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Abstract

We give an overview on several semiparametric methods utilised to
model high-dimensional data. Our approach is semiparametric in
nature and is related to Generalised Linear Models. We focus on dy-
namic estimation techniques in this setting. In particular we discuss
Generalized Additive Models (GAM), Alternating Conditional Ex-

pectations (ACE), Average Derivative Estimation (ADE), semipara-

aant e weatohitas nact aatianac Ml T A, AT~ T 00 CQTIALY D iiabl o
metnric \vClB}ltvL‘,ll least suares (511151\‘. Index Models, D1M ), I'rojection

Pursuit Regression (PPR), and Sliced Inverse Regression (SIR ). Their
performance in practice and theory is compared.

1. Introduction and Motivation

Due to the increasing availability of computer power and graphical tools over the last decades
non parametric estimation methods became more and more popular for the analysis of the rela-
tiouship between a response variable Y € IR and its explanatory variable X' € IRY. For the case
d = 1 arich basket of tools exists such as kernel estimators, nearest-neighbour estimators and spline
estimmators. A good access to these topics is given by the recent monographs of Eubank (1988),
Hirdle (1990), Miller (1988), Waliba (1990), and Hastie and Tibshirani (1990, Chapter 2 and 3).
However, most of these techniques are very unappealing for d > 1 since they are based on the
idea of local (weighted) averaging (smoothing). Since in higher dimensions the observations X are
sparsely distributed this process of local averaging results in a poor performance for reasonable
sample sizes. This behaviour, also known as the curse of dimensionality (Huber, 1985), makes it
necessary to search for methods and models which reduce the dimension of the smoothing prob-
lem — preferably to a one-dimensional problem which is the best-studied case. In this paper we
describe some lines of thought and research to this goal.

This idea of dimension reduction is an old one and is build in parametric models such as
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Generalized Lincar Models (GLM), A GLM as defined by McCullagh and Nelder (1989) connects
the mean e of the response variable ¥ with the lincar predictor y = XT3 via a link funetion Gy j.e.,
Gi{p) = 1. The alm is to estimate g when the link function Gy is fixed. From the point of view
of dimension reduction this is equivalent to say that for given Gy the projection g from R? to IR
is searched such that n, the projected X variable, fits the (by Gp) transformed mean g of the YV
variable “best”. Most of the ideas which we present here can be seen as generalizations of GLMs.
Such a model can be generalized by nonparametric methods in two ways, Either the fixed form of
the link function is abandoned, i.e., a flexible or parameter free form is allowed, or the linear form
of the predictor is abandoned allowing for any unknown function of the explanatory variables.

Relaxing the form of the link function means to keep the linear predictor but to replace the
link function by a non-parametric (preferably monotone) funetion. More generally several of these
types of response models can be added, each using a different linear predictor and (non-parametric)
link function. These models are known as Projection Pursuit Regression (PPR} models due to an
algorithm developped by Friediman and Stuetzle (1981). If we take just one term, i.e., an unknown
(inverse) link function operating on a linear combination of the explanatory variables, this is called
a one term projection pursuit model, in econonmetrics also called a Single Index Model (SIM}. This
type of model will be discussed in Section 3.

Allowing for any functional form of influence for the predictor variables leads again into the
dimensionality problems mentioned above. In order to avoid these problems Hastie and Tibshi-
rani {1990) proposed to keep the link ¢y but to generalize the linear predictor by a sum of non-
parametrie univariate functions. This leads to so called Generalized Additive Models (GAM) which
will be discussed in Section <.

However, both of the above approaches make a priori assumptions on the structure of the
model. Most generally, the hope that interesting features of high-dimensional data are retrievable
{rom low-dimensional projections is expressed by saying that the conditional distribution of ¥
given X depends on X only through a p-dimensional variable (X74;,...,X73,)7. The hope is
that pis much smaller than . lHere the model is Y = g(XT;31,..x,,\'T;‘ip,g)* where the 3’s are
unknown vectors, ¢ is independent of X and g is an arbitrary unknown function on IRP*!, In this
model we of course have an identification problem. Without any asswinptions on g it is impossible
to identify the #%s, we can only hope to identify the lincar space which they span. Li (1991a)
proposed a method ealled Sliced Inverse Regression (SIR) for estimating this linear space and some
s forming a base of this space. In his terminology which we will adopt here this space is called the
effective dimension-reduction {el.r.) space and each vector of this space is called an e.d.r. direction.
Once a set of e.dur. directions is fixed Li {1991a) proposes to use standard smoothing techniques to

smooth (XT81,. ... X13,)" against Y. We will discuss his approach in Section 5.
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In Section 2 we will describe running examples which we will use to illustrate the different
methods which we discuss. Section 6 finally shows how these methods can be implemented on a

comnputer.

2. Nonparametric Approaches to Generalized Linear Models

We have argued that some dimension-reduction models can be seen as generalizations of GLMs
were the assumptions on the link function are weakened or the linear form of the explanatory
variables is abandoned. Mo fix ideas let X € IR? denote the explanatory variable and Y € IR
be the response variable. Here and in the following we use the term link where McCullagh and
Nelder {1989) mean the inverse link,i.e., the mean p of Y is connected with the predictor = XTp
via a link function & such that p = G(9). Since in our examples this link is monotone there is no
problem of confusion. As a running example we shall use the case of binary response models, ie.,

Y € {0,1}. The GLAI then reads as P[Y = [|X = 2] = G(z73).
Single Index Models

Single Tudex Models keep the linear component but generalize the link. In our running example
this reads as

PIY = 11X = 2] = g (279) (2.1)

with ¢ an unknown univariate “smooth” function. Note that here some standardization of the
parameter J is asked for, since as such, (2.1) does not identify 3 but rather the direction of 3.
The aim here is to estimate 3 and the unknown link. For illustration of statistical and numerical

procedures to be described later we would like to introduce

example 1:

X ~Na{0, ), A=(1,1)7

1 2
g = L0y +pe' (), L) = exp(n)/[L +exp(n)],  @(n) = —==cxp <~7—72—> (2.2)

2T

PlY =1]X =2] = g{;zr"rﬁ)

This model is almost a Logit model, only the skew deviation term po’ (7)) makes it different
from a GLM. For p = 0 it falls into the class of GLMs. For later illustrations we have set p = 0.6

and have generated n = 200 datapoints (@;,y;) according to (2.2). A graphical inspection of the
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data gives a taste of the nonparametric structure. Figure 1 shows a three dimensional scatterplot
of the data. If we project the X variables in the 45° line we obtain Figure 2. This picture shows
the projected data a! 3 against y; together with the link g(7). All the graphics and computations

were done in the computing enviromment XploRe (1992).

3D View of Sample

1
2

N < X%

X
X
Y

Figure 1: A three-dimensional scatterplot of the sample {(@yi, v, yi) 1399 for ex-
ample .

Generalized Additive Models

Generalized Additive Models keep the link but generalize the linear predictor to a sum of

nonparametric functions. In our running example this reads as

d
PY =X =2l=Gla+) gjlx)) (2.3)
i=1

where x; denotes the U component of the vector 2 = (21,...,24)7 and the g; are unknown

univariate “smooth”™ functions. Again some standardization is necessary since the model as such

d

S=1- The aim here is to estimate the nonparametric functions

does not identify the unknown {g;}

g;. For illustrations of later techniques let us introduce
9 l
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Simulated Data Set
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Figure 2: The observations y; for example 1 plotted against n = 13 =y
The link g(y) = L{n) 4+ 0.6'() is shown as tho solid hne.
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Figure 3: A four picture display with {(7;,4:)};2} and G(#;) in the upper left. The
nonparametric components are in the lower left and upper right. A rotated view of

the surface {(a; 22:,0) }lgol is given in the lower right.
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example 2:

X~ N30 ), gi(zr) =21, gaee) = (22) -1
=y (2.4)

PR = 1X = 2] = Glg(ar) + g2(22))

This model is almost a Logit model, only the second predictor variable has a nonlinear in-
fluence on 7. Figure 3 shows a four picture display with the data {(n;,y:)}72] in the upper left
corner together with the Logistic link. Note that the predictor is 9; = g1(21:) + g2(@2:). The “non-
parametric” components g; are shown in the lower left und the upper right. An impression of the
nonlinear components can be gained by rotating the three dimensional surface {(@1;, @2, 7;)}22.

The rotated point cloud is shown in the lower right.

Sliced Inverse Regression

In our running example Sliced Tnverse Regression estimates the effective dimension reduction

i AN S 4 PR SN I
Ul[‘UCi.IUHS 123 R ’:"‘}V o1 e moavs

PIY = X =] = g(2T31,....273,). (2.5)

where ¢ is an arbitrary unknown function on 7. Note that SIR contains the above two models
as special cases. To demonstrate this technique we will use a modified version of example 1 and
example 3 defiued below. Example 1 is modified by adding three additional components to X so

that X ~ A5(0,7;). But these additional components will have no influence on Y.
example 3.

N ~A5(0,05), gifey) =21, g2(22) = (22 F -1
¢ ~ AN(0,(0.6)%) (2.5)

Y =gi(x)+gelz)+¢
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3. Single Index Models

Model (2.1) is called a single index model or a one term projection pursuit model. This
terminology is due to Iricdman and Stuetzle (1981) who considered the more general model:

K
PY =1|X =2] =) ¢;(z"8))
i=1
where the 8; € IR are unknown parameters and the ¢;'s are unknown smooth functions. In
order to make the #;’s and the ¢;'s identifiable one has to impose restrictions on the scale, usually
||/3jH =1,or ﬁj] =l
Friedman and Stuetzle (1981) proposed to estimate I\, 8; and g; by the method of Projection
Pursuit Regression (PPR) algorithm. This procedure estimates terms gj(:v:"ﬁj) as long as the
fraction of unexplained variance is below a user specified threshold. In each step that g; is chosen
which maximizes the fraction of unexplained variance given the previous terms { projection pursuit).
The fitted model with A is
K )
PIY = 1Y =a] =) g;(2"B)).
i=1
A drawback of this method is that it is not evident which value of I is to be chosen. Research
has therefore [ocused on one term projection pursuit models. In this line Hall (1989) constructs a
root-n consistent estimator of 4. A different method is that of Hirdle and Stoker (1989) also called
ADE for Average Derivative Estimation. It is based on the following idea. Define m(z) = g(2T3)

and observe that for the average derivative 8, as defined helow, we have

: . dy Ty
§ = Ex[m'(X)] = Ex[——=(XT3)]3. 3.1
SICO] = Ex [ (YA (3.
Thus ¢ determines 3 up to scale. Let f(a) denote the density of X and [ its vector of the negative
log-derivatives (partial), { = —ll‘;liii = —le {lis also called score vector). Under assumptions on f
this enables us to write
6= Eln'(X)] = E[IY] (3.2)

and to estimate & by §=n"! ZI;I /.A,L(.z'i)y,‘. Here 1, is an estimator of { based on a kernel density
smoother with bandwidth . For an casy access to kernel density smoothing see the book by
Silverman (1986). With root-n estimates for é precise estimates for the link can be obtained. The
convergence rate for g is one dimensional.  Stoker (1991) proposed alternative estimators for 6
based on first estimating the partial derivatives m’{x) and then to average over the observations.

A Monte Carlo comparison of these methods is presented in Stoker and Villas-Boas (1992),
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The estimation of the score vector [ via a kernel density estimator involves a number of intensive
calculations, especially when we optimize over i, Therefore discretization or WARPing ideas should
be used (Turlach 1992). For our simulated example Figure 4 shows the result of this method. We
calculated § and used the Nadaraya-Watson regression estimator to estimate g. Note that the
horizontal scale on this figure is different since (3.1) suggest that 6 has diflerent scale than 3. In
fact for ADE the scale of & changes with g but it does not matter for the statistical interpretation
of the link g that we are interested in.

The estimation of & and its asymptotic covariance matrix Xg for example 1 was done with

0.135

Program 1 in Scction 6. Note that for this example we have § = (555

). The binning parameter

0.33 )

d was chosen in such a way that maximal 20 bins were used in each coordinate, ie., d = (0 o

The estimate for the average derivative and the asymptotic covariance matrix was calculated using

0.99
0.78

i (0121 o _ (0188 0.036
0118 ) == 10036 0206/

These results allow us to test some hypothesis formally using a Wald statistic {sce Stoker (1992),

the three adjacent bins which equals a bandwidth 2 & ({75 ). As result we have

pp. 93-51). In particular, to test the restriction Ré = 7y, the Wald statistic
W= n(Ré — 1) (ROs RTY N (RE — 10)

is compared to a \*(rank R) critical value. Table 3.1 gives some examples for this technique.

Restriction Value W df. P2(dL)> W]
$t =467 =0 25.25 2 0
=67 = 0.135 0.365 2 0.83

o =8 0.027 1 0.869

Table 3.1: Wald Statistics for some restrictions on 8.

The results in Turlach (1992) show that the results of such tests depend on the chosen band-
width f, i.e., in practice it remains the problem of selecting i, The theoretical optimal bandwidth
is calculated in ldrdle, Hart, Marron, aund Tsybakov (1992). They found that for an optimal esti-

—aQ

mation of & the bandwidth /e should be of the rate n7° (a depending on the dimension d and the
“smoothness” of f aud ¢) where this rate is typically different from the optimal rate for estimating

f or g for example. Thus one has to work with two different bandwidths for estimating é and g¢.
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Figure 4: For the simulated data set of example 1 276 vs. y; and two estimates of
gu I ; y

g(aFé) are shown. The thick line shows the Nadaraya-Watson regression estimator

for ¢ with a bandwidth of i = 0.3, for the thin line A = 0.1 was chosen.

This unappealing feature is avoided by an approach due to Ichimura (1993). Let ¢ denote the
error term inherent to the response variable. Observing that (4y denotes the true parameter):
(1) The variation in Y results from both the variation in X7 3y and the variation in «.
(2) On thie contour line XT3y = ¢, where ¢ is a given constant, the variability in Y results
ounly from the variation in e.
(3) Obsecrvation (2) does not necessarily hold on a contour line defined by XT3 = ¢ for 3 # fGo.
Along this contour line, the value of XT3, changes and therefore the variability in ¥ again

results [rom the variation in both XT3 and «¢.

To identify gy Ieliimura (1993) thus proposes to estimate
S(3) = E[{Y —g(X13)}] (3.3)
sinee o is the winimizer of (3.3). Using
S(3,h) =n"! i[;’/i —~ goinlzal B,
i=1

where g_;p, denotes a leave-onc-out kernel smoother of Y on X743, as estimator for S(3) and

minimizing S(;7. /) with respect to 8 and o Hirdle, Hall and Ichimura (1992) showed that this
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vields a root-n consistent estimator of Gy and an asymptotically optimal estimator of hg, the
bandwidth which should he used to calculate the kernel estimate of g.

A way of testing a GLM against this specific single index alternative has been given by Horowitz
and Hérdle (1992). They constructed a conditional moment test based on ideas of Bierens (1990)
and Newey {(1985). Another approach for such a test via Bootstrapping ideas was investigated by

Rodriguez-Campos and Cao-Abad (1993) and Proenga (1992).

4. Generalized Additive Models

For the Generalized Additive Model we have to estimate « and functions ¢; in the model

d
PY =1 =u2]=CGa+ Zgj(:rj)
i=1
This estimation is a highly iterative procedure. Estimation of @ and gy....,g4 in the above
model is accomplished by an algorithm for fitting a weighted additive model (Hastie and Tibshi-
rani, 1990). This iterative fitting of a weighted additive model is known as local scoring since it
generalizes the Fisher scoring procedure. Fach estimation of a weighted additive model is done
in an iterative process kuown as backfitting. In the backlitting step nou-parametric estimates for
iy s ga are calculated. The explicit algorithm of finding the nonparametric components is given
by (see Hastie and Tibshirani [937):
Local Scoring Algorithm
Initialization .0.(/_0) =0for j=1,...,d, a'% =logit(y).
Loop over ottter iteration counter
o) = a0 4 35 ™ ()
pi =logit™H it ()
sio= ) + (g = )/ Bt = i)
w; = pill = pi), t=1,...,n.
Obtain (1(’*‘+‘),g}§m+”,j = |,....d by applying the backfitting
algorithm to z; with explanatory variables @; and observation weights w;.

until the deviance D(y,p) = =23 [yilog(pi) + (1 — yi)log(1 — ;)] converges.
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Backfitting Algorithm
Initialization Ji()} =0forj=1,...,d, &% = 3.
Ttepeal forj=1,...,d xepuxt such cycles:

=y G- Z Jrlee) t=1,....n

A#J
gilej )= Strjw,ej) i=1,....n
2
d
Until RSS =371 (Jé -G — Z g"'j(‘ng‘)) converges.
=1

Here S(r|w, 2;) denotes the value of the function obt.ained by smoothing the scatterplot (z;,7)
with weights w at the point aj;.

Stnce non-parametric estimation methods are used in the backfitting step some typical ques-
tions arise. We have again the question of how to choose the smoothing parameter in this non-
parametric fit regardless whether splines, kernel estimators or others are used, sce Buja, Hastie
and Tibshirani (1989). Another question is how to incorporate the weights in the non-parametric
smoothing step (sce Hastie and Tibshirani 1990, pp. 72-71). Especially in binary models, as
we discuss them hereo these weights can cause numeric problems. If the estimated probability
pi = PY: = 1|\ = x;] is very close to 0 or | the weight w; for this observation in the backfitting
step will be very small. Thus the adjusted dependent variable z; may be very big resulting in a
large partial residual within the backfitting algorithm. This can result in a bad fit which leads in
the next step of the local scoring to the same problem.

Program 3 in Section 6 demonstrates how the Generalized Additive Model can be estimated

in XploRe {1992). The result of this fitting is visualized in Figure 5. The backfitting algorithm

provides estimates ol the function ¢; in the wmultiple additive regression model Efyla] = o +
25 0s(ay) with Elg; (X)) =0for j = 1..... d. Tt is casily seen that in example 2 given by (2.4) we

have Elg;(.X;)] = 0. j = 1.2, Thus for our example we would expect that a is estimated as 0. In
fact the result is & = 0.25.
GAMs can be further generalized by relaxing the asswnptions on the link function G. A

general model would be in this case

d
YY) =Y gl Xi)+e (4.1)
=1
where W, gy, ....g; are arbitrary univariate functions and < is independent from X = (Xy,..., X,)T.

For estimating model (1.1) Brehman and Friedman (1985) proposed the the method of Alternating
Conditional Expectations (ACE). Here ‘1’-‘/1 ..... ¢p are estimated by the minimizers of the fraction
of variance not explained by a regression of 7Y on Zl,] ¢:(X;). te. the minimizers of
(W) - Zzzl yl-<_-\',~)}‘~’}
EyY )] ’

H
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Figure 5: A four picture display with the results of the fitting procedure for the
Generalized Additive Model. Legend is the same as for Figure 3 where 7; is replaced
by 7};.

Since

Y

d
GG = BV =Y gl X)X and WY )= E D gi(X))
I =1

this can be done by iteratively estimating cach of the above conditional expectation, using at each
step the current estiimates of the functions on the right hand side, until convergence is reached, i.e.,
estimating alternatively conditional expectations.

These estimates are chosen to optimize a correlation criterion. There are a number of prop-
erties of the ACE procedure that are somewhat misleading if one views ACE as a regression tool
(sce comments on Breiman and Friedman, 1985 and lastie and Tibshirani. 1990. Chapter 7.2.6).
To overcome these anomalies Tibshivani (1988) proposed a modilication called AVAS (Additiv-
ity and Variance Stabilization). It differs from ACE by using an asymplotic variance stabilizing
‘

transformation instead of the estimate YY) = £

[ N .

P _(j;(;\l‘)')' ] . To our knowledge there is not

much theoretical support for this technique until know aud it is thus sill an open field of research.

Iispecially global convergence of AVAS has not yet been established. There is also no consent which
JOO ') <

wethods of inference should be applied for ACE and AVAS.
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5. Sliced Inverse Regression

Sliced Inverse Regression (Li 1991a) attempts to estimate the effective dimension-reduction

(e.d.r.) directions Jy,...,.9, in the model
Y o= g(XThy,..., XT8,.e) (5.1)

where the #’s are unkunown vectors, ¢ is independent of X and ¢ is an arbitrary unknown function

on IRPTY . In our running example (5.1) reads as

PY = 1|X = 2] =g 81,...,278,) (5.2)

with ¢ an arbitrary function on 7.

The idea to estimate the 3% is 1o use inverse regression, i.c., to estimate E[X|Y]. Before

we present the justification for this approach we have to introduce some further notation. Let ¥ x
. . . , —1/2 - . . . . .

denote the covariance matrix of X and 7 = X3 / (X — LF[X]) the standardized version of X. With

ESVER)

o= Ny Tdn 0= 1o ps L (1991D) calls any vector in the linear space generated by the 's a

standardized e.d.r. direction.

Observe now that the centered inverse regression curve E[X|Y] — E[X], in general, describes
2 oS d 2 aag 1 - . . R A R d o, - . Ty vT T

a curve in IRT.LE (1991a) showed that if for any b € IRY we have that E[0 XX 5., XT3,
is linear in XT3, ... N1 Jp and (5.1) Lolds, the centered inverse regression curve is contained in

the lincar subspace spanned by Yy, i = 1,....p. As a corrollary we have that the standardized

inverse regression curve E[Z[Y] is contained in the linear space generated by the standardized

e.d.r. directious ... .. 1p- Thus the covariance matrix Coe[E[Z]Y]] is degenerate in any direction

orthogonal to the s, Therefore the cigenvectors . i = 1,....p, associated with the largest

p cigenvalues of Coe[K{Z]Y]] are the standardized e.d.r. directions. So we have the following

algorithm to estimate the e.d.r. directions

The Sliced Inverse Regression algorithm
I. Divide the range of Y iuto I slices
IT.  Within cacl slice compute the sample mean of X, denoted by ap, b= 1,..., 11
HI. Compute the sample covariance matrix for X, Sy = ﬁ Z:'L:l(l.i — i)y — )T
and the weighted covariance matrix for the slice meauns, i,z = 21”:1 Pty — alz, — )T
where py is the proportion of cases that fall into the slice h, and # is the sample
average of N

IV, Conduct an cigenvalue decomposition of ¥, with respect to ¥y. Order the

cigenvectors gy, 4 according to the descending order of the
corresponding cigenvalues, Ay > ... > A,
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Steps I and 11 produce a crude estimate of the inverse regression curve. Li (1991b) advocates
the method of slicing due to its siimplicity although more sophisticated nonparametric regression
methods could be used, We want to study the perforinance of this algorithm on example 1 and
example 3 introduced in Section 2. Tor example 1 we changed the explanatory variable X to have
a N5(0,15) distribution keeping the relationship between the first two components of X and Y as
deseribed in Section 2. Example 2 is not suitable for this method since it has two e.d.r. direction
{the same as example 3). For estimating p ed [, directions the number I7 of slices has to be greater
than p (see discussion of Li, 1991a). But in a binary response model one has in fact always H = 2.
To our knowledee it is an open question whether this theory can be extended to binary (discrete)
respouse models. The program for these calculations is listed in Section 6 and the results are given

below for each example.

Example 1

In this example we have only one ed.r. direction which is 3y = (1,1,0,0,0)7. Li (199a) gives
(under additional assumptions) a result which allows to test for the significance of an e.d.r. direction
3; by the mean of the cigenvalues smaller than the eigenvalue associated with 3;. The eigenvalues

estimated for this example are 0.152, 0. 0. 0. and 0. Thus we would interfere that there is only one
e.d.r. direction. Thoe estimate for this direction is

5y = (0.7331, 0.6726, —0.0752, —0.0152, 0.0651)7.
Note that as with the SINs we can only estimate the e.dr. direction, here 3y is standardized to
have Buclidean norm 1. In this example the e.dur. direction 3y is recognized. If we change 34 to
the same scale as o, the Average Derivative Estimate, and do a regression of ¥ against XT3 we

got a picture similar to Figure -1

Example 3

In this example we have two e.d.r. directions, 3y = (1,0,0,0,0)7 and 3 = (0,1,0,0,0)7.
However, the cigenvalies which are estimated in this examples are 0.1037, 0.0392, 0.0199, 0.0122,
and 0.0076. Thus we would interfere again the existence of only one e.d.r. direction!. Even if we
ask for estimates of two directions the result is

31 = (0.9680, 0.1571, —0.0563, ~0.1158, —0.147:1)7

and Fo = (0.1810, 0.0903, 0.3011, 0.1951, 0.9101)".
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Thus the first e.d.f. direction is fairly well identified whereas the second one is not at all identified.
The problem is that in this example F[X,]Y] = 0. Therefore the inverse regression curve is
degenerated in the second eudir. direction and SIR fails to find it. A solution to this problem is to
estimate higher orders too. 1f for example the conditional variance Var[X,[Y] varies with Y we
could hope to identify this e.d.r. direction by exploring the variability of the conditional variance

Varlp™ X

Y]. This approach is called SIR 11 by Li (1991b) and is a very promising development

of rescarch.

6. The implementation in XploRe

The above calentations have been performed in the language XploRe (1992). In this section
we give some programs that are useful in solving the iterative procedure for Generalized Additive
Models for example or for ADE. The Single Index Model for example 1 has been estimated using

the ADE techuique with the following program.

library(smoother) ;load the necessary libraries
library(addmod)

randomize(0)

x = normal(200 2) ;generate the explanatory variable
rtho = 0.6

beta = #(1 1)

eta = x*beta ;eta, notation as in (2.2)

g = 1./(1+exp(-eta)) - rho * eta.*pdfn(eta);calculate g{eta)

u = uniform (200)

y = u.<g ;generate the response variable
d = (max(x)-min(x))/20 ;choosing a binning parameter
(xb yb) = bindata(x d 0 y) ;binning the data

(del dvar) = adeind(xb yb 4 3)
;estimate the average derivative and the asymptotic covariance matrix

est = (xxdel)’y ;calculate the projection
ghl = regest(est 0.1) ;find estimates for g
gh2 = regest(est 0.3)

show(est ghl gh2 s2d) ;show results (Picture 4)

Program 1: This program generates and estimates example 1

The commands of XploRe (1992) are similar to GAUSS but more fine tuned for smoothing and
nonparanetric methods in high dimensions. The Generalized Additive Model (GAM) of example 2

was created using the following code:
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randomize(0)
X = normal{200 2)
gl = x[,1]

g2 = x[,2] .*x[,2]-1

eta = gl+g2

px = 1./(i+exp(-px))

u = uniform{200)

¥y = u.<px

createdisplay(pic3, 2 2, s2d s2d s2d d3d)

show(eta’y eta’px s2di, x[,1]17gl s2d2, x[,2] g2 5243, x eta d3d1)

Program 2: This program generates Picture 3

The estimation of the GAM was done by

proc(fx alpha devs)=lscore(x y)

dim = cols(x)

gx = matrix(rows(x) dim 0) ;initialize g.j

Xs = 1 ;used to store information

;to sort the covariates

ybar = mean(y)

alpha = In(ybar/(i-ybar)) ;initialize alpha

devs = 0

loop = 1

do
eta = alpha + sumr{gx)
p = 1./(1+exp(~eta))
w = p.*x(1-p) jcalculate the weights
z = eta + (y-p)./w ;calculate the adjusted

;dependent variable

(gx alpha xs)=backfit(x z xs w 0.4) ;the backfitting step
dev = -2xgum(y.*1n(p)+(1-y) .*#In(1-p));calculate the deviance
devs = defsidev
chg = abs(devs[loop,1]~-dev)/dev
loop = looptt

until( (chg < 0.001) || (loop == 6) )

devs = devs[2:rows(devs),1]

endp
Program 3: This program implements the Local Scoring Algorithm

The following program calculated the SIR estimates for the two models used above and mod-
ificd as deseribed in Section 5,

library(xplore) ;load the necessary libraries

library(addmod)

randomize(0)

X = normal{200 5) ;generate the explanatory variable
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rho = 0.6

beta = #(1 1 0 0 0)

eta = x*beta ;eta, notation as in (2.2)

g = 1./(1+exp(-eta)) - rho * eta.*pdfn(eta);calculate g(eta)

y = (uniform(200) .<g) ;generate the response variable
randomize(0)

x = normal(200 §) ;generate the explanatory variable
gl = x[,1]

g2 = x[,2] .*x[,2]-1

eps = 0.6%normal (200)
y = glig2+eps
b_gam = siri(x y 2 10)

Program 4: This program generates the two modified models and applies SIR
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The estimated mean trajectory of the coefficient (shown in Fig. 11) varies smoothly from —0.028 in
early stages to —0.017 at about 1 year. After that, it stabilizes at that value but its uncertainty increases
with time. Similar results are obtained after removing the two extremely large survival times confirming
lack of information in later periods. On comparison with Figs 5(a) and 5(b), there may be an indication
of a larger reaction of Hastie and Tibshirani’s estimates in the presence of little information (confidence
limits are not provided there).

Another modelling approach related to varying-coefficient models is hierarchical modelling (Lindley
and Smith, 1972). The richness of the Bayesian structure, mentioned in Section 3.4.2, allows here the
explanation of regression coefficients by additional covariates through stochastic relations. Dynamic
hierarchical models (Gamerman and Migon, 1993) allow, in addition, coefficient variation with time.
However, parametric relationships are an integral part of hierarchical (or dynamic) models and have
a strong effect on the results even when the prior for the higher stage (or initial) parameter is vague.
Smoothness in the appropriate direction is a consequence of the model.

Wolfgang Hirdle and Marlene Miiller (Humboldt University, Berlin): We would like to congratulate
the authors for an excellent and interesting paper which gives a framework for a wide range of flexible
regression models. The varying-coefficient model as presented in this paper is very powerful indeed.
Its application in the examples in Sections 4 and 5 speak for the method proposed.

Our comment will address some aspects of inference for the estimation method described. Once the
varying-coefficient regression model has been estimated it is natural to compare it with competing fits.
Since the coefficients of the model are functions 3;( ) the comparison could be based on confidence
bands for the coefficient functions. Another proposal would be a squared distance between competing
coefficient functions. Suppose that the nonparametric 3 has to be tested against a parametric fit £, Hardle
and Mammen {1993) have derived the distribution of

nhi/2 S (ﬁ”ﬁf’ﬁ)z

where h denotes the kernel bandwidth and ¥g denotes the smoothed parametric model. Simulations
suggest that this test (based on the quantile of the asymptotic normal distribution) is not very powerful.
The correct bootstrap (the so-called ‘wild bootstrap’) yields much better results. Have the authors similar
experiences for their test based on the ‘approximate degrees of freedom’? The same comment applies
to uniform confidence bands,

M. C. Jones (The Open University, Milton Keynes): My remarks concern only a rather technical point
which may be of little practical consequence. Consider, for simplicity, model (5) with univariate X.
Write V= Y/X so that V= 8(X)+ ¢/ X. One might, appropriately, fit a parametric 8 to (X, V) by weighted
least squares using weights proportional to X?2. This global experience does not, it seems to me,
necessarily carry over immediately to /ocal nonparametric regression. In Jones (1993), I show how
weighting affects Nadaraya-Watson estimators, in particular, and the answer (asymptotically) is only
in terms of bias and not at all in terms of variance. Moreover, there is no argument for choosing weights
inversely proportional to error variance. In fact, swift calculations involving (preferable) local linear
fitting suggest no effect of weights whatsoever (asymptotically), and that the bias effect is one of
Nadaraya-Watson’s peculiarities. It seems, however, that there may be some sense in inverse variance
weighting for splines (essentially as used by the authors), but only because of splines’ effective local
bandwidth choice. This appears to involve weight(x) X f (x) (Silverman, 1984); since variance of smoothers
depends inversely .on ¢%(x)/ f(x), inverse variance weighting is suggested.

All that T am trying to say is that the authors’ weighting, which is applied to general versions of their
methodology, is not quite that obviously appropriate, and that it is an issue that might repay further
investigation; for example, perhaps it can be done without, although I would not expect great differences
to resuit.

1 do not mean to detract in the slightest from a most interesting and worthwhile further contribution
to an important area of the subject, one to which the current authors continue to contribute enormously.

Charles Kooperberg (University of Washington, Seattle) and Charles J. Stone (University of California,
Berkeley): It is implicit in the discussion in Section § of the appiication of varying-coefficient models
to survival data that the penalized partial likelihood estimate for §; is a natural cubic spline and hence
linear in the right-hand tail. When there are scant data in this tail, and especially when there is a substantial
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Summary

Nonparametric smoothing methods are applied in statistics as a flexible tool
in finding structure and connections within data. Well known means to do
that are kernel, spline and nearest neighbor estimators. We present here kernel
estimators, which are easy to handle in all dimensions, in various situations and
applications. We first consider density estimators and show how these are used
as an exploratory tool in univariate and multivariate situations. Some theory
is provided for inferential issues. Next we give a short overview on smoothing
techniques in univariate regression. The last chapter deals with multivariate
regression, where we present two semiparametric applications. As we go along
we present our computer implementations which are done entirely in XploRe 3.1
- an interactive statistical computing environment.
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Density estimation plays an important role in modern statistical research and
practice. A variety of nonparametric methods has been proposed by various aui-
hors and there is a considerable amount of literature. This chapter concentrates
on using and implementing kerne! density estimation. To illustrate these ideas,

we consider throughout this paper the following data sets.

Fomnennls
LLBQRITHE £

The Swiss Bank Notes data (see Flury and Riedwyl, 1988, page 3 ff.) consist of
200 measurements of old Swiss bank notes. It is known that the first 100 bank
notes of the sample are genuine and the second 100 are forged. The data contain
the measured values of length (X)), left height (X3), right height (X3), distance
of the inner frame to lower border (X,) and to the upper border (X;), and the
length of the diagonal (Xs). One is interested in discriminating between the two
groups.

Ezample 2

The nuclear sclerotic cataract data stem from the Beaver Dam Eye Study (see
Mares-Perlman, Klein and Klein, 1992). It contains 1136 observations of age
minus 60 (X;), logarithm of zinc concentration in blood (X3), and the level of
the nuclear sclerotic cataract (Z) given in four categories labelled 1 to 4 {lowest
to highest). To simplify the presentation we transform Z to a binary variable
Y by pooling together levels 1, 2 (Y = 0) and 3, 4 (¥ = 1). The interest lies in
modelling the cataract as a function of the other two variables.

All computations and graphical presentations in this paper are done in
XploRe 3.1. This system is an interactive, open statistical computing environ-
ment, which allows the user to implement complicated nonparametric algorithms
in an easy way, to combine them into libraries and therefore to tailor the compu-
ting environment according to his own interests. The application of multivariate
nonparametric methods is supported by predefined macros and libraries. The
XploRe language is matrix oriented and offers various possibilities for interactive
graphical representation. See XploRe (1993).

One important feature of kernel density estimates is that they provide easily an
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impression of the data distribution. Consider Ezample 2. How can we immedia-
tely check for modes or skewness in the distribution of the variables X; or X,7
Binning the data and looking at histograms is often informative, but histograms
change their shape with the origin of the bin sequence; see Scott (1992). Kernel
estimates overcome this problem. Denote the observations of the variable X by
z;,1 = 1,...,n. The kernel density estimate fh of the density f is constructed

by averaging over scaled kernel functions centered in the points z;, i.e.

falz) = ;ll—hE:;Ix(x"};T’) (1.1)

Table 1.1 lists some commonly used kernel functions.

K(o) Kernel
K(u)=11(ul < 1) Uniform
Ku)=(1-|u])I(ju] £1) Triangle
K(w)=231-u)I(ju/<1)  Epanechnikov
K(w) =301 —u?)?I(jul <1)  Quartic

K(u) = ﬁ;exp(—%) = (u)  Gaussian

Table 1.1.

The choice of the bandwidth A is the essential problem in kernel density estima-
tion. One simple method is the "rule of thumb” for a Gaussian kernel proposed
by Silverman (1986) which assumes the true underlying density to be Gaussian

with variance o?. This yields
h=1.066n"° (1.2)

with & the usual standard deviation estimator for . This procedure is realized
in the XploRe macro denauto and gives us for the zinc variable X; of Example
2 the curve in Figure 1.1. .
The same method applied to the age variable X; of Ezample 2 gives us the curve
on the left of Figure 1.2. The calculated bandwidth is given below the figure.
The estimated density shows a slight second mode and a pronounced skewness
to the right. In the right part of Figure 1.2 we have calculated fuforh = %lAz We
see that more modes appear and that the distribution is most likely non-normal.

The modes are of course functions of the bandwidth.
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Figure 1.1. Kernel density estimate for the zinc distribution
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Figure 1.2. Kernel density estimates with bandwidths for the age distribution

Kernel density estimates for a given bandwidth can be calculated in XploRe
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via the macro denest. The corresponding XploRe code for Figure 1.2 is given

below.

proc()=main()

x=read(nuc) ; read the data file "nuc.dat"
library(smoother) ; load the necessary library
fhi=denauto(x[,1]) ; estimate fhl by rule of thumb
n=rows (x)

h1=2.62%1.06*sigma*n~(-0.2) ; bandwidth hl used in "denauto”
h2=h1./2 ; bandwidth h2

fh2=denest(x[,1] h2) ; density estimate with h2

createdisplay(di, 2 (-2), s2d text s2d text)
; Create 2 text & 2 graphics displays

show(fh1l s2d1, fh2 s2d2, hil téxtl, h2 text2)
; show fhil, fh2 and hi, h2
endp

Program 1.1. Macro for the density estimates of Figure 1.2

More information on data can be provided by two dimensional density estimates,

calculated below with the XploRe macro denest2.

Density of Age & Zinc

XN
RS

O &wx
W\

X: Age {X1) (*10) X
¥Y: Zinc (X2}
Z: Density estimate] (+10 ~3)

Figure 1.3. Kernel density estimate for age and zinc
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One sees immediately the unimodal structure in the zinc direction (Y axis)
as well as the different modes in the age direction (X axis). It is clear that
the exploratory character of density estimates is restricted to low-dimensional
data; the limit is for three dimensional data. Scott (1992) uses contour shells to
reveal structure in three to four dimensional data. Let us here review a method
for finding non-normal structures in high-dimensional data sets by combining

projection and density estimation techniques.

Projection Pursuit techniques cover a wide field of interesting topics in data
analysis (density estimation, regression, exploratory data analysis). The idea
is to find an informative low-dimensional projection of a high-dimensional data
set which help to describe the non-normal structure of the data. We recall
that each projection of a Gaussian distribution has also a Gaussian distribution.
Since there is an infinite number of possible projections there is a need for an
automatic choice. Let I(a) : IR" — IR be a projection indez, where « describes
a projection vector with |a| = 1. The aim is to maximize this index in order to
detect non-normality. If we project the data points z;, we obtain 1-dimensional
data points z; = o’ z;. The density estimation of z; as a function of a should
look non-normal for projections a revealing non-normality. The task is thus to
find such projections.

Friedman (1987) defined an index by transforming the projected data such that

normally distributed data will be uniformly distributed on [—1, 1] and measured

re= [ 1 {pR(m - %}ZdR (1.3)

1

the non-uniformity by

~

where R = 2®(a?X) — 1 and pr(R) is the probability density of R. After

expanding pr(R) by Legendre-polynomials, we obtain the estimator

J .
s 1 27 +1
](a)=§ E 2
=1

n

5"—: P;{20(c"z;)} — 1} : (1.4)

1=1

Here, J plays the role of a smoothing parameter. It is well known that this
index is not very robust against outliers. We obtain usually skewed distributi-
ons in this case. Nevertheless we present it here to demonstrate the interplay
between density estimation and projection pursuit techniques. To demonstrate
the performance of this method we apply it to the Swiss Bank Notes data set
(dimension 6) described in Ezample 1. The following picture is obtained by the
ppexpl macro of XploRe.
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Figure 1.4. Estimated density of projected data in Exploratory Pro-
jection Pursuit

Figure 1.4 shows the projection of the data maximizing f(a) for J = 3. The
coordinates of the projection are displayed in the right window. We can clearly
see that the data set separates into two clusters. For a projection pursuit dis-

criminant analysis approach see Polzehl (1993).

In practical studies the choice of the kernel does not have a great influence on the
resulting density estimate assuming the bandwidth & is optimal. One possible
definition of optimal bandwidth is that A which minimizes a distance between
the true underlying density and the density estimate. Usual distances are the
integrated squared error ISE(h) or its mean M IS E(h) which has the asymptotic

representation (n — oo,nh — oo, h — 0)
MISE(h) =~ Cin™'h™! 4+ Coh?, (1.5)

with the constants €, = [K*(u)du, C; = 1 pi(K) [{f"(z)}*dz and
p2(K) = [u?K(u)du.
The concept of canonical kernels introduced by Marron and Nolan (1989) scales

the kernels such that they are equivalent in view of MISE. More exactly, for
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two kernels K1, Ko,
MISEg (hy) =~ cx, k, MIS Eg,(ha) (1.6)
with a constant cx, x, independent of hy, hy, if the bandwidths Ay, h, fulfill
83 [ K} (u)du }1/5
hy = hy=, 6;‘:{——1—:——- . 1.7
T (K o
Table 1.2 shows the transformation factors for the bandwidths if we change from

one kernel of Table 1.1 to another. XploRe provides the macro canker which

automatically calculates this transformation.

6% /67 Uniform Triangle Epanechnikov Quartic Gaussian
Uniform 1.000 0.715 0.786 0.663 1.740
Triangle 1.398 1.000 1.099 0.927 2.432
Epanechnikov 1.272 0.910 1.000 0.844 2.214
Quartic 1.507 1.078 1.185 1.000 2.623
Gaussian 0.575 0.411 0.452 0.381 1.000

Table 1.2. Canonical kernel transformations from canker

Kernel density estimation is not an easy computational task. Some packages
are very specialized in the sense that they can do only calculations related to
kernels (e.g. N-kernel). On the other hand some are so general (e.g. GAUSS)
that everything must be programmed (often with Do-loops). Others have not
enough built-in flexibility (e.g. Splus supports only four kernels: Cosine, Gaus-
sian, Uniform and Triangle). XploRe offers a great variety of kernels as well as
predefined macros which realize the computation of kernel estimates. The user
may add his own kernels of course. The fast computing algorithms are based
on the WARPing technique, described e.g. in Hardle (1991). The basic idea is
the "binning” of the data in bins of length § starting at an origin zo. Instead of
evaluating the kernel for all differences (z;—z;),%,j = 1, ...,n the kernel function
needs now to be evaluated only at 16h71,7 = 1,...,#, where £ is number of bins
which contains the support of the kernel function.

The calculation of the estimated density reduces from fh(x j) to
_ n: Ny
fu(Z5) = E;L“Z;nif{{(i—j)‘%_l} (1.8)

computed on the grid Z; = zo + j6 with N, denoting the number of non-empty
bins, n; the number of observations in the i-th bin. The XploRe density esti-

mation macros denauto, denest and denest2 use the fact of the asymptotic
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equivalence of the kernels described above and calculate therefore the density
estimates based on the Quartic kernel, which has the advantage of a compact
support. We give in Program 1.2 the XploRe code for the denauto macro,

denest and denest2 are programmed in an analogous way.

proc(fh)=denauto(x)
d=(max(x)-min(x))./100
(xb yb)=bindata(x d)
sigma=sqrt(cov(x))
h=2.62%1.06*sigma* (rows(x))~(-0.2)

make 100 bins

bin the data

estimate the variance
determine h by rule of thumb

use transformation constant
for change to quartic kernel

create weights for the
symmetric quartic kernel

wy=symweigh(0 d/h h/d &qua)

e we Mews ws Mo wae v

wx=aseq (0 rows(wy))

(xc yc or)=conv(xb yb wx wy) ; calculate density func
fh=(xc*d) ~“(yc/(n*d))
endp

Program 1.2. Automatic density estimation, XploRe macro denauto

Since we have an asymptotic Gaussian distribution for the kernel density esti-
mate at fixed points z if n — oo, we can also construct confidence intervals
for fh(x) For a bandwidth A = ¢n™1/% holds the following formula (Silverman,
1986; Hardle, 1991)

R fu(z) — f(z)} <o N ( = P@mlK) , )G ) .09

For small A (in relation to n~1/%) the mean in (1.9) is negligible. This yields the

asymptotic confidence interval

Fu@) = o DD ) gy 2 (1.10)

with u;_,/» denoting the /2 quantile of the standard normal distribution.
The XploRe code below calculates the confidence intervals for the density esti-
mation of the age data of Ezample 2. We show these confidence intervals in
Figure 1.5. One sees that the modality structure remains inside the confidence
intervals.

Formulas and computer algorithms for true confidence bands can be found in
Bickel and Rosenblatt (1973), Hardle (1991). They are slightly more compli-
cated but they have the same underlying idea to exploit the asymptotic limit

distribution. For a bootstrap approach see Hall (1992, page 220 ff.).
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proc()=main{)

fh=denest(x[,2] h)

ci=2%sqrt((5/7) .*th[,2]./(rows(x)*h))
cup=fh{,1] " (£fh[,2].+ci) ; upper confidence bound
clo=fh(,1]"(£h{,2].~ci) ; lower confidence bound

show(fh s2d) ; display the result
endp

x=read(nuc) ; read the data
library(smoother) ; load the necessary library
h=3.787 ; bandwidth

’

density estimate

Program 1.3. Density estimation confidence intervals in XploRe

Confidence Bounds for Age

1

4.0

(*10-2)

Dens. & Conf. Bounds
f

Figure 1.5. Density estimate and confidence intervals for the age data

2. Smooth regression in one dimension

The aim of this chapter is to give a very short overview and to recall the main

ideas of univariate nonparametric regression methods, in particular kernel re-
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gression smoothing. The univariate regression model assumes observations of
two variables X and Y, i.e. data of the form (z;,¥:),i = 1,...,n which are

connected via an unknown regression function m(e) as follows:
vi=m(r)+e,i=1,...,n, (2.1)

¢; denoting the error variables. The problem is now to estimate m(e). Nonpara-
metric estimates suppose no prior knowledge of m. There is an obvious analogy
with the nonparametric kernel density estimation. Plugging in kernel estimates
for f(z) and f(z,y) in m(z) = E(Y|X = z) = f(z)™ [y f(z,y)dy leads to the

popular Nadaraya-Watson estimate

n! z": Kh(:C e z,-)y,'
() = —=3 - (2.2)
n-! Z Kh(x e xj)

=1

This kernel estimator is essentially a local average of the y; variables with cor-
responding z;’s close to z. This local averaging behavior is behind several other
smoothing techniques, e.g. k-nearest-neighbor and spline smoothing. They are

In an asymptotic sense equivalent to kernel smoothing with a bandwidth depen-
ding on z, see Hardle (1990), Chapter 3.

Regression Curve for Age

Figure 2.1. Regression curve in XploRe.
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In XploRe the kernel smoothing is again performed via the WARPing technique
in the macro regest. The bandwidth choice is as in density estimation crucial
for the practical performance. The WARPing technique allows fast computation
of the cross-validation bandwidth (macro regevl). For a local plug-in choice we
refer to Hardle and Marron (1991).

Figure 2.1 shows two kernel estimates according to (2.2) for the regression of ¥’
on X = X, in Ezample 2. The bandwidths are chosen as h = 2.5 and h = 7.
This is of course only a marginal relation between one variable and the response.
A more refined analysis based on semiparametric models is presented below.
More details on nonparametric regression, especially on bandwidth choice, are
given in the monographs of Eubank (1988), Miller (1988), Hastie and Tibshirani
(1990), and Hardle (1990).

3. Regression Smoothing in High Dimensions

The kernel methods described in Chapter 2 can be generalized to the multiva-
riate case. In most practical applications though problems will arise due to the
sparseness of data. Projection based methods or additive modelling avoid this
data sparseness. We will present Single Indez Models and Generalized Additive
Models, both generalizations of Generalized Linear Models (GLM), see McCul-
lagh and Nelder (1989). The GLM generalizes the linear regression model with
systematic component n = X783 to EY = G(n) with a known (inverse) link

function G. In our Ezample 2, where we have binary responses, we model
P(Y =1|X = z) = G(z7B). (3.1)

The Single Index Model idea is to generalize (3.1) to arbitrary smooth link func-
tions g. This is what is called in the statistical literature a one term Projection
Pursuit Model. Friedman and Stiitzle (1981) proposed an iterative method for
estimating 8. Hardle and Stoker (1989) derived a direct non-iterative method,
the so-called Average Derivative Estimation (ADE). The ADE idea is as follows.
For m(z) = ¢g(z7B) the average derivative
dg

d(z* B)

§=En'(X) = E | (x7p)| 8 (32)
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determines 8 up to a scale factor. Since § equals E£Y, ¢ denoting the score
function —dlog f/0z = —f'/f, it can be estimated by § = n=! " f;(z))y:
with ¢ based on a kernel density estimate with bandwidth A.

Figure 3.1 shows for Ezample 2 the projected observations x;‘"b vs. the responses
y; as well as two link functions § (computed with regest) with bandwidths
h =0.05 and h = 0.15, respectively.

Since the two estimates of Figure 2.1 and Figure 3.1 looks a bit similar it would
be interesting to test whether §; = 0, i.e. whether there is no influence of zinc.
We have here 6 = (_g:g;) and its estimated covariance ig = (gzgggéj g:?gggg).
Hérdle and Turlach (1992) describe a test using a Wald statistic which goes
back to Stoker. To test the hypothesis R6 = r we have to compare the test
statistic W = n(RS — r)T(RSRT)"Y(RS — r) to the x2(rank R) value. For our
running example this leads to W = 29.177, thus we reject the hypothesis.

Single Index Model

Y . GHl , GH2
2.0

T T T
-4.0 -2.0 0.0 2.0 4.0
X1*DeltaleX2*Daltaz  (*10 “1)

Figure 3.1. Single Index Model fit

One can see a clear asymmetry in the link functions, speaking against a sym-
metric, e.g. logistic, link. The XploRe code below uses the macro adeind which

calculates the ADE.
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proc()=main()
x=read(nuc)
library(smoother)
library(addmod)
y=x[,3]
x=x[,1:2]
d=(max(x)-min(x))/20
(xb yb)=bindata(x d O y)
(del v) = adeind(xb yb 4 3)

est=(x*del) "y
ghi=regest(est 0.05)
gh2=regest(est 0.15)

read the data
load the necessary libraries

the response variable

the age and zinc variables
binning parameter

bin the data

the ADE del and its asymptotic
covariance matrix v

the preojected data

estimate g, h=0.05

estimate g, h=0.15

W N e WM e W e we we e

show(est ghl gh2 s2d)
endp

display the results

Program 3.1. The Single Index Model in XploRe

Generalized Additive Models (GAM) keep the link but generalize the projection
T3 to a sum of nonparametric transformations. These fall into the class of

Additive Models, i.e. one assumes

\ I 7/ \ 4_‘ AN / /

- ey
For an introduction into this class of models we refer to the book of Hastie and
Tibshirani (1990). The algorithm to estimate this model consists of local sco-
ring and backfitting to determine the nonparametric transformations gi, ..., g4.
Program 3.2 shows the realization of this iteration process in XploRe. The main
part of the work is done in the local scoring macro 1score, which calls the back-
fitting macro backfit. The nonparametric estimates for gy, ..., gq4 are obtained
by a k-nearest-neighbor method with k the number of 30% of the data points.
As link function we have taken the logistic link. .

The output of Program 3.2 is displayed in Figure 3.2. The upper left picture
shows the y; vs. n; = & + Z‘;zl gj(z;) and the fit G(4;). The lower left and
upper right pictures show the estimated nonparametric components g;(z1;) vs.
zy1; and §o(z2) vs. . The lower right picture displays the 3-dimensional
surface (z1;,22i,7;). We see that the nonparametric §; for the age is almost
linear. However g, for zinc is nonlinear and has a negative slope. Recall that
the ADE estimate was negative in the second component, too. But one should
pay attention that §; varies in [—4,6] whereas §; takes values in [—1,1]. So it

turns out that the zinc variable has a smaller influence than the age variable.
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proc()=main()

x=read(data2\nuc) ; read the data
library(smoother) ; load the necessary libraries
library(addmod)

y=x[,3] the response variable

x=x[,1:2]
(fx alpha dev)=lscore(x y 0.3)

the age and zinc variables
run the local scoring algorithm
which includes the backfitting

e we we we

eta=alpha+sumr(fx)
mu=exp (eta) ./ (1+exp(eta)) ; calculate the link function

createdisplay(hl, 2 2, s2d s2d séd da3d)
; create the output display

datll = eta’y

dat12 = sort(eta”p)

dat2 = sort(x[,1]1"fx[,1])
dat3 = sort(x[,2]°fx[,2])

dat4 = x"eta
show(dat11l datl12 s2d1, dat2 s2d2, dat3 s2d3, dat4 d3di1)

; show the results
res=(y-mu)./(sqrt(mu.*(1-mu))) ; calculate the residuals
Xres=x"res ; combine res with x
write(xres xres) write xres to a file "xres.dat"

endp

~e

Program 3.2. The Generalized Additive Model in XploRe

T X1 Age  (X1)  (*10)
k) Y: Iine (X2}
Z: ETA

Figure 3.2. Generalized Additive Model fit
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To assess the quality of this GAM estimate we provide a brushed residual plot.
The following figure shows in the upper left a plot of the age and zinc data,

"L

masked by a point if the corresponding residual lies in the lower quartile,
by a ”+” if the residual lies in the interquartile range and masked by a 70O”
if it is in the upper quartile. The three other plots show these residual groups
separately.

The masking can be achieved directly by giving the corresponding commands in
the program or brushing interactively on the screen since the four displays are
linked.

t is easy to see that the residual plot underlines our conclusion from the GAM
L
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Figure 3.3. Brushed residual plot for the GAM fit

Program 3.3 gives the XploRe code for Figure 3.3.
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proc()=main()
xres=read(xres)
xres=sort{xres 3)
xr=xres[,1:2]

read file "xres.dat"
sort data after residuals
sorted age and zinc values

createdisplay(h2, 2 2, s2d s2d s2d s2d)
; create output display

data with lower quartile res.

data with interquartile res.

data with upper quartile res.

xri=xrf1:284,] ;
xr2=xr[284:852,] :
xri=xr[853:1136,]

show(xrl xr2 xr3 s2di, xril s2d2, xr2 s2d3, xr3 s2d4)

-

link("s2d1\data_1" "s2d2\data_1") ; link the 4 displays

link("s2d1\data_2" "s2d3\data_1")

link("s2di\data_3" "s2d4\data_1")

display(h2) ; show the linked displays
endp

.
3
)
.
y
3
3
»
’
.
3

Program 3.3. Residual plot in XploRe (Figure 3.4)

There are many more approaches in the analysis of high dimensional data.
We would like to mention among others Alternating Conditional Ezpectations
(ACE), Breiman and Friedman (19385), and Sliced Inverse Regression (SIR), a

method introduced by Li (1991). Both methods are available in XploRe by the

1§ u VYo J* 4 11l A aV 2 APRONC DY Ll
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XploRe - An Interactive Computing Environment

W. Hirdle and T. Kétter

Summary

XploRe is an interactive statistical software for PCs. The design
of XploRe is performed in a way that encourages immediate inter-
action with the data. Non-parametric smoothing methods in high
dimensions are feasible through additive models and massive use
of automatic smoothing methods. XploRe has highly interactive
graphics and allows windows of different types.

1 Introduction

XploRe was designed as computational tool for statisticians. The aim was to offer facilities
for easy access to and development of statistical algorithms (e.g. higher data objects, ma-
trix computation, basic statistical routines, graphics) that also run on low cost computers.
PCs were selected as the appropriate hardware base. .

The first two releases of XploRe were coded in Pascal as menu driven software. The
advantage was the easy handling of the software. However by the development of release
3 the wish for more flexibility caused the implementation of an interpreter and an inte-
grated high level programming language. Many algorithms and all libraries of XploRe
are coded in this incorporated language. Due to some perfomance advantages and better
standardisation the development language of XploRe 3.0 was switched to C.

Nowadays additional features are necessary and important, especially in the domain of
interaction and graphics. Today’s statistical software should also provide integrated tools
{e.g. an editor) and a help system.

The current version, XploRe 3.1, meets all above mentioned demands as they are

» a statistical interpreter including a high level statistical programming language
¢ matrices as basic data objects

e various graphical output (static, dynamic, 2- and 3-dimensional, multiple windows)

including PostScript interface

Hardle, W. and Kétter, Th. (1994) XploRe - An Interactive Computing Environment.
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e an editor for macros and data
e libraries for different statistical topics

— smoothing facilities
— highdimensional fitting techniques
— teach ware

— a complex matrix library

e a help system

In order to have a convenient handing special emphasis was given to an easy switching
between the three components "editor”, ”interpreter” and "help system”. The integration
of all nécessary tools avoids the need of using external help when working with XploRe .
Nevertheless it is possible e.g. to write macros with an own editor. Data can be loaded and
saved in two different formats. One is the ASCII-format which allows an easy exchange
between other software or even editing by hand. The other one is a space and speed

optimized internal format.

2 Basic Window

When starting XploRe the screen is divided into three parts:
1. the action screen
2. the command line (last line)
3. the icon list (last column)

The action screen which covers nearly the whole screen shows data, macros and graphics;
essenfially all output of XploRe is displayed here. The command line where the user types
in his commands allows also to copy lines from the editor into it. Further on all previous
commands can be retrieved through a ’last commands buffer’. On the icon list current
available function keyé are represented by small symbols. Since the function keys have
different meanings in different parts of the XploRe software the icon list is meant to give
the user a symbolic display of functions actually available.

3 Graphics in XploRe

One of the most important features of XploRe is the wide range of facilities to look at
data.

The action screen can be divided into different plot areas with various graphical styles.
Apart from different possibilities to present the data the user may furthermore link them
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or execute brushing operations like highlighting, masking, etc. which effect the single plots
simultaneously. -

The following picture shows the action screen divided into six different subscreens (text,
scatterplot, projection of a 3-dimensional point cloud, 2-dimensional density estimation,

line plot, box plot). |

N scattexplot

%i.11 %{.2) of T " o
a1 * * o MR
214.8000031 131.0000000 21 I T S S A
214.6000061 129.6999969 N R T L T 2V T
214.8000031 129.6999969<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>