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Abstract 

Nonparametric procedures are an interesting alternative 
to classical time series ana.lysis. The nonparametric tech- 
ilique follows the principle of 'letting tiie data speak for 
tliemselves, ' aiid provides guidance in choosing a para- 
inetric models. fn tliis paper local polyiiomial estimators 
are given for vector conditional heteroskedastic autore- 
gressive nonlinear (CHARN) model in which bot11 the 
conditional mean and tlie conditional variance (volatil- 
ity) matrix are unltnown functions of the past. We ex- 
arnine the iates of convergence of these estimators and 
their asymptotic normality. These are applied to estim- 
ation of volatility matrices of foreign exchange rates. As 
the usual nonparametric models often l-iave less than sat- 
isfactor y performance wlien dealing with more than one 
lag, we also give the joint estimation of the additive mean 
a,nd tlie inultiplicative volatility, which fully exploits the 
additive/multiplicative stiucture. We then discuss the 
usefulness of this approach in selecting the correct lags 
without assumptions on the forrns of tlie structures. 

1 Nonparainetric Vector Autore- 
gression 

There are two very i~nportant aspects of model selection: 
tlie selection of form of the function, aiid tlie selection of 
sigriificant variables. We concentrate on the first aspect 
in Sections 1 to 3, wllich also provide the necessary tools 
for iilvestigating tlie second aspect in Section 4. 

Rlultivariate time series occui in the modelling of dy- 
iia.inics over time and help explaining interdependente 
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among variables. A common model in this context is 
vector autoregression where the dynamics over time is 
modeled via a linear operation oii the past values of the 
vector time series, See Lütkepohl (1991). One restrict- 
ive element is that the conditional covariaace is assumed 
to be fixed or of specific form. Siilce tlie beginning of 
the eighties this drawback has been stressed by Engle 
(l982), Robinson (1983, l$84), Terasvirta (1994) in the 
econometiic literature and hy Collomb (1 984) , Tjgstheiin 
(l994), McMeague and Zhang (l994), m d  Vieu (1994) 
in the statistical literature. Nonlinear time series inod- 
els in this context are threshold autoregressive (TAR) 
models of Tong (1978, l$83), the exponential autore- 
gressive (EXPAR) ~nodels of Haggan and Ozalci (1981), 
the smooth-transition autoregressive (STAR) inodels of 
Chan and Tong (1986) aiid Granger and Tergsvirta 
(19%). 

The nonparametric inodelling of mean function a id  
the volatility matrix offers a way out, since it  does not 
depend on specific structuies of these quantities. In the 
framework of ARCH models, receiitly non- a.nd semipxa- 
metric approaches (Gregory, 1989; Engle and Goilzalez- 
Rivera, 199 1.) have been proposed. Engle and Ng (1993) 
ineasured the impact of news o i ~  volatilit y arid found 
asymmetiic volatility functions. Gouri6roux arid &Ion- 
fort (1992) models bot11 the conditional inean and tlie 
conditional variance nonparametrically. Their rnodel 

is called a qualitative thieshold ARCH model. Here 
{Aj)J=, with fixed J denotes a partition of tlie set of 
lagged values foi Y, (aj), (Pj) are unlmown parameter 
vectors and matrices respectively, a.nd Ji is white iioise. 
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I t  generalizes the threshold model of Tong (1983) but 
sha.res with it  the drawback of a fixed number J of 
thresfiold points. 

A generalization of niodel (1.1) to a wider class of 
conditional ineaii and variance functions can be Seen as 
a limit of (1.1) for J + ca thus allowing J to be unknown 

wliere = ([ii,[i2, ...,erd) E Eid, i = rn, m + 1, ..., n,  
are randoin vector variables; .& are i.i.d.witli E(elj) = 
0, for any 1 < j < d ,  E (e; j )  = 1. Tlie mea,n vector 

function f :  Rmd -+ #td and volatility matrix function C: 
lRnid  --+ Bld X Etd are unknown, C($) is syrnrnetric and 
positive definite for any X E B P d ,  and the initial value 
Xpii = .,., YO) is a random vector variable 
independent of (ti}. 

We call (1.2) a conditional lieteroskedastic autore- 
gressive nonlinear (CHARN) model, it neither malm 
structural assumptions ori f and C nor distributional as- 
su~nptions on J. 

For tlie CHARN ~nodel ,  i t  is crucial not only to es- 
tirnate the conditional mean function f(*), but also tfie 
conditional variance or volatility function C (e) at tlie 
Same time. As a matter of fact, for the prediction of 
firiancial t i ~ne  seiies, the volatility function plays a rnore 
iinportaat role than the mean function. I t  is therefore 
beiieficial to obtaiii the joint estiination of botli f (e) and 
C (e) for model (1.2). Härdle, Tsybakov and Yang (1 996) 
stuclied the estimation of f (e) and C(*) for the mul- 
tivariate CHARN model which generalized the result of 
Härdle aad Tsy bakov (1 996) on asyinptotic normality of 
the local polynomial (LP) ectiinators. The idea of local 
polynomial estimation goes back to Stone (1977). The 
statistical properties of LP esti~nators in nonparametric 
regression were studied by Tsybakov (1986). For recent 
refereiices, we refer to Ruppert and Wand (1 994), Wand 
and Jones (1995), Fan and Gijbels (1996). 

For v , s  E R~ that both have unit length and any 
X E IRmd, the mean function of v T y  is f (X; V) = 
vT f(x) while the covariance functioii of v T y  and s T y  
is vT C(X)S. In particular, letting V ,  s be coordinate 
vectors e j  = (0, . . . , 1,  .. . , o ) ~  gives fj (X) and ojk ( X ) ,  

j ,  k = 1,2,  ..., d, tlie components of the vector function 
f (X) and the matrix function C(X) respectively. The LP 
metliod solves tlie following minimization problems 

wliere Ji : Pd -+ #I1 is a lwriiel K6(u)  = &I<(;) ,  
h = h, is a positive number (bandwidth), h, -+ 0, a s  
11 -+ co and 

ivliere F ( U )  = ( ) t , for U E lRrnd. Tlie 

estiinator of f ( X ;  W) is defiiied as 

Tlie estiinator of vT C(X)S is defiiied as 

The following is assumed 

(Al)  The error variables Ci j ,  1 5 j 5 d ,  are independent . 
The density P(*) of Ci exists and satisfies 

inf P(X) > 0 
XE K 

for any cornpact X C IRd. Also E(Eij) = E ( E ; ~ )  = 
0, E((;~) = 1, and E(cf j )  = 1 + m4 < W. 

(A2) There exist coiistants Cl > 0, > 0 such that 

(A3) Tlie matrix function C(N) is symmetric for any X E 
BIrnd, and satisfies 

inf X,;, (C(z) 1 > XK > 0, 
xEK 

for any compact X C IRfnd, wliere Xmin(C) denotes 
the minirnal eigeiivalue of a real symrnetric ~natr ix  
C. 

(A5) The functions f and C are componentwise twice con- 
tinuously differentiable at the point X E IRnzd. 

(A6) The density P(*)  of the stationary distribution n ( e )  
exists, is bounded, continuous and strictly positive 
in a neighborhood of the point X .  

(A7) The kerne1 IC is a compactly supported 
non-negative function on Vd ,  such that 
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wliere U& > 0,  a,nd Imd denotes tlie identity rnatrix 
of dimension m d .  

(A8) h,, = ßn-1/(4+"'d), wliere ß > 0. 

(Ag) The initial value X, is a fixed vector in Blm*. 

Under tlie conditions ( A l )  to (A4), the Markov chain 
{ X i )  is geometrically ergodic, i.e. i t  is ergodic, with 
stationary probability ineasure T(* )  such tliat, for alinost 
every X ,  

1 lpn(*Ix) - T ( * )  I ~ T V  = O(P'") , 
for some 0 5 p < 1. Here 

for a Bore1 subset B C #Pd, and 1 1  l l T v  is the total 
variation distance, See Ango Nze (1992). 

Denote 1 1 ~ 1 1 :  = R~ (u)du. Härdle, Tsybakov and 
Yang (1996) proved the following theorern 

Theorem 1 Under the assumfltions (A i )  t o  (Ag), as 
n+oo 

5 (,) = p - n a d  f f j j  (X) llKl12 2 , c j k ( z )  = ß-md-?-_ U .k (X) 
P (4 P (4 IIIM . 

Also, as n --+ m 

with 

in which sjr(X) detzotes the (j, I ) - t l z  e n t y  of tlte n tnt~ix  
c ' /~(x) .  Finally, as n t co 

2 An Application 

As an interesting example, estiinates as described in 
Section 1 were obtairied in Härdle, Tsybakov and 
Yang (1996) for the daily returns of Xi =DEM/USD 
(Deutsche Mark/US Dollar) and of Xz =DEM/GBP 
(Deutsche Mark/British Pound) for the period of Janu- 
a r . ~  2, 1980 to October 30, 1992, a total of 3212 observa- 
t ions. 

Tlie estimated coiiditioiial mean fuiictioiis f; (X) and 
h 

fi(t) of the lagged values = ( , "*" ) were foun'l to 

be rather flat and arouad zero. Also found was a negat- 
ive correlation when the two returns have opposite lagged 
values, while positive correlations were found elsewhere . 
This pattern in which the conditional co~aria~nce Zl2 (2) 

clianges from negative to positive tends to resemble the 
lnultivariate GARCH Capital Asset Piicing Model as in 
Bollerslev, Engle and Wooldridge (1 988), where the meari 
functioils are also close to Zero and therefore negligible. 
The implications of this to the foreigil exchange market 
is not known to us at this time. We also should point 
out that effective construction of confidence bands for 
volatility estimation is yet to become available, aiid thus 
OUT result here is just a starting point. The computa- 
tion was done in XploRe, using the WARPing technique 
(Härdle, Klinke, Turlach, 1995). More detailed numer- 
ical and graphical descriptioiis of the data and the various 
estirnates are contained in the paper Härdle, Tsybakov 
and Yang (1996) cited above. 

3 Integration Method 

The practical performance of the estimatois in Section 
1 could suffer from the statistical imprecision introduced 
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by a large number of lags with smaller sarnple size, a phe- 
nomenon corninoidy referred to as t l ~  "cuise of dirneri- 
sionality" . Stone (1 982) showed for i .i .d . regression that 
if the mean function is a sum of univar. iate functions, then 
the one dimensional convergence rate can be achieved for 
its estimation, thus avoiding the "curse of dimensional- 
ity". Chen and Tsay (1993a,b) studied additive time 
series models using the BRUT0 algorithm developed by 
Hastie and Tibshirani (1990). The "integration metlmd" 
was introduced by Auestad and Tjostheim (1991) and 
further explored by Tjostlieim and Auestad (1 994a). It 
provides closed fo r~n  bias aild variaiice expressions of 
the one dimensional function estimator. I t  has been em- 
ployed recently in the autoregression setting by Masry 
aild T j~s the im (1995a,b), and in the i.i.d regression set- 
ting by Linton and Härdle (19961, Linton and Nielsen 
(1995). The volatility function measures tlie scale and is 
always positive, thus it  is more appropriate to model its 
changes multiplicatively rather thari additively, as in the 
EG ARCH model of Nelson (1 99 1). 

Consider , tlierefore, a CHARN model of the form 

Y,  = f(k;:-l,x-2,...,x-d) + s ( ~ - ~ , I $ - ~ ,  ..., I$-d)ti 

( 3 4  
where {[i}i>l are as in Section I ,  Y*, Yl, ..., Yd-1 aie ran- 
dom va.riab1es independent of the (&)'s and 

where ef and C, are constants, {fß(*)}i=l and 
d 

{op are sets of unknown functions satisfying cer- 
tain identifiability conditions. Uader assumptions sirnilar 
to those in Section 1, Yang and Härdle (1996) proposed 

a set of estimators {Tff (*)I and {3, (.) } by integrating 

local polynomial estimators of degree p > 0,  and proved 
the following 

Theorem 2 For any X = (z i ,  ..., xd) und a n y  a = 
I ,  ..., d 

The definitions of the functions bja (X,), via (X,), 

bm(%), V„(%), cm(%), bf (X), v.f(x), b&), %(X), 

are given in Yang and Härdle (1996). 

4 Lag Selection 

Useful estimation of autoregressive (AR) time series re- 
quires the selection of correct lagged values. While maliy 
lag selection methods have been developed for stationar y 
AR models, they all assurne that the series itself is Iiri- 
ear. Tj@stheirn and Auestad (199413) and Vieu (1994) 
had formulated nonparametric lag selection rules, us- 
ing kerne1 based estimate of the Final Prediction Error 
(FPE) aiid the Cross Validation as selection criteria re- 
spectively. See also Chen and Tsay (1993a) for the best 
subset procedure. 

While the application of nonparametric autoregression 
procedure needs a good selection of lagged variables, it 
also provides a tool for such selection that is easy to use. 
Applyilig tlie results on local polynomial autoregression 
as in Section 1, Tschernig and Yang (1996) have stud- 
ied the nonparametric FPE estimate for a given finite 
1a.g AR process, using a local linear (LL) estirnatoi with 
bandwidth h. It has the following expression 

wliere 

and where j is the total mmber of correct lags, W (*) a. 

weight function, all other functions are the Same as Sec- 
tion 1 except that now the series is olle dimensiolia.1. The 
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ba.ndwidth h is then set to the optimal hopt by ~niiiiinizing 
the FPE,  tllus 

Tlie FPE  of T j~s the im arid Auestad, FPETA, has es- 
sentially the Same expression as that in (4.1) above, but 
by making h = o(n- h), i t  throws out the term gjc :C, 
wliicl-i nzeasures some kind of cuivature of the process. 
For smooth (here by smooth we mean second order con- 
tiiluously differentiable) processes that are highly non- 
linear, tliis causes problem, as shown in the Monte Carlo 
study of Tschernig and Yang (1996), where the restric- 
tion on the oveifitting tendency was insufficient . An- 
other diawbaclc of FPETA is that it used the Nadaraya- 
Watson (NW) instead of LL estimator, thus even if the 
terin U;< $C were included, i t  would involve not only 
Trv2 f (X) m d  p (X), but also V f (X) and Vp (r  ) , whicli 
would add extra difficulty. 

Tschernig and Yang (1996) have showu tliat tlie lag 
selection rule based on the above FPE is consisteiit as 
n -+ W, while the piobability of overfitting (i .e., selecting 
all the correct lags plus some extra ones) goes to Zero at  
a slower rate tha.n that of undeifitting (i.e., missing some 
correct lags). Therefore a new modified FPE (FPETY) 
is proposed 

(4.3) 
which possesses all the properties of the previous one in 
(4. I), but with some extra protection against overfitting, 
by ~u l t iD ly ing  the factor 1 + --$ which penalizes larger 

n3T4 
inodels. The Monte Carlo study of Tschernig and Yang 
(1996) lias showii that this new FPETY outperforms the 
FPETA when tlie process is smooth, whiIe for discontiii- 
ous or nonsmooth processes, i t  performs sonlewhat worse 
tlian the FPETA. In most cases, the FPETY performs 
better tlian tlie AIC criteiia of Tj@stlieirn and Auestad. 
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Financial Calculations on the Net 

Wolfgang H kdle and Stefan Sperlich 

Institut fiir Statistik und ~konometrie, Wirtschaftswissenschaftliche Fakultiit, 
Humboldt-Universitat zu Berlin, D- 10 178 Berlin, Germany 

1 Introduction t o  XploRe 

XploRe is an interactive statistical computing environment. As the name in- 
dicates, support for exploratory data analysis, for simulation and intensive 
calculation scenarios is given by a variety of interactive tools. Like most of 
the statistic software packages it is based on vector- and matrix calculation, 
but unlikely many such packages, in XploRe matrices can be of up to nine 
dimensions. Further, XploRe offers extraordinary opportunities in dynamic 
and interactive graphics. For our purpose, that is calculating in finance, the 
interactivi ty of the user interface and the techniques pf visualization are of 
special importance; particulary since this interactivity is net based and easy 
to implement for programmers who want to modify or extend existing meth- 
ods. 

A noteworthy quality in XploRe are the capabilities of network facil- 
ities, which in software development have become more and more impor- 
tant. From the very beginning, XploRe was geared towards inter- or intranet 
compatability. Thus, for example, the help system is available in HTML. 
Furthermore, the newly developed Java interface endows the user with the 
possibility to work with XploRe via inter- or intranet and thus without the 
necessity of installing it locally. Thus, a complete session can be opened just 
with a freely available WWW browser like Netscape (try the http address: 
http://www.xplplores tot-den. 

2 The finance library of XploRe 

There is growing interest in quantifying and simulating economic processes, 
particulary in the statistical analysis of the behaviour of financial markets. 
The library finance is designed for this purpose. It offers macros to predict 
and estimate (time series) processes, for example stock returns, to determine 
option prices and to evaluate different scenarios (e. g. for portfolio strategies). 
To give a brief overview of th is  library we will present and illustrate some 
macros implemented in finance. I t  is called by library("f inance") on  the 
free Java interface of XploRe. We will pay special attention to the simulation 
of processes of stock returns.  
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'I'he basic r~~etl iotl  lo determine opt i o t l  prices of the 1 h r q w a 1 1  kind is to use 
t he analytic- s o h  t.im of Black and Sdmlcs. The i r  formtila allows to c a l ~ u l a t , ~  
the  option price under strong a s s u ~ ~ p t  ions on the model. T h e  analogue for 
American op t ims  is the approximation by McMil lan.  D i s ~ r i l ~ u t  ions of divi- 
dends for assets like stocks usually lead to changes in the value of the corre- 
sponding derivative. Unfortunately this often can not be taken into account* 
in the analytic solutions and t h u s  has to be done numerically for European 
as well as for American options. Therefore binomial trees are used. These 
thechniques can be performed interactively via the macro opt start (1, as 
presented in figure 1 for illustration. I t  is also of interest to investigate and 

Fig. 1. The macro opt s tar t  running on Java 

to visualize the influence of the various factors such as domestic interest 
rate, time to expiration on option prices. This can be done by the macro 
i n f  h e n c e ( ) .  Figure 2 displays the surface of option prices versus exercise 
price and time to expiration while keeping all the other parameters fixed. 

Obviously, scenarios for portfolios strategies like the construction of spreads 
or arbitrage possibilities can easily be obtained by table calculation. I t  has 
long be recognized that stock returns do not obey a simple Wiener process. 
Various alternatives have been introduced, including among others, jump pro- 
cesses or a mixture of Wiener and jump processes, see for example Streller 
(19%). Macros for simulating such processes and for estimating the param- 
eters in those models are also available, e. g. s tocks irno ,  stockesto. 

A different approach to model stock prices is using typical time series 
rmdels  such as ARCH, GARCH, EGARCH, T-ARCH etc. , see Gourieroux 
(1997). 
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Fig. 2. The macro influence in action 
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The clans of ARCH models, built upon the concept of stochastic volatility, 
is much more flexible than classic models in fitting financial data. In partic- 
ular, the time discrete model of Duan (1995) using the GARCH(1,l) process 
is appealing for the theory of option pricing. 

A crucial question is the correct specification of the stochastic volatility. 
Therefore it is necessary to develop programs to model the volatility more 
flexible, e. g. , for asymmetry of shocks. Examples of such a development are 
the Threshold ARCH model of Rabemananjara and Zakoian (1993) and the 
extension of it to T-GARCH by Hardle and Hafner (1997). The program to 
malyse and compare these models is implemented in tgars i m  ( ) . 

In Figure 3 we present results of a comparison of GARCH and T-GARCH 
to the Black and Scholes option pricing model. Displayed are the generated 
processes, option prices, absolute and relative differences to Black and Scholes 
versus moneyness (SIK with S=stock price, K= strike price). The greyish 
curve indicates the T-G ARCH model. 

All programs are available on the net. 
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Stock price simulation 
I 

Option Prices 

Relative Differam 

Fig. 3. The result of the macro tgars im 
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ASYMPTOTIC PROPERTIES OF THE 
NONPARAMETRIC PART IN PARTIALLY 

LINEAR HETEROSCEDASTIC 
REGRESSION MODELS 

Wolfgang Hardle, Hua Liang and Axel Werwatz * 

Abstract 
This paper considers estimation of the unknown function g(m) in  the partially linear 

regression model = XTP + g ( z )  + ~i with heteroscedastic errors. We first construct 
a class of estimates g, of g and prove that ,  under appropriate conditions, g, is weak, 
mean square error consistent. Rates of convergence and asymptotic normality for the 
estimator g, are also established. 

Key Words and P hrases:Key words and phrases: Asymptotic normality, consistency, 
heteroscedasticity, kernel estimation, rates of convergence, partially linear model, semipara- 
metric models. 

1 INTRODUCTION 

Semiparametric models combine the flexibility of nonpararnetric modeling with structural 
parametric components. One such model that has received a lot of attention in the literature 
is the semiparametric partially linear regression model 

where X and T are (possibly) multidimensional regressors, ,B a vector of unknown parame- 
ters, g(a) an unknown smooth function and E an error term with mean zero conditional on 
X and T. 
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Well-known applications in the econometrics literature that can be put in the form of (1.1) 
are the human capital earnings function (Willis (1986)) and the wage curve (Blanchflower 
and Oswald (1994)). In both cases, log-earnings of an individual are related to personal 
characteristics (sex, marital status) and measures of a person's human capital like schooling 
and labor market experience. Economic theory suggests a non-linear relationship between 
log-earnings and labor market experience, which therefore plays the role of the variable T in 
(1.1). The wage curve is obtained by including the local unemployment rate as an additional 
regressor, with a possibly non-linear influence. Rendtel and Schwarze (1 995), for instance, 
estimate g(e) as a function of the local unemployment rate using smoothing-splines and find 
a U-shaped relationship. 

Under various assumptions, several authors have considered estimation of P in (1.1) at a 
parametric rate. Chen (1988), Engle, et al. (1986), Heckman (1986), Robinson (1988), Schick 
(1996) and Speckman (1988) constructed Jn-consistent estimators of P. Cuzick (1992a) 
studied efficient estimation of ,f? when the error density is known. Efficient estimation when 
the error distribution is of an unknown form is treated in Cuzick (199213) and Schick (1993). 

In this paper, we will instead focus on deriving the asymptotic properties of an esti- 
mator of the unknown function g(e). We consider its consistency, weak convergence rate 
and asymptotic normality. We will derive these results for a specific version of (1 . l )  with 
nonstochast ic regressors, heteroscedastic errors and T univariate. 

The remainder of this paper is organized as follows. In the following section we will 
describe methods for estimating ,8 and g (e) . We prove consistency and asymptotic normality 
of the estimator of g(e) in sections 3 and 4. We illustrate the usefulness of the estimator and 
the relevance of the asymptotic distribution results for applied work by a small-scale Monte 
Carlo study and an empirical illustration in the final section of the paper. 

THE ESTIMATOR 

Specifically, we consider estimation of g(e) (and ,8) in the following partially linear, semi- 
parametric regression model: 

where ,B is an unknown p dimensional parameter vector, g(e) an unknown, smooth function 
from [ O , 1 ]  to IR', (XI, TI), (X2, T2) . . . are known, nonrandom design points and . . . , E, 

are independent mean zero random errors with nonconstant finite variance. We allow the 
variance of E to depend on X and T in an arbitrary way. 

Previous work in a heteroscedastic setting has focused on the nonparametric regression 
model (i.e. ,8 = 0). Miiller et al. (1987) proposed an estimate of the variance function by 
using kernel smoother, and then proved that the estimate is uniformly consistent. Hall and 
Carroll (1989) considered consistency of estimates of g(e). Eubank et al. (1990) proposed 
trigonometric series type estimators gx of g . They investigated asymptotic approximations 
of the integrated mean squared error and the partially integrated mean squared error of g ~ .  
The heteroscedastic version of (1.1) with ,8 # 0 has been considered in Schick (1996) but he 
considers weighted least squares estimation of P. We focus on nonparametric estimation of 
g(e) as a function of T .  
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Suppose we knew P. Then we may estimate g(e) by nonparametric regression of Y,  - XTP 
(the variation in & not accounted for by the linear component xTP) on Ti. 

In the literature one can find various methods for estimating g(e) nonpararnetrically, e.g., 
kernel, nearest neighbor, orthogonal series, piecewise polynomial and smoothing splines. See 
Hardle (1990) for an extensive discussion of their statistical properties. All these estimators 
may be written as weighted local averages of the observed values of the dependent variable 
with the weights depending on the values of the explanatory variables. In our case, we can 
write (still assuming that p is known): 

where wni (t) = wni (t; TI, T2, . . . , Tn) are weight functions that depend on the observations 
TI , .  . . ,Tn. 

For instance, a Gasser-Miller-type kernel estimator takes 

1 t - s  
wni(t)= j-JSi si-1 K ( ~ ) ~ s  n 15 i 5 n 

for SO = 0, S, = 1, Si = + T(i+l)). Here Tp), . . . , qn) are sample order statistics, K(.) 
is the kernel function and h denotes the bandwidth. See Remark 4.1 below for details. 

Given the estimator j( t)  as defined in (2.2) we may estimate P by the least squares 
regression of 

That is, we estimate P by the least squares estimator 

where R = (Rl, . . . , yn)T and = (Fl,.  . . , Fn)T are the presmoothed design and response 
variables. 

In the final step we obtain the feasible estimator of g(e) by substituting PLS for the 
unknown p in (2.2) : 

Further motivation for the estimators defined in (2.4) and (2.5) is given in Speckman 
(1988) and Gao, et al. (1995). Note though that PLS is not an efficient estimator in the 
sense of asymptotic normality. 

In the following section we state and prove the weak, mean square error consistency and 
give the rates of convergence of gn(t) under various assumptions. 
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3 CONSISTENCY RESULTS 

All technical preliminaries needed in the  proofs o f  the  following results are collected in  
Appendix A as lemmas. For convenience and simplicity, we always let C denote some 
positive constant not depending on  n .  W e  will use the following assumptions. 
Assumption 1. There exist continuous functions hj(.) defined on [O,1] such that each 
element of X i  satisfies 

where uij is a sequence of real numbers which satisfy limn+, C:=, ui = 0 and 

is a positive definite matrix, and 

holds for all permutations ( j l ,  . . . , j,) of (1,2, . . . , n) where ui = (u i l ,  . . . , ~ i , ) ~ ,  an = n112 log n. 

Assumption 2. 

( a )  z y = p n i ( t )  + 1 as n + oo; 

(b) Cy=, lwni(t) I 5 C for all t and some constant C ;  

(c )  Cy=l I w ~ ~ ( ~ ) I I ( ~ ~  - Ti[ > a )  + 0 n + oo for all a > 0; 

-1 
Denote nt = {c:=, w i i ( t ) }  . 
Assumption 3. 

(b) JiilsuplliSn lwni(t) 1 = ~ ( n - ~ / ~ )  for some 1 > a > 0;  

(c)  Cy=l wii( t )E&? = og/nt + o ( l / n t )  for some 0; > 0.  

Remark 3.1 Assumption I is a common requirement for proving consistency of ,B in the 
partially linear model (1.1). I n  fact, (3.1) of Assumption 1 is parallel to the case 

hj(Ti) = E ( x i j I Z )  and ~ i j  = xij - E(xi jITi)  

when ( X i ,  Ti) are random variables. (3.2) is similar to the result of the strong law of large 
numbers for random errors. (3.3) is similar to law of the iterated logarithm. More detailed 
discussions may be found in Speckman (1988) and Gao et al. (1995). 
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Theorem 3.1 Under Assumptions 1 and 2, E{gn(t)} + g(t) as n + m at every continuity 
point of the function g. 

Proof. Decompose the difference gn(t) - g(t) as follows by direct calculation. 

n - - 
1 -T- 

- - 
gn (t) - g (t) = C wnj ( t){g(~,)  + E~ - x:(xTx)- x g ( ~ )  - X; (xTx) -lFTz} - g(t) 

j=1 

where ij(T) = {ij(Tl), . . . , ij(Tn)}T and ?(Ti) = g ( z )  - & wnj(Ti)g(Tj) and &just like X". 
It follows that 

The first term tends to zero by Lemma A.1 (i). By lemmas A.2 and A.l (i) and Cauchy- 
a a 

Schwarz inequality, we know that every element of ( ~ ~ ~ ) - ' x ~ i j ( T )  is o(n-'I2), i.e., 

I T -  1-T- {(x X ) -  X g ( ~ ) ) ,  =o(n-'I2) for j =  1, . . . , p  
3 (3.5) 

It suffices to show that every element of Cy=l wni(t)Xi is 0(n1I2). Observe that 

Since hj(m) is continuous, Cr=, wni(t)hj(z) converges to h(t) on the continuity point of h(t) 
by the same proof as one for Lemma A.l(i). Moreover, by Abel's inequality and Assumption 

2 ( 4 7  

Thus 
n 

C wni (t) = o (n1I2) 
i=l 

and we complete the proof of Theorem 3.1. 
Theorem 3.1 shows that gn(t) is an asymptotically unbiased estimator of g(t) at every 

continuity point of g(t). The next result, Theorem 3.2, will demonstrate that gn(t) is also 
mean square-error consistent. 

Theorem 3.2 Assume the conditions of Theorem 3.1 hold except Assumption 2 (d) which 
is replaced by supi,, - Iwni(t) 1 = o(1og-I n). Then E{gn (t) - g(t)}2 + 0 as n + oo. 

Proof. Directly, E{gn(t) - g(t)}2 can be bounded by 

Econometric Theory, Problems and Solutions 15, 258-259

Liang, H., Härdle, W. and Werwatz, A. (1999) Asymptotic Properties
of the Nonparametric Part in Partially Linear Heteroskedastic Models.



In the proof of Theorem 3.1 we obtained that the first and third terms of (3.7) converge to 
zero as n tends to infinity. The second can be shown to be order o(1) by a direct calculation. - - 

We shall now prove the fourth term also converges to zero. Denote ( x T x ) - ' T T  = 

(rlji)pxn. 

It follows from the arguments for Q.62 that this equals to o(n) C;=, $, Since Cr=, and 
the elements of the k-th row of (xTx)-' have the same order O(n-I). It follows that 

Furthermore, we can easily show that 

Combining (3.8) and (3.9) ensures that the fourth term of (3.7) is o(l) ,  and thus completes 
the proof of Theorem 3.2. 

The following result gives the weak convergence rate of gn under stronger assumptions 
on {wni(t)) than those given in Assumption 2. Here we list these assumptions. 
Assumption 2'. The weight functions wni(t) satisfy: 

(b) sup, C;=, I wni (t) I I ( \  t - Ti I > G) = 0 (d,) , where dn and e, are nV1l3 log n;  

Theorem 3.3 Assume g(m) and hj(m) are Lipschitz continuous of order 1 and Assumptions 
1 and 2' hold. Then 

gn(t) - g(t) = 0p(n-'I3 logn). 

Proof. By Lemma A.l (ii), 

Using Assumption 2' (c) and Chebyshev's inequality we have (See also Lemma 2.3 of Liang 

I and Hkdle, 1997) 
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The similar arguments as that for (3.5) and (3.6) yield 

Finally, observe that wni(t)uij  = O ( 1 )  and then Cr=l wni(t)xij  = O ( 1 )  for j = 1,  . . . , p .  
Thus, by the arguments for (3.8) and (3.9), 

which entails 

n 

C wni (t)x?(ZTZ)-'FT = log n) . 
i=l 

This completes the proof of Theorem 3.3. 

Remark 3.2 W e  can conclude from the above arguments that 

lirn sup(n2l3 logy2 n) E{gn ( t )  - (t)I2 < 00. 
n--too 

Theorem 3.4 gives the asymptotic variance of gn(t) .  

Theorem 3.4 Under Assumptions 1, 2' and 3, n tVar{gn( t ) )  + 002 as n + 0;). 

Proof. 
n n 

-T- 1-T_ 2 
ntVar{gn ( t ) }  = n t E { ~  wni (t)&il2 + n t ~ { ~  wni (~)x?(x X ) -  X E )  

i= 1 i=l 

The first term converges to a:. The second term tends to zero by (3.10), and then the third 
I term also tends to zero by the Cauchy-Schwarz inequality. # 

4 ASYMPTOTIC NORMALITY 

In the nonpararnetric regression model, Liang (1995) proved asymptotic normality for in- 
dependent ~ i ' s  under the mild conditions. In this section, we shall consider the asymptotic 
normality of gn under the appropriate assumptions. 
Assumption 2". The weight functions wni ( t )  satisfy: 
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Theorem 4.1 Suppose that g ( t )  is Lipschitz continuous of order 1, and that the assumptions 
1, 2"and 3 hold. Assume that ~ 1 ,  ~ 2 ,  . . . , E ,  are independent random variables with Eei = 0 
and infi 0: > c, > 0 for some c,. There exists a function G(u)  satisfying 

such that 

P(I&il >u )<G(u ) ,  f o r i = l ,  ..., n andlargeenoughu. 

Then 

Proof. At first, we can prove that, under the conditions of Theorem, 

It suffices to show that 

For ck = o ( n ~ ' ' ~ ) .  Note that 

where C = s ~ p ~ ~ [ ~ , ~ ~  / g ( t )  1 and 6 ( g ,  c;) = suplt-cisd g ( t )  - g ( t l )  1. Assumption 2" and the 
previous arguments yield the conclusion of Theorem 4.1. # 

Remark 4.1 In this remark, we shall give concrete weight functions {wni(t), i = 1 ,  . . . , n )  
which satisfy the assumptions given in the former context, in order to explain the reasonability 
of the results established in previous sections carefully. 
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Assume 

1 t - s  
wni(t) = - / 8 i  K ( ~ ) ~ s  I <  i < n, 

hn 8i-1 n 

where SO = 0 ,  sn = 1 and y = i(T(i) + T(i+l)), 1 5 i 5 n - 1. hn is a sequence of bandwidth 
parameters which tends to  zero as n + m and K ( e )  is  a kernel function, which is supposed 
to have compact support and to  satisfy 

supp(K) = [-l , l] ,sup IK(z)l < C < m , / ~ ( u ) d u  = 1 and K(u)  = K(-u).  

Obviously Assumptions ,!?(a), (b) and (d) are satisfied for the weight functions given i n  (4.4). 
I f  

Then Assumption 2 (c) hold also. I n  fact 

Now let us take hn = cn-'I3 for some C > 0 and suppose 

There exist constants C1, C2 > 0 such that 

c1 c2 
- 5 min ITi - < max ITi -Ti-ll 5 -. n lsisn l<i<n 72 

Then we can take nt = nh,, and Assumptions 3 and 2" hold. Theorem 4.1 implies that 

J;E7E;;{gn ( t )  - g ( t ) }  tL N ( o , o ~ )  as n + W .  

This is  just the classical conclusion i n  nonparametric regression estimation. 

5 NUMERICAL EXAMPLES 

In this section we will illustrate the finite-sample behavior of the estimator by applying it to 
true data and by performing a small simulation study. 

In the introduction we already mentioned the human-capital earnings function as a well- 
known econometric application that can be put into the form of a partially linear model. 
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It typically relates the logarithm of earnings to a set of explanatory variables describing an 
individual's skills, personal characteristics and labour market conditions. Specifically, we 
estimate p and g(e) in the model 

where X contains two dummy variables indicating the level of secondary schooling a person 
has completed and T, is a measure of labour market experience (defined as the number of 
years spent in the labour market and approximated by subtracting (years of schooling + 6) 
from a person's age). 

Under certain assumptions, the estimate of P can be interpreted as the rate of return 
from obtaining the respective level of secondary schooling. Regarding g(T), human capital 
theory suggests a concave form: rapid human capital accumulation in the early stage of one's 
labor market career are associated with rising earnings that peak somewhere during midlife 
and decline thereafter as hours worked and the incentive to invest in human capital decrease. 
To allow for concavity, parametric specifications of the earnings-function typically include T 
and T2 in the model and obtain a positive estimate for the coefficient of T and a negative 
estimate for the coefficient of T2. 

For nonparametric fitting, we use a Nadaraya-Watson weight function with quartic kernel 

and chose the bandwidth using cross-validation. The estimate of g(T) is depicted in Figure 
1. In a sample size that is lower than in most empirical investigations of the human capital 
earnings function we obtain an estimate that nicely agrees with the concave relationship 
envisioned by economic theory and often confirmed by parametric model fitting. 

We also conducted a small simulation study to get further insights into the small-sample 
performance of the estimator of g(e). We consider the model 

where &i is standard normally distributed and Xi and Ti are sampled from a uniform distri- 
bution on [O,l]. We set p = (1 ,0 .75)~  and performed 100 replications of generating samples 
of size n = 300 and estimating g(e). Figure 2 depicts the "true" curve g(T) = sin(7rT) 
(solid-line) and an average of the 100 estimates of g(e) (dashed-line). The average estimate 
nicely captures the shape of g(e). 

A LEMMAS 

In this appendix we state some useful lemmas. 

Lemma A. l  Suppose that Assumption 2 (a)-(c) hold and g(e) and hj(e) are continuous. 
Then 
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10 20 3 0 40 
Labor market experience 

Figure I: Relationship of log-earnings and labour-market experience 

Figure 2: Estimates of the function g(T) 
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Furthermore, i f  g(.) and hj(.) are Lipschitz continuous of order 1 and Assumption 2' (a)-(c) 
and 2 (b) hold. Then  

for j = 0;. . . , p .  Where Go(.) = g(.) and Gl(*) = hl(.) for 1 = 1 , .  . . ,p .  

Proof. We only present the proof of (ii) for g(.). The proofs of other cases and (i) are 
similar. Observe that 

By Assumption 2 ' (b)  and Lipschitz continuity of g(.) 

and 

( A .  1)- (A.2)  and Assumption 2 (a) complete the proof of Lemma A .  1. 

Lemma A.2 Under Assumptions 1 and 2. 

1- - 
lim -xTx = B 

n-tw n 

Proof. Denote L , ( T ~ ~ =  hs(Ti) - C;=, wnr(Ti)xas.  It follows from xis = hs(T,) + uis that 
the ( s ,  m) element of xTT ( s ,  m = 1,. . . , p )  is 

Lemma A.1 means R ~ A  = o(n ) .  This fact and Assumption 1 show that ~ i b ~  = o ( n )  
and  RE^ = o ( n )  using Cauchy-Schwarz inequality. We therefore complete the proof of the 
lemma. 

The following Lemma is a slight version of Theorem 9.1.1 of Chow and Teicher (1988). 
We therefore do not give a proof. 
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A.3 Let tnk, k = 1, .  . . , k,, be independent random variables with Eenk = 0, and 
o:k < oo. Assume that  limn+,^:",, u:k = 1 and maxljkjk, o:, + 0. Then 
+.' N(0, l )  in distribution if and only if 

Lemma A.4 Let Vl, . . . , Vn be independent random variables with EV, = 0 and infi EY2 > 
C > 0 for some constant number C. The function H(v)  satisfying J,OO vH(v)dv < co such 
that 

P{IVkI > v )  < H(v) for large enough v > 0 and k = 1,. . . , n. (A.3) 

Also assume that {ani, i = 1,. . . , n, n 2 1) is a sequence real numbers satisfying C;=, = 1. 
If max15i5n lanil + 0, then for aLi = ani/'~i(V), 

Proof. Denote tnk = aXkVk, k = 1, .  . . , n. We have C;=, ~t:, = 1. Moreover, it follows that 

It follows from the condition (A.3) that 

Lemma A.4 is therefore derived from Lemma A.3. 
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11 Finance 

Stefan Sperlich and Wolfgang Hiirdle 

There is growing interest in quantifying and simulating economic processes, 
particularly in the statistical analysis of the behavior of financial markets. The 
library finance is designed for this purpose. This chapter explains and illus- 
trates the use of XploRe for theory and practice in this setting. 

The finance library offers functions to predict, to simulate and to estimate 
time series processes as for example stock returns, to determine option prices 
and to evaluate different scenarios (e.g. for portfolio strategies). To give a 
survey of the library we will present the principal procedures implemented in 
the finance library and illustrate their use with several graphics. 

Before starting to work with the finance library in XploRe you have to load all 
the functions contained in the library by typing the command 

l i b r a r y  ("f inance") 
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In the last decades there has been a growing interest in the behavior of finan 
markets. Due to the increasing globalization of markets, they began to 
central role in international business and economic decision making. Th 
meaning of "risk" became the central theme in this context. 

Risk management is essential in a modern market economy. Financial mar 
enable firms and households to select an appropriate level of risk in their t r  
actions, by redistributing risks towards other agents who are willing and 
to assume them. Markets for options, futures and other so-called d 
securities - derivatives, for short - have a particular status. Futur 
agents to hedge against upcoming risks; such contracts promise the fu 
livery of a certain item at a certain price. As an example, a firm might 
to engage in copper mining after determining that the metal to be ext 
can be sold in advance at the futures market for copper. The risk of 
movements in the copper price is thereby transferred from the owner of 
mine to the buyer of the contract. Due to their design, options allow agent 
hedge against one-sided risks; options give the right, but not the obligati0 
buy or sell something at  a prespecified price in the future. 

In avoiding the risk of long positions one could for example try to h 
risk by going short in options on the corresponding asset and adapting 
portion held in assets and short-selled options according to the underlying pri 
process of that asset. Therefore, formulas for the pricing of those derivati 
securities generated a lot of practical and theoretical interest. 

Already in the year 1900, Bachelier introduced Brownian motion as a model 
for price fluctuations on a speculative market. In 1973, Black and Scholes 
founded their famous option pricing formula which calculates the "fair price" 
of an option (which means that there is no arbitrage). This has generated a 
lot of theoretical work relying on that basic model. 

11.1.1 Some History 

The valuation of derivatives has a long history. One of the earliest endeavors 
was undertaken by Louis Bachelier (thesis at  Sorbonne, 1900). But his formula 
was based on such assumptions as zero interest rate, and a process that allowed 
for a negative share price. 
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11 .l Outline of the Theory 28'9 

This formula was improved by Case Sprenkle, James Boness and Paul Samuel- 
son. They assumed that stock prices are log-normally distributed, guaranteeing 
that share prices are positive, and allowed for a nonzero interest rate. They also 
assumed that investors axe risk averse and demand a risk premium additionally 
to the interest rate. In 1964, Boness suggested a formula that came close to 
the Black-Scholes formula, but still relied on an unknown interest rate, which 
included compensation for the risk associated with the stock. 

Further attempts at  valuation (before 1973) basically determined the expected 
value of a stock option at expiration and discounted its value back to the 
time of evaluation. Unfortunately, those approaches require taking a stance on 
which risk premium to use in the discounting. But assigning a risk premium is 
not straightforward, since it should reflect not only the risk for changes in the 
stock price, but also the investors attitude towards risk. The latter is hard or 
impossible to observe in reality. 

11.1.2 The Black-Scholes Formula 

A commonly used model for the description of fluctuations of asset prices is the 
following. X(.) denotes the price process which is assumed to be the solution 
of the stochastic differential equation 

dX(t) = s(t, X) dW(t) + m(t, X) dt. 

Here W(.) denotes Brownian motion, S(., X)  is the volatility process and m(., X) 
is the trend or drift. Classical models suppose that s(t, X) = uX(t) and 
m(t, X )  = pX(t) which results in geometric Brownian motion. 

Fischer Black, Robert Merton and Myron Scholes developed a new method of 
determining the value of derivatives. Their work (in the early 1970s) solved a 
longstanding problem in financial economics and has provided ways of dealing 
with financial risk, both in theory and in practice. Further, their methodology 
has proven general enough for a wide range of applications. It can thus be 
used to value not only the flexibility of physical investment projects but also 
insurance contracts and guarantees. 

In the press release, when Scholes and Merton were awarded the Nobel Prize 
in 1997, was given the following example: Consider a European call option at  a 
strike price of $100 in three months. (A European option gives the right to buy 
or sell only at a certain date, whereas a so-called American option gives the 
same right at any point in time up to a certain date.) Clearly, the value of this 
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call option depends on the current share price; the higher the share price t 
the greater the probability that it will exceed $100 in three months, in W 

case it will pay to exercise the option. A formula for option valuation sho 
thus determine exactly how the value of the option depends on the cur 
share price. How much the value of the option is altered by a change in 
current share price is called the "delta" of the option - see also the gree 

Assume that the value of the option increases by $1 when the curren 
price goes up $2 and decreases by $1 when the stock goes down $2. Assu 
that an investor holds a portfolio of the underlying stock and wants to 
against the risk of changes in the share price. He can then construct a risk 
portfolio by selling twice as many options as the number of shares he o 
For reasonably small increases in the share price, the profit the investor m 
on the shares will be the same as the loss he incurs on the options, and v 
versa for decreases in the share price. As the portfolio thus constructed is r 
free, it must yield exactly the same return as a risk-free three-month tre 
bill. If it did not, arbitrage trading would begin to eliminate the possibil 
making risk-free profits. As the share price is altered over time and as the 
to maturity draws nearer, the delta of the option changes. In order to mai 
a risk-free stock-option portfolio, the investor has to change its compositio 

Black, Merton and Scholes assumed that such trading can take place CO 

uously without any transaction costs. The condition that the return o 
risk-free stock-option portfolio yields the risk-free rate, at  each point in ti 
implies a partial differential equation, the solution of which is the Black-Sch 
formula for a call option: 

where N ( )  is the standard normal distribution, S, t,r,  L see below and 
defined by 

d = 
log(S/L) + (r + a2/2)t 

a& 

According to this formula, the value of the call option C is given by the 
ference between the expected share price - the first term on the righth 
side - and the expected cost - the second term - if the option is exercise 
The higher the option value, the higher the current share price S ,  the hig 
the volatility of the share price a, the higher the risk-free interest rate r, 
longer the time to maturity t, the lower the strike price L, and the higher t 
probability that the option will be exercised - see also the quantlet influenc 
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11.2 Assets 289 

All the parameters in the equation can be observed except sigma, which has 
to be estimated from market data. Alternatively, if the price of the call option 
is known, the formula can be used to solve for the market-implied volatility. 
Market equilibrium is not necessary for option valuation; it is sufficient that 
there are no arbitrage opportunities. The method described in the example 
above is based precisely on the absence of arbitrage. It generalizes to valuation 
of other types of derivatives. Mertons 1973 article included the Black-Scholes 
formula and some generalizations, for instance, he allowed the interest rate to 
be stochastic. The theory of Merton, Black and Scholes can also be used for 
many other or related fields such as: 

a Corporate liabilities 
Black, Merton and Scholes realized already in 1973 that a share can be 
interpreted as an option on the whole firm. When loans mature and the 
value of the firm is lower than the nominal value of debt, the shareholders 
have the right, but not the obligation, to repay the loans. The method can 
thus be used for determining the value of shares, which can be important 
if the shares are not traded. Since other corporate liabilities are also 
derivative instruments (whose value, too, depends on the value of the 
firm), they can be valued using the same method. 

e Investment evaluation 

0 Guarantees and  insurance contracts 

Complete markets 

11.2 Assets 

There exist several quantlets for the simulation and estimation of asset prices. 
Implemented in the finance library are 
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290 11 Finance 

stocksim 0 
simulates random processes for stock prices 

stockest (data) 
estimates a diffusion model for stock price data 

stockestsim (data) 
simulates and estimates a Wiener process with Poisson jump 

11.2.1 Stock Simulation 

The quantlet stocksim simulates random processes for a stock price in three 
different ways: 

using a Wiener process, 

using a Poisson jump process, 

using a mixture of both. 

It is invoked by typing stocksim0 An interactive window appears which asks 
for the values of the process to be simulated. 
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11.2 Assets 291 

The function returns as output a display plotting the three processes and asks 
if one wants to repeat the simulation. In the interactive window one is asked 
for the starting values of the underlying asset, the increasing rate of return 
which corresponds to m(t, X) in the underlying diffusion process. The volatility 
parameter U corresponds to a constant s(t, X). The expected number of jumps 
is the parameter for the underlying jump Poisson process. More precisely the 
geometric Brownian motion 

-- dx(t) - pdt + udW (t) 
X(t> 

is simulated with an overlayed Poisson jump process. If we set the last two 
parameters (intensity and height of the jump) equal to zero we exactly simulate 
from (11.1) at discrete points. The first parameter equals X(0) and the second 
is the drift p. The volatility is given by b, the third parameter. If T* denotes 
the days to expiration and nd is the observation frequency per day, the process 
is on the time interval T*/365 C [O, l] on exactly T = ndT* discretization 
points. This may be checked by variation of these parameters. The process 
is recursively calculated as X( t  + 1) = X(t) exp(p/nd + u ~ ( t ) / a )  at the 
points t = 1,2,. . . , T. 
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11.2.2 Stock Estimation 

The stockest quantlet assumes that the underlying diffusion processes models 
are the same as under 11.2.1, i.e. a mixture of a Poisson jump and a Wiener 
process with drift. For the estimation of such a process, we have to choose a 
dataset that we want to examine. Let's estimate the parameters for the price 
process of the Motorola stock. The data is loaded into XploRe by typing 

in the command line of the XploRe input window. The data consists of 591 
observations. It has 6 columns. We choose the second column - which simply 
contains the price notations of the stock - with the command data=data[, 23 
Estimation now takes place by executing stockest. This quantlet is executed 
by typing the name of the variable representing the dataset in parentheses: 

stockest (data) 

Now the corresponding parameters of the model are displayed in the XploRe 
output window. As an example, take the estimation of the volatility: In the 
output window you find the following information: 

Content of object -tmp.sigma2 
[l,] 38.819 

The other estimated parameters are mue, the increasing rate of return, sigma 
the volatility of returns, lambda the number of jumps in the Poisson model and 
jump the volatility of the height of the jump. 

11.2.3 Stock Estimation and Simulation 

The quantlet stockestsim is a combination of the quantlets described in Sub- 
sections 11.2.1 and 11.2.2. At first it estimates with the first part of a given 
dataset the parameters of a random process. This is done for two kinds ol 
models: a Wiener process and a combination of a Wiener and a Poisson jump 
process. Then both models are compared by a simulation with the rest of the 
real dataset. 

As in the quantlet stockest, you need to choose the dataset first and then 
execute the function by putting the dataset as input parameter. This is done 
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in XploRe by typing the following sequence of commands in the command line 
of the input window: 

The result is a graphical display showing the three processes: 
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11.3 Options 

11.3.1 Calculation of Option Prices and Implied Volatilities 

A calculation of option prices is possible by using one of the following functions: 

optstart  0 
starting program to calculate option prices or implied volatilities 

bi t ree  (vers,  task)  
calculates option prices using the Binomial tree 

{opvv , s e l  , ingred) = b s l  (task) 
calculates option prices using the Black-Scholes formula 

mcmillan (eopv, s e l  , task ,  ingred) 
calculates option prices using the McMillan formula 

american () 
starting program to calculate option prices for american options 

european () 
starting program to calculate option prices or implied volatilities 
for european options 

asse t  (vers) 
auxiliary quantlet to calculate option prices for american options 

The interactive option pricing quantlet optstart  is simply invoked by typing 

optstart  () 

in the XploRe command line. A selection box appears which starts the inter- 
active option pricing procedure. 
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11.3 Options 295 

Simply select the method you want to use. If you wish to calculate the option 
price analytically, choose Black/Scholes & MC Millan; if you want XploRe to 
calculate it numerically, choose Binomial Tree. Let's choose Black/Scholes & 
MC Millan. In any case you will be asked whether you want to compute the 
price of an European (an option which can be executed only at a given date) 
or an American option (that can be executed anytime). 

In this example we have chosen American. This is the kind of option that is 
usually traded e.g. in the USA or in Germany. The next decision is about the 
underlying asset (stock or exchange rate). 
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In our example we are regarding a stock as the underlying asset. In this setting 
you are questioned if you like to have dividends included in the stock and of 
what kind you want them to be. (If you choose Exchange Rate here, the next 
two menu items will be skipped.) Then you are asked whether you like to 
compute the price of an option or the implied volatility. Now we are ready to 
enter the parameters needed for the computation of the option prices. These 
are Price of the Underlying Asset, Exercise Price, Domestic Interest Rate per Year 
and Volatility per Year in percent as well as the Time to Expiration in years. 

In case you have chosen a dividend payment, one more window will appear 
where you are asked to put the amount of the dividend. 
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Finally you can choose the kind of option you like to calculate. Let's say we 
wanted to know the price of a call option: 

The price of our American call option on the given stock in the scenario (chosen 
through the corresponding parameters) with fixed dividend is now displayed 
in the XploRe output window. In case you have chosen a stock as underlying 
asset even the price of the European call option is displayed (in case you have 
not chosen a dividend, the price of a European call option equals that of an 
American call option): 
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298 11 Finance 

C1,l 
[2,] 

[3,1 The Price of Your American Call-Option 
[4,1 on Given Stock with f ixed Dividend is 
[5,] 27.4641 
[S,] 

C7,I 

11.3.2 Option Price Determining Factors 

influence 0 
displays the influence of price determining parameters on options 

The quantlet influence measures and visualizes the influence of different fac- 
tors on the prices of options. It is simply started by typing 

inf h e n c e  ( ) 

in the command line of XploRe. The option prices are calculated with thc 
Black-Scholes formula. After starting the quantlet the following window a p  
pears: 

You may enter the different parameters needed to simulate the diffusion pro 
Next select the influence variables -- you may select up to two variables. 
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following example demonstrates $he use of just one variable: 

In this example we would like to calculate the influence of the exercise price 
on the option price. You must set the lower and upper bound for your chosen 
variable. 

After pushing the OK button you will be asked for what kind of option the 
influence is to be calculated. , 

If you choose for example a Put option you will obtain the following graph which 
shows the influence of the factor (exercise price) on the price of the option: 
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Using influence you can also select two variables as the following example 
demonstrates: 

After selecting the two variables you wish to compute, XploRe asks you to S 
the lower and upper bound for both variables. 

If you choose e.g. Put you will obtain a three-dimensional graphic with the t 
selected influence factors (exercise price and time to expiration) and the pr 
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of the option. You may turn the graphic around by using the cursor buttons. 

11.3.3 Greeks 

greeks 0 
calculates and displays the different indices which are used for 
trading with options 

The interactive function greeks calculates and displays the different indices 
used for analyzing and trading with options. You start it by 

data=greeks () 

The first step is to enter the asset's basic data: 
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Next, you have to select the variables you want to analyze (at most two), e.g. 

Select the ranges for the values of the chosen variables: 

First variable, lower bound: 

upper bound: 
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Now you can choose the index you are interested in: 

Delta-K (Exercise price) 
Vega - Volatll~ty per year [%l 
Theta - T~me to exp~ration bears] 

l Rho - Domestic Interest rate per year p) 
9. Rhmb Cost of carry [%l 

After telling the program the kind of option you want, the quantlet greeks 
will produce a graphical output window for your result: 
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11.4 Portfolios and Hedging 

11.4.1 Calculation of Arbitrage 

arbitrage () 
calculates an arbitrage table 

The function arbitrage calculates an arbitrage table considering puts and calls 
with the same strike price. It is simply started by typing 

arbitrage () 

in the command line of XploRe. After starting arbitrage the following window 
will appear: 

Here you are asked to put in your given data - Days to maturity, Interest rate, 
Stock price, Lowest basis price, Highest basis price and the Number of steps. 

After pushing the OK button you can first put in the call prices and right 
afterwards the put prices: 
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As a result XploRe presents you the following table of arbitrage in the output 
window, where 

0 Call-price is the vector of call prices 

0 Put-price is the vector of put prices 

0 Basis is the vector of basis prices 

0 Stockf  low is the amount we pay/get for buying/selling stock 

0 C a l l 3  low is the amount we ~ a ~ / g e t  for buying/selling call option 

0 Putf low is the amount we pay/get for buying/selling put option 

0 Bankf low is the investment to/loan from a bank 

Arbitrage is the vector of arbitrage gains/losses 

C l,] Stock price:  587.30 
C 2 , l  In te res t  r a te :  0.0302 
C 3 , l  Days t o  maturity: 17.00 
C 4.1 
C 5 , l  Call-price Put-price Basis Stock-flow Call-flow Put-flow Bank-flow Arbitrage 
C 6 1 ................................................................................ 
[ 7 , 1  3.00 15.90 575.00 587.30 -3.00 15.90 -574.18 26.02 
C 8 , l  3.00 15.90 600 .00 .  587.30 -3.00 15.90 -599.15 1.05 
C l 3.00 15.90 625.00 587.30 -3.00 15.90 -624.11 -23.91 
C l O ,  l 

11.4.2 Bull-Call Spreads 

c a l l b u l l  0 
calculates the results of a Bull-Call Spread for the context of 
option pricing 
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The function callbull calculates the results of a Bull-Call Spread for the 
context of option pricing. It is simply started by typing 

callbull () 

in the command line of XploRe. After starting callbull() the following win- 
dow will appear: 

After putting in all the basic data required just push the OK button. XploRe 
will calculate the results and present them in the XploRe output window in 
the following way: 

Stock price long Call 
............................ 

540.00 -3500.00 
550.00 -3500.00 
560.00 -2500.00 
570.00 -1500.00 
580.00 -500.00 
590.00 500.00 
600.00 1500.00 

short Call gain/loss 
---------v-------------- 

1500.00 -2000.00 
1500.00 -2000.00 
1500.00 -1000.00 
1500.00 0.00 
1500.00 1000.00 
1500.00 2000.00 
1500.00 3000.00 

XploRe Learning Guide,p 285-305, Springer Verlag, Heidelberg
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8 Neural Networks 

Wolfgang Hardle and Heiko Lehmann 

A neural network consists of many simple processing units that are connected 
by communication channels. Much of the inspiration for the field of neural 
networks came from the desire to perform artificial systems capable of sophis- 
ticated, perhaps intelligent computations similar to those of the human brain. 

Neural networks usually learn from examples and exhibit some capability for 
generalization beyond the data used for training. They are able to approximate 
highly nonlinear functional relationships in data sets. 

The smallest part of a neural network is one single neuron as shown in Fig- 
ure 8.1. It takes a set of individual inputs X = (XI,. . . ,xI) and deter- 
mines (through the learning algorithm) the optimal connection weights W = 
(wl, . . . , wr) that are appropriate to each input. Next, the neuron aggregates 
these weighted values to a single value 

ctivation function F ( @ )  is then applied to the aggregated weighted value 
oduce an individual output 

the specific neuron. A typical activation function is the logistic distribution 

1 
F (U) = 

1 + exp(-U) ' 

aim of a neural network is to explain the outputs  y = (p1,. . . , yQ) by 
input variables X = (XI, . . . , xI). More exactly, we want to find functions 

0 )  such that fk (X) explains the output variable ye. 
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Outpi11 of Ihc Nciron 

Bias Tnputs it7l.o the Ncu.ron 
Figure 8.1. A neuron within a neural network. 

A neural network with one hidden layer (single hidden layer) consists (1 

neurons of three basic types: 

..The input neurons collect the external information and send it to the 
layer of hidden units. 

0 The hidden neurons aggregate the information and send it to the outptra 
neuron(s) . 

*.The output neurons contain the aggregated information passed through 
the activation function. 

XploRe Learning Guide,p 229-246, Springer Verlag
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8.1 Feed-Forward Networks 231 

8.1 Feed-Forward Networks 

Figure 8.2 shows a feed-forward network with one hidden layer. This network 
attempts to fit the model 

for the output unit yk. Feed-forward means that information can only flow 
forward from the input units to the first hidden layer, from the first hidden 
layer to the second hidden layer, and so on. Information cannot flow between 
the units of one layer. 

Cnttput oofthc Nnrd Kct 

XploRe Learning Guide,p 229-246, Springer Verlag
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8.2 Computing a Neural Network 
r 

net  = nnrnet (X, y, W, s ize ,  {, param, wts)) 
trains a single layer feed-forward network with input X, output 
y, prior weights W, and number of hidden units s ize ;  optionally 
the type of the network can be determined by param and initial 
weights w t s  can be given 

net  = nnrpredict (X, net)  
predicts the responses for given variables X and network net  

net  = nnrinfo (net) 
shows information about network net  

nnrsave (net ,  "nnf i l e t t  ) 
saves network net  to files nnf i l e  . * 

net  = nnrload ("nnfi let t)  
loads network net  from files nnf i l e  . * 

The function nnrnet allows for constructing and training a single hidden layer 
network with maximal 100 units. The call looks like 

net  = nnrnet (X, y, W ,  s i ze ,  param, wts) 

where X and y are the input and output variables. Note that X as well as y can 
consist of several variables (columns). We assume that X and y have dimensionw 
n X I and n X Q, respectively. 

With the W parameter, we can associate a prior weight to each observation, 
This is useful, e.g. for ties in the data. Note that the prior weights W have 
nothing in common with the weights calculated in the net. 

The parameter s i z e  determines the number of units in the hidden layer. The 
total number of units must not exceed 100, i.e. 

columns of X + columns of y + units in hidden layer _< 100. 

The default network is a classification network: logistic output units, no soft- 
max, no "skip-layer" connections, no weight decay and the training stops after 

XploRe Learning Guide,p 229-246, Springer Verlag
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100 iterations. The default model for the output units yk, Ic = 1,. . . ,Q, is 

with F(*) the logistic function. If a model different to the default is fitted, 
the parameter param needs to be modified. We explain this in more detail in 
Subsection 8.2.1. 

The result of nnrnet is a composed object net. More information on the 
components of net can be found in Subsection 8.2.2. The function nnrinfo 
shows a short information about the fitted network. The result of 

could for example print the following information in the output window: 

"A 2 - l - 1 network:" 
"# weights : 5" 
"linear output : no" 
"error function: least squares" 
"log prob model: no" 
"skip links : no" 
"decay : 0" 
l1 11 

'I From To Weights" 
0 3 -0.751" 
l 3 0.81" 
2 3 0.575" 
0 4 -4.95" 
3 4 14.8" 

The abbreviation 2 - 1 - 1 means two input units, one hidden layer and one 
output unit. Altogether five weights w,t have been calculated, the values of 
these weights are given in the last lines. The other items show which parameters 
have been specified for the network. 

Typically, a neural network is applied to a subsample of the data which is used 
as a training data set. The remaining observations are then used to validate 
the network. To compute predicted values for the validation set, nnrpredict 
is used: 

XploRe Learning Guide,p 229-246, Springer Verlag
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ypred = nnrpredict (xval, net) 

Since the result of a neural network fitting is a composed object, two convenient 
functions for saving and loading neural networks are provided. The network 
net can be stored into a set of files by 

nnrsave (net, "mynet") 

All created files start with the prefix mynet. The network can be reloaded by 

net = nnrload ("mynet") 

8.2.1 Controlling the Parameters of the Neural Network 

The type of a network and the control parameters for the iteration are deter- 
mined by the parameter param of nnrnet. If, for instance, a model different to 
the default is fitted, this parameter needs to be modified. param is a vector of 
eight elements: 

paramC11 
determines if the activation function for the output is the logistic function 
(default value 0). Setting param Cl1 to the value l changes the activation 
function of the output unit to the identity function. 

param C21 
determines the error function (the optimization criterion). The default 
value 0 indicates the quadratic least squares error function 

size n 

Setting param C21 to the value l changes the error function to the entropy 
for the classification case 

size n I /., r /  \ \ \  

XploRe Learning Guide,p 229-246, Springer Verlag
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param C31 
If paramC31 is set to the value l, then the softmax activation function is 
used for the outputs. This means the output is 

The default value is 0, which means no softmax. 

param C41 
includes "skip-layer" connections. Setting paramC41 to the value l gen- 
erates "skip-layer" connections, i.e. 

P size P 

fk (X) = W$) + C Wjja)xi + C W ~ ) F  

i=l j=1 i=l 

The default value is 0, which means no "skip-layer" connections. 

param C51 
sets the maximal value 6 for the initial weights. If the optional input 
parameter wts is not given, uniform random numbers from [-6,6] are 
used. The default value is 6 = 0.7. 

paramE61 
sets the weight decay, the default is 0. 

param Ci'l 
sets the maximal number of iterations, the default is 100. 

param C81 
shows information about the iteration. Setting paramC81 to the value l 
produces control output in the output window during the optimization. 
The default is 0, i.e. not to show control output. 

8.2.2 The Resulting Neural Network 

The result of nnrnet is a composed object, the list net, which contains the 
resulting fit and information about the network. The components are the 
following: 

XploRe Learning Guide,p 229-246, Springer Verlag
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A 

net .n 
three-dimensional vector that contains the number of input, hidden ant 
output units, respectively 

net .  nunits, ne t .  nconn, net .  conn 
internal information about the network topology 

net .  decay 
scalar, the weight decay parameter (=paramEG]) 

net.entropy 
scalar, the value of the entropy 

net.softmax 
scalar, softmax indicator (=param C31 ) 

ne t .  value 
scalar, the value of the error function 

ne t .  w t s  
vector of final weights 

net .yh.result  
n X Q matrix, the estimated outputs 

net.yh.hess 
the Hessian matrix 

8.3 Running a Neural Network 

In the following two sections we run simple neural nets on clustered data, 
Before proceeding to the examples, the following libraries need to be loaded: 

l i b r a r y  ("plot") 
l i b r a r y  ("m") 

The nn library contains the functions for running the networks. The plot  
library is used to produce scatter plots of the clusters. 
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8.3.1 Implementing a Simple Discriminant Analysis 

In the following, we will use a single hidden layer network with one hidden unit 
to perform a discriminant analysis on an artificially generated data set with 
two clusters. 

All XploRe codes for this subsection can be found in Q nnl . xpl. The first step 
is to generate the training data set: 

randomize (0) 
n = 200 
x t  = normal (n, 2) +# (-1, -1) ' I normal (n, 2) +#(+l, + l )  ' 

Here, a mixture of two two-dimensional normal distributions is generated. Each 
cluster consists of n = 200 observations. The variances are identical (equal to 
1 in both directions) whereas the means are shifted by (+1,+1) and (-1,-l), 
respectively. The following code lines can be used to display the data set 
graphically: 

color = str ing("red",  1:n) I str ing("blue",  l :n) 
symbol = str ing("circ1e" , l :n) I s t r ing(" t r iangle t l  , l  :n) 
x t  = setmask(xt, color,  symbol) 
p lo t  (x t )  
xl="xI" 
yl="x2" 
tl=ItTraining Data Sett1 
setgopt (plotdisplay,  l, l, " t i t l e " ,  t l  , "xlabel" , x l  , "ylabel" , y l )  

The generated two-dimensional data are shown in Figure 8.3. We have labeled 
the observations from the first cluster by red circles, whereas the observation 
from the second cluster are labeled as blue triangles. 

To apply the neural network, we need to create now the output variable y and 
the prior weights W. For y, we use a value of 0 for the first and a value of l 
for the second cluster. The prior weights are all set to l. The last statement 
of the following code computes the neural network using one hidden unit and 
assigns the result to net. 
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\ 

Training Data Set 
A 

A 

Figure 8.3. A generated training data set with two clusters. 

param = 1 
net = nnrnet(xt,yt,w,l) 

We can obtain a summary of the fitted network from 

nnrinf o (net) 

which prints into the output window: 

Contents of ts 
[ l,] "A 2 - l - l network:" 
[ 2,] "# weights : 5" 
[ 3,] "linear output : no" 
C 4,l "error function: least squares" 
[ 5,l "log prob model: no" 
C 6,l "skip links : no" 
C 7,l "decay : 0" 
[ 8,] "" 
[ 9,1 " From To Weights'' 
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To validate the obtained network, we generate new random data from the 
same mixture of two-dimensional normal distributions. The classification of 
these data using the network net is done by nnrpredict. 

x = normal(n,2)+#(-1,-l)' I normal(n,2)+#(+1,+1)' 
pred = nnrpredict(x, net) 
prob = pred.result 

The macro nnrpredict calculates the predicted values and the Hessian matrix. 
pred . result extracts the predicted values. 

Now we compute the misclassified observations and show them in comparison 
with the original data X. 

y = (matrix(n) -1) Irnatrix(n1 ; true 
yp = prob > 0.5 ; predicted 
misc = paf (1:2*n,y!=yp) ; misclassif ied 
good = paf (l : 2*n, y==yp) ; correctly classified 
nm = rows (misc) 
sm = string(I1f ill", I : nm) +symbol [miscl 
m = setmask (X [misc] , color [misc] , sm, lthugetf) 
xg = setmask (X [good] , color [good] , symbol [good] ) 

pm = 100*nm/(2*n) ; percentage of misclassified 
spm = string("xl.2f ,pm)+"%" 
Network = createdisplay(1,l) 
show (Network, l, l, xg ,xm) 
tl=I1Network: misclassif ied = "+spm 
setgopt (Network, l, l, "title" ,tl, "xlabel" ,xl, "ylabel" , yl) 

igure 8.4 shows the two-dimensional data that we used for validation. As 
e, observations from the first cluster are labeled by red circles, whereas 
bservation from the second cluster are labeled as blue triangles. All mis- 

assified data are labeled by large filled symbols. 
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Network: misclassified = 9.50% 

Figure 8.4. Neural network classification. 

Let's compare the classification obtained from the neural network with that 
from a classical linear discriminant analysis. Apart from the discriminati~tx 
rule that is used for the prediction here, the code is almost identical to ths 
above. 

mu0 = mean(xtE1:nl) 
mu1 = mean(xtCn+l:2*nl) 
mu = (muO+mu1)/2 
lin = inv(cov (xt) ) * (mu0-mul) ' 

y = (matrix(n)-l) lmatrix(n1 ; true 
yp = (X-mu)*lin<=O ; predicted 
misc = paf (1:2*n,y!=yp) ; misclassified 
good = paf (l : 2*n, y==yp) ; correctly classified 
nm = rows(misc) 
sm = string("f ill", l :nm)+symbol [misc] 
xm = setmask(x[misc] , color [misc] , sm, llhuge'l) 
xg = setmask (X [good] , color [good] , symbol [good] ) 
X = setmask(x, color, symbol) 
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pm = 100*nm/(2*n) ; percentage of misclassified 
spm = string("%l.2f ",pm)+"%" 
Discrim = createdisplay (l, l) 
show(Discrim,l,l,xg,xm) 
tl=I1Linear misclassif ied = If+spm 
setgopt (Discrim, l, l, "title" ,tl, "xlabel" ,xl, "ylabel" ,yl) 

Linear: misclassified = 9.00% 

XI 

Figure 8.5. Linear discriminant analysis. 

Figure 8.5 shows the resulting classification. Again, all misclassified data are 
labeled by large filled symbols. Comparing Figures 8.4 and 8.5 shows that 
the percentage of rnisclassification is nearly equal for both methods. The linear 
discriminant analysis performs slightly better. This is not astonishing, since the 
linear discriminant analysis is designed to handle the data that we generated. 

8.3.2 Implementing a More Complex Discriminant Analysis 

In contrast to the previous subsection, we will now consider a generated data set 
where the linear discriminant analysis performs worse than the neural network. 
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The XploRe codes are largely identical to the previous examples and can b 
found in 4 nn2. xpl. 

As before we generate a training data set, which features two clusters. 

randomize (0) 
n = 100 
xt = normal(n,2)+#(-l,-l)' I normal(n,2)+#(+1,-2)' 
xt = xt I normal(n,2)+#(+4, 0)' I normal(n,2)+#(+1,+1)' 

l 

color = string("redl', l:3*n) I string(I1bluen, 1:n) 
symbol = string("circlel', l :3*n) 1 ~tring("triangle~~, 1:n) 
xt = setmask (xt , color, symbol) 
plot (xt) 
X1="xl" 
yl="x2" 
tl=InTraining Data Setu 
setgopt (plotdisplay, l, l, "title", tl, "xlabel" ,xl, "ylabel" , yl) 

The generated two-dimensional data are shown in Figure 8.6. It is obvious that 
here the points from the second group (labeled by blue triangles) overlap the 
points from the first group (red circles) in a more complicated way. 

We proceed in the same way as before, i.e. we create the output variable y 
and set all prior weights W to 1. Then the neural network is fitted. In contrast 
to the previous section, we now use 3 hidden layers to take the more complex 
structure of the data into account. 

yt = (matrix(3*n)-l) Imatrix(n) 
W = matrix(4*n) 
param = 1 
net = nnrnet (xt ,yt ,v, 3) 
nnr inf o (net) 

The resulting fit is summarized as follows: 

Contents of ts 
C l,] "A 2 - 3 - 1 network:" 
E 2,l "# weights : 13" 
C 3,l "linear output : no" 
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Training Data Set 
A 

A 4 aA 

?- 
0 0 

0 

0 5 

Figure 8.6. A generated training data set with two clusters. 

[ 4,] "error function: least squares" 
[ 5 ,l "log prob model: no" 
[ 6 , l  "skip links : noft 
[ 7, l  "decay : 0" 
[ B,] "" 

[ 9 , l  " From To Weights" 
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Again, we assess the quality of the obtained network by counting the misclas- 
sified observations for a validation data set. 

X = normal(n,2)+#(-1,-l)' I normal(n,2)+#(+1,-2)' 
X = X I normal(n,2)+#(+4, 0)' I normal(n,2)+#(+1,+1), 
pred = nnrpredict(x, net) 
prob = pred.result 

y = (matrix(3*n)-l) lmatrix(n1 ; true 
yp = prob > 0.5 ; predicted 
misc = paf(l:4*n,y!=yp) ; misclassified 
good = paf(l:4*n,y==yp) ; correctly classified 
nm = rows(misc) 
sm = string("f ill", l :nm)+symbol [misc] 
xm = setmask(x [misc] , color [misc] , sm, "huge") 
xg = setmask (X [good] , color [good] , symbol [good] ) 

pm = 100*nm/(4*n) ; percentage of misclassified 
spm = string("%l.2f ",pm)+"%" 
Network = createdisplay(1,l) 
show(Network, l, l ,xg,xm) 
tl="Network: misclassified = "+spm 
setgopt (Network, l, l, "title" ,tl, "xlabel"ell',yl) 

Figure 8.7 shows the resulting plot of the two-dimensional data that we used 
for prediction, with misclassified data labeled by large filled symbols. 

The comparison with the classical linear discriminant analysis is implemented 
in the following lines: 

mu0 = mean (xt [l : 3*n] ) 
mu1 = mean(xt [3*n+l:4*n] ) 
mu = (muO+mul)/2 
lin = inv(cov(xt)) * (mu0-mul) ' 

y = (matrix(3*n) -l) lmatrix(n) ; true 
yp = (X-mu)*lin<=O ; predicted 
misc = paf(l:4*n,y!=yp) ; misclassified 
good = paf(l:4*nYy==yp) ; correctly classified 
nm = rows(misc) 
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A t 

Figure 8.7. Neural network classification. 

xg = setmask (X [good] , color [good] ,symbol [good] ) 
X = setmask(x, color, symbol) 

pm = 100*nm/(4*n) ; percentage of misclassified 

spm = string("%l.2f",pm)+% 
Discrim = createdisplay (l, l) 
show(~iscrim,l, l,xg,xm) 
tl="Linear misclassif ied = "+spm 
setgopt (Discrim, l, I, "title" ,tl,"xlabel" ,xl,"ylabel" , ~ l )  

Figure 8.8 shows the resulting classification. The comparison of Figures 8.7 
and 8.8 reveals now that the neural network separates the clusters more accu- 
rately. This is due to the fact that the neural network with three hidden units 
can better adapt to a nonlinear discrimination rule. 
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I Linear: rnisclassified = 19.75% 

Figure 8.8. Linear discriminant analysis. 
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Semiparametric Kernel 
Regression 
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1.1 INTRODUCTION 

Nonparametric smoothing methods serve three essential needs in statistical 
data analysis. First they provide a flexible analysis tool, often based on in- 
teractive graphical data representation (Scott, 1992). Second they help in 
constructing a model from observations, for exa.mple by comparison with 
concurrent models (Muller, 1988). Third they provide pilot estimators in 
adaptation problems, see Newey and Stoker (1993). Here we present the mul- 
tivariate kernel smoother, examine the asymptotic properties of both density 
and regression estimators, a.nd review appIications of this technique in semi- 
parametric statistics. 

Multiva.riate nonpara.metric density estimation is an often used pilot tool for 
examining the structure of data. Regression smoothing helps in investigating 
the association between cova.riates and responses. We concentrate on kernel 
smoothing using local polynomial fitting which includes the Nadaraya-Watson 
estimator. Some theory on the asymptotic behavior and bandwidth selection 
is provided. In the applications of the kernel technique, we focus on the 
semiparametric pa.radigm. In more detail we describe the single index model 
(SIM) and the generalized partia.1 linear model (GPLM). 

1.2 MULTIDIMENSIONAL SMOOTHING WITH KERNELS 

In this section we review kernel smoothing methods for density and regression 
function estimation. Many ideas, in particular for asyrnptotics, bandwidth 
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6 MULTIVARIATE AND SEMIPARAMETRIC KERNEL REGRESSION 

choice and graphical representation, are similar for both purposes. 
We can however only introduce a small part on the available material. In 

particular, for the regression case we restrict the presentation on the random 
design case. For a more detailed presentation of the subject we refer to the 
monographs by Hardle (1990; lggl), Scott (19921, Wand and Jones (1995) 
and Fan and Gijbels (19%). Kernel regression for univariate data is discussed 
in detail by Sarda and Vieu (1998) in this volume. For more aspects of 
multivariate kernel density smoothing see also Scott (1998) in this book. 

1.2.1 Multivariate kernel density estimation 

The goal of multivariate nonpararnetric density estimation is to approximate 
the probability density function (pdf) f (t) = f (tl ,  . . . , t,) of the random vari- 
ables T = (TI, . . . , T,)~. The multivariate kernel density estimator in the 
q-dimensional case is defined as 

K denoting a multivariate kernel function IC : Bq -+ a. Note, that (1.1) 
assumes that the bandwidth h is a vector of bandwidths h = (hl, . . . , h,lT. 

What form shall the multidimensional kernel function K(u) = IC(ul,. . . , u,) 
take on? The easiest solution is to use a multiplicative kernel 

with K denoting an univariate kernel function. For univariate kernels with 
support [-I, 11 (as the Epanechnikov kernel K (u) = 0.75(1 - u2) I(Iu1 5 1)) 
observations in a cube around t are used to estimate the density at  the point 
t. An alternative is to use a genuine multivariate kernel function IC(u), as e.g. 
the multivariate Epanechnikov 

This type of multivariate kernels can be obtained from univariate by defining 

where llull = d& denotes the Euclidean norm of the vector u. Note that we 
use a to indicate that the appropriate constant has to be multiplied. Kernels 
of the form (1.2) use observations from a ball around t to estimate the pdf at  
t. This type of kernels is usually called spherical or radially symmetric since 
K(u) has the same value for all u on a sphere around zero. Figure 1.1 shows 
the contour lines from a bivariate product and a bivariate radially symmetric 
kernel on the left and right hand side, respectively. 
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Producl kcrncl 
-7 

Radially symrnctric kcmel 

Fig. 1. I Contours from bivariate product (left) and bivariate radially symmetric 
(right) Epanechnikov kernel. 

Note that the kernel weights in Figure 1.1 correspond to equal bandwidth 
in each direction, i.e. h = (h l ,  hz)T = ( 1 ,  1IT. When we use different band- 
widths, the observations around t in the density estimate & (z) will be used 
with different weights in both dimensions. 

Another approach is to use a nonsingular, symmetric bandwidth matrix H. 
The general form for the multivariate density estimator is then 

see Silverman (1986) and Scott (1992). Here we introduce the short notation 

ICH(e) = - IC(H-'.) 
det (H) 

analogously to I b  = K ( e / h ) / h  in the one-dimensional case. A bandwidth 
matrix includes all simpler cases as special cases. An equal bandwidth h 
in a.11 dimensions as in (1.1) corresponds to H = hI, where Iq denotes the 
q x q identity matrix. Different bandwidths as in (I. 1) are equivalent to 
H = diag(hl, . . . , h,), the diagona.1 matrix with elements hl, . . . , h,. 

What effect does the inclusion of off-diagonal elements have? We will see 
that a good rule of thumb is to use a bandwidth matrix proportional to %-1/2 
where C is the covariance matrix of the data. Hence, using such a bandwidth 
corresponds to a transformation of the data to identity covariance matrix. 
As a consequence we can use bandwidth matrices to correct for correlation 
between the components of T. We have plotted the contour curves of product 
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8 MULTIVARIATE AND SEMIPARAMETRIC KERNEL REGRESSION 

and radially symmetric Epanechnikov weights with ba.ndwidth matrix 

i.e. ICH (u) = K(H- 'u) /  det(H), in Figure 1.2. 

Fig. 1.2 Contours from bivariate product (left) and bivariate radially symmetric 
(right) Epanechnikov kernel. Bandwidth matrix H. 

In the following we will consider statistical properties such as bias, vari- 
ance, the issue of bandwidth selection and applications for this estimator. We 
formulate all results for estimators with bandwidth matrices and multivariate 
kernel function IC. 

1.2.1.1 Bias, variance andasymptotics Aconsequenceofthestandard 
assumption on the non-negative kernel X: 

is that the estimate f;I is a density function, i.e. TH ( t )  dt = 1. The estimate 
is consistent in any point i! of continuity of f :  

1. 
f;lr(t) = - ~ I C H  (Ti - t )  = f ( t )  + op(l), 

i=l 

if n -+ oo, det (H) -+ 0 and n det (H) -+ cm, see e.g. Ruppert and Wand (1994). 
The derivation of the mean squared error MSE and the mean integrated 
squared error MISE is analogous to the one-dimensional case. We will sketch 
the asymptotic expansions and concentrate on the asymptotic mean integrated 
squared error AMISE. 

As usual, AMISB has a bias part AIB and a variance part AIV. The bias 
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MULTIDIMENSIONAL SMOOTHING WITH KERNELS 9 

of &(t) is E &(t) - f (t) and the integrated squared bias is 

The asymptotic integrated squared bias AIB(H) is the first order term of 
IB(H), i.e. 

IB (H) - AIB (H) 
A IB (R) 

= o(1) 

as det(H) -+ 0, n -+ oo and ndet(H) --+ co. Define now the integrated 
variance 

and the asymptotic integrated variance A I V  analogous to AIB. Then the 
asymptotic mea.n integrated squared error AMISE can be calculated as 

AMISE (H) = AIB (H) + AIV (H) . 

A detailed derivation of the components of AMISE can be found in Scott 
(1992) or Wand and Jones (1995) and the references therein. As in the uni- 
variate case we use a second order Taylor expansion. Here and in the following 
we denote with Q the gradient and with 7-l5 the Hessian matrix of second 
order partial derivatives of a function (here f )  . Then the Taylor expansion of 
f (*) around t is 

1 
f (t + 21) = f (t) + uTy ( t )  + -uT?+ (t)t + 0(uTu), 

2 

see Wand and Jones (l995), p. 94. This leads to the expression 

If we assume additionally to (1.4) 

then (1.6) yields E &(t) - f (t)  * iP2(IC) t r { ~ ~ ' ? i ~ ( t ) ~ ) ,  hence 

1 
AIB(H) = qp: (IC) / [tr{EITTlf ( t ) ~ } ]  dt. 
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10 MULTIVARIATE AND SEMIPARAMETRIC KERNEL REGRESSION 

As in univariate density estimation, the leading term of the variance part is 
the second moment of the estimate, i.e. 

X 
1 

n det (H) I l m  f @ I ,  

with lJKllz denoting the q-dimensional L2-norm of K. Hence 

AIV(33) = 
1 

n det (H) Mi 
and in summary we get the following AMISE formula for the multivariate 
kernel density estimator 

Let us now turn to the problem how to choose the AMISE optimal band- 
width. Again this is the bandwidth which balances bias-variance tradeoff in 
AMISE. Denote h a scalar, such that H = hHo and det(Ho) = 1. Then 
AMISE can be written as 

1 1 
AMISE (H) = - h4 &h) 1 [ t r { ~ ; % ~ ( t ) ~ ~ ) ]  d t  + IllhI:. 4 

If we only allow changes in h the optimal orders for the smoothing parameter 
h and AMISE are 

Hence, this density estimator has a rather slow rate of convergence, especially 
if q is large. If we consider H = hI, (the same bandwidth in all q dimensions) 
and we fix the sample size n, then the AMISE optimal bandwidth has to be 
considerably larger than in the one-dimensional case to make sure that the 
estimate has reasonably small variability. Some ideas of comparable sa.mple 
sizes to reach the same quality of the density estimates over different dimen- 
sions can be found in Silverman (19861, p. 94, and Scott and Wand (1991). 
Moreover, the computational effort of this technique increases with the num- 
ber of dimensions q. Therefore, multidimensional density estimation is usually 
not practically applied if q 2 5. 
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MULTIDIMENSIONAL SMOOTHING WITH KERNELS 11 

1.2.1.2 Bandwidth selection and graphical represent ation The prob- 
lem of an automatic, data-driven choice of the bandwidth H is of great im- 
portance in the multivariate case. In one or two dimensions we may choose a,n 
"appropriate" bandwidth interactively by looking at  the sequence of density 
estimates for different bandwidths. But how can this be done in three, four 
or more dimensions? The problem of graphical representation arises, which 
we address next. 

Theoretica.11~ the bandwidth selection problem can be handled as in the 
one-dimensional case. Typically, one searches for a global bandwidth H or a 
local bandwidth H(t). Two approaches are frequently used in both cases 

plug-in bandwidths, in pa.rticular " rule-of-t humb" bandwidths, 

resampling met hods, in pa.rticular cross-validation and bootstrap. 

We will introduce generalizations for Silverman's rule-of-thumb and least 
squares cross-validation to stress the analogy with the one-dimensional band- 
width selectors. 

Rule-of-thumb bandwidth Rule-of-thumb bandwidth selection provides a 
formula arising from a reference distribution. Obviously, the pdf of a mul- 
tivariate normal distribution N, ( p ,  E) is a good candidate for a reference 
distribution in the multivariate case. Suppose that the kernel K is Gaussian, 
i.e. the pdf of N,(O,, I,). Note that pz(lC) = 1 a.nd lllclli = 2 - 9 ~ - 4 / ~  in this 
case. Hence, from (1.7) a.nd the fact that 

- 1 - 
2q+z~q/2 det (E) 

[2 t r ( ~ ~ z - ' H ) ~  + { ~ ~ ( H ~ x - ~ H ) } ~ ]  

we can easily derive rule-of-thumb formulae for different assumptions on H 
and E. 

In the simplest case, i.e. that we consider H and X to be diagonal matrices 
H = diag(hl, . . . , h,) and I: = diag(ot, . . . , oi), this leads to 

Note that this formula coincides with Silverman's rule-of-thumb in the case 
q = 1, see Silverma,n (1986), p. 45. Replacing the oj's by estimates a.nd noting 
the first factor is always between 0.924 and 1.059, we arrive at  Scott's rule 

see Scott (1992), p. 152. 
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12 MULTIVARIATE AND SEMIPARAMETRIC KERNEL REGRESSION 

It is difficult to derive the rule-of-thumb for general H and X. However, 
(1.8) shows that it might be a good idea to choose the bandwidth matrix H 
proportional to x' /~ .  In this case we get as generalization of Scott's rule 

We remark that this rule is equivalent to applying a Mahalanobis transforma- 
tion on the data (to transform the estimated covariance matrix to identity), 
then to compute the kernel estimate with equal bandwidths h = n1/(9+4) and 
finally to retransform the estimated pdf back to the original scale. 

But before we go on with applications, let us consider what we can do, if we 
want to use a kernel different from the Gaussian. The idea of canonical ker- 
nels by Marron and Nolan (1988) can be easily extended to the multivariate 
case. Consider a kernel K: and all equivalent kernel functions & = 6-'IC(*/6) 
with S 2 0. Although 6 is a scalar, it is working on the q-variate argu- 
ment of IC. Now we have Illcall; = S-qlllclli and pz(lCa) = h 2 p 2 ( K ) .  AS in 
the one-dimensional case we choose S 
AMISE (H, Ks) is independent of iCs. 

such that the bias-variance tradeoff in 
This yields 

bo again is called canonical bandwidth of the kernel K. Denote now K A  a 
kernel function with canonical bandwidth d t  and KB a kernel function with 
canonical bandwidth Sf. Suppose we have used Ha with kernel ICA and we 
want to recompute the kernel density estimate with kernel KB . Then it holds 

which allows to adjust ba.ndwidths for different kernel as in the one-dimensional 
case. 

Let us consider an example. Suppose we want to use the product Quartic 
kernel KQ instead of the 9-dimensional Gaussian KG which is faster in direct 
computation because of its compact support on [-I, 11. Which is the equiva- 
lent rule-of-thumb to (1.9) in this case? Here we have 6: = {1/(2fi))q/(q+~) 
and 62 = (49 5q/79)1/(9+4) which gives the canonical bandwidths in Table 1.1 
for dimensions q = 1, . . . ,5 .  

The fourth column of Table 1.1 gives the factor which the rule-of-thumb 
bandwidth matrix in (1.9) needs to be multiplied with to obtain the rule-of- 
thumb bandwidth for the multiplicative Quartic kernel. Of course all rule- 
of-thumb bandwidths for other kernel functions can be calculated in a simi1a.r 
way. 
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MULTIDIMENSIONAL SMOOTHTNG WITH KERNELS 13 

Table 1.1 Bandwidth adjusting factors for Gaussian and multiplicative 
Quartic Kernel for different dimensions q. 

For a product kernel. IC ,  constructed from an univariate kernel K, pz(1C) = 
pz(K)  and lllCllz = IIKIIi. A table of values pz(K) ,  IIKII; can be found in 
HBrdle (1 9911, p. 239, for example. 

Principally, all plug-in methods for the one-dimensional kernel density 
estimation can be extended to the multivariate case. See Wand and Jones 
(1994) for details on multivariate plug-in bandwidth selection. 

Cross-validation As we mentioned before, the cross-validation method is 
fairly independent of the special structure of the parameter or function esti- 
mate. Considering the bandwidth choice problem, cross-validation techniques 
allow to adapt to a wider class of density functions f than the rule-of-thumb 
approach. (Remember that the rule-of-thumb bandwidth is optimal for the 
reference pdf, hence it may fail for multimodal densities for instance.) 

Recall, that in contrast to the rule-of-t humb approach, least squares cross- 
validation for density estimation aims to estimate the ISE optimal bandwidth. 
Here we approximate the integrated squared error 

Apparently, this is the same formula as in the the one-dimensional case and, 
since the last term of(l.10) does not involve H, it  ca.n be ignored. The first 
term ca.n be easily calculated from the data. Only the second term of (1.10) 
is unknown and has to be estimated. However, observe that J &(t) f (t)  dt = 
E &(TI,  where the only new aspect now is that T is q-dimensional. As in 
the one-dimensional case we estimate this term by a leave-one-out estimator 
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14 MULTIVARIATE AND SEMIPARAMETRIC KERNEL REGRESSION 

where 

This yields the multivariate cross-validation criterion as a straightforward 
generalization of CV in the one-dimensional case: 

iC * K: denotes the convolution of K: with itself. The difficulty comes in by 
the fact that the bandwidth is now a q x q matrix H. In the most general 
case, this means, we have to minimize over q(q + 1) /2 parameters. Still, if we 
assume H to be a diagonal matrix, this remains a q-dimensional optimization 
problem. This holds as well for other cross-validation approaches. Multivari- 
ate resampling methods for bandwidth selection are discussed in more deta.il 
in Sain, Baggerly and Scott (l994). 

Graphical representation Consider now the problem to graphically display a 
multivariate density estimate. Assume first q = 2. Here we are still able to 
show the density estimate in a 3-dimensional plot. This is in particular useful 
if the estimated function can be rotated on the computer screen interactively. 
For a two-dimensional presentation a contour plot often gives more insight to 
the structure of the data. 

In the following, we will use the credit data from Fahrmeir and Hamerle 
(l984), Fahrmeir and Tutz (1994) for illustration. This data set consists of 
n = 1000 clients, 700 paid a credit back without problems, 300 did not. 
Among a number of categorical variables (running account, previous credits, 
purpose, personal attributes etc.) three continuous variables a.re available: 
duration, amount of credit, and age. 

Figures 1.3, 1.4 (upper panels) display a two-dimensional density estimate 

for log (duration), log(amount) and log (amount), log (age, respectively. We 
use the subscript h to indicate that we used a diagonal bandwidth matrix 
H = diag(hl, hz) .  

Additionally, Figures 1.3, 1.4 (lower panels) gives contour plots of these 
density estimates. It is easily observed, that both distributions a,re rather 
symmetric. This is due to the logarithmic transformation. In the duration 
direction a typical bimodal structure ca.n be recognized. This slightly repro- 
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Density: duration & amount 

Contours: duration & amount 

Fig. 1.3 Two-dimensional density estimate (upper panel) and density contours 
(lower pmel) for duration and amount. Rule-of-thumb ba.ndwidt hs hl = 0.48, 
h:! = 0.64. Credit data, Fahrmeir a.nd Hamerle (1984). 

duces in the ammount direction. Obviously, both variables are related with 
positive correlation. 

Here, the bandwidth was chosen accordingly to the general "rule-of-thumb" 
(1.9), which tends to oversmooth multimodal structures of the data. In fact, 
the durations of credits are multiples of 6 months in most case. The two c1ea.r 
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Density: amount & age 

Fig. 1.4 Two-dimensional density estimate (upper pmel) a.nd density contours 
(lower panel) for amount and age. Rule-of-tl~urnb bandwidths hl = 0.64, hz = 0.25. 
Credit data, Fahnneir and Hamerle (1984). 

modes that we observe are those for durations 12 and 24 months. In all ap- 
plications of this paper we use the Quartic (Biweight) product kernel. Recall 
that the the univariate Quartic kernel is K(u) = 0.9375(1 - ~ 2 ) ~ -  I(~u( 5 1). 

For three-dimensional density estimates, it is always possible to hold one 
variable fixed and to plot the density function only in dependence of the other 
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Three-dimensional contours 

Fig. 1.5 Three-dimensional density contours for duration, amount and age. Rule- 
of-tllurnb bandwidths hl = 0.56, ha = 0.75, hs = 0.29. Credit data, Fahrmeir a.nd 
Hamerle (1984). 

~a~riables. Akernatively, we can again plot contours of the density estimate, 
which are now three-dimensional surfaces. Figure 1.5 shows this for the credit 
scoring variables. In the original version of this plot, red, green and blue 
surfaces show the values of the density estimate at  the levels (in percent) 
indicated on the right. Colors and the possibility to rotate the contours on 
the computer screen eases the exploration of the data structures. Of course, 
we are restricted to two-dimensional plots here. However, one can clearly 
recognize the ellipsoidal structure of the contour which indicates a relatively 
symmetric distribution. 

1.2.2 Multivariate kernel regression 

Multivariate nonparametric regression aims to estimate the functional relation 
between a response variable Y amnd a multivariate explanatory variable T, i.e. 
the conditional expectation 

where as before T = (TI, . . . , T ~ ) ~ .  The relation 
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18 MULTIVARIATE AND SEMIPARAMETRIC KERNEL REGRESSION 

leads by replacing the multivariate densities f (y, t )  by the kernel density es- 
timate 

and f (f) = fT(t) by (1 .3)  to the multivariate generalization of the Nadaraya- 
Watson estimator: 

Pt 

CJCH(T~--~)Y~ 
i= 1 i5iH(t) = 

h d T , - t )  
i=l  

Hence, the multivariate kernel regression estimator is just a weighted sum of 
the observed responses x. The denominator ensures that the weights sum up 
to 1. Depending on the choice of the kernel, GH ( t )  is a weighted average of 
those Yi where Ti lies in a ball or cube around t. 

Note that the multivariate Nadaraya-Watson estimator is a 1oca.l constant 
estimator, i.e. the solution of 

Replacing Po by a polynomial in Ti - t yields a local polynomial kernel re- 
gression estimator. This definition of a local polynomial kernel regression is a 
straightforward generalization of the univariate case. For details see Ruppert 
and Wand (1994).  Let us illustrate this with the example of a local 1inea.r 
regression estimate. The minimization problem is 

rnin C {Y, - Po - (Ti - J C ~ ( T ~  - t ) .  
Bo,Bi i=l 

The solution of the problem ca.n be written as 

using the notations 

and W = diag (lCH (TI - t ) ,  . . . , ICH ( T !  - t)). In (1.11) Po estimates the re- 
h 

gression function itself, whereas Dl estimates the partial derivatives w .r. t. 
the components T. In the following we denote the multivariate local 1inea.r 
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estimator as 

1.2.2.1 Bias, variance and asymptotics The asymptotic conditional 
variance of the Nadaraya-Watson estimator GH and the local linear iizl,H 
is identical and its derivation can be found in detail in Ruppert and Wand 
(1994) : 

I 
Var {iiz~(t)lTl, .  . . ,T,) = cr2 0) 

n det (H) Ilxlli I 1  + ~p(l)Ir 

with 02(t )  denoting the variance function in Var(Y It). 
We sketch the derivation of the asymptotic conditional bias since we find 

remarkable differences between both estimators. Denote M the second order 
Taylor expansion of (m (TI ) , . . . , m ( ~ , )  lT , i.e. 

with 

Additionally to (1.5) it can be shown that 

see Ruppert and Wand (1994). Therefore the denominator of the conditional 
asymptotic expectation of the Nadaraya-Watson estimator iiiH is approxi- 
mately f ( t ) .  Using E(Y ITl, . . . , T,) = M and the Taylor expansion for M we 
have 
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We use = to indicate asymptotic equality. The results for the Nadaraya- 
Watson estimator are summarized in the following theorem. 

THEOREM 1 
The conditional asymptotic bias and variance of the multivariate Nadaraya- 
Watson kernel regression estimator are 

1 
var{ f6HITl , . . ,  ,T,) w 

n det (H) 

in the interior of the support of fT. 

Recall the notation el = (1,0, . . . , 0)'. for the first unit vector in Did. Then 
we can write the local linear estimator as 

Now we have using (1 .ll j and (1.12) 

since eT[m(t),  ~ ~ ( t ) ~ ]  = m(t). 
ditional bias only depends on 
points in asymptotics for local 

Hence, the numerator of the asymptotic con- 
the quadratic term. This is one of the key 
polynomial estimators. If we would use local 

polynomials of order d and expa.nd M up to order d + I, then only the term of 
order d + 1 would appear in the numerator of the asymptotic conditional bias. 
Of course, this leads to a more complicated structure for the denominator. 

T H E O R E M  2 
The conditional as y mptotic bias and variance of the multivariate local linear 
regression estimator are 

1 
Var( i? i l ,~ IT~ ,  . . . ,  Tn} M 

n det (H) 
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in the interior of the support of fT. 

For the proof of Theorem 2 we refer again to Ruppert and Wand (1994). 
They also show that the local linear estimate has sa,me order conditional 
bias in the interior as well as in the boundary of the support of fT. Fan, 
Gasser, Gijbels, Brockmann and Engel (1993) point out that the multivariate 
local linear fit with Epanechnikov kernel is a best linear estimator and has a 
minimax efficiency of at  least 89.4% among all estimators. 

1.2.2.2 Bandwidth selection and practical aspects Principally, the 
methods to choose a smoothing parameter in nonpara.metric regression are 
the same as in density estimation. Again, plug-in and resampling ideas are 
employed for finding a global bandwidth H or a local bandwidth H(t). 

For our presentation, we concentrate on the classical cross-validation band- 
width selector. As a motivation, we introduce the residual sum of squares 
(RSS) as a (naive) way to asses the goodness of fit 

which is also called the resubstitution estimate for the averaged squared error 
(ASE). Note, that we concentrate on the Nadaraya-Watson estimator a t  the 
moment. 

There is a problem with the RSS: Yi is used in 6iH(Xi) to predict itself. 
As a consequence, ASE(H) ca.n be made arbitrarily srna.11 by letting H -+ 0 
(in which case hiH is an interpolation of the K's). This leads to the cross- 
validation function 

This function replaces hiH ( X i )  in (1.13) with the leave-one-out-estimator 

and is equivalent to multiplying each term in RSS(H) by a penalizing function 
that is correcting for the downward bias of the resubstitution estimate. For 
the Nada.raya-Watson estimator 
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and 

Note that (1.15) is a function of the i-th diagonal element of the smoother 
matrix. 1n this case, cross-validation is equivalent with generalized cross- 
validation (Craven and Wahba, 1979). Hardle, Hall and Marron (1988) show 
asymptotic optimality of the selected bandwidth, although the rate of conver- 
gence is rather slow. An improved bandwidth selection is discussed in Hardle, 
Hall and Marron (1992). 

We want to remark that (1.14) and (1 .Is) also imply that the computation 
of CV(H) does not require more computational effort than the computation 
of m~ (XI), . . . , mH (X,) . However, the optimization over a matrix H might 
be cumbersome, hence diagonal bandwidth matrices (or even H = hI, with 
appropriate standardization of the data) are still preferred in practice. 

Before we consider cross-validation bandwidth selection in the local 1inea.r 
case, we want to comment on the practical computation of the estimator. 
Principally, since multivariate kernel regression estimators can be expressed 
as local polynomial estimators, their computation can be done by any statis- 
tical package that is able to run weighted least squares regression. However, 
since we estimate a function, this weighted least squares regression has to be 
performed in d l  observation points or on a grid of points in Bq. Therefore, 
explicit formulae are useful. 

We will give a formula for the multivariate local linear estimator in the 
following. For a fixed point t consider the sums 
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Note that Sl and 7; a.re q-va.riate vectors and that S2 is a q x q matrix. Then 
for the local linear estimate we can write 

For the regression function we need only the first component e ~ p .  Applying 
block-wise matrix inversion we obtain 

The cross-validation criterion here is a weighted RSS as in (1.14). If we 
denote the leave-one-out estimator Gl ,H,-i ( t )  and define its components ac- 
cordingly, we observe 

which yields in a.na.logy to (1.15) 

As in the Nadaraya-Watson case, (1.17) is a function of 
element of the smoother matrix. A summary of bandwidth 

the i-th diagonal 
selection methods 

other than cross-validation ca,n be found in particular in Fan and Gijbels 
(1995). They also cover rule-of-thumb approaches. 

Recall that (1.16) estimates the regression function only in one point t. To 
estimate the regression plane we have to apply (1.16) on a two-dimensiona.1 
grid of points. The WARPing technique (binning) described in Hardle and 
Scott (1992) and applied to local polynomial kernel regression by Fan and 
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Marron (1994), Fan and Miiller (1995), can be used to speed up calculations. 
See also Wand (1994) for an analysis of fast computation methods for multi- 
variate kernel estimation. 

Nadaraya Watson 
n 

Fig. 1.6 Two-dimensional Nadaraya-Watson and local linear estimate. Simulated 
data. 

Figure 1.6 shows the bivariate Nadaraya-Watson and local 1inea.r estimate 
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for simulated data. The underlying curve is in fact an additive combination of 
a sine function in the first and a linear function in the second argument. Note, 
that we have chosen the same bandwidth in both estimates. The multivariate 
Nadaraya-Watson regression estimator can be improved in the boundary re- 
gions by a boundary correction method. See Staniswalis, Messer and Finston 
(1994) and Staniswalis and Messer (1996) for more details. 

Of course, nonpara.metric kernel regression estimation is not limited to bi- 
va.riate distributions. A practica.1 issue is the graphical display for higher 
dimensional multivariate functions. This was already considered when we 
discussed the graphica.1 representation of multivariate density estimates. The 
corresponding remarks apply here again. The general problem in multivari- 
ate nonpa.rametric estimation is the curse of dimensionality. Recall that the 
n~npa~rametric regression estimators a.re based on the idea of local (weighted) 
averaging. In higher dimensions the observations are usually sparsely dis- 
tributed for reasonable sample sizes, and consequently estimators based on 
local averaging perform unsatisfactorily in this situation. 

Technically, one can explain this effect by looking at  the AMISE again. 
Consider a multivariate regression estimator with the same bandwidth h for 
all components, e.g. a Nadaraya-Watson or local linear estimator with ba.nd- 
width matrix H = hI,. Here the asymptotic MISE also depends on q: 

where Cl and C2 are constants that neither depend on n nor h. If we derive 
the optimal bandwidth we find that hOpt - n-1/(4f9) and hence the rate of 
convergence for AMISE is n-4/(4f9) .  One ca,n clearly see that the speed of 
convergence decreases dramatically for higher dimensions q. 

1.3 SEMIPARAMETRIC GENERALIZED REGRESSION 
MODELS 

As the name suggests, semiparametric models combine two elements, one of 
them to be estimated nonpara.metrica.lly, the other one requiring the estima- 
tion of a set of finite dimensional parameters. In this section we concentrate 
on single index and generalized partial linear models. 

Often a ca,nonical partitioning of the exphnatory variables exists. In par- 
ticular, if there are binary or discrete explanatory variables we keep them 
separate from the other design va,riables. In the following we denote by 
T = (TI,. . . , T,)~ a vector of continuous explanatory variables and refer to 
X = (XI, . . . , x,)* as the discrete part of the variables. 

Semiparametric generalized linear models a.re widely used in modeling bi- 
nary choice, i.e. in situations where the response variable has two alternatives. 
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Recall the example on credit scoring which was introduced previously. In the 
analysis of discrete response variables one typically models the expected value 
of the response as a nonlinear monotone function of a linear combination of 
the explanatory variables. Examples are probit or logit models where the 
nonlinear (link) function is the cumulative distribution function of a normal 
respectively logistic distribution, see McCullagh and Nelder (1989). Then the 
so-called generalized linear model  has the form 

with a known monotone function G a.nd unknown parameters ,8 and y. The 
model (1.18) combines computational feasibility (especially for discrete co- 
variates) with good interpretability of the "index" XTP + T~~ and therefore 
has found wide application in all fields of applied statistics, see e.g. Fahrmeir 
and Tutz (1994), Madda.Ia (1983). However, for some applications it may 
be argued that the assumption of (1.18) is too restrictive (Horowitz, 1993). 
Indeed it may not even be clear if the relationship between the influential 
variables a.nd the response is monotone. 

Several approaches have been proposed to generalize parametric regres- 
sion models in order to allow nonmonotone relationships between explana- 
tory variables and the dependent variable Y. We will focus on two classes of 
semiparametric models that have received a lot of attention. 

A generalization of the known (parametric) link function G to an un- 
known (nonparametric) link function g (a) yields the single index model 

WW 
E W X ,  T) = dxTp + TT$, 

also called a one term projection pursuit model  in statistics. Obviously, 
due to the nonparametric character of the link function conventional 
parametric estimation procedures can no longer be applied in this case. 
Instead, nonparametric estimators will now be necessary. In this chapter 
we give an overview on how this model can be estimated using kernel 
methods. 

A generalization of the linear form xTP + T~~ to a partial linear form 
X T p  + m(T) yields the generalized partial linear model (GPLM) 

G denoting a known link function as in the GLM model. Here, the m(*) 
will be a multivariate nonparametric function of the va.riable T. 

In high dimensions of T the estimate of the nonparametric function 
m(*) faces the same problems as the fully nonparametric multidimen- 
sional regression function estimates: the curse of dimensionality and the 
practical problem of interpretability. 
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Hence it might be reasonable to think about a lower dimensional non- 
parametric model for the nonpa.rametric part. A possible a.lternative is 
the GPLM with an additive structure in the nonpararnetric component, 
i.e. the generalized additive model  (GAM). 

Here, the mj (e) will be univa,riat nonparametric functions of the vari- 
ables T j .  

I .3.1 Generalizing the link function: single index models 

Single index models derive their name from the economic term "index", a 
summary of different variables into one number. Meanwhile, there have been 
a number of methods proposed do dea.1 with these models. A straightforward 
semiparametric GLM extension is provided by Weisberg and Welsh (1994). 
They estimated the unknown link function and its derivative (for the Fisher 
scoring algorithm) with an kernel smoother. Ichimura (1993) uses a simi- 
lar idea within a least squares criterion. KIein and Spady (1993) show an 
asymptotic efficiency result for a pseudo-likelihood binary choice estimator. 

All these three methods require optimization of a pseudo-likelihood of pos- 
sibly complicated structure. We present here a direct approach which avoids 
numerical iterations. The estimation of the single index model 

is ca.rried out in two steps. First the coefficients vectors P ,  y are estimated, 
then using the obtained index values x T ~ +  T:? one can estimate g by usual 
univariate nonparametric regression. 

1.3.1.1 Average derivative estimation Consider for a moment only 
the continuous part of the variables, T = (TI , .  . . , T , ) ~ .  Denote the regression 
function to be estimated by m ( a ) ,  i.e. E (YIT) = m(T). The vector of average 
derivatives is given by 

where Vm (t)  is the vector of partial derivatives of m(*) and g' the derivative 
of dm). 

Looking at  (1.19) shows that S equals P up to sca.le. Hence, any estimate of 
6 determines p up to scale. The estimation of 6 can be carried out by means 
of several average derivative es t imat ion  (ADE) methods. We will concentrate 
on estimators based on the density function of T, however a variety of other 
methods exist. For an overview see Stoker (1991). 

The key idea on ADE based on the density f I*) of T lies in "transferring" 
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achieves fi-convergence, a rate that is typically achieved by para.metric 
estimators. 

The need for "trimming" the ADE is one of the problems associated with a 
random denominator. Random denominators a.lso complicate the derivation 
of the distributional properties. These difficulties are overcome by density 
weighted average derivative estimation (WADE) of Powell, Stock and Stoker 
(1989). Observe that the density weighted average derivative shares the prop- 
erty of the (unweighted) average derivative of being proportional to the coef- 
ficient vector ,O in index models: 

A "natural" weight function is given by the density f itself. Calculations 
similar to those for the unweighted ADE with w ( t )  = f (t) yield 

Thus one may estimate P up to scale by 

The WADE estimator defined in (1.20) shares the desirable distributional 
features of the ADE estimator (fi-consistency, asymptotic normality) while 
not requiring any trimming in practice. 

Finally, an estimate for g ( e )  can be found by applying a.n univa.riate esti- 
mation method to PT~ and Y,. For the Nadaraya-Watson estimator, when 
h N n-1/5, Hardle and Stoker (1989) showed the usual rate of convergence 
I/& for the pointwise convergence of the regression function. 

1.3.1.2 Including discrete explanatory variables By definition, deriva- 
tives can only be calculated if the variable under study is continuous. Thus, 
the method of weighted or unweighted ADE fa.ils when discrete variables 
X = (XI, . . . , x ~ ) ~  needs to be included into the model. Before giving a 
more general solution, let us explain how the coefficient of one dichotomous 
variable is entered in the model. Recall the SIM 

with T the continuous and X the discrete part of the covariates. In the 
simplest case, we suppose that is X is binary, i.e. either X = 1 or X = 0. 
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Then, this model can be "split" into two submodels 

These a.re in fact two models to be estimated, one for X = 0 and one for 
X = 1. Note that y alone could be estimated from the first equation only. 

Theoretically, the same Ti can be associated with either Xi = 0 yielding 
an index value of r T ~ i  or with Xi = 1 leading to an index value of ^ITTi + B. 
Thus the difference between the two indices is exactly 0. In practice finding 
these horizontal differences will be rather difficult. A very simple estimator 
is proposed in Korostelev and Miiller (f995), using the observation, that the 
integral difference between the two link functions also equals P. Essentially, 
the coefficient of the binary explanatory variable can be estimated by 

with 

where the superscripts ('1 and ('1 denote the observations coming from the 
subsamples according to Xi = 0 and Xi = 1. In the simplest case of a binary 
Y variable the estimator is fi-consistent and can be improved for efficiency 
by a one-step estimator, see Korostelev and Muller (1995). 

Horowitz and Hardle (1996) extend this approach to multivariate rnulti- 
categorical X and arbitrary Y. Again, this approach is based on a split of the 
whole sample into subsamples according to the categories of X. Consider the 
thresholded link function 

Denote d" a possible realization of X, then the integrated link function 
conditional on x ( ~ )  is 

v1 

J(" = / g(v + dv, 

where v, = gcO and vl = gcl. Now compare the integrated link functions for 
all X-categories d" ((k = 1, . . . , M) to the first X-category do). It holds 
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hence with 

P = (cl - ( A X ~ A X ) - ~ A X ~ A J  (1.21) 

to determine p. The estimation of ,B is based on replacing J(" in (1.21) by 

with $ a nonparametric estimate of the thresholded link function 5. This 
estimator is obtained by a univariate regression of the estimated "continuous" 
indices YTT,!" on x ( ~ ) .  Horowitz and Hiirdle (1996) show that using a fi- 

A 

consistent ?timate and a Nadaraya-Watson estimator $ for the estimated 
coefficient p is itself +-consistent and has a.n asymptotic normal distribution. 

1.3.2 Generalizing the index: generaked partial linear models 

An alternative way to incorporate an nonrnonotone dependence of the re- 
sponse on the continuous variables is given by a generalized partial l inear 
model  (GPLM) 

E(YIX,  T )  = G { X ~ P  + rn(T)), (1.22) 

where B = (PI, . . . pp)T is a finite dimensional parameter and m(a) is a 
smooth function. These models allow a nonparametric inclusion of a part of 
the explanatory variables. In pra.ctice this might be only those continuous 
variables which have most influence on the dependent variable Y. In this 
section we will deal with the GPLM in general and shortly with generalized 
partial l inear partial additive models (GAM).  

Estimators for p and m ( e )  have been proposed by Hastie and Tibshirani 
(1 990), Severini and Wong (1992), Severini and Staniswalis (1994) and Huns- 
berger (1994). Carroll, Fan, Gijbels and Wand (1997) proposed an extension 
to generalized partial linear single index  model  (GPLSIM) which uses a single 
index model instead of the fully nonparametric function m(*) . 

1.3.2.1 Semiparametric maximum likelihood- The estimation of model 
(1.22) can be motivated by the fact that an estimate P can be found for known 
m, and an estimate 6 can be found for known ,O. An overview on different 
algorithms for the GPLM can be found in Muller (1997). We will concen- 
trate here on the profile likelihood algorithm proposed by Severini and Wong 
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(1992) and Severini and Staniswalis (1994). An extented presentation of the 
backgrounds of this approach appears in Staniswalis and Thael (1997). 

Define 

p = E(Y IX, T )  = G { ~ ~ x  + m(T))  
D ~ v ( ~ )  = Var(YIX,T)  

and denote by t ( p ,  y ) the individual log-likelihood or quasi-likelihood function 
(if the distribution of Y does not belong to an exponential family). The 
"parametric" likelihood function 

n 

W )  = [GIXTP + mp(Z), Yi)] 
i=l 

is used to obtain p̂ . A "smoothed" or "local" likelihood 

is optimized to 
that the use of 

n 

.cS(v) = Cxi.,(t- ~ i ) t { ~ ( x , T p +  v ,K) )  (1.23) 
i=l 

estimate the smooth function mS(t) = q a t  point t. Note 
this smoothed likelihood function leads to the equivalent of 

the Nadaraya-Watson estimator GH in ordinary regression. To obtain a local 
polynomial estimator of the nonparametric part m(*) we need to incorporate 
polynomia.1 terms into the smoothed likelihood. In the local linear case we 
would use 

and get mp(t) = q ~ o  at  point t .  Analogous to local linear regression 71 points 
to the gradient of m(*) in t. 

The computational algorithm consists in searching maxima of both likeli- 
hoods simultaneously. We stay in the framework of a Nadaraya-Watson type 
estimation of rn. Severini and Staniswalis (1994) show that the resulting es- 
timator is 6-consistent and asymptotically normal, and that estimators 
6 = 6- are consistent in supremum norm. Note that m is estimated as a 

P 
function of theparametric component ,8 which yields an asymptotically effi- 
cient estimate p (Severini and Wong, 1992). The possible scale pammeter o 
can be estimated by 

where pi = G { ~ x ,  + A(Ti)). 
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The algorithm which we will present here corresponds to that proposed in 
Severini and Sta.niswa1is (1994) for some special cases of link function and 
distributions of Y. In order to avoid boundary effects, one can use a weight 
function in the convergence criterion or trimming in the estimation of P as in 
Severini and Staniswalis (1994). 

Define qj(P) = G0(tj)  and &(u) = C{(G(u), E). For emrnple, in a binary 
response model we have Ci(u) = log G(u)  + (1 - Y,) log{l - G(u) ) . In the 
following, li and Ly  denote the derivatives of &(u) with respect to u. The 
maximization of the smoothed quasi-likelihood (1.23) requires to solve 

w.r.t. ej (0). In some models (in particular for identity and exponential link 
functions G) equation (1.24) can be solved explicitly for Gj (P )  . 
of (1.24) leads to an estimate for % as a function of ,B 

For p we have to solve 

Differentiation 

(1.25) 

Equations (1.24)-(1.26) imply the following iterative New ton-Raphson type 
h A 

algorithm to find ,O and %(tj) = qj(P), j = I,. . .,n. 

initialization 
Different strategies to obtain starting values a.re possible: 

o Start with P(O), $) from the parametric (GLM) fit. Higher order 
polynomial terms in T may be included to allow for a nonlinear 
function 

o Alternatively, it is possible to use P(O) = 0 and as in GLM = 

G-I { (Y, + y) 12) (but go) = G-I { (% + 0.5) / (m + 1)) for binomial 
responses). 

o Severini and Sta.niswalis (1994) propose to start with = 0 and 
4') = G-I (Y,) (with an adjustment for binomial responses). 

updating step for qj ( P )  = 6ip (Tj ) 
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The function $ j ( P )  is updated by 

updating step for 
The parameter P is updated by 

with a Hessian type matrix 

and 

As an alternative, the functions ly (u) can be replaced by their expectations 
(w.r.t. to Y) to obtain a Fisher scoring type procedure. 

1.3.2.2 f ractical application Let us illustrate the semiparametric esti- 
mation with the previously introduced credit scoring example, (Fahrmeir and 
Tutz, 1994; Fahrmeir and Harnerle, 1984). Recall that the data set consists of 
n = 1000 clients, among which 700 paid a credit back without problems and 
300 did not. We define the binary variable Y with value 1 for those who paid 
back and 0 if not. The data set contains observations from three continuous 
variables (duration and amount of credit, age of client) and 17 discrete vari- 
ables. It is of interest how the explanatory variables can be used to predict 
credit worthiness. 

A parametric logit model leads to the parameter estimates listed in Ta- 
ble 1.2. We omit the parameter estimates for the discrete explanatory vari- 
ables. The linear influence of duration is highly significant. Amount and age 
have no significant coefficients if we include them linearly. We will see that the 
insignificant coefficients are a sign for a more complex structured influence. 

In a next step we fitted a generalized partially linear model according to 
the algorithm presented above. Here, the influence of amount and age has 
been fitted nonparametrically. Figure 1.7 shows the two-variate estimate 6 
in the upper panel. The bandwidths were chosen as 40% of the range in both 
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I Coeff. (t-val.) 1 CoeK (t-val.) 1 Coeff. (t-val.) 

const. 
duration 
log (amount) 
Iog(amount) squa.re 
log(age) 
log(age) square 
log(age) * log(amount) 
... 

I Linea,r 1 Quadratic I Part. Linear 

Table 1.2 Parametric logit coefficients and GPLM coefficients (t-values 
in parentheses). Bandwidths are 40% of range for GPLM. Credit data, 
Fahrmeir and Hamerle (1984). 

dimensions which gives hl = 1.72 a.nd ha = 0.55. A scatterplot of amount 
versus age is given in the lower panel of Figure 1.7. The good clients (Y = 1) 
are marked by +, the bad clients (Y = 0) are marked by o. 

We have carried out the analysis for different bandwidths. For all. these 
different bandwidths, the nonpararnetric estimates 65 are obviously nonlinear. 
However, it is difficult to judge whether a nonpara.metric estimate gives a 
significant improvement. The high values of Gi are caused by only a few 
observations (as can be seen from the scatterplot). For a closer inspection of 
6 Figure 1.8 shows also a contour plot of 6. In general, it cannot be excluded 
that the visual difference between the nonpararnetric and the linear fit may 
be caused by boundary and bias problems of 6. Additionally, some of the 
other covariables have a quite dominant influence on credit worthiness. 

Ha.rdle, Mammen and Muller (1996) proposed a procedure for testing GLM 
versus GPLM. We applied this test using and computed critical values using 
the bootstrap procedure proposed in Hardle, Mammen and Muller (1996). 
Table 1.3 shows the observed significance levels for rejection. As before, we 
report the results for the bandwidths expressed in percent of the ranges in both 
dimensions. The decision of the test depends obviously on the bandwidth. 

We see from Table 1.3 that linearity is clearly rejected for bandwidths 
up to 40%. The significance levels for rejection increase when we include 
interaction and quadratic terms. But &ogether, we conclude that the correct 
mode1 should be of more complicated structure than the quadratic. 

For higher dimensions in T the possible nonlinearities in (1.22) cannot be 
graphically displayed and face the above mentioned problems of interpretabil- 
ity. An additive structured pa.rtia1 linear index may be considered. This is 
considered in Hastie and Tibshira.ni (1990) on basis of the backfitting algo- 
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Influence: amount & age 

Scatterplot: amount & age 
++ + + O  + 

Fig. 1.7 Two-dimensional nonparametric function of amount and age in GPLM 
(upper panel). Bandwidths are 40% of range. Scatterplot of of amount and age (lower 
panel). Credit data, Fahrmeir and Hamerle (1984). 

rithm. A variant based on the integration method introduced by Linton and 
Nielsen (1995) is currently under development, see Hardle, Huet, Mammen 
and Sperlich (19%). 
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Contours: influence of amount & ane 

Fig. 1.8 Contours for nonparametric function of amount and age in GPLM. Band- 
widths are 40% of range. Credit data, Falmneir and Hamerle (1984). 

Table 1.3 Observed significance levels for test of GLM against GPLM. 
Bootstrap sample size n* = 100. Credit data, Fahrmeir and Hamerle 
(1984). 

h e a r  
linear & interaction 
quadratic 

Software 

<0.01 <0.01 4 . 0 1  0.01 0.29 
<0.01 <0.01 <0.01 0.07 0.40 
<0.01 <0.01 <0.01 0.35 0.55 

Routines for kernel density and kernel regression estimation are included in 
virtually any modern software package. Semiparametric procedures are typi- 
cally add-ons in programming environments which allow a user side integra- 
tion of kernel estimation procedures. We want to mention XploRe and Splus 
as  examples here. 
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Abstract 

VaR models are related to statistical forecast systems. Within 
that framework different forecast tasks including Value-at-Risk and 
shortfall are discussed and motivated. A backtesting method based 
on the shortfall is developed and applied to VaR forecasts of a real 
portfolio. The analysis shows that backtesting based on shortfall is 
very sensitive with respect to the underlying assumptions. 

1 Forecast tasks and VaR Models 

With the implementation of Value-at-Risk (VaR) models a new chapter of 
risk management was opened. Their ultimate goal is to  quantify the uncer- 
tainty about the amount that may be lost or gained on a portfolio over a 
given period of time. Most generally, the uncertainty is expressed by a fore- 
cast distribution Pt+l for period t + 1 associated with the random variable 
Lt+1, denoting the portfolio's profits and losses (P&L). 
In practice, the prediction Pt+l is conditioned on an information set a t  
time t and, typically calculated through a plug-in approach, see Dawid 
(1984). In this case, Pt+l is output of a statistical forecast system, here 
the VaR model, consisting of a (parametric) family of distributions, denoted 
by P = {Po I 0 E O} together with a prediction rule. Assumed that Pt+1 

belongs to  this parametrized family P the estimates & are calculated by the 
prediction rule on the basis of a forward rolling data history U t  of fixed length 
n (typically n = 250 trading days) for all t ,  i.e. 
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One example for F also pursued in this paper is the RiskMetrics (1996) delta 
normal framework, i.e., the portfolios considered are assumed to  consist of 
linear (or linearised) instruments and the common distribution of the under- 
lying~'  returns Y E IRd, i.e., the log price changes = logXt+l - logXt, is 
a (conditional) multinormal distribution, Nd(O, Ct),  where Ct (resp. and a:) 
denotes a conditional variance, i.e., ?it measurable function. 
Consider for simplicity a position of At shares in a single asset (i.e., d = 

1) whose market value is xt.  The conditional distribution of Lt+1 for this 
position with exposure wt = At xt is (approximately) 

where the approximation refers to  

The generalization to a portfolio of (linear) assets is straightforward. Let wt 
denote a d-dimensional exposure vector, i.e., wt = (X:x:, . . , Xfxf) . Hence, 
the distribution of the random variable W ~ X + ~  belongs to  the family 

where a: = w?Ctwt. 
The aim of the VaR analysis is to  estimate 6J = at and thereby to  establish a 
prediction rule. For Lt+l we adopt therefore the following framework: 

For a given (n x d) data matrix Xt = {yi}i,t-,+l,...,t. of realisations of the 
underlying vector of returns with dimension dl two estimators for Ct will be 
considered. The first is a naive estimator, based on a rectangular moving 
average (RMA) 

1 et = -x;x,. 
'n (5) 

This definition of et makes sense since the expectation of & is assumed zero. 
The second, also recommended by Taylor (1986) to forecast volatility, is 
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built by an exponential weighting scheme (EMA) applied to the data matrix 
& = { diag(Xd, Xd-' , - . - , A, 1)1'2~i}i=t-n+l ,..., t : 

These estimates are plugged-into (4) and (2), yielding two prediction rules 
for 

Pt+l E P = {N(O, 0;) I 0; E [O, 00)).  

By their very nature VaR models contribute to several aspects of risk man- 
agement. Hence, a series of parameters of interest - all derived from Pt+l - 
arise in natural ways. The particular choice is motivated by specific forecast 
tasks, e.g., drivcn by external (e.g., regulatory issues) or internal require- 
ments or needs (e.g., VaR-limits, optimisation issues). 
A very important part of risk management is the implementation of a sys- 
tematic process for limiting risk. In the light of that task, it is a t  hand that 
forecast intervals defined by the v ~ R ~ ,  

vYRt = ~; (o )  := inf{r  1 Ft+,(s) 2 a), 

where Ft+l denotes the cdf of Pt+l, are substantial. 
If the main focus is to evaluate the forecast quality of the prediction rule 
associated to a VaR model, transformations of F, should be considered, 
see Dawid (1984), Sellier-Moiseiwitsch (1993) and Crnkovic and Drachman 
(1996). For a given sequence of prediction-realisation pairs (Pt, It) - where 
It denotes a realisation of Lt - the prediction rules works fine if the sample 
u = {ut)f=, = {Ft(lt)}f=l looks like an iid random sample from U[0,1]. A 
satisfactory forecast quality is often interpreted as an adequate VaR model. 
The focus of this paper is to consider the expected shortfall of Lt+l, as the 
parameter of interest and to derive backtesting methods related to this pa- 
rameter - this will be done in the next section. The expected shortfall - also 
called tail VaR - is defined by 

where z, is a a-quantile of a standard normal distribution. The motivation 
to consider this parameter is threefold. Firstly, McAllister and Mingo (1996) 
worked out the advantage of (7) compared to VaR if these parameters are 
plugged-into the denominator of a risk performance measures, e.g. a Sharpe- 
ratio or a RAROC (risk-adjusted return - that constitutes the numerator - 
on capital) numbers which are used to benchmark divisional performance, 
see Matten (1996) and CorporateMetxics (1999), - the economic motivation. 
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Secondly, Artzner et al. (1997) pointed out that (7) defines a coherent risk 
measure, a conceptual consideration. Thirdly, Leadbetter (1995) empha- 
sized in the context of environmental regulation the need for incorporating 
the height of exceedances violating regulatory thresholds and critized those 
methods solely based on counts, neglecting the heights - statistical argu- 
ments. The paper is organised as follows. In the next section we present 
our approach on backtesting using the expected shortfall risk. In section 3 
we apply this methodology to  real data and visualise the difference betweeen 
RMA and EMA based VaRs. Section 4 presents the conclusions of this work. 

2 Backtesting based on the expected short- 
fall 

As pointed out by Baille and Bollerslev (1992), the accuracy of predictive 
distributions is critically dependent upon the knowledge of the correct (con- 
ditional) distribution of the innovations Zt in (2). For given past returns 
?it = {yt, yt-I, a ,  yt-,), at in (4) can be estimated either by (5) or (6) and 
then L(Lt+l 1 ?it) = N(0,6t ) .  Hence, 

This motivates to  standardize the observations I t  by the predicted STD 

gt 

and to  interprete thes as realisations of (2). see also RiskMetrics (1996): 

For a fixed u we get for Zt+, in (2) 

where c p ,  Q, denotes the density, resp. the cdf of a standard normal distributed 
random variable. 
For a given series of standardized prediction-realisation pairs (&+I (-/et), lt+~/c?t) 
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and a fixed u, 19 is estimated by 

where zt+l denotes the realisations of the variable (2). Inference about the 
statistical significance of 8 - 19 will be based on the following asymptotic 
relationship: 

where N(u)  is the (random) number of exceedances over u and 8 is plugged- 
into (11) yielding an estimate i for <. The convergence in (13) follows from 
an appropriate version of the CLT for a random number of summands in 
conjunction with Slutzky's Lemma, see Leadbetter (1995) for details. Un- 
der sufficient conditions and properly specified null hypothesis it is straight 
forward to  prove the complete consistency and an asymptotic a-level for a 
test based on (13), see Witting and Miiller-Funk (1995), pp. 236. 
Though these asymptotic results are straight forward they should be applied 
with care. Firstly, because the truncated variables involved have a shape 
close to an exponential distribution, hence, 6 will be also skewed for moder- 
ate sample sizes, implying that the convergence in (13) will be rather slow. 
Secondly, in the light of the skewness, outliers might occur. In such a case, 
they will have a strong impact on an inference based on (13) because the 
means in the nominator and in the denominator as well are not robust. The 
circumstance that the truncated variables' shape is close to an exponential 
distribution motivates classical tests for an exponential distribution as an 
alternative to (13). 

3 Backtesting in Action 

The Data The prediction-realisation (Pt, lt) pairs to be analysed are stem- 
ming from a real bond portfolio of a Ger~nan bank that was hold fixed over 
the two years 94 and 95,i.e., wt - w. For tJhat particular (quasi) linear port- 
folio the assumptions met by (2) - (4) are reasonable and common practice 
in the line of RiskMetrics. 
The VaR forecasts are based on a history 3Ct of 250 trading days and were 
calculated by two prediction rules for a 99%-level of significance. The first 
rule applies a RMA, the second is based an EMA with decay factor X = 0.94 
as proposed by RiskMetrics to calculate an estimate of gt different from (5). 
Remembering the bond crisis in 1994, it is of particular interest to see how 
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these different forecast rules perform under that kind of stress. Their com- 
parison will also highlight those difficulties to be faced with the expected 
shortfall if it would be applied e.g. in a RAROC framework. 

Exploratory Statistics The following analysis is based on two distinc- 
tivce features in order to  judge the difference of the quality of prediction 
rules by elementary exploratory means: calibration and resolution, see Mur- 
phy and Winkler (l987), Dawid (1984) and Sellier-Moiseiwitsch (1993). The 
exploratory tools are timeplots of prediction- realisation pairs (Fig. 1) and 
indicator variables (Fig. 4) for the exceedances to analyse the resolution and 
&-&-plots of the variable 

7 

to  analyse the calibration (Fig 2, 3). A further motivation to  consider variable 
(14) instead of (2) is that their realisations greater than one are just the 
exceedances of the VaR forcasts. Of course these realisations are of particular 
interest. If the predictions are perfect, the Q-&-plot is a straight line and 
the range of the Y-coordinate of the observatioris should be containded in 
the interval [-I, 11. Hence, the &-&-plot for (14) visualises not only the 
calibration but also the height of exceedances. A comparison of Figure 2 
with Figure 3 shows clearly that EMA predictions are better calibrated than 
RMA ones. The second feature, resolution, refers to  the i i d  assumption, 
see Murphy and Winkler (1987). Clusters in the timeplots of exceedances, 

indicate a serial correlation of exceedances. Again EMA outperforms RMA. 
From Figure 1, we conclude that in 94 (95) 9 (4) exceedances were recorded 

for the EMA and 13 (3) for the RMA. Evidently, the window-length of 250 
days causes an underestimation of risk for RMA if the market moves from 
a tranquile regime to  a volatile one, and overestimates vice versa. On the 
other hand the exponential weighting scheme adapts changes of that kind 
much quickier. 

Statistics 147, 119-130, Springer Verlag, Heidelberg

Härdle, W. and Stahl, G. (2000) Backtesting beyond VaR.



Time plot of VaRs and P&L 

Figure 1: The dots show the observed change of the portfolio values, I t .  The 
dashed lines show the predicted VaRs based on RMA (99% and 1%). The 
solid lines show the same for EMA. 
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Figure 2: Q-Q plot of l t + l / ~ ~ ~ t  for RMA in 94. 

Reliability plot for EMA 

Figure 3: Q-Q plot of Z ~ + ~ / V ~ R ~  for EMA in 94. 
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Time plot for exceedances for RMA 
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Figure 4: Timeplots of the exceedances over VaR of 80% level for RMA (left) 
and EMA. The better resolution of EMA is evident. 

The poor forecast performance, especially for the upper tail is evident. 
The asymmetry and outliers are caused by the market trend. For a particular 
day the VaR forecast is exceeded by almost 400 %. If the model (2) - (4) 
would be correct, the variable (14) has a STD of 0.41. The STD calculated 
from the data is 0.62. Hence, in terms of volatility the RMA underestimates 
risk on the average of about 50%. 

The plot for shows the same characteristics as that  in Figure 2 but the 
EMA yields a better calibration. The STD from the data yields 0.5. Hence, 
an underestimation on the average of 25%. This indicates clearly that  EMA 
gives a better calibration then RMA. Q-Q-plots for 95 are omitted. The two 
models give similar results, though even in that case the EMA is slightly 
better. 

Inference The exploratory analysis has shown notable differences between 
the acurracy of RMA and EMA for the year 94. In this paragraph their 
statistical significance will be investigated. The inference will be based on 
the observations 

&+I 

et 

and the underlying model (2) - (4). The threshold u is set to  the 80%-quantile 
of Lt+l/ot yielding 19 = 1.4, by (10). Now, based on (13) an asymptotic 
significance test for the hypothesis 
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will be used. This setting - especially (2) - seems reasonable for RMA and 
the given sample of size n = 250. 
As mentioned by Skouras and Dawid (1996) plug-in forecasting systems have 
the disadvantage that the uncertainty of the estimator for at is not incor- 
porated in the predictive distribution Pt+l. This applies especially to  if 
the EMA is used. In that case a t(n)-distribution is indicated. A reasonable 
choice - motivated by generalized degrees of freedom - is 

Though the particular thresholds U N  = 0.854 - for the normal distribution - 
and ut = 0.86 - for the t(20) distribution differ only slightly (0.5 %), the as- 
sociated means 6 change about 5 % and the STD (- even about 18%. Parallel 
to (15) the hypothesis 

will be tested. 
Tables 1 to  4 summarise the empirical results. 

Method I9 = 1.4 (- = 0.46 m(6-4 significance nobs 
C 

EMA 6 = 1 . 7 2  < = 1 . 0 1  2.44 0.75% 61 
RMA 6 = 1 . 9 4  < = 1 . 3  3.42 0.03% 68 

(<I  Table 1: Ho : z9 = 1.4 

Method I9 = 1.47 (- = 0.546 significance nobs 

EMA 6 = 1.72 < = 1.01 2.01 2.3% 61 
RMA 6 = 1 . 9 4  < = 1 . 3  3.04 0.14% 68 

( < I  Table 2: Ho : I9 = 1.47 

Firstly from tables 1 and 2, the observed exceedances over threshold u 
indicate again that the EMA is superior than the RMA. For a sample of 260 
prediction-realisation pairs 52 exceedances are to  be expected (STD 6.45). 
For the EMA 61 (61 - 52 = 1.5 STD) exceedances were observed and 68 ( 68 
- 52 = 2.5 STD) for the RMA. 
A comparison of table 1 with 2 shows that random errors strongly influence 
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the significance of the test. Recalling the impressive outliers in the Q-Q- 
plots it is worthwile to exclude these from the data and re-run the test. The 
results are given in tables 3 and 4. Again, a serious change in the level 

r n ( ? 9 - 0 )  
Method 6 = 1.4 c = 0.46 significance nobs 

C 
A 

EMA 6 = 1.645 < = 0.82 2.31 1% 60 
A 

RMA 6 = 1.83 < = 0.93 3.78 0.00% 67 

(<I Table 3: Ho : 6 = 1.4 - largest outlier excluded 

Method 29 = 1.47 c = 0.546 significance nobs 

EMA 6 = 1.645 < = 0.82 1.65 5% 60 
RMA 8 = 1.83 i = 0.93 3.1 0.15% 67 

(<) Table 4: Ho : 6 = 1.47 - largest outlier excluded 

of significance for the RMA is observed indicating the non robustness of the 
test. These results show furthermore that inference about the tails of a dis- 
tribution is subtle. In addition the i i d  assumption - cluster of exceedances 
- might also be violated. One possible source for that is the overlap of the 
3Ct. Hence, the estimates may correlate. Techniques like moving blocks and 
resampling methods see Diebold and Mariano (1995) and Carlstein (1993) 
are good remedies. 
To overcome the problems related to the slow convergence of (13) an ex- 
ponential distribution may be fitted to the data and then, again a classical 
test will be applied. The following table reports the significance levels based 
on a one-sided Kolmogoroff-Smirnov test. Again, the results emphasize the 

Method a = 0.46 a = 0.546 
EMA 0.25% 10% (14%) 
RMA < 0.1% < 0.1% 

Table 5: Kolmogoroff-Smirnov Test 

impact of random errors. The number in brackets refers to that case, where 
the largest outlier is deleted. 
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4 Conclusions 

VaR models were introduced as specific statistical forecast systems. The 
backtesting procedure was formulated in terms of measuring forecast qual- 
ity. The empirical results highlight the better calibration and resolution 
of VaR forecasts based on (exponentially weights) EMA compared to (uni- 
formly weights) RMA. However, more interesting is the impressive difference 
in amount (50%). A surprising result is the strong dependence of inferences 
based on expected shortfall from the underlying distribution. Hence, if ex- 
pected shortfall will be used in practice in order to  calculate performance 
measures like RAROC the inferences resp. the estimates should be robusti- 
fied. 
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Flexible Time Series Analysis 

I11 this chapter WC prtwtrt. noul)ar;l~~lctric: ~~ i~ t l~oc l s  i t d  available qua~rtlots for 
nonlinear modelling of univariate titne scries. .4 general nonlinaar ti~uc! 
srtries rnotlcl for an ~~ai\lariat.a stochastic. proc~ws {););LI is given by t11c het- 
eroskedastic nonlinear autoregressive (N.4R) process 

wbert! {{,I denotes an i.i.cl. twiw wit,ll zcw nrt*in~ i u d  trnit variance and f ( S )  and 
a(-) dcnota the co~~ditio~~al tlteiirt fiitlctiot~ i t i~ t l  tx)nclit.io~lal standard devintio~r 
with lags it,. . . , i,,,, respectively. 111 practict!, JC t:onditional functions j ( . )  
and a(.) M well as the namber of lags 111.   ad the lags itself it,.  . . ,h, are 
~inknowtl and have to bc! esti~natctl. 

In Section l WC discuss not~parametric csti~~~ittors for the conditional tnrail 
ftrnction of tionlinoar ; ru to re r s iv  prorcssc8s of orclcr one. While this c ~ c !  
has I ~ ~ n  most intc!~~sively studicc! in tinwry, in prtrctice models with several 
lags arc: often more appropriate. Scxt,ion 2 covtw tltc estimation of the latter, 
including thc selection of appropriate lags. For all rnodels we discuss tnetbods 
of bandwidth selection which aim at an o p t h d  tal'i~kb-0ff between variance and 
bias of the presented estimators. 

Both sections contaiu prwticitl exa~nplcs. Tltc corresponding quantlets for 
fitting nonlillear autoregressivc procmxw of ortler one are contained in tha 
quantlib smoother. A nultlber of quantlets for fitting higher order models 
found in the third party qrtantlib tp/caf pe/caf pe. 

Althouglr d)vious we would like to nnention t h t .  it! the following we only discuss 
~itcthods for which qunntlcts m availal~lc. For ;W ovarvicw of alternative tnetlc 
otls and nlodck we would like to rc!fcr !.IN! rr;irb*r to the surveys of Tjast.heiln 
(1994) or Ht.dL, Liitkq)oIll, ard CII(!II (1997). 

F i d i l  support was received by the Rutsche Forschungsgemeinschaft, SBB 373 
("Quantifikation und Simulation Okonomischer ProzgseLi), Humboldt Universitst zu 13erlin. 

XploRe Application Guide, 397-458, Springer Verlag, Heidelberg

Härdle, W. and Tschernig, R. (2000) Flexible Time Series Analysis.



1 Nonlinear Autoregressive Models of Order One 

1.1 Estimation of the Conditional Mean 

mh = regxest(x{, h, K, v) )  
computes the uni\wiatc! conditional rnm!;lrr f~~nctio~r using the 
Nwlaraya-Watson cst.iniat,or 

mh = lpregxest (X{, h, p, V)) 
con~putes tltc u~rivi~ri;tt.t? co~vlitional alcan frit~ctiou using lad 
polynomial estimation 

mh = Ipregest(x{, h. p, K, d)) 
computes the uaivariiate conditional nlaw f\~oction r~sing local 
polynomial estirnatio~~ and WARPing 

Let us tlirn to esti~nating the co~iclitional rneas fuaction f ( a )  of ir nonlinear 
autoregressive processes of order one (NAR(1) pmc:ess) 

\wing nonpmanletric ~ l i n i c ~ u ~ .  The basic idea is to estinlatc a Taylor up- 
proximation of order p of the unknown function / (.) around a given point y. 
The sirnplcst Taylor approxiination is obtained if its order y is chosen to be 
zero. One then approxin~atcs the unknown fiinction by a constant. Of couisc, 
this approximation may klrn out to be very had if one i~lcludes observations 

that are distant to y since this might introduce a large approxin~atioa 
bias. One thercfore weights those observations loss in the estimation. Using 
thc least squares principle, thc estimated function value f (y, h) is provided I I ~  
the esti~nated constant F0 of a local constant esti~nate around y 
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Baforc onc! itpplirs Nadaraya-Watso~~ t.stimatioa onc! should be aware of thc 
cotidit,io~~s that t h  ur~derlyi~rg data ge11cr;ttiag 111ec11atlis1n ha.. to fulfil such thi~t- 
the estimator Iraq  nit^ asympt,otic prf)pcbrt.ias: nlost importantly, the funct.io~i 
l(-) ha.. to Be continuoas, thc st.octrns.t.ic process Itas to be stationary ant1 thc! 
dcpeaclcnce anlong tlie observat.io~is must, tlwlinc? fast enough if the distuocc 
;tn~ong the obser\rations increases. For ~nci~snring <Icpenclencc? in nonlinear timc 
scrics one commonly uses various rnising concepts. For cxample, a sequencc? is 
said to Iw a-mixing (strong mixi~rg) (Itol)itrsotr 1983) if 

sup I~(1.l n B )  - P(A)P(D)J  5 ak, 
AEF,", BEFZ+& 

when: elk 0 ancl F/ is the a-field gr!~~c?ratc?tl by Xi,. . . , Xj. An alternative 
and stronger condition is given by the 8-mixing condition (absolute regularity) 

for any A E T;' and B E F& Art (!WI stronger condition is the +mixing 
(uniformly mixing) condition (i3illi11glay 1968) wl~crc 

IP(A n5) - P(..I)P(B)J 5 d~kP(.4) 

for any .4 E 3;1 and D E 3Zk i ~ r ~ r l  &. tcvvls t.o zero for k -+ oo. The ratc at- 
wl~icl~ ak, Rk or & go to zero plays at1 it~lportant role in showing asymptotic 
properties of the nonparametric: srl~onthiog procedures. We! note that these 
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ccmclitiota we  in ge:encr;tl cliffirult to check. Howc?vcr, if t11c prowss follows ir 

statiot~ary Mwkov chain, t h ~  gco~netric: ergodicity irnplics a l m k ~ t c ~  regularity, 
w11ic:h in turtl implit* xtnmg ~rtixitig co~~clitioas. Techniques yxist for clrccking 
gwtnetric ergodicity, set! (:.g. Duukl~air (1994) or Lu (1998). Furtl#!r iud ntore 
detailal contiitio~~s will I)(* cliscassetl in Subsection 2.2. 

Tlw qumrtlet regxest allows to co~rrpnte N*tlaryeW;ltson i~stia~irrcs o f  f ( S )  for 
an array of differmt M'S. Its syutax is 

mh = regxest (X(, h, K, v)) 

with thc input varial~ltm 

X 

(T - l )  x 2 matrix. ia tlte first mlutnn the inclepcndent, in the sccolld 
column the dcpencb~t variable, 

h 
scalar, batidwidth kjr wt~ich if uot given, 20% of the range of thc valua 
in the first colunltr of X is used, 

K 
string, kerncl function on [-1,1] or Gawsian kernel "gau" for wlricl~ if not 
given, the Quartic k a n d  "qua" is uml, 

v 
m x 1 vector of v a l ~ ~ t s  of the irltlepe~ident variablc on which to cornpute 
the regression for which if not given, X is used. 

This quantlet returns a (T - 1) x 2 or 71, x 2 matrix mh, where the first colut~ln 
is the sorted first colimul.of X or the sorted v, the second colurnn contains the 
regrcxsion estimate on thc values of the first colutnn. 

In orcler to illustrate tlre. tucthotls presented in this chaptcr, we ~~iotlel the 
dynamics untierlying the f;utioas ~ n t ~ u a l  Canadian lynx trappings in 1821 -1934, 
sec e.g. Brockwell and Davis (1901, Appendix, Series G). Figures 1 and 2 of 
their original and logged tiuie .wric?s are obtained with the tpiantlct 

library("plot8') 
setsize(640,480) 
lynx = read("lynx.datn) ; read data 
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d l = createdisplay(i.1) 
X l = #(l821 : 1934)'lynx 
setmaskl (xl. (l:rows(xl)) ', 0, 1) 
shou(d1.l,l,xl) ; plot data 
setgopt ( d l ,  l, l, "title",o@Annual Canadian Lynx 

Trappings, 1821-1934") 
setgopt(dl.l,l,"xlabel","Years","ylabel","Lynx") 
d2 = createdisplay(1, l) 
x2 = #(1821: 1934)'log(lynx) 
setmaskl (x2, (l:rous(x2))', 0, 1) 
show(d2,l,l,x2) ; plot data 
setgopt(d2,l.l."title',"Logs of Annual Canadian 

Lynx Trappings, 1821-1934") 
setgopt (d2,1, l, "xlabel" ,"Yearsw, "ylabel", "Lynx") 

Q f ltsOl. xpl 

Tlwir inspection iatlicates that taking logaril~ms is rcquircd 1.0 make the tirnc sc- 
riw look stationary. The following quantk?t r c ~ l s  the lynx data sct, constructs 
tlw vcxt.ars of the ciepenclent. and l a g p l  variables, r.omput.as the Ndariiya- 
Wit.son csti~nator a t ~ d  plots the rcsalting fimctio~l inclr~tfitig the scatter plot 
whicl~ is displayed in Figure 3. For sabcthg t l ~ c  ban<lwi<lth we use here t l ~ c  
primitivtt rule to take onc fifth of thc dat.a rang!. 

library("smo0ther") 
library("plot9') 
setsize(640,480) 

B data preparation 
lynx = read("lynx.dak") 
lynxrows = rovs(1ynx) . 
lagl = lynxcl: lynxrows-l] ; vector of first lag 
Y = lynx C2: lynxrowsl ; vector of dep. var. 
data = lagl'y 
data = log(data1. 

I estimation 
h = 0.2r (max(dataE , l ]  1 -min(datac. 11 1) ; crude bandwidth 
"Bandwidth used" h 
mh = regxest(data,h) ; N-W estimation 

l graphics 
mh = setmask(mh,"line" ,"blue") 
XY = setmask (data , "cross" , %nails') 
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Annual Canadian Lynx Trappings, 1821 - 1934 

l Q 
0 I 

Figure 1: Tiaw scrics of ;rtlnual Cimulian Lynx Thppings, 1821-,1934 

plot (xy ,mh) 
setgopt(plotdisplay, l, l ,"title" ,"Estimated NAR(1) 

mean f unctionn ) 
setgopt (plotdisplay, l, l ,"xlabelM ."First tagw, "ylabel" , **Lynx8*) 

For long timc serics the cmap~tation of the Nadaraya-Watwn estinlates may 
bccon~e quite slow since there art! a~orc points at  which to estimate thc functiori 
i~11d each estimation i~~volves more tlilta. h this case one may'use the WARPing, 
weighted average of rounded points, technique. The basic idea is the 
"l~inning" of the data in bins of lelrgtl~ d. Each observation is then rcpl.xa1 by 
th! bincenter of the corresponrhg l h l  which means that w h  point is roll~d(!d 
to the precision givcr~ by d. A typical choice for d is lr/5 or (rrlax ki,l - 
111it1 >;-l)/lOO. III tlm li~ttt!r (:iLq(!. t h *  offcc:tive sa~nplc sim r, i.e. tlrc I I ~ I I ~ ~  
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Logs of Atinual Canadian Lynx Trappings, 182 i - 1934 

Figure 2: Ti111e series of logarit.1111~ of ati~rr~id Cht~diau Lynx Trappings, 1821- 
1934 

of noncmpty bins, for computation is a t  tnnst. 101. If WARPing is necessary, 
just, call t . 1 ~  quantlet, regest which lias rite s;unc8 parameters a5 thc quant,lct 
regxest. 

Whilc: the Nadzlraya-Watson function cstitnat,c? is simple to conlput,~ it Inay suf- 
fer frotn a substantial estimation bias dur t o  thc zero order Taylor expansion. 
Thcrc*fom, it seems nat,~aal to incrcwse the ortlcr p of the expansion. For cxarn- 
plc!, I)y ~ l w t i n g  p = 1 one obtains t h  local lincwr twt.imat.or which corresponds 
to th* following weigl~ted mitiitnieiatiorr proldc~n 

- 
wlrmo the estimated function mluc /?(g,  11) is provided as beforc I)y t110 wti- 

XploRe Application Guide, 397-458, Springer Verlag, Heidelberg

Härdle, W. and Tschernig, R. (2000) Flexible Time Series Analysis.



Estimi~ted NAR( I ) mean function 

mated constant 6. In a si~uiliir wily oat? ol)t;ri~~s the local quadratic wtinlator 
if one chooses p = 2. Tl~c!~qaautlc~t lpregxest allows to conipute local lineirr 
or local quadratic frnrction csti~ontes usiag tlrc qaartic kcnicl. Its syntax is 

y = lpregxest (x,h { ,p {.v?)) 

where the inputs are: 
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P 
intc!g-r, order of ~ C J ~ ~ I I O I I I ~ ~ I ~ :  p=() yidtls I I I V  ?ii\llitr;tya-Wat.~~~l estimator, 
p=] yic!ltls local linear cr;ti~uatiot~ (whic.11 is t l (*f i~~lt) ,  p=2 (local quadratic) 
is t h  Iligliast possible ortlrr, 

mh 
(T - 1) X 2 or TIL X 2 ttii~trix, t h *  first ~ : ~ I I I I I I I ~  is tllc sorted first colulnn 
of X or the sortml v, the srwt~tl  trtlwr~~t t r ~ l ~ t . d ~ ~ s  the regression estimat.~ 
on tlie values of the first. ~ O ~ I I I I I I I .  

T l ~ c  follo\ving quantlct allows to visu;~lizc t lw tlilfi!rc~~c.c? betwvwn local constant 
i \ ~ ~ t l  local linear estimatior~ of tlw first. orclcr uct~~lint!;rr autorc?grrssive mean 
fil~~ction for the lynx data. It proclt~c.cs Fig~lrc* -1 wlrc!rc the solid and dottctl 
linm display the local linear ;rnd loc*;~l c-trast.a~it cstie~ates, rtspwtively. ONC 
~~ot . i t rs  that thc? local linear filnct.iot~ ts th~at .v shows less variat~ion. 

library (~Ssmoother") 
library ("plot") 
setsize(640,480) 

I data preparation 
lynx = read("lynx.datm) 
lynxrovs = rows (lynx) 
lagi = lynxli : lynxrows-l] ; vector of first lag 
Y = lynx C2 : lynxrows1 ; vector of dep. var. 
data = lagl'y 
data = log(data1 

. estimation 
h = 0.2* (max(data l, l] ) -min(data C I l] 1) ; crude bandwidth 
mh = regxest (data, h) ; N-W estimation 
~ I P  = lpregxest(data,h) ; local linear estimation 

S graphics 
mh = setmask(mh,"line","blue","dashed1') 
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~ I P  = setmask(mhlp, "lineY ,*fed") 
XY = setmask (data, "cross", "small") 
plot (xy,mh,mhlp) 
setgopt(plotdisp1ay , l, l ,"title","Estimat NAR(1) 

mean function") 

setgopt(plotdisplay, l, l ,"xlabel","First Lag", "ylabel" ,"~ynx") 

Q f lts03.xpl 

Figure 4: Local iiriear osti~aatwt (solid lirrc) 'ancl Nadaraya-Watson cstimates 
(dotted line) of NAR(1) mcali ftr~iction for lyux data and scatter plot 

Like Nadaraya-W~LWII rntiniat,ion 1 0 d  lilrcw est,inration may 1)c:comc: slow for 
long time series. In this c.;lsr. cuic 111;ry iisc8 the quatit.lct, lpregest which asc?s 
t bc! WARPing tecl~rriqai?. 
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1.2 Bandwidth Selection 

1 
(hcrit, crit) = regxbwsel(x{, h. K)) 

int.c!rirct,ivc tcml for I~iurtlwicltl~ sc!lcct.ion in iniivariatc kcrncl rc- 
gressio~i c!st.i~nat,iou. 

{hcrit, crit) = regbusel(x{, h, K, d})  
iritcractiw tool for I)atwl\vidth sc!lc*ctio~i in  lt~iivariatc kerncl rc- 
grcssion c!tititnatiorr using t l w  \I?AR.Piag nv!thocl. 

So fi~r wtr 1i;rvc uscxl a priinitiw way of sc!lac.t.ir~~ tlw Biu~dwiclth paratnetw h. 
Of course, tliera arc bcttcr nwt,lrocls for I)i~l(l~idth choice. They arc! all b;rsc!tl 
on  minitnizitrg sottic estimated tlist,antx! 1lv!itstW!s. Since we are interestctl in 
ono bandwidth for various y, wr! look iht "glt~l~;il" distances like, for in static.^, 
the integrated squared error (ISE) 

Here p(.) denotes the detisity of tlw stiitio~iary rlistrilmtion and W(.) is a wctigl~t 
fi~nctioti with compact, support. Note that, thc bandwidth which minimizes tlic 
ISE dr  (h) in ge~wrally \wits from sil~iipla to siln~ple. 111 practice, one Inay waut 
to avoid tlic integration and considnr an iq)plr)xi~nation of thc ISE, namely thc! 
average squared error (ASE) 

Since the mcasure of accuracy dA(Ir) i~rvolws t . 1 ~  wktwwn autoregression f i w -  
tion f(.), it cannot be used dirw;t,ly. 1nst.ca;lcl or~c tnay esti~nate f (K-,) by 1;. 
One then ohtiil~rs the average squared error of prediction (ASEP) 

Tlris, howcvcr, implies tJic! new ~~roi)l(wr tl~itt rl..lr(lt.) can Be driven to zero 
choosing Ir. srnall cnouglr. To m this mt~sitl(*r t lw 3adaraya-Watson rrrtitnator 
(_4) and inimagine that tlic 1)iudwicltL b is r11osw1 so small that (4) hcm~tirs 
/(K- l ,  /L) = 15. This implies dAP(Ih) = (I.  This (?stinmtion problem can easily 
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'I' xi=2,,$, K1,O'i-l - !/)l; 
/Zt(v)= ,,. xi=2,'#, lW>- l  - l/) 

i d  is eallcvl tlw lcavooxieout crow-validation estimate of tlw aotot.c!- 
grwion fiurctio~~. 011r tl~t?rc!fort* cwtir~~irtes d..llr(lr) wit11 t l r  crass-wlicJation 
fil~~ctioii 

Lct be the Ixr~tlwitltlr that n~ijritaixcs C\;(h). Hfrcllo (1000) ind H2rdlc iwcl 
Vicu (1992) provecl that t~titlex iui cr-n~ixing couclition, 

The interactive cluantlet regxbwsel olfcws cn)ss-~~aliclitti~~i ancl other bawlwidth 
selection metlrods. The latter may l)(! used in ciLq(! of intlcpendent data. It is 
callctl by 

{hcrit, crit) = regxbwsel(x{, h, K)) 

with tlru input varia1)le: 

h 
111 X 1 vector of I~antlwidths. 

K 
stritrg kernel function on [-l, 1) c.g. quartic kcrncl "qua" (def;~r~lt) or 
Gaussiatl kerncl "gau". 

Tlw output. variables are: 
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If  01w4 \writ,s to IISC \V.ARPing one! Ims ~o IISV I I I C *  clr~;r~~tk:t regbwsel. U s i ~ ~ g  
t.11c following quzuitlct otie 13ay cstitnatc* rlw cwss-\diclat.ion I~andwitlth for t h(% 
lynx cliita set a r ~ d  ol)t.;das k = 1.1 ZJS:',. 

library("smoother") 
library("plotW) 
setsize(640,480) 

a data preparation 
lynx = read("lynx.datW) 
lynxrows = rows (lynx) 
lagl = lynx C1 : lynxrous-l1 ; vector of first lag 

Y = lynx C2 : lynxrousl ; vector of dep. var. 
data = lagl'y 
data = log(data1 

11. IW ;ilrc!acly notc!rl that the? ol)t.i~t~i\l I,i~nclwiclt,lt with respect too ISE (G) or  
.\SE (7) 111;ry vary ;rc:ross sanq>les. 111 or(1er t o  ol)tain a sample independcat 
opt.i~tid I~mtlwitltl~ one may consitlar tlw mean integrated squared error 
(XIISE) 

2 

4 , W )  = B [l {l (y) - .&I, h ) }  IWC(Y)&] . 

Like dr(h) or dn(h) ,  it. also cannot In- rlsc!cl rlinwtly. It is, however, possiblc to  
derivc tlic asymptotic expansion of dd,(h). This allows to  alttain an explicit 
formula for the aqymptotically o p t h ~ i d  1);wwlwitlt.h h,,t which, lmwever, con- 
tains unknown cons rant,^. In Suhstr.tioa 2.2 we show how one CFI ~ t i m a t k ?  
these unknown quant.ities in ordcr to ol)t.itia a plug-ilt bandwidth I I , ~ .  
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1.3 Diagnostics 

acfplot  (X) 
generatw plot of iu~tocorr(!Iatioti ftltiction oft itlw swics contdtunl 

{ jb ,  probjb, sk,  k)  = jarber(x, 1) 
checks for non11a1ity of the! tlata c x ) ~ ~ t . i ~ i ~ w d  ill wctor x usitlg th(! 
.larque-Bcra ttat. 

I I 
It is wvdl knowvt~ tliat if s fittctl nioclal is misspecificrl. tlvw rcaulting irrfcrc,ncct 
ciul be ~tri~lci?rling likc, for cxatnple, for coafitlm~cr? iat+(!rv;rls or sig~iificiuicc tests. 
One way to c11m:k whethor a chosen a~otlcl is correctly slwifictd is to investi- 
gate the rcs11lti11g residusls. 1Most importaatly, o t~c  r:hecks br a~itocorl.c?l;itiot~ 
rctl~ailling ill the rc?siduals. This can easily I>c dolrc by inspttc:ting thc graph 
of tlic aet,ocorrelstio~~ fuectiun using tlru cluaatlc!c acfplot. It only rcquiri?~ 
the (T - 1) X 1 vwtor X with tlic estimatcxl mitltrals ;L! input varinblc:. Tlic 
quantlet also draws 95% coofitloecr! istcrvals for the casc of no autot:orrelatioti. 

Another issue is to clreck the aorrn;rlity of the resicluitls. 'Chis is comnrordy 
done by usilig thc Bcra-Jaryuc! test SIJ~~C.&X~ by Bera i i r d  Jarque (1982). It is 
cotainotily callc!cl .JB-tcst i d  call be c.otaputwl with tlw cl~litntket jarber which 
is r;tlletl I)y 

i jb ,  probjb, sk,  k) = ja?ber(resid, printout)  

r e s id  
(T - 1) X l ruatrix pf rcsidusls, 

pr in tout  
scalar, 0 no printout, l printout, 

; m l  output v;irial>les 
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I n  t h  followirig qua~~t,let tllcsc: ciiagtmtic's i\rc8 itpplitwl t o  the resid~~nls of the 
.\IAR.(l) rncjdcl fittd to the lynx data wing t h  I\r'adirraya-Watw~~ t~3.tit11itt.or - 
(4) with t.h! cross-valitlation bantlwitltl~ h = 1.12085 

. load required quantlets 
library ("smoother") 
library ("plot") 
func("acfp1ot") 
func("jarberW) 
setsize (640,480) . data preparation 
lynx = read("lynx.datN) 
lynxrows = rows(1ynx) 
lagl = lynx [l : lynxrows-l] ; vector of first lag 

Y = lynx [2 : lynxrowsl ; vector of dep. var. 
data = lagl-y 
data = logcdata) 
datain = data-# (l : lynxrovs-l) ; add index to data 
dataso = sort (datain, l) ; sorted data 

l estimation 
h = 1.12085 ; Cross-validation bandwidth 
mhlp = regxest (dataso[, 11 21 ,h) 

; local constant estimation 
l graphics 
mhlp = setmask(mhlp, "line", "red") 
XY = setmask(data, *crossn ,'*small") 
plot (xy ,mhlp) 
setgopt(plotdisp1ay , l, l, "title", 

#'Estimated NAR(1) mean f unctionn) 
setgopt(plotdisplay,l,l,"xlabel~',"First Lag","ylabel","Lynx") 

t diagnostics 
yhatso = mhlp.data[,2]"dataso[,3) ; sorted est. fct. values 
yhat = sort(yhats0,2) ; undo sorting 
ePs = dataI.21 - yhat[.l] ; compute residuals 
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acfplot (eps) ; plot autocorrelation function of res. 
setgopt(dacf , l. l ,"title","Autocorrelation function of NAR(1) 

residuals" 
I 

ijb,probjb,sk,k> = jarber(eps,l) 
; compute Jarque-Bera test for normality of residuals 

Autocorrclation function of NAR(1) residuals 

- 1  
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1.4 Confidence Intervals 

c-' 
{mh, clo, cup) = regxci(x{, h, alpha, K, xv) )  

compntm pointwise confitlc*ac.c i~ttcwxls with ~)rcsl)wific!l confi- 
dence IcvcI for univariate rcy.yvssior~ I I S ~ I I ~  t.lw Nml;u.a.ya-\lVnt.sorl 
esthstor.  

{mh, clo, cup] = regci(x{, h, alpha, K, d } )  
computes poir~twisc t:o~ditlct~w ~ I I ~ ( T ~ S  with p~.c!spccified confi- 
clcnce level for 11nivariat.e ragrcwsiot~ using tlw Nitclirray~-Wat~~tl 
estimator. The comprttation ustbs lV.4 R Ping. 

011e:e onc? selcctcd tht? bandwidth a id  c.l~cv.k~il tl~tl rtsitluals one often wants 
to invostigatc thc variance of estirr~ntit~g tJw it~~torc!gression function. Undcr 
iipl)ropriate condit~ions, the virriatlcc! of hot 11 t.lw Niiclaraya-Watson and the 
lo(.id liacnr estimator fiin be approxinrirttrl I by 

.. 1 n 2 ( y )  
Var( f (g,  h)) - - Th p(!/)  

IIIij]l; 

RS will be see11 in Subsection 2.1. (12) w11 l)(- ~isccl for constructing c:onfidet~t:c 
i~~t,c?rvals for F(.) siace one can estimat.~ t h  (:oi1(1it,ima1 variance a2(y) by tlw 

b h ,  clo, cup) = regxci(x<, h, alpha, X, xv) )  

with input. mriablas: 
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alpha 
confidence tevcl wit 11 ().0.5 its tl~fitttlt virlts, 

xv 
tn X 1 raatrix of tlw \-;rl~rcs of the i~ictepcndent variable on which to coltt- 
pute the regressiorl i l t ~ t l  X ;W defidt. 

mh 
(T - 1) X 2 or in X 2 u~iitris, thc first, column is the sorted first rn11ir111: 
of X or the sortcti xv. tlm sct!c:otvl column contains the regression cr;timiit.c! 
on the wluc!s of t h  first c~olualn, 

c l 0  
(T - I) X 2 or rn X 'L ~eatris, tlrc* first colutnt~ is the sortcxl first colt111111 
of x or the sorted xv. t.lrc swond t:olurnn contains thc lower confidcoc.c! 
bounds on the V ~ L ~ I I W  of t.11~ first, tr)ltrrn~i, 

="P 
(T - 1) X 2 or nr X 2 urirtxix, tlrc first, crrltunn is the sorted first. txhint~r 
of X or t l~c  sorted xv. tht~ srx:o~rtl c:ol~aan r'ontains the upper coufideec.~ 
bou~tcls 011 the values of tllc tirst. t x ) l u ~ t r ~ r .  

If the WARPing t,cdiniq~lt? is rtrptirect, OIIC uses the qumtlet regci. 

In Subsection 1.3 ww fouocl t l ~ i ~ t  t h  SAR(1) n~odal for t l c  lynx data is isis- 
specifiecl. Tltcrefore, it, is  rot iq)propriatc for ill~~strstir~y; ttlc cornputation of 
pointwise confitlc?~irr! iatc!rwls. It~st(*iitl rw* will trsc* i i  siniuhtetl time scric.s. TIN! 
quantlet below jpt:r;ttt!s 1.3) ol~scrm~tiot~s of it stirthiitry cxponcntial AR.( l )  
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1; = 0.31/1-1 + 2.215-1 c!xp (-0.1 ,) + f , ,  ( - N(0, l ) ,  (15) 

c:;~lls tllc! interi~tivc! <l~iuttlct regxbvsel for I~i~~~clwitlth selection where onc 
Ili~s t.o ihosc! for the first time cross-validation ;w1 for tlic! second time stop, 
c-olnput.cns the coofitier~cc! intcrvals and plots t l w  I r11v i111d c?stirnatcd functiori 
(solid i ~ t l c l  dashed line) ;~q wcll as tlw poit~twisv iwrfidence intcrvals (dottctl 
lint*) i s  shown in Figrlrc! G. 

library ("smoothern) 
library ("plot") 
library("times") 

* setsize(640,480) 

. generate exponential AR(1) process 
phi1 =0.3 
phi2 = 2.2 
g = 0.1 
randomize (0) 
X = genexpar(1 ,g,phil ,phil+phi2 ,nonnal(l50) ) 

. data preparation 
xrows = rows(x) 
lagl = xC1:xrows-l1 ; vector of first lag 
Y = x[2:xrowsl ; vector of dep. var. 
data = lagl-y 

v true function 
f = sort (lagl-(phil*lagl + phiZ*lagl. *exp(-g*lag1"2)) ,l) 

l estimation 
{hcrit , crit) = regxbusel(data1 
{mh, clo, cup) = regxci(data,hcrit) 

f = setmask(f, "line", nsolid'."red') 
data = setmask(data, '~crossn) 
mh = setmask(mh, "linen, Hdashed","blue") 
c 10 = setmask(c10,"line" ,"bluem. "thin" ,"dottedw) 
CUP = setmask(cup, "line", "blue", "thin" ,"dottedB') 
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plot(data,f ,mh,clo.cup) 
setgopt (plotdisplay, l, l ,"titlew ,"Confidence intervals of 

estimated NAR(1) mean function") 
setgopt (plotdisplay, l, l ,"xlabel", "First Lag", "ylabel" ,"YN) 

I Confidence intervals of esrimated NAR(I) mean function I 

Figtae 6: True and estinlktc~cl Ill(*itll f1111ctioli p111s pointwise confidence intermlv 
for a generated cxponer~tial A R ( 1 )  proccss 
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1.5 Derivative Estimation 
J .----.- 

mh = lpderest(x, h(, q, p, K, d } )  
cd111ar.c~ tlie q-t,h <Icrivitt.ivc of ;I ;t~~~orc*~rt~ssioli fun<:tion rising 
local polynomid kcrnc?l ragrwsiou. 'I'Iiv cortiput.at.ioii uscs WARP- 
ing. 

In g:ncral, orlc uses a g+ l itlstcacl of a q-th ortlnr polyiotnial for the estiniation 
o f  rhc! q-t.h clerivative sincc this rdnrcs t,Iw t.oaiplr?xity of the estimation bias, 
scu (!.g. Fan and Gijbels (1995). Tlrc? rcl;timat.c*rl clarivat.ivt! is then obtained as 
j?q) = q!Fq. The quantlet lpderxest allows to c?sthntc first and second order 
cirrivat,ivcs where maximally a swond ordcr polyaot~lial is usd. It is called by 

mh = lpderxest (X, h<, q, p,  K, v)) 

wit 11 input variables 
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scalar, banciwirlth for wlric.l~ if   rot giwn the! rltlccof-tlr111t111 bantlwicltl~ is 
computc!cl with lpderrot, 

iuteger, orcler of l ~ o ~ y ~ ~ o ~ t r i i ~ l  for wl~iclr if not givc!u, p=q + 1 is ~uvtl for 
q< 2 and p=q is us!cl for q=2. 

tn X 1, values of tbo inrlc!pc~wlct~t v;uial)lo on wtticlr to computc the rcb 
grcssion for which if not givcw, X is used. 

Tlw! output variable is 

mh 
(T - l)  X 2 or m X 2 t~~iltrix wl~cre t l~o first c:olu~nn is the sorted first 
column of X or the sortctl v i d  tlru swo~~tl  col~~tt~n contains the derivativ(! 
estimate otr ttlc values of thct lirst. colun~n. 

Tlw cp~a~ttlet lpderest wlrieh ilppli(~ tltc WARPing tcdnicluci,(Fan allcl 1Iiu.ron 
1994) allows for p < 5 and q 5 4. We ~rotc?, Ilowcvcr, that WARPing 11tiiy waste 
a lot of information. Ba~~dwi(ltli sc!lectior~ remitiias~ itn important issac and rim 
br! donc usir~g the quantlet lpderrot. 

In the following quantlet we csti~nlrte the first and seco~~cl <lerivativt?s of the 
co~~clitional mean function of thc? trxponential AR(1) proetass (15) basal on 150 
observatiotrs. The true c1crviativc.u (solid lines) and tltcir esti~natcs (clashed 
lines) iue shown in Figures 7 ;wcl 8. 

library ("smoother") 
library("plotW) 
library("timesW) 
setsize(640,480) 

g generate exponential AR(1) process 
phi1 = 0.3 
phi2 = 2 . 2  
g = 0.1 
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randomize (0) 
X = genexpar(llglphil,phil+phi21norma1(150)) 

8 data preparation 
xrows = rous(x) 
lagl = x[l:xrows-l] ; vector of first lag 
Y = x[2:xrowsl ; vector of dep. var. 
data = lagl-y 
ffder = sort(lagl'(phi1 + exp(-g*lagla2) .* 

~hi2. *(l-2. *g. *lagle2)) l l) 
f sder = sort (lagle(exp(-g*lag1^2). *(-2*g. *lagl) * 

phi2.*(3-2.*g.*lagl^2)),1) 

v estimate first derivative 
ffder = setmask(ffder,"line","solid","red") 
mhfder = lpderxest(data1 
mhfder = setmask(mhfder, "line","dashed","bluel') 
plotder = createdisplay(l.1) 
show(plotder, l, l ,f fder ,mhfder) 
setgopt(plotder,l,l,"title","Estimated first derivative 

of mean function1') 
setgopt(plotder,l,l,"xlabel","First lagn."ylabel", 

"First derivative") 
l estimate second derivative 
f sder = setmask(f sder , "line","solid","red") 
hrot = 2clpderrot(data,2) 
mhsder = lpderxest(datalhrot,2) 

dashed", "blue") mhsder = setmask(mhsder, "line" " 
plot(fsder,mhsder) 
setgopt (plotdisplay, l, l, "title","Est imated second 

derivative of mean functionn) 
setgopt(plotdisplay,l,l,"xlabel","First lag","ylabel", 

"Second derivative") 

@ f lts07. xpl 
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Estimated first derivative of mean function 

Figurc 7: Truc and cstitllatcvl first clcrivative for a geticri~tcd cxponcntial AR(1) 
process 

2 Nonlinear Autoregressive Models of Higher 
Order 

111 Subsection 1.3 we I)richy tliswsscd diaguostics to check for tllc correct spec- 
ification of a titne series 1nodt4. Thmc we found for the lynx  data set that the 
nonlinear autoregressive rnotlcl of orclc!r one (2) is of too IOW order to capture 
the linear correlation in the* dirtit. For prirctical flexible time .series modeliirig it 
is tlierefore necessary to ;rlloa for tiigiier order nonlincar nutorcgrcssivc rnotlcls 
(l). Their estitnatioti i~tid the wltr:tion of relevant lags will be discussed it1 

this section. To si1iil)lify ~~ot;rtio~r. wc: iatroduce the vector of lagged vari;hlt!s 
= (K, ,K, ,  . . . .l;,,,)" ~ 1 u . h  tli;lt (1) ciul bc writteri is 
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Estiniated second derivative of m a n  funcrion 

2.1 Estimation of the Conditional Mean 

l 
mh = regxestp(x{, h, K, v} )  

con~put.ts ttlrc? Nadaraya-Wat.scw c.st.iu~;rtor for nlultivariate arr- 
torc:grt?ssion. 

mh = regestp(x{, h, K, d))  
Natlarayit-W~tson estimator for ~t~dtivari;rt.a regression. The 
computation u s c ~  WARPing. 
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mh = lpregxestp(x{, h, K, v}) 
cstimatc!~ i i  ~mdtiv;kriirt,c: rcagrc*ssicw flllWtiO11 llsillg lo(.i\l polyll(3- 
aliirl k c ~ ~ ~ c l  rc!grwsion with cpiwtic' kcwrc!l. 

{mA, gsqA, denA, err) = fvllc(Xsj, Yorig, h, Xtj, 
kernreg, lorq, Eandg, loo) 

cstirnirtc?~ i L  multiv;n.iatc rc!grc!s%icm hnrctio~~ using locid linear re- 
gressior~ with G ~ ~ H S S ~ ~ L I I  kc?rncl. 

It. is not difficult to c*st.cntl tlw N~NI~L~;L~;I-\V~~SMI tati~ni~tor (4) ;ud local linear 
t?sl.i~nator (5) to several l i ~ g ~  in tllr co~ulitionirl mean ft~action f ( m ) .  One then 
si~rrplp uses Taylor espansio~~s of arch p for scwral mria1)les. In the wcigbtc%l 
adr~in~ination problen~ of tlw local col~stitt~t wtinrator (3) orre II;W to extend the 
kcwvtl futlctio~l I&(.) for sc?vt?r;il 1 ; r ~ t u l  ~ i ~ r i i h l ~ ~ .  Th! sio~plc.st. wily of doing 
t.lris is to use a product kc*r~lc!l 
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Uuclcr s~ritablt* c.ouclitio~rs wliich arc listcc1 in Snl)sectio~r 2.2 the N~laraya- 
Wittsoa estimator (19) ;1nt1 local linear cst,itmt.or (21) have at1 asymptotic nor- 
lnal dist,ribut~ion 

l.1 (X) = Tr {VZ f ( X ) }  + ~ V ~ ~ ~ ( . ~ ) V / ( Z ) / ~ L ( X ) ,  v r ( l )  = Tr {V? f ( X ) )  . (23) 

Tlms, the rate of convergeucc deteriorate$ with the number of lags. This fca- 
trm is commonly called the 'curse of tlimmsionalit,y' and often viewd as a 
sulxtantial drawback of nonparametric utctlrotls. One should keep in inincl, 
howcvcr, that tltr fl-rate of paranlctric. a~orlels only holds if one e..timJcs 
a modcl with an a priori choseri finite inanbc!r of parameters which may inl- 
ply a large ~tiniation bias it1 case of nlisspccifiecl models. If, however, orw 
allows the nirtnbcr of prrramet,tirs of psr;r~~wt.ric: modt?ls to grow with sample 
sim, &?-convergence Inay no longer I~olcl. 

The cluantlsts regxestp and lregxestp c:o1111>11te the Nadaraya-\Vatson esti- 
mator (19) and local linear t.stisnat.or (21) for liiglm ortler aut.orcgressiol~s. 
They arc? called 1)y 

27 
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mh = regxestp(x1, h, K, v)) 

with input variiil)lt?s 

h 
scalar or m X 1 or l X rrr vector of batidwitltli for \r.l~icl~ if not give11 20% 
of the rango of the vi~lucs in the lirst colurtur of X is uscxl, 

K 
string, kcrrlol ft~nctioii on [-Ill] or Gaussian kar1it4 "gau" for wliicl~ if not. 
givc11, the q~tartic kcrnel "qua" is used, 

v 
n X 7n ~riatris of valuc.4 of the irvlc~pmvient varii~bh: on which too comyutc 
tlie rcgrcssion for whid if not, givctr, a grid of length 100 (m = l), Icngth 
30 (nr = 2) R I ~  length 8 (, ,L = 3 )  is uscd in castb of rri < 4. Wl~cr~ rrr 2 4 
then v is sct to X. 

mh 
(T - i,,,) X (nc + 1) or n X (in + 1) trmtrix where the first m colunins 
contain the grid or, the sorttvl first tn colurnris of X, the tn + 1 colun~t~ 
contains the regression wtitnatc? on the values of thc first m columns. 

, 
-4s before, there are also qua~itlet.~ wl~ich apply W.4RPing. They are called 
regestp and lregestp, respectively. 

Sinco wc fouricl in Subsection 1.3 tlritt ii NAR(1) rwtlcl is 11ot sufficietit to (:ill)- 
ture the t1yn;rtnics of the lynx trappirrgs, we conlpute allcl plot in thc! followilig 
quantlet the irt~torcgrmsio~i fut~ction for Iihg l and 2 for both estimators osit~g 
the crude ba~rdrvidtlr of 20% of t,lw ciiita ratlgc. Note that. you haw to click on 
the graph i111tI rotiitc~ it in ortlcr to s t y *  t . 1 ~  wgrcssiol~ ~ ~ i t . f i i ( : ~ .  
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library ("smoother") 
library ("plot") 
setsize(64Ol48O) 

l data preparation 
lynx = read("lynx.dat") 
lynxrows = rows(1ynx) 
lagl = lynx C1 : lynxrows-23 ; vector of first lag 
lag2 = lynx C2: lynxrows-l3 ; vector of second lag 
Y = lynx 13 : lynxrows1 ; vector of dep. var. 
data = lagl'lag2-y 
data = log(data) 

l estimation 
h = 0.2*(max(datarl l] )-min(data[, 11 1) ; crude bandwidth 
mh = regxestp(data, h) ; local constant estimation 

m h l ~  = lregxestp(data, h) ; local constant estimation 

. graphics 
mhplot = createdisplay(1, l) 
mh = setmask(&, "surface","blue") 
shov(mhplotllllldatalmh) ; surface plot 
setgopt(mhplot,l,l,"title", 

"Nadaraya-Vatson estimate -- ROTATE! ") 
mhlpplot = createdisplay (l, l) 
*IP = setmask (mhlp , "surf ace"."redW 
show(mhlpp1ot ,l. l ,data,mhlp) ; surface plot 
setgopt (mhlpplot , l, l l"title", 

"Local linear estimate -- ROTATE!") 
@ f lts08. xpl 

Figures 9 and 10 show t , l i r i n n s i o n i l  plots of the observations and the es- 
timated regression functiorr. l11 Figure 9 one can clcarly see the problem of 
1)oundary cffects, i.e. in regions wlicrc arc no or only fcw data points the esti- 
m;ttcxl fi~nctio~~ valut?s may easily bca)nic! errittic: if tlw haotIwi<ltli is too small. 
Tlic?refore, a .sclcct~ctl ba~rdwiclth  nay i ~ c  appropriate! for rc!gions with plenty of 
ol)scrvat,ions while ir~appropriat,~ elsewhere!. As can bc! ~ ? c n  frcm Figurc 10, this , 
I~ountlary problem t u r ~ ~ s  out 1.0 BC wvorsc! for the local linear estitnator where 
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Ndariyi-  Wntson estimate -- ROTATE! 

Figurc O: Observations ntitl Nii(li~;iya- W;~~,YOII cstirrurtc* of NAR(2) regressiot~ 
futiction for 1 .11~  lyrix data 

one ol)sc:rvcs ;r large outlier fo rme  grid 1)oint. Suc:lr tcm.il)lc ~~yt in~atcs  hiqq~i!n 
if t la  it~version in (20) is iaigrecisc? due to z i  too st~tiill I ) i ~ ~ l ~ i t l t h .  One thw 
has to iticrci~tt the bandwidth. Try the quantlet Q f lts08.xpl with rcplacitig 
in the crude bandwidth choice tlia factor 0.2 by 2. Note that incr~witig tlrc? 
baadwitith makes the estitt~atcxl regression surf;u:c?s of t l i ~  two estimators look 
flat a i d  c t w r  to linearity, mspectively. This, howcvcr, can increase the tssti- 
msrtioti bias. Therefore, an appropriate bandwidth choice is important. It will 
1)e discussed in the ncst scction. 
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Local linear estintatc -- ROTATE! 

Figt~rc! 10: OBser\atiotis and local linear cst.int;~t.c! of NAR.(2) regrassion functiort 

2.2 Bandwid%h and Lag Selection 

{Bhat , Bhatr , hB, chat, sumvc, hC, hA) = hoptest (xs j , 
yorig, x t j ,  estimator, kernel, ntotal ,  sigy2, perB, 

lagmax , robden) 
qtrantlet to con~pute plug-it1 I)a~tclwidt.i~ for ~nultivariatc? regres- 
sion or ttotilinoar antoregressivc~ prowsses of l~iglier order. 

XploRe Application Guide, 397-458, Springer Verlag, Heidelberg

Härdle, W. and Tschernig, R. (2000) Flexible Time Series Analysis.



{crmin , crpro) = caf pe(y , truedat , xdataln, xdatadif , 
xdatastand, lagmax, searchmethod, dmax) 

qrriuitlet for local li~rc.!;ir 1;rg scleotioa for thc conJitio~ral I I IP~LII  

firaction basctl on tlic! Asy~~igtotic Fi~trd ~rcxbctiotl Enar 
(.4FPE2) or its t:orrtstt:tl vclaions (C.4FPE2) lisitig clcfiu~lt, wt,- 
L ~ I I ~ S .  

crmin , crpro , crstore , crstoreadd, hstore, hstoretest ) 
= caf pef ull (y , truedat , xresid , trueres , xdataln , 

xdatadif, xdatastand, lagmax, volat, searchmethod, 
dmax, selcrit, robden, perA, perB, startval, 

noutputf , outpath) 
quantlet for local li~rcnr Iag selection for tlw conditional llit!iltl or 
volatility functio~i i)i1.t-~l on the asymptotic: final prediction cwor 
(AFPE2) or its corrc!ccml version (C.4FPE.r). 

{mA, gsqA, denA, err) = fvllc(Xsj, Yorig, h, Xtj, 
kernreg, lorq, fandg, loo) 

ciui estimate the 1111iltiw\rii~tt? regression fi~nction, first or swot~d 
tlirtxt derivativca using local linear or partial l o d  quatlrirt.ic: n+ 
gressio~i with Gnl~si;rn kernel. 

Tlw c~ t r r~p lc  of the previous scztioo sliowetl that the I>atidwidtli choice is very 
importaat for higher orclm ;tut6regr€!s..ive models. &ptally important is the 
wLw:tio~l of the relevaiit lags. Both will be $icusswl in this sectiou. The 
prcr;critccl procedures art? I~irstd col1 Tscliernig a id  Yang (2000).We start with 
the groblcnl of selecting the rrlcvtznt lags. For this step it is necessary to a priori 
specify a set of possible 1% vectors by choosing t l ~ c  maximal lag M. Denote the 
f1111 lag vector containing all lags :sup to M by Xt,w = (]<-I, K-2,.  - . , }$-M)*. 
Tlic liig selection task is rrow to c!liminate fro111 thc full lag vector all lags 
tliac are redundant. Let 11s tit?rt state the asvurrrptio~is that Tschernig and Yang 
(2000) rapire: 

( A I )  sorue M 2 i,,, 11w vector process A't,Ar is strictly stationary and 
9-mixing with O(T) < k,l~-("*)/b for some n' > 0, h > 0. 

(A2) Tlw stationary clist.riI~i~tio~r of tlrcr process .\'1,41 hi6 a C O ~ I ~ ~ I O I I S  tlcnsity 
/LM( IA , ) ,  xb, E ER". 5ot.c t h t  p(.) is \~sc~l  for tlctrotiug and all 
of its marginal c h s i  t it!%. 
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(As) Tllc support. of tlic weight fiautiol~ w ( . )  is c+o~npiu:t with ~ro~wrnpty in- 
t.erior. The f1111ct.io11 TV(.) is c:onth~~ous. ~~o~~ncgat , iw ancl jr(xAl) > 0 for 
rnl  ill tha support of W ( . ) .  

( A G )  Tlic kcrncl fuwtion K : R 4 R is ir sy~~ra~rc~t ric. prohaldity dcrrsity aud 
the b;mtlwidt,lr Ir is s positivn numher with h 0. alr'" 4 oo as rr 4 oo. 

For the dafinition of 0-mix-ing SW S~ctiou 1.1 or Do~~kllan (1994). Conditions 
(.%l) and (A2) can be chccikml ~tsing CR. D ~ I I ~ ~ I ; ~ I  (1994, Thmrent 7 and h- 
~lrirrk 7, pp. 102, 103). Ftirthcr conditiotis ciw I)(* foltnd in LII (1998). 

For compirring the q11ir1it.y of co~apetiag liig sptu-ific:iitioas, o~ic  nwds an appro- 
priate a~ea.s~~re of fit, W for cxarnplc! the! fix~al prediction error (FPE) 

111 the cletinitioti of t l~c  FPE(-) thc process { G  } is ;~ss~r~rrc?d to 1)c ia<lcpendetrt of 
the? proccss {l j )  biit to have thc same st.o~l~i~st.ic. prolwrti(?s. If we now indicate 
tlw vt!ct.or of 1aggcd values of the data gc:ic!riit ing process by the superscript ' 
atvl assulnc! i t s  liwgmt 1% is snialler t h t  t lw cl~osc!ti M, wt. c m  easily relate 
t h  dcfinit.iou of tlic? FPE (24) to the MISE 

\vlricll l~arc! axtcnds (11) to functions with m w i l  lags. First uate that 

FPE,l(B.il.. . . , i,,,) = E E fi - ~ , ( . ~ I . I ~ ) ) ? ~ I ( . ~ ~ . A , ) ~ K . .  . . ,FT]} 
' { K 
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111 r h  litcraturc t~~ait~ly two ~ L ~ I ~ ) C O ~ K I I ( I  WI'Q st~ggcsted for mtiniatit~g t l~c I ~ I -  

ktiowa FP&(-)  or ~ i ~ t i i ~ ~ t s  tlnreof, trarncly ~~~~~~~~validation (Vicu 1904), (Yiu) 
atitl 'hng 1094) or c!stintatiorr of at1 iisynq)totic cxprmsion of thc: FP&,(.) 
(.4ucst;ul ancl Tjc6stlicita 1990), (TjtrAc?itti rnid Autatad 1994), (Tscllcrrtig and 
Klrig 2000). Given As~uu~ptitnis (A l )  to (.4G), Tscliernig and Yat~g (20U0, Tlw- 
urcttt 2.1) sl~owced tltat for thc* local cotrstant cstiatator, a = 1, and tlrc! local lin- 
(?iW r*?rtitncitor, a = 2, one Iras FPE,, (h, it,. . . , i,,,) = AFPE,,(h, i t , .  . . ,in,) + 
0{h4 + (T - i,,,)'rlr-n'} wlmrt? 

tlct~ott.s the asymptotic final prediction elmor. Tile terns b(h)L? atttl (:(/&)C 
tlructtc tlrc expwtctl viuirtttw inid sq~tiurxl 1)ia.s of thc cstirnator, rc!spcctivcly, 
with the constants 

and tlie variable ternts 

( l )  = ( T  - i l , , ) l l ' ,  ~ ( h )  = uf lr4/4 (31) 

with 11Kll$ = $ Ii(ti)*dtr and 0% = J Ir'(u)ddtr. The sum of the expected 
variance ancl squared biaq. of the c!ti~nat,or just represents the asyn~ptotic mean 
sqrt;rrc?tl error. Note that if tlic vcxtor of correct lags X; is included in XL, then 
AFP En(h, .) tends to .4 w 1)otIi I)(lr) B i111d c(h)C, tend to zero. 

Froat (28) it is possible! to clcrtortoiac tlie asymptotically optimal I);rtidwicltll 
hOpr I)y minimizing the i~%yn~pt.ot.ir MISE, i.e. solving the variance-bias trradeoff 
hetw~tc!ri b(11)B ancl c(1i)C. Tltc i~syntptoticidly oytitnal bandwidth is give11 by 
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(A7) C,, ciefincd in (30) is positive ancl fitrite. 

This rcxpirc?ment. ia~plics tllitt i t t  titst! of Icxal liwar t!sti~nation th~re  does not 
exist a fitritc Irp,,l for liwar I)ractaws. This is l~c?c:ar~se tlicre clm not exist an 
approximation bias ancl tllus a Iirrpr I~;nulwiclt.li has no cost.. - 
hi ordcr to obtain t l~c  pluff-irt I~a~dwidr.h h,,,,,,ll on(* 11;~s to wLi~riate t l~c unkuown 

' 
c:o~~stants B and C,,. A local l i ~ l ~ i ~ r  c?sr.irt~ittcs of D (20) is obmiaed f r m  

v.. 

wl~ere p(.) is the Gauwiiur kvrnctl est.inr;rt.or (40) of tlrc tlcnsity /& (X) .  For 
estimating Itn one may as(! Silvcr~ean's (1986) r~~lc*-of-tl~a~trb bandwidth 

wit.1, 2 = (ny~, d-1 "" ~ E I ~ O ~ ~ I I F ,  t ~ w  gwi~wtric nrean of the standard 
claviation of thc regrwsors. 

f i r  the Iwd linear esti~nator (21). C2 (30) can 1)c consistently estimated by 

where f(ij)(.) denotrs the second ctircct derivative of the frmction f (v). It can 
be csti~~iatcd using tl~a partial local quadratic cst,i~u;ttm 

The estimates of the direct secol~d cleri\vit,ivcs arc! t l ~ w  giwn by ?jJ)(z, A) = 
2 E Z j ,  j = l , .  . . ,m. Exclutling all cross tcrlns Iias I I ~ I  i ~ y ~ t ~ p t ~ t i ~  effects while 
keeping the increase in the 'parrllllckm' Q, C l i ,  C.',. j = l,. . . , tn linear in 
the numbcr of lags 111. This approach is n si~al)lifici~t.io~r of the ~mrtial cubic 
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crstimator proposed by k'iltig ittit1 Tsc41tw1ig (1999) \ ~ h o  illso slrowc?d that the 
rule-of-tl~tunl, birnclwiclth 

has the optirnal rate. We aottn tlrat for thc cstimttion of Ct of the Natlaraytt- 
Watson cstin~ator one Iraq i~~l t l i t . io~~i~l l~ t ~ )  tsti~nate t h ~  (Icrivative of the density 
iW it occurs in (23). Thc!rc!fortn, W- c*sc.l~wivc?ly nsc? tllc. local linear cstinrator 
(21). The direct second clcrivi~tiws /IJJ)(,) (:an bc! ~%titt~ilted with the qui\~~tlt!t 
tp/capfe/f v l l c .  

It now tarns out that wht!n t.;tking into accotlnt thc! ctitir~~ittion b i i ~  of A, tlw 
local linear estitnator of .4FPE2(Ii. -) (28) l~ecotnw 

and the expected squared bias of cstitnation drops out. In practice, 1 ~ 2 , ~ ~ ~  is 
replxed by the plug-in batdwitlr.11 (37). Note that one ciktl interpret the second 
tern1 in (38) as a penalty terltr to pc~r~islr owrfitting or cltoosing superfluous lags. 
This penalty term clecre;iws with siusple si.412 as lt.r,,ll,t is of order T-~/("'+.'). 

' 

The final prediction error for t h  txtw hinction A (27) is estimated by taking 
thc sample average 

of the residuals from the lo~ill li~war cstitnator &(.\rt, h). The asymptotic 
propcrtiw of the Iag sc?ltyt.iot~ ~tu!rhd rely on the fact that the arguntea~t of 
W ( . )  is the full lag vector S,J.I. 

Irr order to select the adequate fag vwtor, one cornprtks (38) for all possible 
lag cornbinations with n r  <_ M ; t l d  chooses the Iag vector with the smdlest 
.4FPEr. Given Assumptions (.41) to (A7) and a fi~rt.har tw.hnica1 condition, 
Tsdrernig and Yaug (2000, Tlrc.or~an 3.2) slroweci that this procedure is weakly 
consistent, i.e. the proba1dit.y of 1.11oosing the correct lag \wtor if it is includal 
in tlic .set of lags considerctl i t pp r~ id t t~  one with i~rc:rt*i~Ag sa~aple size. This 
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consistency rrcs~~lt. 111ily Icwk si~rprisi~~g sincx? t,l~c! l i~~o i~ r  FPE is known to I)c 
inconsistent. Howcwr, in tl~o prclsc?nt. c:w! tht! rzttt? of the penalty lcrrn in (38) 
tlcpends on tlre ~un~tl)t!r of lags m. Thus, if oac! i~~c lu t l~s  t lags ill addition to 
171' corrwt oncs, tht! rate of tIi(* l)(~i~lt.y ten11 I)c?conies sloww which irnpliw 
that. too la rg  tnodcls i\re r\~li!tl atit nqynrptntkally. Note that this feature is 
intrinsic to thc? loc;il c i i l ~ ~ i r t i o ~ ~  i~plnmclr s i ~ w  t . 1 ~  I I I I I I I ~ ~  of lags infit~encc! 
the rate of coevcrg(?~~c'c!, scr8 (22). \VC mir~rk  that. t . 1 ~  cansistcacy result breaks 
down if Assua~ption (A7) is \.iol;~tc!cl e.g. if the storl~;stk proccss is linear. 111 
this cnsc ovcrfit tiug (i~~cliuli~~g supc*rfl~coi~s l a ~ s  iit ;;rclclitioa t.o the correct ones) 
is Inorcl likely. Tlw Iw;\ktlow~~ of consistmcy ~ Y I I I  Iw i\.\ '~idd if one iims the 
R'alarnya-Watson i~~s t .wl  of t h  local liruwr t?sthirt.or sincc the forlner is also 
I,iisml in cilsc! of lir ~cwr pn)c.cwls. 

Furthertuorct, Tsc:hc!rnig autl Yanl; (200U) show that asynrptotically it is more 
likely to overfit tlrwn 10 lli~clcrfit (rtliss sonic! corrcxt lags). h order to redim 
ovcrfittiug artcl tl~c:rofore i~~crcmc c:orrcct fitting, they suggc-t to correct the 
AFPE ancl cstieiat.c! tlw Corrcrtcxl Asynl)bt,ic FPE 

The correction (loos not affect. consistaticy ~tritler the stated assumptions wllilc! 
additional lags are puniirli<wl niorc! Ilmvily in fi~lit-e ssmplt~s. One chooses the 
1ag vector with the! srn;illest. CAFPE,,, tt = 1 .2 .  

We note that if o~~c?  allows t l~c otaxirnal lag A.I to grow with sample size, t l m  
orlc Itas a doilblad nonparatnctric ~?wblcrs of nouparitmetric function estimation 
tuld nonpararnctric lag sclcction. 

The nonparametric Iag selection crit.t!rion C.4FPE2 can be computed using 
the. quantlet tp/caf pe/caf pe. .Tile qr~antlet tp/caf pe/caf pet u l l  also allows 
to use AFPE,,. Both are part of the t,lrirtl pi1rt.y qaautlil) tp/cafpe/cafpe 
which contains various qu;mt+lcts for lap; awl bii~ulwicltk selection for nonlinear 
autoregressive tnoclck (16). The q~lantlet tp/caf pe/caf pe is called as 

Icmin, crpro) = caf pe(y, truedat , xdataln, xdatadif , 
xdatastand, lagmax, searchmethod, dmax) 

with the input varialh: 

Y 
T X 1 tnatxix of 1.11(! obsc!rvetl tisrc sc-rim or wt. 1.0 zero if truedat is used, 
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lagmax 
scalar varialAe, largest l;ig to  I)e t:oesidert*tl, 

searchmethod 
character variable wIrc!rc! " fu l l "  consiclcm id1 powible lag combinations, 
"directed" d w  dirt*t.tcd sc*;~rclr (rc~on~rac*t~(lcgl if lagmax > M), 

itrrtl output variables 

crmin 
(dmaxf l) X l vcctor that. sturc!~ for id1 cot~si<lercd lag combinatioes in the 
first dmax colurnris tlrc st:lc~ct~d lag vcvtor, irrAthc dmax+l column the 
estiaratecl CAFPE2, in tlrc! dmax+2 column A, in thc dmax+3 coIunin 
the bias corrected est,il~r;rt.e of .4, see TY (equation 3 4 ,  

crpro 
(dmaxf l)x(dmax+G) nratrix that stores for c:;lch nurrrber of lags (0, l,. . . 
,dmax) in the first dmax tdunms the selwt.[~l lirg vector, in the dmax-l-l 

A 

colutrrti the plug-in barvlwiclth for estinrating tlrc final prc?ciiction 
mror for thz true futlc:t,ion .4 iulrl C A F P G ,  in the dmax+2 coltrrrni tlre 
bandwidth hs for esti~rtiltir~g the constnrtt B which is used for computing 
C=IFPE2 and the phg-ill I)arrdwicltl~ It'L,o,Ml in the dmax+3 c:olumn the 

A 

baadwidth lrc! for cwt.iur;it.it~ thc? constant C which is I I W ~  for comput- 
ing the plug-in batrtlwitltlr h2,,,,,,, ill the dmax+4 colrrtlrn thc! csrimatcd - 
C.4FPE2, in the dmax+.j c~olattrn A: in tlrc: dmax+fi cohrnllr the bias 
corrwtcttl c!tinrat,c! of .4, strB TY (c~puit~iorr 3.3). 
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is nscd wlicrc t.litr wct.ors S,, i = T + 1,. . . , T + i f  arc all available fro111 thc ob- 
scwatioris I;, t = I , .  . . , T. For manrple, .YT+i, is given by (kk, . . . , I++i, - i ,  )". 
This robiatificat.ion is switched off if tlic smn stops at T. Furthertriorc, 5% 
of tliosc! olwrvatiot~s whosc tlcnsity vahws c(.) arc rhc lowest, arc .wrectred 
off. Tlnw fcatww can he (mily switdiml off or ~nodiftcd in tlic tpantlct 
tp/caf pe/caf pef ull. This qnantlct. also allows to sclcct thc lags {of the cot~di- 
tional stiwubrrtl clc!vi;rt.ion a(-) and is tlmvfore clisc~~sscxl in clctail ia Sul1s(~:tion 
2.4. 

A 

If oue is only int.t?rcst.d in conrp~~t,ing tlro plug-in bardwitlth hz,,,,, , then one 
can directly rtsc! thc quantlet tp/cafpe/hoptest. However, before it can be 
callcd it rcquircs to prepare the time .*rim accordingly SO that it is easier to 
run thc Iag selt?et.b~t which wtornaticallg dctlivcrs thc plag-in bandwidth for 
the d~o.wn Iag vmmr as well. For the tlefiiition of its mriahlcs tlrc rwlcr is 
rc?ferred to thc hclpfilc of tp/caf pe/hoptest. 

I'c! are now rauly to ruu the quantl(?t tp/caf pe/caf pe 0x1 the lynx data set. 
The following q~lanrbt. conducts a fidl st*itt.(:l~ wnong the first six lags 

pathcaf pe = l*tp/~afpe/'l i path of CAFPE quantlets 
l load required quantlibs 
library("xp1ore") 
library("times") 
func(pathcafpe + "~afpeload~~) ; load XploRe files of CAFPE 
caf peload (pathcaf pe) 

setenv("outheadline","") ; no header for each output file 
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setenv("outlineno","") ; no numbering of output lines 
B set parameters i 

truedat = "lynx.datM ; name of data file 

Y = 0 
xdataln = *)yesaq ; ; take logarithms 
xdatadif , - llno~. ; don't take first differences 

xdatastand S "no" ; ; don't standardize data 
lagmax = 6 ; the largest lag considered is 6 
searchmethod = "full*u ; consider all possible lag comb. 
dmax = 6 ; consider at most 6 lags 

V conduct lag selection 
crmin,crpro ) = cafpe(y,truedat,xdataln,xdatadif,xdata~tand, 

lagmax,searchmethod,dmax) 
"selected lag vector, estimated CAFPE " 
crmin[,l:dmax+l] 
"number of lags, chosen lag vector, estimated CAFPE, 

plug-in bandwidth" 
(O:dmax)'crproC, l :clmaxi (dmax+4) I (dmax+l)l 

Q'f lts09.xpl 

A scrcenshot of the output wl~icll sliows the criteria for all otl~er t~umber of lags 
is contained in Figure I l. Tlw wlcxtatl Ii~gs are 1 to 4 wit11 plug-in bitndwitlth - 
Irl , , , , ,  = 0.9W75 aud C.4FPEr = 0.2163. Howcvcr, tlw largest clrwrcwe it1 

CAFPE2 occurs i i  o11e allows for two lags instead of om ;wit1 lag 2 is addd. 
In this case, CAFPE2 drop  frorn 0.04125 to 0.24936. Thcrcfore lag 2 seems 
to capture the autocorrelation in the rcsiduals of the NAR(1) tnodel which was 
wtimated in Subsections 1.1 to;1.3. For this reason a NAR(2) tnodcl could be 
stlfficient for thc lyrix clatit. I t s  gra1)llic;rl representation is rlisct~~sed in the next 
xction. 
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Figwe l I: Results of tlicr hg  .wlwtion proc~lurc! using CA FP& for lynx data 

2.3 Plotting and Diagnostics 

I 
{hplugin, hB, hC, xs, resid] = plotloclin(xdata, xresid, 

xdataln, xdatadif , xdatastand, volat , lags, h, 
xsconst, gridnum, gridmax, gridmin) 

computes 1- or 2-clinwnsional plot of regrrs'iion hrtiction of a non- 
l i a ~ a  autoregrmivc proms.. for a given lag vector on tlie raugc? 
of the data; if niorc than 2 lags are I I . ~ ,  then only two lags are 
allowed to vary, tllc others have to be fixed 

1 I 

OIICC the relevant lags and nti appropriate baadwidth are dctcrmiticd, one 
\voald like to haw a clowr Itmk at the implied conditional ntciiti function 
as well as checking thc rsidnals for potential tnodel misspecification as clis- 
cussed in Subsection 1.3. The latter may be h i e  by inspecting the auto- 
correlatio~i function and trsting the normality of the residuals. The quantlet 
tp/caf pe/plotloclin of the quantlih tp/caf pe/caf pe allows to tb both. It 
gcneratec; two- or tlrrcur-<lirncnsio1i4 plots of the autorcgrcssion functioti on a 
grid that covcrs the raligc of claba aticl cornpt~tc?s the rcsiduals for the given time 
swim. Botl<is donc citlwr with a bandwidth slwified Ily the user or tlie plug-in 
bandwitlth hz,n,,, whicli is a~ttomatically c011iputcN1 if rcquircd. Tlic quantlet 
tp/capf e/plotloclin also allows to c:omput,e tlirw-dimetaiolial plots of func- 
tions with more tha~i two lags by ktwping n r  - 2 lags fixtxl at user-selected 
\~;rlitm. It is called by 
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{hplugin, hB,hC, xs ,resid3 = plotIoclin(xdata,xresid, xdataln, 
xdatadif,xdatastand,volat,lags,h,xsconst, 
gridnum,gridmax,gridmin) 

with the input variables 

xdata 
T X 1 vector of thc obscr~lc!cl tittw sc*rit.s 

xresid 
T' X 1 vwtor of resit1u;ds or olwrv;~ticm for plottitrg conditionid volatility 
function, if not nmled sot xresid = 0. 

xdataln 
cf~ari~~ter  variable, "yes" t,;~kvs rr;rturitl logs, "no" tlrwmn't, 

xdatadif 
character variable, "yes" t .i~k(t~ first cliKt!rc?nct~ of tlata, "non d ( ~ ~ ' t ,  

xdatastand 
character variable, "yes" ~ti~trcliircIiz(!s data, "no" <Iwn't, 

volat 
character variable, "no" plots co~rtlitiolud Inaaa function, "resid" plots 
conditional volatility function, tlrc? n?si(ll~als of fittiug a conditional ruean 
function have to bt! contai!i(rl in xresid, 

lags 
tn X 1 vector of lags, 

scalar bandwidth for which if wt to zow a scalar plugin bandwidth using 
hoptest is contput&l or a ttr X I vector I)andwidtli 

xsconst 
m X 1 vector (only ncecicxl if r n  > 2) itvlicates which lags mry and which 
are kept fixed for those keeping fixccl, the entry in the correponding row 
contains the value at which it is fixed for those to be varied, the entry in 
the corresponding row is l c- 100, 

gr idnum 
scalar, nutnbcr of grit1 poiids iir oiicS clir~tiom, 
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gridmax 
scal;rr, t~~;rsi i~nlu~ o f  gritl, 

gridmin 
scalar, tni~~itt~um o f  gritl, 

hplugin 

scalar, ntlc-of-thumb handwit1t.h (33) for ~~or~y)irnut~ct.ric~lly t-stin~atiirg 
the co~tstmt L? in CAFPEr ant1 for coa~ptctir~g t l ~ c  plug-in bandwitith, 

scalar, ruloof-thu~nb bar~dwidth (36) for t~ot~l)araaletrically estimating 
thct mnstant C for computillg thc! pl~rg-ia b;~~iclwitlth, 

T' X m watrix with lagged values of tiuw series \s*ltich arc used to cnmputc 
plug-in t)i~lrtIwitlth and resid~ials for l)otmt,i;il tli;~gacrstics, 

Figurc 12 shows the plot of thd cnatlitioeirl n~ciin functio~r for ;UI NAR(2) 
111oticl of the lynx data on a grid covering all ol)sclrvztioru. Tirc autocorrelation 
ftt~ictior~ of the rcsiduais is shoth in Figrtrc 13. Tl~<?sc! graphs and a plot, of 
thc standardieal rcsid,uals &re computd with tha following quantlet. It also 
returns thc Jarcqt~e-Bera test statistic of 2.31 with pvaluc? of 0.32. 

pathcafpe = "tp/cafpe/" ; path of CAFPE quant le ts  
load required quantl ibs 

library("xploreW) 
library("times") 
func("jarber") 
func(pathcafpe + "cafpeload"); load XploRe f i l e s  of CAFPE 
cafpeload(pathcafpe) 

~ e t e n v ( * ~ o u t h e a d l i n e ~ ~ ,  "l1) ; no header f o r  each output f i l e  
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setenv("outlineno","") ; no numbering of output lines 
D set parameters 
lynx = read("lynx.datW) ; 
xresid = 0 
xdataln = **yes*!; ; take logarithms 
xdatadif = "no"; ; don't take first differences 
xdatastand = "no"; ; don't standardize data 
lags = 112 ; lag vector for regression function 
h = 0 
xsconst = le-10011e-100 ; le-100 for the lags which are 

; varied for those kept fixed it 
; includes the chosen constant 

gridnum = 30 ; number of gridpoints in one dir. 
gridmax = 9 ; maximum of grid 
gridmin = 4 ; minimum of grid 

; compute opt. bandwidth and plot regression fct. for given lags 
C hplugin , hB, hC, xs ,resid ) = plotloclin(lynx, xresid, xdataln, 

xdatadif,xdatastand,volat,lags,h, 
xsconst,gridnum,gridmax,gridmin) 

"plug-in bandwidth" hplugin 
D diagnostics 
acfplot(resid) ; compute and plot acf of residuals 
Cjb,probjb,sk,k) = jarber(resid,l) 

; compute Jsrque-Bera test for normality of residuals 

QfltslO.xpl 

From inspecting Figurc 13 ontr c5111 trmclude that a NAR(2) rnotlol capt~lrw 
most of the linear corrclatio~~ strr~cture. However, the autocorrelation at lags 3 
arid 4 is close to the 1)011u(lrlrics of the confidence intcrvds of white noise i11d 

cxplains why the CAFPE proc.txlrrt.c? s~~ggests lags one to four. Thc rcgrcssiori 
surface in Figure 12 ~~icc!ly sliows tlw nonlinearity in th: conclitior~al nieaii 
function which may be cliffiallt, to c.;q)tore with standard paranictric nonlinear 
rnodcls. 

2.4 Estimation of the Conditional Volatility 
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library("plotW) 
library("timesW) 
setsize(640.480) 
f X = read("dmus58-300.datW); read data 
d l = createdisplay(1, l) 
xl = #(1:300)-fx 
setmaskl (xl, (l:rows(xl))', 0, 1) 
show(d1, l, 1,xl) ; plot data 
setgopt (dl ,l, l ,"titlen, 

"20 min. spaced sample of DM/US-Dollar rate") 
setgopt(dl.l,l,"xlabelH,"Periods","ylabel","levels") 

d2 = createdisplay(1, l) 
x2 = #(2:300)-tdiff (f X) 
setmaskl (x2, (l:rows(x2))', 0, 1) 
show(d2,l.l ,x2) ; plot data 
setgopt (d2, l, l, "titleo* ,'Q0 min. spaced sample of 

DM/US-Dollar rate - first differences") 
setgopt (d2,1,1, nxlabel",wPeriods", "ylabel" ,"first differences*') 

Q fltsl1.xpl 

111 the following we assume that the a)nclitiosal tnean f tmcth  f (.) is known 
ant1 sul)tractd from 1,;. Thus, we obtain = 1; - / ( K ) .  After sq~~aring (16) 
at~d rearranging we lrave 

= t?(.I',) + 472(4~1)(<f - 1). (41) 

Sitire cr2(.(;)(# - 1) has expectation ZNO, tltc ~ t d t i ~ d c  process (41) can be 
taotlcllwl with the tnetl~ocls clctscrihctl it1 S~tl)scctiot~s 2.1 i d  2.2 by simply 
rc*pl;u:i~tg thc clepctdeat viiriahle I; 1)s its sclturre.~. Howwtr, wen Iriive to re- 

twwk that the cxistetia of Lh ~ x p e ~ t i ~ t i ~ l l  E /(c2 - n2(.~t))'] is a necessary 

t.oac1ition for applying C.4FPE2. 0t.llcvwise.L the FPE t-;ut~io; Ijc fiaite. We 
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Y 
T X I vcctor of u~~ivariittc tinrc! scries, 

truedat 
draracter variable that r:ot~titins gstli and name of ascii tli~ta Iilc* if y=O, 

xresid 
T' X 1 vcctor of resiclui~l~ 01. observations for selecting lags of conditional 
volatility functioll, if wt. ncwlccl set xresid = 0, 

trueres 
chzrracter \wriid>lc, "yes" Lkm naturd logs, "no" doesn't, 

xdat ad i f  
character variable, "yesw tilki~s first differcnccs of dam, "no" doesn't, 

xdatastand 
character variable, "yes" stiuiclitrdizes data, "no" doesn't, 

volat  
character variable, "no" c.orrluc:ts lag selection for conditional ~nean func- 
tion, "residn contiucts Iag selection for conditional volatility function, 
the residuals of fittit~g it c-o~~clitio~lal mean function Irave to be contained 
in xresid or a file tiitu~c* has t o  Iw given in trueres, 
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searchmethod 
c11aract.w vwiirl~lv for tl(!tcrrtniai~ig scarclr ~~~! t l~oc l ,  "full" corducts full 
search over ill1 possil)lc illput varialh co~i~l)i~rations, "directed" does 
<lirwtctl sc!;ird~. 

s e l c r i t  
character ~;1t ' ir71~1~* to scIt!ct lag sc1wt.io11 c:rit.icrioti, "lqafpe" estimates 
the asymptotic. Fiml Prdictim Error AFPE2 (38) using local linear .. 
.estimatiou a t~d  tlw plug-ill 1xuid~idt.li h2.0,,, (37). "lqcafpe" estimates 
the correctml asytqmtic. Find Pr~liction Error C..IFP& (39) ~a ing  

6 

local lin~ar c.~t.it~~aiion and the plugin I~a~~clwitlth Ii~,,,,, (37) 

robden 
character mriaI)b, "yesn and "no" switd~ on and off robustificatiori it1 
density csti~niit.ioa (401, 

perA 
scalar, p:Lritttl<!t,(!r usctl for scrc?ening off a fract&w of 0 5 perA 5 1 obscr- 
vations with tirc* lowwt clc~dty in c:on~puting .-L2 

perB 
scalar, pwiwict.c!r like perA hut for sc:nrwiy, off a fraction of perB obser- 
vations will1 lowvcst density in c:o~~q)ut.iuji B?, 

star tval  
character varial~lc! to cor~txol t,rcatment of starting valnes, "different" 
uses for each Iag vector a. few st,art,itg values as neccswry, "samen uses 
for enc.h.lag vcx:t.or the siune st,art.ing value wl1ic11 is cletennined by tile 
largest lag u.wd in the lag sclcction qaiwt,lct tp/cafpe/xorigxe, 

noutputf 
character \?iwi;rt,le, nqne of output file, 

outpath 
character variable, path for output filc. 

The output varial~lcs are 
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crmin 
vector that stows for it11 c.ottsitlorett Ing co~nbinatiot~s in tlrc! first dmax 
rows thc? seloctcrI Ii~q \.cv.tor. in t l~c dmax+l row thc tatimatcxl c:ritcriorr, 
ia the dmax+2 row .-l2. in  t lw dmax+3 row the b i i ~ ~  corrcetctcl t~tirnate of 
04, 

crpro 
rnatrix that stores for (*;\(.It I I I I I I I ~ ) ~ ! ~  of lags in tlw first dmax p w s  the 
selcct~l lag vrctw, in  1.11~ dmax+l row the phtg-i~l bi~~dwiclth Ir2,0,,l for 
estimatiug A iuttl (C).-\FPE, it, tllc dmax+2 row the LI bi~t~dwitlth IISCVI 
for estitnatittg 13, ia t h *  dmax+3 mw the bandwidth hc for estimating C, 
in the dmaxf $ row tltc! tstin~atctl criterion AFPE2 or C.4FPE2, in tltc! 
dmax+5 row .&, in thc dmax+G row the bias correct~l c~ti111iitc of A, 

crstore 
matrix that starcs Iag wctor irntl criterion d u e  for all lag combinations 
and banclwitlth vdws wtaiclcrod, in the first dmax rows all considered 
lag vector are stosml. i s  t h t b  dmax+ l rows the estimated criterion for each 
lag vector is stmrl, 

crstoreadd 
matrix that storw tltosc! rritcvia that arc? cvduatcd in passing for all 1211: 
cornbirtatio~~s wlwrc? all vitlt~cu for o ~ ~ c  lag t:ortil~in;~th arc! storecl in O I I ~ ?  

column (we progrant for tl(?t,dls), 

hstore 
row vector that storcs t.lic I ~ n d ~ i c l t h ~  used in cot11l)uting (C)AFPE for 
each tag vcctor 

hstoretest  
miltrix~hiit s t o 9  for cac:h Iitg vcctor in OIIC colun~r~ the plug-in bandwidth 
h 

h2,0pl, hB and hc. - 

The quantlet Q f l t s l 2 .  xpl (fur I)rr!vit,y not shown) co~rducts a lag selection 
for the conditio~~al r~~can fi~t~c'tion f (X) aacl finds Iag 1 anti 3 with bantlwiclth 
Ik2,0pl = 0.000432. If you run the quantlet, you will obtain the XploRe WiLrtt- 
ing Uquantlet fvllc: inversion in loci11 linear esti~nator did not work because 
probably the bandwidth is too s1ni~11". This rnenns that for one of the checktxl 
co~nbinations of lags, OIIC o f  t h  r~tltt-of-ti~rrtnb Ixu1~1widtl1s or the plug-in band- 
width was too s~nnll so tltat t b* tttirtxix Z ; ' W Z ~  ia tile loci11 linear estimator 
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pathcafpe = "tp/cafpe/" ; path of CAFPE quantlets 
; load required quantlibs 
library("xp10re") 
library("times") 
f unc ('jarber" 1 
func(pathcafpe + "cafpeload") ;load XploRe files of CAFPE 
cafpeload(pathcafpe) 

; set output format 
seten~(*~o~theadline',"") ; no header for each output file 
seten~(~~out1ineno" ,ls1') ; no numbering of output lines 

; load data 
X = re'ad(10dmus58-300.dat") ; name of data file 

Y = tdiff(x) ; compute first differences 
xresid = 0 
truedat - 11 '1 - ; name of potential data file 
trueres - *I 01 - ; name of potential residuals file 
xdat aln wnoW ; don't take logarithms 
xdatadif = I I ~ ~ , ~  ; don't take first differences 

xdataatand = "no1' ; don't standardize data 
lagmax = 6 ; the largest lag considered is 6 
searchmethod = "full" ; consider all possible lag comb. 
dmax = 6 ; consider at most 6 lags 
volat II,,~II ; plot cond. mean function 
selcrit = "lqcafpe" ; use CAFPE with plug-in bandwidth 
robden = "yes" ; robustify density estimation 
perA = 0 
perB = 0.05 ; screen off data with lowest density 
startval = "different" 
noutputf - - l# I# ; name of output file 
outpath = "test11 ; path for output file 
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lags = 113 ; lag vector for regression function 
h = 0 
xsconst = le-10011e-100 ; le-100 for the lags which are 

; varied for those kept fixed it 
; includes the chosen constant 

gridnum = 30 ; number of gridpoints in one direction 
gr idmax = 0.0015 ; maximum of grid 
gridmin = -0.0015 ; minimum of grid 

; compute optimal bandwidth and plot cond. mean for given lags 
{ hplugin,hB,hC,xs ,resid 3 = plotloclin(y,xresid,xdataln, 

xdatadif ,xdatastand,volat, lags,h,xsconst ,gridnun, 
gridma~~gridmin) 

"plug-in bandwidth for conditional mean" hplugin 
; diagnostics 
acf plot (resid) ; compute and plot acf of residuals 
{jb,probjb,sk,k) = jarber(resid, l) 

; compute Jarque-Bera test for normality of residuals 
; conduct lag selection for cond. standard deviation 
xresid = resid 
volat = '"resid'8 ; conduct lat selection for cond. vol. 
{crmin,crpro ,crstore ,crstoreadd,hstore, hstoretest) 

= cafpefull(y,truedat,xresid,trueres,xdataln8 
xdatadif,xdatastand,lagmax,volat, 
searchmethod,dmax,selcrit,robden, 

' perA ,perB,startval ,noutputf ,outpath) 
"Lag selection for cond.;standard deviation using residuals" 
"selected lag vector, estimated CAFPE " 
crmint , l : dmax+ll 
"number of lqgs, chpsen lag vector, estimated CAFPE, 

plug-in bandwidth" 
(0 : dmax) 'crproc , l :dyax I (dmax+4) l (dmax+l)l 

l f  lts13.xpl 

For the conditional standard tleviatiorr ont: obtairis lags 2 and G with bandwidth 
hz.out = 0.000456. Fignrm 17, 18 i r ~ d  19 tlisplay the plot of the estimated con- 
ditional standard deviation & ( X ) ,  of the atmtlartli.~ed rc3sithials of the rnotlifictl 
n~odel (41) and of their autot:on.clat,ion. 'The plots arc? generated with th!  
following q~lanrlet 
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pathcafpe = "tp/cafpe/" ; path of CAFPE quantlets 

; load required quantlets 
library ("xplore") 
library 
f uric(" jarber") 
func(pathcafpe + "cafpeload"); load XploRe files of CAFPE 
caf peload(pathcaf pe) 

setenv("outheadlinel' ,"") ; no header for each output file 
setenv("out1ineno" , "") ; no numbering of output lines 

; set parameters 
X = read("dmus58-300 .datM) ; 
Y = tdif f (X) 
xresid = 0 
xdataln = "now ; don't take logarithms 
xdatadif = "no" ; don't take first differences 
xdatastand= "no" ; don't standardize data 
volat I I ~ ~ W  ; compute cond. standard deviation 
lags = 113 ; lag vector for regression function 
h = 0 ; compute plug-in bandwidths 
xsconst = le-100lle-100 

; le-100 for the lags which are varied 
; for those kept fixed it includes the 
; chosen constant 

gridnum = 30 ; number of gridpoints in one direction 
gridmax = 0.0015 ; mkcimum of grid 
gridmin = -0. &l5 ' ; minimum of grid 

; compute optimal bandwidth and plot cond. mean for given lags 
C hplugin,hB,hC,xs,resid ) = plotloclin(y,xresid,xdataln, 

xdatadif ,xdatastand, volat , lags ,h,xsconst *gridnum* 
gridmax,gridmin) 

"plug-in bandwidth for mean" hplugin 

; compute plug-in bandwidth and 
; plot cond. standard deviation for given lags 
lags = 216 ; lags for cond. volatility 
xresid = resid 
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v0lat = "regid" 
gridmax = 0 .0008 ; maximum of grid 
gridmin = -0.0008 ; minimum of grid 

€ hplugin,hB,hC,xs ,resid 3 = plotloclin(y ,xresid,xdataln, 
xdatadif,xdatastand,volat,lags,h,xsconst.gridnum, 

gridmax,gridmin) 
"plug-in bandwidth for conditional volatility" hplugin 

; diagnostics 
acf plot (resid) ; compute and plot acf of residuals 
€jb,probjb,sk,k) = jarber(resid.1) 

; compute Jarque-Bera test for normality of residuals 

The surface plot oE the co~lditional statdartl deviation is computed on the rangc 
[-0.0008,0.0008) in order to avoid bottt~clary effects. Inspecting the range of 
the standardized residuals in Figure 18 indicates that the analysis may l)n 
strongly influenced by outiicrs which also Inay explain the extreme increase of 
the conditional standard <leviatioa in Fig~re 17 in one corner. Moreover, Figure 
l9 shows some significant autocorrc?lation in the residuals. One explanation for 
this finding could be tile presence of long rriclxiory in the squared observations. 
This topic is treated in detail ili Chapter ??. Therefore, one should continue! 
to improve the current function estirtiatts I)y excluding extreme observations 
; r t d  using models that allow fbr nintiy lags in the function of the conditional 
standard deviation sirch id, for example!, Yimg, Hiirdle and Nielsen (1999). 
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,I Estimated conditional mean function 

Figure 12: Plot of the cotiditional mall f~ttwt.iot~ of ;r NAR(2) ntodel For the 
logfi*tl lynx data 
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Figure 13: Plot of the iultocorreli~tion f~inction of the rcsitlds of a NAR(2) 
~rloclel for the logger1 lytix cbtir 
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r 

20 min. spaced sample of logged DMIUS-Dollar rates 

I I t  1l8l ISII  N I  2SlI NU, 
PcIkJ* 

Figure 14: Time series of 1ogarit.hm of 20 nlinlrtt.s sp;u:ed sample of DM/US- 
Dollar rate 
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20 min. spaced sample of DMIUS-Dollar returns I 

I 0 

Figure 15: Time series of 20 n1in11t.c~ spitcctcl sampla of c*x~:hi\ngc? rate returns 
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Estimated conditional mean function 

Figure 16: Plot of the coriditioual mciitl hinctioil of a NAR model with lags 1 
i i ~ i t l  B for thc returns of tld Deatsclma~iu~k/C'S-D~ll~~~ exchange rate 
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Estimated conditio~l;~l standard deviation 

Figure 17: Plot of the co~ditio~lid standard deviation of a NAR model with 
l i y  2 ancl 6 for tlie retunis of t,lic~ DstltscJlcmark/US-Dollar exchang'e rate 
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Standardized estimated residuals 
P* 

0 

l 

Figtrrc! 18: Plot of tlic stasrdardizd rcsidttals of the modified model (41) 
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Figure 19: Plot of the wtocorr(?lii.tiu~l function of reoiduals of the moclifiwl 
model (41) 
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Computer-assisted Semiparametric Generalized 
Linear Models 
Marlene Miiller, Bernd Ronz, Wolfgang Hardle 

Institut fiir Statistik und ~konornetrie, Humboldt-Universitiit zu 
Berlin, Spandauer Str. 1, D-10178 Berlin, Germany 

Summary 

The paper gives an overview on generalized linear models and its application 
in different branches of science. We introduce semiparametric extensions of 
the generalized linear model. 
One particular model of interest is the generalized partially linear model 
which allows a nonparametric modelling of the influence of the continuous 
covariables. The estimation procedure is introduced and a test on the correct 
specification of this model (vs. a parametric generalized linear model) is 
presented. The application to a data set on East-West German migration 
illustrates the use of this technique. 
Semiparametric methods are hightly demanding on software. Flexibility for 
extensions, tools for efficient computation on the user level as well as in- 
teractive graphics to display the resulting curves/surfaces are such require- 
ments. We thus complete our presentation by indicating the practical imple- 
mentation in new version of the statistical computing environment XploRe. 

Keywords: generalized linear models, generalized partially linear models, 
semiparametric modelling, statistical software 
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1 Introduction 

Lasting for decades the statistical analysis of the dependency of a response 
variable Y on a vector of covariables or explanatory variables z = (zl , . . . , zd)T 
was dominated by the classical linear normal model Y = .ZT9 + E with the 
assumptions 

the linear predictor q = zTB with the parameter vector B = ($1, . . . , 9d)T 
equals the conditional expectation E(Ylz) = p of the continuous re- 
sponse Y, i.e. v = p; 

0 the error terms E are independent and identically N(0, u2) distributed 
and thus the responses Y have a N ( p ,  u2) distribution. 

The wide usage of such linear models is obvious in the sense, that the un- 
derlying statistical methods for estimation of the unknown parameters are 
theoretically well investigated and understood, a variety of diagnostic tools 
have been developed for models of this type and the results are easy to inter- 
pret. 

Although extensive research has been done to relax the stringent assump 
tions of the normal linear model the major impetus to a more flexible statistical 
modelling came in the 1970's when Nelder & Wedderburn (1972) introduced 
the concept of genemlized linear models ( G L M ) .  The generalization concerns 
two aspects: 

* i t  is still asumed that the responses Y are independent and identically 
distributed, however, not necessarily normal but with a distribution 
from the exponential family with conditional expectation E(Y Jz) = p ;  

* the structural form of the model is extended in the sense that the linear 
predictor 7 is equal to some function of the conditional expectation p 
of Y, i.e. 

q = H ( p )  = zTB, 

where H, called the link function, is a known monotone, differentiable 
function. Or equivalently, the conditional expectation p of Y is not dir- 
ectly related to the explanatory variables p  = zTB but via a monotone, 
differentiable response function 

with G being the inverse of H .  

With the introduction of generalized linear models the application of linear 
models was considerably extended to many practical data situations, espe- 
cially in economic and social sciences where normally distributed response 
variables are in fact hardly found. The advantages of generalized linear mod- 
els are due to the fact that a wide range of responses measured on nominal 
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and ordinal scales can be handled within this methodology. For example, 
in many economic, sociological, psychological, medical and biological applic- 
ations the response variable is binary, the two possible outcomes generally 
labelled "success" and "failure", for references see the monographs Collett 
(1991), Cramer (1991), Fahrmeir & Hamerle (1984), Hosmer & Lemeshow 
(l989), Kleinbaum (1994). 

Usually information on several other variables related to the response 
are available and summarized in the vector 2. The number of successes 
in n independent "trials" under the same conditions S = xi K is binomial 
distributed with E(S1.z) = nn. In estimating the effects of the covariables 
on the probability n one has to ensure that n is in the interval1 [0, 11. Thus, 
n is related to the linear predictor by a monotonous cumulative distribution 
function F, i.e. n = G(q) = F ( q )  Choosing F(*) as the logistic distribution 
function results in the logit model with the response function 

and the link function 

q = H (n) = log (l) . 
1 - I T  

The probit model assumes that F is the standard normal cumulative dis- 
tribution function, i.e. G(q) = @(q). Here the link function is given by the 
inverse standard normal distribution function. If H(K) = log{- log(1- n)) is 
choosen as link function, the corresponding response function ist the extreme- 
minimal-value distribution function G(q) = 1 - expi- exp(q)) and a com- 
plementary log-log model ist fitted to the data. 

In other research situations, such as demographic, consumer, market or 
other surveys, respondents are faced with several choices in answering ques- 
tions. As a consequence, the response variable is categorical implying either 
nominal or ordinal scales with more than two categories. Again, additional 
information is available which characterizes the individuals and/or the re- 
sponses. 

Assume these variables are also measured on nominal or ordinal scales 
or they are categorized versions of continuous variables. If n independent 
repetitions (e.g. from n questioned individuals) are given then the obser- 
vations are counts or frequencies in the cells of a contingency table. The 
cell frequencies, denoted by Sj, j = 1,  . . . , r with r as the number of cells 
in the contingency table, are now considered as response variables and are 
multinomially distributed with expectation E(Sj Izj) = nnj, n j  being the cell 
probabilities. Interest focuses on estimating the main effects and interaction 
effects of the cross-classified variables on the cell probabilities. This leads 
to the log-linear model with link function qj = H(nj)  = log(nj) = 270 and 
response function n j  = G(qj) = exp(qj) connecting p j  = nj  multiplicat- 
ively with the linear predictor qj. For details see the monographs Bishop, 
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Fienberg & Holland (1975), Christensen (1990), Fahrmeir & Hamerle (1984), 
Langenheine (1989), Santner & Duffy (1989). 

In all these models the predictor q is of the linear form q = zTO but linked 
in different ways to the expectation of the response. Generalized linear models 
have found many applications and attained considerable popularity, especially . 
in social sciences, for analyzing qualitative data, count data and continuous 
data, that are constrained to positive-only values, and had a major influence 
on statistical modelling. This was made possible with the development of 
computer hardware and appropriate computer software since the underlying 
estimation procedures involve a large amount of computation in practical 
analyses and can only be carried out computer-assisted. 

2 Semiparametric extensions of GLM 
In recent years a good deal of work has been devoted to "generalize" the 
generalized linear models. These extensions concern other data situations 
(multivariate responses, multivariate correlated responses, repeated measure- 
ments, discrete time survival data, non-normal time series, state space situ- 
ations, random effects), other techniques (quasi-likelihood approaches, semi- 
and nonparametric approaches), and other models (nonlinear and nonexpo- 
nential family models). For instance a workable alternative to the aforemen- 
tioned parametric generalized linear models are single index models (SIM), 
keeping the linear form of the index 77 = tTO but allowing G to be an arbit- 
rary smooth function, and generalized additive models (GAM) that maintain 
G(.) to be a known function but allow the argument inside G to be a sum 
of unknown smooth functions. For an overview see HLdle & Turlach (1992). 
Problems here are discrete covariables and economic prestructure of models. 

One of the reasons for the wide propagation of generalized linear models 
is the computational feasibility (in particular for discrete covariables) and the 
easy access to standard computational systems (SPSS, LIMDEP). Another 
aspect is the good interpretability of the index zTO in all fields of applied 
statistics. Especially the study of marginal effects is an easy task for this 
structure of the exogeneous covariables. Any generalization should take care 
of these properties, see Fahrmeir & Tutz (1994), Maddala (1983). However, 
recent studies have questioned the strict linear structure of the index or the 
functional form of the link function. We refer here in particular to Horowitz 
(1993a), Horowitz (1993b). 

In generalizing generalized linear models, we would like to post a cer- 
tain caveat. A simple replacement of the index by an arbitrary nonparamet- 
ric function would not be acceptible by the reasons given above: (a) com- 
putational feasibility, (b) interpretation/study of marginal effects would be 
hindered by a too flexible form of the nonparametric transformation. The 
simplest (modest) generalizations have been successfully applied for low di- 
mensional models (le Cessie & van Houwelingen 1991, P roen~a  & Ritter 1994). 
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The technique of integration for generalized additive modelling (Linton & 
Hardle 1996) or average derivative estimation for single index models (Powell, 
Stock & Stoker 1989, Hardle & Stoker 1989) extends for arbitrary dimension 
but fails in the analysis of partially discrete covariables. Backfitting with 
local scoring for generalized additive models works with discrete covariables 
but is unfortunately not supported by theoretical statements on statistical 
properties. 

It is therefore of interest to consider models with the following structure 

where p = (PI, . . . , ,f3p)T is a finite dimensional parameter and m(*) is a 
smooth function. Here we assume a decomposition of the explanatory vari- 
ables z into two vectors, x and t .  In the following we refer to this model also as 
a generalized partially linear model (GPLM), see also Severini & Staniswalis 
(1994), Hunsberger (1994). Here x denotes a realization from a p-variate 
random vector X which usually covers discrete covariables. t results from a 
q-variate random vector T of continuous covariables. 

The estimation of model (1) is computationally feasible by the idea that 
an estimate p can be found for known m, and an estimate f i  can be found for 
known p. We formulate the procedure in terms of quasi-likelihood estimation. 
However, note that if the distribution of Y belongs to an exponential family, 
using the quasi-likelihood function is the same as using the log-likelihood 
function. The quasi-likelihood function is defined as 

where p is the (conditional) expectation of Y, i.e. p = G { X ~ P  + m(t)).  It 
is assumed here that the conditional variance of Y is a2V(p)  where a is an 
unknown scale parameter and V(*)  is a known function. 

Estimators for /3 and m(*) have been proposed by Severini & Wong (1992), 
Severini & Staniswalis (1994) and Carroll, Fan, Gijbels & Wand (1995). We 
follow the approach of Severini & Wong (1992) and Severini & Staniswalis 
(1994) which use two different likelihood functions for the estimation of the 
parametric and semiparametric components. The usual likelihood for n i.i.d. 
observations (xi, t i ,  yi) 

is used to obtain 8 and a "smoothed" likelihood 
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for the nonparametric smooth function Gp(t)  = 71 at point t .  We give a more 
detailed description of the algorithm in the appendix. Note that m is estimated 
as a function of thz parametric component /3 which yields an asymptotically 
efficient estimate p (Severini & Wong 1992). The computational alogrithm 
consists in searching maxima of both likelihoods simultaneously. A detailed 
description of the algoritJm can be found in the Appendix. It turns out that 
the resulting estimator P is fi-consistent and asymptotically normal, and 
that estimators % = 5- are consistent in supremum norm, see Severini & P 
Staniswalis (1994). As in generalized linear models a possible scale parameter 
a can be estimated by 

where Ei = G{~TP + %(ti)).  
For higher dimensions in t the possible nonlinearities in (1) cannot any- 

more be graphically displayed and face the above mentioned problems (inter- 
pretability). An additive structured partially linear index may be considered, 
see Hardle, Huet, Mammen & Sperlich (1996). However, additivity of m(o) 
does not need to hold. For simplicity of the presentation we concentrate for 
the technical ideas in estimation and testing on model (1). In particular, t 
will be one-dimensional in our following example and thus the generalized 
additive and the generalized partially linear model coincide here. 

Having estimated the influence m(o) of the covariables T, it is naturally 
to ask, whether the estimate % is significantly different from a linear function 
obtained by a parametric GLM fit. The test procedure in Hardle, Mammen 
& Miiller (1996) for 

T Ho : m ( t ) = t  7 ,  

H I  : m(o) is an arbitrary smooth function, 

is-based on a comparison of the semiparametric estimates with the estimators 
(p,  5 )  in the parametric model 

A direct comparison of %(t )  and tT5 can be misleading because 6 has a non- 
negligible smoothing bias. This holds even under the linearity hypothesis. 
Hence, in analogy to Hardle & Mammen (1993), a bias-corrected parametric 
estimate 5ii is used instead of tTY. This estimate can be obtained from the 
following smoothing step: 

5ii = arg min 
m 

Kh (t - ti) Q[G{xTJ + m(t)); G{x:~ + tTy)] dt. (6) 
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Note that, in (6) the second argument of Q(o; o) is the parametric estimate of 
E (x Ix i ,  ti) instead of Y,  which means to apply the smoothing step according 
to (3) to the artificial data set { G ( z ? ~  + t r y ) ,  xi, t i) ,  i = 1, . . . , n. 

Using this bias-corrected G ,  Hardle, Mammen & Muller (1996) propose 
the likelihood-ratio type test statistic 

where pi = G{zTp+G(ti)) is the bias corrected GLM fit and Fi = G{a$P+ 
%(ti)) is the semiparametric GPLM fit. Note that if the distribution of Y does 
not belong to an exponential family, the calculation of R involves evaluation 
of n integrals. In this case the following Taylor expansion of R is easier to 
compute: 

g = f : [ ~ ' { x ? 4 + ~ ( t i ) } ] ~  { (  - ) + ( t i )  ( t i )  2 . (8) 

i=l V[G{ZFP^ + %(ti))] 

Hiirdle, Mammen & Miiller (1996) show that R and are asympotically 
equivalent and have an asymptotic normal distribution 

Here we denote 

with h = ( h l , . .  . , h,)T denoting the multivariate bandwidth vector, X is the 
Lebesgue measure of the support of T and I( * I< is the convolution of K with 
itself. 

The asymptotic expansion of R shows that it behaves approximately like 
a sum of O ( h l l  . . . . . hi1)  independent summands. This is typically not very 
large and indeed it turns out that the normal approximation needs not to work 
well for R (Hardle, Mammen & Muller 1996). Therefore, for the calculation 
of quantiles, it is recommended to use the the following bootstrap procedure: 

1. Generate samples {Y;, . . . , Y,') with E*(Y,') = G ( z ? ~  + tTy) and 
Var* (yi*) = G ~ v { G ( x T ~  + t ? ~ ) ) .  Here E* and Var* denote the condi- 
tional expectation or variance given (XI ,  t 1, . . . , I,, t,). 

2. Calculate estimates p, %* , p, 7' , %* based on the bootstrap samples 
(xl , t l ,  Y i ) ,  . . ., (x,, t,, Y;). Furthermore, calculate test the statistic R' 
(or ji'). Repeat this n* times. The quantiles of the distribution of R 
(or k) can be estimated by the quantiles of the conditional distribution 
of R* (or 2'). 
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In a binary response model the distribution of Y is completely specified by 
p = G(zTP + tT7) (under the linearity hypothesis). Here, it is reasonable to 
resample from the Bernoulli distribution with parameters jii = ~ ( t T g + t T y )  
(the parametric GLM fit). If the distribution of Y cannot be specified (apart 
from the first two moments) it is recommended to use wild bootstrap (Hardle 
& Mammen 1993). 

3 Example: East-West German Migration 

Let us illustrate the semiparametric estimation and the test procedure with 
an example on East-West German migration. Our interest in this subject 
has been inspired by the considerations of Burda(1993, 1995). We consider a 
sample of East Germans, which have been surveyed in 1991 in the German 
Socio-Economic Panel, see GSOEP (1991). Among other questions the East 
German participants have been asked, if they can imagine to move to the 
western part of Germany or West Berlin. We give the value 1 for those who 
responded positive and 0 if not. 

Y migra t ion  intent ion 
X I  fami ly l f r iends  i n  west 
X z  unemployedl job  loss cer ta in  
X3 c i ty  size 10,000-100,000 

Yes No (in %) 
38.5 61.5 
85.6 11.2 
19.7 78.9 
29.3 64.2 

X4 female  

Table 1: Descriptive statistics for migration data. n = 3235. 

51.1 49.8 
Min Max Mean S.D. 

X5 a g e  (years)  
T household income (DM) 

The economic model is based on the idea that a person will migrate if its 
utility (wage differential) exceeds the costs of migration. Of course neither of 
both variables, wage differential and costs, are directly available. It is obvious 
that age has an important influence on migration intention. Younger people 
will have a higher wage differential. Currently low household income and 
unemployment will also increase a possible gain in wage after migration. On 
the other hand, friends or family members in the Western part of Germany 
will reduce the costs of migration. We also consider a city size variable and 
gender as interesting variables. 

Table 2 shows in the middle column the results of a parametric logit fit. 
The migration intention is definitely determined by age. However, also the un- 
employment, city size and household income variables are highly significant. 

18 65 39.84 12.61 
200 4000 2194.30 752.45 
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Coeff. (t-value) 1 Coeff. (t-value) 

- - 

Part. Linear 

const.  
familylfr iends in west 
unemployed/job loss 
c i ty  size 10-100,000 
female 
age  
household income 

Table 2: Logit coefficients and coefficients in a generalized 
partially linear model for migration data (t-values in paren- 
thesis). n = 3235, h = 20% for the GPLM. 

0.512 (2.39) 1 - - 
0.599 (5.20) 
0.221 (2.31) 
0.311 (3.77) 

-0.240 (3.15) 
-4.69. lo-' (14.56) 
1.42. (2.73) 

Linear (logit) 

A further analysis of this data set by a generalized additive model (keeping 
the logit link, but generalizing the influence of the age and income variables 
to nonparametric functions) showed that the age has a nearly perfect lin- 
ear influence. Because of this relation, we use a generalized partially linear 
model with a logistic link function and only the influence of household income 
modelled as a nonparametric function. 

Since the question of an optimal bandwidth selection is still open for gen- 
eralized partially linear models, we have carried out the analysis for different 
bandwidths. Note that we give all bandwidths as percentage of the range of 
household income. Hence a bandwidth h = 10% means a value of 380 DM 
and so on. The coefficients for the parametric covariables in the GPLM are 
similar for all four considered bandwidths h = lo%, 20%, 30%, and 40%. As 
an example we compare the estimated coefficients for h = 20% in the right 
column of Table 2. In Figure 1 we show the estimated curves for all four 
bandwidths. For comparison, the resulting fits 6 (thick black lines) for the 
function m are shown together with the linear fits (thin black dashed lines) 
and the bias corrected parametric fits 6 (thin grey dashed lines). Recall that 
the estimate 6 was an estimate for the sum of the linear function and the 
bias of 6, see (6). Figure 1 shows clearly that the bias increases with the 
bandwidth. 

The nonparametric estimates 6 for the different bandwidths are obviously 
nonlinear functions. However, it is difficult to judge the significance of the 
nonlinearity. In general, it cannot be excluded that the difference between 
the nonparametric and the linear fit may be caused by boundary and bias 
problems of 6 .  Additionally, in this example the covariable "age" (included 
in a linear way) has a dominant influence on the migration intention. 

Hence, we applied the test developed in Hardle, Mammen & Miiller (1996). 
Table 3 shows the observed significance levels for the different choices of the 
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Figure 1: The influence m(t )  of household income on migra- 
tion intention. Nonparametric fit (thick black lines), linear fit 
(thin black lines), and "biased" parametric estimate 6 (thin 
grey lines). n = 3235, bandwidths h = lo%, 20%, 30%, 40%. 

bandwidth h, which have been obtained using the normal approximation of 
the test statistics R and 5. Linearity is clearly rejected for bandwidths 10% 
and 20%. The situation changes from h = 30% on. 

This discrepancy is due to the bad approximation of the test statistic's 
distribution when h becomes large. To verify this we followed the bootstrap 
approach from Hardle, Mammen & Miiller (1996). Figure 2 shows graph- 
ically the difference between the limiting normal distribution and the actual 
distribution of the bootstrapped test statistic R (estimated by kernel density 
estimates). The number of bootstrap samples has been chosen as n* = 200 
and nonlinearity turns out to be highly significant for all four bandwidths 
and both test statistics R and R. We omit a table here, since all computed 
significance levels for rejection are below 0.01. 

In consequence, we conclude that the global shape of m seems to be not 
well approximable by a linear function. Let us remark that the test results 
do not change much, when we test a GLM with quadratic influence of house- 
hold income against the GPLM. The restriction on "true" linearity was just 
chosen to simplify the presentation. Thus, the semiparametric GPLM even 
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Table 3: Observed significance levels for linearity test for mi- 
gration data, n = 3235. 

outperforms the often modelled quadratic influence of income. However, a 
model which introduces a cubic influence of the income covariable fits well 
and is not rejected by the test anymore. 

4 Implementation in XploRe 4 

Generalizing the generalized linear model causes increasing complexity and 
thus demands for an efficient computational implementation. Speed and price 
have been important factors in the decision statistical software systems un- 
til a few years ago. Nowadays, the interactiveness, flexibility, extensibility, 
portability and an userfriendly interface are all important in statistical a p  
plications. Good reasons for interactivity are smoothing parameter selection 
and the ease of the (graphical) display of higher dimensional objects. Flex- 
ibility and extensibility allow to include own modifications to the predefined 
statistical procedures. Portability becomes increasingly important with dis- 
tributedness of data and method banks on the internet, see Krishnan, Miiller 
& Schmidt (1995). 

We present here the implementaion of GLM and GPLM models in the 
statistical computing environment XploRe which is in its current version 4 
fully internet capable, see Schmelzer, Klinke, Kotter & HLdle (1996). XploRe 
is an environment that has been designed for a large scale of statistical tasks 
ranging from data analysis to highly interactive operations. It combines the 
flexibility of multi-window desktops with standard operations and interactive 
user driven actions. 

Let us point out that a statistical computing environment is - in con- 
trast to a statistical system - a computing device that covers a wide range of 
data manipulations, problem solutions and graphical insights. This is meant 
not only over a wide class of statistical operations (horizontal coverage) but 
also over a set of user levels (vertical coverage) from first year students to 
graduates up to researchers. XploRe is used as a student front end tool for 
teaching elementary statistics as well as a research device in simulations for 
semiparametric analysis and bootstrapping. 

The current XploRe 4 was developed on the basis of the experiences with 
XploRe 3 (Hkdle, Klinke & Turlach 1995). It is simultaneously developed for 
Unix based systems and MS Windows systems. A particular advantage is the 
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Figure 2: Density estimates of bootstrapped R (thick 
lines) and densities of limiting normal distribution (thin 
lines). n* = 200 bootstrap replications, bandwidths h = 
lo%, 20%, SO%, 40%. 

seamless integration of user written code into the software system. The well 
structured help system plays an important role here. The wide distribution, 
the high transparence and the free choice of HTML browsers have been the 
reasons for their use in the XploRe help system. User written macros can 
be transformed into help documents via a system internal processor. This 
feature is an important element of the design of XploRe, since it corresponds 
to the environment idea. The user customizes his interface to computational 
statistics by writing own macros and they become documents in the help 
system available to everybody. 

Let us demonstrate the implementation of modules within XploRe 4 by 
means of the macro set for generalized linear models. This set of macros forms 
a library of routines completely written in the XploRe language. The library 
is named glm and contains macros like glmbilo for logit models (binomial 
distribution with h i s t i c  link) or glmnoid for the linear regression model 
(normal distribution with identity link). This glm library has been adopted 
in large parts from the glm library of the XploRe 3 version. 

Figure 3 shows the header of the macro glmbilo and Figure 4 shows the 
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i l s r a t i v s  f i t t i n g :  

ctrlCl.11 8 0 -> shou i t e r a t i w  f i t s .  
c t r l [ l . l l  <> 0 -> don't shou i t e r e t i w  f i t s  
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n x 1 u s t a .  contains  t h e  t h l  ~ i ( l h t s  

Figure 3: First lines of glmbilo macro 

automatically created HTML help page within the XploRe 4 help system. 
The logit procedure glmbilo requires at least two input parameters, namely 
the design matrix x and the response vector y. Some further parameters 
can be given to control for algorithmic and run-time properties. The output 
consists of a bunch of objects. However, since XploRe supports lists, it is 
not necessary to write down all output objects when calling a procedure. 
The (minimal) XploRe code to compute the logit estimate for the migration 
model thus reduces to: 

z=read("migall") ; read  da ta  f i l e  migall  .dat  
x=matrix (rows (2) ) [, 2 : 71 ; column of ones, covariables 
y=zC,11 ; responses 
l i b r a r y  ("glm") ; load GLM l i b r a r y  
lf=glmbilo (x ,  y) ; l o g i t  f i t  
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The list If contains all output of the glmbilo macro. For instance, the 
parameter estimates are in If. b and the estimated covatiance matrix is If. bv. 
Some statistics like the log-likelihood, the deviance and the pseudo-R2 are 
available from If. s t a t .  

~ ' ~ 3 1 . :  n r y f l t  r g l m b t l o ( x , y { , c t r l  {,m{,offl))) 
Input. 

X axkmMix.hepm&amvul.btU 

Y a r  1 vwnr. rhrruponrcvulabluAI] mag hwc 
(hnegm) r.hur bwrrnOmdm[l]  orm(fmLI 
S - W  

c t r l  o ~ r & . 2 x l ~ r 3 x l v ~ . ~ l i t m . b e c a ~  
&lngxu!&l]- 0--> I h o w * s r a 4 1 B . ~ l . l ] 0  
0--, d ~ ' I . b n w t p . t h a u  (dChU)I).CvqZ.l]--> 
m v u g c a n  ukuioa (dchh- amn) .Mn. i ]  --, 
munonbrr  mftm.becuJom (ddruh- 10) 

111 ~ o . L l a l r e r n x l ~ , p l a w d ~ , ~  
~ ~ d M u ~ r  

o f f  ~ p d o a . L # d r o r n x l M a . ~ a h ~ p ~  
Oalprt. 

nyf1t.b k = l s ~ . u a m m d m ~ ( u . - 1 9 )  

n y f l t . b v  k ~ k m p h . ~ c m ~ i n m k f w b  

nyf1t.m nxlrcaor.udmmdrupnscmu 

m y f 1 t . W  nrlrraor.cmeats&ebrau&&hu 
~ f 1 t . h  n x 1 v w r .  dlaload dcmczm of 'hu' mamk(nccdrd 

Figure 4: HTML help page of glmbilo macro 

Generalized partially linear models in XploRe will be available in the 
library gplm. Since the development of this library is not yet finished, the 
following is still to a certain degree "work in progress". In the appendix, 
we give the algorithm for the GPLM and the test statistics in the case of a 
binary response. For other distributions of the responses, this algorithm can 
be easily adapted, see also Severini & Staniswalis (1994). 

The algorithm for GPLM requires first an initialization step, this is natur- 
ally be done by a parametric GLM fit with the same link function. Next, the 
smoothing step for the nonparametric function m(e) has to be carried out. 
The updating step for q j (P)  = mp(tj)  requires a ratio with numerator and 
denominator of convolution type 

where is a derivative of the log-likelihood. Note, that this has to be done at 
least for all t j  ( j  = 1,. . . , n) since the updated values of m at all observation 
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points are required in the updating step for P. The evaluation of (9) is a 
standard procedure if e i j  is only dependent on i and t is one-dimensional 
(e.g. in Nadaraya-Watson kernel regression). 

Let us start our excursion into the implementation of the GPLM by ex- 
plaining a genuine XploRe implementation. For multi-dimensional t three- , 

dimensional arrays can be used to avoid looping. XploRe 4 allows arrays and 
hence our genuine XploRe code to compute an updated function qj (P) would 
look like the following: 

t=reshape("t",#(n,l,q)) ; reshape t 
h=reshape("h",#(l,l,q)) ; reshape bandwidth vector h 
w=prod(quartic((t-t '1 ./h) , 3 )  ; matrix of kernel weights 
tmp = exp(x*bold+etaold') 
111 = y-tmp./(l+tmp) ; log-likelihood 1' 
112 = -tmp ./ (l+tmp) "2 ; log-likelihood 1 ' ' 
etaneu = (sum(ll1 .*u) ./sum(ll2.*w)) ' 

Note that we first store the columns o f t  in the third dimension of the array. 
The same has to be done for the bandwidth vector h. The Quartic kernel 
K(u )  = g ( 1  - u ~ ) ~  I(IuJ 5 1) is used in product kernel form. lli and 112 
compute the 1st and 2nd derivatives of the log-likelihood (logistic link), re- 
spectively. The resulting estimate is stored in m. Analogously, arrays could be 
used in the update of the design points Zj. Here, a similar code as this above 
has to applied for each column of the design matrix. Finally, the updated 
parameter vector p is computed by a linear regression type procedure using 
the updated design matrix. We omit this code here. 

This genuine XploRe code works quite well for small sample sizes n. As 
one can easily see, the evaluation of (9) requires O(n2) operations. The 
update Zj of the design points requires additional O(p. n2) operations, where 
p denotes the dimension of the parametric covariables. So, obviously the 
use of arrays of this size is impossible for large data set as the migration 
data (n  = 3235). Rewriting the code for the use with do-loops will increase 
computation time drastically, since XploRe code is interpreted. This is a 
particular disadvantage for the bootstrap test. 

As a consequence, the GPLM is implemented in a hybrid fashion. To es- 
timate a logit GPLM, the user calls the macro gplmbilo written in XploRe. 
(The naming convention is the same as for GLM, gplmbilo estimates a GPLM 
with binomial distribution and h i s t i c  link.) This macro itself calls two com- 
piled functions gplmbiloeta and gplmbiloxtilde which perform the update 
of vj(P) and Zj in an efficient way. Both function are written in C and avail- 
able from a shared library, which is dynamically linked to XploRe at runtime 
when the library gplm is loaded. The speed of operations in such compiled 
functions is comparable to that of XploRe internal commands. In contrast 
to internal commands, however, experienced users can modify the supplied C 
source code or add their own extensions. This allows the required flexibility 
and extensibility for the implementation of semiparametric extensions to the 
generalized linear model. 

Computational Statistics, 12, 153-172

 (1997)  Müller, M., Rönz, B., Härdle, W.
Computer assisted Semiparametric Generalized Linear Models.



Figure 5: XploRe Session with GPLM estimation 

Figure 5 shows a screen shot from the interactive GPLM fit of the migra- 
tion data. In the upper left, the graphics display is shown, which yielded one 
part of Figure 1. 
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Appendix: Algorithm for GPLM 
A 

In this section we indicate how the estimates P, 6, iii and the test statistic 
can be numerically_computed in a binary response model. The derivation of 
the algorithm for P, tii can be found in Hardle, Mammen & Miller (1996). 
The algorithm corresponds to that proposed in Severini & Staniswalis (1994) 
for the special case of a logistic link function. In order to avoid boundary 
effects, we used a weight function in the convergence criterion. 

We put vj(P) = 6 p ( t j )  and L,(u) = Q{G(u); yi). Note, that in a binary 
response model we have L,(u) = y, logG(u) + (1 - yi) log{l - G(u)) and the 
derivatives L:(u) and LY(u) w.r.t. u can be easily determined in dependence 
of u and y;. The maximization of the smoothed quasi-likelihood (3) requires 
to solve 

n 

O = C L:{XTB $ vj(P)}Kh(ti - t j ) .  (10) 
i=l 

Differentiation of (10) leads to an estimate for v; as a function of 
n 

- C L:'{x:P + vj(P))Kh (ti - tj)xi 
i=l 

v ~ ( P ) =  n 

L:'{xT~ + vj((P))Kh (ti - t j )  
i=l 

For p we have to solve 
n 

0 = C L:{X:S + %(P)) {xi + v1(P)). 
i=l 

(12) 

Equations (10)-(12) suggest the following iterative Newton-Raphson type 
A 

algorithm to find P and 6 ( t j )  = ijj(P), j = 1 , .  . . ,n .  

initializatio? 
Start with 4(O) = p, Go) = t r y  from the parametric (GLM) fit. 

updating step for qj(P) = mp (tj) 
The function vj(P) is updated by 
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0 updating step for P 
The parameter P is updated by 

with a Hessian type matrix 

Alternatively, the functions L;(u) can be replaced by their expectations (w.r.t. 
to Y)  to obtain a Fisher scoring type procedure. To obtain the bias corrected 
parametric estimate iii, one has only to apply the updating step for v j ( P )  = 
m p ( t j ) .  Recall that instead of the observed responses y; the fitted values 
G($P + tT7) have to be used. 

For the binary response yi model the quasi-likelihood Q{G(u) ;  yi) coin- 
cides with the log-likelihood, such that we used only this log-likelihood in 
the above algorithm. The test statistic R however does not contain binary 
arguments. Hence 

is computed_as a likelihood-ratio type statistic using the semiparametri~fit 
pi = G{xTP + & ( t i ) )  and the bias corrected parametric fit Pi = G { X T P  + 
j%(ti)) 
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Summary 

Various features of a given time series may be analyzed by nonparametric techniques. Generally the 
characteristic of interest is allowed to have a general form which is approximated increasingly precisely 
when the sample size goes to infinity. We review nonparametric methods of this type for estimating 
the spectral density, the conditional mean, higher order conditional moments or conditional densities. 
Moreover, density estimation with correlated data, bootstrap methods for time series and nonparametric 
trend analysis are described. 

Key wonis: Kernel estimators; Smoothing techniques; Dependent observations; Bootstrap; Herrnite expan- 
sions. 

1 Introduction 

The use of nonparametric techniques has a long tradition in time series analysis. As early as the 
late 19th century Schuster (1898) introduced the periodogram which may be regarded as the origin 
of spectral analysis. By now the latter technique is a classical nonparametric tool for analyzing time 
series. The increased data availability especially in finance and the explosion of computing power 
have made it possible to use a wide range of other modern nonparametric techniques in time series 
analysis recently. In this article we review some of these developments. 

For a given time series XI, . . . , X,, nonparametric techniques are used to analyze various features 
of interest. Generally, the idea underlying many of these techniques is that the characteristic of 
interest is allowed to have a general form which is approximated increasingly precisely with growing 
sample size. For example, if a process is assumed to be composed of periodic components, a general 
form of spectral density may be assumed which can be approximated with increasing precision when 
the sample size gets larger. Similarly, if the autocorrelation structure of a stationary process is of 
interest the spectral density may be estimated as a summary of the second moment properties. A 
brief review of this classical method of nonparametric time series analysis is given in Section 2. 

Because the final objective of many time series analyses is prediction, it is often of interest to 
study the conditional means, conditional variances or complete conditional densities in some period, 
given the past of the process. When a point prediction is the final objective, an estimate of some 
conditional mean may be desired, while the conditional variances are needed if interval forecasts 
or assessments of future volatility are desired. Moreover, if higher order moments of a series are 
potentially important, the focus may be on estimating the complete conditional density. 

In order to analyze the conditional mean nonparametrically one may, for instance, start from a 
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model of the form 

where 8, is a series of innovations which is independent of past XI. In this case f (.) represents the 
conditional expectation in period t, given past observations XI-1, X t 4 ,  . . . and it is the minimum 
mean squared error (MSE) 1-step predictor for XI. In parametric time series analysis the function 
f (.) is chosen from some parametric class so that the specific candidate is obtained by specifying 
a fixed finite number of parameters. Nonpararnetric approaches on the other hand allow f (-) to be 
from some flexible-class of functions and they approximate f (a) in such a way that the approximation 
precision increases with the sample size. For this purpose several different techniques and procedures 
are available. For instance, local approaches approximate f (.) in the neighborhood of any given 
argument by letting the neighborhood decrease and thereby increase the approximation precision 
with growing sample size. For this purpose the number of lagged X, used in the model is usually 
limited. In other words, f (Xt-1, Xt-2, . . . ) is replaced by f (X,-I, . . . , X+,) for some fixed p. 
Alternatively, global approximators use parametric functions f, (.), where the number of parameters 
and thereby the flexibility of the function may increase with the sample size n. The functions f,,(.) 
are chosen such that they approach f (.) in a certain norm when the sample size increases. This way 
it is also possible to let the number of lagged XI's increase with the sample size n and thus avoid 
assuming a fixed number of lags at an early stage of the analysis. A number of methods for estimating 
the conditional mean function of a process are discussed in Section 3. 

As mentioned earlier, in many situations point forecasting is too limited an objective and the 
future volatility and other higher order moments are of interest in addition to the conditional mean. 
Therefore the framework in (1.1) is often extended to a more general model 

where g(.)  is used to represent the conditional variance of the process in period t given the information 
from previous periods. Again various nonparametric approaches exist for joint estimation off  (.) and 
g(.). Of course, it is also possible to specify a parametric form of one of the two functions and treat the 
other one nonparametrically. Techniques for nonparametric analyses of model (1.2) are the subject of 
Section 4. More generally the complete predictive (conditional) density h(X, IXI-1, Xr-2, . . . ) may 
be of interest when the shape of the conditional distribution and higher order moments are relevant 
to the analysis. For this case a number of different nonparametric approaches have been proposed as 
well. Some of them are also sketched in Section 4. 

There are numerous other nonparametric procedures and techniques that have been used in time 
series analysis. For instance, when a parametric time series model such as (1.2) with parametric 
functions f (.) and g(.) is specified it may be of interest to estimate the distribution of the residuals 
by nonparametric methods in order to improve the parameter estimators or to assess the statistical 
properties of the estimators. More precisely, density estimation for the residuals and bootstrap 
methods based on the residuals have been used in this context. These methods are reviewed in 
Sedtion 5. Another important characteristic of a time series is its trending behaviour. Deterministic 
trend functions have also been analyzed nonparametrically. In addition, there are a number of 
nonparametric tests for stochastic trends. They are also presented in Section 5. 

If very general assumptions are made, a rich data set is usually necessary to obtain a good idea 
about the features of interest. Therefore, many of the nonparametric techniques reviewed in this 
article are typically used when long time series are available. Therefore, these methods have, for 
instance, been used for analyzing financial time series which are observed with a high frequency and 
are consequently relatively long. Other fields of applications include survey of riverflow, the analysis 
of encepholographic data and of sleep states. Although we provide a fairly broad survey of many 
nonparametric analysis techniques for time series we are aware that such a survey is necessarily 
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limited neglecting many interesting and potentially promising facets of research in this area. In 
particular, we are unable to give a complete listing of related publications because of the recent 
explosion in the literature due to the increase in data availability and computing power. We apologize 
for any omissions of relevant related work: Further references may be found in Gyorfi, Hiirdle, Sarda 
& Vieu (1989), Tj~stheim (1994) and Hart (1996). 

2 Spectral Analysis 

Suppose {X,) is a zero mean univariate stationary stochastic process with autocovariances yk = 
E (X, Xt+k). Then the spectral density of {X,) is 

Here i = +a as usual. Hence, the spectral density may be regarded as a weighted sum of cyclical 
components corresponding to frequencies w in the interval [-lr, lr]. Since 

the second order characteristics of the process can be recovered if the spectral density is available. In 
particular, yo = Var(X,) = fx(o)do and thus the spectral density represents the contributions 
of the frequencies to the variance of the process. Hence, the spectral density may be regarded as a 
summary of the cyclical components of the process or alternatively as a respresentation of the second 
order moments or autocovariance structure of the process. 

Given a time series Xf, . . . , Xn the autocovariances of the geneiating process may be estimated 
as 

n-k 

k = 1, . . . , n - 1, where X = C:=l Xt/n is the sample mean. An obvious estimator of the spectral 
density at frequency o is the so called periodogram 

or similarly with fk replacing fk. Unfortunately, this estimator is not consistent. The reason is that 
too many quantities are estimated from the sample. 

To ensure consistency a smoothed estimator of the form 

is usually used. The weights A-M, . . . , AM represent the spectral window and M (< n - 1) is 
the truncation point which depends on the sample size. A number of different windows has been 
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proposed in the literature. The following are examples: 

)ck = 1 - lk l /M (Bartlett, 1950) 

hk = 1 - 2a + 2a cos ( )  (Tukey, 1949, Blackman dr Tukey. 1959) 

h = [I + cos ($)I (Tukey, 1949) 
2 

3 
1 - 6 ( ) 2 + 6 ( )  for I k l g F  

(Parzen, 1961). 
2 (1 - g)3 for T s ( k ( g M  M 

A number of other windows are discussed in Priestley (1981, Sec. 6.2.3.). It may be worth noting that, 
for frequencies wj = 2nj/n,  the resulting spectral density estimators may be obtained alternatively 
by averaging over the periodograrn values of neighboring frequencies. Hence, 

where K(., .) is a suitable kernel function and h is the bandwidth of frequencies used in the weighted 
average. In other words, fx(wj) may be obtained by kernel smoothing techniques which are discussed 
in more detail in the context of estimating the conditional mean (see Section 3.1). These ideas extend 
directly to the multivariate case where X, is a vector of variables. 

As mentioned in the introduction, spectral analysis of stationary processes is now a standard 
technique. It can be found in many time series textbooks and monographs. More recent developments 
in spectral analysis include nonstationary and nonlinear processes. For instance, Priestley (1981, 
Chapter 11) and Dahlhaus (1993) consider processes with time varying spectra. Priestley (1996) 
discusses the use of wavelets in this context. Nowadays spectral methods are used in various ways 
for analyzing time series both theoretically and empirically. Applications of these techniques include 
studies of seasonal behaviour of time series, approximation of the stationary part of more general 
processes, construction of testing and estimation procedures and examination of their properties (see, 
e.g., the chapters in Brillinger & Krishnaiah (1983) and in particular Robinson (1983a)). The related 
literature is too voluminous to be reviewed here. Hence, we regard our foregoing remarks on spectral 
analysis as a brief reminder that these techniques belong under the heading of this survey. 

3 Estimation of the Conditional Mean 

In this section we review some nonparametric methods for estimating the function f (.) in (1 .I). 
We first present some smoothing approaches for locally approximating this function in the sense 
discussed in the introduction. For that purpose it is assumed that only a finite number of lagged XI7s 
enters f (.), that is, f (X,- I ,  . . . ) = f (XI-1, . . . , XI-,,). Some of the methods discussed in 
this section impose further restrictions on f (.) by assuming e.g. additivity of the lags (see Section 
3.2). We also consider the problem of choosing the lag length p. Moreover, in Section 3.3 global 
approximations are reviewed which, in principle, allow an infinite number of lags of XI in f (.). 

The parametric approach to estimation of the conditional mean of a time series is to formulate 
a parametric model for f (.). Many parametric structures proposed for f (.) have been successful 
in practice and have provided parsimonious models that capture the linearity or nonlinearity of 
the underlying process. The most common nonlinear structures are the threshold autoregressive 
(TAR) models of Tong (1983), the exponential autoregressive (EXPAR) models of Haggan & Ozaki 
(1 98 I ) ,  the smooth-transition autoregressive (STAR) models of Chan & Tong (1986) and Granger & 
Terhvirta (1993). In these models the structure for f (.) is supposed to be of threshold type where 
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the threshold functions are modeled in different ways. Many other related references can be found 
in Tong (1990) and Priestley (1988). 

The nonparametric approach has the advantage of letting the data speak for themselves. Hence, it 
avoids the subjectivity of choosing a specific parametric model before looking at the data. However, 
there is the cost of more complicated mathematical arguments and difficulties in practical imple- 
mentation, such as the selection of smoothing parameters. Also there is the cost of poor performance 
in high dimensions, often referred to as the 'curse of dimensionality'. Hence, the nonparametric ap- 
proach often serves as a guidance for choosing appropriate lower dimensional parametric models and 
for deciding between competing classes of models. Powerful computers and easy-to-use interactive 
statistical and graphical softwares such as S (Becker, Chamber & Wilks, 1988) and XploRe (Hkdle, 
Klinke & Turlach, 1995) provide solid platforms for these operations. 

3.1 Unrestricted Local Smoothing Methods 

Model (1.1) has the format of a nonlinear regression problem for which many smoothing methods 
exist when the observations are independent. Hart (1996) demonstrates that these methods can be 
'borrowed' for time series analysis where observations are correlated by making use of the 'whitening 
by windowing principle'. This principle is introduced first. Then we list some common nonparametric 
smoothing methods for inference on the function f (.) in model (1.1). 

The Whitening by Wndowing Principle 

Given an independent random sample X I ,  . . . , X,, which is drawn from a distribution with density 
function p(x), a popular method of estimating p(x) is based on the kernel estimator 

where h > 0 is the so-called bandwidth and K (.) is a kernel function, typically with finite support. The 
bandwidth is taken as a sequence h = h, tending to zero as n -, oo. Note that, if the kernel function 
has support on 1-1, I], the estimator only uses the observations in the interval [ x  - h, x + h]. This 
is an important feature when we extend this method to dependent observations. When the estimator 
is applied to dependent observations, it is affected only by the dependency of the observations in a 
small window, not that of the whole data set. Hence, if the dependency between the observations is 
of 'short memory' which makes the observations in small windows almost independent, then most 
of the techniques developed for independent observations apply in this situation. Hart (1996) calls 
this feature the whitening by windowing principle. 

Various mixing conditions are the main tools for proving asymptotic properties of the smoothing 
techniques for dependent data. Basically these conditions try to control the dependence between X, 
and Xi as the time distance i - j increases. For example, a sequence is said to be a-mixing (strong 
mixing) (Robinson 1983b) if 

sup (P(A 17 B) - P(A)P(B)( _< (Y,, 
AGT;.BET,N,,  

where a k  --+ 0 and 3;' is the o-field generated by X;, . . . , Xi. A stronger condition is the $-mixing 
(uniformly mixing) condition (Billingsley 1968) where 

for any A E 3:, and B E 32, and $k tends to zero for k -t 00. The rate at which a k  and $k go 
to zero plays an important role in showing asymptotic properties of the nonparametric smoothing 
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procedures. We note that generally these conditions are difficult to check. However, if the process 
follows a stationary Markov chain, then geometric ergodicity implies absolute regularity, which in 
turn implies strong mixing conditions. Techniques exist for checking the geometric ergodicity, see 
Tweedie (1975), Tjcjstheim (l990), Pham (1985), Diebolt & Guegan (1990). 

Local Conditional Mean and Median 

Consider the general nonlinear autoregressive process of order p 

Xt = f ( X , - I ,  . . .  , X t - , )  + E l .  

Let Yt = ( X t - 1 , .  . . , X t - , ) ,  and choose 6, > 0 as a function of the sample size n. For any 
y = ( X I , .  . . , x , )  E RP, let In(y)  = { i  : 1 < i < n and llYi - y ( (  < 6 , )  and Nn(y )  = #In(y) .  

Here 1 1  . 1 1  denotes the Euclidean norm. The local conditional mean function estimator is given 
by f(x1, . . . . x , )  = fn ( y )  = { N ,  ( y ) ) - l  xiGL y ,  X i .  that is, an average of all observations Xi  
corresponding to Y; in a small neighborhood of the argument y is used as the estimator. Alternatively, 
the local conditional median estimator given by f ( x l ,  . . . , x,)  = median{Xi, i E In (y ) ]  may be 
used. Under strong mixing conditions, Truong (1993) proved strong consistency and asymptotic 
normality of these estimators, along with the optimal rate of convergence for suitable sequences 
6 ,  + 0 .  

Nonparametric Kernel Estimation 

Robinson (1983b), Auestad & Tjcjstheim (1990), Hkdle & Vieu (1992), and others used a kernel 
estimator (or robustified versions of it) to estimate the conditional mean function f ( X t - 1 ,  . . . , XI- , ) .  
For this purpose the Nactaraya-Watson estimator with product kerriels 

is used where K (.) is again a kernel function with bounded support and the hi's are the bandwidths. 
In other words, a weighted average of the observations is used as an estimator of f (.). 

Robinson (1983b) and Masry & Tjgstheim (1995a) show strong consistency and asymptotic 
normality for a-mixing observations. Bierens (1983, 1987) and Collomb & Hiirdle (1986) proved 
the uniform consistency of the estimator under the assumption of a $-mixing process. Singh & Ullah 
(1985) extend this approach to multiple time series, where X ,  is a vector rather than a scalar random 
variable. 

Local Polynomial Regression 

Local polynomial regression techniques offer yet another alternative for estimating the conditional 
mean of time series nonparametrically. In this approach polynomials of a prespecified degree, say 
1 - 1, are fitted locally in the neighborhood of a given argument of f (.), where the size of the 
neighborhood shrinks with increasing sample size n. To state this estimator formally, suppose for 
simplicity that p = 1 ,  that is, the model is X t  = f ( X t T 1 )  + s t .  We wish to estimate f (x) .  In this 
case the estimator is obtained by minimization-of 

n 

c , (x)  = arg min X(X,  - C ' U ~ , , ) ~ K ( ( X , - ~  - x ) / h ] .  
c&?' t=l 
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where K (.) is a kernel function, h is'a positive bandwidth sequence, and 

The estimator j ( x )  is given by f ( x )  = c , ( x ) ~  ~ ( 0 ) .  This estimator was first developed by Stone 
(1977) and Katkovnik (1979). In the context of independent observations Fan (1993) studied minimax 
efficiency and made the technique popular to applied statisticians. Tsybakov (1986) and Hiirdle & 
Tsybakov (1997) proved asymptotic normality of these estimators under conditions satisfying the 
assumptions of Beedie  (1975) and Diebolt & Guegan (1990). A multivariate extension of this 
approach is given by Hirdle, Tsybakov & Yang (1996). 

Nonparametric Multi-step Prediction 

All these methods estimate the conditional mean of a nonlinear AR process and thereby pro- 
vide a one-step ahead predictor. Often forecasts for more than one step ahead are desired. Similar 
nonparametric techniques can be used for that purpose and we briefly mention some proposals here. 

Consider the nonlinear AR(1) model Xt = f ( X t - I )  + .st. Since the conditional mean mk(x)  = 
E(X,+k ( X ,  = x )  is the least squares predictor for k-step ahead prediction, Auestad & Tj@stheim 
(1990), Hiirdle & Vieu (1992) and Hiirdle (1990) proposed using the ordinary Nadaraya-Watson 
estimator 

to estimate E(Xt+k I Xt = x )  directly. 
Note, however, that the variables X I + I ,  . . . , Xt+k-1 may contain information about the conditional 

mean function E(X,+k ( X I ) .  Therefore Chen (1996) and Chen & Hafner (1995) proposed a mul- 
tistage kernel smoother which utilizes this information. For illustrative purposes consider two-step 
ahead forecasting. Due to the Markov property, we have 

Define f ( y )  = E(Xt+2 I Xt+l  = y) .  Ideally, if we knew f (.), we would use the pairs ( f  (Xt+ l ) ,  X,) ,  
t = 1 ,  . . . , (n - 1 )  in estimating E(Xt+2 I XI) ,  whereas the direct estimator (3.4) uses the pairs 
(XI+2, Xt ) .  Since Xt+2 is a noisy representative of f (Xt+1) with 0,(1) error, we can improve the 
estimation by using an estimator ~ ( x , + I )  with f ( x t + l )  - f ( X t + l )  = o , ( l ) .  This motivates the 
'multistage smoother' 

It can be shown that the new smoother has a smaller mean squared error than (3.4). 

Implementation Issues 

One of the important implementation issues of the nonparametric smoothing tools is the bandwidth 
selection in finite samples. There are many data-driven methods proposed for independent data, e.g. 
the cross-validation method of Rudemo (1982) and Bowman (1994) and the plug-in rules of Sheather 
(1983), Park & Marron (1990) and Park & Turlach (1992). 
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Again, for simplicity we assume a nonlinear AR(1) model X, = f (Xt-1) + E,. For dependent 
data, one of the criteria for selecting the bandwidth is to minimize the averaged squared error 

which is an approximation of the integrated squared error 

= (f (x) - f lh(~) )~~(x)w(x)dx .  S 
Here q(-) denotes the density of the stationary distribution and w(-) is a weight function with compact 
support. The measure of accuracy d ~ ( h )  involves the unknown autoregression function f (.), so it 
cannot be estimated by a plug-in type approach. For the nonpararnetric kernel estimator, Hirdle & 
Vieu (1992) and Hiirdle (1990) proposed to use the leave-on-out cross-validation function 

r n 

where 

to select the bandwidth. Let be the bandwidth that minimizes CV(h). They proved that, under an 
w-mixing condition, 

d"(B) + I in probability. 
infh dA (h) 

Similar results for density estimation were obtained by Hart & Vieu (1990). 

A Nonparametric Nonlinearity Test 

Hjellvik & Tjastheim (1995) proposed a nonlinearity test which may help in deciding whether to 
use a nonlinear model rather than a linear one. It is based on the distance between the best linear 
predictor pkXtPk and the best nonlinear predictor mk(Xf-k) = E[Xt I Xt-k] of Xi based on 
The distance is defined as 

where w ( x )  is a weighting function with compact support and pk is the autocorrelation between Xf 
and assuming X, has zero mean. The function mk(.) is estimated using the Nadaraya-Watson 
estimator. 

Lag Selection and Order Determination 

The lag selection and order determination problem is important for effective implementation of 
nonlinear time series modeling. Often the set of lagged variables and possibly additional exogenous 
variables is too large for an efficient application of nonparametric smoothing techniques. In that case 
one may wish to select the most significant components. For linear time series models, lag selection 

' and order determination are usually done using information criteria as proposed by Akaike (1970, 
1974), along with other model checking procedures such as residual analysis. In a fully nonparametric 
approach to time series analysis, Auestad & Tjastheim (1990) and Tjastheim & Auestad (1994b) 
proposed the FPE (final prediction error) criterion and Cheng & Tong (1992) suggested using cross 
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validation. More specifically, Tjastheim & Auestad (1994b) proposed to use an estimated FPE 
criterion to select lag variables and to determine the model order of the general nonlinear AR model 
in (3.2). Let Xt be a stationary strong mixing nonlinear AR process and let i = ( i l ,  . . . , i,) and 
Yt( i )  = (XtVi , ,  . . . , Xt-i ,)T. Define 

where 

and f ( y t ( i ) )  is the kernel conditional mean estimator in (3.3) based on the lags specified in i 
and j ( Y t ( i ) )  is a multivariate kernel density estimator defined as in (3.1). Note that the FPE is 
essentially a sum of squares of residuals (RSS) multiplied by a term in (3.6) that penalizes small 
bandwidths h and a large order p. 

Cheng & Tong (1992) used a leave-one-out cross validation procedure to select the order of a 
general nonlinear AR model. Let Yt ( p )  = (Xt-1, . . . , X I - , )  and 

where fh,t is the kernel conditional mean estimator defined in (3.5) and w ( - )  is a weight function of 
finite support. They proved that, under regularity conditions, 

where y = J w ( x ) d x /  J w(x)p(x)dx  and h is the bandwidth. Again, this can be viewed as a 
penalized sum of squares of residuals. 

3.2 Restricted Autoregressive Approaches 

Since the nonparametric general approach suffers from the 'curse of dimensionality', unless the 
AR order p is very small, restrictions on the function f (.) have been proposed. Common structural 
restrictions are additivity, single index restrictions andlor data dependent coefficients in a 'linear' 
model. These restrictions result in better convergence rates and are easier to interpret, especially 
with graphics supported from interactive statistical computing environments. This is important since 
nonparametric models are not the end of an analysis. They are rather an exploratory tool for a 
better understanding of the underlying dynamics of the process and a starting point for finding more 
parsimonious models. 

Nonlinear Additive AR Models 

A nonlinear additive autoregressive (NAAR) model is defined as 

xt = c + f i ( X t - i , )  + f ~ ( X t - i * )  + ...  + f p ( X r - i , , )  + E f .  (3.7) 

Additive models have been studied extensively in the regression context by Hastie & Tibshirani 
(1990). The NAAR model in (3.7) is a generalization of the first-order nonlinear AR model of 
Jones (1978). It is very flexible as it encompasses linear AR models and many interesting nonlinear 
models as special cases. These models naturally generalize the linear regression models and allow 
interpretation of marginal changes, i.e. the effect of one variable (or lagged variable) on the mean 
function. They are also interesting from a theoretical point of view since they combine flexible 
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nonpararnetric modeling of many variables with statistical precision that is typical for just one 
explanatory variable. Accurate estimation can be achieved with moderate sample sizes. Here we 
introduce three procedures for estimating the NAAR model. Order determination and lag selection 
problems are addressed as well. 

Chen & Tsay (1993a) use backjitting algorithms such as the Alternating Conditional Expectation 
(ACE) algorithm and the BRUT0 algorithm of Hastie & Tibshirani (1990) to fit the additive model 
(3.7). Note that the AVAS algorithm of Tibshirani (1988) can also be used here. The main idea of 
backfitting is that if the additive model is correct, then for any k we have fk(X,-;,) = E{X, - c - 
CjZk f,(Xt-ij) I XI-;k). Consequently, we can treat Xt - c - CjZk f,(Xt-ij) as the conditional 
response variable and use nonpararnetric smoothers to estimate fk(.). In practice, all fk(.)'s are 
unknown so that the estimates are iterated until they all converge. The effective hat matrix of this 
algorithm is computed in Hiirdle & Hall (1993), showing that the iteration results depend on the 
starting index. 

One of the problems associated with the backfitting algorithms is that with highly correlated 
observations, the convergence can be slow, as noted in Chen & Tsay (1993a). Linton & Nielson 
(1995) and Chen et al. (1996) proposed an integration estimator for estimating the functions in 
additive regression models without using backfitting. At the same time, Tjostheim & Auestad (1994a) 
and Masry & Tjostheim (1995b) proposed the same estimator for NAAR models. Specifically, the 
'integration idea' is based on the following observation. If the model is of the additive form (3.7), and 
f (xl, . . . , x,) = c $- fj(xj) is the conditional mean function, and p-,(.) is the joint density 
of . . . , Xr-ij-I, . . . , then for a fixedx E R, 

provided Efr(X,) = 0, 1 = 1 ,  . . . , p. Using the Nadaraya-Watson estimator to estimate the mean 
function f (.), we average over the observations to obtain the following estimator. 

Let Kh(.) = h:' K(./ h), where K (.) is a kernel function. For 1 5 j 5 p and any x in the domain 
off,(.), define, for h, > 0, hi > 0, 

The asymptotic normality of this estimator was established by Chen et al. (1996) for independent 
observations and by Masry & Tjostheim (19951-3) under strong mixing conditions for time series 
observations. The rate of convergence for estimating f (.) is n2f5 which is typical for regression 
smoothing with just one explanatory variable. Hence, the estimator does not suffer from the 'curse 
of dimensionality'. 

Wong & Kohn (1996) use spline nonparametric regression to estimate the components of a 
NAAR model. They adopt an equivalent Bayesian formulation of the spline smoothing and use a 
Gibbs sampler to estimate the components and the parameters of the model, through Monte Carlo 
simulation of the posterior distributions. 

Chen, Liu & Tsay (1995) propose three nonparametric proc'edures for testing additivity in nonlinear 
time series analysis. For lag selection, Chen & Tsay (1993a) propose a procedure that is similar to 
the best subset procedure in linear regression analysis. 
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Functional Coeflcient AR Model 

A functional coefficient autoregressive (FAR) model can be written as 

The model generalizes the linear AR models by allowing the coefficients to change according to a 
threshold lag variable The model can be extended to allow for multiple threshold variables in 
the coefficient functions. The model is general enough to include the threshold AR (TAR) models of 
Tong (1983) and Tsay (1989) (when the coefficient functions are step functions) and the exponential 
AR (EXPAR) models proposed by Haggan & Ozaki (1981) (when the coefficient functions are 
exponential functions) along with many other models (e.g., the STAR models of Granger & Terikvirta 
(1993) and Terasvirta (1994) and sine function models). Chen & Tsay (1993b) use an arranged local 
regression (ALR) procedure to roughly identify the nonlinear functional forms. For x E R and 
8, > 0, let I,(x) = {t : 1 < t < n, IX,-d - X I  < 8,). If we regress Xt on X,-I, .. . ,XI-,, using 
all the observations X, for which t E I,, (x), then the estimated coefficients can be used as estimates 
of fi(x), i = 1, . . . , p. One can then make inference directly or formulate parametric models 
based on the estimated nonlinear functional forms. Chen & Tsay (1993b) proved the consistency 
of the estimator under geometric ergodicity conditions. Note that the locally weighted regression of 
Cleveland & Devlin (1988) may be used for estimating FAR models as well. 

Adaptive Spline Threshold AR Model 

Lewis & Stevens (1991) propose the adaptive spline threshold autoregressive (ASTAR) model of 
the form X, = r,=, c, Kj(X,-1, . . . , X,-,,) + E,, where (K,(X)]~=, are product basis functions of 
truncated splines T-(x) = (t - x)+ and T+(x) = (x - t)+ associated with the subregions { R j ] j = ,  
in the domain of the lag variables (X,-1, . . . , X,-,). For example, Lewis & Stevens (1991) use the 
following ASTAR model for the famous sunspot numbers: 

where (u)+ = u if u > 0 and (u)+ = 0 if u I 0. The modeling and estimation procedures follow 
the Multivariate Adaptive Regression Splines (MARS) algorithm of Friedman (1988). It is basically 
a regression tree procedure using truncated regression splines. 

Index Models 

Bierens (1994) discusses another way of imposing constraints on the general model (1.1). He 
shows that for a rational valued process the conditional expectation can be written as a function of 
an index, i.e. E(Xl IX,-l, Xt-2, . . .) = f (el), where the index & is related to the past observations 
X,-I, XI-2,. . . . For instance, the index may be of the form 6, = xr, r f ' ~ , - ~  for some E 

(-1, 1). Obviously, in this case f (.) is one dimensional and is therefore relatively easy to estimate 
by kernel methods. For practical purposes, assuming that X, is rational is not restrictive because on 
a computer only a finite number of digits can be stored so that all observed time series are actually 
rational. 

Bierens shows that there is a wide range of indices to choose from and suggests the following 
procedure for applied work. In a first step the best fitting linear ARMA model should be constructed. 
The optimal linear one-step-ahead predictor from that model is then used as an index 6,. If especially 
designed specification tests indicate remaining nonlinearity the function f (.) may be chosen either 
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from some parametric family or by using nonparametric smoothing techniques. Of course, a linear 
model is maintained if no nonlinearity is detected. 

3.3 Global Approximators 

As mentioned previously, a sequence of parametric functions can be used as global approximators 
to approximate the conditional mean function f (.) in (1.1). As the sample size increases, the 
dimension of the parameter space also increases to achieve greater approximation accuracy. Thereby 
it is possible to allow f (.) to depend on infinitely many lagged variables although only a finite 
number of lags is considered for any given finite sample size. The approaches of this type differ in 
the class of parametric functions used. We begin with simple linear functions where just the number 
of lags in the model grows with the sample size. For this class it is particularly easy to discuss the 
assumptions usually made for deriving asymptotic properties of estimators. Then we consider neural 
networks as an important general class of nonlinear approximators. 

Linear Functions 

Suppose {X,) is a zero mean purely nondeterministic causal stationary process, then it has an AR 
representation of potentially infinite order, 

If the second order moment properties of the process are of interest only it suffices to obtain the 
above representation which is linear in lagged X,. Hence, the second order moment properties of the 
process may be estimated by approximating its infinite order AR representation. The simplest way 
to accomplish this is by fitting finite order A R ( H , )  processes 

where the order Hn is an increasing function of the sample size n.  To obtain desirable properties 
of the resulting estimators and quantities derived from them we need to assume that the AR order 
Hn goes to infinity at a much smaller rate than n so that there is eventually enough information for 
estimating the parameters efficiently. On the other hand, the approximation quality must improve 
sufficiently rapidly so as to avoid large bias. Hence, there must be an appropriate lower bound on the 
rate of divergence of H n .  More precisely, it may be assumed that 

(1.) Hn is o(nll"), and 

as n + 00. Here the two conditions are upper and lower bounds, respectively, on the rate at which 
the AR order goes to infinity with n.  Under these conditions and mild assumptions for ( E ~ )  the least 
squares estimators of the a, are consistent and asymptotically normal. In fact, for consistency weaker 
conditions for H,, suffice. 

Akaike (1969), Parzen (1974), Berk (1974) and Bhansali (1978) use this approach for spectral 
estimation and prediction of univariate processes. Parzen (1977), Lewis & Reinsel (1985), Liitkepohl 
(1 991, Ch. 9) and Liitkepohl & Poskitt (1996) discuss multivariate extensions. They also consider 
estimation of other quantities derived from the autoregressive coefficients. Most of these results can 
be extended to nonstationary integrated and cointegrated processes (see Section 5.3). 
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Note that it = xzl aiXt-i is the best (minimum MSE) linear 1-step predictor which may not 
be the conditional expectation and, hence, it may not be the optimal predictor in a more general class 
of nonlinear predictors. Consequently, it may be desirable to consider nonlinear functions f, (.) to 
approximate the conditional mean function f (.). We will present one possible nonlinear approach 
next. 

Neural Networks 

Neural networks have been used in various fields to approximate complex nonlinear structures. 
Their name comes from the fact that they may be thought of as a network of neurons similar to (but of 
course much simpler as) the brain. The related computations may be extremely complex. Therefore 
neural network analysis nowadays represents a subfield of computer science or, more precisely, of 
artificial intelligence. Here we consider the single hidden layer feedforeward network which may be 
best thought of as a class of flexible nonlinear functions of the form 

where Y, = (X,-l, . . . , x,-,)~ and the y, = (yl,, . . . , Y,,,)~ are (p x 1) vectors for j = 1 ,  . . . , q ,  
and Po, /?I ,  . . . , BY are scalar coefficients. The function G : R + [O, I ]  is a prespecified cumulative 
distribution function. Typical examples are the logistic function G(x) = 1/(1 + e-X) and the 
hyperbolic function G(x) = tanh(x) = (ex - e-*)/(ex + e-*). Functions of the type (3.9) can 
approximate broad classes of functions if q is sufficiently large. Thus, if q increases with the sample 
size n, a good approximation of f  (XI-1, . . . , XI-,,) will eventually result. The function in (3.9) may 
also be estimated without specifying G(.) by using the projection pursuit regression of Hutchinson, 
Lo & Poggio (1994). In the following we will, however, assume a given specific form of G(.). 

For practical purposes it will be advantageous to obtain a good approximation with small or 
moderate values of q.  Therefore adding a linear AR term in (3.9) is often useful. Thus, in practice, a 
possible approximating function is 

For given p and q, estimation of the parameters of this model is possible with LS procedures. 
Asymptotic properties of the resulting estimators are available both for fixed q and q increasing with 
the sample size. Kuan & White (1994) provide a comprehensive survey of neural network models 
and estimation results for the present situation. Also it is possible to let the number of lags p (i.e., 
the AR order) increase with the sample size. This, however, results in further complications of the 
asymptotic theory. 

Since nonlinear optimization algorithms may be time consuming, it is undesirable to reestimate 
a model each time new observations become available. Therefore sequential estimation or learning 
procedures have been proposed which update the available estimates sequentially when new sample 
information becomes available. A prominent example is the backpropagation procedure (see Rumel- 
hart, Hinton & Williams 1986). Kuan & White (1994) present asymptotic results for this procedure 
as we1 I. 

The network represented by (3.9) feeds the output of the neurons (the G(.)) directly into the overall 
output and there is also no direct interaction between the neurons. There are various generalizations 
of this simple architecture. For instance, multi-layer networks may be considered. An example of a 
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2-layer network is 

where GI(.) and G2(.)  are now prespecified cumulative distribution functions and the y;,, Bk and 6, 
are unknown parameters which have to be estimated. Another possible extension would be to allow 
for feedback between the neurons. The following is an example of a recurrent single hidden layer 
network: 

4 

fn,t(xt-1, Xt-2. - .  . 9 XO) = PO + C4tjPj, f = 0, 1.2. . - 
j=1 

where 

Although the simpler single hidden layer feedforward networks have quite general approximation 
properties it may be useful in practice to consider more sophisticated architectures to obtain a good 
approximation with fewer terms (or neurons) than that in (3.9). Also there may be information on 
the structure of a data generation mechanism that suggests multi-layer or feedback architectures. 

In practice there will often be uncertainty regarding the most suitable architecture for a given time 
series and regarding the number of lags and neurons that guarantee a good approximation of the 
actual generation mechanism. Therefore methods have been proposed for model selectioq and for 
deciding on restrictions that may be imposed on a given neural network model. For instance, Murata, 
Yoshizawa & Amari (1994) proposed a model selection criterion which extends the ideas underlying 
the AIC criterion to the present situation. Specification tests are also reviewed by Kuan & White 
(1994). 

As mentioned earlier, neural networks establish a subfield of computer science and are applied 
in many areas. Therefore it is impossible to provide a complete survey of the literature in a limited 
review of this type. Those interested in this fascinating tool for nonpararnetric time series analysis 
may find the survey article by Kuan & White (1994) a useful point of departure for further studies. 

4 Estimating Higher Order Conditional Moments and Densities 

Techniques similar to those discussed for estimating the conditional expectation of a process 
may also be used for approximating higher order conditional moments which are often of interest, 
as we have argued earlier. Here we summarize some of these extensions. We begin with methods 
for estimating conditional variances in addition to conditional means. Then some possibilities for 
approximating the complete conditional density are presented. 

4.1 Conditional Variances 

Nonparametric Kernel Estimation 

Auestad & Tj~stheim (1990) and Tjestheim & Auestad (l994a,b) use kernel estimation techniques 
for analyzing models like (1.2) assuming that both the conditional mean and the conditional variance 
function depend on at most p lagged Xt. The function f (.) may again be estimated by the Nadaraya- 
Watson estimator with product kernels as in Section 3.1, 
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and the conditional variance g( . )2  day  be estimated by 

where again K (.) is a kernel function with bounded support and the hi's are the bandwidths. 

Masry & T j ~ t h e i m  (1995a) show strong consistency and asymptotic normality of these estimators 
for a-mixing observations and Tj0stheim & Auestad (1994a,b) consider model specification and lag 
selection in models of the form (1.2). 

Local Polynomial Regression and Other Techniques 

1 Local polynomial nonparametric regression techniques can be used in an analogous fashion to 
, estimate the conditional mean and variance functions. Assume p = 1 so that the functions f (.) and 
' g(.) depend on Xt-l only. Then they may be estimated by minimization of 

c,(x) = arg min X ( X ,  - C ~ U , , ) ~ K [ ( X , - I  - x ) / h )  
c d R 1  ,=l 

as in Section 3.1, and 
n 

S, (X)  = arg min X ( X :  - sT u,~)'K{(x,-I  - x ) / h )  
. d R 1  

where h is again a positive bandwidth, and 

V,, = F(u,,), F ( u )  = (1 ,  u ,  . . . , ul-'/(l - utn = (Xt-1 - x ) / h .  

Here the degree of the approximating polynomial is assumed to be 1 - 1. The estimators f ( x )  and 
i ( x )  are given by 

. f ( x )  = c , ( x ) ~  F(O) and i ( x )  = s , ( x ) ~  F(O)  - { c , ( x ) ~  ~ ( 0 ) ) ~ .  

Hirdle & Tsybakov (1996) prove asymptotic normality of these estimators under similar conditions 
as in Section 3.1 where the conditional mean was estimated only. 

An extension of this model to nonparametric vector autoregression is presented in Hiirdle, Tsy- 
bakov & Yang (1996) who consider the model 

x, = f (Y,) + c"~(Y,)E,,  t = p, p + 1 ,  . . . , 
where XI = ( X , I ,  Xt2, . . . , X,d)T E Rd, E ,  = (&, I ,  ~ ~ 2 , .  . . , &,dlT E Rd and Yt = (Xt-1, Xt-2, 
. . . , XI-,) E Rdxp is a matrix of lagged variables. 

'Alternatively, conditional heteroscedasticity can also be modeled with neural network methods 
(Weigend & Nix 1994). 

4.2 Estimating the Predictive Density 

Kernel Techniques 

For a stationary time series, Robinson (1983b) proposed a kernel estimator to estimate the one- 
step-ahead transition density h(y I x ) .  Note that h(y  I x )  = p(x ,  y ) / p ( x ) ,  where p(x ,  y )  is the joint 
density of (X , ,  X,+,) and p(x )  is the marginal density of X,. Replacing the terms on the right-hand 
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side with corresponding kernel estimators, we have 

where K2( . )  is a bivariate kernel function, commonly of the product form K ~ ( u ,  V) = K(u)K(v). 
Note that the estimation of the transition density allows us to construct nonparametric multi-step- 
ahead prediction density functions as well. For extensions see Singh & Ullah (1985). 

Hermite Expansion Approach 

Gallant & Tauchen (1989) used Hennite expansions to approximate the one-step-aheadconditional 
density of the process given its past. This approach is based on the fact that a large class of density 
functions, h(y) say, is proportional to [p(z)12@(z), where z = (y - py)/uy, with pg and ay location 
and scale parameters of the distribution, respectively, P(z) = 1 + @lz + . - . + @rzr is a polynomial 
of possibly infinite degree r and $(z) = (2n)-' exp(-z2/2) is the standard normal density. Dividing 
[p(z)l24(z) by a normalizing constant this is just the Hermite expansion of h(y). Hence, the density 
may be written as the product of a standard normal density and the square of a polynomial. 

In the present situation we are interested in the conditional density h(xIIxt-1, x,-2, . . . ). By the 
foregoing considerations we have 

where z, = (x, - p,)/a, with p, and a, being location and scale parameters, respectively, of the 
conditional distribution. The former is assumed to be a linear function of the past, pt = v +a1 XI-, + 
- . . + apXt-p, and the latter may be modeled as 

The specification of the conditional scale parameter at is similar but not identical to an ARCH 
process as originally proposed by Engle (1982). Alternative specifications may be used here. At 
any rate, the location and scale parameters pr and a, are modeled parametrically whereas higher 
order moment terms are captured by the polynomial. Letting the polynomial degree increase with 
the sample size makes this approach nonparametric. Overall the approach has been termed semi 
nonparametric (SNP) because it combines parametric with nonparametric elements. 

To achieve a flexible adjustment of the model to higher order dynamics the polynomial coefficients 
@I ,  . . . , Ilr, may be made dependent on the past, that is, 

where usually small values of K and 1 are sufficient to guarantee a rich dynamic structure. Of course, 
for r = K = 1 = 0 we get 

so that we have a linear AR(p) process with conditionally heteroscedastic error term. 

For given values of p ,  q ,  r, K and 1 the parameters of the model may be estimated by maximum 
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likelihood which is easily accomplished by minimizing the normalized negative log likelihood 
. n  

Asymptotic properties of this estimation procedure are given by Gallant & Nychka (1987) who allow 
the order of the Hermite expansion to increase with the sample size. In principle, an extension of this 
approach to the multivariate case is possible (see Gallant & Tauchen 1989). 

5 Other Nonparametric Techniques for Time Series 

5.1 Density Estimation with Correlated Observations 

Kernel Methods 

There is a rich literature on density estimation for independent observations, see Silverman (1986) 
and the references therein. A popular method is the kernel estimator of the form (3.1) where the 
kernel function K(.) is typically a probability density function. The key in density estimation is 
the bandwidth selection. A number of different methods have been proposed, including the cross- 
validation (Rudemo 1982, Bowman 1984) and the plug-in rules of Sheather (1983), Park & Marron 
(1990) and Park & Turlach (1992). 

The earliest work on density estimation for stationary processes is that of Roussas (1969) and 
Rosenblatt (1970). The properties of the kernel estimator for dependent observations were investi- 
gated by Robinson (1983b) and Hall & Hart (1990a). They found that the bias of the estimator is 
not affected by the serial correlation. However, the variance is affected. The cross-validation method 
for dependent observations is studied by Hart & Vieu (1990), under certain regularity conditions. 
Detailed information and references can be found in Gyorfi, H2rdle, Sarda & Vieu (1989), Prakasa 
Rao (1983) and Hart (1996). Density estimation for long range dependent data was studied by Hall, 
Lahiri & Tmong (1994) and CsorgB & Mielniczuk (l995a). 

Testing for Serial Dependence 

Kernel density estimation techniques may also be used to test for independence, for instance, in 
checking the residual behavior of an estimated nonlinear time series model. Skaug & Tj~stheim 
(1993) proposed a nonpararnetric test for independence between two variables which is suitable in 
this situation. They propose to estimate the quantity 

I = JMX, Y) - P ~ ( ~ ) P z ( Y ) ) ~ P ( ~ .  YMX, N X ~ Y  

where p(x, y) is the joint density and PI(.), pz(.) are the marginal densities while w( . ,  .) is a weight 
function with compact support. Using kernel density estimators, we obtain 

which should be small under the null hypothesis that X and Y are independent and which can 
therefore be the basis for an independence test. 

5.2 Bootstrap Methods 

The bootstrap method is an important nonparametric tool which has also been used for time series 
analysis in a number of different ways. For instance, it may be used for assessing and improving 

International Statistical Review, 12, 153-172

(1997)  Härdle, W. , Lütkepohl, H. and Chen, R.
Nonparametric Time Series Analysis. 



66 W. HARDLE, H. L~~TKEPOHL and R. CHEN 

the properties of estimators and forecasts. Originally it was proposed for independent observations 
(Efron & Tibshirani 1993). Therefore an obvious extension to time series analysis is to bootstrap 
the residuals of some model. This approach has been used in many applications. Efron & Tibshani 
(1993) discuss estimating the standard e m r s  of linear autoregressive parameter estimates using this 
approach. Bose (1988) evaluates the distribution of the parameter estimator of an AR(1) model by the 
bootstrap and Kreiss & Franke (1992) discuss its extensions to ARMA(p, q) processes. Furthermore, 
Franke & HHdle (1992) propose a bootstrap method for spectral estimation. 

It is also possible to apply a bootstrap directly to the time series observations by sampling blocks 
of observations rather than individual ones. This method is known as the moving blocks bootstrap. 
Specifically, given a time series X I ,  . . . , X,, all possible blocks of 1 < n consecutive observations 
are considered and random samples of blocks are drawn and joint together to form a bootstrap time 
series of roughly length n. This process is repeated B times so that B bootstrap time series are 
obtained. These artificial series may be used to investigate the distributional properties of the original 
time series. The moving blocks bootstrap for time series was introduced by Kiinsch (1989) and Liu 
& Singh (1992). An introductory exposition is given by Efron & Tibshirani (1993, Sec. 8.6). 

5.3 Trend Analysis 

In much of the previous discussion we have assumed stationary processes. In practice many 
time series have trends and are therefore nonstationary. These trends may be removed prior to an 
analysis of the stationary part of the process if the trend function is known. In most cases it is 
unknown, however. In that situation nonparametric techniques may be used for trend estimation or 
trend elimination. 

Estimating Trend Functions 

Here we consider the case when the trend is characterized by a smooth deterministic function. 
Suppose X I ,  . . . , X ,  is a possibly nonstationary time series with trend p ( t )  = E(X,) .  Under the 
assumption that the trend is smooth, a traditional way of estimating the trend function is the running 
mean estimator described in Chatfield (1974). A more recent proposal is due to Hart (1991) who 
uses the kernel smoother of Gasser & Miiller (1979) of the form 

for trend estimation. Hart (1994) proposed a method called time series cross-validation for selecting 
the bandwidth h.  He noted that the ordinary leave-one-out cross-validation tends to select a bandwidth 
many orders of magnitude too small, if the data are highly positively correlated. 

Nonparametric Regression with Dependent Errors 

Consider the fixed-design regression model 

X i n  =  in) f Ein 

where z; ,  = i l n  and the errors { E ; , ]  are correlated, both the Gasser & Miiller (1979) estimator 
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and the Nadaraya-Watson type estimator 

have been proposed and studied. See Hart & Wehrly (1986) and Hiirdle (1990). Hall & 'b) 
and CsorgB & Mielniczuk (1995b) studied the same problem with long-range dependent errors. 

Truong & Patil(1996) propose to use wavelet methods to estimate possibly discontinuous trends. 
Wavelet estimators have been shown to have extraordinary adaptability in handling discontinuity of 
the underlying .function with independent observations (Donoho & Johnstone 1992, Donoho et al. 
1995, and Hall & Patil 1995). They may be equally powerful in time series analysis. 

Nonparametric Unit Root and Cointegration Tests 

As an alternative to a deterministic trend, a time series may have a stochastic trend which can be 
removed by differencing. A process is said to be integrated of order d, I (d), if a stochastic trend 
can be removed by differencing d times. For example, a random walk X, = XI-] + E, with white 
noise error process E ,  is I(1) because X t  - X,-1 =: AX, = E, .  Nonparametric tests can be used for 
checking the order of integration of a process. 

The random walk is the simplest version of a stochastic trend. Fuller (1976) and Dickey & Fuller 
(1979) therefore consider an AR(1) model 

and test Ho : p = 1 against HI : p < 1. An obvious test statistic is the t-ratio based on the LS - 

estimator of p: 
,l?-1 

tg = - 
s i  

where sg is the usual estimator of the standard error of 6. Equivalently, this statistic may be obtained 
as the t-ratio of the parameter estimator in the model 

where a! = p - 1. The resulting test is also known as Dickey-Fuller (DF) test. The t-statistic does not 
have the usual standard normal limiting distribution but it has a nonstandard distribution for which 
the relevant critical values have been tabulated in Fuller (1976). 

In practice, the model (5.1) is often too limited to be a reasonable approximation to the underlying 
data generating process. Therefore more general assumptions are often made for the error process 
{ E , ) .  For instance, it may be assumed to be a stationary process. Ignoring the dependency of 
the E, in that case in constructing the test statistic may result in a badly biased test. Therefore 
nonparametric techniques are often used to model the dependence of the E,.  One possible approach 
fits. autoregressions 

where H goes to infinity with the sample size (see Said & Dickey 1984). Alternatively, a correction 
for the t-statistic based on spectral techniques has been proposed by Phillips & Perron (1988). 

Tests of the foregoing type are often referred to as unit root tests. There is an extensive literature 
on these tests. Extensions allow also for deterministic terms such as intercepts and linear time trends 
(see Hamilton 1994, Chapter 17, for details). Also tests of the null hypothesis of a stationary process 
against the alternative of a unit root have been proposed (seeXwiatkowski, Phillips, Schmidt & Shin 
1992). Again spectral techniques are used in the latter variant of a unit root test to account for higher 
order dvnamics of the data generating vrocess. 
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Multivariate extensions of the DF tests were proposed by Johansen (1989,1991). In a multivariate 
AR process, unit roots indicate that some or all of the components are integrated variables. There 
may be linear combinations of the variables, however, which are stationary or integrated of lower 
order. This phenomenon is known as cointegration. Therefore unit root tests in multivariate processes 
are treated under the heading of testing for cointegration. Nonparametric variants of the Johansen 
tests are considered by Saikkonen & Luukkonen (1997) who approximate the stationary part of the 
process by autoregressions of growing order when the sample size increases analogously to (5.2). 
Cointegration tests based on spectral techniques are discussed by Stock & Watson (1988). 

Further nonparametric generalizations of unit root tests are obtained by assuming that there may 
be an AR unit root in some unknown nonlinear monotone transformation of the original variables. 
To check the existence of such a unit root in the data generating process, DF or other unit root tests 
based on the ranks of X, may be used (see Granger & Hallman 1991, Campbell & Dufour 1993, 
Breitung & GouriCroux 1997). 

5.4 Adaptive Estimation 

In a model with finite dimensional parameter vector of interest 8, say, and an infinite dimensional 
nuisance parameter vector +, say, the latter is often taken care of with nonparametric methods. If 
that is done in such a way that the estimator for 8 is asymptotically efficient, it is said to be estimated 
adaptively. In time series models the copditional mean and variance functions are often of foremost 
interest. They are therefore often parameterized in a specific way, for instance, as a linear function of 
the past. The remaining parts of the data generating process may then be estimated nonparametrically. 
A number of authors have dicussed adaptive methods in this context (e.g., Linton 1993, Kreiss 1987, 
Robinson 1988, Steigerwald 1992, Engle & Gonzdles-Rivera 199 1, Werker 1995, Drost, Klaassen 
& Werker 1994). 
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Abstract

Discrete choice models are frequently used in statistical and econometric practice. Stan-
dard models such as logit models are based on exact knowledge of the form of the link and
linear index function. Semiparametric models avoid possible misspecification but often in-
troduce a computational burden. It is therefore interesting to decide between approaches.
Here we propose a test of semiparametric versus parametric single index modelling. Our
procedure allows that the (linear) index of the semiparametric alternative is different from
that of the parametric hypothesis. The test is proved to be rate-optimal in the sense that it
provides the (rate) minimal distance between hypothesis and alternative for a given power
function. 1

1 Introduction

Discrete choice models are frequently used in statistical and econometric applications. Among
them binary response models, such as Probit or Logit regression, dominate the applied literature.
A basic hypothesis made there is that the link and the index function have a known form, see
McCullagh and Nelder (1989). The fixed form of the link function e.g. the logistic cdf is rarely
justified by the context of the observed data but is often motivated by numerical convenience
and by reference to ”standard practice”, say ”accessible canned software”.

Recent theoretical and practical studies have questioned this somewhat rigid approach and have
proposed a more flexible semiparametric approach. Green and Silverman (1994) use the theory
of penalizied likelihood to model nonparametric link functions with splines. Horowitz (1993)
gives an excellent survey on single index methods and stresses economic applications. Staniswalis
and Severini (1994) use kernel methods and keep a fixed link function but allow the index to be
of partial linear form. Partial linear models are semiparametric models with a parametric linear

1We thank O. Lepski for helpful discussion and comments.
The research was supported by Deutsche Forschungsgemeinschaft, SFB 373.
AMS 1994 subject classifications. Primary 62G10, 62H40; secondary 62G20, 62P20.
Key words and phrases: Semiparametric models, single index model, hypothesis testing.
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and a nonparametric index and have been studied by Rice (1986), Speckman (1988) and Engle,
Granger, Rice and Weiss (1986).

These models enhance the class of Generalized Linear Models (McCullagh and Nelder, 1989)
in several ways. Here we concentrate on one generalization, the single index models with link
function of unknown nonparametric form but (linear) index function. The advantage of this
approach is that still an interpretable linear single index, a weighted sum of the predictor
variables, is produced. The link function plays in theoretical justifications of single index models
via stochastic utility functions an important role (Maddala, 1983): it is the cdf of the errors
in a latent variable model. Our approach enables us to interpret the results still in terms of a
stochastic utility model but enhances it by allowing for an unknown cdf of the errors.

Despite the gained flexibility in semiparametric regression modelling there is still an important
gap between theory and practice, namely a device for testing between a parametric and semi-
parametric alternative. A first paper in bridging this gap is Horowitz and Härdle (1994). They
considered for response Y and predictor X the parametric null hypothesis

H0 : Y = F (X>θ0) + ε(1)

where x>θ denotes the index and F is the fixed and known link function. The semiparametric
alternative considered there is that the regression function has the form f(x>θ0) with a non-
parametric link function f and the same index x>θ0 as under H0 . The main drawback of that
paper is that the index is supposed to be the same under the null and the alternative.

The goal of the present paper is to construct a test which has power for as large class of
alternatives. We move to a full semiparametric alternative by considering alternatives of single
index type

H1 : Y = f(X>β) + ε(2)

with β possibly different from θ0 . The situation of our test is illustrated in the following figures
1 and 2.

Figure 1: Parametric fitting Figure 2: Semiparametric fitting

The data is a crosssection of 462 records on apprenticeship of the German Social Economic Panel
from 1984 to 1992. The dependent variable is an indicator of unemployement, (Y = 1 =yes).
Explanatory variables are X1 gross monthly earnings as an apprentice, X2 percentage of people
apprenticed in a certain occupation, divided by the people employed in this occupation in the
entire economy and X3 unemployment rate in the state the respondent lived in during the year
the apprenticeship was completed. The aim of the test is to decide between the logit model and
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the semiparametric model with unknown link function and possibly different index. In Härdle,
Klinke and Turlach (1995) this hypothesis is tested with the Horowitz-Härdle (HH) -test by
Proenca and Werwatz who also prepared the dataset. They give a more detailled description of
the HH-test procedure which does not reject.

We measure the quality of a test by the value of minimal distance between the regression
function under the null and under the alternative which is sufficient to provide the desirable
power of testing. The test proposed below is shown to be rate-optimal in this sense. The paper
is organized as follows. The next section contains the main results then we present the test
procedure. In Section 5 we present some simulation study. The proof of main results are given
in Section 3 (Theorem 2.2) and in the Appendix (Theorem 2.1).

2 Main Results

We start with a brief historical background of the nonparametric hypothesis testing problem.
The problem for the case of a simple hypothesis and univariate nonparametric alternative was
considered by Ibragimov and Khasminskii (1977) and Ingster (1982). It was shown that the
minimax rate for the distance between the null and the alternative set is of the order n−2s/(4s+1)

where s is a measure of smoothness. Note that this rate differs from that of an estimation
problem where we have n−s/(2s+1) . In the multivariate case the corresponding rate changes to
n−2s/(4s+d) , as Ingster (1993) has shown. The problem of testing a parametric hypothesis versus
a nonparametric alternative was discussed also in Härdle and Mammen (1993). Their results
allow to extract the above minimax rate.

The results of Friedman and Stuetzle (1981), Huber (1985), Hall (1989) and Golubev (1992)
show that estimation of the function f under (2) can be made with the rate corresponding to
the univariate case. Below we will see though that for the problem of hypothesis testing the
situation is slightly different. The rate for this additive alternative of single index type differs
from that of a univariate alternative (d = 1) by an extra log-factor. Nevertheless, we have almost
a univariate rate and we can therefore still expect efficiency of the test for practical applications.

We will come back to the introductory example in section 5. Suppose we are given independent
observations (Xi, Yi), Xi ∈ IRd, Yi ∈ IR1, i = 1, . . . , n, that follow the regression

Yi = F (Xi) + εi, i = 1, . . . , n.(3)

Here εi = Yi − F (Xi) are mean zero error variables,

Eεi = 0, i = 1, . . . , n,

with conditional variance
σ2

i = E
[
ε2
i | Xi

]
, i = 1, . . . , n.(4)

Example 2.1 As a first example take the above single index binary choice model. The observed
response variables Yi take two values 0, 1 and

P (Yi = 1 | Xi) = F (Xi),
P (Yi = 0 | Xi) = 1− F (Xi).

In this case σ2
i = F (Xi) {1− F (Xi)}.
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Example 2.2 A second example is a nonlinear regression model with unknown transformation.
An excellent introduction into nonlinear regression can be found in Huet, Jolivet and Messeau
(1993). The model takes the same form as (1) but the response Y is not necessarily binary and
the variance σ2

i may be an unknown function of the F (Xi) ’s. Carroll and Ruppert (1988) use
this kind of error structure to model fan shaped residual structure.

We wish to test the hypothesis H0 that the regression function F (x) belongs to a prescribed
parametric family (Fθ(x), θ ∈ Θ), where Θ is a subset in a finite-dimensional space IRm. This
hypothesis is tested versus the semiparametric alternative H1 that the regression function F (·)
is of the form

F (x) = f(x>β)(5)

where β is a vector in IRd with |β| = 1, and f(·) is a univariate function.

Example 2.3 Let the parametric family (Fθ(x), θ ∈ Θ) be of the form

Fθ(x) =
1

1 + exp(−x>θ)
(6)

and let otherwise (X, Y ) have stochastic structure as in Example 2.1. This form of parametriza-
tion leads to a binary choice logit regression model. Probit or complementary log-log models
have a different parametrization but still have this single index form.

Let F0 be the set of functions (Fθ(x), θ ∈ Θ) and let F1 be a set of alternatives of the form (5).
We measure the power of a test ϕn by its power function on the sets F0 and F1 : if ϕn = 0 then
we accept the hypothesis H0 and if ϕn = 1, then we accept H1. The corresponding first and
second type error probabilities are defined as usual:

α0(ϕn) = sup
F∈F0

PF (ϕn = 1) ,

α1(ϕn) = sup
F∈F1

PF (ϕn = 0) .

Here PF means the distributions of observations (Xi, Yi) given the regression function F (·).
When there is no risk of confusion we write P instead of PF . Our goal is to construct a test
ϕn that has power over a wide class of alternatives. The assumptions needed are made precise
below. We start with assumptions on the error distribution.

(E1) The errors εi are bounded by a universal constant Cε

εi ≤ Cε , i = 1, . . . , n.

(E2) The conditional distributions of errors εi given Xi depend only on values of the regression
function F (Xi),

L (εi | Xi) = L (εi | F (Xi)) = PF (Xi)

where (Pz) is a prescribed distribution family of one-dimensional parameter z;

(E3) The variance function σ2(z) = E
[
ε2
i | F (Xi) = z

]
and the fourth central moment function

κ4(z) = E
[(

ε2
i −Eε2

i

)2 | F (Xi) = z
]

are separated away from zero and infinity i.e.

0 < σ∗ ≤ σ(z) ≤ σ∗ < ∞
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0 < κ∗ ≤ κ(z) ≤ κ∗ < ∞
with some prescribed σ∗, σ

∗, κ∗, κ
∗, and this function is uniformly continuous: for some

positive constants Cσ and Cκ one has∣∣σ(z)− σ(z′)
∣∣ ≤ Cσ

∣∣z − z′
∣∣ ,∣∣κ(z)− κ(z′)

∣∣ ≤ Cκ

∣∣z − z′
∣∣ .

Note that (E1) is obviously fulfilled for the single index model in Examples 2.1 and 2.3. In
the more general situation of Example 2.2 this assumption can be weakened to the existence of
exponential moments for εi.

The assumption (E3) restricts the set of X-observations to a bounded set. It is made more
precise in the following assumption on the design X .

(D) The predictor variables X have a design density π(x) which is supported on the compact
convex set X in IRd and is separated from zero and infinity on X ;

Assumption (D) is quite common in nonparametric regression analysis. It is apparently ful-
filled for the above example on apprenticeship and youth unemployment. We now specify the
hypothesis and alternative.

(H0) The parameter set Θ is a compact subset in IRm.
For some universal constant CΘ the following holds

|Fθ(x)− Fθ′(x)| ≤ CΘ

∣∣θ − θ′
∣∣ , ∀x ∈ X , θ, θ′ ∈ Θ;

All functions Fθ(·) belong to the Hölder class Σd(s, L) of functions in IRd.

(H1) The univariate link function f(·) from (5) belongs to the Hölder class Σ(s, L). The function
F (x) = f(x>β) is separated away from the parametric family F0 i.e.

inf
θ∈Θ

‖F − Fθ‖ ≥ cn(7)

with a given cn > 0. Here ‖F − Fθ‖ =
∫
|F (x)− Fθ(x)|2 π(x) dx.

For the definition of a Hölder smoothness class in the context of statistical nonparametric prob-
lems we refer e.g. to Ibragimov and Khasminskii (1981). Assumption (H0) is certainly fulfilled
for Example 2.3 but also in Probit and other generalized linear regression models such as the
log linear models.

The main results are given below. We compute first the optimal rate of convergence of the
distance cn distinguishing the null from the alternative. The second theorem states the existence
of an optimal test. The test will be given more explicitly in the next section where we also
apply it to the above concrete examples. Theorem 2.2 is proved in Section 4 and the proof of
Theorem 2.1 is given in the appendix.

Theorem 2.1 Let cn =
(
a
√

ln n
n

) 2s
4s+1 . If a is small enough then for any sequence of tests ϕn

one has
lim inf
n→∞

α0(ϕn) + α1(ϕn) ≥ 1.
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Theorem 2.2 For any constant a∗ large enough there is a sequence of tests ϕ∗n which distinguish

consistently the hypothesis H0 versus alternative H1 = H1(c∗n) with c∗n =
(
a∗

√
ln n
n

) 2s
4s+1 i.e.

lim
n→∞

α0(ϕ∗n) = 0

and
lim

n→∞
α1(ϕ∗n) = 0.

3 The test procedure

Before we describe the test procedure let us introduce some notation. Given functions F (x) and
G(x) we denote by

〈F,G〉 =
1
n

n∑
i=1

F (Xi) G(Xi).(8)

the scalar product of the functions F and G . We write also 〈F 〉 instead of 〈F, F 〉 and identify
the sequences (Yi) , (εi) with the functions Y (Xi) and ε(Xi). We construct the tests ϕ∗n from
Theorem 2.2 in several steps.

First we shall do a preliminary pilot estimation F̃0 under the null. Second we estimate the
d-dimensional nonparametric regression F̃1 necessary to construct estimators of expected value
and the variance of the proposed test statistics. In the third step we estimate for each feasible
value of β the corresponding link function f under (H1) as in (2). Finally we compute the
test statistic based on comparison of residuals under H0 and H1 .

3.1 Parametric pilot estimation

Let Θn be a grid in the parametric set Θ with the step ln n√
n

. Put

θ̃n = arginf
θ ∈ Θn

〈Y − Fθ〉 = arginf
θ ∈ Θn

1
n

n∑
i=1

|Yi − Fθ(Xi)|2 .(9)

Denote also
F̃0(·) = Fθ̃n

(·).(10)

Note that θ̃n is not necessarily an efficient estimator under the null since we do not correct for
the variance function.

3.2 Nonparametric pilot estimation

For the nonparametric estimation of the expected value and the variance of the test statistic we
shall use the standard kernel technique, see e.g. Härdle (1990) or Müller (1987). More precisely
we use a one dimensional kernel satisfying the conditions

(K1) K(·) is compactly supported;

(K2) K(·) is symmetric;
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(K3) K(·) has s continuous derivatives;

(K4)
∫

K(t) dt = 1;

(K5)
∫

K(t) tkdt = 0, k = 1, . . . , s− 1.

Recall from (H0) and (H1) that s denotes the degree of smoothness of the regression function.
Note also that (K5) ensures that K is orthogonal to polynomials of order 1 to s − 1 . For
a list of kernels satisfying (K1) − (K5) we refer to Müller (1987). A d-dimensional product
kernel K1 is defined as

K1(u1, . . . , ud) =
d∏

j=1

K(uj).(11)

Take now
h1 = n−

1
2s+d ,(12)

the optimal smoothing bandwidth in d-dimensions, and put

F̃1(x) =

∑n
i=1 YiK1

(
x−Xi

h1

)
∑n

i=1 K1

(
x−Xi

h1

) .(13)

The nonparametric kernel smoother F̃1 is the well known multidimensional Nadaraya-Watson
kernel estimator.

3.3 Estimation under H1

Set

h =

(√
lnn

n

) 2
4s+1

.(14)

We will use this bandwidth for estimation in the semiparametric model. Note that in (12) for
the nonparametric estimation problem another rate, namely n−1/(2s+d) was used. Here we have
almost this bandwidth except for the extra log-term.

Let Sd be the unit sphere in IRd. Denote by Sn,d a discrete grid in Sd with the step bn = h2s+2.
Let N be the cardinality of Sn,d

N = #Sn,d.(15)

For each β ∈ Sn,d define

Kh,β(x) = K

(
x>β

h

)
, x ∈ IRd,(16)

and introduce the smoothing operator Kβ with

KβY (Xi) = Πβ(Xi)
∑
j 6=i

YjKh,β(Xi −Xj)(17)

where

Πβ(Xi) =

∑
j 6=i

Kh,β(Xi −Xj)

−1

.(18)

Similarly we define Kβε and KβF . Note that given β the values KβY estimate f in (2).
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3.4 The test statistic

Now for each β we calculate a statistic Tβ as follows:

Tβ =
n
√

h

Ṽβ

[
2
〈
Y − F̃0,KβY − F̃0

〉
−
〈
KβY − F̃0

〉
+ Ẽβ

]
.(19)

Here 〈·〉 is defined by (8), h by (14), F̃0 by (10). We use the following notation

Ẽβ =
1
n

∑
i

∑
j 6=i

σ̃2
j Π2

β(Xi) K2
h,β(Xi −Xj)(20)

where Πβ(Xi) is from (18),

σ̃2
j = σ2

(
F̃1(Xj)

)
, j = 1, . . . , n,(21)

the function σ2(·) being defined in the model assumptions and F̃1(x) being the nonparametric
pilot estimator. Finally,

Ṽ 2
β = h

∑
i

∑
j 6=i

σ̃2
i σ̃2

j Π2
β(Xi)

∣∣∣2Kh,β(Xi −Xj)−K
(2)
h,β(Xi, Xj)

∣∣∣2 +

+h
∑

i

κ̃4
i

∣∣∣∣∣∣
∑
j 6=i

Π2
β(Xj)K2

h,β(Xi −Xj)

∣∣∣∣∣∣
2

with κ̃i = κ
(
F̃1(Xi)

)
, i = 1, . . . , n, κ(·) being from (E3) and

K
(2)
h,β(Xi, Xj) =

1
Πβ(Xi)

∑
k 6=i,j

Π2
β(Xk) Kh,β(Xk −Xi) Kh,β(Xk −Xj).(22)

Put now
T ∗n = sup

β∈Sn,d

Tβ(23)

and
ϕ∗n = 1

(
T ∗n >

√
(2 + δ) log N

)
.(24)

Here 1 (·) is the indicator function of the corresponding event, δ is an arbitrary small positive
number and N is the cardinality of Sn,d, see (15).

4 Proof of Theorem 2

We start with the decomposition of the test statistics Tβ. Denote by Bβ(x) the bias function
for the smoothing operator Kβ from (17):

Bβ(Xi) = KβF (Xi)− F (Xi), i = 1, . . . , n.(25)

Fix some β ∈ Sn,d and F ∈ F0 ∪ F1.
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Lemma 4.1

Tβ =
n
√

h

Ṽβ

[〈
F − F̃0

〉
− 〈Bβ〉+

+2 〈Kβε, ε〉 − 〈Kβε〉+ Ẽβ +

+2
〈
F − F̃0, ε

〉
+ 2 〈Bβ, ε〉 − 2 〈Bβ,Kβε〉

]
.(26)

Proof. By definition Y = F + ε and therefore

KβY = KβF +Kβε = F + Bβ +Kβε.

Now

2
〈
Y − F̃0,KβY − F̃0

〉
= 2

〈
F − F̃0 + ε, F − F̃0 + Bβ +Kβε

〉
=

= 2
〈
F − F̃0

〉
+ 2

〈
F − F̃0, Bβ

〉
+ 2

〈
F − F̃0,Kβε

〉
+

+2
〈
ε, F − F̃0

〉
+ 2 〈ε, Bβ〉+ 2 〈ε,Kβε〉

and 〈
KβY − F̃0

〉
=

〈
F − F̃0 + Bβ +Kβε

〉
=

=
〈
F − F̃0

〉
+ 〈Bβ〉+ 〈Kβε〉+

+2
〈
F − F̃0, Bβ

〉
+ 2

〈
F − F̃0,Kβε

〉
+ 2 〈Bβ ,Kβε〉 .

Substituting this in the definition of Tβ we obtain the assertion of the lemma.

The next step is to show that the expansion (26) for the statistic Tβ can be simplified by
discarding lower order terms. Indeed we shall see below that the last three terms are relatively
small and can be omitted. The terms Ẽβ and Ṽβ can be substituted by similar expressions Eβ

and Vβ which use ”true” values σi and κi instead of estimated values σ̃i and κ̃i and finally, the
parametric estimator θ̃n can be replaced by θn defined by

θn = arginf
θ ∈ Θn

〈F − Fθ〉(27)

where F is a ”true” regression function from (3). Suppose that all these replacements can be
done. Define now

T ′β =
n
√

h

Vβ
[〈F − Fθn〉 − 〈Bβ〉+

+ 2 〈Kβε, ε〉 − 〈Kβε〉+ Eβ ]

with

Eβ =
1
n

∑
i

∑
j 6=i

σ2
j Π2

β(Xi) K2
h,β(Xi −Xj),

V 2
β = h

∑
i

∑
j 6=i

σ2
i σ2

j Π2
β(Xi)

∣∣∣2Kh,β(Xi −Xj)−K
(2)
h,β(Xi, Xj)

∣∣∣2 +

+h
∑

i

κ4
i

∣∣∣∣∣∣
∑
j 6=i

Π2
β(Xj)K2

h,β(Xi −Xj)

∣∣∣∣∣∣
2

.
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Below we show that the tests ϕ∗∗n based on the statistics T ∗∗n with

T ∗∗n = sup
β∈Sn,d

T ′β(28)

have the same asymptotic behavior as ϕ∗n. For the moment we only consider the tests ϕ∗∗n . Note
that they are not tests in the usual sense since they use the non-observable values Eβ, Vβ, θn.
Central to our proof is the analysis of the asymptotic behavior of the random variables

ξβ = n
√

h [2 〈Kβε, ε〉 − 〈Kβε〉+ Eβ] .(29)

Lemma 4.2 The following assertions hold

E ξβ = 0,(30)

E ξ2
β = V 2

β ,(31)

and uniformly in F ∈ F0 ∪ F1 , β ∈ Sn,d and t ∈ [− lnn, lnn]

P
(

ξβ

Vβ
> t
)

1− Φ(t)
→ 1, n →∞,(32)

Φ(·) being the standard normal distribution.

Proof. The first two statements are derived by direct calculation. In fact, by definition and
(22)

ξβ = 2
√

h
∑

i

εi Πβ(Xi)
∑
j 6=i

εj Kh,β(Xi −Xj)−

−
√

h
∑

i

Π2
β(Xi)

∣∣∣∣∣∣
∑
j 6=i

εj Kh,β(Xi −Xj)

∣∣∣∣∣∣
2

+

+
√

h
∑

i

∑
j 6=i

σ2
j Π2

β(Xi) K2
h,β(Xi −Xj) =

=
√

h
∑

i

∑
j 6=i

εi εj Πβ(Xi)
[
2Kh,β(Xi −Xj)−K

(2)
h,β(Xi, Xj)

]
+

+
√

h
∑

i

∑
j 6=i

(σ2
j − ε2

j ) Π2
β(Xi) K2

h,β(Xi −Xj).

Since the errors εi are independent and E εi = 0, E ε2
i = σ2

i , we immediately obtain (30) and (31).
The last statement (32) is a particular case of the general central limit theorem for quadratic
forms of independent random variables and can be obtained in a standard way by calculation
of the corresponding cumulants. We omit the details, see e.g. Härdle and Mammen (1993).

The assertion (32) of Lemma 4.2 straightforwardly implies the following corollary.

Lemma 4.3 Uniformly in F ∈ F0 ∪ F1 one has

P

(
sup

β∈Sn,d

ξβ

Vβ
>
√

(2 + δ) ln N

)
→ 0, n →∞.(33)
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Proof. For any t one gets

P

(
sup

β∈Sn,d

ξβ

Vβ
> t

)
≤

∑
β∈Sn,d

P

(
ξβ

Vβ
> t

)
≤ N sup

β∈Sn,d

P

(
ξβ

Vβ
> t

)
.(34)

But through (32) for n large enough

P

(
ξβ

Vβ
>
√

(2 + δ) ln N

)
≤ 2

(
1− Φ

(√
(2 + δ) ln N

))
≤

≤ exp

{
−1

2

∣∣∣∣√(2 + δ) ln N

∣∣∣∣2
}

= N−1−δ/2

that implies (33) through (34).

Now we come to the calculation of the error probabilities for the tests ϕ∗∗n based on T ∗∗n . Under
the hypothesis H0 one has F = Fθ , θ ∈ Θ. This does not automatically yield 〈F − Fθn〉 = 0
since θn ∈ Θn, see (27), and θ can be outside Θn. But the assumptions (H0) on the parametric
family guarantee that this value is small enough.

Lemma 4.4 Let F = Fθ , θ ∈ Θ. Then

〈Fθ − Fθn〉 ≤ C2
θ

ln2 n

n
.

Proof. Let
θ′n = arginf

θ′ ∈ Θn

∣∣θ − θ′
∣∣ .

The definition of the grid Θn provides |θ − θ′n|
2 ≤ ln2 n

n . Now from the definition of θn and the
assumptions (H0) on the parametric family we obtain

〈Fθ − Fθn〉 ≤
〈
Fθ − Fθ′

n

〉
=

1
n

∑
i

∣∣Fθ(Xi)− Fθ′
n
(Xi)

∣∣2 ≤ C2
Θ

∣∣θ − θ′
∣∣2 ≤ C2

Θ

ln2 n

n
.

Using this result we have for F = Fθ by Lemma 4.3

P
(

T ∗∗n >
√

(2 + δ) ln N

)
≤

≤ P

(
sup

β∈Sn,d

ξβ

Vβ
>
√

(2 + δ) ln N − C2
θ

ln2 n

n
n
√

h

)
→ 0, n →∞,

i.e.
α0(ϕ∗∗n ) = sup

F∈F0

PF (ϕ∗∗n = 1) → 0, n →∞.

Next we evaluate the error probability of the second type .

Lemma 4.5 Let F ∈ F1 . Then for n large enough

〈F − Fθn〉 ≥ cn/2 .
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Proof. Let F ∈ F1 be fixed and

θF = arginf
θ ∈ Θ

‖F − Fθ‖ .

By the triangle inequality and Lemma 4.4 one has

〈F − FθF
〉 ≤ 〈F − Fθn〉+ 〈Fθn − FθF

〉 ≤ 〈F − Fθn〉+ C2
θ

ln2 n

n
.

It remains to check that the inequality ‖F − FθF
‖ ≥ cn implies 〈F − FθF

〉 ≥ cn/2. For n large
enough that is obviously the case.

The following Lemma is a direct consequence of assumptions (E3) and (D).

Lemma 4.6 There exist constants Cπ , σ∗ and V ∗ such that

|Πβ(Xi)Kh,β(Xi −Xj)| ≤ Cπ |Πβ(Xj)Kh,β(Xi −Xj)| ∀β, Xi, Xj(35)

sup
i

σi ≤ σ∗.(36)

and
sup

β
Vβ ≤ V ∗.(37)

Recall now that each function F (·) from F1 is of the form F (x) = f(x>β0) with some β0 ∈ Sd.
As a consequence F (·) should be well approximated by the smoothing operator Kβ with β
coinciding or close to β0. More precise, the following can be stated.

Lemma 4.7 There is a positive constant Cb such that for each F (·) ∈ F1 , F (x) = f(x>β0),

〈Bβn〉 ≤ Cbh
2s(38)

with
βn = arginf

β ∈ Sn,d

|β − β0| .(39)

Proof. The definition of the grid Sn,d provides |βn − β0| ≤ h2s+2. Then, it is well known, e.g.
from Ibragimov and Khasminskii (1981), that for F (x) = f(x>β0) with f ∈ Σ(s, L) one has

〈Bβ0〉 = 〈Kβ0F − F 〉 ≤ L′h2s+1(40)

with L′ = L‖K‖/(s− 1)! But

|〈Bβn〉 − 〈Bβ0〉| ≤ 〈Bβn −Bβ0〉 ≤
≤ 〈Kβ0F −KβnF 〉 ≤

≤ 1
n

∑
i

∣∣∣∣∣∣Πβn(Xi)
∑
j 6=i

F (Xj) Kh,βn(Xi −Xj)−

−Πβ0(Xi)
∑
j 6=i

F (Xj) Kh,β0(Xi −Xj)

∣∣∣∣∣∣ .
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Now using assumptions (D) and (K1)− (K5) we obtain∣∣∣Π−1
βn

(Xi)−Π−1
β0

(Xi)
∣∣∣ ≤

∑
j 6=i

|Kh,βn(Xi −Xj)−Kh,β0(Xi −Xj)| ≤

≤ CΠβ0(Xi)
|βn − β0|

h
(41)

and similarly

∑
j 6=i

|F (Xj)Kh,βn(Xi −Xj)− F (Xj)Kh,β0(Xi −Xj)| ≤ CΠβ0(Xi)
|βn − β0|

h
.(42)

Putting together (41) and (42) we conclude that

|〈Bβn〉 − 〈Bβ0〉| ≤ C
|βn − β0|

h
≤ Ch2s+1

and the lemma follows with Cb = L′ + 1.

To complete the proof for the tests ϕ∗∗n it remains to note that for each F ∈ F1

T ∗∗n ≥ n
√

h

Vβn
|〈F − Fθn〉 − 〈Bβn〉|+

ξβn

Vβn

and that if
〈F − Fθn〉 ≥ Cbh

2s +
2V ∗

n
√

h

√
(2 + δ) ln N,(43)

with V ∗ from Lemma 4.6, then by Lemma 4.3 we obtain

P
(

T ∗∗n <
√

(2 + δ) ln N

)
≤

≤ P

(
n
√

h

Vβn

2V ∗

n
√

h

√
(2 + δ) ln N +

ξβn

Vβn

<
√

(2 + δ) ln N

)
≤

≤ P

(∣∣∣∣∣ ξβn

Vβn

∣∣∣∣∣ > √
(2 + δ) ln N

)
→ 0, n →∞.

Finally we remark that lnN ≤ C lnn and the choice of h by (8) yields

Cbh
2s +

2V ∗

n
√

h

√
(2 + δ) ln N ≤ C ′

(√
lnn

n

) 4s
4s+1

= C ′h2s

i.e. (43) holds true if cn in the definition of the alternative H1 is taken with c2
n ≥ 2C ′h2s. This

completes the proof for the tests ϕ∗∗n

Now we explain why the statistics T ∗∗n can be considered in place of T ∗n . The idea is to show
that the difference T ∗∗n − T ∗n is relatively small (being compared with the test level

√
2 ln N or

deviation 〈F − Fθn〉). First we treat the preliminary parametric estimator θ̃n. Denote for given
F ∈ F0 ∪ F1

dn(F ) = 〈F − Fθn〉+
ln2 n

n
,

θn being from (27)
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Lemma 4.8 Uniformly in F ∈ F0 ∪ F1 we have for each δ > 0

P
(

1
dn(F )

∣∣∣〈F − F̃0

〉
− 〈F − Fθn〉

∣∣∣ > δ

)
→ 0,(44)

P
(

1
dn(F )

∣∣∣〈F − F̃0, ε
〉∣∣∣ > δ

)
→ 0.

Proof. Let us fix some δ > 0 and some θ ∈ Θn. First we show that the probability of the event{
|〈F − Fθ, ε〉| > δ

(
〈F − Fθ〉+

ln2 n

n

)}
is asymptotically small. More precise, we state the following assertion:

∑
θ∈Θn

P

(
|〈F − Fθ, ε〉| > δ

(
〈F − Fθ〉+

ln2 n

n

))
→ 0, n →∞.(45)

In fact, if we put d2
θ = E |〈F − Fθ, ε〉|2 then we have

d2
θ = E

∣∣∣∣∣ 1n ∑
i

εi [F (Xi)− Fθ(Xi)]

∣∣∣∣∣
2

=

=
1
n2

∑
i

σ2
i |F (Xi)− Fθ(Xi)|2 .

Using Lemma 4.6 we have

d2
θ ≤

σ∗2

n2

∑
i

|F (Xi)− Fθ(Xi)|2 =
σ∗2

n
〈F − Fθ〉 .

Further,

1
2

(
〈F − Fθ〉+

ln2 n

n

)
≥

√
〈F − Fθ〉

ln2 n

n

and

P

(
|〈F − Fθ, ε〉| > δ

(
〈F − Fθ〉+

ln2 n

n

))
≤

≤ P
(

1
dθ
|〈F − Fθ, ε〉| >

δ

dθ
lnn

√
〈F − Fθ〉 /n

)
≤

≤ P
(

1
dθ
|〈F − Fθ, ε〉| >

δ

σ∗
lnn

)
.

Now we use an estimate of the large deviation probability for the centered and normalized
random variables 1

dθ
〈F − Fθ, ε〉, see Lemma 4.11 below. Indeed, for n large enough

∑
θ∈Θn

P
(

1
dθ
〈F − Fθ, ε〉 >

δ

σ∗
lnn

)
≤

≤
∑

θ∈Θn

exp

{
− δ2

2σ∗2
ln2 n

}
≤ nd exp {−(d + 1) ln n} ≤ n−1
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which implies (45). Here we used that the cardinality of Θn is of order nd. Let θ ∈ Θn be such
that

〈F − Fθ〉 − 〈F − Fθn〉 > 2δdn(F ).(46)

For δ small enough this yields

〈F − Fθ〉 − 〈F − Fθn〉 > δ (〈F − Fθ〉+ 〈F − Fθn〉) .(47)

Now by definition of θ̃n we obtain through ( 46) and ( 47){
θ̃n = θ

}
⊆ {〈Y − Fθ〉 ≤ 〈Y − Fθn〉} =

= {〈F − Fθ + ε〉 ≤ 〈F − Fθn + ε〉} =
= {〈F − Fθ〉 − 〈F − Fθn〉 ≤ 2 〈F − Fθ, ε〉+ 2 〈F − Fθn , ε〉} ⊆

⊆
{
〈F − Fθ, ε〉 >

δ

2
〈F − Fθ〉

}
∪
{
〈F − Fθn , ε〉 >

δ

2
〈F − Fθn〉

}
.

Using this relation and (45) we deduce

P
(∣∣∣〈F − Fθ̃n

〉
− 〈F − Fθn〉

∣∣∣ > 2δdn(F )
)
≤

≤
∑

θ∈Θn

1 (|〈F − Fθ〉 − 〈F − Fθn〉| > 2δdn(F ))P
(
θ̃n = θ

)
≤

≤
∑

θ∈Θn

P
(
〈F − Fθ, ε〉 >

δ

2
〈F − Fθ〉

)
→ 0, n →∞,

that proves (44). The second statement of the lemma follows directly from (45).

The next step is to show that the last two terms in the expansion (29) are vanishing.

Lemma 4.9 Given F let

bβ = 〈Bβ〉+
ln2 n

n
.

Then uniformly in F ∈ F0 ∪ F1 for each δ > 0 the following assertions hold:∑
β∈Sn,d

P (〈Bβ, ε〉 > δbβ) → 0,

∑
β∈Sn,d

P (〈Bβ ,Kβε〉 > δbβ) → 0.

Remark 4.1 The statements of this lemma yield immediately that

P (〈Bβ , ε〉 ≤ δbβ , ∀β ∈ Sn,d) → 1

and similarly for 〈Bβ,Kβε〉.

Proof. The statements of the lemma are proved in the same manner as in the last part of the
proof of Lemma 4.8. For the second statement we use in addition the fact that

Var 〈Bβ,Kβε〉 ≤ C

n
〈Bβ〉 .(48)
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Indeed, using assumptions (E1)-(E3) and (K1)-(K5) , Lemma 4.6 and Jensen’s inequality we
have

E |〈Bβ,Kβε〉|2 =
1
n2

E

∣∣∣∣∣∣
∑

i

Bβ(Xi)Πβ(Xi)
∑
j 6=i

εjKh,β(Xi −Xj)

∣∣∣∣∣∣
2

=

=
1
n2

E

∣∣∣∣∣∣
∑
j

εj

∑
i6=j

Bβ(Xi)Πβ(Xi)Kh,β(Xi −Xj)

∣∣∣∣∣∣
2

=

=
1
n2

∑
j

σ2
j

∣∣∣∣∣∣
∑
i6=j

Bβ(Xi)Πβ(Xi)Kh,β(Xi −Xj)

∣∣∣∣∣∣
2

≤

≤ 1
n2

σ∗2C2
π

∑
j

Π2
β(Xj)

∣∣∣∣∣∣
∑
i6=j

Bβ(Xi)Kh,β(Xi −Xj)

∣∣∣∣∣∣
2

≤

≤ 1
n2

σ∗2C2
π

∑
j

∣∣∣∣∣
∑

i6=j Bβ(Xi)Kh,β(Xi −Xj)∑
i6=j Kh,β(Xi −Xj)

∣∣∣∣∣
2

≤

≤ 1
n2

σ∗2C2
πC 〈Bβ〉 .

Next we show that the quantities Ẽβ and Ṽβ estimate Eβ and Vβ good enough.

Lemma 4.10 For each δ > 0 and uniformly in F ∈ F0 ∪ F1

P

(
sup

β∈Sn,d

∣∣∣Ẽβ − Eβ

∣∣∣ > 1
n
√

h lnn

)
→ 0,

P

(
sup

β∈Sn,d

∣∣∣∣∣ Ṽβ

Vβ
− 1

∣∣∣∣∣ > δ

)
→ 0.

Proof. The assumption (E3) implies for each j = 1, . . . , n∣∣∣σ2
j − σ̃2

j

∣∣∣ ≤ Cσ

∣∣∣F̃1(Xj)− F (Xj)
∣∣∣

and hence ∣∣∣Ẽβ − Eβ

∣∣∣ ≤ 1
n

∑
i

∑
j 6=i

∣∣∣σ2
j − σ̃2

j

∣∣∣Π2
β(Xi)K2

h,β(Xi −Xj).

Now by the design and kernel properties we derive for each j = 1, . . . , n

∑
j 6=i

Π2
β(Xi)K2

h,β(Xi −Xj) ≤
C

nh

and using Cauchy-Schwarz inequality we obtain

∣∣∣Ẽβ − Eβ

∣∣∣ ≤ C

n2h

∑
i

∣∣∣F̃1(Xj)− F (Xj)
∣∣∣ ≤ C

n2h

[
1
n

∑
i

∣∣∣F̃1(Xj)− F (Xj)
∣∣∣2]1/2

.
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The pilot estimator F̃1 fulfills with high probability〈
F̃1 − F

〉
≤ Cn−

2s
2s+d .

Hence using the inequality 2s
2s+d > 1

4s+1 and the definition of h we arrive to the conclusion that

n
√

h
∣∣∣Ẽβ − Eβ

∣∣∣ ≤ C√
h

n−
s

2s+d = o

(
1

lnn

)
.

Lemmas 4.8–4.10 together imply the asymptotic equivalence of the tests based on Tβ and T ′β.
We finish the proof of the theorem with a result on probabilities of deviations of centered and
normalized sums of independent errors εi over the logarithmic level. The following lemma was
already used in the proof of Lemma 4.8.

Lemma 4.11 For each positive constants r, a the following relation holds uniformly in functions
F from the Lipschitz class Σd(1, L) of functions in IRd:

nrP (ξ(F ) > a lnn) → 0, n →∞,

where
ξ(F ) =

〈F, ε〉√
E 〈F, ε〉2

.

Proof. We proceed in a standard way using the exponential inequality and boundedness of
errors εi due to (E1). The details are omitted.

5 A simulation and an application

The purpose of our simulation experiments was to study the quantiles of the test statistic T ∗n and
the power of the test in finite samples. All calculations have been performed in the languages
GAUSS and XploRe ( Härdle, Klinke and Turlach (1995) ). The observations were generated
according to a binary response model. The explanatory variables were identically independent
uniform distributed on [−1, 1]. We took the parameter θ =

(1
1

)
1√
2

and considered the functions

f0(u) =
1

1 + exp−u
(49)

f1(u) = f0(u) + η · ϕ′(u)(50)
f2(u) = 1− exp(− exp(u))(51)

for different 0 < η ≤ 1, where ϕ is the density function of the standard normal distribution.
While f0 is a logit function, f1 consists of a logit disturbed by a bump (figure 3). The response
Y under H0 was generated such that P (Y = 1|xT θ0 = u) = f0(u). We are thus interested in the
hypothesis H0

H0 : Fθ(x) = E[Y |u(x, θ) = u] = f0(u) , θ ∈ S2

In a first step we calculated empirically the 90 and 95 percent quantiles of T ∗n for n = 100
and 200 observations generated by f0. They were used then as rejection boundaries, defined as
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Figure 3: solid line: f0, dashed line: f1 with
η = 0.2, pointed line: f1 with η = 0.6

Figure 4: Power function of the test with re-
spect to the bandwidth for funtion f1c

√
(2 + δ) ln N , see (24). We calculated T ∗n by optimizing Tβ over a grid, see (23), with N = 50

gridpoints. As kernel function K we used always the quartic kernel

K(u) =
15
16

(1− u2)21{|u|<1}

In the second step we analyzed the effect of increasing sample size on the power. In table 1
we show the power of the test when the data were generated with functions f1a, that is f1

for η = 0.2, f1c, where η = 0.6 and f2. In order not to oversmooth we used the bandwidth
h1 = h = 0.5 for n = 100, 200 and h1 = h = 0.25 for n = 350, 500 . Although we substituted
for speed reasons in the cases n = 350 and 500 Ṽβ by Ṽθ̂ for all β, the power increases very fast
with n. Therefore, it could be of interest to compare the power with regard to the bump η in
the logit model. In table 2 we show for n = 200 and 350 the power of the test as a function of
η. We see that for η > 0.4 this test procedure works very well.

Table 1: Power and rejection boundaries for different alternatives.

n , h = 100 , 0.5 200 , 0.5 350 , 0.25 500 , 0.25

level 5% 10% 5% 10% 5% 10% 5% 10%
rejection boundary 4.00 3.35 3.30 3.25 3.75 2.90 3.20 2.76

f1a 0.056 0.096 0.112 0.215 0.133 0.207 0.150 0.200
f1c 0.224 0.294 0.530 0.690 0.798 0.856 0.900 0.960
f2 0.316 0.376 0.946 0.991 0.995 1.000 0.995 1.000

Table 2: Power for different bumps η .

η = 0.2 0.4 0.6 1.0
level 5% 10% 5% 10% 5% 10% 5% 10%
200, 0.50 0.112 0.215 0.227 0.419 0.530 0.690 0.687 0.801

n, h
350, 0.25 0.133 0.207 0.321 0.478 0.798 0.856 0.889 0.926
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The last step of the simulation experiment was the study of bandwidth choice. For the sake
of simplicity we set h1 = h as above. First we always have had to determine numerically the
rejection boundaries for the special bandwidth h. Here we observed shrinking boundaries, when
h grew from 0.25 up to 2.25 . In figure 4 we plot the bandwidth vs the power of the test with
observations generated by f1c. Obviously for this kind of alternative we get better power for
larger bandwidths.

In the introductory example we dealt with youth unemployement. The question is, can we
explain the youth unemployement with the aforementioned predictor variables X in a single index
model with logit link? In the application of this dataset, we used a slightly modified numerical
procedure as described in Proenca and Ritter (1995). Further we rescaled the explanatory
variables of each dimension to [−1, 1]. Since there are three dimensions (d = 3) for a sample size
of n = 462, we chose the bandwidth h1 large, definitively 1.5, whereas h = 0.3. By Monte Carlo
studies described above we determined the 90 and 95% one side quantiles of T ∗462 and got 1.74
respectively 2.38 . Now we ran the test for our data and got the statistic value T ∗462 = 3.076 for
β = (−0.18010,−0.10725, 0.97778). For purpose of comparison in table 3 we switch the norm of
β and set his first component equal to the corresponding one of θ, the parameter of the logit fit
in figure 1.

Table 3: Comparison of θ and β.

explanatory intercept earnings as an percentage of apprentices unemployed
variables apprentice divided by employees rate

θ −2.40996 −0.07999 −0.17989 0.95113
β - −0.07999 −0.04763 0.43422

Appendix

Proof of Theorem 1. To simplify our exposition and to emphasize the main idea we consider
the case when the parametric family consists of one point, namely, a zero regression function,
and errors εi are independent and standard Gaussian. Moreover, we assume random design
with a design density π(x) in IRd of the form π(x) = π1(|x|) where a univariate function π1(·)
is compactly supported on [−1, 1], symmetric, twice continuously differentiable and satisfies
π1(t) = 3/4 for |t| ≤ 1/2.

The idea of the proof is standard. We replace the minimax problem by a Bayes one where we
consider instead of the set F1 of alternatives one Bayes alternative corresponding to a prior
ν concentrated on F1. We try to choose this prior ν in such a way that the likelihood Zν =
dPν/dP0 is close to 1 where the measure Pν is the Bayes measure for the prior ν and P0

corresponds to the case of zero regression function. The Neyman-Pearson Lemma yields that
the hypothesis H0 : P = P0 can not be consistently distinguished versus the Bayes alternative
Hν : P = P ν and hence versus the composite alternative H1 : P ∈ F1.

Now we describe the structure of the prior ν. Let g(·) be some function from the Hölder class
Σ(s, L), supported on [−1, 1] and satisfying the conditions∫

g(t) dt = 0, ‖g‖2 =
∫

g2(t) dt > 0.(52)

Set

h =

(
a
√

lnn

n

) 2
4s+1

(53)
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where a constant a will be chosen later. Denote by In the partition of the interval
[
−1

2 , 1
2

]
into

intervals of length h. Without loss of generality we assume that the cardinality of the set In

coincides with 1/h

#In =
1
h

.(54)

For each interval I ∈ In introduce a function gI(t) of the form

gI(t) = hsg

(
t− tI

h

)
,(55)

tI being the center of I. Evidently gI(·) is supported on I, gI ∈ Σ(s, L) and the followings hold
for h small enough: ∫

gI(t) dt = 0,

∫
g2
I (t) dt = h2s+1 ‖g‖2 .(56)

Let now µ be a set of binary values {µI , I ∈ In} i.e. µI = ±1. Define a function Gµ(t) with

Gµ(t) =
∑

I∈In

µI gI(t).(57)

This function Gµ ∈ Σ(s, L) vanishes outside
[
−1

2 , 1
2

]
and by (56)∫

G2
I(t) dt =

∑
I∈In

∫
g2
I (t) dt =

1
h

h2s+1
∫

g2(t) dt = h2s ‖g‖2 .(58)

Taking into account (53) we see that the distance between zero function and each Gµ is just of
the rate c2

n from Theorems 2.1 and 2.2.

Denote by Mn the set of all possible collections {µI , I ∈ In} with binaries µI = ±1, and let
m(dµ) be the uniform measure on Mn. This measure can be represented as the direct product
of binary measures mI(dµI) with mI(µI = ±1) = 1/2.

Now we pass to the semiparametric model. Let Sn be a grid on the unit sphere Sd with the step
bn,

bn = h1/8,(59)

h being from (53). This means that |β − β′| ≥ bn = h1/8 for each β, β′ ∈ Sn, β 6= β′. Below we
will use that for some α > 0

N = #Sn � nα(60)

and for n large enough

h lnn

|β − β′|4
≤ h lnn

b4
n

≤ h1/4 ∀β, β′ ∈ Sn, β 6= β′.(61)

For each β ∈ Sn and each µ ∈Mn define the multivariate function Gβ,µ(x) on IRd with

Gβ,µ(x) = Gµ(x>β).

It is clear that the function Gβ,µ(x) is Hölder, Gβ,µ(x) ∈ Σd(s, L), and by (58) we get∫
G2

β,µ(x) π(x) dx =
∫

G2
µ(x>β) π1(|x|) dx =

∫
G2

µ(t) π2(t) dt = C0h
2s(62)
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with π2(t) = d
dt

∫
1(x>β ≤ t) π1(|x|) dx and C0 ∈

[
1
2 ‖g‖

2 , ‖g‖2
]
.

Finally we take the prior ν as the uniform measure on the set of functions {Gβ,µ }, β ∈ Sn ,
µ ∈Mn, and

Pν =
1
N

∑
β∈Sn

1
M

∑
µ∈Mn

PGβ,µ
.(63)

Here M = #Mn = 21/h, N being from (60). Denote also Zν = dPν
dP0

and notice that this
likelihood can be represented in the form Zν = 1

N

∑
β∈Sn

Zβ with

Zβ =
1
M

∑
µ∈Mn

Zβ,µ =
1
M

∑
µ∈Mn

dPGβ,µ
/dP0.(64)

Our goal is to prove that for a small enough in (53) one has

Zν → 1(65)

under the measure P0.

We start from a decomposition and an asymptotic expansion for each Zβ from (64). For that
we need some more notation. Fix some β ∈ Sn and put

σ2
β,I =

∑
i

g2
I (X

>
i β), I ∈ In ,(66)

ξβ,I =
1

σβ,I

∑
i

gI(X>
i β) εI , I ∈ In .(67)

We see that ξβ,I are standard normal and independent for different I ∈ In , and∑
i

G2
β,µ(Xi) =

∑
i

G2
µ(X>

i β) =
∑

I∈In

σ2
β,I .

Recall that we assume the random design and

E
∑

i

G2
β,µ(Xi) = n

∫
G2

β,µ(x) π(x) dx = nC0h
2s.(68)

Similarly for each σ2
β,I

Eσ2
β,I = n

∫
g2
I (x

>β) π(x) dx = n

∫
g2
I (x

>β) π1(|x|) dx = nCIh
2s+1(69)

where CI does not depends on β and CI ∈
[
C0/

√
2,
√

2C0

]
.

Lemma 5.1
Zβ =

∏
I∈In

ch(σβ,I ξβ,I)e
− 1

2
σ2

β,I

where ch(z) = 1
2 (ez + e−z).
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Proof. By Girsanov formulae and (66)-(67)

Zβ,µ = exp

{∑
i

Gβ,µ(Xi) εi −
1
2

∑
i

G2
β,µ(Xi)

}
=

= exp

∑
I∈In

µIσβ,Iξβ,I −
1
2

∑
I∈In

σ2
β,I

 =

=
∏

I∈In

exp
{

µIσβ,Iξβ,I −
1
2
σ2

β,I

}
.

Now the lemma’s assertion follows from the direct product structure of the measure m(dµ).

Denote also
v2
β =

1
2

∑
I∈In

σ4
β,I ,(70)

ζβ =
1
vβ

∑
I∈In

σ2
β,I

(
ξ2
β,I − 1

)
.(71)

Lemma 5.2 The following statements hold:

(i) Eζβ = 0;

(ii) Eζ2
β = 1;

(iii) v2
β = C1n

2h4s+1 = C1 lnn with C1 ≤ a ;

(iv) There exists an independent standard normal r.v. ζ̃β that

lnn sup
β∈Sn

E0

(
ζ̃β − ζβ

)2
→ 0.

Proof. The first two statements are obvious. (iii) follows from (69). Finally, (iv) is the
application of the Strassen type invariance principle (see, e.g. ??).

The next step is the asymptotic expansion for each Zβ .

Lemma 5.3 The following statements are satisfied uniformly in β ∈ Sn: for each δ > 0

(i)

P0

(∣∣∣∣Zβ − exp
{

vβζβ −
1
2
v2
β

}∣∣∣∣ > δ

)
→ 0;

(ii)

P0

(∣∣∣∣Z̃β − exp
{

vβ ζ̃β −
1
2
v2
β

}∣∣∣∣ > δ

)
→ 0;



Parametric versus Semiparametric Regression 23

Proof. The first statement is equivalent to the following one:

P0

(∣∣∣∣lnZβ − vβζβ +
1
2
v2
β

∣∣∣∣ > δ

)
→ 0.

But the latter can be obtained using Taylor expansion for lnZβ

lnZβ =
∑

I∈In

ln ch(σβ,Iξβ,I)−
1
2
σ2

β,I =

=
∑

I∈In

[
1
2
σ2

β,I

(
ξ2
β,I − 1

)
− 1

12
σ4

β,Iξ
4
β,I + O(σ6

β,Iξ
6
β,I)

]

and the following asymptotic relations which hold uniformly in β

P0

∣∣∣∣∣∣
∑

I∈In

σ4
β,I(ξ

4
β,I − 3)

∣∣∣∣∣∣ > δ

 → 0;

P0

∣∣∣∣∣∣
∑

I∈In

σ6
β,Iξ

6
β,I

∣∣∣∣∣∣ > δ

 → 0;

for details we refer to Ingster(1993).

The second statement of the lemma follows directly from (iii) of Lemma 5.2.

Now we arrive at the central point of the proof. Actually we prove that ”submodels” corre-
sponding to different β are in some sense asymptotically independent. That is why we have to
pay with the extra log-term for the choice of ”direction” β.

Lemma 5.4 There exist a universal constant R such that for any β, β′ ∈ Sn, β 6= β′,

∣∣E ζβζβ′
∣∣ ≤ Rh

|β − β′|4
.(72)

Proof. Let us fix some β, β′ from Sn. Denote by ρ their scalar product,

ρ = (β, β′).

Now fix also some I, I ′ from In and set

r = r(β, I, β′, I ′) = E ξβ,Iξβ′,I′ .

Using normality of ξβ,I and ξβ′,I′ we calculate easily

E
(
ξ2
β,I − 1

) (
ξ2
β′,I′ − 1

)
= 4r2 − 2r.(73)

Below we state that r satisfies the condition

|r| ≤ Ch2/(1− ρ)2(74)
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with some universal constant C and now we show that this implies (72). In fact, through (73)
one has

E ζβζβ′ = E
1
vβ

∑
I∈In

σ2
β,I

(
ξ2
β,I − 1

) 1
vβ′

∑
I′∈In

σ2
β′,I′

(
ξ2
β′,I′ − 1

)
=

=
1
vβ

1
vβ′

∑
I∈In

∑
I′∈In

σ2
β,Iσ

2
β′,I′

[
4r2(β, I, β′, I ′)− 2r(β, I, β′, I ′)

]
and hence by (69) and (iii) of Lemma 5.2 we obtain

∣∣E ζβζβ′
∣∣ ≤ Ch2

(1− ρ)2
1
vβ

1
vβ′

∑
I∈In

∑
I′∈In

σ2
β,Iσ

2
β′,I′ ≤

Ch

(1− ρ)2

and (72) follows.

To prove (74) we note that

r = E ξβ,Iξβ′,I′ =

= E
1

σβ,Iσβ′,I′

∑
i

gI(X>
i β) gI′(X>

i β′) =

=
n

σβ,Iσβ′,I′

∫
gI(x>β) gI′(x>β′) π(x) dx.

Introduce new variables y1 and y2 with x>β = tI + hy1, x>β′ = tI′ + hy2. We have

|x|2 = (tI + hy1)
2 +

∣∣∣∣ tI′ + hy2 − ρ (tI + hy1)
1− ρ

∣∣∣∣2 ,(75)

r =
nh2s+2

σβ,Iσβ′,I′(1− ρ)

∫
g(y1) g(y2) π1(|x|2) dy1 dy2.

Now we use the Taylor expansion for the function p(y1, y2) = π1

(
|x|2

)
with |x|2 due to (75).

This function is continuous differentiable and all first derivatives are bounded by Ch/(1 − ρ)
with some constant C depending only on the function π1. Using the equality

∫
g(t) dt = 0 and

(69) we get

|r| ≤ Cnh2s+2h

nh2s+1(1− ρ)2
=

Ch2

(1− ρ)2
.

Now everything is prepared to complete the proof of (65). The results of Lemmas 5.2 and 5.3
reduce this assertion to the following one:

1
N

∑
β∈Sn

[
exp

{
vβ ζ̃β −

1
2
v2
β

}
− 1

]
→ 0(76)

under the measure P0. It suffices to check that

1
N2

E0

∣∣∣∣∣∣
∑

β∈Sn

(
Z̃β − 1

)∣∣∣∣∣∣
2

→ 0
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with
Z̃β = exp

{
vβ ζ̃β −

1
2
v2
β

}
.

Using normality of ζ̃β and (iii) of Lemma 5.2 one derives

E0

[
exp

{
vβ ζ̃β −

1
2
v2
β

}
− 1

]2
= exp

{
v2
β

}
≤ na.

For different β, β′ ∈ Sn denote r = E0ζ̃β ζ̃β′ . Then ζ̃β′ can be represented in the form ζ̃β′ =
rζ̃β + (1− r)ζ ′ with ζ ′ independent of ζ̃β. Now

E0Z̃βZ̃β′ = E0 exp
{

(vβ + rvβ′)ζ̃β −
1
2
v2
β

}
exp

{
(1− r)vβ′ζ ′ − 1

2
v2
β′

}
=

= exp
{

1
2
(vβ + rvβ′)2 − 1

2
v2
β + (1− r)2v2

β′ −
1
2
v2
β′

}
=

= exp
{

rvβvβ′ − rv2
β′ +

1
2
r2(v2

β + v2
β′)
}

.

The results of Lemma 5.4 and (iv) of Lemma 5.2 allow us to obtain

E0

(
Z̃β − 1

) (
Z̃β′ − 1

)
= E0Z̃βZ̃β′ + 1 ≤ Cr lnn.

Finally, by (61), Lemma 5.4 and (iii),(iv) of Lemma 5.2 we derive

1
N2

E0

∣∣∣∣∣∣
∑

β∈Sn

(
Z̃β − 1

)∣∣∣∣∣∣
2

=

=
1

N2

∑
β∈Sn

E0

(
Z̃β − 1

)2
+

1
N2

∑
β∈Sn

∑
β′∈Sn,β′ 6=β

E0

(
Z̃β − 1

) (
Z̃β′ − 1

)
≤

≤ 1
N2

∑
β∈Sn

ev2
β +

1
N2

∑
β∈Sn

∑
β′∈Sn,β′ 6=β

Ch lnn

|β − β′|4
≤

≤ 1
N2

na +
Ch lnn

b4
n

→ 0

if a is small enough.
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Abstract 

In this paper we consider a class of dynamic models in which both the conditional 
mean and the conditional variance (volatility) are unknown functions of  the past. We first 
derive probabilistic conditions under which nonparametric estimation of these functions is 
possible. We then construct an estimator based on local polynomial fitting. We examine 
the rates of convergence of these estimators and give a result on their asymptotic normal- 
ity. The local polynomial fitting of the vo1atility function is applied to different foreigr; 
exchange rate series. We find an asymmetric U-shaped 'smiling face' form of the volatility 
fimction. 6 1997 EIsevier Science S.A. 

Key words: Local polynomials; Nonlinear time series; Nonlinear autoregression; 
Volatility 
JEL classification: C14; C22 

1. Noaparsmetric autoregtession with unknown volatility 

The time series literature has provided many new approaches for dynamic 
econometric modelling. For example, vector autoregressive models are now 
widely used as an alternative to structural models (Liitkepohl, 1992). However, 
this literature is mostly devoted to the (linear) conditional mean (given the past). 
The conditional variance is assumed to be fixed or of specific form. In the begin- 
ning of the eighties this drawback has been stressed by Engle (1982), Robinson 
( 1983,1984) in the econometric literature and by Collomb ( 1984), Vieu ( 1995) in 
the statistical literature. In the framework of the ARCH models (Engle, 1482) the 
conditional variance is often specified as a linear fimction of the squared values 
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of the part innovations, although nonparametric and semiparametric approaches 
(Gregory, 1989; Engle and Gonzales-Rivera, 1989) have also been proposed. 
To our knowledge the first paper that models both the conditional mean and 
the conditional variance in a flexible nonparametric way is by GouriCroux and 
Monfort (1992). Their model is in the case of one lag: 

and is called a Qualitative threshold ARCH (QTARCH(1)) model. Here (~~}f , ,  
with fixed J denotes a partition of the set of values for Y ,  (a,),(&) are un- 
known parameter vectors and matrices respectively, and ci is white noise. It is 
a generalisation of .the threshold models for the conditional mean (Tong, 1983). 

In this paper we generalize model (1.1) to a wider class of conditional mean 
and variance functions. In a sense the following model can be seen as a limit of 
(1.1) for J -+ oo: 

where Si are i.i.d. random variables, E ( t i )  = 0, ~ ( 4 :  ) = 1, f and s are unknown 
functions on R' , s ( y )  > 0, Vy E R1, and Yo is a random variable independent of 
{t i ) .  We :-tudy the problem of estimation of the volatility function v(x)=s2(x) ,  
given a sample f i , .  . . , Y,. 

The model (1  2) was widely studied in financial time series context, especially 
under the assumption of ARCH structure (Engle, 1982). We are interested in the 
nonparametric situation where the exact parametric form of f(m) and s(m) is not 
predefined. Interest in this approach has grown in the economics and statistics 
literature. The method of GouriCroux and Monfort (1992), and the paper of McK- 
eague and Zhang (1994) are based on histogram type estimators of volatility. The 
papers by Chen and Tsay (1993a,b) concentrate on additive modelling for the 
mean function f. Here we propose a general class of volatility function estima- 
tors based on local plynomiat (LP) estimation. The advantage of such estimators 
is that they approximate the volatility function better when it is smoother. 

The idea of local polynomial estimation goes up to Stone (1977), Cleveland 
( 1979) and Katkovnik ( 1979,1985), who applied it for nonparmetric regression 
models. For the study of statistical properties of LP estimators in nonparametric 
regression (convergence, rate of convergence and pointwise asymptotic normality) 
we refer to Tsybakov (1986). For the references on more recent work in this 
area see Fan and Gijbels (1996). In the present paper we mudie the original LP 
approach by considering the joint LP-estimation of conditional mean and volatility 
function. Also, we treat the time-series model (1.2), instead of the classical i.i.d, 
nonparametric regression model. The main result of this paper is pointwise joint 
asymptotic normality of LP-estimators of conditional mean and volati Wy. 
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Inspection of the proofs in Section 5 shows that this result also holds (with ob- 
vious reformulation) for the nonparametric regression model with heteroscedastic 
errors: & = f ( X )  + s(Xi)Cj, where ei are as in (1.2), (Xi, K) are i.i.d., and the 
design points (X;-)  are independent of {ti). 

Along with statistical studies of the model (1.2), we mention the work on 
probabilistic properties of the process ( 1.2): Doukhan and Ghindes ( l98O,l98 1 ), 
Chan and Tong (1985), Mokkadem (1987), Diebolt and Guegan (1990) and 
Ango Nze (1992). In these papers the ergodicity, geometric ergodicity and mixing 
properties of the process {K} are derived under appropriate conditions. 

2. The estimator 

Note that, if {&} were a stationary process, we would have 

In fact, {&) approaches a stationary process, as i+ oo. Thus, we l w k  for an 
estimator of v of the form 

where &(x)  is an estimator of 

and i ( x )  is an estimator off (x) .  In order to define and in by the LP method, 
consider the following minimisation problems: 

c€R1 i=l 
zn(x = arg min 2 ( Y,-Z - cT Q,, )'K ('-in 

where K :  R1 --+ R1 is a kernel and h, is a 
as n-roo,  

The estimator &(x) of u(x)  is defined as 

positive number (bandwidth), h, --, 0, 
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Fig. la. DM/US$ exchange rate series. 

CONDITfONAL VARIANCE EST. 

Fig. 1 b. The estimated volatility function fi(y,- 1 ). 

This is a straightforward modification of the local polynomial nonpararnetric re- 
gression estimator, as defined in Tsybakov ( 1986). 

Fig. la shows us the DM/US-dollar foreign exchange rate from 1 October 
1992 to 30 September 1993 in 20 min intervals. There are n = 25,144 
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observations. For a definition of 'time' in this series we refer to Bossaerts and 
Hiirdle ( 1995 ). 

We formed the returns of this series and applied the estimator (2.5) to the 
time series of returns. The estimated volatility h c t i o n  as displayed in Fig. Ib 
shows a U-shaped structure, also called a 'smiling face'. It says that risks of 
returns are much higher for extreme values taken on the past day. There is 
a boundary effect on the right edge of the interval where the estimated volatility 
fhnction decreases. This is due to only a few observations at this time end and 
is unavoidable in this context, see Miifler (1988). 

3. The result 

Assume the following. 
(Al) E((:)= 1, E(tl)=E(C:)=O, and m 4 = ~ { ( 5 :  - 1)2)too. 
(A2) The density p(m) of exists and satisfies infxEXp(x)>0 for any compact 

X c R ' .  
(A3) There exist constants C1 > 0, C2 > 0 such that 

(A4) The function s(m) satisfies infyEJr s ( y )  > 0, for any compact X c R' . 
(A51 C1 + C2EITr 1  < 1. 

Assumptions (A2), (A4) guarantee that the process (1.1) does not die out 
whereas (A3) and (A5) are conditions for ( 4 )  not to explode. 

The following lemma given by Ango Nze (1992) guarantees ergodicity of the 
process {K). It is based on application of results of Nwnmeiin and Tuominen 
(1 982) and Tweedie (1975). 

Lemma 3.1. Under the conditions (A1 )-(AS) the Markov chain {K) is geo- 
metrically ergodic, i.e. it is ergodic, with stationary probabilify measure x(a) 
such that, for almost every y, 

for some 0 S p < 1. Here Pn(B]y) = P(Y, E 4 Yo = y ) ,  for a Borel subset B c R', 
and 11 1 1 ~ ~  is the total wriation distance. 

Now we state the conditions necesaq  to derive asymptotic normality of &(x) 
at a fixed point x E R1. 
(A6) The knctions f and s are ( I  - 1 ) times continuously differentiable and 

there exist one-sided derivatives f Z1((x), s(:)(x), at the point x E R1. 
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(A7) The density p(m) of  the stationary distribution n ( m )  exists, is bounded, 
continuous and strictly positive in a neighbowhood of the point x. 

(A8) The kernel K :  W' + R+ is a compactly supported bounded function, such 
that K > 0 on a set of positive Lebesgue measure. 

(A9) h, = fln-l'(zl+' 1, where f l >  0. 
{A 10) The initial value Yo is a fixed number in R1. 

Define the following matrices A = S F ( U ) F ~ ( U ) K ( U )  du, @ = J F ( u ) F ~ ( u )  x 
J12(u)du. Condition (A.8) implies that A and @ are positive definite, see Lemma 1 
of Tsybakov ( 1986). Set 93 = A- I  @A*'. Let 

and define the asymptotic biases 

Denote 

c(x) = 

Theorem 3.1. Assume (A1 )-(AlO). Then 

{Fn(x) -* F ( x ) } ~ F ( c )  3 0, {c~(x) - c ( x ) ) ~ F ( o )  4 0, 

and 

as n --+ oo, where 
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Here 9' @ 9 denotes the Kronecker product of matrices 9' and 9. A simple 
consequence of this theorem is the following. 

Theorem 3.2. Assume (A 1 )-(A 10)- Then 

as n -+ oo, where 

Consider the special case of I = 2, and assume that f and s are twice continu- 
ously differentiable, and that the kernel K satisfies S K(u)du = 1, K(u) = K(-u). 
Then 

bf ( x )  = A- I p 2 f f w  2 ($1 = ( & f 1 2 f y 2 )  9 

Journal of Econometrics, 81, 223-242

(1997)  Härdle, W. and Tsybakov, A. 
Local polynomial estimators of the volatility function in nonparametric autoregression.



230 W Nardk, A. Tsybakoo lJournu1 of Econometrics 81 (1997) 223-242 

In particular, the normalized squared error of 6,(m) calculated from the asymp- 
totical distribution is 

Minimisation of this expression with respect to K and p leads to the Epanech- 
nikov kernel K(u) = K* ( u )  = a( 1 - 3 )+ and to the following value of j?: 

so that 

4. Simulations and finance applications 

We did a simulation study of finite sample properties of the LP estimation 
method. We generated a process of the form ( I .  I ) with the logistic mean function 
f ( x )  = 1/{ 1 + exp(-x)), and volatility function s(x) = cp(x + 1.2) + 1.5cp(x - 1.2), 
where tp denotes the pdf of standard normal distribution. The errors Ci were 
chosen to be uniformly distributed, the kernel was the quartic one, K(u)=  
15 E( 1 - u2)*1()u) < 1 ), the local polynomial approximation was chosen to be linear 
(1 =2).  The bandwidth was selected by cross-validation; n = 1000 observations 
were generated. 'Ihe LP algorithm and all other computations were done in 
XploRe, see Hardle et al. (1995). 

In Fig. 2a we show the time series as a scatterplot in the form (K-1, I$) and 
the estimate f of the logistic mean hnction f. The little peak at the right is due 
to boundary effects. Fig. 2b gives the bimodal scaling b c t i o n  s(x)  = ( v ( x ) }  ' I2 ,  
together with its estimate i(x) = {ii(x))'12. There are almost no observations on 
the right side as can be seen from Fig. 2a. The sparseness of the observations 
there is responsable for this jagged behaviour of 6(x). 

As an application, we report the YEN/DM foreign exchange rate. We used the 
same LP technique as described above but applied it to the returns time series 
as in the introductory example (Figs. 2a and b). 

The YEN/DM series were computed in 20min intervals as an average of the 
bid/ask spot rate. For details concerning this financial market application we refer 
to Bossaerts and Hardle ( I  995). The series is shown in Fig. 2c. The corresponding 
estimate i? of the volatility function v is displayed in Fig. 2d. It shows again the 
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REGRESSION FIT 

Fig. 2b. The true function s(x) and the estimate   if^)}'/^. 

Fig. 2a. The time series and j. 

SIGMA AND ESTIMATOR 

U-shaped form that we have seen already for the DM/US$ exchange rate. Note 
that the curve returns to zero at the boundaries. This effect is, as explained before, 
to be attributed to the small density p(x) (see (A2)). 
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TIME PLOT YEN / DM - I I t 

Fig. 2c. YEN/DM foreign exchange rate. 

CONDTFIONAL VARIANCE EST. 
I t I I I I I 

Fig. 2d. The volatility function for the YEN/DM exchange rate. 

Proof of Theorem 3.1. The normal equations for the first LS problem in (5.3) 
are 
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where the matrix 

On the other hand 

and 

q2 = ~(K-~)+~/(Y;:-I)S(&-I)C +s2(&1)(5: - 1). (5-3 ) 

By Taylor expansion of g = f * + s2 we get 

= ra(K- 1 ,x). 

From i5.1)-(5.4) we find 

qn(x) = P Z - ' ' ( ~ ~ + ' )  5 arUnK(uin ), 
i= 1 

and 

ai = 2 f(yi-1)s(Yi-1)5, + s2(yl-l)(<; - 1). 

Calculations similar to (5.1 )-(5.5) give 

n ' / ( 2 ' + 1 ) ~ { c n ( x )  - c(x ) )  = bn(x) + q,,(x), 

where 
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with pi = s(K- 1 ) t i .  The proof of Theorem 3.1 will be based on the following 
steps. 

First, we show that, elementwise, 

as n oo, where B =  /?p(x)A is a positive definite matrix. Next we show the 
relations 

&(x) 2 Bb&) as n - o o ,  ( 5 - 8 )  

Finally, we show that the compound random vector is asymptotically normal: 

where 

Together (5.7)-(5.10) and the relation (cf. (5.5) and (5 .6) )  

entail (3.4). To prove (3.3) it suffices to show that 

as n --, oo. Tn fact, combining (5.1 1 ) and (5.5 X 5 . 9 )  yiclds (3.3). It remains to 
prove (5.7)  to (5.1 1 ). 

W e  will need some auxiliary results. 

Lemma 5.1 (Davydov, 1373). Let { x) be a genmetricaUy ergodic Markov 
chain, where Yo is distributed rvirh its sftationury distribution n(m). Then the 
chain is geometrically strongly mixing wit,t the mixing coeflcients satisfying 
a(n) 4 cop$ for some 0 < po c 1, co > 0. 

Denote Sk = u(Yk, Y k - I , .  . . , Yo) the o-algebra generated by Yo,. . . , Yk. 

Lemr ta 5-2 (Liptser and Shi jaw, 1980, Corollary 6). Let for every n > 0, the 
sequence qn = ( q n k ,  Yk ) be a squarc integrable martingale diflerence, i.e. 

E ( q n k l . F k - ~ ) = O ,  ~(q i~ )cm,  1 < k < n .  (5.12) 
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and let 

Tho conditions 

(VE > 0 )  are suficient for convergence 

Now we proceed to the proof of (5.7)-(5.11). Introduce some more notation 
and define the matrices 

and the compound matrix 

Lemma 5.3. Under the condiriuns of Theorem 3.1 we have 

as n + oo, provided cpl(m) is a bounded con~inuous function and m(m) i s  
a bounded jimcrion. 

Proof: Let { &* ) be a Markov chain satisfying ( 1.2), such that Yo = Y,' has the 
stationary distribution ~ ( m )  introduced in Lemma 3.1. This chain is stationary 
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and by Lemma 5.1 it is geometrically strongly mixing (a-mixing). Therefore 

as n + cro, where u;, = (Y;, - x)/h,, . Now, 

as n --* oo. On the other hand, denoting for brevity 

and choosing an integer y,, = ~ ( n ( ~ ' / ( ~ ~ + l ) ) ) ,  such that y, + 00 as n - m, 
we get 

In view of geometric ergodicity of ( x} (Lemma 3.1 ) we have 
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where p i ( e )  is the density of Applying Markov's inequality and combining 
(5.1 7 x 5 2 0 )  we get (5.16). 

The correctness of (5.7) is shown in 

Lemma 5.4. Under the conditions of Theorem 3.1 we have elementwise 

and 

PruoJ The elements of matrices l?" and Z., are of  the form 

where cpl(m) is a bounded continuous fhction and p 2 ( 4  is a bounded fbnc- 
tion. Applying Lemma 5.3, we get the result. In particular, for En the functions 
cpl(5-1) are of the form 

where we used i I ) .  Note that, by (A6) these k c t i o m  are continuous and 
bounded in any Aghbourhd of x. Since K is compactly supported, it suffices 
to have bounde -ess and continuity of c p l  in a neighbourhd of  x, and thus 
these particular examples of t p l ( m )  satisfy the conditions of Lemma 5.3. 

Let us now prove (5.8) and (5.9). 

Lemma 5.5. Under the conditions of Theorem 3.1 we have (5.8) and (5.9). 

ProoJ: Consider (5.8) only, since the proof of (5.9) is  quite similar. Since s and 
f satisfy (A@, it is clear that g = f + 2 also does. Note that 
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where 

and thus 

The elements of &) are of the form described in 
and (5.20), we get, with Uz = F(u&), 

- t ) ' - l  dt, 

Lemma 5.3. Following (5.19) 

as n -4 oo. Since ( v )  is a-mixing, we get, as in (5.17), 

as n 3 0 0 .  
To end the proof, note that 

for any u E W1. Using (5.22) and (A7), we find 

Lemma 5.6. Under the conditions of Theorem 3.1 we haue (5.1 1 ). 
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Proof; For the sake of brevity, we show only that n - ~ ( 2 1 + 1 ) q ~ ( x ) ~ ( ~ )  3 0, as 
n+m.  We have 

By (AS), the value d* = max(lul: u E supp K) < oo and K is bounded. Hence, 

where KO > 0 is a constant. Now, 

( IK-1 <d* 
'I h. 

sup 2(y)<w, 
I y-xl 6hnd' 

if  n is large enough. This yields the lemma. El 

To prove Theorem 3.1 it remains to show (5.10). 

Proof of (5.10). By the Cram&-Wold device it suffices to prove 

for any vector a E @* with unit Euclidean norm: la1 = I. 
Fix such a vector a, and let no be the integer such that E(Zn)> $& for all 

n ano.  Such an integer no exists since, by Lemma 5.4, E(Cn) --, Co >O element- 
wise, as n + oo. From now on consider only n3no. Denote 

Then 
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and the convergence (5.23) is equivalent to the convergence 

Let us prove this relation by using Lemma 5.2. Let us check the conditions 
(5.12)-(5- 15) of Lemma 5.2. First, E(ai l 9 i -  1 ) = 0, E(Pi IPi- ) = 0 (a.s.), and 
thus the equality in (5.12) holds. It is easy to check that 

Hence (5.13) holds, and Lemma 5.4 gives (5.14). It remains to prove (5.15). 
Since n >no, we obtain 

where ul > 0 is a constant and 

Therefore, using the fact that K is bounded and comp 
s are focally bounded, we find 

r supported, and f and 

as n -+ oo, where o(1) does not depend on k. This entails 

E ( 1  n k  1 2 ) 1 . -  1 ) o 1 ) 2 2 1  ( as n 4 m. (5.24) 
& = I  k=l 

By Lemma 5.3 

Using (5.24) and (5.25), we obtain (5.15). This proves the theorem. 

Journal of Econometrics, 81, 223-242

(1997)  Härdle, W. and Tsybakov, A. 
Local polynomial estimators of the volatility function in nonparametric autoregression.



W. Hiirdle, A. Tsybukov l Journal of Econometrics 81 (1997) 223-242 

Proof of Theorem 3.2. We have 

Hence, 

as n + oo. It remains to note that c (x )~F(O)  = f (x) and to apply (3.4). 
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An Analysis of Transformations for Additive 
Nonparametric Regression 

Oliver B. LINTON, Rong CHEN, Naiysin WANG, and Wolfgang HARDLE 

We consider a nonparametric regression model with a parametric family of dependent variable transformations, one of which 
induces additive covariate effects. We estimate the additive regression effects using the integration method and estimate the 
transformation parameter from a profiled instrumental variable and pseudolikelihood criterion. The asymptotic distributions of the 
parameter and regression estimates are given. The practical performance is investigated via an application. 

KEY WORDS: Box-Cox transformation; Dimensionality reduction; Kernels. 

1. INTRODUCTION 

Taking transformations of the data has been an integral 
part of statistical practice for many years. Transformations 
have been used to aid interpretability as well as to improve 
statistical performance. An important contribution to this 
methodology was made by Box and Cox (1964), who pro- 
posed a parametric power family of transformations that 
nested the logarithm and the level. They suggested that 
.the power transformation, when applied to the dependent 
variable in a linear regression setting, might induce nor- 
mality, error variance homogeneity, and additivity of ef- 
fects. They proposed estimation methods for the regression 
and transformation parameters. Carroll and Ruppert (1984) 
suggested applying this and other transformations to both 
dependent and independent variables. A number of other 
dependent variable transformations have been suggested- 
for example, the Zellner-Revankar transform (see Zellner 
and Revankar 1969). The transformation methodology has 
been quite successful, and a large literature now exists on 
this subject for parametric models (see Carroll and Ruppert 
1988). There are also a number of applications to economics 
data (see Ehrlich 1977; Heckman and Polachek 1974; Hul- 
ten and Wykoff 1981; Zarembka 1968; Zellner and Re- 
vankar 1969). 

We work with transformations inside a regression set- 
ting. For many data, the linearity of covariate effect after 
transformation may be too strong. For example, a respected 
study of the effects of schooling and experience on earn- 
ings (Heckman and Polachek 1974, p. 350) found that al- 
though their data supported the logarithmic transformation 
of their dependent variable earnings, it was "somewhat less 
clear on the functional form for the independent variables." 
We thus consider a more general specification, allowing for 
nonparametric covariate effects. Let ( X ,  Y )  be a random 
variable with X E IRd and Y E IR,  and let { ( X i ,  K))y=l be 
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an iid sample from this population. Consider the estimation 
of the regression function m ( x )  = E ( Y X  = x ) .  Ibragi- 
mov and Hasminskii (1980) and Stone (1980, 1982) showed 
that the optimal rate for estimating m is n-1/(21+d), with 1 
a measure of the smoothness of m .  This rate of conver- 
gence can be very slow for large dimensions d. One way 
of achieving better rates of convergence is through addi- 
tive modeling. An additive structure for m is a regression 

d function of the form m ( x )  = c + C,=, m,(x,), where 
x = ( x l ,  . . . , xd)'  are the d-dimensional predictor variables 
and m, are one-dimensional nonparametric functions with 
E{m,(X,)}  = 0. Stone (1986) showed that for such re- 
gression curves, the optimal rate for estimating m is the 
one-dimensional rate of convergence n-1/(21+1). Thus one 
speaks of dimensionality reduction through additive mod- 
eling. 

We examine a semiparan~etric model that combines a 
parametric transformation with the flexibility of an addi- 
tive nonparametric regression function. For a parametric 
family of transforms O x  (.), X E A c R, define the regres- 
sion functions m x ( x )  = E {Ox(Y)IX1 = x l ,  . . . , X d  = x d } ,  
and suppose that for some unique Xo E A, 

where g,(.) are of unknown form with E{g,(X,)) = 

0,  a = 1, . . . , d. This model was previously addressed 
by Hastie and Tibshirani (1990, p. 187). They suggested 
estimation procedures based on the iterative backfitting 
method; however, they did not provide many results about 
the statistical properties of their procedures. Breiman and 
Friedman (1985) suggested a generalization of (I), called al- 
ternating conditional expectation (ACE), in which the trans- 
formation is not restricted to be parametric. Again, plausi- 
ble estimation procedures are available, but little is known 
about their statistical properties. Finally, Tibshirani (1988) 
suggested a modification of the ACE estimation algorithm, 
called additivity and variance stabilization (AVAS). This has 
several advantages over the ACE algorithm: in particular, it 
reproduces model transformations and is equivariant under 
monotone transformations. 
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Independently, Linton and Nielsen (1995), Newey (1994), 
and Tjmstheim and Auestad (1991, 1994), introduced a 
new method for estimating additive nonparametric models 
(when the transformation is known) that is based on direct 
integration of an initial pilot smoother of the regression 
function. It has been possible to prove a central limit theo- 
rem for this estimator because of its mathematical tractabil- 
ity. We extend their theory to the semiparametric model 
(1). We use the semiparametric profile method described 
by Bickel, Klaassen, Ritov, and Wellner (1993) to estimate 
the parameters X O  E A c R in (1). This uses a preliminary 
integration estimate of the additive components of mx.  We 
also show how to estimate the constant c, the univariate 
component functions g,(.), and the nonparametric regres- 
sion function mx (.) . We derive the asymptotic distributions 
of our estimators under standard regularity conditions. The 
estimator of Xo is root-n consistent, whereas the estimates 
of g,(x,) and m x ( x )  are consistent at the one-dimensional 
rate of n2I5. 

The article is organized as follows. In Section 2 we give 
an outline of the integration method and explain how it can 
circumvent the curse of dimensionality. In Section 3 we 
define the estimation procedures for both parametric and 
nonparametric parts. In Section 4 we give the asymptotic 
properties of the procedures. In Section 5 we illustrate our 
methods in an application and on simulated data. The Ap- 
pendixes contain the proofs of all results. 

2. THE INTEGRATION METHOD 

Suppose that we have some pilot estimator f * (x l ,  x2) of 
a function f ( X I ,  2 2 )  of the scalar X I  and the d - 1 variables 
2 2 .  Define the integration estimator 

for any d - 1-dimensional signed measure Q. Usually, 
Q  will be a probability measure. If the estimated func- 
tion were additive-that is, f ( x l ,  x2) = f l  ( x l )  + f 2  (x2)- 
then would consistently estimate f l ( . )  plus a con- 
stant that is the same for all x l .  Likewise, if the function 
were multiplicative-that is, f ( x l ,  x z )  = f l  ( x l )  f2(x2)-  
then g1 (.) would consistently estimate f l  (.) times a con- 
stant that is the same for all X I .  This is the basic idea behind 
the integration method. Of course, it is also important to 
know whether one can also obtain the one-dimensional rate 
of convergence for (.). Intuitively, this will hold because 
integration is averaging and so reduces variance; a proof of 
this was first given by Newey (1994). However, the depen- 
dency of F l ( x l )  on the high-dimensional pilot smoother 
f ( x l , x 2 )  suggests that the p l ( z l )  may suffer somewhat 
from the curse of dimensionality. This viewpoint is sup- 
ported by the fact that in the currently available central limit 
theorem proofs (see Chen, Hardle, Linton, and Severance- 
Lossin 1996; Linton and Hardle 1996; Newey 1994), it 
has been necessary to use bias reduction when the dimen- 
sions were greater than four. As usual, the conditions given 
there were sufficient but not necessary; in our opinion, they 

can be weakened considerably. To support this viewpoint, 
we give a different interpretation of the integration esti- 
mator. 

To focus ideas, we look at density estimation. Let 

be a product kernel density estimate based on an iid sam- 
ple {X,);=, partitioned as earlier. When the dimensions d  
are large, f ( x l ,  x 2 )  has very poor performance. Now sup- 
pose that we integrate f ( x l ,  x2) with respect to Lebesgue 
measure, that is, take dQ(x2)  = dx2 in (2), and let 

By the usual change of variables, we obtain exactly 

which is the one-dimensional kernel density estimate of 
f l  ( x l )  = j" f ( x l ,  x 2 )  dx2. Thus integration has taken a d- 
dimensional smoother into a one-dimensional smooth and 
completely eliminated the second bandwidth h2. 

In regression the pilot estimators typically used are more 
complicated than (3), and we cannot go from step (4) to (5) 
exactly; some approximation argument is necessary. How- 
ever, we would like to suggest that even in this case the in- 
tegration estimator can be interpreted as a one-dimensional 
smooth. Recent work by Hengartner (1996) confirms this 
view. 

3. ESTIMATION 

To estimate the quantities of interest, we use a multi- 
stage procedure. In the first part we estimate the transfor- 
mation using the semiparametric profile method, discussed 
by Bickel et al. (1993). This requires an estimate of the re- 
gression functions for each parameter value. In the second 
part we estimate the additive regression function using the 
estimated transformation. 

1. For each A,  mx is estimated by a multidimensional 
kernel smoother m x .  

2. For each direction a, the pilot estimate is then inte- 
grated to obtain an estimate of the individual effect of X ,  
on Y in the X scale. The individual effect estimates are 
combined to form an "additive reconstruction" mx. A de- 
tailed description of the integration method is given in Sec- 
tion 3.1. 
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3. We define a criterion function for X depending on the 
profiled estimate f ix .  We choose A to optimize this crite- 
rion. 

4. Finally, we construct a new kernel smoother mi  using 
the estimated A, and obtain the final additive estimate f i x  

by integration. 

Note that in Steps 1-3, we are concerned only with the 
properties of A. 

3.1 Nonparametric Estima'Lion 

Step 1 involves estimating a regression function for the 
sample { X i ,  Ox(Y,)}r=l for any A. We estimate m ~ ( x )  using 
the multidimensional Nadaraya-Watson estimator, 

where K 1 , .  . . , Kd are univariate kernels and h l ( n ) ,  . . . , 
h d ( n )  are bandwidth sequences, one for each direction. 
When our ultimate goal is to estimate A, we take com- 
mon bandwidth and kernel for notational simplicity; oth- 
erwise, we allow both kernel and bandwidth to vary with 
direction. For each a = 1 , .  . . , d, partition x  = ( x , , ~ , ) ,  
where x ,  is a one-dimensional direction of interest and & 
is a d - 1-dimensional nuisance direction; do likewise with 
X = (X,,  X,) - and Xi  = ( X a i ,  Xa i ) .  - Now define 

This is the empirical integration estimator of Chen et al. 
(1996). Let p  be the joint density of X I , .  . . , X d ,  let p, be 
the marginal density of X,, and let p, be the joint density 
of X,. Then T,(x,; A) consistently estimates the population 
quantity 

In fact, under the additive model (I), y,(x,; X o )  = c  + 
g, (x,). More generally, one could interpret y,(x,; A) as 
one aspect of the univariate effect of the covariate on the 
transformed dependent variable. This is the point of view 
expressed by Newey (1994) in connection with econometric 
applications. Now, let 

where E x  = n-l Cy=l OA(Y,). Then k x ( x )  consistently es- 
timates 

where cx = E{Ox (Y ) ) .  Note that f i x ,  ( x )  = mxo ( x ) ;  that is, 
combining the covariate effects in the X O  scale gives us the 
regression function. However, m x ( x )  f m x ( x )  for X f X o .  

This information is used to identify X O .  We implement (6), 
and hence (7) and (8), in several different ways according 
to our purpose. 

3.2 Estimation of X 

To estimate A, we use a nonlinear instrumental variable 
procedure. The assumed properties of the mean are used to 
generate first-order conditions that identify the parameter A. 
This method has been widely used in estimating simultane- 
ous equation systems and in certain dynamic models, and 
was used by Amemiya and Powell (1981) in the parametric 
Box-Cox model. [See Newey and McFadden (1994 p. 21 16) 
for background references and discussion. See also Angrist, 
Imbens, and Rubin (1996) for a connection between instru- 
mental variables and the Rubin causal model used in causal 
inference.] 

Let Z i ,  i = 1 , .  . . , n, be a J  by 1 vector of iid instruments 
with the property that 

for a unique X o .  The instruments must satisfy an addi- 
tional identification condition, which we discuss in Sec- 
tion 4. Examples of valid instruments include functions 
of the X's themselves. Let Z  = ( Z 1 , .  . . , Z,)', @A = 

(ex(Y~) ,  . . . , O x ( K ) ) ' ,  and M A  = (&, (XI) ,  . . . , h ~ ( X n ) ) ' ,  
and define to be any minimizer of 

where W n  is a sequence of J by J weighting matrices sat- 
isfying W ,  -?: W a positive definite matrix. A simple fea- 
sible choice for W ,  is the identity matrix. We discuss how 
more efficiency can be obtained by wiser choice of W,. In 
our application we computed by grid search, but iterative 
techniques such as Newton-Raphson also work well here. 

An alternative method for estimating X is the full Gaus- 
sian pseudolikelihood (see Box and Cox 1964). After pro- 
filing out a variance parameter, this amounts to choosing 
that minimizes 

where Jx( . )  is the Jacobian of the transformation y -+ 

Ox(y).  (See Carroll and Ruppert 1988, pp. 124-127, for 
more discussion of this method in the parametric regres- 
sion problem. A robust version of this procedure was given 
in Carroll 1980.) 

An alternative way to proceed is to profile both c  and X 
out by using fix,,(x) = c:=, 9,(2,; A) - (d - l ) c  in place 
of h x , , ( x ) ,  and to construct profiled criteria Q,(A, c) or 
L,(X, c) ,  which are then optimized with respect to both c  
and A. We restrict attention to the simpler procedure based 
on profiling only A. In this case, given estimates of A, we 
define estimators of c, g,(.), and mx,(.) as in Section 3.1. 
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3.3 Discussion 

Among the many examples of interest, the following ones 
are used most commonly: 

Box-Cox: Q x ( y )  = ( y X  - l ) / X ;  J x ( y )  = 

Zellner-Revankar: Q x ( y )  = In y  + X y 2 ;  J x ( y )  = y-l+2Xy 
2 -1/2. arcsinh: Q x ( y )  = sinh-l(Xy)/X; J x ( y )  = ( 1  + Xy ) 

The arcsinh transform was discussed by Johnson (1949) and 
more recently by Robinson (1991). The main advantage of 
the arcsinh transform is that it works for y  taking any value, 
whereas the Box-Cox and the Zellner-Revankar transforms 
are defined only if y  is positive. For these transformations, 
the error term cannot be normally distributed except for 
a few isolated parameters, and so the Gaussian likelihood 
is misspecified. In fact, as Amemiya and Powell (1981) 
pointed out, the resulting estimators (in the parametric case) 
are inconsistent only when n -+ x. This is the main advan- 
tage of the instrumental variable criterion; it is consistent 
even for these transformations under general sampling con- 
ditions. However, we note that Bickel and Doksum (1981) 
established consistency of the Gaussian pseudolikelihood 
procedure when both n -+ m and a -+ 0, where a is the 
scale of the error term. 

We subsequently focus on the instrumental variable pro- 
cedure in our treatment of the asymptotics. 

4. ASYMPTOTIC PROPERTIES 

We develop asymptotic approximations for the instru- 
mental variable estimator A, as n -+ x. Under similar 
conditions, is also consistent for some transformations 
(although not the Box-Cox as discussed earlier). Finally, 
we establish the asymptotic distribution of the covariate ef- 
fects. We give three theorems. As far as the properties of 
A are concerned, we use a common kernel K and band- 
width h in (6). For consistency of A, second-order kernels 
suffice, whereas to achieve root-n consistency we must use 
bias reduction in all directions when the dimensions exceed 
3. This type of condition is common in other semiparamet- 
ric situations, see for example Robinson (1988). In the last 
theorem, which is about the properties of ?a( . ) ,  we allow 
for bias reduction in directions other than a: when the di- 
mensions exceed four (as in Linton and Harclle 1996). 

4.1 Consistency of i 
Our proof uses primarily that f i x  ( x )  is uniformly consis- 

tent as an estimator of m x ( x ) ;  no rates are needed. For this 
reason, we take the standard kernel estimator (6) with com- 
mon bandwidth h  and kernel K for each direction. We work 
with iid instruments Zi that are mean 0 (this is without loss 
of generality and can be achieved by subtracting off sample 
means) and make some additional technical assumptions, 
stated in Appendix A. 

Theorem 1. Suppose that conditions A1-A6 given in 
Appendix A hold. Suppose further that the following con- 
dition holds: 

A7: For all X # X o  in a neighborhood H(X0) of 
A,, E [ { m x  ( X i )  - mx ( X i ) ) l  Zi]  # 0. Then A is locally 
consistent. 

Remark. The identification condition A7 is difficult to 
verify from primitive conditions, as is true in related sit- 
uations (see Newey and McFadden 1994, p. 2127). Never- 
theless, we expect that condition A7 is obtained through 
additivity. For X # X o ,  the regression function mx is not 
additive, and so the difference between the additive recon- 
struction ex and rnx should, in the limit, be correlated with 
the instruments. 

4.2 Asympto.tic Normality of 

We use a common kernel K and bandwidth h ( n )  for 
each direction a.  We need some additional conditions given 
in Appendix A. Specifically, to obtain nl/' consistency 
for ;\, it is necessary to use bias-reducing kernels of or- 
der q > 2  to estimate the regression function when the 
dimensions d > 4. Define the mean 0 iid random vari- 
ables ( i )  = O x  (K)  - mx ( X i ) ,  i = 1: . . . , n, and also let 
E A ( i )  = QX(x)  - f i X ( X i )  for any A. Also, let r j  (A)  = 
E [ a 3 / d X j { m x ( X i )  - m x  ( X i ) ) Z , ] ,  j = 0 , 1 , 2 ,  and set rjo = 

rj (Ao) .  Finally, let 

where 

Theorem 2. Suppose that conditions A1-A7 and B 1-B6 
given in the Appendix hold. Then 

We can consistently estimate rlo by i l  = n-l Cy=l zi(a/ 

aX){r i z f (X i )  - f i X ( X i ) )  and fl by fi = n-I Cy=l ZiZ:  
E! (i), and thereby consistently estimate the asymptotic vari- 
ance V by 

Carroll and Wand (1991) and Wang and Ruppert (1996) 
obtained similar results for their semiparametric estimators. 

By straightforward calculations one can show that the 
optimal weighting matrix is W, = R-l or any consis- 
tent estimate thereof (see Newey and McFadden 1994), 
in which case the asymptotic variance in (10) becomes 
V& = ( r :oR- l r lo ) - l .  If we take W, = then the 
efficient variance is achieved. 

Consider the infeasible procedure X .that replaces f i x  by 
mx in (6). This has asymptotic variance the same as (10) 
with R replaced by Ro = E [ E ? , ( ~ ) Z ~ Z ; ] .  Now work wi.th 
the special case that E : ~  ( i )  is independent of Z i ,  E ( Z i  IXi) 
is additive and the components of X are mutually indepen- 
dent. In this case Z,* = E ( Z i I X , ) ,  so that R 5 Ro;  that is, 
the asymptotic variance of can be smaller than that for 
X. Although this appears anomalous, it has been found by 
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other authors (see Gutierrez and Carroll 1995; Robins, Rot- 
nizky, and Zhao 1994). It is mainly due to the fact that 
the instrumental variable method may not reach the semi- 
parametric efficiency bound as defined by Newey (1990). 
Even though A is not efficient, it does not impose either 
normality of the errors or homoscedasticity in the condi- 
tional variance, and it is easy to implement. In this sense it 
is robust and practical. One can impose additional restric- 
tions, such as constant variance, within this framework. by 
adding an additional moment condition to (9). This results 
in more efficient estimates of X when the restrictions are 
true. 

4.3 Asymptotic Normality of Regression Function 
Estimates 

We now consider the final stage in which the root-n con- 
sistent estimate is used to estimate the one-dimensional 
functions. We use a procedure that has bandwidth h = 

/3n-lI5 and second-order kernel K for the direction of in- 
terest and (d - 1)-dimensional kernel L of order q with 
common bandwidth g for the remaining directions (as in 
Chen et al. 1996 for additive nonparametric regression). As 
pointed out there, if d 5 4, then the theory is consistent 
with using second-order kernels. When d > 4, one must use 
higher-order kernels to satisfy the conditions of the theo- 
rem. 

Let I I K I I ~  = J K2(u) du and p2(K) = J u ~ K ( u )  du. 

Theorem 3. Suppose that the condition C1 given in the 
Appendix holds. Then 

where 

Education 

(a) 

Experience 
(b) 

Figure 2. The Estimated Covariate Effects (a) Education and (b) 
Earnings on Earnings (A = 1) Shown With Pointwise Symmetric 95% 
Confidence Intervals. 

and 

where a2(x) = var{Bx,(Y) IX = x}. Finally, v,(x,) can 
be consistently estimated by C;=, w;~; ( j ) ,  where { ~ j ) j n _ ~  
are the weights in 'v, (x,; A) = Z;==, wjBi (y,). Similar re- 
sults can be obtained for local linear regression smoothers 
(Fan 1992), with the bias function given by the simpler form 
ba(xor) = P2p2 (K)gE (xa)/2. 

The estimated regression function has the one-dimensional 
convergence rate and is unaffected by the estimation of the 
transformation parameter. Bandwidth selection and order 
selection can be addressed exactly as for the regression 
problem. We do not advocate using higher-order kernels 
in practice, even when the dimensions are high, because of 
their well-known poor small-sample performance and be- 
cause we think that with better proof technology, one can 
prove Theorem 3 without bias reduction. (See Fan, Hirdle, 

Figure 1. The Criterion Functions (a) Instrumental Variables (x 
and (b) Negative Pseudolikelihood Function (x 1 or3 )  Against X for a Grid 
of Values Between [.go, 1.141 for the EarningdEducation Data. 

I 
0.1 0.2 0.3 0.4 0.5 0.6 

IVCOI 

0 1  ./ , , , , , . , , 

O 0.1 0.2 0.3 0.4 0.5 

IVCOI 

(b) 

Figure 3. The Relative Magnitudes of the Criterion Functions for the 
Simulated Data at Different Parameter Values (a) X = .2 Versus X = 0 
and (b) X = .4 Versus X = 0. The 45-degree line is shown for comparison. 
Sample size n = 100. 

Journal of the American Statistical Association, 92, 1512-1521

(1997)  Linton, O., Chen, R., Wang, N. and Härdle, W. 
An analysis of transformations for additive nonparametric regression.



Linton, Chen, Wang, and Hardle: Transformations for Additive Nonparametric Regression 1517 

Figure 4. The Relative Magnitudes of the Criterion Functions for the 
Simulated Data at Different Parameter Values (a) X = .2 Versus X = 0 
and (b) X = .4 Versus X = 0. The 45-degree line is shown for comparison. 
Sample size n = 250. 

and Mammen 1996 and Hengartner 1996 for further dis- 
cussion.) 

5. NUMERICAL RESULTS 

5.1 Application 

We examine again the dataset used by Linton and Nielsen 
(1995) obtained from a random sample of 534 individu- 
als from the 1985 Current Population Survey conducted by 
the U.S. Department of Commerce. (Details of this dataset 
can be found in Berndt 1991, chap. 5.) We examine the 
relationship between wages ( y )  and the covariates educa- 
tion in years ( x l )  and experience in years ( 2 2 ) .  Linton and 
Nielsen (1995) used a logarithmic transformation of the de- 
pendent variable, as suggested by much other work. We use 
the Box-Cox transformation on the dependent variable that 
nests both logarithm and level. We implemented the addi- 
tive regression procedure using a Gaussian kernel and rule 
of thumb bandwidth selection, following Linton and Neil- 
son (1995). Figure 1 shows the instrumental variable (IV) 
criterion and the pseudolikelihood (LIKE) criterion com- 
puted at a grid of X values. For instruments we took 1, 
$ 1 ,  x f ,  2 2 ,  and x i ,  and we used W, = I as weighting. The 
IV criterion was maximized at X = 1.069, and LIKE was 
minimized at X = 1.056. (The optima were found by grid 
search to a precision of f .OOO5.) The standard error was 
.0749 for the IV estimator. Thus the optimal transformation 
here is not far from linear; that is, the effects of education 
and experience on earnings itself appear to be additive. 

Figure 2 plots the fitted additive regression for the un- 
transformed y; that is, X = 1. The effect of education on 
earnings is mildly convex, whereas that of experience is 
somewhat concave, with rapidly increasing returns to the 

first 10 years of experience followed by a slow but steady 
increase through 40 years, followed by a decline in later 
years. This is consistent with other studies, although some 
have found a similar dip in the returns to education, (see 
Mukarjee and Stem 1994). 

5.2 Simulations 

We first investigate by simulation how well the IV crite- 
rion function does at discriminating between rival models 
for small samples. This bears on how well behaves in 
small samples. 

We generated 1,000 samples of sizes 100 and 250 from 

where E - N(0, .I), while X 1  and X 2  were mutually in- 
dependent uniforms on [-.5, .5]. We work again with the 
Box-Cox model for which the foregoing data-generation 
process is equivalent to Xo = 0. Figure 3a plots Qn(.2) 
against Q,(O), and Figure 3b shows Qn(.4) against Q,(O), 
both for the smaller sample size of 100. We used the same 
instruments as in the application. The median values were 
.101, .129, and .182. In 927 cases the criterion preferred 
X = 0 to X = .2, and in 973 cases it preferred X = 0 to 
X = .4. Figure 4 shows the same plots as in Figure 3, for 
the larger sample size of 250. In this case the criterion pre- 
ferred X = 0 to X = .2 in 961 cases, and preferred X = 0 
to X = .4 in 989 cases. Thus as sample size increases, the 
evidence in favor of the true value mounts. 

Secondly, we check whether the integration method 
breaks down when applied to high-dimensional data. We 
generated data from the following model: 

where X ,  are independent uniforms on [-.5, .5] and E - 
N(0, .I). We examine our integration estimate m l ( 0 )  of 
m1(0) ,  assuming that X = 1 is known, for the cases 
d = 1 , 2 , .  . . , l o .  Note that the estimate of m l ( 0 )  for the 
case d = 1 is the one-dimensional smooth of Y on X I ;  its 
asymptotic variance cannot be bettered when d 2 2, even 
by the backfitting method. We used a uniform kernel and 
a single bandwidth of size precisely n-lI5. Our results are 
given in Table 1. 

There is a deterioration in performance as dimension in- 
creases but less so at the larger sample size. Even in the 
case where n = 100, there is only about a 50% increase in 
the root mean squared error for d = 10. 

6. FINAL REMARKS AND CONCLUSIONS 

There was some controversy about how to conduct infer- 

Table 1. Root Mean Squared Error of I%, (0) Based on 500 Replications 

d =  1 d = 2  d = 3  d = 4  d = 5  d = 6  d =  7 d = 8  d = 9  d =  10 
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ence in fully parametric transformation models; in partic- 
ular, whether one should take into account the uncertainty 
due to not knowing the transformation when evaluating esti- 
mates of the regression coefficients (see Bickel and Doksum 
1981; Hinkley and Runger 1984). In our case such questions 
are moot, because the uncertainty in measuring the trans- 
formation is of smaller order than that in estimating the 
regression function. Thus the asymptotic distributions that 
we have given are appropriate from both points of view. 
However, controversy would reemerge if one were inter- 
ested in the constant c or some other root-n consistently 
estimable functional of the covariate effects. 

APPENDIX A: PROOFS OF THEOREMS 

The proofs of our theorems are based on several lemmas estab- 
lished in Appendix B. We make use of the uniform weak laws of 
large numbers (ULLN) established by Andrews (1995) and Newey 
(1991). We use the following notations: 

We also use the following regularity conditions: 

Assumption A 

1. The kernel function K ( . )  is bounded, nonnegative, compactly 
supported, and Lipschitz continuous, and K ( u )  du = 1. 

2. The sequence of bandwidths satisfies h 7- 0 and 
nhd+' --- co. 

3. The densities p,,pE, and p are bounded away from 0 and 
infinity and are Lipschitz continuous on their compact supports 
X,, X,, and X. Furthermore, mA (x) is Lipschitz continuous on 
X x N(Xo) .  

4. The random variables Z ,  have a positive definite second mo- 
ment matrix. 

5. The stochastic process {Z ,EA ( i ) ) ~ ~ ~ ( ~ , )  has a uniformly 
bounded first absolute moment and is also Lipschitz continuous 
in the sense that 

for all X I ,  A2 E N ( X o ) ,  where E ( A )  < co. Furthermore, 
E [ E A ( ~ )  Z , ]  = 0 for E N ( x o ) .  

6. The stochastic process { [ m x ( X , )  - ~ A ( X , ) ] Z , } A ~ N ( A , )  has 
a uniformly bounded first absolute moment. 

These conditions are standard. For asymptotic normality, we re- 
quire these additional conditions: 

Assumption B 

1. The density p (and hence p, and p,) and the regression func- 
tion m x ,  are q times (Lipschitz) continuously differentiable on X. 

2. S u i K ( u )  du = 0 , j  = 1 , .  . . , q, and K ( , )  has a Lipschitz- 
continuous derivative. 

3. The sequence of bandwidths satisfies nhd+l + CO, nhZq  -- 0.  
4. The stochastic processes (Z i{[dax  ( i ) ] / d X } ) x E , q x o )  and 

(Z ,{[d2  E X  ( i ) ]  /dX2 )) X E N ( A o  have uniformly bounded first abso- 
lute moments and are Lipschitz continuous with respect to X on 

on N(X0). Let r j ( X )  = ~ [ Z , ( d j l d X ~ ) { m ~ ( X , )  - m ~ ( X , ) ) ] , j  = 
0 , 1 , 2 ,  and assume that rl ( X o )  + 0. 

6. E{Z~Z, 'E: , (Z)}  < CO. 

Note that conditions A5 and B4 imply that E ( { [&A ( i ) ] /dX)IZ , )  
and E ( { [d2  E X  ( i ) ]  /dX2 } 2,) are both 0. 

Finally, for Theorem 3 we use the following conditions: 

Assumption C 

1. The conditions of Chen et al. (1996) hold. Suppose also that 
the family of random variables d e x ( Y ) / d X  is tight in A. Finally, 
suppose that nli2 ( A  - A) = OP(1 ) .  

Proof of Theorem 1 

Write 

Condition A5 is sufficient to guarantee that the ULLN holds for 
the first term; that is, 

Furthermore, 

sup l n - ' z 1 ( ~ A  - M A )  = o p ( l )  
A E N ( A o I  

by Cauchy-Schwarz, a weak law of large numbers applied to 
Z I Z / n ,  and Lemma 1. Hence, using Cauchy-Schwarz once again, 
we have 

where Q(X)  = rh (X )Wro  (A) .  The last equality is due to ULLN 
applied to n - ' Z 1 ( M A  - M A ) ,  which holds under conditions A3 
and A6. Because mx ,  - m ~ ,  = 0,  we have Q(X0) = 0. 

Using the condition A7 and the fact that W is positive definite, 
we have Q(X)  > 0 for X + X o  and X E N(X0). Hence X o  uniquely 
minimizes Q (A) .  

Proof of Theorem 2 

By a Taylor expansion, 

0 = nli2sn(A) = n 1 i 2 s n ( ~ o )  + H ~ ( x ~ ) ~ ~ / ~  ( A  - X O )  

+ {Hn(X*)  - H ~ ( x o ) ) ~ " ~  ( A  - X o ) ,  (A.l) 

where sn!X) = dQn/dX and Hn(X)  = d 2 ~ , / d X 2 ,  whereas A* is 
between X and X O .  We have 

and 

N(X0). 
5. The stochastic processes { z ,  ( d j / d X 3 )  [mx ( X i )  - m x  

( X z ) ] ) x E N ( x o j ,  j  = 0 ,1 ,2 ,  have uniformly bounded first abso- 
lute moments and are also Lipschitz continuous with respect to X the other terms. 

We show that 

(a) n 1 i 2 ~ n ( ~ o )  + N(0,  4 r : o W S 1 W r l ~ ) ,  
(b) Hn(X0) = 2rio W r l o  + o p j l ) ,  and 
(c) {Hn(X*)  - Hn(Xo)}nli2 ( A  - X O )  is of smaller order than 
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We first establish (a). We have We have 

where Tzn = W n  = W + op(l) .  An application of Lemma 2 
yields 

T3n = r~ (Xo) + op(1). 

Finally, by Lemma 4, TI, + N(0, R). Therefore, 

We now turn to (b) and (c). These are proved by establishing 
that 

which implies (c). Then note that 

because ro (Ao) = 0 by condition A7. This gives (b). Using the 
results in Theorem 1 and Lemmas 1, 2, and 3, (A.2) follows by 
the Cauchy-Schwarz inequality. 

Using (a), (b), and (c), (10) follows. The consistency of the stan- 
dard errors follows from the uniform consistency results used in 
the foregoing argument. 

Proof of Theorem 3 

By a Taylor expansion, 

where A* is an intermediate point between A and Ao. Then 

= OPP),  

by C1. Therefore, the second term in (A.3) is op(l) .  The result 
then follows from theorem 1 of Chen et al. (1996). 

APPENDIX 6: LEMMAS 

Lemma 1. Suppose that conditions A1-A6 hold. Then 

Sup sup f i x  (5) - mx (x) 1 = oP (1). 
x E X  X€N(Xo) 

Pro05 We first show that 

by the triangle inequality. We can bound the first term on the right 
side by SUP,, m x ( x )  - m x ( x ) ,  where - 

sup sup Imx (x) - m x ( x )  = op(l)  
x E X  XN(Xo) 

(by Andrews 1995, thm. 3). Finally, 

I m I 

(by Newey 1991, cor. 3.1). Therefore, ?,(x,; A) is uniformly con- 
sistent. 

d Now, because fix (x) = x,=, ?a (xa;  A) - (d - 1)cx and 
d 

A x  (x) = c,=, 9, (x,; A)  - (d - l ) ? ~ ,  the conclusion of 
Lemma 2 follows by the triangle inequality and the fact that 
SL~PXEN(X~) ; A  - C A I  = op(l). 

Lemma 2. Suppose that conditions A1-A6 and B4 and B5 hold. 
Then 

d M x )  - r l ( A ) l =  op( l ) .  sup ,n - l z l  (% - - 
XEN(XO) d  A 

Pro05 We have 

The first term is uniformly op(l) ,  by the ULLN guaranteed by 
condition B4. The second term converges in probability to its mean 
constant vector rl ( A )  by the same reasoning with condition B5. 
The last term can be proven to be op( l )  by noting that 

by the same arguments as in Lemma 1 

Lemma 3. Suppose that conditions A1-A6 and B4 and B5 hold. 
Then 

Pro05 Similar to Lemma 2. 

Lemma 4. Suppose that conditions A l ,  A3-A5, A7, B1-B3, 
and B6 hold. Then 
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ProoJ Write where E, denotes expectation conditional on X I ,  . . . , Xn.  Note 

n - 1 / 2 ( ~ x o  - &,)'z = I + I1 + 111, 

where 

d n n  

I = *-3 /2  
where w,l,, = Lh(X& - XGl)Kh(Xor2 - Xal ) z i /p (Xa i )  X,j). y C C z2{"*~ (xai, x,) - m * ~ ( X a i )  Xg3)},  By the same integration arguments of Chen et al. (1996, thn~.  1). 

a=l % = I  3=1 we can replace l / n 2  C2 C3 ~ ~ 1 % ~  by W a l .  Thus 

and 

d n n  

111 = n-3/2 y c c 2% ( m  A, (xa2, x, ) 

as required. By direct calculation, the bias term Tsn is hq)  
by conditions B1 and B2 and is o p ( l )  by B3. 

In conclusion, we have shown that 

J 

because Z, is mean 0, I1 = o p ( l ) .  Second, 
By B4 and B6, we can apply the central limit theorem to 

because E{g, (Xorj ) )  = 0. Finally, we show that 

n d 

I = n-'I2 7 x (3) + o p ( l ) ,  (~3.1) 

where w,, = E (2% lXor = Xorj){ba(za,)~g(Xg,)I/[~(Xj)I). 
To prove (B.l), let Lh(t,) = nPja K h ( t P )  for any vector t = 

(t,, t,), and write 

and 
n 

Using the arguments of Chen et al. (1996), I = (Tdn + Tsn){ l  + 
o p ( l ) ) ,  where 

and 

as required. 

[Received September 1995. Revised December 1996.1 
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Abstract 

We consider a vector conditional heteroscedastic autoregressive nonlinear (CHARN) model in 
which both the conditional mean and the conditional variance (volatility) matrix are unknown 
functions of the past. Nonparametric estimators of these functions are constructed based on local 
polynomial fitting. We examine the rates of convergence of these estimators and give a result on 
their asymptotic normality. These results are applied to estimation of volatility matrices in foreign 
exchange markets. Estimation of the conditional covariance surface for the Deutsche Mark/US 
Dollar (DEMIUSD) and Deutsche Mark/British Pound (DEMIGBP) daily returns show negative 
correlation when the two series have opposite lagged values and positive correlation elsewhere. 
The relation of our findings to the capital asset pricing model is discussed. @ 1998 Elsevier 
Science B.V. All rights reserved. 

1. Nonparametric vector autoregression 

Multivariate time series occur in many scientific disciplines. Their analysis helps in 
modeling dynamics over time as well as explaining interdependence among variables. 
A common model in this context is vector autoregression where the dynamics over 
time are modeled via a linear operation on the past values of the vector time series, 
see Liitkepohl (1991). Typically, in these models the conditional covariance is assumed 
to be either fixed or of specific form. Since the beginning of the 1980s the drawback 
of fixed linear structures has been stressed by Engle (1982), Robinson (1983, 1984) 
and Terasvirta (1994) in the econometric literature and by Collomb (1984), Tjerstheim 
(1994), McKeague and Zhang (1994), and Vieu (1994) in the statistical literature. 
Nonlinear time-series models that have been proposed are, e.g., threshold autoregressive 
(TAR) models of Tong (1978, 1983), the exponential autoregressive (EXPAR) models 
of Haggan and Ozaki (1981), the smooth-transition autoregressive (STAR) models of 
Chan and Tong (1986) and Granger and Terasvirta (1992). 
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In the analysis of financial time series, e.g., exchange rates, models for conditional 
heteroscedasticity are an important feature. Meese and Rose (1991) state that "it is 
now recognized that empirical exchange rate models of the post-Bretton Woods era 
are characterized by parameter instability and dismal forecast pevformance.. ." This 
pessimism about the quality of exchange-rate models became generally accepted after 
the publication of the influential papers by Meese and Rogoff (1983) and Diebold and 
Nason (1990). 

The nonparametric modeling of the mean function and the volatility matrix offers a 
way out of this pessimism. It does not depend on specific structures of these quan- 
tities and may thus lead to valuable suggestions. In the framework of ARCH mod- 
els (Engle, 1982), non- and semi-parametric approaches (Gregory, 1989; Engle and 
Gonzalez-Rivera, 1991) have been proposed. Engle and Ng (1993) measured the im- 
pact of news on volatility and found asymmetric volatility functions. Gourieroux and 
Monfort (1992) models both the conditional mean and the conditional variance in a 
flexible nonparametric way 

is called a qualitative threshold ARCH model. Here {A,}jJ,, with fixed J denotes a 
partition of the set of lagged values for Y, (q), and (pj) are unknown parameter 
vectors and matrices, respectively, and ti is the white noise. It is a generalization of 
the threshold model (Tong, 1983), for the conditional mean but shares with it the 
drawback of a fixed number J of threshold points. 

A generalization of model (1.1) to a wider class of conditional mean and variance 
functions can be seen as a limit of (1.1) for J + a, thus allowing J to be unknown 

We call (1.2) a conditional heteroskedastic autoregressive nonlinear (CHARN) model. 
It is a generalization of an ARCH structure. 

The use of CHARN modeling is motivated by several examples. It has been found 
that GARCH(1,l) processes fit daily and weekly FX (foreign exchange) rates well in 
most cases. The situation for intra-daily data is different though, see Guillaume et al. 
(1994). 

Drost and Nijman (1993) argued that the specific GARCH structure would not al- 
low arbitrary combinations of conditional heteroskedasticity, and leptokurtocity, for 
example. Typically, for intra-daily data the deviation of the unconditional return den- 
sity from normality increases when the sampling interval is decreased. The model (1.2) 
will not suffer from these effects since it neither makes structural assumptions on f 
and C nor distributional assumptions on 5. The situation for the CHARN model is 
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Rescaled Returns 
I 

0 500 1000 l s o o  2000 2500 3000 
Days 

Fig. 1. The daily returns of the exchange rates of DEM/USD from 2 January 1980 to 30 October 1992. 

Rescaled Returns 
X 1' 

Days 

Fig. 2. The daily returns of the exchange rates of DEMIGBP from 2 January 1980 to 30 October 1992. 

depicted in Figs. 1-3. All computations and graphics are done in XploRe, see Hardle 
et al. (1995). 

Figs. 1 and 2 show the daily returns (differences of log spot rates) of XI  = DEM/USD 
(Deutsche Mark/US Dollar) and of x2 =DEM/GBP (Deutsche Mark/British Pound) 
for the period from 2 January 1980 to 30 October 1992, a total of 3212 observations: 
both are rescaled so that the range always has length 1. Fig. 3 shows that the two 
returns are highly correlated, the correlation equals 0.34, and the squared returns (i.e. 
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Rescaled Scatterplot 
X 

x 

Fig. 3. The daily returns of the exchange rates of both DEM/USD and DEM/GBP from 2 January 1980 to 
30 October 1992. 

qt and q i )  also have a correlation of 0.17. Both are statistically significantly different 
from zero, for a sample size of 3212. 

Figs. 4 and 5 display the conditional covariance function as dependent on one lag. 
Thus, in (1.2) we have d = 2, m = 1 and the task is to estimate 

There exists a negative correlation when the two returns have opposite lagged values, 
which correspond to the upper left and the lower right corners of the contour plot or 
the lowest contour level at about 15.76% below which are the negative values, while 
positive correlations are everywhere else. Both the computation and graphics are done 
in XploRe, using the WARPing technique (Hardle et al., 1995), subsequent work in 
Section 4 is done in the same fashion and uses the same single bandwidth. 

Hardle and Tsybakov (1996) proposed a general class of joint mean and volatility- 
function estimators based on the local polynomial (LP) method in the case of one- 
lag-dependence model (1.2) with one-dimensional x. The LP estimator was chosen 
in favor of the Nadaraya-Watson (NW) estimator, since the NW estimator does not 
achieve good asymptotic convergence rates, unless the marginal (stationary) density of 

is sufficiently many times differentiable. Sufficient conditions for such a property to 
hold in the model (1.2) are not known. The LP method avoids this difficulty, since it 
needs only the continuity of the density of X,. A more practical reason to use the LP 
method is that it corresponds to a local least-squares problem, and for this problem 
easy and efficient algorithms are available. Bossaerts et al. (1996) used this method to 
study foreign exchange rates. For large dimension d and many lags m, however, the 
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I DEMIUSD, DEMIGBP Covariance 

Fig. 4. The conditional covariance, using bandwidth h = 0.053653 I .  

Fig. 5. The contours of the conditional covariance. 

precision of the estimators of both f and C will decrease. A structured modelling based 
on additive assumptions has therefore been proposed by Chen and Tsay (1993a, b). 

The idea of local polynomial estimation goes back to Stone (1977), Cleveland 
(1979) and Katkovnik (1979, 1985). The statistical properties of LP estimators in 
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nonparametric regression (convergence, minimax rate of convergence and pointwise 
asymptotic normality) were studied by Tsybakov (1986). The LP estimation method 
was later discussed by several authors (see Fan and Gijbels, 1996, for references). For 
the multidimensional case, we refer to the work of Ruppert and Wand (1994) who 
studied the multivariate local linear regression estimation. 

This paper is devoted to estimation of the f (.) and C(.) functions for the multivariate 
CHARN model. We generalize to the vector case the result of Hardle and Tsybakov 
(1996) on asymptotic normality of LP estimators. We restrict the study, however, 
to the local linear case. This is motivated by the fact that higher-order polynomial 
estimation in higher dimension is less attractive computationally, while the expressions 
for asymptotic bias and variance are much more technical, and they do not seem to be 
of practical use. 

Inspection of the proofs in Section 5 shows that the result of the present paper also 
holds (with obvious reformulation) for the multivariate nonparametric regression model 
with heteroskedastic errors: X = f (X,) + C'12(X,)ti, where 5; are as in (1.1), (4, 4 )  
are i.i.d., and the design points {Xi) are independent of {ti). 

We shall use the work on probabilistic properties of the process (1.2): Doukhan 
and Ghindes (1980, 1981), Chan and Tong (1985), Mokkadem (1987), Diebolt and 
Guegan (1990), Ango Nze (1992). In these papers the ergodicity, geometric ergodicity 
and mixing properties of the process {I;.} are derived under appropriate conditions. 

The paper is organized as follows. In Section 2, we present the estimator and in 
Section 3 we study the asymptotic properties of this LP technique. In Section 4 we 
give an application based on the two-dimensional data of DEMJUSD and DEMJGBP 
returns. In Section 5, proofs of theorems are given. 

2. The estimators 

The model we consider is 

where 4 = (41,  &, . . . , E Kkd, t; = (<;I, ti2, . . . , E Rd, i = m, m + 1,. . . , n, and 
X, =(?TI ,  ?T2,. . . , T?,)~ E Rmd are random vector variables; ti are i.i.d. with 
E ( t  ) = 0, for any 1 d j d d, E(<;,) = 1. The mean vector function f : Rmd -, Rd and 
volatility matrix function C:  R~~ --+ I W ~  x lRd are unknown, C(x) is symmetric and pos- 
itive definite for any x E Rmd, and the initial value X, = (Y,-', Yir2,. . . , Y ~ ~ ) ~  is a 
random vector variable independent of {ti). We study the problem of estimating the 
conditional volatility matrix function C ( x )  and the conditional mean vector function 
f (x), given a time series Yo,. . . , Y,. 

The technique we employ here is typical in multivariate problems. Instead of C and f ,  
we can equivalently estimate the following functions: 

The mean function of vTY, which is f (x; v) = vT f (x), where v E lRd has unit length 
and x E Rmd; 
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The covariance function of uTy and sTY, which is vTC(x)s, where 0,s E Rd both 
have unit length and x E Rmd. 
For the moment we are implicitly assuming stationarity of {x). In fact, only an 

approximation is true: {X;) approaches a stationary process, for i -t oo as we shall see 
later in Lemma 3.1. The LP method solves the following minimization problems: 

n 

cn(x; U, S) = arg min C (uT K qTs - cT U ~ , ) ~ K ~  (X, - X) , 
c ~ & p d + l  . 

i=m 
n 

c,(x;v)=arg min ~ ( v ~ Y ; . - c ~ u , , ) ~ K ~ ( x , - x ) ,  
C E F W + '  i=m 

where K :  Rmd t R1 is a kernel Kh(u)= 1/hmdK(u/h), h = h, is a positive number 
(bandwidth), h, 4 0, as n -t oo and 

where F(u)  = (A) E lRmd+', for u E Flmd. The estimator of f (x; v) is defined as 

The estimator of the function cr(x; v,s) = vT,Z(x)s is defined as 

We have dropped reference to the sample size n in f(x; v) and &(x; v,s) for nota- 
tional simplicity, we will keep this convention in similar situations hereafter. Another 
simplification of notation is the use of one single bandwidth in all coordinates of X. 
The asymptotic results in the next section are easily extendable to the case of different 
bandwidth in each direction, e.g., in a product kernel 

where h = (h,,. . . , hmd) E Ryd, see Wand and Jones (1995). 

3. The asymptotic results 

Let I . I denote the LI-norm when it is applied to a vector, and the usual matrix norm 

A l  = sup Axl, 
/xl=l 

when it is applied to a matrix A. Assume the following: 
(Al )  The error variables (lj, 1 d j d d ,  are i.i.d. The density p(.) of l1 exists and 

satisfies 

inf p(x)>O 
x E . X  
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for any compact X c Rd. Also E(t l j )  = E(Sii) = 0, ~ ( t f , )  = 1, and ~ ( 5 ; )  = 1 
+ m 4 < m .  

(A2) There exist constants C1 2 0, C2 3 0, r > 0 such that for 1x1 3 r 

(A3) The matrix function C(x) is symmetric for any x E Rmd, and satisfies 

inf kin {C(x)) > i x  > 0, 
X€.X 

for any compact X c Rmd, where A,i,(C) denotes the minimal eigenvalue of a 
real symmetric matrix C. 

(A41 Cl + C2EISl I < lIm. 
Assumption (Al )  is needed for identifiability of the estimation procedure. 

Assumptions (Al )  and (A3) guarantee that the process {X,) does not die out whereas 
(A2) and (A4) are conditions for {X,) not to explode. The following lemma given by 
Ango Nze (1992) guarantees ergodicity of the process {&). It is based on the appli- 
cation of the results of Nummelin and Tuominen (1982) and Tweedie (1975). Note 
that (A4) becomes redundant when both f (x)  and C(x) are bounded, in which case 
C, = c2 = 0. 

Lemma 3.1. Under the conditions (A1)-(A4) the Markou chain {X,) is geometrically 
ergodic, i.e. it is ergodic, with stationary probability measure n(.) such that, for 
almost every x, as k -+ oo 

for some O < p < l .  Here 

for a Bore1 subset B C  R " ~ ,  and 1 1  . is the total variation distance. 

Now we state the conditions necessary to derive joint asymptotic normality of f(x; v )  
and 6(x; v,s) at a fixed point x E R " ~ .  
(A5) The functions f and C are componentwise twice continuously differentiable at 

the point x E [ w ~ ~ .  
(A6) The density p ( . )  of the stationary distribution n(.) exists, is bounded, continuous 

and strictly positive in a neighborhood of the point x. 
(A7) The kernel K is a compactly supported bounded nonnegative function on lRmd, 

such that 

where 0; >0, and Imd denotes the identity matrix of dimension md. 
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(A8) h, = pn-1/(4+md), where /3 > 0. 
(A9) The initial value Xm is a fixed vector in Rmd. 

Condition (A5) is a smoothness condition for the functions f and C. Note that it 
is related to (A8), the optimal speed of bandwidth. Condition (AS) guarantees a bal- 
ance between bias and variance. A faster speed of h would lead to undersmoothing, 
a slower rate would increase the bias over the standard deviation of the estimator by 
oversmoothing. Both situations are undesirable since they result in less precise estima- 
tion. Condition (A6) is necessary to compute asymptotic bias and variance, (A7) is a 
typical assumption for kernels. Assumption (A9) supposes that the CHARN model is 
started at some fixed vector. 

Let f,(x) and a,k(x), j, k = 1,2,. . . , d ,  be the components of the vector function f (x) 
and the matrix function C(x), respectively. Denote I I K  1 1 ;  = K2(u) du. Asymptotic 
normality results are presented in the following theorems. 

Theorem 1. Under the ussur~zptions (A 1 )-(A9) 

US n -+ oc with 

In particular, if one let v be the jth or the kth coordinate vector of Rd ,  one gets the 
following joint asymptotic distribution: 

us n 4 cc with 

Denote 

a ,  0 . . .  0 
0 a* . . .  0 

. . . . 
0 0 . . .  ad 

J. Stat. Planning. Inference, 68, 221-245

(1998)  Härdle, W., Tsybakov, A.B. and Yang, L. 
Nonparametric Vector Auto-regression.



230 W. Hurdle et al. l Journal of' Statistical Planning and Inference 68 (1998) 221-245 

for any vector 

Theorem 2. Under the assumptions (A1 )- (A9)  

n A  {&(x; v, s )  - vTC(x)s) 5 N { b ( x ;  0,  s ) ,  V ( X ;  v, s ) )  

as n 4 cc with 

b(x; v,s) = / I i g [ T r ( v 2 g ( x ) )  - {sT f ( x ) )  T ~ { v '  f ' ( x ) ~ ) ]  
2 

- / I 2  $[{vT f ( x ) )  7 r { v 2  f T ( x ) s ) ]  

and 

where 

g(x)  = g(x; v ,s)  = { v T f  ( x ) ) { s T f  ( X I )  + { u T ~ ( x ) ~ ) ,  

2 T 112 T*(x )  = T*(x; v, s )  = Tr[diag {v  C , ( x ) )  diag2 { ~ ' / ~ ( x ) s ) ] .  

The covariance of &(x; v,s) and &(x; v l ,s l )  is 

In particular, if one let u and s be the jth and kth coordinate vectors of [ w ~  or the 
jlth and k'th coordinate vectors, one gets 

as n 4 cx with 
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where 

and 

in which s j l (x)  denotes the ( j ,  1)th entry of the matrix c ' / ~ ( x ) .  Finally, as n -t cx, 

The practical use of these results lies in the possibility to check the form of the mean 
and volatility functions. For instance, at each point x we can construct a confidence 
interval for ojk(x) based on plug-in estimates for b,k(x) and Qk(x). The bias conceivably 
can be estimated from a local cubic estimate. The variance can be estimated by first 

- 2  
calculating the stochastic innovation term ti, = {Yij - f ; ( ~ , ) ) ~ / 4 , ( ~ , )  and then setting 

- 2  
h4 = d-'  zf_, n-' C:=m([i ,  - The marginal density ,u can be estimated as usual by 
a kernel estimator. Since the bias formula is slightly more involved than the variance 
formula, some undersmoothing might be recommended. 

4. Application 

The importance of the CHARN model for financial data has been pointed out in the 
introduction. In this section we come back to the introductory example of DEM/USD 
and DEM/GBP exchange rates. Figs. 6 and 7 show the estimated conditional mean 
functions f ; (x )  and & ( x )  as functions of the lagged values xi = ( y l , i - l ,  y 2 . i - I ) ~ .  The 
surface and the contour plots all show that the mean functions are rather flat and are 
around zero. In fact, 80% of the f ; (x )  values are in an interval around 0 whose length 
is only 0.1 1 times of the range of y ~ , ~ ,  while 80% of the L ( x )  values are in an interval 
around 0 whose length is only 0.1557 times of the range of ~ 2 , ~ .  The pattern of the 
conditional covariance function 612(x) is different though, it changes from negative to 
positive as shown in Figs. 4 and 5. 

Bollerslev et al. (1988, 1992), studied the capital asset pricing model (CAPM) by 
means of the multivariate GARCH model. To illustrate the connection between our 
vector CHARN model and their model, consider a random vector of excess asset 
returns with E(Y, Ft- )= p, and Var(Y, I 9,- I ) = C,, where Fl- I is the information 
set generated by I;-i, i = 1,2,. . . , . If for nonnegative weight vector w, whose elements 
add to 1, W: K is a mean-variance efficient portfolio, then the CAPM is 
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DEMlUSD Mean 

(: Lagged DM/USD returns (*I0 1 
1: Lagged DMIGBP returns (*lo I 
:: Conditional Mean 1*10-~1 A 

Fig. 6. The conditional mean function of the DEMIUSD daily returns 

DEMIGBP Mean 

X: b g g d  DEWS0 return: P ~ O - ~ I  -.- 
r: Lagged m / C B P  return8 ('10- 1 
2: Conditional Hean 1*10-'l 

Fig. 7. The conditional mean function of the DEMIGBP daily returns 

where 

with E ( E ~  I 5[- )= 0, Var(~, I Ft - )- El, and py = wTpt. This is more general than 
ordinary CAPM which restricts C, to be constant. While our CHARN model would 

J. Stat. Planning. Inference, 68, 221-245

(1998)  Härdle, W., Tsybakov, A.B. and Yang, L. 
Nonparametric Vector Auto-regression.



W. Hardle et a/.  l Journal of Statistical Planning and Inference 68 (1998) 221-245 233 

DEMIUSD Volatility 

Fig. 8. The conditional variance function of the DEMIUSD daily returns. 

stipulate that C, depends nonparametrically on a finite number of past observations, 
Bollerslev et al. (1988) used the multivariate GARCH model which allows C, to depend 
on infinite number of past values, but only parametrically. A special form of the 
multivariate GARCH model is 

for some constant a>O in which case 

This is a hyperbolic function which exhibits the pattern visible in Figs. 4 and 5. For 
such a case, our CHARN model and the multivariate GARCH model would yield 
similar results. 

Figs. 8 and 9 show the estimated conditional variance functions 611(x) and &2(x) 

as functions of the lagged values xi = (yl,,- 1, ~ 2 , ; -  I )T. One can see that the variance 
function for the DEM/USD returns has a parabolic shape while that for DEM/GBP is 
roughly flat and positive. 

5. Proofs 

The proofs of Theorems 1 and 2 proceed in the following steps. First the nor- 
mal equations of the LS problems (2.3) for the mean- and second-moment func- 
tions are solved. All estimators are split into a stochastic part and a systematic bias 

J. Stat. Planning. Inference, 68, 221-245

(1998)  Härdle, W., Tsybakov, A.B. and Yang, L. 
Nonparametric Vector Auto-regression.



234 W. Hurdle et al. l Journal of Statistical Planning and Inference 68 (1998) 221-245 

I DEMIGBP Volatility 

X: Lagged DWIUSD returns 1'10-11 
Y: Lamed DWICBP returns l a l o  I 
2: Conditional Variance 1*10-'1 

Fig. 9. The conditional variance function of the DEMIGBP daily returns. 

part. Lemma 3.1 is essential in controling the stochastic part. Lemma 5.1 guaran- 
tees the strong mixing property of the recursive scheme (1.2). In combination with 
Lemmas 5.2-5.5 we then prove the joint asymptotic normality of the mean estimation 
as stated in Theorem 1 and that of volatility as stated in Theorem 2. 

Set the matrices W =  d i a g { i ~ ~ ( ~ ,  - x)):='=, and 

Define 

and also 
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Then 

f ( x ;  u )  = F ( o ) ~ ( z w z ~ ) - ' z w [ v ~ Y ]  

and 

by direct calculations. 
First, to have the limit of (zwzT)-l, we need an auxiliary result based on Lemma 3.1. 

Lemma 5.1 (Davydov, 1973). A geometrically ergodic Markov chain whose initial 
variable is distributed with its stationary distribution is geometrically strongly mixing 
with the mixing coejicients satisfying a(n)  d co pI; for some 0 < po < 1, co > 0. 

Having Lemma 5.1, the next lemma follows: 

Lemma 5.2. Under the conditions of Theorem 1 we have 

as n + co, provided * I ( . )  is a bounded continuous function in a neighborhood of x 
and q2(.) is a bounded measurable function. 

Proof. See HLdle and Tsybakov (1996, Lemma 4.3). I7 

Lemma 5.3. As n -+ m, 

uniformly in a compact neighborhood of x. 

Proof. The elements of Z W Z ~  are all in the form of the left-hand side of (5.3). Using 
assumption ( A 7 )  and then taking matrix inverse, one gets (5.4). 

Now notice that, in view of Lemma 5.3 

f ( x ;  V )  - vT f ( x )  = F ( o ) ~ ( z w z ~ ) - ' z w [ v ~ Y ]  - vT f ( x )  

= F ( o ) ~ ( z w z ~ ) - ' z w [ v ~ Y ]  

J. Stat. Planning. Inference, 68, 221-245

(1998)  Härdle, W., Tsybakov, A.B. and Yang, L. 
Nonparametric Vector Auto-regression.



236 W. Hurdle et al. l Journal of Statistical Planning and Inference 68 (1998) 221-245 

To prove Theorem 1, one separates (5.5)  into a bias part and a stochastic part as usual. 
The bias part is handled by the following lemma: 

Lemma 5.4. Let g : Rmd -+ R1 be a twice continuously diflerentiable function. Then, 
under the assumptions of Theorem 1 

Proof. Using the Taylor expansion of g(x) ,  we get 

where 

as n --+ m, where 9 = max{lw(: w E suppK) and the last equality in (5.6)  is due to 
Lemma 5.2. Again, by Lemma 5.2 one has, as n 4 ca 
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Combining this with (5 .6 )  we get the lemma. 
In particular, if g(x) = vT f ( x ) ,  one gets from Lemma 5.4 

as n + m, where b(x; v )  is as given in Theorem 1. This yields the asymptotics of the 
bias term in (5 .5) .  

To work out the asymptotics of the variance term, we need another lemma. Denote 
.Fk- = a(Xk,Xk- ,, . . . , Xm ) the a-algebra generated by Xm, . . . , Xk. 0 

Lemma 5.5 (Liptser and Shirjaev, 1980, Corollary 6). Let m be a j x e d  integer and 
for every n > m ,  let the sequence qn = ( q n k , F k )  be a square integrable martingale 
dzfference, i. e. 

and let 

The conditions 

are suficient for convergence 

Proof of Theorem 1. Now we apply Lemma 5.5 to the following stochastic term of 

(5 .5 )  
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and observe that (in view of Lemma 5.2) 

Define 

It is clear from (5.13) and (5.3) that (5.8)-(5.10) hold. It remains to check (5.11) in 
order to show that 

We have 

where 

Note that for some constant C(x, v) depending only on x and v 

because of the fact that K is compactly supported and that C is bounded in a shrinking 
neighborhood of x. This entails 

where 

independent of k. This and (5.15) yield 
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while 

by Lemma 5.2. Thus we have proved (5 .14) .  Now ( 3 . 3 )  is a consequence of (5 .5 ) ,  
( 5 . 7 ) ,  ( 5 . 1 3 )  and (5 .14) .  To prove the joint asymptotic normality (3 .4 ) ,  note that, in 
view of ( 5 . 5 )  and ( 5 . 7 ) ,  

as n -+ co, where 

and v; is the jth coordinate vector in Rd.  
By the Cramer-Wold device, the joint asymptotic normality of [,, and ikn is proved 

if one shows that linear combinations of these random variables satisfy 

as n-co, Voc,, ak E R ' .  
The proof of ( 5 . 1 6 )  is quite similar to that of (5 .14) ,  and it is based again on the 

application of Lemma 5.5. The difference is that instead of G,, one should use now 

- - ? 2 - 4 J ( 4 + m d ) [ ~ j 5 ( ~ )  + C I ~ V ~ ( X )  + 2 f f j ~ k ~ j k ( ~ ) ] { ~  + 0 ( 1 ) ) ,  

where the last equality follows from Lemma 5.2 (cf. ( 5 . 1 3 ) ) .  

Proof of Theorem 2. Similar to ( 5 . 5 ) ,  we write 
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which after plugging in the formula for f(x; v) - vT f (x)  and ](x;s) - sT f(x)  (cf. 
(5.5)) yields 

where 
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Using Lemma 5.4, one derives 

TI = p2 [Tr{V2(((u T/  @))(ST / ( x ) ) ) } ] ~ - ~ ~ ( ~  + md) + op(n-21(4imd) 1 9  

and thus 

TI + T2 + T3 + T4 = b(x; + ~ ~ ( n - ~ / ( ~ +  md) 1. 

Now we calculate T6. Note that 

since K is compactly supported (here C > 0 is a constant). Thus, 

By Lemma 5.2 

and therefore 

The evaluation of T7 is quite analogous and, hence, we get 

T6 + T7 = op(n -2/(4+md)), a s n  + ,. 
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Also, in view of Theorem 1, 

The relations (5.20)-(5.22) show that the sum x;=, Z j  in (5.17) yields the correct 
asymptotic bias, while the terms T6, T7, and Ts are asymptotically negligible. It remains 
to show the asymptotic normality of the term T5: 

n21(4 + m d ) ~ 5  2 N ( O ,  V(x; v, s)), as n 4 m. 

Again, to prove this, we use Lemma 5.5. We leave out the verification of the conditions 
(5.10) and (5.1 1 ) of Lemma 5.5, since it is done as in the proof of Theorem 1. We 
only deduce the asymptotic expression for the variance of T5, which is given, analogous 
to Gn of the proof of Theorem 1, by the asymptotics of 

To study this expression, use the following lemma. 

Lemma 5.6. . Let a = ( a l ,  ..., ad)T, ;=(GI ,..., a"d)T, b=(b l  ,..., bd)T, and 6 =  
(61 ,..., be vectors in lRd. Then under (Al),  

Proof. Denoting by djk the Kronecker delta and using (Al), we get 

tT - ~ ~ ) b ) ( i ~ ( ~ ~  ST - m611 

which yields the lemma. 
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Applying Lemma 5.6 with a = Z ' / ~ ( X , ) V  and b = c ' ! ~ ( x , ) s ,  we find 

E [ ( V ~ C " ~ ( X ,  ) ( t i [ :  - I ~ ) c I ! ~ ( ~ ) s ) ~  I x ]  
= (m4 - ~ ) T * ( x , )  + { u ~ c ( x , ) s ) ~  + { u T ~ ( ~ ) u ) { s T ~ ( ~  ) s ) .  

This and (5 .23)  yield 

and, in view of Lemma 5.2, 

which is the expression for asymptotic variance given in Theorem 2.  17 

To show the joint asymptotic normality ( 3 . 6 )  and (3 .7 )  one proceeds as in the 
proof of Theorem 1, by using the CramCr-Wold device and checking the conditions 
of Lemma 5.5. The calculations of covariance terms in (3 .6 )  are based on Lemma 5.6 
as well. 
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SUMMARY 
East-West migration in Germany peaked at the beginning of the 1990s although the average wage gap 
between Eastern and Western Germany continues to average about 25%. We analyse the propensity to 
migrate using microdata from the German Socioeconomic Panel. Fitting a parametric Generalized Linear 
Model (GLM) yields non-linear residual behavior. This finding is not compatible with classical Marshallian 
theory of migration and motivates the semiparametric analysis. We estimate a Generalized Partial Linear 
Model (GPLM) where some components of the index of explanatory variables enter non-parametrically. We 
find the estimate of the non-parametric influence in concordance with a number of alternative migration 
theories, including the recently proposed option-value-of-waiting theory. 0 1998 John Wiley & Sons, Ltd. 

1. INTRODUCTION 

German East-West migration has been the subject of several recent papers. Using microdata 
from the German Socio-Economic Panel, Burda (1993), Biichel and Schwarze (1994) and 
Schwarze (1996) have investigated this issue empirically. Especially interesting is the fact that, 
although migration peaked in the early 1990s following unification, the gap between average 
Eastern and Western wages remains about 25% as of 1997. 

We take the empirical findings of Burda (1993) as our point of departure. We re-analyse the 
data by estimating a Generalized Linear Model (GLM) but find that the GLM does not provide a 
satisfactory fit. Estimating a semiparametric Generalized Partial Linear Model (GPLM) reveals a 
non-linear, non-monotonic influence of household income on the propensity to migrate from 
East to West. This non-linear influence of income, while difficult to reconcile with classical 
economic theory of migration, is compatible with a number of alternative models of the 
migration decision including the option value approach proposed by Dixit and Pindyck (1994) 
and applied recently to the migration decision by Burda (1995) and O'Connell (1997). It is also 
consistent with unobserved heterogeneity and misspecification of the estimation equation. 

In the following section we present a brief discussion of the classical (Marshallian) theory of 
migration behaviour. In Section 3 we introduce the data and discuss how facts and theory play 
together. Results from fitting a parametric GLM to the data are presented in Section 4. As we 
shall see, standard logit analysis does not sufficiently capture the phenomenon underlying 
the observations. We therefore turn to a more flexible setting by allowing some components to 
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take a non-parametric form. These semiparametric Generalized Partial Linear Models (GPLM) 
are described and estimated in Section 5. In Section 6 we discuss our findings and speculate on 
theoretical explanations for our results. Section 7 concludes the paper. 

2. SOME THEORETICAL CONSIDERATIONS 

Since Ravenstein's pathbreaking work on the determinants of migration more than a century 
ago, income has been the focus of economists' attempts to explain spatial mobility. More 
precisely, the difference between income at home (WE) and the attainable income upon migration 
( w W )  has been singled out as the key explanatory variable (Sjaastad, 1962). Some migration is an 
investment, a forward-looking agent will care not only about the current income differential but 
also about future income differentials. That is, he will consider the net expected present value of 
future additional income earned if he decides to migrate. 

Yet even if this expected present value is positive, an agent may not migrate if the fixed costs 
of migrating are sufficiently high. Such fixed costs include pecuniary components associated with 
physically moving a household from one place to another. In addition, moving away means 
leaving behind a familiar environment as well as friends and family members. Following classical 
('Marshallian') economic theory, we may therefore say that a rational, forward-looking agent 
will migrate if the expected present value of the income stream from migrating exceeds monetary 
valuation of the associated fixed costs, or if the expected net present value from migrating (net of 
fixed costs) is positive. Incorporating risk aversion will change the trigger rule, but at most by a 
constant amount which would depend on the relative riskiness of the options and individual 
preferences. 

Under a number of weak assumptions about the stochastic process generating relative 
income, the expected present value of future gains from migration will be a function of the 
current observed income differential, and for plausible assumptions this relationship will be 
linear. To consider an extreme but simple example, if the absolute per-period income differential 
R, = w," - W," follows an arithmetic Brownian process with negative drift v, then the expected 
present value of migration in time t = 0 is given by V" = (no - v/6)/6, where 6 denotes the 
discount rate. 

Let the fixed costs of migration (including monetary equivalent of utility loss from moving) be 
given by F and denote the migration decision by the binary variable Y ( Y  = 1 + migration). 
Then the decision rule for a rational agent can be formally written as: 

Y = {  1 if Vm = $(a, - 1116) - F > 0 
0 otherwise 

(1) 

This theory delivers the clear prediction that an increase in period t income by reducing R, will 
decrease migration propensity, holding alternatives available in the West constant. 

3. THE DATA 

In the empirical analysis we use data drawn from the German Socio-Economic Panel (GSOEP). 
The GSOEP is a representative survey of German households that was extended to the former 
East in 1990. We use 3367 observations from the GSOEP's second East German wave which was 
collected in the spring of 1991 (time t = 0). All calculations were carried out with the statistical 
computing environment XploRe (1998). 

G 3.998 John Wiley & Sons, Ltd. J .  Appl. Econ., 13, 525-541 (1998) 
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Because very few actual migrants were observed in this wave of the GSOEP, we use migration 
propensity ('intention') as the dependent variable Y. 

At the outset, it is important to state that this variable-as is the case with all intentions 
variables-is somewhat problematic for a number of reasons. (For an extensive discussion of 
this problem as well as a plea for not disregarding such information, see Manski, 1990.) First, 
agents may be simply irrational and have little idea of what their future behaviour may be or of 
the probability distribution of future events conditioning future decisions. Second, even if agents 
are rational in the sense that they can forecast their own future decision-making process and have 
rational expectations of future forcing variables, future decisions (realizations) may be correlated 
across individuals due to systematic intervening shocks. In this paper we simply take the position 
that 'intentions' are a monotonic function of the underlying driving variables which motivate 
migration. 

The theoretical discussion of the previous section has focused on the income differential 
between host region and home region and the fixed cost of migrating as the key explanatory 
variables. Yet measuring both quantities poses a challenge. Regarding the income differential, 
we are faced with the problem that the potential income in the West is not observable. Hence, 
some imputation is generally necessary. Since Germany shares the same institutions and language 
one could assume that upon migration eastern Germans are able to employ at least some 
component of their human capital, earning 'western returns' for their attributes, at least up to a 
(macroeconomic) constant. A natural approach to estimate wow would be to imply estimates of a 
traditional earnings equation of the Mincer type, which attributes observed wages to either 
market 'returns' multiplied by observable measures of human capital endowment (education, 
experience, training, tenure) or to attributes unobservable to the econometrician modeled as a 
random disturbance. Estimating this relation on a sample of Westerners, however, will most 
likely produce biased estimates of returns to Easterners (Burda and Schmidt, 1997). Moreover, it 
is unclear how to use these estimates to calculate an imputed Western wage for those Easterners 
who are registered as unemployed or out of the labour force. Rather than producing spurious 
findings based on biased estimates of the West-East income differential (Dunn, Kreyenfeld and 
Lovely, 1997), we decide to include income in the East only. We shall return to this point when 
discussing our results in Section 6. 

The GSOEP data provides a multitude of variables that arguably are related to the intention to 
migrate from the East to West. Starting from a set of roughly 30 potential explanatory variables 
considered in the empirical analysis of Burda (1993) we used economic intuition and statistical 
selection criteria to limit the number of explanatory variables. This was done merely for better 
exposition of the facts. The proposed statistical method is valid for any dimension of the vector of 
explanatory variables. 

Summary statistics for Y and the explanatory variables are given in Table I. Presence of a 
partner, home ownership and increasing age are expected to increase the fixed cost of migrating 
whereas relatives or friends in the West supposedly have the opposite effect. Age will also 
influence the migration decision via the discount rate. The variable environmental satisfaction is 
measured on a scale from 1 ('very unhappy with environmental conditions') to 10 ('very happy') 
and can therefore be expected to have a negative influence on migration propensity. The sign of 
the coefficients of the gender, city size and education variables is rather unclear apriori. 

We have separated age and household income from the remaining explanatory variables in the 
table as-for the purposes of this study-they can be regarded as continuous explanatory 
variables. 

0 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 525-541 (1998) 
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Table I. Summary statistics 

Mean S.D. Expected effect 

Y migration intention 0.394 0.489 
X I  .female 0.51 1 0,500 
X2 partner 0.854 0.353 - 
X,  owner 0.322 0.467 - 
X4 farnily/friends in west 0.855 0.352 + 
X5 unemployed/jobloss certain 0.196 0.397 + 
X,  environmental satisfaction 3.9 2.4 - 
X,  city size < 10,000 0.522 0.499 
X8 city size 10-100,000 0.342 0.474 
X9 university degree 0.085 0.278 

XI,, age min. 18, max. 65 39.4 12.8 - 
X, , household income min. 200, max. 4000 2189.5 754.7 

4. PARAMETRIC ESTIMATION RESULTS 

Collect the explanatory variables described in the previous section into the vector x. The goal of 
the empirical analysis is to estimate the probability of migration intention, i.e. E(Y I x) = Prob 
(Y = 1 I x). A natural starting point for estimating this probability is fitting a parametric GLM. 
More precisely, we estimated a logit model. 

This parametric model is based on two assumptions. First, the underlying latent variable Y is a 
sum of a linear index of the explanatory variables x and an individual error term u. Second, the 
cumulative distribution function (cdf) of u conditional on x is the logistic distribution function. 
Combining both assumptions gives 

E ( Y  I x) = Prob(Y = 1 I x) = (1 + exp(-xTg))-' 

As usual, G(u) = 11 + exp(-u))-' is called the (inverse) link function. 
Table I1 gives the Maximum Likelihood logit estimates of P. Most coefficients have the 

expected sign: age, a partner, home ownership and environmental satisfaction reduce migration 
propensity whereas family or friends in the West and poor labour market prospects in the East 
have the opposite effect. 

The estimated coefficient of the linear logit specification suggests that migration propensity 
significantly increases with household income. Figure 1 reflects the actual dependence of the 
response Y on the variables age and income.We have plotted each variable versus the logits 
log(@/l - @) where p are the relative frequencies for Y = 1 (migration intention). Essentially, 
these logits are obtained from classes of neighboured realizations (where the range of either age 
or income has been divided into 50 equidistant intervals). In case that 6 was 0 or 1, several classes 
were merged. Thicker bullets correspond to move observations in a class. Figure 1 shows that age 
has an almost linear influence on migration intention, whereas the relationship between income 
and migration intention exhibits a U-shaped curve. 

If we include the square of household income as an additional regressor then both income 
coefficients are individually insignificant. This finding may lead an analyst to conclude that 
income does not have a non-linear influence. Yet, if we add income cubed as a regressor to the 

f; 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 525-541 (1998) 
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Table 11. Logit estimates 

Dependent variable: migration intention 

Variable Estim. coeff. t-ratio 

constant 1.864 7.74 
,female -0.233 -3.03 
partner -0.325 -2.87 
owner -0.576 5.79 
family/friends in west 0.647 5.61 
unemployed 0.217 2.24 
environmental satisfaction -0.057 -3.52 
city size < 10,000 -0.718 -5.69 
city size 10-100,000 -0.347 -2.91 
university degree 0.48 1 3.56 

age -0.050 - 14.89 
household income 0.000 1202 2.22 

Sample size: 3367, log likelihood: -1992.7 

Marginal Influence of Age I - F a  
Marginal Influence of Income 

I 
income 

Figure 1. Marginal influence of age (left) and income (right) on migration intention, visualized by logits 
on classes 

model that already includes income and income squared then all three income coefficients are 
individually as well as jointly significant. These findings are summarized in Table 111. 

Rather than continuing with the refinement of this parametric specification we decided to 
estimate a semiparametric Generalized Partial Linear Model which allows the data to freely 
determine the shape of the influence of income on migration propensity. By means of generalized 
additive modelling (Hastie and Tibshirani, 1990) this can be extended to the variable age as well. 
An analysis of this model yielded a linear dependence of migration propensity on age (as in 
Figure 1). We therefore included only income as a possible non-linear candidate. 

0 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 525-541 (1998) 
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Table 111. Parametric specification search 

Variable Estim. coeff. t-ratio 

'Quadratic' model 
household income -0.0001288 -0.507 
household income2 5.46e-08 1.002 

'Cubic' model 
household income 
household income2 
household income3 

Dependent variable: migration intention 
Same regressors as above besides income 

5. SEMIPARAMETRIC ESTIMATION RESULTS 

Before turning to estimates, we will briefly introduce the generalized partially linear model 
(GPLM). As before, the GPLM assumes that the mean of Y is related to an index of explanatory 
variables via the known link function G. Contrary to the logit model of the previous section the 
index of explanatory variables is composed of a linear parametric component and a non- 
parametric component. That is, the GPLM assumes that 

where - in a slight abuse of notation - we have collected the explanatory variables that enter 
the argument of G(.) linearly in the p x 1 vector x, and those that enter non-linearly in the q x 1 
vector t .  The unknown quantities that need to be estimated are the parameter vector b and the 
unknown function m(.). Note that there is no intercept parameter since it can be absorbed into 
the non-parametric part m(t). In the empirical analysis x will - with the exception of age - be 
made up of discrete (categorical) variables while t contains solely household income. 

The estimation methods for model (3) are based on the idea that an estimate f l  can be found for 
known m(.), and an estimate m(.) can be found for known P. In what follows we will concentrate 
on projile likelihood estimation which goes back to Severini and Wong (1992) and Severini and 
Staniswalis (1994). Denote by L(p, y) the individual log-likelihood, where p = E(Y I x, t )  = 
G(xTb + m(t)). The profile likelihood uses two different likelihood functions for the estimation of 
the parametric and semiparametric components. The usual likelihood for n i.i.d. observations 
(xi? t i>  Y J  

is used to obtain 3 and a 'smoothed' likelihood 

O 1998 John Wiley & Sons, Ltd. J .  Appl. Econ., 13, 525-541 (1998) 
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Table IV. GPLM estimates 

Dependent variable: migration intention 

GPLM estimates Logit estimates 

Variable Coeff. t-ratio Coeff. t-ratio 

,female -0.238 
partner -0.282 
owner -0.569 
,family/friends in west 0.640 
unemployed 0.216 
environmental sati.Cfhction 0.056 
city size < 10,000 -0.689 
city size 10-100,000 -0.323 
university degree 0.47 1 

age -0.050 

Sample size: 3367, log likelihood: 

-3-09 -0.233 -3.03 
-2.44 -0.325 -2.87 
-5.71 -0.576 -5.79 

5.54 0.647 5.61 
2.23 0.2 17 2.24 

-3.47 -0.057 -3.52 
-5.43 -0.7 18 -5.69 
-2-71 -0.347 -2.91 

3.48 0.48 1 3.56 

- 14.89 -0.050 - 14.89 

-1989.8, GPLM bandwidth: 0.3 

for the non-parametric smooth function hb(t) = q at point t and K,,(u) = h-'K(u/h) a kernel 
function with bandwidth h (Severini and Staniswalis, 1994) belongs to an exponential family 
using the 

The computational algorithm consists of searching maxima of both likelihoods simul- 
taneously. A detailed description of the algorithm can be found in the Appendix. It turns out that 
the resulting estimator b is &'-consistent and asymptotically normal, and that estimators h = 
hB are consistent in supremum norm (see Severini and Staniswalis, 1994). 

Table IV gives the GPLM estimates of in a model that includes the same explanatory 
variables as the logit fit of Table 11. The logit estimates and their t-ratios are also reported to 
conveniently compare results across the different approaches. In general, the GPLM estimates are 
very close to their logit counterparts. In terms of the GPLM, income plays the role of the variable 
t in equation (3). The estimated influence of income is depicted in Figure 2, with income on the 
horizontal axis and the estimate of m(t) on the vertical axis. The highly non-linear estimate of 
m(t) strongly contrasts with the linear influence of income implied by the logit model which we 
have also included in Figure 2. 

The GPLM fit suggests an S-shaped effect of income, or a U-shaped influence over the range 
of income values that carry most of the mass of the income distribution. The bandwidth h 
underlying the estimate of m(t) was set equal to 30% of the range of household income. The 
U-shaped estimate is obtained for a range of values of h, though. Note that the decreasing part of 
h(t) above t = 3000 may be attributed to random fluctuations for this bandwidth size. Above 
this income level, we have only a small number of observations (see Figure 1). 

The visual impression of Figure 2 suggests that the estimate of m(t) significantly deviates from 
the estimated linear influence of the parametric GLM fit. We use a test procedure to formally test 
that m(t) is a linear function: 

H I  : m(t) is an arbitrary smooth function 
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influence of household income 

income 

Figure 2. Influence of the net household income on migration propensity 

This test is based on comparing the semiparametric estimates with the parametric estimates 

where a denotes the coefficient of income and a. the constant in the parametric fit. 
A test of the hypothesis GLM (logit model) against the alternative of a GPLM may be based 

on the likelihqod ratio statistic. Denote by f i i  = ~ ( x r p t  + Et + Go) the parametric GLM fit and 
by ,hi = G { x T ~  + &(t)) the GPLM fit. Hastie and Tibshirani (1990) propose using 

which has heuristically a distribution that is similar to a X2 distribution. However, the degrees of 
freedom for the GPLM need to be replaced by an approximate value and theoretic distribution of 
R is unknown. 

Hardle, Mammen and Miiller (1996) propose a modification of the test statistic R. This 
modification is based on the fact that a direct comparison of &(t) and Zt + E, can be misleading 
because hi has a non-negligible smoothing bias. this holds even under the linearity hypothesis. 
Hence, a bias-corrected parametric estimate %(t) is 'used instead of Et + E,. 

Using this bias-corrected m(t) the following modified likelihood ratio test statistic is computed: 
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where pi = G{xTB + &(ti)) is the bias-corrected GLM fit and ,iii the GPLM fit as before. Hardle 
et al. (1996) show asymptotic normality of R M .  The proof of this result is based on showing that 
the asymptotic expansion of RM behaves approximately like a sum of O(h) independent 
summands. This is typically not very large and indeed simulations show that the normal 
approximation need not work well for RM (Muller, 1997). Therefore, for the calculations of 
quantiles, it is recommended to use the following bootstrap procedure: 

(1) Generate samples {Y:, . . . , YE)  under the parametric hypothesis with E*(Y> = 
G(xTB + %ti)  Here E* denotes the conditional expectation given (x,, t , ,  . . . , x,, t,,). 

(2) Calculate estimates B*, hi*, B*, I?*, &* based on the bootstrap samples {(x,, t , ,  YT), . . . , (x,, 
t , ,  YE)). Furthermore, calculate test the statistic RM*. Repeat this n* times. The quantiles 
of the distribution of RM can be estimated by the quantiles of the conditional distribution 
of RM*.  

Since in our case the distribution of Y is completely specified by EY = p = G(xTP + at + aO) 
(under the hypothesis of linearity) we resample from the Bernoulli distribution with parameters 
fii = G(xTB + clt, + clO) (the parametric GLM fit). 

Table V shows the result of both test procedures for the GLM versus the GPLM. With RM we 
denote the test using test statistic (8), where the rest has been carried out using the normal 
approximation. RM* bootstrap denotes the results for the bootstrapped quantiles of R M .  Since an 
optimal bandwidth choice for the GPLM is not known, all tests were performed for a sequence of 
bandwidths. However, we can recognize a clear rejection of the linearity hypothesis across all 
bandwidths for the R and the bootstrapped RM*. The normal approximation for RM works 
poorly for higher bandwidth levels, as indicated above. 

6. INTERPRETING THE RESULTS: ALTERNATIVE EXPLANATIONS 

In the previous section we found a significant non-linear relationship between migration intensity 
and household income which appears non-monotonic. That is, for certain intervals the migration 
propensity is increasing in household income. This is at variance with the linear relationship 
implied by the classical theory of migration outlined in Section 2. In this section we will briefly 
outline theoretic models of migration that may give rise to non-linearities in income and/or non- 
monotonic relationships and which therefore could aid in the interpretation of the shape of the 
estimate presented in Figure 2. 

6.1 Option Value of Migration 

One limiting aspect of the Marshallian theory of migration of Section 2 is its 'all-or-nothing' 
aspect; either migration occurs now or never. The work of Dixit and Pindyck (1994) and others 

Table V. Observed significance level for linearity test for migration data, n = 3367 

Note: 200 bootstrap replications. Bandwidth h in % of range of household income 
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has shown that postponement of the decision without forsaking it can be a valuable option under 
a large class of irrevocable investment problems. future. In terms of equation (I), migrating today 
not only means incurring a fixed cost Fand forgoing the current and future income in the sending 
region. It also means forgoing the opportunity to postpone migration on the basis of new, 
currently unanticipated information. This opportunity has positive (expected) value today 
because waiting brings more information about the future, which may evolve against migration in 
an unexpected way. Assuming no loss of opportunity is implied, postponement leaves open the 
possibility of migrating at a later date, saving the fixed cost over the interval. 

This opportunity cost of migrating today -in addition to the expected present value of future 
income gains from migration net of migration costs -is referred to as the option value of waiting 
and we will denote it as V". V" is equal to what one is willing to pay for the option to postpone the 
migration decision rather than having to decide 'now or never'. It can be calculated as the 
difference between the expected net present value from postponing migration, VP, and the 
expected net present value from migrating today, Vm. VO-which is a function of current 
household income, among other things-can be derived as the solution to a dynamic 
programming problem under a variety of assumptions (see Dixit and Pindyck, 1994). 

Figure 3 graphs V" (kinked curve in the lower panel), VP (the positively sloped curve in the 
upper panel) and V"' (the dashed straight line in the upper panel) as functions of the current 
income differential. If the current wage differential is below MT (the 'marshallian trigger') 
immediate migrating does not have positive net value (Vm < 0). Hence V" is just equal to Vp. 

If the current wage differential is between MT and OT ('option-value trigger') then immediate 
migration has positive expected value and hence V" = VP - Vm. We have displayed the values 
V" as vertical bars in the upper panel for selected values of the current wage differential. If the 
current wage differential is above OT then V" is zero: the current wage differential is so large that 
any further postponement of migration has zero value. 

It appears from Figure 3 that V" has the opposite shape as the estimate relationship of the 
previous section. But VO is the option value of postponing migration. That is, high values of V0 
imply a low propensity to migrate and vice versa. This is clearly evident if we rewrite the 'classical' 
decision rule (1) to incorporate the option value of waiting: 

. = {  1 if !&no + V/S) - F - v~)(R,) > o 
0 otherwise 

(9) 

.. 
As a result, the option value theory applied to the migration decision requires mirroring V" 

around the x-axis producing a U-shaped relationship. In principle, this shape is consistent with 
the empirical findings of Figure 2. 

w 
Arguably, a superior strategy is to estimate the option value of migration directly, as has been 

done recently by a number of researchers in other applications. For example, Pakes (1986) 
estimates the option value of patents in this spirit, Rust (1987) has used similar methods to 
estimate deep parameters of a dichotomous investment problem (optimal replacement of bus 
engines), and Rothwell and Rust (1995) have examined optimal response of the nuclear industry 
to regulatory changes. (A special issue of the Journal of Applied Econometrics in 1995 highlighted 
the considerable breadth of potential applications in this area.) In principle, this approach would 
be possible but difficult to implement for two reasons. First, explicit modelling of the dynamic 
programming problem would require more detailed information on the individual's character- 
istics than are available in the GSOEP (e.g. household wealth), although Rust (1987) has shown 
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'fixed cost 

Figure 3. The option value of waiting 

that problems with unobservable state variables can be overcome with sufficient assumptions 
concerning the structure of costs, etc., in a state-space model. Second, it would be necessary to 
impute a statistical process to wages at home and in the East, which would be highly speculative, 
given the limited data observations currently available since unification. Finally and perhaps 
most importantly, a number of plausible competing models exist (see below) which would give 
rise to confounding effects for individual decision makers. The derivation of a model nesting 
classical, option-value and other models of migration is beyond the scope of this exploratory 
paper, and is left for future research. 

6.2 Risk-aversion, Income Effects and the Demand for Immobility 

The previous discussion assumed risk neutrality and the absence of preferences for living at home 
or abroad. In fact, both risk aversion and the 'demand for immobility' might affect the propensity 
to migrate. The latter hypothesis has been put forward and investigated by, among others, Faini 
and Venturini (1993, 1994). Under the assumption that current place of residence is a normal 
'good', the income effect of higher absolute wages at home implies a lower propensity to migrate. 
Alternatively, wealthier individuals might seek to escape impoverishment or reduce dependence 
on relatives by moving to the wealthier West, where public goods infrastructure is better and 
better-paying job opportunities are more plentiful. In the end, the effect of income is an empirical 
proposition and will depend on preferences of individual agents, but theory predicts that, given 
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opportunities, wealthier families should exhibit a greater demand for immobility, and that the 
demand for immobility would play a subservient role for poorer to middle-income families. 
Indeed, this prediction is consistent with the shape of Figure 2 in for household income exceeding 
1500 DM/month. 

In the case of risk aversion, the influence of uncertainty is also ambiguous. In general, curva- 
ture in the utility function (as opposed to strict linearity in previous sections) will attenuate the 
attractiveness of migration if uncertainty impinges primarily on income abroad. An exception is 
Stark (1989) who shows that in some cases migration may serve a function of risk diversification 
or reduction. Below we show an example of how introducing curvature in the utility function 
(risk aversion, decreasing marginal utility) could affect the valuation of the migration decision 
without considering any option value. This line of reasoning is therefore also consistent with 
either a negative or a positive effect of absolute home income on migration propensities. The 
underlying presumption in the current application is, of course, that income at home is riskier, so 
that normal patterns of risk aversion imply demand for migration which is increasing in 
household income. 

6.3 Borrowing Constraints and Liquidity Effects 

In addition to aspects of preferences addressed in the previous section, it seems likely that capital 
markets are imperfect. Realistically, poorer segments of the population are likely to be liquidity- 
strapped and therefore unable to finance the migration investment, even if it has positive expected 
present value. Suppose that a component of moving costs, F, must be paid in cash, and thus cannot 
be financed out of future earnings in the host country. In such a situation, the absolute value of 
current income (and not relative to abroad) matters for some range-as long as assets are 
inadequate to finance the move. When the wage rises, some households which may have been 
willing to migrate for some time can do so, financing the move out of current income. This 
reasoning predicts a positive effect of home wagelincome on migration propensity for some range 
of current income. To the extent that the probability of being faced with credit constraints depends 
negatively on income and wealth, borrowing constraints seem a good candidate explanation for 
the negative branch found in the household income range 0-1500 DMImonth. 

6.4 Potential Misspecification 

One important potential explanation of our results is related to misspecification of the estimation 
equation, i.e. the arguments of the link function in equation (3). For example, one might raise the 
objection that migration models are based on income dzfferentials while our empirical analysis 
employs income in the East only. In Figures 4 and 5 we try to clarify this point. 

The top panel of Figure 4 is a repetition of the lower panel of Figure 3. The middle panel of 
Figure 4 plots a (hypothetical) Western income (vertical axis) versus Eastern income. The former 
was imputed using a Mincer regression on the Western half of the 1990-93 waves of the GSOEP. 
The lower straight line is the 45" reference line whereas the upper straight line corresponds to the 
Western. Now suppose that the option value of postponing migration is depending on the income 
differential. Then, in the situation indicated in the middle panel, the option value of postponing 
migration plotted as a function of the income in the East (lower panel) has the same shape as if it 
is plotted as a function of the income differential. 
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Option Value of Waiting 
I 

Western income vs. Eastern income 

Ootion Value versus Eastern income 

Figure 4. Eastern income versus Western income 

Similarly, Figure 5 shows that different hypotheses about the relationship between Eastern and 
Western income still preserve the non-linearity of the option value-regardless whether it is 
plotted as a function of the income differential or income in the East. Specifically, the parabola in 
the middle panel of this figure reflects the hypothesis that Easterners with a low income (expect 
to) receive a relatively high Western income, those with a mid-range income receive a rather small 
increase in the West and individuals with a high Eastern income expect a relatively strong increase 
in income by moving to the West. Under this assumption about the relationship between income 
in the East and income in the West, and under the assumption that the option value of waiting 
depends on the current West-East income differential as depicted in the top panel of Figure 5, we 
obtain the non-linear relationship between the option value and income in the East as shown in 
the lower panel of Figure 5. 

A more serious problem which potentially confounds all attempts to estimate a more tightly 
parameterized version of the model is unobserved heterogeneity. Individual-specific deter- 
minants of migration normally attributed to the unsystematic error u and unobserved to the 
econometrician may be correlated with included covariates, in particular with income. Suppose 
that the characteristic 'entrepreneurship' was rewarded somewhat in eastern Germany but 
even more so in the West, so that his factor will elicit a positive migration intention. A mis- 
specified equation excluding 'entrepreneurship' would therefore result in upward-biased 
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Ootion Value of Waiting 

Western income vs. Eastern income 

Option Value versus Eastern income 

Figure 5. Relationship between Eastern and Western income 

estimates of the effect of household income. More generally, in this first round of analysis we 
omitted a number of other variables including the labour market status of partners and other 
family members which might also bias our results in ways which are highly dependent on the 
particular effect of income assumed to be relevant (see discussion in the previous sections 
above). 

7. CONCLUSIONS 

In this paper we explored empirically the intention to migrate using microdata from the German 
Socio-Economic Panel. Fitting a parametric Generalized Linear Model (GLM) produced an 
unsatisfactory estimate of the influence of income. By estimating a Generalized Partial Linear 
Model (GPLM) we found an S- or U-shaped relation between income and (the systematic 
part of) migration propensity. This functional form was not detected by a specification search 
within the framework of a parametric GLM. The nonmonotone influence is also estimated for 
individual states in eastern Germany, so it appears to be robust phenomenon begging for 
explanation. 

This paper is primarily exploratory, but we conclude by pointing out that economic 
theory suggest a number of alternative explanations in addition to the traditional 'Marshallian' 
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arguments: the recently proposed option value of waiting theory, liquidity constraints, wealth- 
conditioned immobility, as well as unobservable heterogeneity. Future work will be directed at a 
tighter parameterization and use more sample information in estimation in order to identify 
which of these forces is operative and for which individuals. 

APPENDIX: ALGORITHM FOR GPLM 

In this section we indicate how the estimates B, hi, rtz and the test statistic can be numerically 
computed. The algorithm can be motivated as follows. Consider the parametric (profile) 
likelihood function 

pi,B = G{xrp + ma(ti)). This function is optimized to obtain an estimate for j. The smoothed or 
local likelihood 

pi, mg(t) = ~ ( x r p  + mg(t)) is optimized to estimate the smooth function mg(t) at point t. The 
local weights Kh(t - ti) here denote kernel weights with K denoting a kernel function and h the 
bandwidth. 

Abbreviate now mj = mp(tj) and the individual log-likelihood in yi by l,(q) = L{G(q), y,}. In 
the following, l: and(; denote the derivatives of e,(q) with respect to q. The maximization of the 
local likelihood (A2) requires to solve 

For p we have from equation (Al) to solve 

A further differentiation of equation (A3) leads to an expression for the derivative m; of mi with 
respect to 
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Fisher scoring-type procedure. 

Profile likelihood algorithm 

Updating step for j? 

with a Hessian-type matrix 

and 
n x l:(xTp + mj)Kh(ti - $)xi 

Updating step for mi 

2 e:(X:p + mj)Kh(t; - I,) 
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Equations (A3) and (A4) imply the following iterative Newton-Raphson type algorithm. 
Alternatively, the functions e:( can be replaced by their expectations (w.r.t. to y,) to obtain a 

- 

- 

I 

9 

1 - 

The updating step for rn, is of quite complex structure. In some models (in particular, for 
identity and exponential link functions G) equation (A3) can be solved explicitly for mi. For more -. 

details on this algorithm and possible simplifications we refer to Miiller (1997). 
To obtain the bias corrected parametric estimate k, one needs to apply the updating step for 

m. = mg(t,), keeping B fixed. 9 
I 
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SUMMARY 
East-West migration in Germany peaked at the beginning of the 1990s although the average wage gap 
between Eastern and Western Germany continues to average about 25%. We analyse the propensity to 
migrate using microdata from the German Socioeconomic Panel. Fitting a parametric Generalized Linear 
Model (GLM) yields non-linear residual behavior. This finding is not compatible with classical Marshallian 
theory of migration and motivates the semiparametric analysis. We estimate a Generalized Partial Linear 
Model (GPLM) where some components of the index of explanatory variables enter non-parametrically. We 
find the estimate of the non-parametric influence in concordance with a number of alternative migration 
theories, including the recently proposed option-value-of-waiting theory. 0 1998 John Wiley & Sons, Ltd. 

1. INTRODUCTION 

German East-West migration has been the subject of several recent papers. Using microdata 
from the German Socio-Economic Panel, Burda (1993), Biichel and Schwarze (1994) and 
Schwarze (1996) have investigated this issue empirically. Especially interesting is the fact that, 
although migration peaked in the early 1990s following unification, the gap between average 
Eastern and Western wages remains about 25% as of 1997. 

We take the empirical findings of Burda (1993) as our point of departure. We re-analyse the 
data by estimating a Generalized Linear Model (GLM) but find that the GLM does not provide a 
satisfactory fit. Estimating a semiparametric Generalized Partial Linear Model (GPLM) reveals a 
non-linear, non-monotonic influence of household income on the propensity to migrate from 
East to West. This non-linear influence of income, while difficult to reconcile with classical 
economic theory of migration, is compatible with a number of alternative models of the 
migration decision including the option value approach proposed by Dixit and Pindyck (1994) 
and applied recently to the migration decision by Burda (1995) and O'Connell (1997). It is also 
consistent with unobserved heterogeneity and misspecification of the estimation equation. 

In the following section we present a brief discussion of the classical (Marshallian) theory of 
migration behaviour. In Section 3 we introduce the data and discuss how facts and theory play 
together. Results from fitting a parametric GLM to the data are presented in Section 4. As we 
shall see, standard logit analysis does not sufficiently capture the phenomenon underlying 
the observations. We therefore turn to a more flexible setting by allowing some components to 
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take a non-parametric form. These semiparametric Generalized Partial Linear Models (GPLM) 
are described and estimated in Section 5. In Section 6 we discuss our findings and speculate on 
theoretical explanations for our results. Section 7 concludes the paper. 

2. SOME THEORETICAL CONSIDERATIONS 

Since Ravenstein's pathbreaking work on the determinants of migration more than a century 
ago, income has been the focus of economists' attempts to explain spatial mobility. More 
precisely, the difference between income at home (WE) and the attainable income upon migration 
( w W )  has been singled out as the key explanatory variable (Sjaastad, 1962). Some migration is an 
investment, a forward-looking agent will care not only about the current income differential but 
also about future income differentials. That is, he will consider the net expected present value of 
future additional income earned if he decides to migrate. 

Yet even if this expected present value is positive, an agent may not migrate if the fixed costs 
of migrating are sufficiently high. Such fixed costs include pecuniary components associated with 
physically moving a household from one place to another. In addition, moving away means 
leaving behind a familiar environment as well as friends and family members. Following classical 
('Marshallian') economic theory, we may therefore say that a rational, forward-looking agent 
will migrate if the expected present value of the income stream from migrating exceeds monetary 
valuation of the associated fixed costs, or if the expected net present value from migrating (net of 
fixed costs) is positive. Incorporating risk aversion will change the trigger rule, but at most by a 
constant amount which would depend on the relative riskiness of the options and individual 
preferences. 

Under a number of weak assumptions about the stochastic process generating relative 
income, the expected present value of future gains from migration will be a function of the 
current observed income differential, and for plausible assumptions this relationship will be 
linear. To consider an extreme but simple example, if the absolute per-period income differential 
R, = w," - W," follows an arithmetic Brownian process with negative drift v, then the expected 
present value of migration in time t = 0 is given by V" = (no - v/6)/6, where 6 denotes the 
discount rate. 

Let the fixed costs of migration (including monetary equivalent of utility loss from moving) be 
given by F and denote the migration decision by the binary variable Y ( Y  = 1 + migration). 
Then the decision rule for a rational agent can be formally written as: 

Y = {  1 if Vm = $(a, - 1116) - F > 0 
0 otherwise 

(1) 

This theory delivers the clear prediction that an increase in period t income by reducing R, will 
decrease migration propensity, holding alternatives available in the West constant. 

3. THE DATA 

In the empirical analysis we use data drawn from the German Socio-Economic Panel (GSOEP). 
The GSOEP is a representative survey of German households that was extended to the former 
East in 1990. We use 3367 observations from the GSOEP's second East German wave which was 
collected in the spring of 1991 (time t = 0). All calculations were carried out with the statistical 
computing environment XploRe (1998). 
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Because very few actual migrants were observed in this wave of the GSOEP, we use migration 
propensity ('intention') as the dependent variable Y. 

At the outset, it is important to state that this variable-as is the case with all intentions 
variables-is somewhat problematic for a number of reasons. (For an extensive discussion of 
this problem as well as a plea for not disregarding such information, see Manski, 1990.) First, 
agents may be simply irrational and have little idea of what their future behaviour may be or of 
the probability distribution of future events conditioning future decisions. Second, even if agents 
are rational in the sense that they can forecast their own future decision-making process and have 
rational expectations of future forcing variables, future decisions (realizations) may be correlated 
across individuals due to systematic intervening shocks. In this paper we simply take the position 
that 'intentions' are a monotonic function of the underlying driving variables which motivate 
migration. 

The theoretical discussion of the previous section has focused on the income differential 
between host region and home region and the fixed cost of migrating as the key explanatory 
variables. Yet measuring both quantities poses a challenge. Regarding the income differential, 
we are faced with the problem that the potential income in the West is not observable. Hence, 
some imputation is generally necessary. Since Germany shares the same institutions and language 
one could assume that upon migration eastern Germans are able to employ at least some 
component of their human capital, earning 'western returns' for their attributes, at least up to a 
(macroeconomic) constant. A natural approach to estimate wow would be to imply estimates of a 
traditional earnings equation of the Mincer type, which attributes observed wages to either 
market 'returns' multiplied by observable measures of human capital endowment (education, 
experience, training, tenure) or to attributes unobservable to the econometrician modeled as a 
random disturbance. Estimating this relation on a sample of Westerners, however, will most 
likely produce biased estimates of returns to Easterners (Burda and Schmidt, 1997). Moreover, it 
is unclear how to use these estimates to calculate an imputed Western wage for those Easterners 
who are registered as unemployed or out of the labour force. Rather than producing spurious 
findings based on biased estimates of the West-East income differential (Dunn, Kreyenfeld and 
Lovely, 1997), we decide to include income in the East only. We shall return to this point when 
discussing our results in Section 6. 

The GSOEP data provides a multitude of variables that arguably are related to the intention to 
migrate from the East to West. Starting from a set of roughly 30 potential explanatory variables 
considered in the empirical analysis of Burda (1993) we used economic intuition and statistical 
selection criteria to limit the number of explanatory variables. This was done merely for better 
exposition of the facts. The proposed statistical method is valid for any dimension of the vector of 
explanatory variables. 

Summary statistics for Y and the explanatory variables are given in Table I. Presence of a 
partner, home ownership and increasing age are expected to increase the fixed cost of migrating 
whereas relatives or friends in the West supposedly have the opposite effect. Age will also 
influence the migration decision via the discount rate. The variable environmental satisfaction is 
measured on a scale from 1 ('very unhappy with environmental conditions') to 10 ('very happy') 
and can therefore be expected to have a negative influence on migration propensity. The sign of 
the coefficients of the gender, city size and education variables is rather unclear apriori. 

We have separated age and household income from the remaining explanatory variables in the 
table as-for the purposes of this study-they can be regarded as continuous explanatory 
variables. 
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Table I. Summary statistics 

Mean S.D. Expected effect 

Y migration intention 0.394 0.489 
X I  .female 0.51 1 0,500 
X2 partner 0.854 0.353 - 
X,  owner 0.322 0.467 - 
X4 farnily/friends in west 0.855 0.352 + 
X5 unemployed/jobloss certain 0.196 0.397 + 
X,  environmental satisfaction 3.9 2.4 - 
X,  city size < 10,000 0.522 0.499 
X8 city size 10-100,000 0.342 0.474 
X9 university degree 0.085 0.278 

XI,, age min. 18, max. 65 39.4 12.8 - 
X, , household income min. 200, max. 4000 2189.5 754.7 

4. PARAMETRIC ESTIMATION RESULTS 

Collect the explanatory variables described in the previous section into the vector x. The goal of 
the empirical analysis is to estimate the probability of migration intention, i.e. E(Y I x) = Prob 
(Y = 1 I x). A natural starting point for estimating this probability is fitting a parametric GLM. 
More precisely, we estimated a logit model. 

This parametric model is based on two assumptions. First, the underlying latent variable Y is a 
sum of a linear index of the explanatory variables x and an individual error term u. Second, the 
cumulative distribution function (cdf) of u conditional on x is the logistic distribution function. 
Combining both assumptions gives 

E ( Y  I x) = Prob(Y = 1 I x) = (1 + exp(-xTg))-' 

As usual, G(u) = 11 + exp(-u))-' is called the (inverse) link function. 
Table I1 gives the Maximum Likelihood logit estimates of P. Most coefficients have the 

expected sign: age, a partner, home ownership and environmental satisfaction reduce migration 
propensity whereas family or friends in the West and poor labour market prospects in the East 
have the opposite effect. 

The estimated coefficient of the linear logit specification suggests that migration propensity 
significantly increases with household income. Figure 1 reflects the actual dependence of the 
response Y on the variables age and income.We have plotted each variable versus the logits 
log(@/l - @) where p are the relative frequencies for Y = 1 (migration intention). Essentially, 
these logits are obtained from classes of neighboured realizations (where the range of either age 
or income has been divided into 50 equidistant intervals). In case that 6 was 0 or 1, several classes 
were merged. Thicker bullets correspond to move observations in a class. Figure 1 shows that age 
has an almost linear influence on migration intention, whereas the relationship between income 
and migration intention exhibits a U-shaped curve. 

If we include the square of household income as an additional regressor then both income 
coefficients are individually insignificant. This finding may lead an analyst to conclude that 
income does not have a non-linear influence. Yet, if we add income cubed as a regressor to the 
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Table 11. Logit estimates 

Dependent variable: migration intention 

Variable Estim. coeff. t-ratio 

constant 1.864 7.74 
,female -0.233 -3.03 
partner -0.325 -2.87 
owner -0.576 5.79 
family/friends in west 0.647 5.61 
unemployed 0.217 2.24 
environmental satisfaction -0.057 -3.52 
city size < 10,000 -0.718 -5.69 
city size 10-100,000 -0.347 -2.91 
university degree 0.48 1 3.56 

age -0.050 - 14.89 
household income 0.000 1202 2.22 

Sample size: 3367, log likelihood: -1992.7 

Marginal Influence of Age I - F a  
Marginal Influence of Income 

I 
income 

Figure 1. Marginal influence of age (left) and income (right) on migration intention, visualized by logits 
on classes 

model that already includes income and income squared then all three income coefficients are 
individually as well as jointly significant. These findings are summarized in Table 111. 

Rather than continuing with the refinement of this parametric specification we decided to 
estimate a semiparametric Generalized Partial Linear Model which allows the data to freely 
determine the shape of the influence of income on migration propensity. By means of generalized 
additive modelling (Hastie and Tibshirani, 1990) this can be extended to the variable age as well. 
An analysis of this model yielded a linear dependence of migration propensity on age (as in 
Figure 1). We therefore included only income as a possible non-linear candidate. 
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Table 111. Parametric specification search 

Variable Estim. coeff. t-ratio 

'Quadratic' model 
household income -0.0001288 -0.507 
household income2 5.46e-08 1.002 

'Cubic' model 
household income 
household income2 
household income3 

Dependent variable: migration intention 
Same regressors as above besides income 

5. SEMIPARAMETRIC ESTIMATION RESULTS 

Before turning to estimates, we will briefly introduce the generalized partially linear model 
(GPLM). As before, the GPLM assumes that the mean of Y is related to an index of explanatory 
variables via the known link function G. Contrary to the logit model of the previous section the 
index of explanatory variables is composed of a linear parametric component and a non- 
parametric component. That is, the GPLM assumes that 

where - in a slight abuse of notation - we have collected the explanatory variables that enter 
the argument of G(.) linearly in the p x 1 vector x, and those that enter non-linearly in the q x 1 
vector t .  The unknown quantities that need to be estimated are the parameter vector b and the 
unknown function m(.). Note that there is no intercept parameter since it can be absorbed into 
the non-parametric part m(t). In the empirical analysis x will - with the exception of age - be 
made up of discrete (categorical) variables while t contains solely household income. 

The estimation methods for model (3) are based on the idea that an estimate f l  can be found for 
known m(.), and an estimate m(.) can be found for known P. In what follows we will concentrate 
on projile likelihood estimation which goes back to Severini and Wong (1992) and Severini and 
Staniswalis (1994). Denote by L(p, y) the individual log-likelihood, where p = E(Y I x, t )  = 
G(xTb + m(t)). The profile likelihood uses two different likelihood functions for the estimation of 
the parametric and semiparametric components. The usual likelihood for n i.i.d. observations 
(xi? t i>  Y J  

is used to obtain 3 and a 'smoothed' likelihood 
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Table IV. GPLM estimates 

Dependent variable: migration intention 

GPLM estimates Logit estimates 

Variable Coeff. t-ratio Coeff. t-ratio 

,female -0.238 
partner -0.282 
owner -0.569 
,family/friends in west 0.640 
unemployed 0.216 
environmental sati.Cfhction 0.056 
city size < 10,000 -0.689 
city size 10-100,000 -0.323 
university degree 0.47 1 

age -0.050 

Sample size: 3367, log likelihood: 

-3-09 -0.233 -3.03 
-2.44 -0.325 -2.87 
-5.71 -0.576 -5.79 

5.54 0.647 5.61 
2.23 0.2 17 2.24 

-3.47 -0.057 -3.52 
-5.43 -0.7 18 -5.69 
-2-71 -0.347 -2.91 

3.48 0.48 1 3.56 

- 14.89 -0.050 - 14.89 

-1989.8, GPLM bandwidth: 0.3 

for the non-parametric smooth function hb(t) = q at point t and K,,(u) = h-'K(u/h) a kernel 
function with bandwidth h (Severini and Staniswalis, 1994) belongs to an exponential family 
using the 

The computational algorithm consists of searching maxima of both likelihoods simul- 
taneously. A detailed description of the algorithm can be found in the Appendix. It turns out that 
the resulting estimator b is &'-consistent and asymptotically normal, and that estimators h = 
hB are consistent in supremum norm (see Severini and Staniswalis, 1994). 

Table IV gives the GPLM estimates of in a model that includes the same explanatory 
variables as the logit fit of Table 11. The logit estimates and their t-ratios are also reported to 
conveniently compare results across the different approaches. In general, the GPLM estimates are 
very close to their logit counterparts. In terms of the GPLM, income plays the role of the variable 
t in equation (3). The estimated influence of income is depicted in Figure 2, with income on the 
horizontal axis and the estimate of m(t) on the vertical axis. The highly non-linear estimate of 
m(t) strongly contrasts with the linear influence of income implied by the logit model which we 
have also included in Figure 2. 

The GPLM fit suggests an S-shaped effect of income, or a U-shaped influence over the range 
of income values that carry most of the mass of the income distribution. The bandwidth h 
underlying the estimate of m(t) was set equal to 30% of the range of household income. The 
U-shaped estimate is obtained for a range of values of h, though. Note that the decreasing part of 
h(t) above t = 3000 may be attributed to random fluctuations for this bandwidth size. Above 
this income level, we have only a small number of observations (see Figure 1). 

The visual impression of Figure 2 suggests that the estimate of m(t) significantly deviates from 
the estimated linear influence of the parametric GLM fit. We use a test procedure to formally test 
that m(t) is a linear function: 

H I  : m(t) is an arbitrary smooth function 
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influence of household income 

income 

Figure 2. Influence of the net household income on migration propensity 

This test is based on comparing the semiparametric estimates with the parametric estimates 

where a denotes the coefficient of income and a. the constant in the parametric fit. 
A test of the hypothesis GLM (logit model) against the alternative of a GPLM may be based 

on the likelihqod ratio statistic. Denote by f i i  = ~ ( x r p t  + Et + Go) the parametric GLM fit and 
by ,hi = G { x T ~  + &(t)) the GPLM fit. Hastie and Tibshirani (1990) propose using 

which has heuristically a distribution that is similar to a X2 distribution. However, the degrees of 
freedom for the GPLM need to be replaced by an approximate value and theoretic distribution of 
R is unknown. 

Hardle, Mammen and Miiller (1996) propose a modification of the test statistic R. This 
modification is based on the fact that a direct comparison of &(t) and Zt + E, can be misleading 
because hi has a non-negligible smoothing bias. this holds even under the linearity hypothesis. 
Hence, a bias-corrected parametric estimate %(t) is 'used instead of Et + E,. 

Using this bias-corrected m(t) the following modified likelihood ratio test statistic is computed: 
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where pi = G{xTB + &(ti)) is the bias-corrected GLM fit and ,iii the GPLM fit as before. Hardle 
et al. (1996) show asymptotic normality of R M .  The proof of this result is based on showing that 
the asymptotic expansion of RM behaves approximately like a sum of O(h) independent 
summands. This is typically not very large and indeed simulations show that the normal 
approximation need not work well for RM (Muller, 1997). Therefore, for the calculations of 
quantiles, it is recommended to use the following bootstrap procedure: 

(1) Generate samples {Y:, . . . , YE)  under the parametric hypothesis with E*(Y> = 
G(xTB + %ti)  Here E* denotes the conditional expectation given (x,, t , ,  . . . , x,, t,,). 

(2) Calculate estimates B*, hi*, B*, I?*, &* based on the bootstrap samples {(x,, t , ,  YT), . . . , (x,, 
t , ,  YE)). Furthermore, calculate test the statistic RM*. Repeat this n* times. The quantiles 
of the distribution of RM can be estimated by the quantiles of the conditional distribution 
of RM*.  

Since in our case the distribution of Y is completely specified by EY = p = G(xTP + at + aO) 
(under the hypothesis of linearity) we resample from the Bernoulli distribution with parameters 
fii = G(xTB + clt, + clO) (the parametric GLM fit). 

Table V shows the result of both test procedures for the GLM versus the GPLM. With RM we 
denote the test using test statistic (8), where the rest has been carried out using the normal 
approximation. RM* bootstrap denotes the results for the bootstrapped quantiles of R M .  Since an 
optimal bandwidth choice for the GPLM is not known, all tests were performed for a sequence of 
bandwidths. However, we can recognize a clear rejection of the linearity hypothesis across all 
bandwidths for the R and the bootstrapped RM*. The normal approximation for RM works 
poorly for higher bandwidth levels, as indicated above. 

6. INTERPRETING THE RESULTS: ALTERNATIVE EXPLANATIONS 

In the previous section we found a significant non-linear relationship between migration intensity 
and household income which appears non-monotonic. That is, for certain intervals the migration 
propensity is increasing in household income. This is at variance with the linear relationship 
implied by the classical theory of migration outlined in Section 2. In this section we will briefly 
outline theoretic models of migration that may give rise to non-linearities in income and/or non- 
monotonic relationships and which therefore could aid in the interpretation of the shape of the 
estimate presented in Figure 2. 

6.1 Option Value of Migration 

One limiting aspect of the Marshallian theory of migration of Section 2 is its 'all-or-nothing' 
aspect; either migration occurs now or never. The work of Dixit and Pindyck (1994) and others 

Table V. Observed significance level for linearity test for migration data, n = 3367 

Note: 200 bootstrap replications. Bandwidth h in % of range of household income 
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has shown that postponement of the decision without forsaking it can be a valuable option under 
a large class of irrevocable investment problems. future. In terms of equation (I), migrating today 
not only means incurring a fixed cost Fand forgoing the current and future income in the sending 
region. It also means forgoing the opportunity to postpone migration on the basis of new, 
currently unanticipated information. This opportunity has positive (expected) value today 
because waiting brings more information about the future, which may evolve against migration in 
an unexpected way. Assuming no loss of opportunity is implied, postponement leaves open the 
possibility of migrating at a later date, saving the fixed cost over the interval. 

This opportunity cost of migrating today -in addition to the expected present value of future 
income gains from migration net of migration costs -is referred to as the option value of waiting 
and we will denote it as V". V" is equal to what one is willing to pay for the option to postpone the 
migration decision rather than having to decide 'now or never'. It can be calculated as the 
difference between the expected net present value from postponing migration, VP, and the 
expected net present value from migrating today, Vm. VO-which is a function of current 
household income, among other things-can be derived as the solution to a dynamic 
programming problem under a variety of assumptions (see Dixit and Pindyck, 1994). 

Figure 3 graphs V" (kinked curve in the lower panel), VP (the positively sloped curve in the 
upper panel) and V"' (the dashed straight line in the upper panel) as functions of the current 
income differential. If the current wage differential is below MT (the 'marshallian trigger') 
immediate migrating does not have positive net value (Vm < 0). Hence V" is just equal to Vp. 

If the current wage differential is between MT and OT ('option-value trigger') then immediate 
migration has positive expected value and hence V" = VP - Vm. We have displayed the values 
V" as vertical bars in the upper panel for selected values of the current wage differential. If the 
current wage differential is above OT then V" is zero: the current wage differential is so large that 
any further postponement of migration has zero value. 

It appears from Figure 3 that V" has the opposite shape as the estimate relationship of the 
previous section. But VO is the option value of postponing migration. That is, high values of V0 
imply a low propensity to migrate and vice versa. This is clearly evident if we rewrite the 'classical' 
decision rule (1) to incorporate the option value of waiting: 

. = {  1 if !&no + V/S) - F - v~)(R,) > o 
0 otherwise 

(9) 

.. 
As a result, the option value theory applied to the migration decision requires mirroring V" 

around the x-axis producing a U-shaped relationship. In principle, this shape is consistent with 
the empirical findings of Figure 2. 

w 
Arguably, a superior strategy is to estimate the option value of migration directly, as has been 

done recently by a number of researchers in other applications. For example, Pakes (1986) 
estimates the option value of patents in this spirit, Rust (1987) has used similar methods to 
estimate deep parameters of a dichotomous investment problem (optimal replacement of bus 
engines), and Rothwell and Rust (1995) have examined optimal response of the nuclear industry 
to regulatory changes. (A special issue of the Journal of Applied Econometrics in 1995 highlighted 
the considerable breadth of potential applications in this area.) In principle, this approach would 
be possible but difficult to implement for two reasons. First, explicit modelling of the dynamic 
programming problem would require more detailed information on the individual's character- 
istics than are available in the GSOEP (e.g. household wealth), although Rust (1987) has shown 
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'fixed cost 

Figure 3. The option value of waiting 

that problems with unobservable state variables can be overcome with sufficient assumptions 
concerning the structure of costs, etc., in a state-space model. Second, it would be necessary to 
impute a statistical process to wages at home and in the East, which would be highly speculative, 
given the limited data observations currently available since unification. Finally and perhaps 
most importantly, a number of plausible competing models exist (see below) which would give 
rise to confounding effects for individual decision makers. The derivation of a model nesting 
classical, option-value and other models of migration is beyond the scope of this exploratory 
paper, and is left for future research. 

6.2 Risk-aversion, Income Effects and the Demand for Immobility 

The previous discussion assumed risk neutrality and the absence of preferences for living at home 
or abroad. In fact, both risk aversion and the 'demand for immobility' might affect the propensity 
to migrate. The latter hypothesis has been put forward and investigated by, among others, Faini 
and Venturini (1993, 1994). Under the assumption that current place of residence is a normal 
'good', the income effect of higher absolute wages at home implies a lower propensity to migrate. 
Alternatively, wealthier individuals might seek to escape impoverishment or reduce dependence 
on relatives by moving to the wealthier West, where public goods infrastructure is better and 
better-paying job opportunities are more plentiful. In the end, the effect of income is an empirical 
proposition and will depend on preferences of individual agents, but theory predicts that, given 
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opportunities, wealthier families should exhibit a greater demand for immobility, and that the 
demand for immobility would play a subservient role for poorer to middle-income families. 
Indeed, this prediction is consistent with the shape of Figure 2 in for household income exceeding 
1500 DM/month. 

In the case of risk aversion, the influence of uncertainty is also ambiguous. In general, curva- 
ture in the utility function (as opposed to strict linearity in previous sections) will attenuate the 
attractiveness of migration if uncertainty impinges primarily on income abroad. An exception is 
Stark (1989) who shows that in some cases migration may serve a function of risk diversification 
or reduction. Below we show an example of how introducing curvature in the utility function 
(risk aversion, decreasing marginal utility) could affect the valuation of the migration decision 
without considering any option value. This line of reasoning is therefore also consistent with 
either a negative or a positive effect of absolute home income on migration propensities. The 
underlying presumption in the current application is, of course, that income at home is riskier, so 
that normal patterns of risk aversion imply demand for migration which is increasing in 
household income. 

6.3 Borrowing Constraints and Liquidity Effects 

In addition to aspects of preferences addressed in the previous section, it seems likely that capital 
markets are imperfect. Realistically, poorer segments of the population are likely to be liquidity- 
strapped and therefore unable to finance the migration investment, even if it has positive expected 
present value. Suppose that a component of moving costs, F, must be paid in cash, and thus cannot 
be financed out of future earnings in the host country. In such a situation, the absolute value of 
current income (and not relative to abroad) matters for some range-as long as assets are 
inadequate to finance the move. When the wage rises, some households which may have been 
willing to migrate for some time can do so, financing the move out of current income. This 
reasoning predicts a positive effect of home wagelincome on migration propensity for some range 
of current income. To the extent that the probability of being faced with credit constraints depends 
negatively on income and wealth, borrowing constraints seem a good candidate explanation for 
the negative branch found in the household income range 0-1500 DMImonth. 

6.4 Potential Misspecification 

One important potential explanation of our results is related to misspecification of the estimation 
equation, i.e. the arguments of the link function in equation (3). For example, one might raise the 
objection that migration models are based on income dzfferentials while our empirical analysis 
employs income in the East only. In Figures 4 and 5 we try to clarify this point. 

The top panel of Figure 4 is a repetition of the lower panel of Figure 3. The middle panel of 
Figure 4 plots a (hypothetical) Western income (vertical axis) versus Eastern income. The former 
was imputed using a Mincer regression on the Western half of the 1990-93 waves of the GSOEP. 
The lower straight line is the 45" reference line whereas the upper straight line corresponds to the 
Western. Now suppose that the option value of postponing migration is depending on the income 
differential. Then, in the situation indicated in the middle panel, the option value of postponing 
migration plotted as a function of the income in the East (lower panel) has the same shape as if it 
is plotted as a function of the income differential. 
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Option Value of Waiting 
I 

Western income vs. Eastern income 

Ootion Value versus Eastern income 

Figure 4. Eastern income versus Western income 

Similarly, Figure 5 shows that different hypotheses about the relationship between Eastern and 
Western income still preserve the non-linearity of the option value-regardless whether it is 
plotted as a function of the income differential or income in the East. Specifically, the parabola in 
the middle panel of this figure reflects the hypothesis that Easterners with a low income (expect 
to) receive a relatively high Western income, those with a mid-range income receive a rather small 
increase in the West and individuals with a high Eastern income expect a relatively strong increase 
in income by moving to the West. Under this assumption about the relationship between income 
in the East and income in the West, and under the assumption that the option value of waiting 
depends on the current West-East income differential as depicted in the top panel of Figure 5, we 
obtain the non-linear relationship between the option value and income in the East as shown in 
the lower panel of Figure 5. 

A more serious problem which potentially confounds all attempts to estimate a more tightly 
parameterized version of the model is unobserved heterogeneity. Individual-specific deter- 
minants of migration normally attributed to the unsystematic error u and unobserved to the 
econometrician may be correlated with included covariates, in particular with income. Suppose 
that the characteristic 'entrepreneurship' was rewarded somewhat in eastern Germany but 
even more so in the West, so that his factor will elicit a positive migration intention. A mis- 
specified equation excluding 'entrepreneurship' would therefore result in upward-biased 
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Ootion Value of Waiting 

Western income vs. Eastern income 

Option Value versus Eastern income 

Figure 5. Relationship between Eastern and Western income 

estimates of the effect of household income. More generally, in this first round of analysis we 
omitted a number of other variables including the labour market status of partners and other 
family members which might also bias our results in ways which are highly dependent on the 
particular effect of income assumed to be relevant (see discussion in the previous sections 
above). 

7. CONCLUSIONS 

In this paper we explored empirically the intention to migrate using microdata from the German 
Socio-Economic Panel. Fitting a parametric Generalized Linear Model (GLM) produced an 
unsatisfactory estimate of the influence of income. By estimating a Generalized Partial Linear 
Model (GPLM) we found an S- or U-shaped relation between income and (the systematic 
part of) migration propensity. This functional form was not detected by a specification search 
within the framework of a parametric GLM. The nonmonotone influence is also estimated for 
individual states in eastern Germany, so it appears to be robust phenomenon begging for 
explanation. 

This paper is primarily exploratory, but we conclude by pointing out that economic 
theory suggest a number of alternative explanations in addition to the traditional 'Marshallian' 
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arguments: the recently proposed option value of waiting theory, liquidity constraints, wealth- 
conditioned immobility, as well as unobservable heterogeneity. Future work will be directed at a 
tighter parameterization and use more sample information in estimation in order to identify 
which of these forces is operative and for which individuals. 

APPENDIX: ALGORITHM FOR GPLM 

In this section we indicate how the estimates B, hi, rtz and the test statistic can be numerically 
computed. The algorithm can be motivated as follows. Consider the parametric (profile) 
likelihood function 

pi,B = G{xrp + ma(ti)). This function is optimized to obtain an estimate for j. The smoothed or 
local likelihood 

pi, mg(t) = ~ ( x r p  + mg(t)) is optimized to estimate the smooth function mg(t) at point t. The 
local weights Kh(t - ti) here denote kernel weights with K denoting a kernel function and h the 
bandwidth. 

Abbreviate now mj = mp(tj) and the individual log-likelihood in yi by l,(q) = L{G(q), y,}. In 
the following, l: and(; denote the derivatives of e,(q) with respect to q. The maximization of the 
local likelihood (A2) requires to solve 

For p we have from equation (Al) to solve 

A further differentiation of equation (A3) leads to an expression for the derivative m; of mi with 
respect to 
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Profile likelihood algorithm 

Updating step for j? 

with a Hessian-type matrix 

and 
n x l:(xTp + mj)Kh(ti - $)xi 

Updating step for mi 

2 e:(X:p + mj)Kh(t; - I,) 
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Equations (A3) and (A4) imply the following iterative Newton-Raphson type algorithm. 
Alternatively, the functions e:( can be replaced by their expectations (w.r.t. to y,) to obtain a 

- 

- 

I 

9 

1 - 

The updating step for rn, is of quite complex structure. In some models (in particular, for 
identity and exponential link functions G) equation (A3) can be solved explicitly for mi. For more -. 

details on this algorithm and possible simplifications we refer to Miiller (1997). 
To obtain the bias corrected parametric estimate k, one needs to apply the updating step for 

m. = mg(t,), keeping B fixed. 9 
I 
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DIRECT ESTIMATION OF LOW-DIMENSIONAL
COMPONENTS IN ADDITIVE MODELS1
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University of North Carolina, Humboldt-Universitat zu Berlin¨

and Ruprecht-Karls-Universitat Heidelberg¨
Additive regression models have turned out to be a useful statistical

tool in analyses of high-dimensional data sets. Recently, an estimator of
additive components has been introduced by Linton and Nielsen which is
based on marginal integration. The explicit definition of this estimator
makes possible a fast computation and allows an asymptotic distribution
theory. In this paper an asymptotic treatment of this estimate is offered
for several models. A modification of this procedure is introduced. We
consider weighted marginal integration for local linear fits and we show
that this estimate has the following advantages.

Ž .i With an appropriate choice of the weight function, the additive
components can be efficiently estimated: An additive component can be
estimated with the same asymptotic bias and variance as if the other
components were known.

Ž .ii Application of local linear fits reduces the design related bias.

1. Introduction. In this paper we consider the multivariate regression
model

1.1 E Y � X � x � � � f x � f x , x ,Ž . Ž . Ž . Ž .1 1 23 2 3

Ž .where Y is a real-valued dependent variable, X � X , X , X is a vector of1 2 3
explanatory variables and � is a constant. The variables X and X are1 2
continuous with values in � p or � q, respectively, and X is discrete and3

r Ž . Ž .takes values in � . For identifiability, we assume Ef X � Ef X , X � 0.1 1 23 2 3
Ž .The novelty of this paper is to directly estimate f x at the usual nonpara-1

metric rate with good sampling properties. Our model includes the additive
nonparametric regression model:

1.2 E Y � U � u � � � g u � ��� �g u ,Ž . Ž . Ž . Ž .1 1 p p

Ž .where now U � U , . . . , U is a vector of explanatory variables. A discussion1 p

Ž .of this model can be found in Buja, Hastie and Tibshirani 1989 and Hastie
Ž . Ž .and Tibshirani 1990 . Model 1.2 is easy to interpret and is much more

flexible than a linear model. Furthermore, the additive components g can bej
� Ž .�estimated with the one-dimensional nonparametric rate Stone 1985, 1986 .
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The main conclusion of this paper is somewhat surprising: The component gj
can be estimated with the same asymptotic bias and variance as the one-di-
mensional smoother, as if the other components were known. This kind of
adaptivity result appears to be new in the literature. It provides foundational
insights into additive modeling: Unknown components in the additive model,
although increasing the effective number of parameters, do not add any extra
difficulty of estimation, at least asymptotically.

In most papers, for the calculation of the additive components, algorithms
have been proposed which are based on iterative procedures using backfit-
ting. Recently, asymptotic properties of backfitting estimates have been

Ž . Ž .analyzed in Opsomer and Ruppert 1997 , Opsomer 1997 and Linton, Mam-
Ž .men and Nielsen 1997 . Because of the implicit definition of these estimates,

their behavior is difficult to understand. For this reason, in Linton and
Ž . Ž .Nielsen 1995 , Tjøstheim and Auestad 1994 and Chen, Hardle, Linton and¨

Ž .Severance-Lossin 1996 a direct method has been proposed that is based on
‘‘marginal integration.’’ This procedure is based on the fact that, up to a

Ž .constant, g u is equal toj j

EW U , . . . , U , U , . . . , U m U , . . . , U , u , U , . . . , U ,Ž . Ž .1 j�1 j�1 s 1 j�1 j j�1 s

Ž . Ž .where m u � E Y � U � u . Here W is a weight function with

EW U , . . . , U , U , . . . , U � 1.Ž .1 j�1 j�1 s

Ž .The estimate of g is achieved by weighted marginal integration of anj
estimate of m. In particular, this method does not use iterations. Fast
computation can be implemented. Furthermore, the explicit definition allows
a detailed asymptotic analysis.

The present paper extends this idea in two directions:

Ž .i It introduces a weighting scheme W, which leads to efficient estimation
�for another proposal for efficient estimation based on marginal integration,

Ž .�see Linton 1997 .
Ž .ii It allows a more flexible model, which can be incorporated with dis-

crete data.

Ž .Our asymptotic analysis can be extended to the case that model 1.1 does
Ž . Ž .not hold see Remark 3 . Then in the case of the additive model 1.2 the

marginal integration estimate gives a consistent estimate of

g u � EW U , . . . , U , U , . . . , U m U , . . . , U , u , U , . . . , U .Ž . Ž . Ž .j j 1 j�1 j�1 s 1 j�1 j j�1 s

This can be interpreted as an average effect of the jth component and is the
� Ž .�best additive approximation under some specific L -norm see Fan 1997 .2

The backfitting estimate behaves quite differently. Under appropriate condi-
� � Ž . � Ž .tions it is a consistent estimate of g where � � g u � ��� �g u is thej 1 1 p p

Ž .orthogonal projection in the Hilbert Space L p onto the subspace of addi-2
Ž . Ž .tive functions. Here p is the joint density of U , . . . , U design density . For1 p

� � Ž .identifiability, g is normed s.t. Eg U � 0. This statement follows from thej j j
Ž . Ž .results of Linton, Mammen and Nielsen 1997 . So, if model 1.2 is only
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approximately true, we conjecture that backfitting will lead to a more accu-
rate estimate of the full-dimensional regression function m. This would be
preferable if one is interested in prediction. Furthermore, the application of
marginal integration requires consistency of a full-dimensional smoother.
This puts restrictions on the dimension that may not be shared by the

Ž .backfitting estimate; see Linton, Mammen and Nielsen 1997 . On the other
Ž .hand, in the case of model misspecification , the average effect g is alwaysj

easy to interpret and it may be argued that marginal integration is preferable
as a data analytic tool.

ŽOur model includes additive partial linear models. With X � U , . . . , U ,1 p
. Ž .X , x � u , . . . , u , x we write3 1 p 3

1.3 E Y � X � x � � � g u � ��� �g u � xT � .Ž . Ž . Ž . Ž .1 1 p p 3

In this case, each nonparametric additive component can be estimated with
optimal rate by our direct estimate g , j � 1, . . . , p. Furthermore, we willˆj
show that a least-squares estimate

�̂ �1T T� Z Z Z Y � g � ��� �gŽ . ˆ ˆŽ .1 pˆž /�

possesses root-n consistency. Here, for n observations Y , . . . , Y and design1 n
i Ž .vectors X � U , . . . , U , X , i � 1, . . . , n, the vectors Y and g have ele-ˆ1 i p i 3 i j

Ž .ments Y and g U , respectively, i � 1, . . . , n; j � 1, . . . , p. The designˆi j i j

Ž T .matrix Z has rows 1, X .3 i
Another application of our model consists of partial interaction models

1.4 E Y � U � u � � � g u , u � g u � ��� �g u .Ž . Ž . Ž . Ž . Ž .12 1 2 3 3 s s

Our method directly applies interactions such as g by treating the rest of12
� Ž .�the variables as X -vectors and�or X -vectors see 1.1 .2 3

This paper is organized as follows. In Section 2, we introduce our estima-
tion procedure. Section 3 presents asymptotic results. A further discussion of

Ž . Ž .additive models 1.2 , additive partially linear models 1.3 and partial inter-
Ž .action models 1.4 can be found in Section 4. In Section 5 our methodology is

applied to a data set on female labor supply in East Germany. Furthermore,
there a small simulation study can be found. Assumptions and proofs are
postponed to Section 6.

Ž . Ž2. Estimation procedure. Let m x , x , x � E Y � X � x , X � x ,1 2 3 1 1 2 2
. q�rX � x be the regression function and let W: � � � be a known function3 3
Ž . Ž .with EW X , X � 1. Observe that under 1.12 3

Em x , X , X W X , X � � � f x � Ef X , X W X , XŽ . Ž . Ž . Ž . Ž .1 2 3 2 3 1 1 23 2 3 2 3

2.1 � � � f xŽ . Ž .1 1 1

� f � x ,Ž .1 1

where
2.2 � � � � Ef X , X W X , X .Ž . Ž . Ž .1 23 2 3 2 3
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Thus, f can be directly estimated within a constant factor. This can be done1
by averaging out a nonparametric estimator of m with respect to other

Ž .variables X , X . Since, in practice, f � will be normalized to have sample2 3 1
mean 0, the constant fact � is irrelevant to the final estimated curve. This1

Ž .kind of integration idea was studied in the additive model 1.1 by Tjøstheim
Ž . Ž .and Auestad 1994 , Linton and Nielsen 1995 and Chen, Hardle, Linton and¨

Ž .Severance-Lossin 1996 .
Ž .To utilize 2.1 , we consider the local linear approximation near a fixed

point x :1

f v � a x � bT x v � x ,Ž . Ž . Ž . Ž .1 1 1 1 1 1

where v lies in a neighborhood of x . Further, the local constant approxima-1 1
tion for f at a fixed point x and x is employed:23 2 3

f v , x � c x , x for v � x .Ž . Ž .2 2 3 2 3 2 2

Ž .Thus, in a neighborhood of x , x and for the given value of x , we can1 2 3
approximate the regression function as

m v , v , x � � � a x � bT x v � x � c x , xŽ . Ž . Ž . Ž . Ž .1 2 3 1 1 1 1 2 32.3Ž .
� � � � T v � x .Ž .1 1

Ž .Note that f �; x is locally approximated by a constant. This is because:23 3

Ž . Ž . Ž .i the function c x , x will be averaged out by an integration via 2.1 ;2 3
Ž .ii the higher-order approximation will increase the number of local pa-

rameters and hence is harder to implement in higher dimensions.

Ž .In principle, we can approximate f � to a higher order. We opt not to do1
this for simplicity. Furthermore, the higher-order approximation rarely takes
effect for the finite amount of data�the size of the local neighborhood plays a

� Ž .�more crucial role see, e.g., Fan and Gijbels 1996 .
Ž .Consider now that we have an i.i.d. data set Y , X , X , X , i � 1, . . . , n,i 1 i 2 i 3 i

Ž . Ž .for model 1.1 . The local model 2.3 leads to the following regression prob-
lem: Minimize

n
2T � 42.4 Y � � � � X � x K X � x L X � x I X � x .Ž . Ž . Ž . Ž .Ž .Ý i 1 i 1 h 1 i 1 h 2 i 2 3 i 31 2

i�1

Here K and L are kernel functions and for bandwidths h and h we put1 2

1 t 1 t
K t � K and L t � L .Ž . Ž .h hp q1 2ž / ž /h h h h1 1 2 2

Ž .Note that the factor K L I in 2.4 is just to confine our localization idea.h h1 2ˆŽ . Ž . Ž . Ž .Let � x and � x be the solution to 2.4 . Then, from 2.3 by settingˆ
Ž . Ž .v , v , x � x, we can easily see that m x � � . Thus, our partial local1 2 3
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Ž . Ž .linear estimator is m x � � . By 2.1 , we propose the following estimator:ˆ ˆ
n1

�̂2.5 f x � m x , X , X W X , XŽ . Ž . Ž . Ž .ˆÝ1 1 1 2 i 3 i 2 i 3 in i�1

and
n1

� �ˆ ˆ ˆ2.6 f x � f x � f , f � f X .Ž . Ž . Ž . Ž .Ý1 1 1 1 1 1 1 1 in i�1

Ž . Ž .Note that when the local constant fit is employed i.e., � � 0 in 2.3 ,
the resulting estimate � is basically the multivariate kernel regressionˆ
estimator.

Let X be the design matrix and let A be the diagonal weight matrix to the
Ž .least-squares problem 2.4 . Then

�̂ �1T T� X AX X AY ,Ž .ˆž /�

Ž .T Ž .where Y � Y , . . . , Y , and simple algebra shows that m x � � can beˆ ˆ1 n
expressed as

n

2.7 m x � K X � x Y ,Ž . Ž . Ž .ˆ Ý n i i
i�1

Ž . Ž T . T Ž .where, with S x � X AX and e � 1, 0, . . . , 0 ,n 1

1T �1 � 42.8 K t , t , t � e S K t L t I t � 0 .Ž . Ž . Ž . Ž .n 1 2 3 1 n h 1 h 2 31 2tž /1

Note that it follows from least-squares theory that
n n

2.9 K X � x � 1 and K X � x X � x � 0.Ž . Ž . Ž . Ž .Ý Ýn i n i 1 i 1
i�1 i�1

Ž .3. Main results. Let us begin by introducing some notation. Let p x1 1
Ž . Ž .and p x , x be respectively the density of X and X , X and let1, 2 1 2 1 1 2

Ž . Ž .p x , x ,� x , p x � x be respectively the conditional density of1, 2 � 3 1 2 3 2 � 3 2 3

Ž . Ž . Ž .X , X given X and of X given X . Set p x � P X � x . The condi-1 2 3 2 3 3 3 3 3
Ž .tional variance of � � Y � E Y � X is denoted by

� 2 x � E � 2 � X � x � var Y � X � x ,Ž . Ž . Ž .
Ž .where X � X , X , X . Let1 2 3

� � 2 2 TK � K and � K � tt K t dt .Ž . Ž .H H2

Then, under Condition A in Section 6, we have the following theorem that
Ž .generalizes the main result in Linton and Nielsen 1995 .
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THEOREM 1. Under Condition A for a point x 	 � p, if the bandwidths1
are chosen such that nh phq�log n � 	, h � 0, h � 0 in such a way that1 2 1 2
hd�h2 � 0, then2 1

�p 2ˆ3.1 nh f x � f x � � � b x � o h � N 0, v x ,Ž . Ž . Ž . Ž . Ž .' Ž .� 4Ž .1 1 1 1 1 1 1 1 1

where
1 �23.2 b x � h tr f x � KŽ . Ž . Ž . Ž .Ž .1 1 1 1 22

and

� � 2v x � K p xŽ . Ž .1 1 1

2 2p X � X W X , XŽ . Ž .2 � 3 2 3 2 32� E � X , X , X X � x .Ž .1 2 3 1 12½ 5p X , X � XŽ .1, 2 � 3 1 2 3

3.3Ž .

Ž .REMARK 1. Condition A vi is also not a necessary condition for Theorem
1. It is imposed to simplify the technical proof. In the proof we approximate
the matrix S�1 by a deterministic sequence. If we used a higher-ordern

�1 Ž .stochastic expansion of S , Condition A vi could be weakened. Note that ifn
the local polynomial of order d is used to approximate the function f instead2
of using the local constant fit with a higher-order kernel, then the result of

Ž .Theorem 1 continues to hold without imposing Condition A vi and the
Ž .derivative conditions on p x , x � x . In other words, these conditions1, 2 � 3 1 2 3

are not essential to our estimation problem.

REMARK 2. Under the additional assumptions that X has compact sup-1
�port XX and that Condition A holds uniformly for x 	 XX i.e., the infimum in1

Ž .A iii is uniformly bounded from below and the derivatives considered in
Ž . Ž . �A iii and A iv are uniformly bounded , it is easy to show that

n1 1
� 2ˆf � f X � b � o h � o ,Ž . Ž .Ý1 1 1 i 1 P pž /n nh' 1i�1

� �1 2 ˆ ˆ� Ž . Ž .�where b � h E tr f X � K . So it follows from Theorem 1 for f � f �1 1 1 2 1 12

f that1

p 2ˆnh f x � f x � b � b x � o h � N 0, v x .Ž . Ž . Ž . Ž .' Ž .� 4Ž .1 1 1 1 1 1 1 1

Note that the ‘‘additional bias’’ term b can be dropped in the preceding
Ž .expression if a different bandwidth smaller than h is used to construct f .1 1

If one can only assume that Condition A holds uniformly over a subset XX
� of

� �nˆ ˆ ˆŽ . Ž .XX , then one could consider f � f � f with f � Ý 
 X f X �1 1 1 1 i�1 1 i 1 1 i
n � ˆŽ .Ý 
 X , where 
 is a weight function that vanishes outside of XX . Then fi�1 1 i 1

Ž . Ž . Ž . Ž .is a consistent estimate of f x � E
 X f X �E
 X and its asymptotic1 1 1 1 1 1
distribution can be easily seen from Theorem 1. Our following results have
similar implications. For brevity we will not mention them.
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REMARK 3. An analogous result can be proved for the case that model
Ž . Ž . � �1.1 does not hold, that is, that the regression function m x � E Y � X � x

Ž . Ž . Ž .is not of the form � � f x � f x , x . If Condition A iv is replaced by1 1 23 2 3
Ž .the assumption that m u , u , u has bounded partial derivatives up to1 2 2

order 2 with respect to u and up to order d with respect to u for u in a1 2 1
Ž .neighborhood of x and for u , u in the support of the weight function W,1 2 3

Ž .one can show that 3.1 holds with
21 �

2b x � h � K E tr m x , X , X W X , XŽ . Ž . Ž . Ž .1 1 1 2 1 2 3 2 32½ 52 � xŽ .1

�̂Ž . � Ž . Ž .�and with � � f x replaced by E m x , X , X W X , X . In this case f1 1 1 1 2 3 2 3 1
is a consistent estimate of a weighted average effect of the covariable X .1

�̂ Ž .REMARK 4. Due to the local linear fitting, the resulting estimate f x is1 1
automatically adapted to the boundary of the design density of X . This can1
be seen from our proof. The theoretical formulation of boundary properties of

Ž .a nonparametric estimator can be found in Gasser and Muller 1979 and its¨
Žapplications to the local polynomial fitting is given by Fan and Gijbels 1992,

. Ž .1996 , and Ruppert and Wand 1994 .
Ž .We now consider the optimal weight function W � . This is equivalent to

minimizing

p2 X � X W 2 X , XŽ . Ž .2 � 3 2 3 2 323.4 min E � X � X � xŽ . Ž . 1 12½ 5p X , X � XW Ž .1, 2 � 3 1 2 3

Ž .subject to EW X , X � 1.2 3
We first state a simple lemma.

2Ž . 2Ž .LEMMA 1. The minimization problem min HW x g x dx subject toW
Ž . Ž .HW x h x � 1 is obtained at

h x h2Ž .
W � H2 2g x gŽ .

� 2Ž . 2Ž . 4�1and the minimum value is Hh x �g x dx .

PROOF. Using the Language multiplier method, we have to minimize
2 2 2Ž . 2Ž . Ž . Ž .HW g � � Wh. This is equivalent to minimizing W x g x � � W x h x ,

yielding the solution
� h xŽ .

W x � .Ž . 22 g xŽ .
The constraint HWh � 1 gives

h x h2Ž .
W x � .Ž . H2 2g x gŽ .

This completes the proof. �
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Ž .Applying Lemma 1 to problem 3.4 , we obtain the optimal solution

p X , X p2 x , X � XŽ . Ž .2, 3 2 3 1, 2 � 3 1 2 3�1W X , X � cŽ .2 3 2 2� x , X , X p X � X p X , X � xŽ . Ž . Ž .1 2 3 2 � 3 2 3 2, 3�1 2 3 1
3.5Ž .

p x , X , X p xŽ . Ž .1 2 3 1 1�1� c ,2� x , X , X p X , XŽ . Ž .1 2 3 2, 3 2 3

Ž . Ž . Ž . Ž . Ž . Ž .where p x � p x , x � x p x and p x � p x � x p x are1, 2 � 3 1 2 3 3 3 2, 3 2 � 3 2 3 3 3
Ž . Ž .respectively the joint ‘‘density’’ of X � X , X , X and X , X and where1 2 3 2 3

Ž .2 � �2 Ž . 4c � p x E � X � X � x . The minimal variance is1 1 1 1

� � 2K �1�23.6 min v x � E � X � X � x .Ž . Ž . Ž .� 41 2 1p xW Ž .1 1

REMARK 5. The optimal weight function W depends on x . When it is1
� Ž .�used, the constant � see 2.2 depends on x . So in this case the estimate1 1

�̂ Ž .f x no longer estimates a function that is parallel to f . Nevertheless the1 1 1
ˆestimate f is a consistent estimate of f . Note that for the calculation of1 1

ˆ �̂Ž . Ž . Ž . Ž .f x the same weight function depending on x is used for f X in 2.6 .1 1 1 1 1 i
Ž .Therefore the term � � � x cancels. See also Remark 2. Furthermore, as1 1 1

noted in Remark 2, the extra term of bias can be completely eliminated if a
different bandwidth is applied to construct f.

Ž . Ž . Ž .REMARK 6. Typically, the design densities p X , p X , p X , X are1 1 2, 3 2 3
not known. A theoretically satisfactory way out consists of dividing our
sample into a relatively small first subsample and a relatively large second
subsample. Then, under our smoothness assumptions, the design densities
can be consistently estimated by the first subsample. The regression func-
tions can be estimated in a second step using the other subsample. This
shows that the optimal variance can be achieved, at least theoretically. The
practically more relevant procedure, using the full data set for the estimation
of the design densities and of the regression function, is not covered by our
theory.

Ž . 2Ž . 2REMARK 7. When f x , x is known and � x � � , one can directly23 2 3
Ž . Ž .smooth Y � f X , X on X to obtain an estimate of f x and this23 2 3 1 1 1

� Ž .�estimate is optimal in an asymptotic minimax sense cf. Fan 1993 . The
2 � � 2 Ž . Ž .variance of this estimate is � K �p x , which is the same as 3.6 . In1 1

Ž .other words, our direct estimator 2.6 shares the same optimality as this
ideal estimator and has the same ability of estimating the additive compo-
nent even if f is unknown.23
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Ž . 2Ž . 2REMARK 8. In the case that X is independent of X , X and � x � � ,1 2 3
Ž . �one can directly smooth Y on X to obtain an estimate of f x cf. Hardle¨1 1 1

Ž .�and Tsybakov 1995 . This estimator has the asymptotic variance

� � 2K
2� � var f X , X ,� 4Ž .23 2 3p xŽ .1 1

Ž . Ž .which is larger than our direct estimator 2.6 with the optimal weight 3.5 .
To summarize, we have

Ž .THEOREM 2. Under the assumptions of Theorem 1, if the ideal weight 3.5
is used, we have

�p 2ˆnh f x � f x � � � b x � o hŽ . Ž . Ž .' � 4Ž .1 1 1 1 1 1 1 1

� � 2K �1�2� N 0, E � X � X � x ,Ž .� 41 1ž /p xŽ .1 1

Ž . Ž .where b x was defined in 3.2 .1

4. Applications to special models.

4.1. Additive model. We now assume the following additive model:

4.1 Y � � � g U � ��� �g U � � ,Ž . Ž . Ž .1 1 p p

Ž . Ž .where g � , . . . , g � are univariate functions satisfying the identifiability1 p
condition

E U � 0, . . . , E U � 0Ž . Ž .g 1 g p1 p

and U , . . . , U are continuous variables having a joint density p. Now, for1 p
� Ž .each variable U , we can form directly g as in 2.6 , using now h � h andˆ� � 1 1�

h � h .2 2 �

THEOREM 3. If the conditions of Theorem 1 hold for each component � ,
then we have the following joint asymptotic normality:

�� 1 2 2nh g u � g u � � � h � K g u � o hŽ . Ž . Ž . Ž .' � 4ˆ Ž .11 1 1 1 1 11 11 2 1 1 112

...
4.2Ž .

�� 1 2 2� 0nh g u � g u � � � h � K g u � o hŽ . Ž . Ž . Ž .ˆ' ½ 5Ž .1 p p p p p 1 p 1 p 2 p 1 1 p2

� N 0,  ,Ž .d

Ž .where � is analogous to that defined in 2.1 and1�

� � 2 2 2 � K diag � , . . . , �Ž .1 p

and
2 2 2� U p u p U W UŽ . Ž . Ž . Ž .� � �� �� � ��2� u � E U � u ,Ž .� � �2½ 5p UŽ .

Ž .with U � U , . . . , U , U , . . . , U and p is its joint density.�� 1 ��1 a�1 p ��
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REMARK 9. When W � 1, the variance matrix  is the same as that
Ž .obtained by Chen, Hardle, Linton and Severance-Lossin 1996 . However,¨

since we employ the local linear fit, our bias has a nicer expression. Put
Ž .another way, the local linear fit 2.6 uses one extra local parameter without

Ž .increasing the variance. See Fan and Gijbels 1996 for further discussion on
the advantages of using local polynomial fits.

REMARK 10. Under the standard assumption that all components are only
Ž .two times continuously differentiable i.e., d � 2 and smoothing of opti-

Ž �1�5.mal order is done for � i.e., h is of order n , then the conditions1�
p�1 �nh h �log n � 	, h �h � 0 imply p 
 4. Furthermore, Condition1� 2 � 2 � 1�

Ž . �A vi implies p 
 2. However, this condition can be weakened; see Remark 1.
So for p � 5 two times differentiable component rates of order n�2�5 cannot
be achieved by the marginal integration estimate. However, with a modifica-

Ž .tion given by Hengartner 1996 , the marginal integration estimate can still
achieve the optimal rate of convergence.

Ž .If the ideal weight scheme 3.5 is applied to each additive component, the
weight function should be

p U p U p U p UŽ . Ž . Ž . Ž .� � � �
4.3 W � dUŽ . H� ��2 2� U p U � UŽ . Ž . Ž .�� ��

� � 2 2 Ž . 2Ž . 2and the ideal variance is K � �p U if � U � � .� �

4.2. Additive partially linear model. Consider the additive partially lin-
Ž .ear model 1.3 , which possesses the flexibility to model a part of covariates

Ž .in particular, discrete variables linearly. In this model, one can form the
Ž . � Ž . �estimate of g � via g � as in Section 4.1 by treating the additionalˆ� �

�discrete variable X as in Section 3 . Let3

p

4.4 � � � .Ž . Ý 1�
��1

Then g� � ��� �g� overestimates g � ��� �g by an amount of � . Sinceˆ ˆ1 p 1 p

Ž .model 1.3 involves an intercept term, this will only affect the estimate of �,
not the slope �. Since the grand mean � � EY � EX T� can be estimated as2

n n1 1
T ˆ4.5 � � Y � X � ,Ž . ˆ Ý Ýi 3 in ni�1 i�1

the actual value of � is not a concern to us.
The quality of the estimator g� is not high at the region where the dataˆ�

are sparse. To eliminate such deficiencies used in the parametric estimation,
i Ž .we use the ith data point if X � U , . . . , U , X 	 A, where A is a1, i p, i 3, i
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Ž . p�rprescribed set usually a rectangle in � . Now consider the following
least-squares problem:

n
2� � T i� 44.6 min Y � g U � ��� �g U � � � X � I X 	 A .Ž . Ž .ˆ ˆ Ž .� 4Ý i 1 1 i p pi 3 i

� , � i�1

1 T˜ Ž .Let Z � and Z � Z , . . . , Z be the design matrix.i 1 nXž /3 i

�̂�1 n ˆ� � 4 � 44Put � � diag I X 	 A , . . . , I X 	 A and � � . Thenž /�̂

�1
� � �T Tˆ ˜ ˜ ˜� � Z �Z Z � Y � g � ��� �g ,Ž . ˆ ˆŽ .1 p

Ž .T � Ž � Ž . � Ž ..Twhere Y � Y , . . . , Y and g � g U , . . . , g U . To state theˆ1 n � � � 1 � � n
ˆ�asymptotic normality of � , we use the notation introduced in Section 4.1.

Additionally, we need the following notation.
Ž . Ž .Let p � be the marginal density of U and let p � be the marginal� � �� , 3
Ž .density of U , X , � � 1, . . . , p,�� 3

Z � Z I X 	 AŽ .A

p W U , X p U , XŽ . Ž .� �� 3 �� , 3 �� 3� p U E Z I X 	 A � U .� 4Ž . Ž .Ý � � �p XŽ .��1

� � �� Ž .Put � � . For simplicity of discussion, we assume that W � is�ž /�
ˆ�Žindependent of u . Otherwise, the root-n of � holds, but the covariance is�

more complicated. Set

� 4V � W U , X � 1 E g U I X 	 A Z� 4Ž . Ž .� � �� 3 � �

� g U � X T� W U , XŽ . Ž .� Ž .�� �� 3 � �� 3

T � 4�E g U � X � W U , X E I X 	 A Z ,Ž . Ž . 4Ž .�� �� 3 � �� 3

where

g U � g U � ��� �g U � g U � ��� �g U .Ž . Ž . Ž . Ž . Ž .�� �� 1 1 ��1 ��1 ��1 ��1 p p

� �THEOREM 4. Under the assumptions of Theorem 3, if X has a bounded3
2 2Ž p�1. Ž .2 Ž �1�4.fourth moment, nh h � log n � 	 and h � o n , we have1� 2 � 1�

� � �1 �1ˆ'n � � � � N 0, B B B ,Ž .Ž . 1 2 1

where
B � EI X 	 A ZZTŽ .1

and
p

2 TB � E� X Z Z � var V .Ž . Ý2 A A �ž /
��1

Ž .When X contains quite a few binary variables, the estimator 2.6 can be3
Ž .hard to use, since few data points are available in 2.4 . For the additive
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Ž .partially linear model 1.3 , special care is needed. In the local step, we can
Ž .replace 2.4 by
n

2T4.7 Y � a � b U � u � X � K U � u L X � x ,Ž . Ž . Ž . Ž .Ž .Ý i 1 i 1 3 i h 1 i 1 h 2 i 21 2
i�1

Ž .T Ž .T Ž .where X � U , . . . , U and x � u , . . . , u . Note that 4.7 is ob-2 i 2 i p i 2 2 p
Ž .tained via the local regression model in a neighborhood of u , x . This kind1 2
Ž .of idea appears already in Carroll, Fan, Gijbels and Wand 1997 . We denote

ˆ ˆŽ . Ž . Ž . Ž .g u � g u � ��� �g u . Let a, b and � minimize 4.7 . Thenˆ1 1 p p

g� u , x � aŽ .ˆ ˆ1 2

Ž .is a nonparametric estimator of g. Let W x be a function such that2
Ž .EW X � 1 and2

g� u � � � g u � EW X f X � g u � �� ,Ž . Ž . Ž . Ž . Ž .1 1 1 1 2 2 2 1 1 1

where f � g � ��� �g . Then2 2 p

n
�� �14.8 g u � n g u , X W XŽ . Ž . Ž . Ž .ˆ ˆÝ1 1 1 2 i 2 i

i�1

�Ž .is an estimator of g u , with the following asymptotic properties.1 1

THEOREM 5. Suppose that Condition B holds for � � 1. Then, if
nh h p�1�log n � 	 and h � 0 and hd�h2 � 0,1 2 1 2 1

�� 1� 2 2nh g u � g u � � � h � K g u � o hŽ . Ž . Ž . Ž .' � 4ˆ Ž .1 1 1 1 1 1 1 2 1 1 12

� N 0, v� u ,Ž .Ž .1

Ž .with p , p , p being the densities of U , X and U ; X , respectively,1 2 1, 2 1 2 1 2

W 2 X p XŽ . Ž .2 2 2 22� 2 T �1 �1� �v u � p u K E � X e    e � U � u ,Ž . Ž . Ž .1 1 1 1 1 2 1 1 1 12½ 5p U , XŽ .1, 2 1 2

T1 X3
 � E U , X ,1 1 2T½ 5ž /X X X3 3 3

1 X T
3

 � .2 Tž /X X X3 3 3

REMARK 11. If we apply the estimating procedure to each additive compo-
Ž .nent of model 1.3 , then the resulting estimators are asymptotically indepen-

dent and normal.
� ˆ�� Ž .Next, we estimate the parameter �. Let � and � minimize 4.6 withˆ

g� replaced by g�. Then we can compute explicitly the asymptotic variance ofˆ ˆ� �
ˆ��� in a similar fashion to Theorem 4. Since the notation gets very compli-
cated, we only state a simpler version of it.
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THEOREM 6. Under the assumptions of Theorem 4, we have

��ˆ'n � � � � N 0, BŽ .Ž . 3

for some positive definite matrix B .3

The proof of this theorem is similar to that of Theorem 4 and is omitted.

REMARK 12. Theorems 5 and 6 can be extended to the case that X is3
continuous.

Ž .REMARK 13. For the case of one nonparametric component p � 1 and
Ž .continuous X , Speckman 1988 has shown that another method leads to an3

unbiased estimate of �. The approach of Speckman does not require under-
� Ž �1�4.�smoothing i.e., h � o n . The estimate is based on the regression of1�

Ž . Ž .I � M Y onto I � M X , where M denotes a smoothing matrix. It is notS S 3 S
clear to us how this approach generalizes to the case with more than one
additive components. Efficient estimation of � for p � 1 has been considered

Ž .in Bhattacharya and Zhao 1997 .

4.3. Exploring possible interactions. Suppose one is interested in validat-
Ž .ing the additive model 1.2 by checking whether there is a nonnegligible

Ž . Ž .interaction term such as g u , u . One can embed the additive model 1.212 1 2
Ž . Ž .into the model 1.4 or more generally model 1.1 with p � 2. Now, estimate

Ž .the function g using our method. Plot g �; x for a few different values ofˆ ˆ12 12 2
x . The parallelism of the plot suggests the additivity contributions of x and2 1
x . This provides a quick and informal model diagnostic tool.2

5. Simulations and an application. In a small simulation study we
� Ž .�have compared the ‘‘indicator method’’ see 2.4 and the ‘‘linear approach’’

where the linear parametric part has been incorporated in the local linear
� Ž .�smoothing see 4.7 . In our simulation and in the following data example we

have not studied estimation of the optimal weight function W. First experi-
ence suggests that a practically working adaptation of this idea needs some
further research.

We have generated 100 samples of 200 normal observations Y. Four
covariates have been generated: U and U are normal with mean 0, variance1 2
1 and covariance 0.4; Z takes values 1, 2, 3 and 4 with probability 0.25, 0.35,1
0.25 or 0.15, respectively; Z takes values 0 or 1 with probability 0.2 or 0.8,2

Ž . � Ž 2 2 2respectively. The conditional variance of Y is 1 � U � U � Z �1 2 1
2 .1�24 Ž . Ž .Z �4. The simulated regression function is 1.5 � g u � g u �2 1 1 2 2

Ž . 2 Ž . Ž .� z � � z with g u � 1 � u , g u � sin �u , � � 0.3 and � �1 1 2 2 1 1 1 2 2 2 1 2
�0.5. In the estimation of the parametric components only observations have

� � � � Ž .been used with U 
 1.5 and U 
 1.5; see 4.6 . Bandwidths 0.3 and 0.41 2
have been used for the smoothing of the estimated or the nuisance nonpara-

Žmetric component, respectively. Table 1 shows the simulated MASE i.e., the
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TABLE 1
Results from a small simulation study comparing the ‘‘linear approach’’ and the

‘‘indicator method.’’ Two nonparametric additive components g and g ; two1 2
linear parameters � and � ; sample size n � 200*1 2

ˆ ˆg g � � mˆ ˆ ˆ1 2 1 2

Indicator 0.1857 0.1775 0.0096 0.0409 0.2647
Ž . Ž .Method 0.0609 0.518

MASE Linear 0.2739 0.3207 0.0075 0.0393 0.5081
Ž . Ž .Approach 0.1450 0.1549

*In parentheses the MASE are given for the nonparametric components with summation region
truncated by the 2.5% and 97.5% quantiles of the covariates.

.squared error averaged over the design points . The values in parentheses are
the MASE for the nonparametric components with the summation region
truncated by the 2.5% and 97.5% quantiles of the covariates. These values
have been added because they reflect better the behavior of the curve
estimates in the middle region.

In this simulation the ‘‘indicator method’’ clearly shows a better perfor-
mance. We conjecture that the ‘‘indicator method’’ may be outperformed by
the ‘‘linear method’’ only in cases where the discrete variables take on a
rather large number of different values. In the following data example we
used the ‘‘indicator method.’’

Figure 1 contains the resulting plots from a study on the female labor
supply in East Germany. A sample of 607 women with a job who live together
with a partner were asked their weekly number Y of working hours. Further-
more, the following information was recorded: if the woman has children less

Ž .than 16 years old Z , the unemployment rate Z in the ‘‘land’’ of the1 2
Federal Republic of Germany where she lives, the age U of the woman, her1

�wage per hour U , the ‘‘Treiman prestige index’’ of her job U see Treiman2 3
Ž .� Ž1978 , her years U of education introduction of this covariate makes sense4
because of the strongly regulated system of education in the former East

.Germany , her rent or redemption U , and the monthly net income U of her5 6
husband. A partial linear model for these data has been fitted. The fit has
been chosen linearly in Z and Z . The covariate Z takes only five values.1 2 2
Ž .There are five ‘‘lands’’ in the eastern part of Germany. The other six
additive components have been estimated nonparametrically. For this data
set a constant weight function W has been used. Bandwidths 0.4 and 0.6
times the empirical standard deviation of the covariable have been used for
the smoothing of the estimated or the nuisance nonparametric component,
respectively. The resulting parametric estimates are � � �1.46 and � �1 2
0.52. The resulting nonparametric fits can be found in the left frames of
Figure 1. Dashed lines have been added for indicating the pointwise variance
of the curve estimates. These lines differ from the curve estimates by 1.64
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FIG. 1. Female labor supply in East Germany. Left frames show nonparametric estimates of
additive components with approximate 90% confidence intervals. Right frames give kernel
density estimates of the covariates.

Ž .times the estimated pointwise standard deviation of the curve estimates;
Žthat is, this corresponds to an approximate 90% confidence interval without

.bias correction . The estimation of the pointwise standard deviation of the
curve estimates has been done under the additional assumption that the
conditional variance of the errors is constant. Note that all curve estimates at
a fixed point are averages Ýw Y of the observations Y . The variance of thisi i i
estimate can be estimated by Ýw2� , where � 2 is the empirical variance ofˆ ˆi 2

ˆ ˆŽ .the residuals � � Y � � � Ý f U � Ý � Z . Another estimate of the vari-ˆ ˆ j j j j j j

ance of Ýw Y is Ýw2� 2. This estimate does not require the additionalˆi i i i
assumption that the conditional variance of the errors is constant. Plots of
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FIG. 1. Continued

pointwise confidence intervals based on this estimate are of similar size but
of rougher shape. They are not shown here. In each plot of Figure 1 the
covariable has been plotted against the estimated function plus the logarithm

ˆ� Ž . Ž . � �of the residual i.e., f U � sgn � log � ; the logarithmic transform has beenˆ ˆ� �

�used to show all data . The right frames show the density estimates of the
covariates.

The plots show some clear nonlinearities. In particular, one sees a flat part
in the lower range for rent and prestige index and in the middle range of
hourly earnings, whereas the relation is monotone elsewhere. The results
quantify the extent to which each variable affects the female labor supply.
Using the dynamic ranges of the plots as a criterion to assess the practical
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importance of a variable, the key factors that affect the labor supply are
hourly earnings U and monthly net income of husbands U . Slightly less2 6
influential covariates are age of the woman U and prestige of the job U .1 2
Table 2 shows the results of a parametric least-squares analysis.

2 Ž .2 2 Ž .2The covariates U � AGE W. and U � WAGE P. H. have been1 2
introduced in the parametric model. The presence of these quadratic terms is
highly significant. The introduction of U 2 is motivated partially by the shape1
of the nonparametric estimate of g . There is no significant change in the1
values of the parameters � and � . Otherwise, there are some differences1 2
between the parametric and the semiparametric analysis. Clearly, the piece-
wise linear shape of g , g , and g cannot be recovered in the parametric2 3 5
model. For g the sign of the estimated parameter agrees with the slope of5
the nonparametric estimate in the upper part. Note that for g the paramet-2
ric analysis with covariates U and U 2 differs strongly for the upper part of2 2
g . At the boundaries of the functions g , g and g we see some differences2 4 5 6
between the parametric analysis and the semiparametric analysis. Clearly,
the boundary behavior of the nonparametric estimates depends on a rela-
tively small fraction of the observations. For example, the monotone decreas-
ing part at the beginning of g , is caused by only 15 women with 9 years of4
education and an introduction of a covariate U 2 in the parametric analysis is4
not significant.

It seems to be difficult to verify the data analytic findings of a semipara-
metric analysis. A first step is to consider test statistics which are based on
the comparison of parametric and nonparametric fits; see, for instance,

TABLE 2
Female labor supply in East Germany. Results of an ordinary least-squares analysis

Source Sum of squares Degrees of freedom Mean square F-ratio
Regression 6526.3 10 652.6 9.24
Residual 42,101.1 596 70.6

Ž .R squared � 13.4% R squared adjusted � 12.0%

Standard Probability
[ ]Variable Estimate error t-value � t

CONSTANT 1.36 8.95 0.15 0.8797
CHILD �2.63 1.09 �2.41 0.0163
UNEMPLOYMENT 0.48 0.22 2.13 0.0333
AGE W. 1.63 0.43 3.75 0.0002

2Ž .AGE W. �0.021 0.0054 �3.82 0.0001
WAGE P. H. �1.07 0.18 �6.11 
 0.0001

2Ž .WAGE P. H. 0.0017 0.0033 4.96 
 0.0001
PRESTIGE 0.13 0.034 3.69 0.0002
YEARS EDUC. 0.66 0.19 3.58 0.0004
RENT�RED. 0.0018 0.0012 1.56 0.1198
NET INC. H. �0.0016 0.0003 �4.75 
 0.0001
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Ž . Ž .Hardle and Mammen 1993 and Hardle, Mammen and Muller 1995 . The¨ ¨ ¨
second paper discusses also extensions to generalized regression.

6. Conditions and proofs.

Ž .CONDITION A. i We suppose that the functions W and f are bounded on2
Ž .the support S of W. The weight function W x , x is uniformly continous2 3

with respect to x .2
Ž .ii The kernel functions K and L are symmetric and have bounded

supports. Furthermore, L is an order-d kernel.
Ž .iii The support of the discrete variable X is finite and3

inf p x p u , x � x � 0 for some � � 0.Ž . Ž .3 3 1, 2 � 3 1 2 3
u 	x 	�1 1
Ž .x , x 	S2 3

Ž .For u in a neighborhood of x and for u , u in S, the conditional density1 1 2 3
Ž .p u , u � u has bounded partial derivatives up to order 2 with respect1, 2 � 3 1 2 3

to u and up to order d with respect to u .1 2
Ž .iv f has a bounded second derivative in a neighborhood of x and1 1

Ž .f x , x has a bounded dth-order derivative with respect to x .2 3 2
Ž . 4 2Ž . Ž 2 .v E� is finite and � x � E � � X � x is continuous, where � � Y �

Ž .E Y � X . Furthermore, for a � � 0, the conditional absolute moment
Ž � � 2�� � .E � X � u is bounded for u in a neighborhood of x .1 1 1 1
Ž . p 2 q 2 4 qvi nh h �log n � 	 and h log n�h � 0.1 2 1 2

Ž .CONDITION B. i The functions g and W are bounded on the support�� �

S of W . The weight function W is uniformly continuous.� � �

Ž . Ž .ii The same as Condition A ii .
Ž . Ž .iii inf p u , . . . , u � 0, where the infimum runs over u 	 x 	 � and1 p � �

Ž .u , . . . , u , u , . . . , u 	 S . For u in a neighborhood of x and for1 ��1 ��1 p � 1 1
Ž .u , . . . , u , u , . . . , u 	 S , the density p has bounded partial deriva-1 ��1 ��1 p �

tives up to order 2 with respect to u and up to order d with respect to u ,� �

� 
 � .
Ž .iv g has bounded and continous derivatives up to order 2 and g ,� �

� 
 � , have bounded and continous derivatives up to order d.
Ž . Ž .v The same as Condition A v .
Ž . 2Ž p�1. 2 4 p�1vi nh h �log n � 	 and h log n�h � 0.1 2 1 2

i Ž .PROOF OF THEOREM 1. Let x � x , X , X and let E denote the1 2 i 3 i i
Ž . Ž .conditional expectation given X � X , X , X . Denote by p x �i 1 i 2 i 3 i

Ž . Ž . Ž . Ž .p x p x , x � x . Then, by 2.1 and Condition A i , we have3 3 1, 2 � 3 1 2 3

n
��1 i �1�26.1 n m x W X , X � f x � O n .Ž . Ž . Ž . Ž . Ž .Ý 2 i 3 i 1 1 p

i�1
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Thus,
n

� � �1 i if̂ x � f x � n m x � m x W X , X� 4Ž . Ž . Ž . Ž . Ž .ˆÝ1 1 1 1 2 i 3 i
i�16.2Ž .

� O n�1�2 .Ž .p

Ž . Ž i. �Ž .T Ž .Let r � m X � m x � f x X � x and let r be the resulting n � 1ˆ ˆi j j 1 1 1 j 1 i
Ž .vector. Then, by 1.1 and the definition of K , it follows thatn

m x i � m x iŽ . Ž .ˆ
1 ��� 1T �1 i i� e S x A x r � � ,Ž . Ž . ˆ ˜Ž .1 n iX � x ��� X � xž /11 1 1n 1

6.3Ž .

Ž . Ž . Žwhere A x is a diagonal matrix with diagonal elements A x � K X �i h 1 i1

. Ž . � . Ž .T Ž .x L X � x I X � x and � � � , ��� , � with � � Y � m X . Let˜1 h 2 i 2 3 i 3 1 n i i i2

Ž �1 �1. Ž . Ž .H � diag 1, h , . . . , h be a p � 1 � p � 1 diagonal matrix and a �1 1 n

� Ž p q .41�2log n� nh h . Then, owing to the uniform convergence of the kernel1 2
� Ž .�density estimator cf. Stone 1993 , we have

n�1HS x HŽ .n

Tn 1 1�1� n A xŽ .Ý i X � x �h X � x �hž / ž /Ž . Ž .1 i 1 1 1 i 1 1i�1

T
1 1

� EA x � O aŽ . Ž .i p nX � x �h X � x �hž / ž /Ž . Ž .1 i 1 1 1 i 1 16.4Ž .
TŽ1 , 0.p x h p x � KŽ . Ž . Ž .1 2� � O cŽ .p nŽ1 , 0.ž /h � K p x p x � KŽ . Ž . Ž . Ž .1 2 2

p x 0Ž .
� � o c ,Ž .p nž /0 p x � KŽ . Ž .2

where c � h2 � hd � a and where pŽ1, 0. denotes the vector of partialn 1 2 n
derivatives of p with respect to x . Now note that1

�1
TŽ1 , 0.p x h p x � KŽ . Ž . Ž .1 2

Ž1 , 0.ž /h � K p x p x � KŽ . Ž . Ž . Ž .1 2 2

�1
p x 0Ž .

� ž /0 p x � KŽ . Ž .2

TŽ1 , 0.h 0 p x � KŽ . Ž .1 2 2� � O h .Ž .p 1Ž1 , 0.p x ž /Ž . p x � K 0Ž . Ž .2

Annals of Statistics, 26, 943-971

(1998)  Fan, J., Härdle, W. and Mammen, E. 
Direct Estimation of Low Dimensional Components in Additive Models.



¨J. FAN, W. HARDLE AND E. MAMMEN962

A similar argument to the above leads to the following uniform results:

1 ��� 1�1 in H A x rŽ . îX � x ��� X � xž /11 1 1n 1

n 1�1 i� n A x rŽ . ˆÝ j i j X � x �hŽ .ž /1 j 1 1j�1

1
i� E A X r � O aŽ . Ž .ˆi j i j p nX � x �hŽ .ž /1 j 1 1

� O c ,Ž .p n

where in the third expression j is an arbitrary index with j 
 i and

1 ��� 1�1 in H A x �Ž . ˜X � x ��� X � xž /11 1 1n 1

n 1�1 i� n A x �Ž .Ý j j X � x �hŽ .ž /1 j 1 1j�1

� O a .Ž .p n

Ž .Substituting all of the above expressions into 6.3 , after some algebra, we
obtain

m x i � m x iŽ . Ž .ˆ
�1

ip x 0Ž .T� e1 iž /0 p x � KŽ . Ž .2

TŽ1 , 0. ih 0 p x � KŽ . Ž .1 2� � O cŽ .p ni Ž1 , 0. ip xŽ . ž /p x � K 0Ž . Ž .2

n 2�1 i� n A x r � �Ž . ˆŽ .Ý j i j j X � x �hŽ .ž /1 j 1 1j�1

n
�1 i i� n A x r � � �p xŽ . Ž .ˆŽ .Ý j i j j

j�1
j
i

n
T�1 i �1 i Ž1 , 0. i� n A x r � � p x p x � K X � xŽ . Ž . Ž . Ž .ˆ Ž .Ž .Ý j i j j 2 1 j 1

j�1
j
i

� O c2 .Ž .p n

Clearly, the second term will be smaller than the first one by an order of
Ž . Ž .O h . When the above O -term is averaged in 6.2 , it is still of the order1 p

�1�22 pO c � o nhŽ .Ž . Ž .p n p 1
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by the conditions on the bandwidths. Furthermore, by calculation of the first
two moments one can show that

T�2 i �2 i Ž1 , 0. in W X , X A x r p x p x � K X � xŽ . Ž . Ž . Ž . Ž .ˆ Ž .Ý 2 i 3 i j i j 2 1 j 1
j
i

�1�22 d p� o h � O h � o nhŽ .Ž . Ž . Ž .1 2 p 1

and
T�2 i �2 i Ž1 , 0. in W X , X A x � p x p x � K X � xŽ . Ž . Ž . Ž . Ž . Ž .Ý 2 i 3 i j j 2 1 j 1

j
i

�1�2p� o nh .Ž .Ž .p 1

Ž .In other words, the approximation error from 6.4 is negligible.
Note that, for j 
 i,

1 �i 2 i 2 dE A x r � h tr f x � K p x � o h � O h .� 4Ž . Ž . Ž . Ž .ˆ Ž . Ž .i j i j 1 1 1 2 1 22

Ž i. Ž i. Ž .Let r � A x r � E A x r for j 
 i and r � 0 for j � i. Thus, by 6.2 ,˜ ˆ ˆ ˜i j j i j i j i j i j
we have

� � 1 �2f̂ x � f x � h tr f x � K� 4Ž . Ž . Ž . Ž .1 1 1 1 1 1 1 22

�1�22 p� o h � T � T � o nh ,Ž .� 4Ž .1 n , 1 n , 2 p 1

6.5Ž .

where

T � n�1 � K X � x � X , X L X � X I X � X� 4Ž .Ž . Ž .Ýn , 1 j h 1 j 1 2 i 3 i h 2 j 2 i 3 j 3 i1 2
j
i

and
T � n�2 � X , X r ,Ž . ˜Ýn , 2 2 i 3 i i j

j
i

with
� X , X � W X , X �p x i .Ž . Ž . Ž .2 i 3 i 2 i 3 i

� Ž . Ž . ŽWe will show that with � � G X , X � , G X , X � � X ,j 2 j 3 j j 2 j 3 j 2 j
. Ž .X p X , X ,3 j 2, 3 2 j 3 j

n
�1�2��1 p6.6 T � n K X � x � � o nhŽ . Ž .Ž .Ý Ž .n , 1 h 1 j i j p 11

j�1

and
�1�2p6.7 T � o nh .Ž . Ž .Ž .n , 2 p 1

Ž . Ž .Combination of 6.5 � 6.7 leads to
� � 1 �2f̂ x � f x � h tr f x � K� 4Ž . Ž . Ž . Ž .1 1 1 1 1 1 1 22

n
�1�2��1 p� n � K X � x � o nh .Ž .Ž . � 4Ý j h 1 j 1 p 11

j�1

6.8Ž .
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It is easy to show that
n

�p �16.9 nh n � K X � x � NN 0, v xŽ . Ž .' Ž .Ž .Ý1 j h 1 j 1 11
j�1

Ž . Ž .by checking the Lyapounov condition. By using 6.8 and 6.9 , we establish
Ž . Ž .Theorem 1. It remains to verify 6.7 and 6.8 .

Ž .PROOF OF 6.6 . Let

V � � X , X L X � X I X � X� 4Ž . Ž .i , j 2 i 3 i h 2 j 2 i 3 i 3 j2

� p X p X � X � X , X .Ž . Ž . Ž .3 3 j 2 � 3 2 j 3 j 2 j 3 j

Note that, for i 
 j,

E V � p X � x , X L x � X p x � X dxŽ . Ž . Ž . Ž .Hj i , j 3 3 j 2 3 j h 2 2 j 2 � 3 2 3 j 22

� p X p X � X � X , X .Ž . Ž . Ž .3 3 j 2 � 3 2 j 3 j 2 j 3 j

Thus,

� �E V 
 � X � h u , X p X � h u � XŽ . Ž .Hj i , j 2 j 2 3 j 2 � 3 2 j 2 3 j

�� X , X p X � X L u du � 0.Ž .Ž . Ž .2 j 3 j 2 � 3 2 j 3 j

Ž .Note also that the difference between the left-hand side of 6.6 and the main
Ž .term on the right-hand side of 6.6 can be expressed as

D � n�2 � K X � x V .Ž .Ýn , 1 j h 1 j 1 i , j1
j
i

Ž .To prove 6.6 , it suffices to show
�12 pED � o nh .Ž .Ž .n , 1 1

It follows from direct expansion that

ED2 � n�4 E� K X � x V � K X � x V .Ž .Ž .Ýn , 1 j h 1 j 1 i , j l h 1 l 1 k , l1 1
i
j ; k
l

� 4Because of E � � X � 0 we havej j

ED2 � n�4 E� 2K X � x V � K X � x V .Ž .Ž .Ýn , 1 j h 1 j 1 i , j l h 1 l 1 k , j1 1
i
j ; k
j

Ž �p �q.For i � k the order of summands on the right-hand side is at most O h h .1 2
�2 �p �q Ž �1 .Because of n h h � o n , we have1 2

ED2 � n�4 E� 2K 2 X � x V V � o n�1Ž .Ž .Ýn , 1 j h 1 j 1 i , j k , j1
i
j
k
i

� n�4 E� 2K 2 X � x E V E V � o n�1Ž .Ž .Ý j h 1 j 1 j i , j j k , j1
i
j
k
i

� o n�1 h�p .Ž .1
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Ž . 2 ŽŽ p.�1 .PROOF OF 6.7 . The claim follows from ET � o nh . Note thatn, 2 1

E r � 0. Therefore, for the calculation of ET 2 we need only consider˜i i, j n, 2
terms of the form

n�4 E� X , X r � X , X r ,Ž . Ž .˜ ˜2 i 3 i i , j 2 k 3k k , l

� 4 � 4where i 
 j, k 
 l, j 	 k, l and l 	 i, j . It is easy to bound the summands
for two different indices. For three different indices we have j � l and
i 
 j 
 k 
 i. Note now that for this case

�p 4 2E� X , X r � X , X r � O h h � h .Ž . Ž .˜ ˜ Ž .2 i 3 i i , j 2 k 3k k , j 1 1 2

Here we have used that the random variables r are always bounded by aî, j
Ž 2 .constant which is of order O h � h . Thus,1 2

�12 �1 �p 4 2 pET � O n h h � h � o nh ,Ž .Ž . Ž .n , 2 1 1 2 1

Ž .verifying 6.7 .

Ž . Ž . � Ž .PROOF OF THEOREM 3. By 6.5 � 6.7 , each component of g u has theˆ� �

following stochastic representation:

g� u � g u � �Ž . Ž .ˆ� � � � 1�

1 �2 2� h � K g u � o hŽ . Ž . Ž .1� 2 � � 1�26.10Ž . n
�1�2�1� n K U � U G U � � o nh ,Ž .Ž . Ž . Ž .Ý h � j � � �� j j p 1�1 �

j�1

where

W U p UŽ . Ž .� �� j �� �� j
G U � ,Ž .� �� j jp UŽ .�

j Ž .with U � U , . . . , U , u , U , . . . , U . For � 
 �, the covariance for� 1 j ��1, j � ��1, j p j

Ž .the stochastic terms in 6.10 is

n n
�1 �1cov n K U � u G U � , n K U � u G U �Ž . Ž . Ž . Ž .Ý Ýh � j � � �� j j h � j � � �� j j1 � 1 �ž /

j�1 j�1

�1 2� n E K U � u G U K U � u G U �Ž . Ž . Ž . Ž .h � � � �� h � � � ��1 � 1 �

�1�2�1�2�1� O n � o nh nh .Ž . Ž . Ž .ž /1� 1�

Therefore, the asymptotic covariance should be 0.
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PROOF OF THEOREM 4. We only outline the key steps of the proof. Proceed-
ing as in the proof of Theorem 1, one shows first that

n1
�iZ I X 	 A g U � g U � �Ž . Ž . Ž .ˆÝ i � � i � � i 1�n i�1

n1 1
i� Z I X 	 A K U � UŽ . Ž .Ý Ýi h � j � i1 �n ni�1 j
k

�L U � U I X � XŽ . Ž .h �� j �� k 3 j 3k2 �

j� m X � m U , U , XŽ . Ž .� i �� k 3k

��g U U � U � �Ž . Ž .� � i � j � i k

1
2 �1�2� � O c � o n ,Ž .Ž .P n pp U , U , XŽ .� i �� k 3k

2 d � Ž p�1.41�2where now c � h � h � log n� nh h . Note that under our as-n 1� 2 � 1� 2 �
2 Ž �1�2 .sumptions we have c � o n . By considering the first two moments ofn

Žthe difference, one can show that see also the asymptotic treatment of Tn, 1
.and T in the proof of Theorem 1n, 2

n1
�iZ I X 	 A g U � g U � �Ž . Ž . Ž .ˆÝ i � � i � � i 1�n i�1

n n
�2 i� n Z I X 	 A K U � UŽ . Ž .Ý Ý i h � j � i1 �

i�1 j�1

6.11Ž .

�G U , U , X � � o n�1�2 ,Ž .Ž .� � i �� j 3, j j p

where

W U , X p U , XŽ . Ž .� �� j 3, j �� , 3 �� j 3, j
G U , U , X � .Ž .� � i �� j 3, j p U , U , XŽ .� i �� j 3, j

ˆ�Thus, the main term of � is
�1

� � T T �1�2ˆ ˜ ˜ ˜6.12 � � � � Z �Z Z �� � o n ,Ž . Ž .Ž . p

where the ith element of � is
p n

�1� � � � n K U � UŽ .Ý Ýi i h � j � i1 �

��1 j�1

p
��G U , U , X � � � .Ž . Ý� � i �� j 3, j j � i

��1

6.13Ž .

Obviously, by the law of large numbers,

�1 T T˜ ˜6.14 n Z �Z � E I X 	 ZZ � o 1 � B � o 1 .Ž . Ž . Ž . Ž .p 1 p
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� Ž . Ž .Let � � g U a � b be the approximation error in 6.1 , where� i � � i n, � n, �
n

�1a � n W U , X � 1Ž .Ýn , � � �� j 3 j
j�1

and
n

�1 Tb � n g U � X � W U , XŽ . Ž .� 4Ýn , � �� �� 3 j � �� j 3 j
j�1

T� E g U � X � W U , X .Ž .Ž .� 4�� �� j 2 � �� 3

We need only consider the term
n

�1 T �1 i˜ � 4n Z �� � n Z � I X 	 AÝ i i
i�1

n
�1 i� 4� n Z � I X 	 AÝ i i

i�1
p n

�1 i� 4� n Z I X 	 A g U a � bŽ .Ž .Ý Ý i � � i n , � n , �
��1 i�1

6.15Ž .

pn n
�1 �1� n � n G U , U , XŽ .Ý Ý Ýi � � j �� i 3, i

i�1 ��1 j�1

� j 4�K U � U I X 	 A .Ž .h � j � i1 �

Ž .By using the same argument as in the proof of 6.6 , we can show that
n n

�1 �1 j� 4n � n G U , U , X K U � U Z I X 	 AŽ . Ž .Ý Ýi � � j �� i 3, i h � j � i j1 �

i�1 j�1
n

�1� n � G U , U , XŽ .Ý i � � i �� i 3, i
i�1

6.16Ž .

�E Z I X i 	 A � U p U � o n�1�2 .Ž . Ž . Ž .� 4i � i � � i p

� i 4 p Ž . � Ž i .Let Z � Z I X 	 A � Ý G U , U , X E Z I X 	 A �i , A i �� 1 � � i � � i 3, i i
4 Ž . Ž . Ž .U p U . Then, by combining 6.15 and 6.16 , we obtain� i � � i

n
�1�2 T �1�2˜n Z �� � n Z �Ý i , A i

i�1
p

�1�2 � 4� n E Z I X 	 A g U aŽ .Ý � � n , �
��16.17Ž .
� 4� E Z I X 	 A b � o 1Ž .n , � p

p
2 T� N 0, E � Z Z � var V .Ýi i , A i , A �ž /ž /

��1
i Ž .By conditioning on X , one can easily see that the covariance matrix in 6.17
Ž . Ž . Ž .is B . Combination of 6.12 , 6.14 and 6.17 shows the statement of Theo-2

rem 4.
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PROOF OF THEOREM 5. The main ideas of the proof are the same as those
i Ž .of Theorem 1. Thus, we only indicate the main steps. Let x � u , X . Then1 2 i

we have
n

�1 i � �1�26.18 n m x W X � g u � O nŽ . Ž . Ž . Ž . Ž .Ý 2 i 1 1 p
i�1

and
n

�� � �1 i ig u � g u � n m x � m x W X� 4Ž . Ž . Ž . Ž . Ž .ˆ ˆÝ1 1 1 1 2 i
i�16.19Ž .

� O n�1�2 .Ž .p

Ž . Ž . Ž . Ž .Set A u � K U � u L X � x . Let X be the design matrix of 4.7j h 1 j 1 h 2 j 21 2

Ž . Ž Ž . Ž ..and A u � diag A u , . . . , A u be the corresponding weight matrix.1 n
Denote by

r � g U � g u � g� u U � u � f X � f X ,Ž . Ž . Ž .ˆ Ž . Ž . Ž .i j 1 1 j 1 1 1 1 1 j 1 2 2 j 2 2 i

Ž . Ž . Ž . Ž .where f x � g u � ��� �g u . Let r be the resulting n � 1 vector.ˆ2 2 2 2 p p i
Then

6.20 g� x i � g x i � eTS�1 x i X TA x i r � � ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˜Ž .1 n i

Ž . T Ž i. Ž .where S x � X A x X. For u � u , x letn 1 2

T� 1 0 X3� �0 � K 0Ž .S u � E U � u , X � xŽ . 2 1 1 2 2
T� 0� �X 0 X X3 3 3

and
1

�1h1

H � .1
. . .� 0

1

With the same ideas as in the proof of Theorem 1, one gets an expansion of
� �1 Ž . ��1 Ž .n HS u H up to error terms of order O c where, as in the proof ofn P n

2 d � Ž p�1.41�2Theorem 4, c � h � h � log n� nh h . In particular, we haven 1� 2 � 1� 2 �

that
6.21 n�1HS u H � p u S u � o 1Ž . Ž . Ž . Ž . Ž .n p

uniformly in u. Direct calculation yields

n�1E HX TA x i rŽ . ˆi i

1
�1 2 2 d i 0� h g u � K � o h � O h p x .Ž . Ž . Ž .� 4Ž . Ž .1 1 1 2 1 22

i� 0E X � XŽ .3 i

6.22Ž .
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Note now that

11
i 0S x � .Ž . 0

iž / � 0E X � x0 Ž .3 i

Therefore,

1
T �1 i 06.23 e S x � 1.Ž . Ž .1

i� 0E X � xŽ .3 i

� �1 Ž . ��1 Ž .Substituting the higher-order expansion of n HS u H and 6.22n
Ž . Ž .into 6.20 , we obtain with 6.23 that

g� x i � g x iŽ . Ž .ˆ
1 �2 2 d� h g u � K � o h � O hŽ . Ž . Ž . Ž .1 1 1 2 1 22

1
n

�1�1 i T �1 i i U � u �hŽ .j1 1 1� n p x e S x A x �Ž . Ž . Ž .Ý 1 j j
j�1 � 0X3 j

6.24Ž .

n
�1�1 i T �1 i �1�2� n p x e S x r � O n ,Ž . Ž . Ž .˜Ý 1 i j p

j�1

where

1 1
i iU � u �h U � u �hŽ . Ž .1 j 1 1 1 j 1 1r � A x r � E A x r .Ž . Ž .˜ ˆ ˆi j j i j i j i j� 0 � 0X X3 j 3 j

Note that again we obtain that the expansion of the estimate depends only on
Ž . �1 Ž .the first-order approximation 6.21 n HS u H.n

Using the same argument as in the proof of Theorem 1, the average of the
Ž . Ž �1�2 . Ž . Ž .last term in 6.24 over i is of order o n . Thus, by 6.19 and 6.24 , wep

have

1 �� � 2 2 dg u � g u � h g u � K � o h � o hŽ . Ž . Ž . Ž .ˆ Ž . Ž .1 1 1 1 1 1 1 2 1 22

n n
�1�2 i T �1 i i� n p x e S x A x W XŽ . Ž . Ž . Ž .Ý Ý 1 j 2 i

i�1 j�1

1
�1�2U � u �hŽ .j1 1 1� � � o n .Ž .j p� 0X3 j
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By the projection argument which we used when treating T in the proof ofn, 1
Theorem 1, we obtain

6.25Ž .
�1� � 2g u � g u � h g u � KŽ . Ž . Ž . Ž .ˆ1 1 1 1 1 1 1 22

n
�1�2��1� n K U � u � � o nh ,Ž .Ž . Ž .Ý h 1 j 1 j p 11

j�1

where

1T �1 j� p X e S x W XŽ .Ž . Ž .j 2 2 j 1 2 j� U � u �hŽ .j1 1 1� � .j jp xŽ . � 0X3 j

Therefore, by checking the Lyapounov condition, we can establish Theorem 5,
Ž .where the variance is obtained from 6.25 along with some algebra.
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1. Nonparametric Regression. The nonparametric approach to regression is 

based on the belief that parametric regression models are frequently misspecified and 

may result in incorrect inferences. By not restricting the functional form one obtains 

valid inferences for a much wider range of circumstances. Perhaps the primary use of 

the nonparametric method is to provide exploratory information that helps in model 

building. For this reason, the flexibility and robustness of this method is desirable. 

We observe a bivariate dataset {(Xi, Y,))y="=,enerated from 

where 6; is a random error independent over observations that satisfies E(6; I Xi = 

x) = 0 and Var(~; 1 Xi = x) = a2(x). Then m(e) is the regression function of Y on 

X. Usually, it is of interest to estimate m at a grid of points covering some subset X 

of the support of X. The smoothness of m on this set determines how well it can be 

estimated. 

DEFINITION.  Let M ,  be the class of all functions that possess r derivatives with 

Taylor expansion remainder that is Holder continuous on a set X .  

We concentrate on the special case Ma, corresponding to two continuous derivatives, 

about which most is written, see Miiller (1988). We discuss a number of estimators of 

m(x) for x E X ;  these are all linear "smoothers" of the form C:=, W,;(x)Y,, for some 

weighting sequence { W,; (x)):=, depending only on XI, .., X,, but arise from different 

motivations and possess different statistical properties. The methods we consider are 

appropriate for both random design, where (Xi, Y,)  are i.i.d, and fixed design, where Xi 

are fixed in repeated samples. In the random design case, X is an ancillary statistic, 

and standard statistical practice, see Cox and Hinkley (1974), is to conduct inference 

conditional on the sample Stute (1986). However, many papers in the literature 
3 

Chapter in the Encyclopedia of Statistical Science, Volume X

(1998)  Linton, O. and Härdle, W.  Nonparametric Regression.



prove theoretical properties unconditionally, and we shall, for ease of exposition, present 

results in this form. We also quote most results only for the case where X is scalar, 

although in section 4 we discuss the extension to multivariate data. In some cases, 

it is convenient to restrict attention to the equispaced design sequence Xi = i ln ,  i = 

1, .., n. We restrict our attention to independent sampling, but some extensions to the 

dependent sampling case are given in Section 3. 

Smoothing techniques have a long history starting at least in 1857 when the Sax- 

onian economist E.Enge1 (1857, p.169) found the law named after him. He analyzed 

Belgian data on household expenditure, using what we would now call the regressogram. 

Whittaker (1923) used a graduation method for regression curve estimation which one 

would now call spline smoothing. Nadaraya (1964) and Watson (1964) provided an 

extension for general random design based on kernel methods. In time series, Daniel& 

(1946) introduced the smoothed periodogram for consistent estimation of the spectral 

density. Fix and Hodges (1951) extended this for the estimation of a probability den- 

sity and used in classification. Rosenblatt (1956) proved asymptotic consistency of 

the kernel density estimator. Schuster (1972) provided the proofs of consistency and 

asymptotic normality of the Wadaraya- Watson regression smoother. 

These methods have developed considerably in the last ten years, and are now 

frequently used by applied statisticians. The massive increase in computing power as 

well as the increased availability of large cross-sectional and high-frequency financial 

time-series datasets are partly responsible for the popularity of these methods. They 

are typically simple to implement in software like GAUSS or XploRe, see Hkdle, Klinke 

and Turlach (1995). 

1.1. Kernel Estimators. 

(2) 

Recall that 

where f (x, Y )  is the joint density of (X, Y). A natural way to estimate m(o) is first to 

compute an estimate of f (x, y)  and then to integrate it according to this formula. A 
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kernel density estimate a (x, y ) of f (x, y) is 

n 

&(x, Y) = n-I ~ h ( 3  - Xi)Kh(y - x ) ,  
i=l 

where K(e)  is any function (kernel) satisfying J K(u)du = 1 and Kh(e) = h-I K(h-lo), 

see Silverman (1986), Jones (l989), Jones and Foster (1993). 

DEFINITION.  Let Kq be the class of all kernels of order q for which J u j ~ ( u ) d u  = 0, 

j = l , . . , q -  1, and JuqI((u)du < CQ. 

Frequently, attention is restricted to K a probability density function symmetric about 

zero for which q = 2. For a list of kernels we refer the reader to Gasser and Miiller 

(1984), Hkdle and Linton (1994). We have: 

n n 
- 1 J ~ ( x ,  y)dy = n-' K ~ ( X  - Xi) y&(x, y)dy = n K ~ ( X  - X;)x.  

i=l i= 1 

Plugging these into numerator and denominator of (2) we obtain the Nadaraya-Watson 

kernel estimate 

The bandwidth h determines the degree of smoothness of Gh. This can be immediately 

seen by considering the limits for h tending to zero or to infinity, respectively. Indeed, 

at an observation Xi, Gh(Xi) -+ x, as h + 0, while at an arbitrary point x, Gh(x) + 

n-I En r = l  Y,, as h + CQ. These two limit considerations make it clear that the smoothing 

parameter h in relation to the sample size n should not converge to zero too rapidly 

nor too slowly. Under only continuity conditions on m, f ,  and a2, Schuster- (1972) 

established consistency of Gh.  Under further conditions, it is asymptotically normal, as 

was first shown in Schuster (1972): 
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Theorem 1. Suppose that I{ E K2 satisjes I K(u) Idu 5 w, limlUl,, uK(u) = 0, 

' 2 + q d ~  < m, for some q > 0. Suppose also that m(x) and f (x) E M2, that and J IK(u)I 

f (x)  > 0, and that E(IYl2+7 ( x) exists and is continuous at x. Finally, suppose that 

h = h(n) + 0 and lim h5n < co. Then 

where 

Note this theorem only applies to interior points; for boundary points, the bias is 

typically of order h unless some modifications are made to the kernel, see Miiller (1987) 

for details. 

1.2. k-Nearest Neighbor Estimators. 

1.2.1. Ordinary k-NN Estimators. The kernel estimate was defined as a weighted 

average of the response variables in a fixed neighborhood of x. The k-nearest neighbor 

(k-NN) estimate is defined as a weighted average of the response variables in a vary- 

ing neighborhood. This neighborhood is defined through those X-variables which are 

among the k-nearest neighbors of a point x. 

Let N ( x )  = {i : Xi is one of the k-NN to x) be the set of indices of the k-nearest 

neighbors of x. The k-NN estimate is the average of Y's with index in N(x) ,  

Connections to kernel smoothing can be made by considering (3) as a kernel smoother 

with uniform kernel K(u)  = fI(lu1 5 I) and variable bandwidth h = R(k), the distance 

between x and its furthest k-NN, 
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Note that in (4), for this specific kernel, the denominator is equal to k/nR the k-NN 

density estimate of f (x). Formula (4) provides sensible estimators for arbitrary kernels. 

The bias and variance of this more general k-NN estimator is given in a theorem by 

Mack (1981). 

Theorem 2. Let the conditions of Theorem I hold, except instead that k + cm, 

k/n + 0 and lim k5/n4 < cm as n-, cm. Then 

where, 

Vnn (x) = 2a2 (x) J K2(u)du. 

In contrast to kernel smoothing, the variance of the k-NN regression smoother 

does not depend on f ,  the density of X .  This makes sense since the k-NN estimator 

always averages over exactly k observations independently of the distribution of the X- 

variables. The bias constant Bnn(x) is also different from the one for kernel estimators 

given in Theorem 1. An approximate identity between k-NN and kernel smoothers can 

be obtained by setting 

(5) k = 2nh f (x), 

or equivalently h = k/2n f(x). For this choice of k or h respectively, the asymptotic 

mean squared error formulas of Theorem 1 and Theorem 2 are identical. 

1.2.2. Symmetrized k-NN Estimators. A computationally useful modification 

of Gk is to restrict the k-nearest neighbors always to symmetric neighborhoods, i.e., 

one takes k/2 neighbors to the left and k/2 neighbors to the right. In this case, weight- 

updating formulas can be given, see Hkdle (1990, Section 3.2), Hkdle (1991). The 

bias formulas are slightly different, see Hardle and Carroll (1989), but (5) remains true. 
7 
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1.3. Local Polynomial Estimators. The Nadaraya-Watson estimator can be 

regarded as the solution of the minimization problem 

h A 

This motivates the local polynomial class of estimators. Let do, .., 6, minimize 

n 
(Xi - x)p 

K ~ ( X  - Xi) Y, - - O1(Xi - X )  - .. - 6, 
i=l P! 

A h 

Then Gh,,(x) = OO consistently estimates m(x), while Oj  estimates the j'th derivative of 

m. A variation on these estimators called LOWESS  was first considered in Cleveland 

(1979) who employed a nearest neighbor window. Fan (1992) establishes an asymptotic 

approximation for the case where p = 1, which he calls the local linear estimator Ghll(x). 

Theorem 3. Let the conditions of Theorem 1 hold. Then 

where 

Bl (x) = f [J u2 K (u)du] mU(x) 

K(x)  = [J K2(u)du] 02(x)/f (I). 

Higher order polynomials can achieve bias reduction for general regression functions, 

see Fan and Gijbels (1992) and Ruppert and Wand (1995). A general property here is 

that Gh,p(x) is exactly unbiased when m is a p'th order, or less, polynomial. 

The principle underlying the local polynomial estimator can be generalized in a 

number of ways. Tibshirani (1984) introduced the local likelihood procedure in which 

an arbitrary parametric regression function g (x; 6) substitutes the polynomial in (6). 

Fan, Heckman and Wand (1995) develop theory for a nonparametric estimator in a 

Generalized Linear Model (GLIM) in which, for example, a probit likelihood function 

replaces the polynomial in (6). 
8 
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1.4. Spline Estimators. For any estimate G of m, the residual sum of squares 

(RSS) is defined as C:=, {Y,  - G(x;)}~,  which is a widely used criterion, in paramet- 

ric contexts, for generating estimators of regression functions. However, the RSS is 

minimized by an A interpolating the data, assuming no ties in the X's. To avoid this 

problem it is necessary to add a penalty for lack of smoothness called the stabilizer. 

Most work is based on the stabilizer O(A) = { ~ " ( u ) } ~  du, although see Ansley, Kohn 

and Wong (1993) and Koenker, Ng and Portnoy (1993) for alternatives. The cubic 

spline estimator GA is the (unique) minimizer of 

RA(A, rn) = {E: - + X / { ~ " ( u ) } ~  du. 

The spline Gx has the following properties: It is a cubic polynomial between two 

successive X-values; at the observation points Gx(e) and its first two derivatives are 

continuous; at the boundary of the observation interval the spline is linear. This char- 

acterization of the solution to (7) allows the integral term on the right hand side to 

be replaced by a quadratic form, see Eubank (1988) and Wahba (1990), and computa- 

tion of the estimator proceeds by standard, although computationally intensive, matrix 

techniques. 

The smoothing parameter X controls the degree of smoothness of the estimator 

GX. As X + 0, G x  interpolates the observations, while if X + oo, Gx tends to a 

least squares regression line. Although Gx is linear in the Y data, see Hkdle (1990, 

p58-59), its dependency on the design and on the smoothing parameter is rather com- 

plicated. This has resulted in rather less treatment of the statistical properties of these 

estimators, except in rather simple settings, although see Wahba (1990) - in fact, the 

extension to multivariate design is not straightforward. However, splines are asymp- 

totically equivalent to kernel smoothers as Silverman (1984) showed. The equivalent 

kernel is 

1 
K(U) = -exp (-5) sin (M+ T), 

2 fi a 
which is of fourth order, since its first three moments are zero, while the equivalent 
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bandwidth h = h(X; Xi) is 

One advantage of spline estimators over kernels is that global inequality and equality 

constraints can be imposed more conveniently: for example, it may be desirable to 

restrict the smooth to pass through a particular point, see Jones (1985). Silverman 

(1985) discusses a Bayesian interpretation of the spline procedure. 

1.5. Series Estimators. Series estimators have received considerable attention in 

the econometrics literature, following Elbadawi, Gallant and Souza (1983). This theory 

is very much tied to the structure of Hilbert space. Suppose that m has an expansion 

for all x: 

(9) 

in terms of the orthogonal basis functions {ipj}g0 and their coefficients {pj}go. Suit- 

able basis systems include the Legendre polynomials described in Hkdle (1990), the 

Fourier series used in Gallant and Souza (1991), and the recently developed wavelet 
I 

basis, see Hardle, Kerkyacharian, Picard and Tsybakov (1995). 

A simple method of estimating m(x) involves firstly selecting a basis system and a 

truncation sequence ~ ( n ) ,  where ~ ( n )  is an integer less than n, and then regressing K 

on ipti = (ipo(Xi), .., i p , ( ~ i ) ) ~ .  Let {pj):: be the least squares "parameter" estimates, 

then 

where W,(x) = (Wnl, . . , with 
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where cp,, = (%(x), *., $ 4 ~ ) ) ~  and = ( ~ 7 1 ,  . a ,  cp,TJT. 

These estimators are typically very easy to compute. In addition, the extension to 

additive structures and semiparametric models is convenient, see Andrews and Whang 

(1990) and Andrews (1991). Finally, series estimators can adapt to the smoothness of 

m: provided T (n) grows at a sufficiently fast rate, the optimal rate of convergence, for 

the smoothness class of m, can be established, see Stone (1982), while fixed window 

order q kernel estimators achieve at best a rate of convergence of n2qI2q+l. However, the 

same effect can be achieved by using a kernel estimator whose order changes with n in 

such a way as to produce bias reduction of the desired degree, see Miiller (1987). In 

any case, the evidence of Marron and Wand (1992) cautions against the application of 

bias reduction techniques unless quite large sample sizes are available. Finally, a major 

disadvantage with the series method is that there is relatively little theory about how - 

to select the basis system and the smoothing parameter ~ ( n ) .  

1.6. Kernels, k-NN, splines, and series. Splines and series are both "global" 

methods in the sense that they try to approximate the whole curve at once, while kernel 

and nearest neighbor methods work separately on each estimation point. Nevertheless, 

when X is uniformly distributed, kernels and nearest neighbor estimators of m(x) are 

identical, while spline estimators are roughly equivalent to a kernel estimator of order 

4. Only when the design is not equispaced do substantial differences appear. 

We apply kernel, k-NN, orthogonal series (we used the Legendre system of orthog- 

onal polynomials), and splines to the car data set (Table 7, p. 352-355 in Chambers, 

Cleveland, Kleiner and Tukey (1983)). 

In each plot, we give a scatterplot of the data x = price in dollars of car (in 1979) 

versus y = miles per US gallon of that car, and one of the nonparametric estimators. 

The sample size is n = 74 observations. In Figure l a  we have plotted together with the 

raw data a kernel smoother 6ih for which a quartic kernel was used with h = 2000. Very 

similar to this is the spline smoother shown in Figure lc  (A  = lo9). In this example, the 
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Kemel Estimate Spline Estimate 
* * t t 

FIG. 1.  Scatterplot of car price (x) and miles per gallon (y) with four different smooth approxi- 

mat ions  (n = 74, h = 2000, k = 11, A = lo9,  T = 8). Standard deviation of car price is  2918. 

I ,  I 
4MM B W O  8000 100W 12000 14WO 16MM 

Price 

KNN Estimate 

X's are not too far from uniform. The effective local bandwidth for the spline smoother 

from (8) is a function of f-'l4 only, which does not vary that much. Of course at the 

right end with the isolated observation at x = 15906 and y = 21 (Cadillac Seville) 

both kernel and splines must have difficulties. Both work essentially with a window of 

fixed width. The series estimator (Figure Id) with T = 8 is quite close to the spline 

I ,  I 
4W0 6MM 8MM 10000 12000 14000 16000 

P b  

Orthogonal Series Estimate 

estimator. 

In contrast to these regression estimators stands the k - N N  smoother ( k  = 11) in 

Figure lb.  We used the symmetrized Ic-NN estimator for this plot see Hardle and Miiller 

(1993). By formula ( 5 )  the dependence of Ic on f is much stronger than for the spline. 

At the right end of the price scale no local effect from the outlier described above is 

visible. By contrast in the main body of the data where the density is high this k - N N  

smoother tends to be wiggly. 
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1.7. Confidence Intervals. The asymptotic distribution results contained in The- 

orems 1-3 can be used to calculate pointwise confidence intervals for the estimators 

described above. In' practice it is usual to ignore the bias term, since this is rather 

complicated, depending on higher derivatives of the regression function and perhaps on 

the derivatives of the density of X. This approach can be justified when a bandwidth 

is chosen that makes the bias relatively small. 

We restrict our at tention to the Nadaraya- Watson regression estimator. In this 

case, we suppose that nh5 4 0, which ensures that the bias term does not appear in 

the limiting distribution. Let 

where @(c,) = (1 - a )  with @(e) the standard normal distribution, while 2 is any con- 

sistent estimate of the asymptotic variance of Gh(x). For example: = Cy=l W:i(x)z, 

Zi = a i (x)  C:=, W;;(x), or = n-'h-' [J K ~ ( u ) ~ u ] G ~ ( x ) / & ( x ) ,  where &(x) is the ker- 

nel density estimator, = - 6ih(Xi )  are the nonparametric residuals, and Gi(x) = 

C:=l Wns(x)q is a nonparametric estimator of a2(x). With these definitions, . 

The pointwise approach is relevant if the behavior of the regression function at a 

single point is under consideration. Usually, however, its behavior over an interval is 

under study. In this case, pointwise confidence intervals do not take pccount of the 

joint nature of the implicit null hypothesis. We now consider uniform confidence bands 

for the function m, over some compact subset x of the support of X. Without loss of 

generality we take x = [O, 11 . We require functions CLO*(x) and CUP*(x) such that 

(12) 

Let 

Pr {m(x) E [CLO*(x), CUP*(x)] for all x E X )  + 1 - a, 
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Engel Curve and. Confidence Bands 
J I I I I I I 

F I G .  2 .  Uniform confidence bands for the income data. Food versus net income. Calculated using 

XploRe macro reguncb. Family Expenditure Survey. (1968 - 1983) 

where S = [2 1 0 ~ ( l / h ) ] l / ~ ,  and exp (-2 exp(-c:)} = (1 - a). Then (12) is satisfied under 

the conditions given in Hardle (1990, Theorem 4.3.1). 

In the figure below we show the uniform confidence bands for a data set described 

in Hardle and Linton (1994), Hardle and Jerison (1991). 

1.8. Bootstrap Confidence Intervals. The bootstrap can be used to construct 

pointwise and uniform confidence intervals for both fixed and random design. The 

bootstrap can have a significant advantage here as was pointed out by Hall (1993): the 

error in (12) is O(log-' n), while the error for a correct bootstrap procedure can be 
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O((1og h-1)3/nh) in the random design case. We outline the bootstrap procedure for 

the two sampling schemes. 

1.8.1. Fixed Design with iid errors. The following steps are carried out 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Calculate residuals: 2$ = E; - Gh(Xi), i = 1, .., n. 
A .  

Centering: 5, = E? - n-' C;=, sj, z = 1, .., n 

Resampling: Draw randomly s;, .., c: from {Fly .., Zn) 

Create bootstrap observations: r = &;(Xi) + cf, i = 1, .., n, where %;(a) is a 

kernel estimate of m(a) using bandwidth g. 

With the bootstrap data one calculates a kernel estimate 

To evaluate the variability of (n h)'l2 [Gh(x) - m(x)] one uses the conditional distribution 

of (nh)1/2[Gi(x) - Gh(x)] given the sample. Provided h n-lI5, g t 0 and glh + oo, 

the bootstrap works in this case, i.e. the two distributions are asymptotically the same, 

see Ha11 (1992). 

1.8.2. Random Design. It would appear natural to resample from the joint em- 

pirical of the sample; unfortunately this will tend to underestimate the bias, see Hkdle 

and Mammen (1991). One can either provide simultaneously a bias correction or one 

can resample from the modified empirical distribution 

for some alternative bandwidth g as in Gonzalez-Manteiga, Prada-Sanchez, Fiestras- 

Janeiro and Garcia- Jurado (1990). 

15 
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2. Optimality and Bandwidth Choice. 

2.1. Optimality. We say that a bandwidth sequence h* is asymptotically optimal 

relative to a performance criterion Q(h) if 

as n + m, where Hn is the range of permissible bandwidths. There are a number of 

alternative optimality criteria in use. Firstly, we may be interested in the quadratic 

loss of the estimator at a single point x, which is measured by the Mean Squared 

Error, M S E  {Gh(x)) . Secondly, we may be only concerned with a global measure of 

performance. In this case, we may consider the Integrated Mean Squared Error, 

I M S E  = M S E  {Gh(x)) ~ ( x )  f (x)dx for some weighting function ~ ( e ) .  An alternative 

is the in-sample version of this, the Average Squared Error 

The purpose of ~ ( e )  may be to down weight observations in the tail of X's distribution, 

and thereby to eliminate boundary effects. When h = ~ ( n - ~ l ' ) ,  the squared bias and 

the variance of the kernel smoother have the same magnitude; this is the optimal order 

of magnitude for h with respect to all three criteria, and the corresponding performance 

measures are all ~ ( n - ~ / ~ )  in this case. 

Now let h = yn-1/5, where y is a constant. The optimal constant balances the 

contributions to M S E  from the squared bias and the variance respectively. From 

Theorem 1 we obtain an approximate mean squared error expansion, 

0 3 )  M S E  [Gh(x)] % n-lhA1v(x) + h 4 ~ 2 ( x ) ,  

and the bandwidth minimizing (13) is 

V(x> h o ( ~ ) = {  4B2 (x) }115n-1/5. 
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Similarly, the optimal bandwidth with respect to I M S E  is the same as (14) with 

V = J V(x)a(x) f (x)dx and B2 = J B2(x)s(x) f (x)dx replacing V(x) and B2(x). Un- 

fortunately, in either case the optimal bandwidth depends on the unknown regression 

function and design density. We discuss in Section 2.2 below how one can obtain em- 

pirical versions of (14). 

By substituting ho in (13), we find that the optimal M S E  and I M S E  depend on 

K only through 

This functional can be minimized with respect to K using the calculus of variations, 

although it is necessary to first adopt a scale standardization of K ;  'for details, see 

Gasser, Miiller, and Mammitzsch (1985). A kernel is said to be optimal if it minimizes 

(15). The optimal kernel of order 2 is the Epanechnikov kernel K(u) = 0.75 * (1 - 
u2)I(lul 5 1). However, over a wide class of kernel estimators, the loss in efficiency is 

not that drastic; more important is the choice of h than the choice of K ,  see Marron 

and Nolan (1989). 

2.2. Choice of Smoothing Parameter. For each nonparametric regression method, 

one has to choose how much to smooth for the given dataset. In Section 1 we saw that 

k-NN, series, and spline estimation are asymptotically equivalent to the kernel method, 

so we describe here only the selection of bandwidth h for kernel regression smoothing. 

2.2.1. Plug-in. The asymptotic approximation given in (14) can be used to de- 

termine an optimal local bandwidth. We can calculate an estimated optimal bandwidth 
h h h 

hPl in which the consistent estimators 6;. (x), 3;. (x), fh* (x) and f;, (x) replace the un- 

known functions. We then use 6~ (x) to estimate m(x). Likewise, if a globally optimal 
h,l 

bandwidth is required, one must substitute estimators of the appropriate average func- 

tional~. This procedure is generally fast and simple to implement. Its properties are 

examined in Hkdle, Hall, and Marron (1992). However, this method fails to provide 

pointwise optimal bandwidths, when m(x) possesses less than two continuous deriva- 

tives. Finally, a major disadvantage of this procedure is that a preliminary bandwidth 
17 
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h* must be chosen for estimation of mN(x) and the other quantities. 

2.2.2. Crossvalidation. Crossvalidation is a convenient method of global band- 

width choice for many problems, and relies on the well established principle of out-of- 

sample predictive validation. Suppose that optimality with respect to dA(h) is the aim. 

We must first replace d ~ ( h )  by a computable approximation to it. A naive estimate 

would be to just replace the unknown values m(X;) by the observations Y,: 

which is called the resubstitution estimate. However, this quantity makes use of the 

each observation twice - the response variable is used in Gh(Xi) to predict itself. 

Therefore, p(h) can be made arbitrarily small by taking h -, 0. Alternatively, note that I 

conditional on XI,  . . , Xn, we have 
I 

and the third term is of the same order of magnitude as E [dA(h)] , but with negative 

sign. Therefore, dA is wrongly underestimated, and the selected bandwidth will be 

downward biased. t 

The simplest way to avoid this problem is to remove the i-th observation from 

6ih(Xi), and define 

This leave-one-out estimate is used to form the so-called crossvalidation function 

which is to be minimized with respect to h. For technical reasons, the infimum must be 

taken only over a restricted set of bandwidths such as Hn = [7~-(l/~-C), ~z-(l/~+C)], for 

some 5 > 0. The following theorem is proved in Hkdle and Marron (1985): 
18 ' 
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Theorem 4. Assume that the conditions given in Hurdle (1990, Theorem 5.1.1) 

hold. Then the bandwidth selection rule, "Choose to minimize CV(h)" is asymptoti- 

cally optimal with respect to dA(h) and I M S E .  

The conditions include the restriction that f > 0 on the compact support of T, moment 

conditions on 6, and a Lipschitz condition on K. However, unlike for the plug-in proce- 

dure, m and f need not be differentiable (a Lipschitz condition is required, however). 

2.2.3. Other data driven selectors. There are a number of different automatic 

bandwidth selectors that produce asymptotically optimal kernel smoothers. They are 

based on various ways of correcting the downwards bias of the resubstitution estimate 

of dA(h). The function p(h) is multiplied by a correction factor that in a sense penalizes 

the too small h's. The general form of this selector is 

where E is the correction function with first-order Taylor expansion 

- c ( u )  = 1 + 2u + 0(u2) ,  

as u + 0. Some well known example are: 

P 

(a) Generalized Cross-validation (Craven & Wahba 1979): EGCV (u) = (1 - u ) - ~ ;  

(b) Akaike's Information Criterion (Akaike 1970): zArc(u) = exp (2u); 

(c) Finite Prediction Error (Akaike 1974): EFPE(u) = (1 + u)/( l  - u); 

(d) Shibata's (1981) model selector: Es(u) = 1 + 2u; 

(e) Rice's (1984) bandwidth selector: ET(u) = (1 - 2u)-l. 

Hardle, Hall, and Marron (1988) show that the general criterion G(h) works in pro- 

ducing asymptotically optimal bandwidth selection, although they present their results 

for the equispaced design case only. 

19 
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O Crossvalidation Function 
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F I G .  3. The crossvalidation function CV(h)  for the car data. Quartic kernel. Compulation made 

with XploRe macro regcvl. 

The method of crossvalidation was applied to the car data set to find the optimal 

smoothing parameter h. A plot of the crossvalidation function is given in Figure 3. The 

computation is for the quartic kernel K(u) = E(1-  u ~ ) ~ I ( I u ~  5 1) using the WARPing 

method, see HLdle and Scott (1992). The minimal = arg min C V ( h )  is at 1800 which 

shows that in Figure 5a we used a slightly too large bandwidth. 

Hkdle, Hall and Marron (1988) investigate how far the crossvalidation optimal is 
.. 

from the true optimum ho (that minimizes dA(h)). They show that for each optimization 

method, 
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where a2 and Cl are both positive. To this higher order of approximation, the above 

methods are all asymptotically equivalent. Another interesting result is that the esti- 
h h 

mated h and optimum ho are actually negatively correlated! Hall and Johnstone (1992) 

show how to correct for this effect in density estimation and in regression with uniform 

X's. It is still an open question how to improve this for the general regression setting 

we are considering here. 

There has been considerable research into finding improved methods of bandwidth 

selection, that give faster rates of convergence in (16). Most of this work is in density 

estimation - see the recent review of Jones, Marron and Sheather (1992) for references. 

In this case, various n1I2 consistent bandwidth selectors have been suggested. The 

finite sample properties of these procedures are not well established, although Park 

and Turlach (1992) contains some preliminary simulation evidence. Hardle, Hall and 

Marron (1992) construct a n1I2 consistent bandwidth selector for regression based on a 

bias reduction technique. 

3. Application to Time Series. In the theoretical development described up 

to this point, we have restricted our attention to independent sampling. However, 

smoothing methods can also be applied to dependent data. We focus on the issue of 

functional form, rather than that of correlation structure - this latter issue is treated, 

from a nonparametric point of view, in Brillinger (1980). Suppose that we observe the 

vector time series {(Xi, ll;))r=l. It is convenient to assume that the process is stationary 

and mixing as defined in Chanda (1974)) Garodetskii (l977), Gallant and White (l988), 

although extensions to certain types of nonstationarity can also be permitted. We 

consider two distinct problems. Firstly, we want to predict Y,  from its own past which 

we call autoregression. Secondly, when we want to predict x from Xi which problem 

we call regression with correlated errors. 

3.1. Autoregression. For convenience we restrict attention to the problem of 

predicting the scalar I / ; + k  given Y,  for some k > 0. The best predictor is provided by 
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the autoregression function 

More generally, one may wish to estimate the conditional variance of E;+k from lagged 

values, 

and even the predictive density fK+,ly,. These quantities can be estimated using any 

of the smoothing methods described in this chapter. See Robinson (1983) and Bierens 

(1987) for some theoretical results including convergence rates and asymptotic distri- 

butions. 

A scientific basis can also be made for choosing bandwidth in this sampling scheme. 

Hardle and Vieu (1991) showed that crossvalidation also works in the autoregression ' 

h 

problem - "choose" h = argmin CV(h) gives asymptotically optimal estimates. 

To illustrate this result we simulated an autoregressive process E; = M(Kdl) + ci 

with 

where the innovations ei were uniformly distributed over the interval (-1/2,1/2). Such 

a process is a-mixing with geometrically decreasing a (n)  as shown by Doukhan and 

Ghindks (1980) and Gyorfi et al. (1990, Section 111.4.4). The sample size investigated 

was n = 100. The quartic kernel function was used. The minimum of CV(h) was 
h 

h = 0.43, while the optimum of dA(h)  is at h = 0.52. The curve dA(h)  is very flat 

for this example, since there is very little bias present. In Figure 4 we compare the 

estimated curve with the autoregression function and find good coincidence. 

3.2. Correlated Errors. We now consider the regression model 
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True and Estimated Function M 

F I G .  4. The time regression function M(y) = yexp(-y2) for the simulated example (thick lane) 

and the kernel smoother (thin line). 
1 

where Xi is fixed in repeated samples and the errors 6; satisfy E(6;lX;) = 0, but are 

autocorrelated. The kernel estimator G h ( x )  of m ( x )  is consistent under quite general 

conditions. In fact, its bias is the same as when 6i are independent. However, the 

variance is generally affected by the dependency structure. Suppose that the error 

process is MA(l) ,  i.e. 

where u; are i.i.d with zero mean and variance a2.  In this case, 

n n-1 

Var [ A h ( x ) ]  = b2 (1 + B2) C W:i + 28 C WniWni+l 
i=l i=l 

which is O(n-lh-I), but differs from Theorem 1. If the explanatory variable were time 

itself (i.e. Xi = i l n ,  i = 1, .., n), then a further approximation is possible: 
23 
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Var [Gh(x)] M n-' h-lo2(1 + O2 + 28) [ K2(u)du]. / 
Hart and Wehrly (1986) develop M S E  approximations in a regression model in which 

the error correlation is a general function p ( e )  of the time between observations. 

Unfortunately, crossvalidation fails in this case. The error process tends to stay too 

long on one side of the mean curve. Therefore, the bandwidth selection procedure gives 

undersmoothed estimates, since it interprets the little bumps of the error process as part 

of the regression curve. An example is given in Hkdle (1990, Figures 7.6, 7.7). The 

effect of correlation on the crossvalidation criterion may be mitigated by leaving out 

more than just one observation. For the MA(1) process, leaving out the 3 contiguous (in 

time) observations works. This "leave-out-some" technique is sometimes appealing also 

in the independent setting, see the discussion of Hkdle, Hall and Marron (1988), and 

Hart and Vieu (1991). It may also be possible to correct for this effect by "whitening" 

the residuals, although this has yet to be shown. 

4. Multidimensional Design. Now suppose that X is d-dimensional with d > 1 

and let Xi = (Xli, . . , x d i ) *  and x = (zl , .., x ~ ) ~ .  A product kernel estimator of m(x) is 

given by 

where 6 ( x )  is consistent provided h -+ 0 and nhd + m, see Hkdle (1990). When 

m E M2, the bias of Gh(x)  with q = 2 is O(h2) just as for d = 1, but the variance is 

O(n-lh-d) and increases with d. Thus the optimal rate of convergence of G(x)  is the 

slower n2/d+4; this is often called the curse of dimensionality. An additional problem 

is that simple plots are not available to aid model selection. There are a number of 

simplifying structures that have been used to avoid these problems. These include 
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single index models as in Hardle and Stoker (1986), the regression tree structure of 

Gordon & Olshen (l98O), the projection pursuit model of Friedman & Stuetzle (1981), 

semiparametric models such as considered in Engle, Granger, Rice & Weiss (1986), and 

the additive structure of Buja, Hastie & Tibshirani (1989), see Hkdle (1990, p257-287) 

for further discussion. We briefly discuss some recent work on additive models. 

4.1. Additive Models. Suppose that 

where without loss of generality E[m,(X,;)] = 0. Stone (1985) shows that ma, a = 

1, .., d can be estimated with the one-dimensional convergence rate of n2I5. In practice, 

the Hastie & Tibshirani (1990) estimation procedures are widely used. These involve 

multiple iterations, where the additive structure is used in each step, to obtain esti- 

mates of m,, a = 1, .., d. A major disadvantage of this method is that its statistical 

properties are not well understood. Recently, Linton and Nielsen (1995) have proposed 

an alternative method based on integration. Let Q be some d - 1 probability measure, 

and define 

Then &, estimates ma up to a constant. This constant is zero if Q is the joint dis- 

tribution of XI;, .., Xa-l;, X,+li, .., Xd; or a consistent estimate of it as provided by the 

empirical distribution. Chen, Hardle, Linton and Severance-Lossin (1995) show that 

with Q this empirical distribution, &,(x,) - m,(x,) = ~ , ( n - ~ / ~ )  under appropriate 

conditions. 
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Testing Parametric Versus Semiparametric Modeling 
in Generalized Linear Models 

Wolfgang HARDLE, Enno MAMMEN, and Marlene MULLER 

We consider a generalized partially linear model E ( Y  X ,  T) = G { X ~ P  + m(T)),  where G is a known function, ,R is an unknown 
parameter vector, and m is an unknown function. We introduce a test statistic that allows one to decide between a parametric 
and a semiparametric model: (a) m is linear (i.e., m( t )  = t T y  for a parameter vector y) ,  and (b) m is a smooth (nonlinear) 
function. Under linearity (a), we show that the test statistic is asymptotically normal. Moreover, we prove that the bootstrap 
works asymptotically. Simulations suggest that (in small samples) the bootstrap outperforms the calculation of critical values from 
the normal approximation. The practical performance of the test is demonstrated in applications to data on East-West German 
migration and credit scoring. 

KEY WORDS: Binary choice models; Bootstrap test; Credit scoring; Generalized linear models; Migration; Smoothed quasi- 
likelihood. 

1. INTRODUCTION 

In the analysis of discrete response variables one often 
models the expected value of the response as a nonlinear 
monotone function of a linear combination of the explana- 
tory variables. Examples are probit or logit models, where 
the nonlinear (link) function is the cumulative distribution 
function of a normal or logistic distribution (see McCul- 
lagh and Nelder 1989). Then the so-called generalized lirz- 
ear model has the form 

with a known monotone function G and an unknown param- 
eter 0 .  The model (1) combines computational feasibility 
(especially for discrete covariates) with good interpretabil- 
ity of the "index" Z T O  and thus has found wide application 
in all fields of applied statistics (see, e.g., Fahrmeir and Tutz 
1994) and Maddala 1983). However, for some applications 
it may be argued that the assumption of linearity in (1) is too 
restrictive. In fact, it may not be even clear if the relation- 
ship between the influential variables and the response is 
monotone. A more complex relationship (allowing also for 
nonmonotone dependence) is given by the semiparametric 
generalized partially linear model 

where Z = (X, T) is a split of Z into two components X 
and T, ,Q is an unknown parameter, and m is an unknown 
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smooth function. For a discussion of model (2) and addi- 
tional references see Severini and Staniswalis (1994). 

As an example of a possible nonlinear dependence, con- 
sider a model on East-West German migration in 1991. 
This model uses data from the German Socio-Economic 
Panel for Mecklenburg-Vorpommern, a land of the Federal 
Republic of Germany (GSOEP 1991). The dependent vari- 
able is binary with Y = 1 (intention to migrate) or Y = 0 
(intention to stay). The variable T = household income 
serves as an explanatory variable along with some socio- 
economic factors X = (age, sex, friends in west, city size, 
unemployment). Figure 1 shows a fit of the function m in 
the semiparametric model (2) using a logistic link function 
G(u)  = 1/{1+ exp(-u)). The estimated function is clearly 
nonlinear and shows a saturation in the intention to migrate 
for higher income households. The question is, of course, 
whether the observed nonlinearity is significant. 

In this article we discuss a test of the parametric hypoth- 
esis (1); that is, 

m ( t )  = t r y  for a vector y ,  (3) 

versus the semiparametric alternative (2). Our test indicates 
whether a nonlinear shape observed in nonparametric fit of 
m is significant. Furthermore, the proposed test comple- 
ments the work of Severini and Staniswalis (1994), who 
considered estimation under model (2). Optimal rates for 
the nonparametric component and eficient estimation of 
the parametric component have been discussed by Mam- 
men and van de Geer (1997). With identity link, this model 
has also been analyzed by Green (1987), Robinson (1988), 
and Speckman (1983). A related model with serniparamet- 
ric index has been given by Carroll, Fan, Gjjbels, and Wand 
(1997). Most of the literature in this semiparametric con- 
text, though, was devoted to estimation rather than testing. 

Our test is based on ideas of Hastie and Tibshirani (1990). 
For a more general setup, they proposed applying the likeli- 
hood ratio test and using chi-squared approximations for the 
calculation of critical values. Approximate degrees of free- 
dom are derived by calculating the expectation of asymp- 
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Household income --> migration 

household income 

Figure I .  The Influence m(t )  of Household Income (Transformed to [0, I ] )  on Migration Intention. Nonparametric fit (thick black line), linear fit 
(thin black dashed line), and "biased" parametric estimate m (thin gray dashed line), n = 402. 

totic expansions of the test statistic under the null hypoth- 
esis. For this approach, only heuristic justification has been 
given. We propose the following modifications of this ap- 
proach. 

First, we correct for the bias of nonparametric estimates. 
Second, we modify the test statistic for the reason that 
different likelihoods (smoothed or unsmoothed likelihood) 
have been used in the calculation of the nonparametric or 
parametric component. For this modified test we can de- 
velop an asymptotic distribution theory. The test statistic 
does not have an asymptotic chi-squared distribution. We 
propose using the bootstrap for the calculation of critical 
values and show that bootstrap works. 

The next section introduces estimators of m, y, and f?. 
These estimators will be used in the construction of the 
test statistics. The test and its asymptotic properties are 
discussed in Section 3. A small simulation study, the ap- 
plication to the migration example and another example on 
credit scoring, is discussed in Section 4. Remarks on the 
computation of the test statistics and proofs of our results 
are given in the Appendix. 

2. ESTIMATION IN THE PARAMETRIC AND 
SEMIPARAMETRIC MODELS 

For the estimation of the parametric component p and 
the nonparametric component m, we follow the approach 
of Severini and Staniswalis (1994). The method is based on 
quasi-likelihood estimation. The quasi-likelihood function 
is defined as 

where p is the (conditional) expectation of Y; tliat is, 
I*. = G{XTf? + m(T)}. It is assumed here that the condi- 
tional variance of Y is a2V(I*.), where a is an unknown scale 
parameter and V is a known function. Quasi-likelihood 
functions are motivated by exponential families. Note that 
the maximum likelihood estimate 8, based on an iid sample 
Yl, . . . . Yn from an exponential family, is given by 

In our model, the quasi-likelihood function is given as 

where (Yl, XI .  TI) ,  . . . . (Y,,, X,. T,,) is a sample of indepen- 
dent observations and pi = G{X'P + m(Ti)}. The param- 
eter p is supposed to lie in B c RP. The covariates X, 
and Ti are RP and Rq valued. We assume that the response 
variable Y,  is real valued. Multidimensional responses can 
be treated similarly. 

The model assumption that the conditional variance of 
Y,  is equal to a2V(pi)  may be violated by the underlying 
data. For this reason, in our asymptotic analysis we do not 
suppose this condition. For the study of the bootstrap, we 
discuss this general case as well as the particular cases tliat 
the conditional variance is a2V(u;) or that the conditional 
distribution of J$ belongs to an exponential family; see Sec- 
tion 3.1. 
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For the estimation of the nonparametric component m, 
we use the following smoothed quasi-likelihood: 

where Kh(u) = (hl . . . . . hq)-lK(h;'u1,. . . , hqluq) is 
a kernel (defined on W4) with bandwidth (vector) h = 

(h l ,  . . . , h,). Following Severini and Staniswalis (1994) and 
Severini and Wong (1992), we put for P E B, 

7jZP = argmax C s  (m. f?) , 
m 

(6) 

p = argmax C (kP. P )  ; (7) 
P 

and 

In (6), maximization runs over functions m(.) .  Because 
an integral is maximized by maximizing its integrand, the 
value q = mP(t)  is defined as the maximizer of the "lo- 
cal likelihood" x:& Kh (t - T,)Q [~{xTp + q); x]; see 
(5). Without loss of generality, we always assume that the 
constant vector is not contained in the design space. An 
intercept is automatically modeled by the nonparametric 
component. Under this assumption, the maximization in (6) 
and (7) is unique. (For a discussion of these estimates, see 
Severini and Staniswalis 1994.) 

Our test will be based on a comparison of the semipara- 
metric estimates with the estimators ( p ;  -?/) in the parametric 
model 

( p ;  ;i') = argmax C P  ( y ;  p )  . 
P.r 

(9) 

Here CP(y,  p )  is the quasi-likelihood function in model ( l ) ,  

The scale parameter a can be estimated by 

where f i ,  = G { x : ~  + l i z ( ~ ~ ) ) .  
A direct comparison of m(t )  and tT;j/ may be mislead- 

ing, because m has a smoothing bias which is typically non- 
negligible. This also holds if the hypothesis of linearity is 
true. To avoid this effect, we add a bias to t T y  that will 
compensate for the bias of m(t) .  We do this by "smooth- 
ing" the function t + t T j .  For this purpose, we con- 
sider the artificial dataset {%. Xi. T i ) :  i = 1; . . . ; n, where 
Y, = G ( x ? ~  + TT;j/) is the parametric fit of E (Y, IXi, T i ) .  
The function m is defined by the following smoothing 
step: 

m = argmax 
m 

In the Appendix we show that under the hypothesis .iiz(t) is 
asymptotically equivalent to tT;i.+ the bias of f i ( t ) .  There- 
fore, in the difference m( t )  - m(t) ,  the bias cancels asymp- 
totically. 

3. TESTING THE PARAMETRIC MODEL VERSUS 
THE SEMIPARAMETRIC MODEL 

Our test procedures are based on a comparison of the 
parametric estimates 6 and m with the semiparametric es- 
timates p and &. A natural approach would be based on 
the likelihood ratio statistic C(riz, 3) - C(m, f l ) .  Unfortu- 
nately, this test statistic does not work, because in the con- 
struction of & and p, two different likelihood functions 
(smoothed and unsmoothed) have been used. [A Taylor ex- 
pansion of the test statistic, in particular of the ith summand 
into ci& + di6: with J i  = x T ( ~  - 6 )  + .iiz(Ti) - %(Ti),  
does not lead to a quadratic form.] This cannot be repaired 
by using the smoothed quasi-likelihood C S  instead of C. 

We propose the following test statistic: 

with ,G2 = G { x ; ~  + m(T,))  and f i ,  = G { X ; ~  + 7j2(TZ)) 
for i = 1;. . . ;n .  

Note that for the case where the variance function V is 
constant, R1 is equal to Cy=l(fii-fii)2/V. In general, R1 is 
equal to Cy=l ( j &  - i i i)2/V(&), where pi is a point between 
b, and fii. Therefore R1 can be interpreted as a weighted 
quadratic deviation. 

If the distribution of Y does not belong to an exponen- 
tial family, then calculation of R1 involves evaluating n  
integrals. In these cases, the following two modifications of 
R1, motivated by a Taylor expansion of R1, are easier to 
compute: 

and 

Theorem 1 discusses the asymptotics of these test statis- 
tics. The test statistics are asymptotically equivalent under 
the null hypothesis and have an asymptotic normal distri- 
bution. 

Theorem I .  Suppose that the assumptions A1-A8 (in 
Sec. A.2 of the Appendix) apply. Then, under the hypothesis 
mo(t)  = tTyo,  it holds that 

x Q [ G { X ? ~  + m(t )} ;  z] dt. (12) (a) Ri = R2 + op(vn) = R3 + op(vn). 
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and 

where en is a sequence with en = J K(ul2 duXl + 
~ ( h ~ , , h p ~ ~ , )  and u; is defined by u; = 2h;:0d J K(?) ( u ) ~  
duX2. Here we use the notation h,,, = max{hl.. . . , h,) 
and hprod = hl . . . . . hg. The kernel K ( ~ )  is the convolution 
of I< with itself. Furthermore, 

and 

where a2(X,  T )  is the conditional variance of Y given 
( X ,  T ) ,  and where 17 = X T p ,  + TTyO.  If the conditional 
variance o2 (x ,  T )  is correctly specified by 0 2 V { ~ ( v ) ) ,  
then X I  is equal to X 2  and a-'X1 = oP2X2 is the Lebesgue 
measure of the support ST of T .  

Note in particular that J K ( u ) ~  du # ~ ' { K ( ~ ) ( u ) ) ~  du. 
Therefore, for the case where X 1  = X 2 ,  Theorem 1 implies 
that a chi-squared approximation is not appropriate for the 
distribution of R1. This is because for kernel smoothing op- 
erators K, it does not hold that KK = K. This is in contrast 
to projection operators like B splines (see Buja, Hastie, and 
Tibshirani 1989). In particular, X I  = X 2  holds if Q(y;  p )  is 
the log-likelihood. Then R1 is a modification of the (log)- 
likelihood ratio test statistic. 

For the asymptotic mean en, an explicit formula can be 
given that contains conditional expectations of smoothed 
functions. Because this formula is rather lengthy, it is omit- 
ted here. 

Theorem 1 states that the test statistics R1, R2, and R3 
are asymptotically equivalent under the null hypothesis. 
By standard arguments of asymptotic decision theory, the 
asymptotic equivalence remains valid for contiguous alter- 
natives (i.e., n-ll2 neighbored alternatives). In a parametric 
setting, this would imply that these three tests have asymp- 
totically equivalent power. However, in our nonparametric 
setup the tests will have nontrivial power (power bounded 
away from the level and from 1) only for noncontiguous 
alternatives. Therefore, power functions may behave quite 
differently. A comparison of power functions based on sim- 
ulations can be found in Section 4. 

3.1 Bootstrap Tests 

For two points sn and tn  the nonparametric estimates 
m(sn) and r j 2 ( t n )  are asymptotically independent if the sup- 
ports of the kernels Kh(o - s,) and Kh(e - t,) are disjoint. 
This may explain why, asymptotically, R1 behaves approx- 
imately like a sum of ~ ( h ; '  . . . . . h i1 )  independent sum- 
mands and has an asymptotic normal limit. Because, typi- 
cally, h,' . . . . . h;' are not very large, it can be suspected 
that normal approximations do not work well for R1 (see 
Hardle and Mammen 1993 for a related discussion). There- 

fore, we advise against using normal approximations for 
the calculation of quantiles. Instead, we propose using the 
bootstrap. We discuss here three versions of the bootstrap. 
The first version is the wild bootstrap, which is related 
to proposals of Wu (1986) (see also Beran 1986; Mam- 
men 1992) and was first proposed by Hardle and Mammen 
(1993) in nonparametric setups. Note that in our model the 
conditional distribution of Y is not specified apart from A1 
and A2. 

The wild bootstrap procedure works as follows: 

Step 1. Calculate residuals Z, = Y,  - G ( x ; ~  + fh(T,)). 
Step 2. Generate n iid random variables E T ,  . . . , E; with 

mean 0 and variance 1 and that fulfill for a constant C that 
I E ~  5 C (a.s.) for 2 = 1 . . . . .  n. 

Step 3. Put = G(X?~?+T:;~/ )  +&E: for z = 1, . . . , n. 
Step 4. Calculate estimates b*. riz*. B*, y*, and riz * based 

on the bootstrap samples ( X I .  T 1 ,  Y;) ,  . . . . (X , ,  T,, Y;). 
Furthermore, calculate test statistics RT. R;, and R;. The 
( 1  - a )  quantiles of the distributions of R1. R2, and Rg can 
be estimated by the ( 1  - a )  quantiles of the conditional 
distributions of RT. R;, or R;. 

Under the additional model assumption 

we propose the following modification of the resampling. 
In Step 3, put Y,* = G(x:P + T T ~ )  + ~ V { G [ X ? ~  + 
~ ( T , ) ] ) ~ / ~ E :  for z = 1.. . . , n  where 6' is a consistent 
estimate of a2. In this case, the condition that I E : I  is 
bounded can be weakened to the assumption that E,* has 
subexponential tails; that is, for a constant C, it holds that 
~ ( e [ ~ ' ~ / ~ ] )  < C for z = 1 , .  . . . n (cf. A2). 

In the special situation where Q(p: y)  is the log- 
likelihood (a semiparametric generalized linear model), 
the conditional distribution of Y, is specified by p, = 

G(XTP t Tyy) .  Then we recommend generating n inde- 
pendent Yl. . . . , Yn with distributions defined by G ( x : ~  
+ T T ~ ) ,  . . . , G ( x : ~  + T:?). This is a version of the 
parametric bootstrap. In the binary response example that 
we considered earlier, Y,  is a Bernoulli variable with pa- 
rameter p, = G(X;f? + TTy) .  Hence here it is reasonable 
to resample from the Bernoulli distribution with parameter 
jZ, = G ( X : ~  + T,Tq). 

Theorem 2 shows that these three bootstrap procedures 
work (for their corresponding models). 

Theorem 2. Suppose that the assumptions of Theorem 
1 hold. In case of application of the second or third version 
of the bootstrap, assume that the aforementioned additional 
model assumptions hold. Then it holds for j = 1 ,2 .3  that 

where C(Rj)  is the distribution of Rj ,  G* (RS) is the condi- 
tional distribution of R; (given the sample), and dK denotes 
the Kolmogorov distance, which for two probability mea- 
sures p and u (on the real line) is defined as 
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Application of these three versions of the bootstrap for 
,Q has been discussed by Mammen and van de Geer (1997), 
who estimated the nonparametric component by splines. 
The statement of the theorem also holds if the residuals 
are defined as i, = Y ,  - G ( X ? ~  + T:?). We have seen 
in our simulations for binary responses that the normal ap- 
proximation in Theorem 1 (b) is indeed inaccurate for small 
sample sizes (see Sec. 4), but that critical values are esti- 
mated quite well by the bootstrap. 

Our test statistic depends on the choice of the band- 
width h. Different values of h may lead to different ob- 
served significance levels (see Sec. 4). Small values of h 
have been motivated by asymptotic minimax theory (see 
Ingster 1993 and Lepski and Spokoiny 1995). In particular, 
the bandwidths proposed in these papers are of smaller or- 
der than optimal bandwidths for nonparametric estimation. 
However, it is difficult to adapt their abstract assumptions 
to practical settings. 

We suggest applying the test for different choices of h. 
Differences in observed critical values can be interpreted. 
Whereas test statistics with small choices of h will detect 
the appearance of wiggles of small length, large choices 
of h may detect better global deviations from linearity. So 
the inspection of the test statistic for different h gives an 
impression in which respect the function m differs signifi- 
cantly from linear functions. 

Our approach can be generalized to tests of other para- 
metric hypotheses on m; that is, m E M for a parametric 
family M = { m e :  Q E O ) .  In particular, this includes tests 
of the hypothesis m = 0. This test would check whether 
one of the coordinates of T has significant influence, and it 
can be used as tool in model choice. 

Table 1. Relative Number of Rejections for the Test Statistics R7,  R2, 
and R3 Using the Bootstrap Method With n* = ZOO Compared to 

Relative Number of Rejections for Parametric LR Statistic (= LR(p)) 
and Semiparametric LR Statistic Using Approximate Degrees of 

Freedom (= LR(sp)); 500 Monte Carlo Replications. 

CY .01 .05 . I0 . I 5  .20 

3.2 Testing Average Linearity 

In case our test rejects the hypothesis of linearity, more 
insight into the reason for the rejection may be of interest. 
For the case of q > 1, we propose testing for average lin- 
earity in the direction of one covariate. For a given weight 
function w ( t 2 .  . . . , t,) with J w ( t 2 .  . . , t,) dt2 . . . dtq = 1, 
we consider the hypothesis that 

S m(t l . .  . . , t q ) w ( t 2 . .  . . , t,) dt2 . . . dt,  = a + btl 

for all t l  and for fixed a and b. (16) 

Testing average linearity of m in t l  is particularly appro- 
priate in the following model, in which it is assumed that 
there is no'interaction term of t l  and ( t 2 , .  . . , t q ) :  

m(t1. . . . : t,) = ml ( t l )  + m2 ,..., ,  ( t 2 .  . . . : t q )  

for some functions ml, m2 .....,. (17) 

(For a discussion of this additive model, see Buja et al. 1989; 
Hastie and Tibshirani 1990.) In this model, hypothesis (16) 
reduces to 

ml( t l )  = a + b t l  V t l  andfor f ixedaand  b. (18) 

Deviation from average linearity can be measured by the 
following test statistic: 

R4 = min 
" [G({X:$ + A ( T ~ ) ) ] ~  

a.b C ,=1 v [ ~ { x : g  + n i ( T i ) ) j  

where m l ( t l )  = J m ( t l , . .  . , t , ) w ( t 2 . .  . . . t q )  dt2 . . .  dtq. For 
the additive model (17), the nonparametric estimate ml of 
the additive component ml has been considered by Hbdle, 
Linton, and Severance-Lossin (1996), Fan, Hardle, and 
Mammen (1998), Linton and Nielsen (1995), and Tjostheim 
and Auestad (1994). In a modified definition, the "marginal 
integration" in the calculation of m1 is replaced by a 
"marginal summation." For generalized additive models, 
asyinptotics for the estimate m1 has been developed by 
Hardle, Huet, Mammen, and Sperlich (1998). These authors 
also provided a proof for asymptotic normality and consis- 
tency of bootstrap for a test statistic related to R4. 

4. SIMULATIONS AND APPLICATION 

To verify the properties of our test procedure, we have 
conducted a small simulation study. We used simulated data 
from the following generalized (partially) linear model: 

where F is the standard logistic distribution function 
F ( u )  = 1 / ( 1  + e-" ) ;  X I ,  X Z ,  and T are independent; and 
X 1  and T have a uniform distribution on [ - I .  11. The vari- 
able X 2  is discrete and takes five values in [ - I .  11. 

We performed simulations under the linearity hypothe- 
sis using m(t) = t .  Sample sizes were n = 100.250, and 
500, and the number of replications in the bootstrap resam- 
pling used n* = 200. The simulation results are based on 
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Table 2. Relative Number of Rejections Using Normal 
Approximations; 500 Monte Carlo Replications 

a .Ol .05 .10 .15 .20 

500 replications. For smoothing in this section, the quartic 
kernel K(u) = 15/16(1 - u~)~I( IuI  5 1)  was used. 

Table 1 summarizes the results for m(t) = t. As can be 
seen, the bootstrap seems to be quite accurate for all three 
test statistics, at least for a 2 .05. 

As expected, the normal approximation of Theorem 1 
can be quite inaccurate for small sample sizes and should 
not be used for the calculation of critical values of the test 
statistics R1, R2, and Rg. This can be seen from Table 2. 

The values in Table 2 concern only the tail of the distri- 
butions of R1, R2, and R3 and of the normal limit, given in 
Theorem 1. In the central region there are much larger dif- 
ferences between the distributions of R1, R2, and R3 and the 
normal limit, given in Theorem 1, as can be seen in Figure 
2. There density estimates for Rl, R2, and R3 (using the 500 
Monte Carlo replications under the linear model m(t) = t )  
are plotted together with the limiting normal density. The 
normal limit and the distributions of the test statistics are 
nearly separated. (The density estimates for R1, R2, and Rg 
are kernel estimates with bandwidth according to Silver- 
man's rule of thumb; that is, h = 1.06 . 2.62 . b . n-1/5 
for the quartic kernel. For better comparison, the normal 
density has been analogously convoluted with a quartic ker- 
nel.) Similar plots have been given by Hiirdle and Mammen 
(1993), who discussed a related test statistic for testing para- 
metric versus nonparametric regression. 

Finally, we ran our simulations with a function m con- 
sisting of a convex combination of the linear function 
m(t) = t and the nonlinear function m(t) = cos(.rrt). Fig- 
ure 3 shows the power functions of R1 for these alterna- 
tives (black lines). The power has been plotted for four 
different significance levels. The power functions for R2 
and R3 are almost the same and thus have been omitted. 
The dashed lines in Figure 3 show (simulated) power func- 
tions for a parametric likelihood ratio test LR,. The hy- 
pothesis "m(x, t )  = F{c + xp + ty)  for some P and y" is 
tested against the alternative "m(x, t )  = F{c + xp + ty + 
w cos(nt)) for some c, p ,  7 and w." In this setup R1 achieves 
nearly the power of the parametric test LR,. We observed 
larger losses in other models. 

For comparison, we have also included a likelihood ratio 
test of the parametric against semiparametric hypothesis, 
LR,,. Critical values have been calculated using chi-squared 
approximations and the definition of approximate degrees 
of freedom of Hastie and Tibshirani (1990). A more detailed 
description of this test has been given by Miiller (1997). 
The gray curves in Figure 3 show the power of this test. It 

Figure 2, Density Estimates for Rj (Thick Solid Line), R2 ( ~ h i n  Solid 
Line), R3 (Thin Dashed Line), and Normal Density (Gray Line) (a) n = 
100; (b) n = 250; (c) n = 500. 
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Figure 3. Power Functions of Test R1 for a! = .O1 (a), .05 (b), .I0 (c), .20 (d) (Black Solid Lines), x, t E [-I, I], and m(t) = ( 1  - v)t + vcos(d) ,  
v E [O, I], n = 500, h = .4, Compared to the Power of the Parametric LR Test LRp (Dashed Lines) and the Power of the Semiparametric LR Test 
LR,, Using Approximate Degrees of Freedom (Gray Lines). 

achieves a power similar to that of R1. However, it does not 
hold the nominal significance level under the hypothesis; see 
Table 1. 

Let us now return to our introductory example on East- 
West German migration. Our interest in this subject has 
been inspired by an analysis of Burda (1993), who consid- 
ered 'a sample of 3,710 East Germans surveyed in 199 1 in 
the German Socio-Economic Panel (GSOEP 199 1). Among 
other questions, the East German participants were asked 
if they could imagine moving to the Western part of Ger- 
many or West Berlin. As in Burda's study, we assign the 
value 1 to those who responded positively and 0 who did 
not. The economic model is based on the idea that a per- 
son will migrate if the utility (wage differential) exceeds 
the costs of migration. Of course, neither the wage differ- 
ential nor the costs of migration are directly available, and 
hence proxy variables must be used. The original dataset of 
Burda (1993) contains 34 explanatory variables, with four 
of them continuous (age, income, rent, and job tenure) and 
the remainder dummy variables (sex, partner, homeowner, 

family/friends in West, and further variables on occupation, 
city size, region, and education). 

It turns out that regional variables have an important im- 
pact on the responses. For instance, the estimation is par- 
ticularly difficult for East Germans living in East Berlin, 
because other reasons besides the wage differential com- 
pared to costs may influence the intention to migrate. Also, 
the variables, which are most important, differ slightly be- 
tween the five Eastern German states (plus East Berlin). 

Table 3. Descriptive Statistics for Migration Data 

Yes No 

Y ,  migration intention 39.9 60.1 
Xl , familylfriends in West 88.8 11.2 
X2. unemployedljob loss certain 21.1 78.9 
X3, city size 10,000-1 00,000 35.8 64.2 
X4, female 50.2 49.8 

min max Mean SD 

Xs, age (yr) 18 65 39.93 12.89 
T ,  household income (DM) 400 4,000 2,262.22 769.82 

NOTE: Sample from Mecklenburg-Vorpommern, n = 402, results in percentages 
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Table 4. Logit Coefficients and Coefficients in a Generalized 
Partially Linear Model for Migration Data 

Linear (logit) Partial linear 

Coefficient (t value) Coefficient (t value) 

Y ,  constant -.358 (P.68) 
Xi ,  familylfriends in ,589 (1.54) ,599 (1.56) 

West 
X2, unemployedljob .780 (2.81) ,800 (2.87) 

loss certain 
X3, city size 10,000- ,822 (3.39) .842 (3.47) 

100,000 
X4, female -.388 (-1.68) -.402 (-1.73) 
X5, age -3.364 (-6.93) -3.329 (-6.86) 
T ,  household income 1.084 (1.90) 

NOTE: Sample from Mecklenburg-Vorpommern, n = 402, h = .3 

Unenlployment, for example, plays a stronger role in the 
Northern, less industrialized part of East Germany. In the 
following we give the estimation resi~lts for Mecklenburg- 
Vorpommern (in the very north of Eastern Germany), which 
leads to a sample size of n = 402. We summarize some 

I I 

0 0 0.2 0.4 a6 0 8 1.0 

household inwm 

(a) 

Figure 4. The Influence m(t )  of Household Income on Migration 
Intention. Nonparametric fit (thick black line), linear fit (thin black dashed 
line), and %biased'' parametric estimate m (thin gray dashed line); n = 
402, bandwidths h = .1  (a) and h = .5 (b). 

Table 5. Observed Significance Levels for the Linearity Test for 
Migration Data, n = 402, With n" = 400 Bootstrap Replications 

h 1 .2 .3 .4 .5 

descriptive statistics in Table 3. 
Table 4 shows the results of a logit fit, using a subset of 

covariates chosen previously by a model selection proce- 
dure based on logit models. For simplicity, both continuous 
variables (age and household income) have been linearly 
transformed to [0, 11. The migration intention is definitely 
determined by age. However, unemployment, city size, and 
household income also are highly significant. 

In a further analysis of this dataset, we fitted a general- 
ized additive model with logit link. We used the same subset 
of covariates that were chosen by the parametric model se- 
lection procedure. This choice was motivated by our expe- 
rience that typically values of parametric coefficients (and 
their t values) change only slightly if other covariates are 
modeled nonparametrically (see also Tables 4 and 7). So we 
conjecture that in semiparametric models, parametric model 
choice procedures will work well for the choice of the para- 
metric components. Clearly, nonlinear influences will not be 
recognized for parametric and nonparametric components. 
(For nonparametric tests on the significance of covariates, 
see also the remark at the end of Sec. 3.1 and Hardle et al. 
1998.) 

In a first step, we modeled the influence of the age and 
income variables as nonparametric functions. Because age 
showed an almost perfectly linear influence, in a second step 
we modeled only the influence of household income as a 
nonparametric function. The coefficients for the parametric 
covariates are given in Table 4. The resulting fit, m (using 
bandwidth 1% = .3), for the function m is that shown in 
Figure 1, together with the linear fit (thin black dashed line) 
and the "biased" parametric fit f i  (thin gray dashed line). 
Recall that the estimate % is expected to be approximately 
equal to the sum of the parametric estimate and the bias 
of m. 

Figure 4 shows the functions A and m (together with 
the linear fit) for bandwidths h = .1 and 1% = .5. The non- 
parametric estimate m in the migration example obviously 
seems to be a nonlinear function. However, it is difficult 

Table 6. Descriptive Statistics for Credit Data; Sample for 
Credits for Cars, n = 284; results in percentages 

Yes No 

Y ,  credit wortliy 73.6 26.4 
XI ,  previous credits okay 36.6 63.4 
X2, employed 73.2 26.8 

min max Mean SD 

X3, duratio~i (mo) 4 54  21.75 10.55 
T i ,  amount (DM) 428 14,179 3,902.31 2,621.95 
T2, age (yr) 19 75 34.1 6 10.81 
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Table 7. Logit Coefficients and Coefficient in Partially Linear 
Fit for Credit Scoring, n = 284 

Linear (logit) Partial linear 

Coefficient t value Coefficient t value 

Y ,  constant 1.480 2.78 
XI ,  previous credits okay ,992 3.07 1.017 3.06 
X2, employed (%) ,526 1.67 ,490 1.53 
X3, duration (mo) -.035 -2.01 -.041 -2.43 
T I ,  amount (DM) -1.080 -1.05 
Tz, age (YO ,754 1.09 

to judge the significance of the nonlinearity. In general, it 
cannot be excluded that the difference between the non- 
parametric and the linear fit may be caused by boundary 
and bias problems of m. 

Table 5 shows the results of the application of our tests 
from Section 3. The number of bootstrap simulations is al- 
ways chosen as n* = 400. We observe that all three tests 
RI, Rz, and RS show nearly the same behavior. The ob- 
served significance levels are given for different choices of 
the bandwidth h. Linearity is rejected (at the 5% level) only 
for bandwidths .3 and .4. The different behavior of the test 
for different h gives some indication on possible deviations 
of m from a linear function. The appearance of wiggles of 
small length is not significant, see Figure 4(a). However, it 

Figure 5. Scatterplot for Amount of Credit and Age (a); lnfluence 
m( t l ;  t2) of Amount and Age on Credit Worthiness (b), n = 284. 

seems that the global shape of m cannot be well approx- 
imated by linear functions. This result is in accordance 
with the estimate in Figures 1 and 4(b), where a saturation 
of the intention to migrate appears for the upper third of 
the data. 

At the end of this section we present the application of 
our test statistic in a binary choice regression with a two- 
dimensional nonparametric function m. The data are from 
a dataset on credit scoring (Fahrmeir and Hamerle 1984; 
Fahrmeir and Tutz 1994). The goal is to find factors re- 
lated to credit worthiness. We used the subsample on car 
loans, which has a sample size of n = 284 out of 1,000. 
Table 6 presents some descriptive statistics for this subsam- 
ple and a selection of covariates. The covariate "previous 
credit okay" indicates that previous loans were repaid with- 
out problems. The variable "employed" takes on the value 
1 if the person taking the loan has been employed by the 
same employer for 2 1 year. In the following statistical anal- 
ysis we took logarithms of amount and age and transformed 
these values linearly to the interval [0, 11. 

A parametric logit model leads to the parameter estimates 
listed in Table 7. The coefficients of previous credits, em- 
ployment, duration, and amount of credit have the expected 

Figure 6. lnfluence of Amount on Credit Worthiness for Fixed Age 
(a); lnfluence of Age on Credit Worthiness for Fixed Amount (b); n = 
284. 
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Table 8. Observed Significance Levels for the Linearity Test for 
Credit Scoring, n = 284, With 400 Bootstrap Replications 

Note that we have 

sign. The age variable shows a (globally) positive influence 
in the logit fit; this will change together with the amount 
variable in the semiparametric fit. Note also, that both co- 
efficients for amount and age are not significant at the 10% 
level. 

In a next step we fitted a generalized partially linear 
model to the data. Influence of amount and age has been fit- 
ted nonparametrically. The other variables have been mod- 
eled as linear covariates. For duration, this has been done 
because typically it is divisible by 6 months. Figure 5 shows 
a scatterplot of the two variables, amount and age and the 
two-variate estimate m (using a bandwidth lz = .4 in both 
dimensions). It is difficult to check m graphically for signif- 
icant deviations from linearity. The big peak of m is caused 
by only a few observations (as can be seen from the scat- 
terplot). For a closer inspection of m, Figure 6 shows the 
influence of amount and age separately. In the figure, one 
variable is held fixed at levels .4 (short dashes), .5 (thick 
line), and .6 (long dashes). For age, these levels correspond 
to 32.9, 37.75, and 43.30 years. For credit amounts, the cor- 
responding original values are DM 1,735.90, 2,463.46, and 
3,495.95. So, obviously, a higher amount of credit seems 
to get more risky in conjunction with higher age. Also, 
younger people seem to get less risky with increasing credit 
amount. Neither of these possible conclusions could be seen 
from the parametric logit fit. 

Table 8 gives the observed significance levels of our test 
statistics for the credit data. For the test statistics Rl and 
R2, linearity is rejected at level .10 for h < .5. For h = .2, 
the rejection has even higher significance. This suggests that 
the deviations from linearity are more locally concentrated. 
Our inference in both applications was based on inspection 
of several tests. To get a resulting p value, one could con- 
sider a combination of the test statistics for several band- 
widths and could calculate critical values for this combined 
statistic, again by bootstrap. 

APPENDIX: COMPUTATIONAL AND 
MATHEMATICAL DETAILS 

A.l  Computational Remarks 

and 

Then maximizing the smoothed quasi-likelihood (5) requires solv- 
ing 

Differentiation of (A.4) leads to 

This gives 

For @ = p, it holds that 

Equations (A.4), (AS), and (A.6) suggest the following iterative 
Newton-Raphson-type algorithm to find ,?I and & ( T I ) ,  where j = 
1, . . . ,  n. 

Start with ,?I0 = ,?I, $7 = T??. 
Determine the iteration Ic + k + 1 by the stepwise applica- 
tion of the following two equations: 

where 

In this section we indicate how the estimates in (6) and (7) can Then m k ( ~ , )  = $. 
be numerically computed. The following algorithm corresponds Alternatively, the functions L ; ( U )  can be replaced by their ex- 
to that ~ r o ~ o s e d  by Severini and Staniswalis (19941, exa ln~le  3, pectations, - G ' ( ~ ) ~ / v { G ( ~ ) ) ,  to obtain a Fisher scoring-type 
for the special case of a logistic link f~mction where procedure. 

and 

v 3  ( P )  = (T3 A.2 Assunlptions 

We now state the assumptions used in the results of Section 3. 
In the following, the underlying parameters are denoted by Po, 7 0  
and mo. We use the notation 

(A. 1) h,,, = max{hl, . . . , h,) ,  
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hprod = hl . , . . . hq,  

P = hi,, + (nhprod)p1/2,  
and 

T = hmax + (nhprod)-1'2. 

For the asymptotic expansions, we make the following assump- 
tions: 

A l .  ( X I ,  T I ,  Y l ) ,  . . . , (X,, T,, Y,) are iid tuples with values 
in Rq x WP x R. 

A2. E ( Y , X , , T , )  = G { X T P ~  + mo(T, ) )  with Po E RP.  The 
conditional variance var (Y, T ,  = t )  has a bounded second deriva- 
tive. Furthermore, the Laplace transform E exp tlY, is finite for 
t > 0 small enough. 

A3. X T P ~  + m o ( T , )  has compact support S ;  X, and T ,  have 
compact convex support Sx and ST;  and T ,  has a twice continu- 
ously differentiable density f~ with inftEs, f ~ ( t )  > 0. 

A4. There exists an S > 0 such that ~ ( " ( u ) ,  where Ic = 
1,. . . ,3,  and G1(u)-I is bounded on u E S6 = {v:  3 v1 E S  
with v 1  - v  I 6 ) .  Furthermore, V - l ,  V ' ,  and V" are bounded on 
~ ( 5 " ) .  

A5. The kernel K is a product kernel K ( u )  = Kl ( u l ) ,  . . . . ., 
Kq(uq) .  The kernels KJ are symmetric probability densities with 
compact support (e.g., [ - I ,  I]), where 1 = 1,. . . , q. 

A6. The estimate is defined as argrnaxp p - p o l ,  C ( f i p ,  P ) .  
For a S ,  with S ,  -+ 0, the estimate m P ( t )  is defined as 

"'gmax?j ? j - m 0 ( t ) < 6 ~  C:=l L ~ X T P  + v)Kh(Tz - t ) .  
A7. E [ L ; ' { X ~ P ~  + m o ( T 1 ) ) T l  = t ]  and E[L; '{X:P~ + 

m o ( T 1 ) ) X 1  IT1 = t ]  are twice continuously differentiable func- 
tions for t E ST. 

A8. hprodn1/2 (log n)-I i m and h,,, = ~ ( n - l / ~ ( l o ~  n)- 'I4).  

A.3 Proofs 

In this section we always assume that A1-A7 hold. The fol- 
lowing lemmas give the stochastic expansions for p and &. Re- 
call that the set ST was the (compact) support of T,. We denote 
S ; = { t E & :  t + r ] E S ~ f o r a l l r ] w i t h 1 q ~ I h ~ ( j = l ,  . . . , q ) )  
and S$ = ST \ ST. Furthermore, define 

and 

Lemma A.1 

a. For all C > 0 ,  it holds that 

m ( t )  - { E ( S l , z T l  = t ) ) - '  
tcs ,  

P - P O  ICP 

b. The supremum in (a) taken over t E ~ , h ,  - Poll I Cp is 
of stochastic order 0 , ( r2) .  

Proot We prove only statement (a). Choose C > 0. We have, 
for t E SF, IIP - Poll I Cp, 

", 
L ~ { X ? P  + Ai-r ( t ) }Kh( t  - T , )  = 0. L4.7) 

2= 1 

This follows from 

with probability tending to one, where the supremum runs over 
v - m o ( t )  < 6,) t E SF, and P with IP - Pol 5 CP. 

Note that (A.8) implies that if we find an v p  ( t )  with lqp ( t )  - 
mo ( t )  1 < 6,  and 

n c L ; { X ~ P  + , , ( t ) ) ~ ~ ( t  - T,)  = 0, 
i=l 

then with probability tending (uniformly) to 1, we get m p ( t )  = 
q p ( t ) .  Inequality (A.8) can be shown again by using that for S > 0 
small enough, 

where the supremum in (A.9) runs over grids I'. I", and I"' with 
polynomially many elements. Equality (A.9) follows by applica- 
tion of the Markov inequality. Note that Y, has bounded Laplace 
transform; see Assumption A2. Equalities (A.10)-(A.ll) follow 
from maxi<,<, Y ,  = OP (log n ) .  This can be shown again by 
using that Y, has bounded Laplace transform. For the proof of 
claim (A.9), one applies 

E [ L : ' { X ? ~  + v)Kh( t  - T i ) ]  = - E 
G ' { X T P  + 7)' 

V [ G { X T P  + v)1 

Equation (A.7) implies that 

with 

= 0, (P' log n ) .  
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i=l 
a. For all C > 0, it holds that + Rz(L.3, t ) p 2  1% n ,  (A. 13) 

for a constant C1 > 0 for n large enough. Furthermore, we have see A4. With the help of A7, 
Imp( t )  - mo(t)l < 6, + 0; see A6. This implies that 

1 - l  

wi (t)L:'{x:Po + ma ( T i ) }  
m p ( t )  = m o ( t )  - [A  2 i ( t L ~ { x : P o  + m o t ) }  

where 

2=1 
- E ( S 1 , z T l  = t )  

x - 

+ {E(S1,2 T I  = t ) ) - l  
tcs; 

= 0,(p&). 

P - P o  I ~ P  

For (A.13), it has been used that 

x w i ( t ) ~ : { x : ~ o  + m o ( t ) }  I' Equation (A. 14) can be shown similarly. 
1 

w , ( t ) ~ : { x : P o  + m o ( t ) )  = o,(p&). b. The supremum in a taken over t E ~ 4 ,  IP - Po I < Cp is 
of stochastic order 0, (r). 

and 

. I Lemma A.3. For the estimate b, the following stochastic ex- 
pansion holds: 

= o,(~l/lOgn). n 

b = &  + { E ( s ~ , ~ x ~ x ~ ) } - '  + ~ , ( ~ ~ l o ~ n ) .  
Recall that E [ L ; { X ~ p o  +m0 ( ~ i ) }  x,,  T i ]  = 0. For the statement ,=I 
of the lemma, it remains to show that 

sup 
t E S ,  

Prooj! We show that with probability tending to 1 there exists 
a solution /3 with IP - Po I < p of the following equation and that 
(with probability tending to 1) this solution is unique: 

d 
- C L ~ { X : P  + A P ( T i ) }  = 0. 
8P 

(A. 16) 
,= 1 

and Expansion of the left side of (A. 16) gives, with the help of Lemma 
A.2, 

w,(t)L:'{x:Po + m o ( t ) } x :  
1 

0 = - n 2 L:{X:P + * p ( T , ) }  
,=1 

- E ( s ~ , ~ x T I T ~  = t )  = o,(~&). (A.15) 1 
= - n 2 L:jx:po + mo ( T , ) }  

For the proof of (A.13), note first that 2=1 
n 

1 + ; x ~: '{x?Po + m o ( ~ , ) } % , x : ( P  - Po) 
sup 1: 2 w . ( t ) [ L ; { x : P o  + m o ( t ) )  ,=I 

t E S ;  ,=1 n 
1 + ; x L:{X:B + ~ O ( T , ) } X , ~ ~ ~ ( T , )  - mo(T,)]  

- L:'{x?P~ + mo(T , ) } ]  = O,(p); 
,=I 

+ 0, ( p 2  log n ) .  (A. 17) 
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This expansion holds uniformly for P with P - POI 5 p. For 
instance, it has been used that 

sup lFp(t )  - m ( t )  = 0 p b  Jlogn). 
tes; 

IlP-Poll<~ 

This follows by standard techniques from Lemma A. 1. By expan- 
sion of (A.15), it can be shown that 

Plugging this into the right side of (A.17) and replacing averages 
by their expectations gives that (with probability tending to 1) 
there exists a solution p = P of (A.16) with 

Because of p-po = ~ , ( n - l / ~ ) ,  we have = (with probability 
tending to 1). This shows Lemma A.3. 

With the help of Lemmas A.l and A.2, we get for the estimate 
m the following expansion. 

Corollary A.4 

a. For the eslimate m, the following stochastic expansion 
holds: 

SUP lliz(t) - {m(t) + { E ( S ~ , Z T ~  = t))-l 
tcs, 

x E(S~JX:TI = t) { E ( S ~ , ~ X I X I ) } - ~  A 2 S2 lk}l 
2=1 

= 0,(p21/logn) , 
with %(t) = mo(t) + E(S1,zTl = t ) - ' ( l ln )  ELl w2(t) 

L:{xTP~ + mo(t)}. 

b. The supremum in (a) taken over t E S$ is of stochastic order 

0, (7'). 
In particular, we get sup,,, Iriz(t) - m ( t )  = ~ , ( n - l / ~ )  and 

T 

suptFs$ (m(t)  - m(t) ( = 0,(r2) ,  and also supt,,_ m ( t )  - 

m ( t )  = O,(pJTogn) and  sup,,,^, Im(t) - m(t)l = O p ( r )  In 

Section 2 we introduced in (12) the modification m(t)  of the 
parametric estimate tT?. The purpose of this modification was 
to compensate for the bias of m(t)  when comparing m(t)  and 
m(t) .  The next lemma shows that this modification works. 

Lemma A.5. Suppose that the hypothesis (1) holds; that is, 
mo(t) = tTyo. Then 

SUP rTz(t) - tT(? - yo) 
tcs, 

- E{m(t)lX1, T I , .  . . , X,, T,)I = 0,(p2-Jlogn). 

Proof The proof uses similar expansions as before. In partic- 
ular, it uses the fact that with probability tending to 1, 

where fi,(t) = x T ~  + f i ( t ) .  

Proof of Theorem 1 

Application of the foregoing expansions for the parametric and 
semiparametric estimates gives 

These equalities, together with the expansions for the suprema 
over SF, imply that for j = 1 ,2 ,3  

R, = R + ~ , ( n p ~ ( n h , , , ~ ) - ~ "  log n) 

and 

where lji = x?po + T T ~ ~  for i = l! . . . ! n. Under our assump- 
tions, we have np2(nhp,,d)-1/2 logn = o(hirkT) = ~(v , ) .  This 
shows statement a. For statement b, note that, conditionally given 
X I ,  T I , .  . . , X,! T,, the statistic R is a U statistic. Proceeding 
following Hardle and Mammen (1993), one can verify de Jong's 
(1987) conditions for asymptotic normality of U statistics. 

Proof of Theorem 2 

As in the proof of Theorem 1, one shows for j = 1 ,2 ,3  that 

dK{R4, N(e,, v:)) i 0 (in probability). (A.18) 

(Recall that en and v, have been introduced in Theorem 1.) For 
this purpose, one notes first that for all three versions of the boot- 
strap, IY," has a bounded conditional Laplace transform (in a 
neighborhood of 0).  This has been shown in the proof of theo- 
rem 5.1 of Mammen and van de Geer (1997). For the proof of 
(A. 18), one proceeds now as in the proof of Theorem 1. 

[Received Ma)' 1996. Revised June 1998.1 
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Smooth Alternatives in Mind 
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ABSTRACT. Goodness-of-fit tests based on residual sums of squares are standard proce- 
dures used when fitting regression models. Often we have a smooth alternative in mind, a 
qualitative feature that the x2-test does not take into account. We show that the power of 
detecting a smooth alternative increases when we smooth the current model as well. The 
proposed test is shown to be able to detect any continuous local alternative tending to zero 
slower than n-'1'. Theoretical results also address minimax non-parametric hypothesis 
testing in Sobolev spaces. A simulation study is presented, and the procedure is applied to 
expenditure curve estimation. 

Key words: goodness-of-fit tests, regression models, smooth alternatives 

1. Introduction 

Goodness-of-fit tests are designed to check whether a fitted model has captured all the 
systematic aspects of the data. There is no ideal test that has good power against all possible 
departures from a hypothesized model. Parametric goodness-of-fit tests may have poor power 
(or are even inconsistent) if one does not specify the correct type of model departure. Non- 
parametric tests like the Kolmogorov-Smirnov or the CramCr-von Mises are consistent 
against virtually all alternatives but have poor power in small samples (Durbin & Knott, 
1972) unless the departure of the model is very smooth. 

In this paper we propose an approach in between that is based on the idea of "smooth 
alternatives". This idea comes from the fact that a statistician who has set up a regression model 
and then wants to test its goodness-of-fit usually thinks of an alternative with a high degree of 
smoothness anyway. The traditional testing based on the fluctuation of the residual sum of 
squares (RSS) suffers in this situation form the fact that the random error induces a high 
variability of the residual sum of squares. Small alternatives can thus not be distinguished from 
noise. The approach proposed here is to smooth the data as well as the model in order to reduce 
the degrees of freedom. A test based on the resulting smoothed residual sum of squares then 
possesses a better performance for non-parametric smooth alternatives. 

However, all popular smoothing procedures require the choice of a smoothing parameter h 
which crucially influences the effective power of such a test. To overcome this difficulty we 
present an enhanced testing procedure which is based on comparing the smoothed residual sum 
of squares over a large range of possible values h. The procedure is shown to be able to detect 
any continuous local alternative tending to zero slower than n-'I2. Further theoretical results 
indicate that a high power is achieved uniformly over all alternatives of comparable degree of 
smoothness. This allows to draw conclusions on minimax non-parametric hypothesis testing in 
Sobolev spaces. 

There have been a number of proposals using non-parametric smoothing techniques for 
goodness-of-fit tests. A detailed discussion of some important approaches is given in Hart 
(1997). For example, Cox et al. (1988) and Eubank & Spiegelmann (1990) smooth the residuals 
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from a hypothesized parametric model. Under the hypothesis that the model is correctly stated 
the estimated residual curve should fluctuate smoothly around zero. Under the assumption that 
the model is incorrectly stated this curve should tend to something different from zero. This 
deviation from zero could be measured by different means. Hardle & Mammen (1993), Raz 
(1990) use the integrated squared deviance. Hall & Hart (1990) employ the bootstrap to 
approach the limiting distribution of the smoothed residuals. Azzalini et al. (1988) also use the 
bootstrap (under the hypothesized parametric model) to construct a pseudo-likelihood ratio test 
for testing against a non-parametric alternative. 

The setting we analyse is a regression model 

where ~i denotes the unknown error term, the design points x, E J = [a, b] c R are 
considered as given, and m(.) is the unknown smooth regression curve. We suppose that 
the errors are i.i.d. mean zero random variables with variance a2 >0. 

Suppose now that with known smooth basis functions {gr)F=l our hypothesized model is 

with unknown parameters 8 = (61, . . ., 0 ~ ) ~ .  The problem is then to evaluate the goodness- 
of-fit of this model. If there is any deviation from (1.1), then there has to exist a parameter 

b b 9 # 0 and a function u: J -i R satisfying So u(x)~ dx = 1, So u(x)g,(x) dx = 0, r = 1, 
. . ., L, such that 

If m and g l ,  . . ., g~ are smooth, so is u. Technically we will only require that u is continuous, 
and it will be shown that asymptotically our test procedure is able to detect any continuous 
alternative if 9 is of larger order than n-'I2. However, it will become clear from the discussion 
of sections 3 and 5 that the effective power for moderate sample sizes depends crucially on the 
degree of smoothness of u. 

The goodness-of-fit problem against a smooth alternative can now be stated as a test of 

L 

H I :  m = x 8 r g r + 9 u  for some 9 # O  andsome U E  K 
r=l 

Here, 5 denotes the space of all continuous functions w: [a, b] -+ R with w(x)* dr = 1, 
b J, w(x)gr(x)dx = 0, r = 1, . . ., L. 
In section 2 we recall the properties of power of a residual sum of squares based test. The 

application of smoothing procedures for detecting smooth alternatives is considered in section 
3. We concentrate on the use of projection based smoothers (such as regression splines) which 
facilitate explicit power calculations. For simplicity, the arguments in sections 2 and 3 rely on 
the assumption that t, N(0, a 2 )  with known variance a 2 .  Section 4 deals with some important 
generalizations which concern the use of local linear regression for smoothing as well as more 
general assumptions on the structure of the error term. A simulation study and an application to 
expenditure curve estimation are described in section 5. 
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2. When does the RSS indicate a model departure? 

Assume that t i  N(0, u 2 )  with known variance u 2 .  The residual sum of squares (RSS) 
can then be used for checking the correctness of a regression model. 

In the following, for any function w we use w to denote the vector (w(x l ) ,  . . ., ~ ( x , ) ) ~ .  Let 
Y = ( Y l ,  . . ., Y , ) ~  denote the vector of observations and g r  = (gr(xl) ,  . . ., g , ( ~ , ) ) T  the rth - - 

model term. Define also t = ( c l ,  . . ., c , ) ~ ,  G = ( g l ,  . . ., gL)  and 8 = ( 8 1 ,  . . ., 1 3 ~ ) ~ .  Through- 
- 

out this paper we will assume that G is of full rank. 
Denote by @ = (GTG)-'GTY the least squares estimator of 8 in the model (1.2). The test 

based on 

is to compare this value with the critical value C a , , - ~  of a Xt-L distribution. This is of 
course motivated by the fact that I - G(GTG)-I G is a projection matrix of rank n - L and 
that under the assumption c - N(0, u 2 I )  and Ho 

For what sizes of 3 will we be able to detect the ( L  + 1)st term under HI? First note that 
under HI 

follows a non-central x2 distribution with n - L degrees of freedom and non-centrality 
parameter (1 11[I- G(GTG)-I GTlV1(:. 

We must be somewhat careful when analysing the power of this test. By definition any 
b b alternative u satisfies Ja v(x)' dx = 1 ,  Sa v(x)gr(x)  dx = 0,  r = 1 ,  . . ., L,. However, based on a 

finite number of design points we can at most approximate these integrals by finite sums of the 

type 

1 " 
- u(xi)' and 2 u(xi)g(xi) 

, = I  i = l  

which are not necessarily equal to 1 and 0 .  
However, if for example the design points X I ,  . . ., x, are regularly spaced then these finite 

sums will converge to their integral values as n + m. For any u E t? and every 6 > 0 there then 
exists an nu E N such that u E %,,a for all n 2 nu, where E?n,s denotes the space of all 
functions w E K with 

If for given n we have u E F, 6 ,  the non-centrality parameter characterizing the distribution 
of RSS under HI can thus be bounded by 

The non-central X 2  distribution is asymptotically normal, and for u E F,J we obtain 
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Since the critical value Ca, , -~  of the X:_L distribution has the magnitude of n - L 
+ const . (n - L)'I2, we see from a comparison with (2.1) and (2.2) that for fixed L the RSS 
based test will detect magnitudes of 9 satisfying (n - L)'I2 = O(n92). So we can expect a 
rejection of Ho only if 9 >> n-'I4. In other words, terms under H I  with order 9 = o(n-'I4) will 
usually not be detected via an application of this X2-test. In this case the corresponding 
distribution of the RSS almost coincides with the Null distribution for large n. Summarizing we 
have seen that under HI  we obtain for any 6 > 0 that as n + cc 

where p, and p: are sequences of constants with B, -+ oo and /3: -+ 0 as n -+ oo. Note 
that our derivation of (2.3) did not involve assumptions about the structure of V ,  except 
v E V,J. The RSS-based test thus treats all possible alternatives in an identical way. 

3. Thinking of a smooth alternative 

The power of the RSS based test suffers from the fact that the random error induces a high 
variability of the residual sum of squares. Small alternatives can thus not be distinguished from 
noise. 

When thinking of smooth alternatives, a natural way to reduce the influence of the random 
error consists in the application of smoothing procedures. If we concentrate on estimates at the 
design points, most popular smoothing procedures like kernel estimators, smoothing splines, 
etc., estimate m by multiplying an n x n smoother matrix Wh with the vector 1 of observations. 
The structure of Wh depends on the method and on a smoothing parameter h. A discussion of 
the matrices Wh associated with different smoothing procedures is given in Hastie & Tibshirani 
(1990). 

In this section we will concentrate on smoothing procedures with the property that Wh is a 
projection matrix (this condition will be relaxed in section 4). Among many possible methods, 
one might think of the following examples. 

Example I. Least squares approximation of polynomials of degree h. Then 

where the elements of Bh are given by (Bh)ii = x,!. 
Example 2. Cubic regression spline smoothing (see, for example, de Boor, 1978). This is a 

projection method for fitting cubic splines. For a given sequence a = 
tl  < t2 < . . . < tk-1 < tk = b of k knots we fit a spline function which is a cubic 
polynomial between two successive knots and is twice differentiable at each knot 
point. The space of all these functions possesses a basis of h = k + 2 so-called B- 
splines bl, . . ., bh (see de Boor, 1978). If knots are chosen in such a way that there 
are approximately the same number of data points in between two knots (equidistant 
knots in the case of regular spaced design), then h may be considered as smoothing 
parameter, and if h < n 

where the elements of Bh are given by bi(xj). 
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In the following we will thus assume that the procedure used to smooth the data possesses a 
corresponding smoother matrix Wh which is a symmetric projection matrix. The matrices Wh 
are determined by the choice of an integer-valued smoothing parameter h (degree of the 
polynomial in example 1 or number of B-splines in example 2), and rank(Wh) = h if h S n. 
Note that here the amount of smoothing decreases as h increases. 

3.1. The RSSh-based test 

Assume again that t, - N(0, a 2 )  with known variance a 2 .  A first approach would be to 
smooth the data and then apply the RSS based test to the smoothed data. However, with 
this approach we introduce a smoothing bias which complicates the analysis. More 

2 specifically, the RSS will contain the additional term 11% - WhEl12. We then would have to 
control the magnitude of this term in order to derive properties of this test. This is 
complicated and tedious to calculate. 

The method we shall use and that has been proposed by several authors, among them Hall & 
Hart (1990), is to smooth the model as well. Hence, introduce the pre-smoothed model 

If the null hypothesis Ho defined by (1.2) holds, then also j~ = ~ : = , 0 , g ,  =: G@ holds. In 
contrast, H I  implies that 3 = G@ + 9 Whg. 

We will require that to some extent the amount of smoothing done in (3.1) fits to the 
hypothesized model. The smoothed components Whgr should not be too far from the original 
g,. Note that necessarily for any c E RL one obtainscT G~ GC 2 cTGTGc = cT GT wh Gc, but if - 
G % G = WhG the difference will be small. This is in fact not very difficult to achieve since the 
g, are known. We do not need a very accurate approximation, but in the following we will 
always assume some minimal condition: h E {ho ,  ha + 1, ha + 2, . . .) =: H for some ho E N 
with ho > L such that i n fCeR~  {2cTGT Wh GC - cTGTGc) 2 0 holds for all n 2 h 2 ho. In 
particular, G = WhG is then of full rank L. 

For fixed h E H,  h S n, the proposed goodness-of-fit test now proceeds as follows. 

1. Determine rrih = (IjZh(x~), . . ., hh(x,))' = WhY. Then calculate the least squares estimate & 
of @ to beb ta ined  by minimizing the sum of squared residuals 11% - W ~ G ~ I I ;  for the 
smoothed model. 

2. Determine 

Here, Ph = G ( G ~ G ) ~ ' G ~  denotes the projection matrix projecting into the linear space 
spanned by Whgl, . . ., WhgL. 

3. For a given level a > O  reject Ho if RSSh > Ca,h-L, where Ca,h-~ is the corresponding 
critical value obtained from a X2 distribution with tr((1- Ph) Wh) = h - L degrees of 
freedom. 

Step 3) follows from 

We have Ph Wh = Ph and ( I  - Ph)Wh is a projection matrix of rank h - L. Conse- 
quently 
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follows a X 2  distribution with h - L degrees of freedom. 
What can we say about the power of this test? For fixed h an answer is given by theorem 

1 below which relies on some reasonable conditions on the asymptotic behaviour of the 
design and on the choice of the smoothing procedure. For all h, n let gh,, = 

(uh,n(xl), . . ., u h , n ( ~ n ) ) ~  = w h ~ .  

Assumption 1 
For h E H, n E N and 6 > 0 let EFh,n,B denote the space of all possible alternative u E F 
such that 

Then, for any u E M and evely 6 > 0 there exist an h, E H and an nu E N such that 
u E Wh,n,G holds for all n 2 n, and h E H with n 2 h 2 h,. 

Condition a refers to the asymptotic behaviour of the design. It resembles the requirements 
already discussed in section 2. 

For regularly spaced design it follows from well-known results of approximation theory that 
for any continuous alternative u E we can achieve an arbitrarily good approximation of u by 
a polynomial of a sufficiently high degree or by cubic splines based on a sufficiently large 
number of equidistant knots. In this case, assumption 1 is thus satisfied for either one of the 
methods proposed in examples 1 and 2. 

We can even say something more. An interesting aspect is the question whether we can 
achieve good power of a test uniformly over some interesting smoothness classes. We will not 
treat this question in full generality, but only concentrate on a particularly interesting class. For 
p < m let S2(p )  c F denote the Sobolev space of all twice differentiable (in a distributional 
sense) alternatives u E W satisfying sab ~ " ( x ) ~ d x  s p. We can infer from results of approxima- 
tion theory (see, for example, Schurnaker, 1981; Devore & Lorentz, 1991) that for fixed p < m 
and regular spaced design we obtain 

1 " 
sup - C ( u ( x i )  - u ~ , , ( x ~ ) ) ~  -+ 0 as h, n + m 

U€&(P) i=1 

for either one of the methods proposed in examples 1 and 2. Note that J~~ u ( x ) ~ &  = 1 as 
well as sab U " ( X ) ~ &  s p imply that v(x)  and ul (x)  are bounded uniformly for all u E S2(p).  
In such situations the following assumption is satisfied. 

Assumption 2 
For any 6 > 0 there exist some h p  E H and some n p  E N such that S2(p) C rh,n,a holds 
for all n 2 n p  and h E H with n 2 h 2 hp.  

Write RSSh(Su) to indicate the values of the RSSh for a specific alternative under H I .  For 
fixed h the above test is justified by the following theorem. 
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Theorem 1 
Let h E H be Jixed and let 3 6 > 0. Under the above assumptions 

then holds for any 6 > 0 as n -+ m. Here P, is an arbitrary sequence of constants with 
fin -) m as n -t m. 

ProoJ: Let v E f5 h,n,d and for given n 2 h set = ( I  - G(GTG)-' GT)g. Obviously G z  = 0. 
We then obtain 

Recall that by assumption the matrix 2GT WhG - GTG is positive definite. This implies 
that also the matrix 2(GTG)-' - (GT whG)-' is positive semi-definite which leads to the 
first inequality above. 

Note that gT(I  - Wh)g 2 zT( I  - Wh)z. Definition of f7h,n,6 now implies that 

Since furthermore igTij 3 1 - 6 ,  it follows that 

2 
1((I - Ph)Wh~(12 3 n(1 - 46). (3.2) 

This relation does not depend on the specific choice of u E V h , ~ , ~  and thus characterizes 
the whole class. Consequently, 

inf g2 11(1- p h )  W ~ ~ I I ;  2 g2n( 1 - 46) 3 s2n/5.  
E6 h,n,6 

(3.3) 

The theorem now is an immediate consequence of the fact that 

follows a non-central X2 distribution with h - L degress of freedom and non-centrality 
parameter 

The theorem shows that for smooth alternatives an RSSh-based test can be much more 
powerful than the RSS-based test of section 2. If there is some prior knowledge indicating 
a smooth alternative u, then we might reasonably choose a small h to perform the test. For 
example, if one can assume that v E S2(p) for some known p, then it will be possible to 
choose a h such that v E Yh,n,lllO, say. By relation (3.3) the corresponding RSSh(9v) 
adopts a non-central X2 distribution with h - L degrees of freedom and non-centrality 
parameter 
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The test will then possess considerable power even for small values 9 and moderate sample 
size. The point is that h - L remains fixed as n increases. 

3.2. The RSSmaX-based test 

In practice, the degree of smoothness of a possible alternative will rarely be known. An 
appropriate choice of h then poses a considerable problem. If h is too large, the test will 
possess a comparably poor power. Note that if h = n we will usually have RSSh = RSS. 
On the other hand, if h is too small then for wiggly alternatives ll(I - ~ h ) w h g I J ;  may be 
close to 0 which also results in a poor power of the test. One possibility to overcome this 
difficulty consists in trying to determine a power maximizing bandwidth. In a different 
context, some results in this direction are given by Hong (1993). 

Our approach is based on a different type of reasoning. Recall that Ho implies the validity of 
the smoothed model for any matrix W h .  Thus, a true model should pass the test for any h which 
motivates the idea of considering the values of RSSh for a large range of possible h E H.  By 
definition the RSSh test rejects Ho if RSSh - Ca,h-L > 0. One might thus tend to look for the 
maximal difference RSSh - CaIh-L for different values of h and to reject Ho if this maximal 
difference is larger than zero. However, by proceeding in this way we will automatically increase 
the actual level of significance. In order to be able to control the size of the test such a procedure 
only makes sense if we correct the RSSh by a factor larger than Ca,hPL Since C a , h - ~  is of the 
form ( h  - L) + const. ( h  - L ) ' / ~  we might think of using the factor 2(h - L). 

The test we propose is based on this idea. We will consider the statistics 

RSSmax = sup (RSSh - 2(h - L)). 
ho<h<n 

Remark I .  As is easily seen form the proof of theorem 2 below, it is possible to choose a 
correction term different form 2(h - L). In fact, all assertions of theorem 2 remain true if 
2(h - L) is replaced by h - L + y(h - L) for some arbitrary y > 0. An optimal choice of y 
seems to be difficult. There is, however, a particular motivation for choosing the factor 
2(h - L). Clearly, ( I  - Ph)WhY can be considered as an estimate of 9g under H I .  The opti- 

2 ma1 value h,,,,, E H minimizing the mean squared error E(119g - ( I  - P A )  w ~ Y I ( ~ )  = 

g2gTo - 9211(1 - P ~ ) W ~ ~ J I ;  + 0 2 ( h  - L) is obviously equivalent to the value of h which 
maximizes the difference between the non-centrality parameter 

and h - L, the variance of the random error. The optimal smoothing parameter h,opt  can be 
2 estimated by Mallows C L  (Mallows, 1973), i.e. by minimizing C L  = IIY - ( I  - Ph)whYI12 + 

202  tr((1- Ph)  W h )  = yTy - 11(1 - ph)  W ~ Y J I ;  + 202(h  - L). It is now immediately seen 
that minimizing C L  is equivalent to maximizing RSSh - 2(h - L). For theoretical results 
justifying the use of Mallows C L  for estimating hu,opt see Li (1987) or Kneip (1994). 

The test now proceeds as follows 

1 .  Under Ho we have 

For a given level a determine the corresponding critical value CgaX,, such that 

P(RSSmax a C&x,n l Ho) = a 
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2 .  Reject Ho if the observed value of RSS,, is larger than CE,., 

The distribution of RSS,,, under Ho does not seem to posses an easily evaluable analytical 
structure under Ho. However, the critical values can be determined by Monte Carlo simulations. 
The test is justified by the following theorem. 

Theorem 2 
(i) For any a > 0 there exists a C < cc such that C:,,,, a C for all n 

(ii) Write RSS,,,(Sv) to indicate the values of RSS,,, for a specijic alternative under H1. 
Then. for any h E H and all 6 with 115 2 6 2 0 we obtain 

inf inf P(RSS,,,(Su) > C:,,,,) + 1, 
U t Y  h.n.6 1 9 a ~ ~ . n - ' / ~  

where pn is an arbitrary sequence of constants with Pn + oo as n -+ oo. 

ProoJ: We first consider assertion (i). Without restriction let a2  = 1. Since the ci have finite 
fourth moment it follows from Whittle's inequality that under Ho there exists a constant yl < cc 
such that for n 2 h 

Furthermore, there exists a constant y2 E [W such that P ( ~ ~ W ~ , ( I - P ~ , ) W ~ , ~ -  
2(ho - L)) 2 y2) = a / 2 .  Let h denote the smallest h E H such that h - L + y2 2 0. For 
all n 2 h > h we then have 

There exists a constant y3 < ca such that 

There thus exists a h E H such that 

Consequently, 

Independent of the value of n, there exists a finite number of elements h E H such that 
h < h, and it is immediately clear that there exists a constant y < cc with y4 2 y2 such 

2 that for all n sufficiently large P (SU~~ , ,~ ,~ ( I I ( I  - Ph) Whtl12 - 2(h - L)) 2 y4) a / 2 .  We 
can thus infer that for all n sufficiently large 
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This proves assertion (i). For any h E H assertion (ii) is an immediate consequence o f  
relation (3.3) and assertion (i). 

By assumptions 1 and 2 the theorem implies the following corollary. 

Corollary 
(i)  For anyfied u E K 

inf P(RSS,,,(Su) > C;,,,,) + 1, 
~ ~ / P P , . ~ - I I ~  

where p,  is an arbitrary sequence of constants with p,  + m as n -+ m. 

(ii) For any p < cc we obtain 

where pn is an arbitrary sequence of constants with P ,  -+ cc as n + co. 

Remark 2. The theorem shows that the rate at which the magnitude o f  the local alternatives u 
is allowed to converge to 0  is n-'I2. We can infer that the minimax rate over classes S2(p)  o f  
smooth alternatives is np'12, and thus corresponds to the rate o f  convergence o f  parametric 
tests. 

At a first glance this seems to be in contradiction with recent results in minimax non- 
parametric hypothesis testing. Ingster (1982) studies the situation where w := 9u belongs to a 
Sobolev class 

for some p < m .  He shows that then the minimax rate o f  convergence o f  
{ S J w ( ~ ) 2 ~ ) ' / 2  = 9 to zero is only n-4/9. The point is, however, that our setup is different 
in that we make an explicit distinction between "magnitude" and "degree of  smoothness" 
o f  an alternative by requiring that S U ( X ) ~  dx = 1. Obviously S2(p) = s ,* (~ )  n F. This is o f  
no importance i f  9 = 1, but i f  9 + 0  there will be more and more "wiggly" functions u 
with u $ S2(p)  but 9u E s ,*(~) .  For example, let J = [O, 21 and u(x) = sin(2xloc). As 
k + m, the function u(x) becomes less and less smooth, and u $ S2(p). Nevertheless, 
for any k there exists a corresponding value sk > 0  such that J J ~ " ( ~ ) 2  dx = 

92(2xk)4 I s in(2~k.x)~ dx = 92(2nk)4 4 p and, hence, w = 90 E s , * (~ )  hold for all 9 < sk. 
Our setup does not allow for this effect, and thus seems to be more "natural" i f  we have 
smooth alternatives in mind. 

4. Generalizations 

4.1. Local linear regression 

Our test procedure generalizes to non-projection smoother matrices. This is an important 
aspect since the most widely used smoothing procedures like smoothing splines, kernel 
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estimators, etc., are not based on projections. We will exemplify this generalization for the 
case of local linear regression (see, for example, Fan & Gijbels, 1996). The basic 
arguments for other methods are similar. 

The idea of local linear fitting is to estimate m(x) by a locally weighted linear regression. The 
elements of the resulting smoother matrix Wh are then given by 

where 

Here, K denotes a kernel function and b = l /h  is a bandwidth. In order of Wh being well- 
defined for all h E (0, m), set wii = 1 and wi,, = 0, i # j, if C;,,wl(xi) = 0. 

Remark 3. For the projection-based smoothing procedures discussed in section 3 a large 
value of h corresponds to a small amount of smoothing. In contrast, for local linear regression a 
large bandwidth induces a large amount of smoothing. To ensure comparability with the results 
discussed in the previous section we thus set h = I lb.  

For a fixed h = I /b the 

based test now takes the following form 

The RSSh-based test. For a given level a > 0 reject Ho if RSSh > D:,,, where D:,, is the 
corresponding critical value obtained from the distribution 3 h, ,  of the random variable 

For 6, -- N(0, a 2 )  the distribution Zh,, is well-defined, and critical values can always be 
evaluated by Monte Carlo simulations. The only difference to the situation discussed above 
consists in the fact that Zh,, does not possess an easily evaluable analytical structure and, in 
particular, it is not a x2 distribution. 

In order to analyse this distribution more closely let mh represent the resulting local linear 
L estimator of m, and let mh(x) = hh(x) - ~ , = , 6 , g r ( x ) .  We then obtain that under Ho 

I 
I Note that for regularly spaced design we obtain that asymptotically 

t 
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as well as 

for some kernel dependent constants d K ,  d;. Similar as before, it is then easily verified 
that qmea,,(h), q,,,,(h), and the corresponding critical level D$, increase in a way 
approximately proportional to h as h increases. Moreover, for large h (= small band- 
width) Sh,, is well approximated by a normal distribution. 

A local linear version of the RSS,,, based test can be defined by relying on reasonable sets of 
discretized bandwidths. For example, let bo denote a very large bandwidth and let bk = qkbo 
for some 1 < q < 0 close to 1. With h = 1 / b we may then consider 

Note that in section 3 the correction term 2(h - L) was due to E(RSShlHo) = h - L. In 
the present case we have to replace h - L by the true mean qme,,,(hk) of RSShk under 
Ho. This leads to the following test 

Under Ho we have 

For a given level a determine the corresponding critical value D;,,, such that 
P(RSS,, 2 DEaX,,I Ho) = a. 
Reject Ho if the observed value of RSS,, is larger than D;,,,,. 

The critical level D:,,, can again be determined by Monte Carlo simulations. 
One might also use a more dense set of discretized bandwidths. The only important condition 

is that there exists some q > 0 such that for all n sufficiently large and all k E N with hk < n we 
have qmean,,(hk) - qrnean,,(hk-,) 2 11. By using arguments similar to those used in the proof of 
assertion (i) of theorem 2 it may then be proved that there exists a D < m with Dka,,, S D for 
all n E N. 

For regular spaced design it is well-known that 

holds for any v E 'Z, and this convergence is even uniform over v E S2(p). Consequently, 
for each 6 > O  one obtains II(I - ~ h ) ~ h & b ( l ;  3 d 2 ( 1  - 6) for all h sufficiently large. 
Similar as above, one may then prove that the assertions of corollary 1 generalize to the 
present situation. 

4.2. Unknown error variance 

Up to now we have assumed that ti N(0, a 2 )  with known error variance a 2 .  Under the 
more realistic assumption that a2 is unknown, the tests may be performed by replacing a2 
by a consistent estimator. Such estimators of u2 can be obtained, for example, by the 
methods of Rice (1984), Gasser et al. (1986) or Hall et al. (1990). If rn is continuous, then 
under weak technical conditions they all satisfy ( u 2  - a2(  = op(l). As a consequence 
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and the above theoretical results remain asymptotically valid. 
However, as long as a 2  is known, we can derive the exact critical values for the RSSh as well 

as for the RSS,,, based tests by a Monte Carlo approximation of the distribution of 
l/a211(1 - ph)  wh&. This is no longer hue if a2 is replaced by 6'. Then the resulting critical 
values are only asymptotically valid. Fortunately this effect can be eliminated by a slight 
modification of the simulation scheme. 

Let us consider the method of Gasser et al. (1986). They propose an estimator u2 of the form 

I where 

Obviously E(b2(6)) = a 2 .  A corrected version of this estimator providing unbiased 
estimates of a 2  under Ho is 

a2 E a2(r) = 
1 

r T ( z  - G ( G ~ G ) - ~  G ~ ) V ( I  - G ( G ~ G ) - ~  G ~ ) I .  
1 - tr(G(GTG)-I GT V ) -  

(4.3) 

Under Ho we have E ( a 2 ( x ) )  = E(c?'(~)) = a 2 .  Consistency of 5' implies consistency of 
G2. Replacing a 2  by G2 the estimated values of RSSh are given by 

and under Ho the distribution of 

does not depend on a 2 .  Finitely exact critical values for the distribution of R S S ~  under Ho 
can thus be obtained by Monte Carlo simulations from (4.4) by using standard normal 
errors. 

4.3. Non-normal errors 

Under some moment conditions on the error distribution, the above tests will remain 
asymptotically valid even for non-normal errors ci. For example when using either one of 
the methods proposed in examples 1 or 2 of section 3, under weak technical conditions we 
will obtain that the vectors n - 1 / 2 ~ : c  follow asymptotically a multivariate normal distribu- 
tion for fixed h. One can then conclude that RSSh is asymptotically x2 distributed. Since it 
has been shown in the proof of theorem 2 that under Ho maximization of RSSh - 2(h - L) 
over all h is asymptotically essentially equivalent to a maximization over only a finite 
number of elements h E H, the asymptotic validity of the critical values C;,,,, for the 
RSS,,, based test is an immediate consequence. Similar results may be shown for the 
critical values of the tests relying on local linear smoothing. 

Another approach to the treatment of non-normal errors may consist in the use of a bootstrap 
method: using a non-parametric estimator mh of m relying on an approximately optimal choice 
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of h (determined, for example, by cross-validation), define residuals ti = Yi - mh(xi), for 
1 c i < n; calculate their mean, t; and put ii = ti - 5. Then determine a bootstrap approxima- 
tion to the null distribution of RSSh by resampling errors from the set t l ,  . . ., t,. 

5. Numerical results 

5.1. Simulation study 

A simulation study was carried out to investigate the power of the proposed tests. Since 
local linear estimators are more important in practice than the projection-based methods 
discussed in section 3, we concentrated on test statistics (4.1) and (4.2). The hypothesized 
model was m(x) = O1 + 02x, i.e. rn is a straight line. We considered two alternatives of 
different degree of smoothness. 

Design points xl, . . ., x2 were regularly spaced on J = [0, I] ,  and errors were taken to be 
Gaussian with variance u 2  = 1. The Epanechnikov kernel K(x) = $(I - x2) for 1x1 S 1 was 
applied in local linear fitting. Using the initial bandwidth bo = 0.4 a bandwidth sequence 
defined by bk = 0.8kbo was analysed. Sample sizes n = 20, 40 and 100 were considered, and 
the numerical work employed 10 000 simulations in each step. 

Since we did not assume the error variance to be known, the modification (4.4) was used 
to determine critical values by Monte Carlo simulations. Recall that this procedure provides 
finitely exact critical values under Ha. The resulting values for D;,,, were 4.14, 3.45, 2.21 
for n = 20, 40, 120. In order to be able to judge the power of the test we compared it to the 
parametric F-Test which tests Ha against HI :  m(x) = O1 + 02x + 9u for a prespecijed 
alternative v. This test is the best we could possibly do if we knew the true alternative. Since 
in practice the exact alternative is rarely known, this is not a very fair comparison, but it 
provides an upper bound to the maximal power a very good test could have in a given 
situation. 

Based on alternative (5.1), Table 1 shows the number of rejections obtained for the RSSh tests 
(bandwidths b = 0.32, 0.083) and for the RSS,,, test in comparison with the parametric F-test. 
We see that the results are surprisingly good, the RSS,,, based test being almost as powerful as 
an F-test. Tables 2 shows the corresponding results for alternative (5.2). Not surprisingly, the 
test is less powerful for this more "wiggly" alternative. 

Table 1. Rejections of Ho under alternative (5.1) 

Percentage of rejections 
RSSh b = 0.32 RSSh b = 0.08 RSS,,, F-test 
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Table 2. Rejections of Ho under alternative (5.2) 

Percentage of rejections 
RSSh b = 0.32 RSSh b = 0.08 RSS,, F-test 

5.2. An application: household expenditures 

In this section we consider an economic application. Starting with Engel (1857), a major 
issue in applied demand analysis has been the estimation of "cross sectional Engel curves". 
These are the conditional expectations of household expenditures on a commodity aggregate 
(like food, clothing, services, etc.) given total expenditure. Most work has been done in the 
context of parametric models of the form (1.1). The most important models are 

where x denotes total expenditure. Each of these models has been frequently used in 
applications, see for the example Deaton (1986). Model (5.3) has been proposed by Working 
(1943), model (5.4) by Leser (1963), while model (5.5) stems from Deaton (1981). 

We have tested these models by using the UK family expenditure survey (FES) data from 
1968 to 1983. For each of these years the data reports the expenditures of approximately 7000 
households. Each year households were selected at random from electorial registers. The data 
contains total expenditure and expenditures on nine commodity aggregates: housing, fuel, food, 
clothing, durables, transport, services, alcohol and tobacco, and "miscellaneous and other 
goods". 

We normalized total expenditure by dividing through mean total expenditure (separately for 
each year). Let (Yjkt, xi,) denote the resulting data for each commodity k = 1, . . ., 9. Here j 
indexes the household, and t denotes the respective year. Data for very rich and very poor 
households is sparse and not very reliable. We thus only considered the interval [0.25, 2.51 for 
the xi, Normalized total expenditures for approximately 95% of all households fall into this 
range. 

In order to simplify computations we made a prebinning step. We chose a grid 
0.25 =: x,* < x: < . . . < x: < 2.5 =: x:,, of n = 231 points and used the binned data (Yikt, x,) 
for testing. Here, for given i, k, t Yikr denotes the average over all Yj& corresponding to some 

(x;-~ +x;) (x; I Xjt 6 , and xi = x: 

For fixed commodity k and year t we then applied a goodness-of-fit test to the models (5.3- 
5.5). Errors were heteroscedastic and a modification described in the appendix was applied. We 
have k = 9 and t = 16. Hence, in total 144 separate tests were done. There is theoretical reason 
to assume that a possible alternative will be very smooth. We thus decided to rely on the RSSh 
based test using regression splines with a small number of knots. Table 3 reports the total 
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Table 3. The number of rejections for the expenditure 
curve models 

No. of rejections out of 144 tests 
Model a = 0.05 a = 0.01 

number of rejections when smoothing was based on cubic regression splines with 5 knots at 0.2, 
0.7, 1.25, 1.85,2.7, ( h  = 7): 

We see that the data quite drastically reject the hypothesis that either one of the models (5.3), 
(5.4), (5.5) is appropriate for modelling cross-sectional Engel curves. We also tried larger values 
of h.  The rejection rates were less significant as is to be expected from the discussion of section 
3. This is in line with observations made by Deaton (1986) who was unable to reject models 
(5.4) or (5.5) with established goodness-of-fit tests. 
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Appendix. Heteroscedastic errors 

The data described in section 5.2 involves error terms which are heteroscedastic. An 
appropriate model consists in assuming that the errors ti& satisfy var(tib) = o&(x?), where 
the a%(.) are smooth hnctions. 

The approach used to deal with this situations can be described as follows: in a first step the 
variances a%(.) are estimated. Following Gasser et al. (1986) we define squared pseudo- 
residuals 

where 

By using Gasser-Miiller kernel estimators (Gasser & Miiller, 1984) we then smooth these 
squared pseudo-residuals to obtain estimators u&(.) of a%(.). For a second order kernel 
under some weak regularity conditions it can be shown that the ff&(.) are consistent 
estimators of a i ( . )  as n -+ m. 

In a second step data and model are transformed by multiplying with l/6kr(x?), and the tests 
developed in sections 3 or 4 can then applied to the transformed values. More precisely, the tests 
are based on 

Note that the transformed error term 

satisfies 
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var(&) = var - 
(g:;:,) = 

If u:~(.) is constructed in the manner described above, then it can be shown that the 
theoretical results of sections 3 and 4 generalize to the present situation, provided b is 
chosen in a reasonable way. 
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1. Introduction 
In a partial linear model we estimate an unknown column-vector 0 E IRd based 

on the observations 

where (.)T denotes transposition and ti are i.i.d. random variables with zero mean 
and a finite variance u2 = E[?. The regressors Xi E [O,1] are i.i.d. random variables 
with a known and strictly positive density q(x) on the interval [O,l]. It is assumed 
that they do not depend on t i .  The function m(x), x E [0, 11, here is an unknown 
nuisance function such that the random variables m(Xi) have zero mean. We 
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Partial Linear Model 161 

assume in this paper that the vectors Zi E IRd are non-random and such that the 
matrix ZZT,  where Z = (21, .  . . , Zn), is non-singular. 

In the parametric part of this partial linear model the "noise" m(Xi) +ti has 
zero mean. One could therefore be tempted to use, for instance, the "naive" mean- 
square estimator 

n 

= arg min C(Y, - BTzi)'. 
OERd i=l 

It is easy to see that its risk is given by 

The risk is blown up by E m2(X). The reason is that the estimator 87, does not use 
the prior information about smoothness of the function m(x). If it is sufficiently .. 
smooth, then the performance of On can be substantially improved. Using the 
method by Robinson [ l l ]  it can be shown that there exists an estimator gef such 
that 

If the noise ti is Gaussian such estimators are often called asymptotically efficient 
or adaptive, see Bickel et al. [2]. Asymptotically efficient estimates are traditionally 
constructed in partial linear models in two ways: by using kernel estimators as in 
Speckman [16] or by penalization of the log-likelihood. The penalized mean-square 
spline estimator is defined by 

where m(@(. )  denotes the derivative of order p and the minimum is taken over all 
1 functions rn such that So q(x)m(x)dx = 0. If the smoothing parameter p, tends .. 

to zero as n --+ oo then 8 is the asymptotically efficient estimator when the noise is 
Gaussian. 

The goal of the present paper is to provide a second order minimax theory for par- 
tial linear models. The available results by Rice [12], Heckman [8], Speckman [16], 
Carroll and HLdle [I], Mammen and van de Geer [9], Bhattacharia and Zhao [4], 
Chen [5] specify only the order of the second order term. Typically the estimators 
proposed in these papers have the second order term of order n-2Pl(2P+1), where /3 
is the "smoothness" of the nuisance function. Our objective is to compute this 
term up t o  a constant. So we can discriminate between different estimators and 
thereby propose the best one. The importance of the second order theory becomes 
more transparent when we deal with a data driven choice of smoothing parameters 
in partial linear models. The motivation of such choice is essentially based on the 
second order arguments. 

To shed some light on the second order minimax risk in partial linear models 
we first present here simple heuristic arguments. Suppose that there is an "oracle" 
which provides us with the additional data 
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Based on these data one can estimate the unknown function m(.). Local poly- 
nomials, splines or orthogonal series estimators are usually used to construct an 
estimator %(Xi). All these estimators are linear and therefore can be represented 

where I<(.,-) is a kernel such that E I<(Xi, y) = 0 for all y E [O, 11. Subtracting 
%(Xi) from the observations 5 one arrives a t  new artificial data 

The random variables m(Xi) - %(Xi) + ti have almost zero mean, so that the 
unknown parameter 8 can be estimated based on Yy by the least-squares method 
BI = ( z z ~ ) - ' z ~ Y ~ ~ .  A simple algebra easily reveals that 

Here and later in the text E stands for the d x d identity matrix. Thus we see that 
the second order term in the risk expansion is defined by the mean-square error of 
recovering m(x) in the model (3). This fact plays a very important role and its 
proof will be given later (see Theorem 2 below). 

To simplify some technical details we assume that the function m(x) belongs to  
the set 

I t  is assumed that p is positive integer. 
The results presented in the paper can be extended in different directions. The 

errors may be heteroscedastic, i.e., the variance v a r t i  may be a function of (Xi, Zi), 
in particular, of OTZi+m(Xi). This case is important in generalized partially linear 
models, where the variance is a function of the mean. Generalized linear models 
have been investigated by Severini and Staniswalis [14]. Various generalizations and 
applications of partially linear models can be found in the recent book by HLdle, 
Liang, and Gao [7]. But we intentionally choose the simplest partial linear model 
to demonstrate how the second order theory works in semiparametric estimation. 
We will comment on some possible extensions of our theory later in the text. 

The outline of the paper is as follows. We first derive a lower bound for the 
minimax risk. Here we follow the method proposed by Pinsker [lo] and developed 
for distribution function estimation in Golubev and Levit [6]. We then study in 
Section 3 penalized least-squares estimators and show that under a proper choice 
of penalization these estimators are the second order minimax estimators. 
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2. The Functional  Class Wo 
Our consideration will be based on the so-called orthogonal series approach. The 

cornerstone idea of this approach is to parametrize the functional class Wo. We do 
this by constructing an orthonormal system in the Hilbert space L:[O, 11 equipped 
with the norm 1 1  1 I q  and with the inner product (., . ) q ,  

We write f l g  when (f ,g)q = 0. Recall that the Kolmogorov diameter dm of the 
set Wo is defined by 

where inf is taken over all orthonormal systems in L: [0, 11. Define the orthonormal 
system { $ J k ) Y  by 

In other words, the linear space spanned by the functions $J1, . . . , $JS provides the 
best approximation of Wo in Li[0,1]. Since W o  is an ellipsoid in Li[O, 11, it is easy 
to  see that the {$Jk)y coincide with the main axes of W o  (for more details see 
Tikhomirov [17]). Let $Jo(x) = 1. Then $Jk, k = 1, . . . , 8 - 1, are the orthonormal 
polynomials in Li[O, 11, whereas the remaining functions are obtained by 

It is also not very difficult to show (see Tikhomirov [17]) that d: = ll$~i$)~11;~. The 
Lagrange multipliers method together with integration by parts reveal that $J,(t) 
are the solutions of the following boundary value problem: 

In particular, for = 1 and q(x) = 1 we get the well-known cosine-basis $Jk(t) = 
&cos(nkt) with the corresponding eigenvalues Ak = (nk)'. The asymptotic be- 
havior of At  plays a very important role in approximation theory. It is known that 
as S --+ 00 
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For more detail we refer to Utreras [18] and Speckman [15].  Once the basis $Jk is 
obtained we can represent any function m ( t )  E Wo as the Fourier series 

m ( t )  = C v r $ ~ r ( t ) ,  with 2 v:Ak _< L, 

where v k  = (m ,$Jk ) .  

3. A Lower Bound 
The next theorem provides a lower bound for the second order term of the 

minimax risk in the linear model ( 1 ) .  It  is assumed only that the random 
variables ti have an absolutely continuous density p[(x), x E W 1 ,  with finite Fisher 
information 

Theorem 1. A s  n  -, oo, 

where inf is taken over all estimators, 

and w is a root of the equation 

Thus we see that the second order term in the lower bound is controlled by 
the quantity A, = 1;' xzl h s / n .  The statistical interpretation of this value is 
well-known. The theorem due to Pinsker [ l o ]  states that A, is the asymptotically 
minimax risk in the following smoothing problem. Suppose that we wish to estimate 
the infinite-dimensional vector (ul , v2, . . . ) T  based on the data 

where Ei are i.i.d. N ( 0 ,  IF')  and the parameters of interest vi obey the condition ( 6 ) .  
Then as n --+ oo 

m 

inf sup C E (% - ~ k ) '  = [ 1 +  o ( l ) ] A n I  
G u k = l  

where inf is taken over all possible estimators, whereas sup is taken over v k  such 
that CF=i Akvz _< L.  The value of A, can be computed as follows. From ( 5 )  one 
concludes that 
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4. Penalized Least- Squares Es t imators  
In order to show that the lower bound (7) is precise we study now penalized 

least-squares estimators. We will suppose that Ci are such that E l(i(2+6 < m for 
some 6 > 0 .  Recall the main idea of the penalized likelihood. Assume for a moment 
that 6 are i.i.d. Gaussian and the Fourier coefficients 4 are also i.i.d. Gaussian 
N ( 0 ,  C 2 ) ,  where C is the diagonal matrix having arbitrary entries Ckk = uk. Let 
Qki = +k(Xi ) .  Then it is well known that the estimator 

is Bayesian. Although the above assumptions about uk are not fulfilled in the 
A 

minimax setting, nevertheless we use B in this situation. The following theorem 
shows how to compute the risk of 8̂  for matrices C satisfying the condition (13) 
below. For brevity we use the following notation: 

T h e o r e m  2. Assume that 

lim - 
n-dm n 

Then for the estimator 8̂  defined by (10) we have uniformly in rn E Wo as n -+ co 

where v k  = ( m , + k ) q .  

In the next theorem we find the optimal in the minimax sense penalization 
matrix C and show that the lower bound from Theorem 1 cannot be improved 
when & are Gaussian. Thus we construct the second order minimax estimator. 

T h e o r e m  3. Let 8̂  be the estimator from (10) with C = H'/'(E - ~ ) - ' / ~ u / f i ,  
where H is diagonal, Ha, = ha,  and ha are defined by ( 8 )  and ( 9 ) .  If (12) is fulfilled 
then as n -* co 

T - 1  2 [  l+O(l)ehs]. (15) sup sup E (8̂ - 6)(8^- B ) ~  = (ZZ ) u 1 + - 
mEWo B € R d  s=1  
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If ti are Gaussian then 

inf sup sup E (8  - e)(8 - 8 )  
6  m E W 0 6 ~ l i t ~  s = l  

Proof. Noting that ha = 0 when s > ~ n ' I ( ~ f l + l )  we see that the condition (13 )  
is fulfilled. Thus we are in a position to apply Theorem 2. The second order term 
in the right-hand side of (14 )  is evaluated as follows. Since m E W o  we get by ( 6 )  

sup v z ( 1 -  hk)' = L max X i l ( l  - h k ) 2  = L W ~ .  
mEWo k.1 k 

Therefore one obtains by (9) 

thus proving (15). The rest of the proof follows from Theorem 1. 0 

Remark 1. When the distribution of the noise is known but non-Gaussian the 
penalized maximum likelihood estimator 

1  FP = argmaxmax e a t d  v k  k l o g  pc -eTzi - ~ V k I , b t ( ~ i ) ]  - ~ 1 1 ~ - 1 v 1 1 2 )  

{i=l [ k 

may be used. We are sure that under some additional smoothness assumptions 
A 

on the density pC( . )  one can prove that the risk of B p  admits expansion (14 )  with 
u2 = ql. 

Remark 2. The assumption J' ( t ) m ( t )  dt = 0 may seem very restrictive from a 
0. practical point of view. Let us indicate how to extend our approach to the ordinary 

Sobolev class 
1 

w = {rn : 1 [rn(fl)(z)12 dz g L 

Consider the new regressors Zi = ( z T ,  l ) T  and the new parameter 8' E IWd+l, 

O f f  = ( 0 1 , .  . . , O d ,  vo), where vo E R1 is yet another nuisance parameter. Since 

we easily obtain 
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so that to find the minimax risk over O E IRd we have just to replace (2zT)-' by 
(2zT - 8ZT)-' in Theorems 1-3. In particular, (15) can be rewritten as 

[ + ' ( l )  2 h,] . sup sup E ( P -  q P -  qT = (zzT - iiT)-1~2 1 + 
m€W B€Bd s= 1 

Remark 3. The performance of the popular spline estimator 

A 2 
1 

(17)  o.,~ = arg min min [Y, - OT2i - m ( ~ i ) ]  + ~n 1 [ m ( P ) ( t ) 1 2  

can be also evaluated by Theorem 2. It suffices to  note that 

Therefore the estimator (17) is equivalent to (10)  with the new predictors matrix 2' 
defined by (16)  and the regularization matrix C k k  = U ( ~ , ~ X ~ ) - ~ / ~ .  Thus one 
obtains that hk = ( 1  + ,u,Xk)-' and in view of (14) ,  (5) 

Interesting simulation results about second order performance of the spline estima- 
tors can be found in Schimek [13]. 

5. Appendix 
5.1. PROOF OF THEOREM 1. We begin with a lower bound for the Bayesian 

risk in a slightly more general situation. Assume that the nuisance function m(.) 
has the form m ( x )  = CF=l ~ ~ p ~ ( x ) ~  where p k ( x )  is a certain orthonormal system 
in L:[0,1] such that lo1 q ( x ) p k ( x )  d r  = 0. 

Let the nuisance parameters vk be i.i.d. N ( 0 ,  a:) and let the parameters of inter- 
est Ok be also Gaussian random variables with zero mean and E OOT = E - ~ ( z z ~ ) - ' .  
Denote by R:(8) = E ( 8  - O)(8 - O)T the Bayesian risk. 

Lemma 1. Let p ; (x )d t  < A. Then - 

where 
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Proof. Denote p = ( e l , .  . . , e d ,  a,. . . )T.  It  follows from the Van Trees [19] in- 
equality that the mean-square risk of any estimator ,G based on the data (Yl,  . . . , Yn) 
is bounded from below by 

where I,, is the Fisher information matrix of the prior distribution. This matrix is 
diagonal with the entries 

The matrix I  in (19 )  is the ordinary information matrix with 

Therefore it is clear that I  admits the representation 

where Q is the matrix with entries Qkl  = v k ( X l ) .  Denote for brevity by C the 
diagonal matrix with entries C k k  = uk and let 

Then we have by ( 2 0 ) ,  (21 )  

It is obvious that A can be inverted as 

where V ,  = Z Z T ( l  + ~ ~ 1 ; ' ) .  The matrix H is diagonal with entries Hkk = hk, 
where hk are defined by (18 ) .  A simple algebra reveals that 
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Here and later in the text * denotes a matrix that is not needed in further cal- 
culations. Therefore by the above equations and (19) ,  (20) we get that for any .. 
estimator 0 

We have evidently E a T ~ @  = E t r  H .  For the last term in the right-hand side 
of (23)  one obtains by the Cauchy-Schwarz inequality 

These relations together with (23)  prove the lemma. 

Proof of Theorem 1 .  We follow the idea proposed by Pinsker [ lo ]  and developed 
for second order minimax estimation in Belitser and Levit [3] and Golubev and 
Levit [6]. Choose (see (8), ( 9 ) )  

where 6 > 0. Let Ck be i.i.d. N ( 0 , l ) .  Suppose that the nuisance parameters v k  

have the form v k  = ukCk Our first step is to show that the nuisance function 
m ( x )  = Cr=l uk$~k(k) belongs to the Sobolev class Wo with a high probability. 
We have by (9) 

Denote for brevity 

By the Markov inequality using the formula 

Math. Methods of Statistics, 9, 2, 160 - 175

(2000)  Golubev, Y. and Härdle, W. 
On the second order minimax estimation in partial linear models.



170

	

G. Galudev and W. Härdl e

one obtains, for any 0 < t < (/m) -1 ,

P {r/ > x} < exp(-tx)E exp(ti )

= exp(-tx) fexp [ -	
tvi	

- 1 log 1 -
~tvi

i=

	

[

	

~II v II

	

2

	

IIvI I

exp(—tx) exp
[E

E Zk (ltiI ) k Jk=2i= 1

00 1
< exp(-tx) exp [nl—t2 E k (\tm)k ]

k= 2

< exp(-tx) exp [—--
-

	

n2 log(1 - Vtm) -	
t

firn
]

Minimization of the last expression with respect to t yields

(25) P {q > x} < exp
2r—n2

log[1 + fxm] -
x

~m }

It is easy to see using (5) that the following relations hol d

mk x I v k I x C(1 - 6)-w-2,

	

II v iI x C(1 - 6)-w-2-1/(2ß) ,

E v k x C(1 - 6)
1
-w-2-1/(ß

)k=1

	

n

Here and later in the text C is a generic constant depending an Q, different in
different occasions . With this in mind and with x = 2-1/26LIIvII-1 we have in view
of (24), (25)

(26) P{m e Wo} <exp{-2[1+O(6)]x2} <exp{-Cb2 n -1/(2p+1) } .

Now we are ready to complete the proof. Let

a
_

	

1

	

( X T ZT ZX I
(x)

	

(21r/n) d / 2 det l/2
ZZT exp(	 2n	 }

be the Gaussian probability density in 1R.' of the prior distribution of the vector 0 .
By the triangle inequality one obtain s

inf sup sup E (B - 0)(0 - B)T > inf sup

	

sup

	

E (B - O)(0 - B)T
B mEWo BEIM

	

B mEWo ZZ T BB T <n 2 E

>_

	

inf

	

sup

	

sup

	

E (B - 0)(0 - B) T
ZZ T BB T <n 2 E mEWo ZZ T BB T<n 3 E

>_

	

inf

	

sup E I

	

(0 — 0)(0 — 0)T7r(0) d0
ZZ T BB T <n 2 E mEWo 3 ZZ T BB T <n 2 E

ZZ T
>_

	

inf

	

E 1{m E Wo} %

	

(0 — 0)(0- - 0)T ir(0) d0
BB T <n 2 E

	

3 ZZ T BB T <n 2 E

> inf E (B - 0)(B - B)T - n 2 (ZZT ) -1 {P {m 5t Wo} + exp(-Cn)} .
- e

Thus using (26) with 6 = log -1 n and Lemma 1 we complete the proof. q
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5.2. PROOF OF THEOREM 2. Let p = ( e l , .  . . ,Bd, y, . . . )T.  Differentiat- 
ing (10) with respect to p one obtains that p is a root of the equation 

where S = A + B, with 

In order to  compute S - I  we use the Taylor formula with respect to A- ' /~BA- ' /~  
in the right-hand side of the equation 

Let H = (E + u ~ c - ~ / ~ ) - ' .  Thus we have to check that the operator norm of the 
matrix 

is sufficiently small. This is proved in the following lemma. 

Lemma 2.  Let JI(zz~)-'IJ Cy=l Zii 5 CO for some Co < co. Then for 

x 5 min n,  min { k [g maxi Zzi 11 
and for sufficiently large C > 0 we have 

Proof. Denoting (k[i = $'k(Xi)$'[(Xi) - bkl We have 
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It  follows that 

n 

+ P{I 2 h k h l  x > Cxtr 2~ 

k , 1 = 1  i#j 

Since the random variables CZIi - E Cili are independent and bounded we obtain by 
the Markov inequality and by the Taylor formula 

provided that 

(32) Xtr2H/n 5 1. 

By the same arguments for the last term in (30) we have 

Choosing A = x t r - 2 ~  we get in view of (30)-(33) that for x < n 

We use almost the same arguments to evaluate the operator norm of Z ~ ~ H ' / ~ .  
Notice that 
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Denoting for brevity l l ~ k ) 1 ~  = CrZl Z& we obtain 

(36) 

Next E ~y the Markov inequality and the Taylor formula we get 

1 
5 exp ( - 2Ax tr  Hl l~k11~)  exp{CA2 t r2H 2 Zii 

i= l  

provided that 

The last term in (36) is evaluated in the same way 

Hence with A = C x  tr-'H l l ~ k 1 1 - ~  we conclude by (35)-(38) that 

The proof of the lemma follows now from the above inequality, (34) and (29). 

Proof of Theorem 2. We have evidently by (10) 1lZT($- 0))l 5 Ilt + QTvll. 
Therefore 

E 1);- 0112+26 5 C ( ~ ) ~ ~ + ~ ~ I ( Z Z ~ ) - ~ / ~ I ~ - ~ - ~ ,  
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and one obtains by the Holder inequality and Lemma 2 with I = ( ~ l o ~ n ) l / ~  

we have by the Taylor formula 

Therefore 

The last term in the right-hand side of (27) is bounded from above by the same 
arguments, so that we have 

= ( ( Z Z ~ ) - ~ I ~ Z Q ~ H ( D ~ C - ~ Y V ~ C - ~  - U ~ C - ~ ) H Q Z ~ ( Z Z ~ ) - ~ ~ ~ / ~ ~  

* * 
Noticing that C-2 = n ~ - ~ ( H - l  - E )  one obtains 

*>  . 

(42) E Q T ~ ( u 4 ~ - 2 v v T ~ - 2  - U ~ C - ~ ) H Q  

= E tr  { H ( u ~ c - ~ ~ v ~ c - ~  - u ~ c - ~ ) H )  

On the other hand we have by Lemma 2 and by the Cauchy-Schwarz inequality 

E \ E ~ H ( u ~ c - ~ v v ~ c - ~  - u ~ c - ~ ) H Q ~ { ( ( A - ~ / ~ B A - ~ / ~ ( (  5 E )  

= E tr  { H ( u ~ c - ~ v v ~ c - ~  - u ~ c - ~ ) H }  + O(E). 

Thus the proof of the theorem follows from (27), (39)-(42). 
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