random vector. These estimators are noniterative and easy to compute but require that X be continuously 
distributed. This article deveIops a noniterative, easily computed estimator of j3 for models in which some components of X are 
discrete. The estimator is n1i2 consistent and asymptotically normal. An application to data on product innovation by German 
manufacturers illustrates the estimator's usefulness. 

KEY WORDS: Average derivative estimation; Index model. 

1, INTRODUCTION 

A single-index mean-regression model has the form 

where Y is a scalar-dependent variable, X is a vector of 
explanatory variables, P is a vector of parameters whose 
values are unknown, v(., .) is a known function, and G is a 
function that may or may not be known. Many widely used 
parametric models have this form; examples include linear 
regression, binary logit and probit, and tobit models. These 
models assume that G is known up to a finite-dimensional 
parameter. When G is unknown, (I) provides a specification 
that is more flexible than a parametric model while avoid- 
ing the loss of precision that occurs in fully nonparametric 
estimation with a multidimensional X. In most applications 
v(x, p) = xp, where X' and p are k X 1 vectors. Thus 

This article is concerned with estimating P in (2) when G 
is unknown. 

Several estimators of p that do not require a parametric 
specification of G already exist. Ichimura (1 993) developed 
a semiparametric least squares estimator of p. This estirna- 
tor is closely related to projection pursuit regression (Fried- 
man and Stuetzle l98 1). Han ( 1  987) and Sherman (1993) 
described a maximum rank correlation estimator. Klein and 
Spady (1993) developed a quasi-maximum likelihood es- 
timator for the case in which Y is binary. This estimator 
achieves the asymptotic efficiency bound of Cosslett (1 987) 
if G is a distribution function. The estimators of Ichimura, 
Han, Klein and Spady, and Sherman are n'/2 consistent and 
asymptotically normal under regularity conditions. 

The foregoing estimators have the disadvantage of being 
difficult to compute because they require solving nonlinear 
optimization problems whose objective functions are not 
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many. This research was supported in part by Deutsche Forschungsge- 
meinschaft, Sonderforschungsbereich 373, "Quantifikation und Simulation 
Oknonomischer Prozesse." The research of Joel L. Horowitz was sup- 
ported in part by National Science Foundation grants DMS-9208820 and 
SBR-9307677. The authors thank N. E. Savin for comments on this re- 
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necessarily concave (convex, in the case of semiparametric . 

least squares) or unimodal. If X is a continuous random 
variable, then the computational difficulty of estimating P 
can be greatly reduced through the use of average-derivative 
estimators. These estimators rely on the fact that for any 
weight function W ( . ) , E[w (X) aG(Xp)/aX] cx p. Average- 
derivative estimation does not require solving an optimiza- 
tion problem, and computation of average-derivative es- 
timates is noniterative and fast. The estimators are n1/2 
consistent and asyrnptoticaIly normal under regularity con- 
ditions (Hgrdle and Stoker 1989; Powell, Stock, and Stoker 
1989; Stoker 1991). Ai (1991) discussed the case in which 
v(x, p) is nonlinear in X. 

Average-derivative methods cannot be used to estimate 
components of p that multiply discrete components of X. 
This is because derivatives of G(XP) with respect to dis- 
crete components of X are not identified. Because X has 
discrete components in many applications, a direct (nonit- 
erative) method for estimating P when X has such compo- 
nents is needed. This article develops such a method. The 
resulting noniterative estimator is much easier to compute 
than estimators that require solving nonlinear optimization 
problems. 

Section 2 describes the estimator and its properties. Sec- 
tion 3 presents the results of a Monte Carlo investigation 
of the estimator's finite-sample properties, and Section 4 
illustrates the use of the estimator by applying it to data 
on product innovation by German manufacturers. Section 
5 presents concluding comments. The Appendix gives all 
proofs. 

2. THE ESTIMATOR 

To distinguish between continuous and discrete covari- 
ates, we rewrite (2) in the form 

where X denotes a l X k vector of continuous random vari- 
ables, Z denotes a 1 X l vector of discrete random vari- 
ables, and P and a are conformable vectors of parameters 
that must be estimated from data. Identification of P and a 
requires that (3) have at least one continuous explanatory 
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Figure I .  //lustrat~on of Equation (5). 

variable (Ichimura 1993; Klein and Spady 1993; Manski 
1988), so k _> 1. Bierens and Hartog (1988) discussed the 
case k = 0 in detail. There do not have to be any discrete 
explanatory variables in (3), but we assume that there is at 
least one, because the focus of this article is on estimating 
a. Thus l > 1. Because p and a are identified only up to 
sign and scale, sign and scale normalizations are needed. 
We use pl = 1, where pl is the coefficient of the first com- 
ponent of X. Let X and denote components 2 through k 
of X and@, if k > 1. 

The main problem to be solved here is estimating a. The 
parameter p can be estimated using existing methods. For 
example, one can use average-derivative methods to esti- 
mate p for each z in the support of Z and then form a 
(possibly weighted) average of these estimators. Accord- 
ingly, in the remainder of this section we  concentrate on 
estimating a. 

2.1 Informal Description of the Estimator 

The essential idea of our estimator of a can be under- 
stood most easily by assuming for the moment that G is 
a known function. Define SZ = {di): i = 1,. . . ,M)  to 
be the support of the discrete random vector 2. Our esti- 
mator works by deducing the horizontal distance between 
G(v + di)a) and G(v + z ( ' )a )  (i = 2,. . . , M )  on a set 
of v values on which G(v + za) is assumed to satisfy 
a weak monotonicity condition. Specifically, we assume 
that there are finite numbers W O ,  ul , C O ,  and cl such that 
v0 < vl,co < cl,  and G(v + m) < c. for each z E Sz 
if v < v*, and G ( v + z a )  > cl for each z E S z  if v > vl. 
To ensure that G(u + zar) is identified on WO 5 v 5 v l ,  we 
also assume that for each z E SE, the density of X@ condi- 
tional on Z = z exceeds zero everywhere on [vo, vl]. To see 
the implications of these assumptions for estimation of a,  
let I ( . )  denote the indicator function. For z E Sz, define 

The key fact that leads to our estimator is stated in the 
following equation, which is proved in Lemma 1 of the 

Appendix: 

i = 2, . . . M. (5) 

Figure l gives a graphical explanation of (5 )  for a model 
in which z is a scalar whose two possible values are , 

id2), d l ) ]  = (l, O),  and a = 2. Let (co, Q) = (.2, .g), 
and (vo, wl ) = (-2.85, -85). The integrands of J[z(')] and 
5 [ d 2 ) ]  are EFGK and EJK. J [ z ( ~ ) ]  is the area EFJ + 
ABFE + BDKJ = EFJ f 1.7% + 2c1. ~fd')] is the 

area ACGE + CDHG + GHK = 2c0 + 1 . 7 ~  + GHK. 
But EFJ = GHK, SO J [ d 2 ) ]  - J[z(')] = 2(c1 - co) = 
(c1 - - dl)]a= 

Equation (5) constitutes M - 1 linear equations in the l 
unknown components of a. These equations may be solved 
for a if a unique solution exists. To do this, define the 
( M  - 1) X 1 vector AJ by 

Also, define the (M - 1) X 1 matrix W by 

- zC1) 

W =  [ l .  (7) 
z m f l  - z(1) 

Then it can be proved (see Lemma 1 of the Appendix) that 
if W'W is a nonsingular matrix, then 

= (cl - c~)-~(w'w)-~w'AJ. t 8) 

Equation (8) forms the basis for our estimator of a. Of 
course, (8) cannot be used directly in estimation, because 
G(v + z a ) ,  and thus AJ, are not known in applications. 
We solve this problem by replacing G(v i- z a )  in (4) 
with a nonparametric regression estimator of E(YfXb, = 
v ,  Z = z ) ,  where b, is the estimator of P .  We use a ker- 
nel estimator because it is relatively easy to analyze and 
implement, but other estimators could be used. Denote the 
estimator of G(v + m) by G,, (v ) .  The estimator of a is 

and for each z E SE, 

These ideas are formalized in Section 2.2, where we 
give conditions under which a, is consistent for a and 
n1/2 (a, - a)  is asymptotically normal. 
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2.2 Assumptions and Results 

We begin this section by presenting our assumptions. Let 
S, denote the support of the distribution of V = XP. Let 
f (viz) be the probability density of V conditional on Z = z ,  
let p(v, 2lz) be the joint density of (V, 2) conditional on 
Z = a ,  let p(z) be the probability that Z = z ( z  E Sz),  and 
let f (v ,  z )  = f (w/z)p(z). Let {&,Xi, Zi: i = 1,. . . , n) be a 
random sample of size n of {Y, X, Z), and set K = XiP. 
Let r 2 4 be an integer and 1 1  m 11 denote the Euclidean norm. 

Assumption l. 

Sz is a finite set. 
~ ( l l % l l ~ l ~  = z )  < cm and E ( I Y [ I I % I ~ ~ ~ Z  = z) < cm 
for each z E Sz. 
~(1~1~11%1)~lv = V ,  z = z ) ,  E ( I Y [ ~ ~ V  = U , Z  = z ) ,  
and f (v, z) are bounded uniformly over v E [vo - 
&,v1 + E ]  for some e > 0 and all z E SE. 
For each z E Sz, p(v, 21s) is everywhere three times 
continuously differentiable with respect to v; the thrd 
derivative is bounded uniformly over (v ,  2). 
var(YIV = v,Z = z) > 0 for all x E Sz and almost 
every v. 

The requirement that Sz be finite can always be satisfied 
by truncating the distribution of 2. 

Assumption 2. Define W as in (7). W'W is nonsingular. 

Assumption 3. E(YIX = X, Z = z) = G(xP +m). G ( - )  
is r times continuously differentiable (r > 4). G(.) and its 
first r derivatives are bounded on all bounded intervals. 

Assumption 3 makes E ( Y  I X = X, Z = z )  a single-index 
model. The smoothness requirements are standard in non- 
parametric estimation. 

Assumption 4. There are finite numbers ~ 0 , 2 1 1 ,  Q, and 
cl such that v. < v l ,  Q < cl, and G(v) = c0 or cl at only 
finitely many values of v,  and for each z E Sz: 

a. G(u +m) < c0 if v < v0 
b. G(u + z a )  > cl if v > v1 
c. f ( V I Z )  is bounded away from zero on an open interval 

containing [vo l wl]. 

The purpose of this assumption is explained in the discus- 
sion of Equation (4). The results presented here hold with 
obvious modifications if Q > cl, G(v + z a )  > CO for all 
z E Sz if v < V D ,  and G ( v + z a )  < cl for all z E Sz if 
v > V l .  

Assumption 5. If k > 1,  there are (a) a n1/2-consistent 
estimator of p, denoted by L,, and (b) a ( k  - 1) X 1 vector- 
valued function (g, X, z )  satisfying 

as n + m, where E n ( Y , X ,  Z) = 0 and n-1/2 fl(Y,, 
Xi, Zi) 3 N(0, Vn) for some finite matrix Vn. 

The estimators of Hkdle and Stoker (1989), Powell et 
al. (1989), and Stoker (1991) satisfy this assumption, after 
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sign and scale normalization, under regularity conditions 
given by these authors. All of these estimators are direct in 
the sense of not requiring nunlinear optimization or other 
iterative computations. An illustration of is given in Sec- 
tion 2.3. 

Define R = Xibn. Also, for each z E SE, define 

and 

where K is a function satisfying assumption 6 below, and 
{h,) is a sequence of positive real numbers satisfying as- 
sumption 7. Set 

&,(v) = A,z(v)lf,z(v), 

Assumption 6. K is a bounded, symmetrical, differen- 
tiable function that is nonzero only on [-l, l]. K'(-), the 
derivative of K,  is Lipschitz continuous. For each integer i 
between 0 and r(r > 4) : 

if i = 0, 

if l < i < r ,  

nonzero if i = r. 

Assumption 7. As n -+ m, n h ~ + ~  -+ co and nh? -+ 0. 
A higher order kernel (r 2 4) with undersmoothing is 

needed to prevent nl/'(an - a) from being asymptotically 
biased. Higher order kernels with undersmoothing are used 
for similar reasons in average derivative estimation (Hiirdle 
and Stoker 1989; Powell et al. 1989) and estimation of semi- 
linear regression models (Robinson f 988). 

For each z E Sz ,  define G,@) = G(v + za),GL(v) = 
dG,(v)/dv, and 

The following theorem shows that a, is consistent and 
n1j2(orn - a) is asymptotically normal under Assump 
tions 1-7. 

Theorem l. Let Assumptions 1-7 hold. As n -+ m, (a) 
d 

or, -% a, and (b) n1j2(or, - a) --+ N(0, C,), where C ,  is 
the covariance matrix of the t X l random vector A, whose 
mth component (m = 1,. . . , !) is 

X I [ ~ o  5 Gz(1) ( K )  i Q] + (rZ(j, - r ,~>) f t (K ,  Xi, Zi) 1- 
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Table I .  Monte Carlo Parameter Estimates 

n = 250 n = 500 

Mean Mean 
(std. deviation) (std. de viatiun) 

- 
Q I a2 bn %I a ~ 2  bn f f n f  a n 2  

Direct semiparametric estimator 

.014 -.009 2.01 1 
(.373) (-245) (.262) 
- ,002 .484 2.006 
(.406) (.306) (276) 
.04'1 1.048 2.025 

(1.669) (1.146) (.302) 
.497 -.OA 0 2.004 
I.387) I.252) (277) 
.493 5 1 1  2.022 
(.603) (.414) (-282) 
.420 .859 2.040 

(1.630) (1.040) (-272) 

Parametric maximum likelihood estimator 

0 2.01 8 .012 -.005 2.004 
(-273) (246) (.l 83) (-1 95) 

.5 2.053 .003 505 2.01 8 
(.306) (.235) (. 1 94) (-21 4) 

1 .O 2.026 -.006 1.008 2.025 
m (.306) (258) (.219) (-209) 

0 2.055 5 1  0 ,004 2.01 7 
(.293) (255) (. I 78) (.204) 

.5 2.01 3 501 .507 2.022 
(287) (-251 ) (. 1 84) (200) 

1.0 2.018 ,523 .g91 2.01 6 
(290) I.285) I.215) (21 6) 

NOTE: Based on 500 replications. b, is the estimate of the second component of 0; ani(i = 1, 2) estimates the ith component of a. 

2.3 Estimating X, 

C, can be estimated consistently by replacing unknown 
quantities with consistent estimators. It is not difficult to 
show that under Assumptions I and 3-7, l?, is estimated 
consistently by 

where Gk,(w) = dG,(v)/dv. Define X(y, v, z) to be the 
(M - 1) X l vector whose ( j  - 1) component ( j  = 2, . . . , M) 
is 

Let a, be a consistent estimator of a. Then under As- 
sumptions 1-7, E, is estimated consistently by the sam- 
ple covariance of the l X l vector whose mth component 

( m =  l , . .  .,!) is 

The details of iln depend on the estimator of P that is 
used. To illustrate, let p(xlz) (z E Sz) be the probability 
density function of X conditional on Z = z, and let p,(z)  
be the empirical probability that Z = z. In Sections 3-4 
we estimate p by (a) using the method of Puwell et al. 
(1989) to estimate the density-weighted average derivative 
[Ep(Xlz>aG(X/3 + z a ) / a x ]  for each z E SZ, (b) forming 
a weighted average of the resulting estimates with weights 
p,(%), and (c) imposing the normalization PI = 1. Let 
6 = E[p(Xl Z)aG(Xp + Z a ) / 8 x ( ' } ] ,  where X(') is the first 
component of X. It follows by applying the delta method to 
equations (3.14) and (3.16) of Powell et al. (1 989) that 

Let S, be the weighted average of the estimates of 
[Ep(X lz)aG(XP + zor)/~s(')] using weights p,(z) .  51, 
can be obtained from (12) by replacing S with &,p with 
p,, G(xP + ztw) with G,,(xb,), and p(xl2;) with a kernel 
density estimator. 
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Table 2. Monte Carlo Estimates of Variances and Levels of for which Z = z. To compute G,,, we used the bandwidth 
Nominal .05-Level t Tests -1/7.5 h = ~ V Z ~ Z  where S,, is the sample standard devia- 

Q I a2 an I ""2 tion of Xb, conditional on Z = 2; E SE. 
Variancesa The integral in (l l) was computed by Gauss-Legendre 

quadrature. To avoid edge effects in estimating G,, the lirn- 
0 0 Asymptotic B924 .W71 

Empirical .05l4 .0246 
its of integration were set at 

Asymptotic .08i 5 
Empirical .0662 
Asymptotic .OS07 
Empirical .0864 
Asymptotic .0985 
Empirical B633 
Asymptotic .0762 
Empirical .0708 
Asymptotic .0499 
Empirical .0970 

Empirical Level of t Test 

.028 

.052 
- 1 ~ 4 ~  
.044 
.066 
. ~ 4 2 ~  

vnr = min rnv {Xibn - h, : Zi = z) 
,€Sz lszln 

and 

To compute c. and cl, we reestimated G, for each z E Sz 
using a second-order kernel (the standard normal density). 
Call the resulting estimate G&. We then set 

and 

a Based on 500 replications. "Asyrnptolic" is the mean of the estimates obtained from the 
asymptotic formula given in Section 2.3. 

Significantly different from the nominal level based on an asymptolic .Ol-level t test. 

3. MONTE CARLO EXPERIMENTS 

This section reports the results of a small-scale Monte 
Carlo investigation of the finite-sample behavior of a, for 
model (2). In the experiments k = l = 2 and n = 250 or 
500. G is the cumulative standard normal distribution func- 
tion. The components of X are independently distributed 
as N (0,l). The first component of Z is 0 with proba- 
bility .5 and 1 with probability S. The second compo- 
nent of Z takes the values 0, l ,  and 2 with probabilities 
2 5 ,  S, and .25. The components of Z are independent 
of one another and of X. The first component of P is 
1 by scale normalization. The second component, whose 
true value is 2, was estimated by forming a weighted aver- 
age of density-weighted average-derivative estimates (Pow- 
ell et al. 1989) that were computed for each point in Sz. 
The weights in the weighted average of estimates were the 
empirical probabilities pn(z). K is the fourth-order kernel 
K(v )  = (105/64)(1 - 5v2 + 7v4 - 3v6)I(lvt < 1). 

Our theory does not indicate how to choose h,, the band- 
width required to estimate p, WO, v1 , CO, and cl in applica- 
tions. Hardle et al. (1992) and Hkdle and Tsybakov (1992) 
derived the asymptotically optimal bandwidths for certain 
aver age-derivative estimators, but the resulting bandwidths 
are not asymptotically optimal for the estimation problem 
considered here. 

In the absence 'of theoretical guidance, we have used 
a simple bandwidth selection procedure that can be im- 
plemented easily in Monte Carlo experiments, satisfies 
Assumption 7 and the regularity conditions of density- 
weighted average-derivative estimation, and performs well 
in the experiment S. For density- weighted aver age-derivative 
estimation of p at a given z E Sz, we used the bandwidth 
5 n ~ ' ' ~ ,  where n, is the number of sampled observations 

Using a second-order kernel in f 13) and (14) produces val- 
ues of c0 and cl that are more stable than those obtained 
with a fourth-order kernel. 

There were 500 replications in e x h  experiment. The 
computations were carried out in GAUSS using GAUSS 
pseudo-random number generators. 

Table 1 shows the empirical means and standard devia- 
tions of b,, a ,~ ,  and a,~.  We also computed the empirical 
medians and interquartile ranges of the estimates. These 
lead to the same conclusions as the means and standard 
deviations, so they are not shown. To provide a basis for 
judging the performance of the semiparametric estimator, 
Table l also shows the means and standard deviations of 
the parametric maximum likelihood estimates of and a. 
The asymptotic efficiency bound for semiparametric estima- 
tion of p and a exceeds the Cramer-Rao bound (Cosslett 
1987), so no semiparametric estimator can achieve the pre- 
cision of the piirametric maximum likelihood estimator. The 
estimator of Klein and Spady (1 993) achieves the semipara- 
metric efficiency bound, but its computational complexity 

Table 3. Estimated Coefficients (Standard Errors} for 'a  Mode! 
of Product Innovation 

EMPLP EMPLF CAP DEM 

Semiparametric model 

Probit model 

Monte Carb experiment 

NOTE: The coefficient of EMPLP is 1 by sign-scale normalization. 
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Figure 2. Estimates of G and dG/dv for the IF0 Data. (a) Estimate of G with baseline bandwidfhs; (6) estimate of dG/dv with baseline 
bandwidths; (c) estimate of G with bandwidths increased by 20%; (d) estimate of dG/dv with bandwidths increased by 20%; (e) estimate of G with 
bandwidths decreased by 20%; (f) estimate of dG/dv with bandwidths decreased by 20%. 

precludes carrying out Monte Carlo experiments to corn- 
pare its finite-sample performance with that of the direct 
estimator. 

The differences between the true values of a and the 
means of the semiparametric estimates are small except 
in the experiment with (a1, a2) = (.5,1) and 'n = 250. 
When n = 500, the root mean squared errors (RMSE's) 
of the semiparametric estimates of a1 and a2 exceed those 
of the maximum 1ikeEhood estimates by factors of 1.3 to 
1.7. When n = 250, the semiparametric RMSE's exceed 
the maximum likelihood RMSE's by factors of 1.3 to 2.4, 
except in the experiments with a2 = l, where the semipara- 
metric RMSE's exceed the maximum likelihood RMSE's by 
factors of 5-6. 

The bias and large RMSE's in the experiments with 
a2 = 1 and n = 250 can be understood by observing that a 
is estimated from the horizontal difference between func- 
tions G,, corresponding to different values of z. If the shifts 
caused by variations in Z a  are large and n, is small (de- 
pending on z, its average value is either 31 or 62 in the 
experiments with n = 2501, then there may be few values 
of Xb, in the interval on which the ranges of the functions 
G,, overlap. This causes the estimates of AJ and a to be 
imprecise. The problem decreases with increasing n, as can 
be seen from the results of the experiments with n = 500. 

Table 2 shows the empirical variances of a , ~  and a,z for 
the experiments with n = 500, together with the average 
variances estimated using the asymptotic formula of Sec- 
tion 2.3. The table also shows the empirical levels (rejection 
probabilities) of nominal .M-level t tests of the hypotheses 
that a1 and a2 have their true values. The denominators of 
the t statistics are computed using the asymptotic formula 

of Section 2.3. Except for the experiments with a2 = 1, the 
asymptotic formula overestimates the variances of a,l and 
an2, and the empirical levels of the t test range from .016 
to .082. The asymptotic formula underestimates the vari- 
ances of a,l and a,:! in the experiments with a2 = l, and 
the empirical levels of the t testsme far above the nominal 
levels. 

4. AN APPLICATION 

This section illustrates the semiparametric estimator by 
applying it to data on product innovation by German manu- 
facturers of investment goods. The data, assembled in f 989 
by the IF0 Institute in Munich, consist of observations on 
1,100 manufacturers. The dependent variable is Y = I. if a 
manufacturer realized an innovation during 1989 in a spe- 
cific product category (defined by a four-digit code assigned 
by IFO) and zero otherwise. The continuous independent 
variables are the number of employees in the product cate- 
gory (EMPLP), the number of employees in the entire firm 
(EMPLF), and an indicator of the firm's production capacity 
utilization (CAP). There is one discrete independent vari- 
able, DEM, which is 1 if a firm expected increasing demand 
in the product category and 0 otherwise. We standardized 
the continuous variables, so they have units of standard de- 
viations from their means. ScaIe/sign normalization was 
achieved by setting ,OEMPLP = 1. The kernel and rneth- 
ods for choosing CO, cl, v*, vl, and the bandwidths are as 
described in Section 3. 

The semiparametric estimates of P and a are shown in 
the top panel of Table 3. The middle panel shows estimates 
obtained from a parametric probit model. Figure 2 shows 
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Figure 3. Estimate of dG/dv Using Probit Estimate of XP + Za. 

estimates of G and dG/dv obtained from kernel nonpara- 
metric regression of Y on the semiparametric estimate of 
Xp + Za. A second-order kernel (the normal density func- 
tion) was used for this purpose. Figures 2a and 2b show the 
estimates obtained when a and P are estimated using the 
bandwidths described in Section 3. Figures 2c and 2d show 
the estimates obtained when the bandwidths are increased 
by 20%, and 2e and 2f show the estimates obtained when 
the bandwidths are decreased by 20%. 

There are two important differences between the semi- 
parametric and probit estimates. First, the semiparametric 
estimate of PEMPLF is small and statistically nonsignificant, 
whereas the probit estimate is significant at the .05 level 
and similar in size to PCAP. Second, Figure 2 reveals that 
dG/dv is bimodal. This contradicts the probit model, which 
assumes that dG/dw is a unimodal (normal) pdf. Bimodal- 
ity is also present if the nonparametric regression is carried 
out using the probit estimate of XP + Z a  (Fig. 3), so bi- 
modality is not an artifact of the semiparametric estimation 
procedure. The bimodality of dG/dv suggests that the data 
may be a mixture of two populations. Although further in- 
vestigation of this possibility is beyond the scope of this 
article, an obvious next step would be to search for vari- 
ables that characterize these populations. 

To gain additional insight into whether the semiparamet- 
ric es tirnates reflect genuine features of the S ampled popula- 
tion or are artifacts of our choices of bandwidths and other 
tuning parameters, we carried out a Monte Carlo experi- 
ment in which simulated data sets of size 250 were gener- 
ated by sampling (Y, X, Z) randomly without replacement 
from the IF0 data. Each simulated data set is a random sam- 
ple from the distribution that generated the IF0 data, rather 
than from an assumed model that may not capture essen- 
tial features of this distribution. The centered, normalized 
parameter estimates have the same asymptotic distribution 
as the estimates obtained from the full sample (Politis and 
Romano 1 994). 

The bottom panel of Table 3 shows the means and stan- 
dard errors of the parameter estimates obtained in 100 
Monte Carlo replications. ' The standard errors indicate the 
variability of the Monte Carlo estimates. They are not es- 

timates of the finite-sample standard deviations that would 
be obtained from independent random sampling of the true 
population distribution. The Monte Carlo parameter esti- 
mates are close to those obtained from the full data set. 
The Monte Carlo estimate of PEMPLF is much closer to the 
full-data semiparametric estimate than to the probit esti- 
mate. Thus it appears that the main features of the semi- 
parametric estimates are not artifacts of the choices of tun- 
ing parameters. 

5; CONCLUSIONS 

This paper has described a direct (noniterative) method 
for estimating the parameters of a semiparametric single- 
index model when some of the explanatory variables are 
discrete. The resulting estimator is n'/' consistent and 
asymptotically normal. The method described here is con- 
siderably less demanding computationally than other meth- 
ods for estimating semiparametric single-index models with 
discrete explanatory variables, because other methods re- 
quire solving difficult nonlinear optimization problems. An 
application to data on product innovation by German manu- 
facturers has illustrated the usefulness of the semiparamet- 
ric estimator. 

APPENDIX: PROOF OF THEOREM 1 

The proof is based on four lemmas. Assumptions 1-7 hold 
throughout. 

Lemma I. 

a. For each i = 2,. . . , M, 

J[z(~'] - J[#)]  = (c2 - CO) [z(~) - z(')]a. 

Proo$ To prove part a, define v, = max{vo + za: z E Sz) 
and Z I ~  = rnin(v1 + za: z E Sz). Let z = dl) or z(". Make the 
change of variables v = u - za on the right-hand side of (4). By 
Assumption 4, I [G(u) < CO] = 0 if u > wb, I[G(u) > cl] = 0 
if U < W,, and I[Q 5 G(u) < cl] = 0 if u .<  v, or U > W,. 
Therefore, 

( = C Iva I[C(u) c Q] d~ + I(G(u) < Q] d~ 
v o + z a  L" 
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It follows that 

which proves part a. Part b follows from nonsingularity of W'W 
and the observation that by part a, W'AJ = (cl - co)W'Wa.  

Define 

~ , ( w , z ) = ~ ( z )  q a / a v ) p ( v , q z ) d k ,  J 

and 

Lemma 2. Define Gz(v) = G(v + a a ) ( z  E SE). For each z E 
SE, the following hold uniformly over v E [WO, vlf : 

ProoJ Only parts a and b are proven here. The proofs of parts 
c and d are similar. To begin, use a Taylor series expansion to 
obtain 

An2 (v) 

where 

and V,' is between R arid V,. Write A,.l (v) - Gz(v) f (v, z) = 
A;, (v) - EAEz (V) + [EAnzl (W) - GZ (v) f (W, E)] + { A ~ z  1 (W) - 
EAnz1 (W) - [A:, (v) - EA;z (v)]), where 

Azz(v) = n ( n h , ) - l k  I ( &  = z)(Y,/n)K [S] I ( K  5 n). 
i=l h* 

It follows from theorem (2.37) of Pollard (1984) that fA;*z(v) - 
EA;,(v)I = ~ l ( n h , ) - ' / ~ ( l o ~ n ) ]  almost surely uniformly over 
v E [vo, vlf . Standard methods for kernel estimation show that 
EAnZ1 (W) = Gz (W) f (vlz)p(z) + O(hL) uniformly over W E 
[vo, vl]. An argument identical to that used to prove proposition 
l of Mack and Silverman (1982), except with their X restricted to 
[WO, WI]  instead of unbounded, shows that (AnZl (v) - EAnzl(w) - 

- EA;,(v)]) = ~ ( n - ' )  almost surely uniformly over 
v E [vo, vl]. Combining these results gives 

uniformly over v E [vo, vl] . Similar arguments applied to A,,z 
yield 

uniformly over v E [vo, VI]. Under Assumption I, Lipschitz con- 
tinuity of K' and nl'z-consistency of 6, imply that 

Rn = op[(nh;)-'] CA.6) 

uniformly over v E [vo, vl]. Part a of the lemma follows by sub- 
stituting (A.5) and (AA) into (A.3) and using assumption 5. Part 
b follows by substituting (A.4HA.6) into (A.3). 

Lemma 3. For each 2; E Sz, 

G&) - G&) 

The lemma follows by applying Lemma 2 and Assumption 7 
to (A.7). 

Lemma 4. For each z E SZ, 

Prooj Define 

and 

It follows from Assumption 4 and Lemma 2 that II[G,.(v) < 
col - I [G, (v) <. col l dv = o, (n-112) uniformly over v E [v*, vl] . 
The same result holds if co is replaced by cl and/or the directions 
of the inequalities are reversed. Therefore, it folbws from Lemma 
3 that 

A straightforward but lengthy calculation based on Taylor series 
expansions shows that for each 2; E SE, E(Hni - H:) = O(hL) 
and ~ar(H,i - H:) = O(hn/n). The lemma now follows from 
Chebyshev's inequality. 
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Proof of Theorem 1 

By Lemma 4 and the definition of a,, 

Part a of the theorem follows by applying the weak law of large 
numbers to A,, and part b follows by applying the Lindeberg- 
Levy theorem. 

[Received October 1994. Revised February 1996.1 
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