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Does hedging with implied volatility factors improve the hedging efficiency of
barrier options?

Abstract

The price of a barrier option depends on the shape of the entire implied volatility
surface which is a high-dimensional dynamic object. Barrier options are hence exposed
to nontrivial volatility risk. We extract the key risk factors of implied volatility surface
fluctuations by means of a semiparametric factor model. Based on the factors we
define a practical hedging procedure within a local volatility framework. The hedging

performance is evaluated using DAX index options.
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1 Introduction

In equity derivative markets barrier options are appealing instruments for investors looking
for a partial protection of their equity allocation. From the perspective of an institution
issuing barrier options this demand raises the need of efficient hedging strategies. This is
a challenging task for at least two reasons. First, reverse barrier options, such as down-
and-out puts and up-and-out calls, have discontinuous payoff profiles and knock out deep
in-the-money thereby loosing the maximum possible intrinsic value. Second, barrier options,
as many other exotic options, are exposed to nontrivial volatility risk, since the knock-out
probability strongly depends on the skew of the implied volatility smile. The latter effect
also prevents simple Black-Scholes type formulae, such as those by Rubinstein and Reiner

(1991), from being usable in practice.

Nowadays there is a plethora of models available that take the shape of the implied volatility
surface (IVS) into account for option valuation. Potential candidates are: the local volatility
(LV) model proposed by Dupire (1994), Derman and Kani (1994), and Rubinstein (1994),
which introduces a nonparametric local volatility function that deterministically depends
on the asset price and time; stochastic volatility models like Hull and White (1987), Stein
and Stein (1991), Heston (1993), Carr et al. (2003); jump-diffusion models, such as Merton
(1976), Bates (1996), and Kou (2002). When calibrated to the IVS, all these models are
able to replicate the plain vanilla market to a similar extent, whereas their prices for barrier
options may differ due to the different properties of the underlying asset price dynamics,
see Hull and Suo (2002) and Hirsa et al. (2003) on model risk for barrier options. The
more challenging part is hedging. For it is straight forward to compute derivatives for the
parameters of these models, but it is intricate to give the parameter greeks a meaning by
mapping them on tradable instruments provided by the plain vanilla market. More seriously,
since the prices of the hedging instruments, either over-the-counter or as listed options, are
given in terms of implied volatility, they necessarily follow the dynamics of the IVS. Indeed it
is in question whether the IVS dynamics inherent in the model that is calibrated to a static
surface and used for pricing truly match the stylized facts of IVS dynamics, see Hagan et al.
(2002) and Bergomi (2005) for such a discussion in context of the LV model and the Heston
model, respectively. In contrast, the dynamics of the IVS are empirically well understood,
see Skiadopoulos et al. (1999), Alexander (2001), Cont and da Fonseca (2002), Fengler et al.



(2003), Hafner (2004), Fengler et al. (2007) among others. The typical approach extracts
the main driving factors like level, slope, or term structure movements and models these
factors. It therefore appears natural to exploit this knowledge for hedging and portfolio risk

management.

The aim of this paper is to study dynamic hedges of reverse barrier options built on factor
functions of empirically observed IVS dynamics. We project the complex, high dimensional
dynamics of the IVS on a low and finite dimensional space spanned by the semiparametric
factor model (SFM)

ok, T) = exp {Z Zyimy(k, 7')} , (1)

=0

where 0y(k,7) denotes the implied volatility of a certain moneyness x and maturity 7 ob-
served in time t. The functions m are nonparametric components and invariant in time,
while the time evolution is modelled by the latent factor series Z;;. In order to estimate (1)
we apply an estimation technique suggested in Fengler et al. (2007). The SFM estimates the

prevalent movements of the IVS in an (L + 1)-dimensional function space.

Given the estimated factor functions m, we construct hedges for barrier options priced in
a LV model. We use a LV model, since by the nonparametric nature of the local volatility
function it can match any arbitrage-free set of option prices to an arbitrarily precise degree.
It will hence replicate the deformations of the IVS defined by the estimated factor functions
and allow for a precise computation of factor greeks not prone to calibration error. Moreover,
the LV model is numerically very efficient and allows for fast and accurate price valuations
using the finite difference method. The factor hedges we obtain are more general than the
usual vega hedges which are defined by a parallel shift of the IVS since they will take into
account nontrivial surface movements, such as nonparallel up-and-down shifts, slope and
term structure risks. Depending on the payoff profile of an exotic option, these risks can
be substantial. Our approach is hence similar in spirit to Diebold et al. (2006) who define
factor based duration measures and study the efficacy of these measures for the insurance of

bond portfolios.
We note that strictly speaking it may not be necessary to vega hedge in an LV framework,
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since it defines a complete market. This however is a theoretical perspective which does not
correspond to market practice. When minimizing portfolio risk, traders are likely to set up
vega hedges as soon as a liquid over-the-counter or listed option markets allow them to do
so. In this sense our approach is e.g. similar to the practice of hedging a long dated plain
vanilla option which are priced by means of a smile-adjusted Black-Scholes model by adding

a short dated option to the portfolio.

The dynamic hedging performance of plain vanilla options in a LV model is studied in Dumas
et al. (1998), Coleman et al. (2001), McIntyre (2001) and Vdhdmaa (2004), while the case
of reverse barrier options is treated in Engelmann et al. (2006). Engelmann et al. (2006)
implement hedging strategies that are delta (9/9S5), vega (9/00) and vanna (9?/000S)
neutral where vega and vanna are obtained by parallel shifts of the IVS and computing the
difference quotient. We complement this analysis by defining sensitivities with respect to
the most prevalent IVS movements motivated by model (1), namely (0/0%;), (0/0Z,) and
by constructing portfolios neutral to these greeks. For this purpose we establish a portfolio
containing a reverse barrier option and hedge it on a daily basis with plain vanillas and the
underlying asset using DAX data from January 3rd, 2000 to June 30th, 2004. We then study
the distribution of the hedging errors across the different hedging strategies.

For completeness we remark that static hedging of barrier options is a competing way of
portfolio insurance, see Derman et al. (1995), Carr and Chou (1997), Carr et al. (1998), An-
dersen et al. (2002), Tompkins (2002), Nalholm and Poulsen (2006a), Nalholm and Poulsen
(2006b). For a static hedge one sets up a portfolio of plain vanillas which replicates the pay-
off of the barrier option as close as possible. The hedge is unwound in case of a knock-out
or at expiry and no other adjustment of the hedge is necessary. In fact, Engelmann et al.
(2007) and Maruhn et al. (2008) show that there are static hedges outperforming dynamic
hedges. However, the practical use of static hedges is limited, since they may not always be

implementable due to insufficient market depth of listed plain vanilla options.

The paper is structured as follows. In Section 2 we present the framework on which the
empirical procedure is based. Section 3 concentrates on the description of the hedging
method. In Section 4 we present the data, describe the empirical hedging design and discuss

the empirical results. Section 5 concludes.



2 Models

2.1 Local Volatility Model

In the LV model the risk neutral price of the underlying asset is governed by the stochastic

differential equation:

dSt = TtStdt -+ O'(St, t)Stth, (2)

where W; is a Wiener process and r; denotes the instantaneous interest rate. Dividends are
assumed to be zero, since the DAX, on which our empirical study is based, is a performance
index. o(S;,t) is the local volatility function which depends on the underlying price and
time. This function has a unique representation if an arbitrage-free set of call options is

given for all strikes and maturities, Dupire (1994). It can be shown that

06(K,T) | &(K,T) T 06 (K,T)
02(Sy, 1) = 25— + T + 2K [ reds =R

2 2
926(K.T) 95(K,T) 1 1 95(K,T)
KQ{ 9K? _d1ﬁ< 0K > MGy <Kﬁ+d1 oK ) }

(3)

K=S:T=t

T -
Log(So/ K)Jr;‘z KT ;‘1)3?0'502(K’T)T and where (K, T) is the implied volatility at strike K

and expiry T. Formula (3) gives a correspondence between local and implied volatility

where d; =

surfaces.

The LV model received much attention in the finance community since it achieves an al-
most exact fit of the observed vanilla market and is numerically and computationally very
tractable. The price of the barrier option denoted by V' with barrier B and expiry date T is

obtained by numerically solving the partial differential equation

av(s,t) 1 oV (S, t)

IV (S,t)
L) 2 ;
5 + 20 (S,t)S 552

55 (4)

TtV(S, t) = + TtS

with additional boundary conditions, i.e. V(B,t) = 0 for t < T and V(S,T) equal to
the payoff at expiry. For calibration of the model a number of methods are available, see

Bouchouev and Isakov (1999) for comprehensive review. For example one may directly apply
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the formula (3). Here we adopt the approach of Andersen and Brotherton-Ratcliffe (1997)
which determines r and o so that forwards, zero coupon bonds and plain vanilla options are
priced correctly on each grid point. The finite difference method then gives barrier option

prices and sensitivities very efficiently.

Yet the LV is also subject to criticism, see Fengler (2005, Chapter 3.11) for the details of this
discussion. The severest objection was brought forward by Hagan et al. (2002) by showing
that the LV model implies unrealistic smile dynamics and consequently wrong spot greeks.
In practice this problem can be addressed by enforcing the desired smile dynamics when
computing the greeks. Instead of calculating model-consistent LV greeks, one fixes the IVS
in strikes (sticky-strike) or in moneyness (sticky-moneyness) and recalibrates the LV surface
under the spot movements. Engelmann et al. (2006) find that the empirical performance of
the dynamic hedges is negligible under different stickiness assumptions, if a vega hedge is
implemented. Overall they find that the sticky-strike approach, which we will adopt here,
performs best. We therefore believe that the LV model serves well for the purpose of this
study.

2.2 The Semiparametric Factor Model

To model the IVS dynamics we employ the SFM which yields estimates of the IVS for
each day of the sample and explains its dynamic behavior by extracting a small number
of key driving factors of the surface movements. For this aim one could use any other
factor model like the functional principal components model of Cont and da Fonseca (2002)
or the parametric model of Hafner (2004). An alternative definition of the skew shifts
can be also found in Taleb (1997). Our choice for the SFM is motivated by the flexible
nonparametric structure, which allows to extract the most important factors along with a
dimension reduction, and its adaptedness to the expiry behavior of implied volatility data,
see Fengler et al. (2007) for details.

To describe the SFM denote by Y; ; the log-implied volatility observed on day ¢t =1,...,T.
The index j = 1,...,J; counts the implied volatilities observed on day t. Let X;; be a
two-dimensional variable containing (forward) moneyness k; ; and time to maturity 7 ;. We

define the moneyness x; def K./ F,, ., where K, ; is a strike and F, . the forward price of
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the underlying asset at time t. The SFM regresses Y; ; on X, ; by:

L
Yij= Z Zramu(Xyj) + €y, (5)
1=0
where m; (I = 1,...L) are nonparametric components and the Z;; form a latent factor

series depending on time ¢. The estimation error is denoted by e;;. The basis functions
mo, ..., my are constant in time, while the dynamic propagation of the IVS is modelled by

the time varying weights Z, ;.

~

The estimation procedure is based on minimizing the following least squares criterion (Z; o =

1 for identification):

> i:/ {Yt,j -y At,lﬁ”bZ(u)} Kp(u— Xy;) du, (6)

where K}, denotes a two-dimensional kernel function. A possible choice for a two-dimensional
kernel is a product of one-dimensional kernels K, (u) = ky, (u1) X kn, (us), where h = (hy, ho) "
are bandwidths and kj(v) = h~'k(h~'v) is a one dimensional kernel function. The mini-
mization procedure searches across all functions m; : R* — R (I =0, ..., L) and time series
ZJ eR(t=1,..,T;l=1,..., L). Details concerning the estimation algorithm can be found
in Fengler et al. (2007) and Park et al. (2009). In the final step of the procedure one orthog-
onalizes the functions my,...,m; and orders them with respect to the variance explained.
As a consequence the largest portion of variance is explained by the quantity Z}lfﬁl and the

second largest by Zﬂﬂl + Z\t’gmg and so forth.

In order to illustrate the decomposition of the IVS dynamics achieved by the SFM we present
in Figure 1 the results on DAX option data from January 3rd, 2000 till June 30th, 2004. The
figure presents the estimated Zt,z time series in the upper panel and the estimates of the basis
functions in the lower panel. The function 7 is not presented to save space. It has no effect
on the dynamics of the IVS but has to be included to set the correct level of the surface. The
function m; is relatively flat and corresponds to the most important shocks. Changes in Z,l

result in up-and-down type of movements of the whole surface, but the deviations from a



flat basis function give different weight for each maturity-moneyness location. This effect is
illustrated in Figure 2, where we plot several surfaces and one particular smile with different
values of Z}l. The second factor function can be interpreted as a tilting of the smile. This
can be inferred from the shape of my and its influence on the IVS in the plots. The variation
in Z\m results in changing the slope of the smile by making it steeper or flatter while keeping

roughly the same implied volatility levels.

We finally remark that the SFM has spurred further research on IVS dynamics and beyond.
Briiggemann et al. (2008) study the statistical properties of the estimated factor series using
a vector autoregressive framework and analyze the associated movements of macroeconomic
variables. Giacomini and Hardle (2008) apply the modelling idea for an explanation of the
dynamics of risk neutral densities. The CO, allowance term structure is studied in Triick
et al. (2006) and electricity forward curves in Borak and Weron (2009).

3 Hedging Framework

Dynamic hedging of the asset V', in our case the reverse barrier option, is based on frequent
adjustments of the hedge portfolio. This hedging strategy requires to construct a portfolio
which is to first (or higher) order neutral to the relevant risk factors. Apart from standard
delta hedging, a successful strategy requires hedging the vega, and possibly higher order
greeks as pointed out by Ederington and Guan (2007).

For the LV framework Engelmann et al. (2006) study delta, delta-vega and delta-vega-vanna
hedges. One knock-out option is hedged with the underlying asset and a set of plain vanilla
options. Let the value of the barrier option be denoted by V and let HP, and HP, be

portfolios of plain vanilla options. The corresponding hedge ratios are then given by solving

OHP, OHP> oV

95 95 o s
OHPy OHP, _ v

05 06 o N 96 : (7)
O?HP, 0*HP, a 9%V
8508 9508 2 8508

Equation (7) reflects the full delta-vega-vanna hedge. Putting as = 0 reduces (7) to the



delta-vega hedge and a; = ay, = 0 to the pure delta hedge. Since good hedges have a
large exposure to the risk factors to be hedged, one could use an at-the-money plain vanilla
option for the H P, and for HP, a risk reversal. A risk reversal is a combination of a long

out-of-the-money call and a short out-of-the-money put (or vice versa).

In order to compute the sensitivities one reprices the option under different scenarios and
computes the greeks by a finite difference quotient. Following Engelmann et al. (2006), we
make a sticky strike assumption for our greeks, i.e. the IVS remains constant in strikes.
Vega and vanna are computed shifting the IVS in a parallel fashion. To be more specific, we

compute

OV aer V(5S4 AS,0) -V (S-AS0) s)

oS 2A8
OV aet V(S,0+A0) -V (5,0 —A0o) (©)
o5 2AG ’

62‘/ def

~ {V(S+AS,5+A5) -V (S+AS,0)
—V (S = AS,G+ AG) + V (5 — AS,5) }/(2ASAG). (10)

0500

With small abuse of notation V'(S,7) denotes here the price obtained with spot S and IVS
0, where we omit its arguments for simplicity. ¢ + A means the parallel shift of the whole

surface.

It is empirically widely confirmed that parallel shifts are the most prevalent movements
of the IVS. It would be misleading, however, to conclude from this observation that other
types of surface variations do only negligibly influence the prices of exotic derivatives, such
as barrier options. Contrariwise a higher slope leads to a smaller price of an in-the-money
down-and-out put. Consider an artificial example of two one year down-and-out put with
strike 110, barrier 80 at the current spot level of 100. The first option is priced with the IVS
observed on January 3rd, 2000 and the second one on January 2nd, 2001. Figure 3 shows the
surfaces of these days. The LV prices of these options are 1.91% and 2.37% respectively (in
percentage of the spot price), which is quite a difference. From the upper panel of Figure 1
one observes that the level related factor assumes similar values on these days, while the

slope factor differs significantly. This price discrepancy stems mainly from the slope effect,
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which is an exposure not directly hedged in traditional approaches. Our procedure will hedge

such volatility shocks.

In our hedging framework we define new sensitivities with respect to the variation of the
(log)-IVS, which we call (-greeks. Based on the results discussed in Section 2.2, the (;-greek
(0/0Z; 1) reflects an adjusted up-and-down shift, while the (5-greek (0/0Z; ) corresponds
to the slope effect. Similarly to (7) we obtain the hedge ratios by

OHP, OHP, v
a5 a5 ap a5
OHP, OHP, _ v
0 0Z1 0Zt,1 : ay - 0Z1 (11)
OHP, OHP» oV
0 8Zt72 8Zt72 az 82@2

We call the full setting a (1(»>-hedge, the reduced one with a; = 0 a (;-hedge. As in the
traditional hedge we use an at-the-money plain vanilla for H P;, again due to the high vega.
For H P,, we employ risk reversals because they primarily respond to changes in the wings of
the IVS. Moreover, by selecting appropriate strikes it can even be set up in a vega-neutral,

i.e. (;-neutral, way.

We calculate the (-greeks by means of a difference quotient. As pricing input for the barrier
options we do not use the estimate of the IVS obtained by the SFM, as it is necessarily
subject to an estimation error. Instead, in order to avoid mispricings, we use the truly

observed ones. Thus, by the definition of the (-greeks, the approximations are given by

OV det V (S, 0 exp(AZ; i) — V (S, 0 exp(—AZ; i)
0z, ONZ,,

. (12)

In the practical implementation of (12) one faces a couple of numerical issues, which need
to be addressed. First, the size of the AZ;; has to be chosen. An increment too small or
too large can distort the meaning of the greeks. Moreover it cannot be unique for all Z;,
since the shift size depends on the basis functions m; and on the IVS on a particular day.
Therefore we choose for each t a AZ;; such that the (absolute) mean upward (downward)
shift amounts approximately to one volatility-point. Note that we do not use /Z\tJ for these

perturbations. Another challenge is an accurate calculation of the barrier greeks. To reduce
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numerical errors we employ a constant grid in the pricing algorithm for calculating the (-
greeks. Furthermore, the IVS & needs to be arbitrage-free. However, the shifted surfaces
do not necessarily possess this property. We thus additionally check no-arbitrage conditions
before calculating the (-greeks and apply an algorithm due to Fengler (2008) in case of
violations. This method estimates the option price function by means of a natural smoothing
spline under no-arbitrage constraints, i.e. under convexity, monotonicity and bounds on
the price function and on the first order strike derivatives. The resulting estimate is then
converted back to implied volatility. The algorithm is not applied when computing vega and

vanna since parallel shifts do typically not result into arbitrage violations.

The aforementioned greeks are demonstrated in Figure 4 for the down-and-out put with
half a year to expiry. The plot displays the greeks as a function of spot and keeps other
characteristics of the barrier option unchanged. It has to be noted that the SFM, i.e. Zt,l and
m; , can only be identified up to sign. The sign of the {-greeks therefore has no particular
meaning. Hence vega and (; display similar patterns. For the spot values close to the
barrier level vega is negative and approaches zero as it becomes a delta product. For out-of-
the money options vega is positive since the option then resembles a plain vanilla contract.
A similar behavior is observed for (, and vanna, but the vanna is discontinues at the barrier

as it is derived from the delta.

4 Empirical Results

4.1 Data

The data set covers DAX index options traded at the EUREX from January 3rd, 2000
till June 30th, 2004 which give 1135 trading days. We use settlement prices, which are
prices published by the EUREX based on the last intra-day trades. The DAX index is a
capital weighted performance index comprising 30 German blue chips. Since dividends less
corporate tax are reinvested into the index, they do not need to be taken into account for

option valuation.

We preprocess the data by eliminating implied volatilities bigger than 80% and maturities
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smaller than 10 days. Arbitrage violations in the option data are removed by the arbitrage
free smoothing procedure described in Fengler (2008). After smoothing, the data are con-
verted into a regular grid of moneyness and time to maturities. For option pricing, the
zero rates from EURIBOR quotes are linearly interpolated, see Dumas et al. (1998) for this

practice.

4.2 Experimental Design

In our empirical study we assume no transaction costs, no restrictions on short selling and
the possibility of trading each asset at arbitrary size. Each security is priced using the LV
model calibrated to daily market data. We implement the hedging strategies described in
Section 3, i.e. we focus exclusively on volatility and spot risks, leaving other risks like interest

rate exposure unhedged.

In the first step of our experiment we estimate the SFM. As kernel function we use a product
quartic kernel, where k(u) = 15/16(1 — u?)? for |u] < 1 and 0 otherwise. For a data driven
bandwidth choice and the model size selection, we refer to Fengler et al. (2007). The basic
idea is to estimate the model for different combinations of L and h and compare various
information criteria. For the moneyness direction we finally use a bandwidth of 0.04, but
we slightly oversmooth the surfaces in the time to maturity direction in order to reduce
numerical errors for the subsequent price computations. More precisely, we use a local
bandwidth modelled by an arctangent function which increases monotonously from 0.02
to 0.15 (expressed in years). Since in the hedging procedure only two main factors are
included, we set L = 2. With this choice the model describes sufficiently well the IVS

dynamics, since the measure of explained variation is close to 98%.

For each day up to one year before the last observation date in the sample, a long position in
the reverse barrier option is created. This is to evaluate all initiated hedges at market prices
within the sample. We use up-and-out calls with strikes at 80% of the spot and barriers at
140% and down-and-out put with strikes at 80% and barriers at 110%. These specifications
correspond to typically traded contracts. Based on the calibrated LV model, {-greeks, delta,
vega and vanna are calculated and the hedging strategies as described in Section 3 are set

up. We concentrate on vega, vanna, (; and (;(, strategies since the pure delta hedge is of
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inferior quality. As H P, we use at-the-money puts for the up-and-out calls and at-the-money
calls for the down-and-out puts. The risk reversal are structured by taking 80% and 120%

strikes of the current spot.

Positions that have not knocked are updated on a daily basis. This choice is motivated by
the results of Engelmann et al. (2006) who do not obtain different rankings of the strategies
for other re-balancing frequencies. For each day we calculate the greeks to solve (7) and (11)
and adjust the hedge ratios ag, a1, as. The hedges are financed from the cash account and
if the barrier is breached or the barrier option expires we unwind the hedge and record the
hedging error. All positions are traded at market prices. In case of a knock-out event, the
hedging error pays or earns interest until expiry in order to render the results comparable.
Also the cash account bears interest or is financed at the riskless short rate of the concurrent
trading day. Summing up, we have a collection of hedging errors for the two types of barrier

options with four different hedging strategies for each of them.

One could object that the experimental design suffers from an in-sample problem, since the
SEFM is estimated on the same data set as the hedging experiment. It is however a common
finding in the empirical literature, either on interest rates or on the IVS, that eigenvectors
or eigenfunctions are remarkably stable across time. Formal tests on IVS data between the
years 1995 to 2001 confirming this hypothesis are provided by Fengler (2005, Chapter 5.2.3).
Even if we made use of a training-sample, we would therefore recover very similar factor

functions. Thus the issue will not seriously affect the results.

4.3 Results

For evaluating the performance we use a pool of 885 hedging errors (1135 trading days less
250 days, since products issued thereafter would not expire within the sample). In order
to make them comparable we normalize by the spot price at the time when the hedge is
initiated. This normalization is common in practice and is meant to remove the dependence
from the underlying’s level. Another normalizing factor could be the option price itself, but
since the risk reversal has a market price close to zero, measuring errors with respect to the

spot appears to be more natural.
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The aim of hedging is to replicate the payoff of the option. In the ideal case the hedge
portfolio should have zero variance and zero mean, but for obvious reasons this cannot
be realized in practice. Our aim is to give a comparative analysis of the hedging error
distributions in order to check how the volatility factors affect the hedging performance.
We use traditional descriptive statistics to assess the location and dispersion of the errors.

Clearly, a superior method would keep these quantities close to zero in absolute terms.

The empirical results are summarized in Tables 2 and 3 for up-and-out calls and down-
and-out puts respectively. We present the minimum, maximum, mean, median, standard
deviation, and the absolute deviation around the median. The terminal hedging error dis-
tributions are given in the rows marked with a ‘0’. As can be inferred from the tables, the
center of all distributions is located around zero, with means slightly below zero for the up-
and-out calls and slightly above zero for the down-and-out puts. Thus the different hedges
are hardly distinguishable in terms of the center of the distribution. This finding corresponds
to our expectations: the volatiliy risk is removed, both for the vega and the (;-hedges, and

vanna and (;(s-hedges do not add any additional drift, since they are almost costless.

For evaluating the dispersion of the hedging errors we focus on the standard deviation and
the absolute deviation around the median (madev.). The first observation is that hedges
relying on higher order greeks tend to exhibit lower variance. In case of the down-and-
out puts the vanna hedge has a slightly smaller dispersion than the (;(s-hedge, and the
traditional vega hedge performs very similar to the (;-hedge. For the up-and-out calls the
ranking is reversed: the standard hedges are clearly outperformed by the factor hedges. How

can this asymmetry be explained and how is the quality of the factor hedges to be judged?

There are two major sources of bias in the hedging strategies due to the behavior of the un-
derlying. Observe that during the analyzed time period the DAX had a downward trend: 81%
out of the down-and-out put options knocked out, but only 10% of the up-and-out call op-
tions, while 5% of the puts and 39% calls expired in-the-money, see Table 1. As a first issue
consider the huge amount of up-and-out calls ending in-the-money. This gives rise to what is
known among practitioners as ‘theta risk’. For explanation reconsider the case in Section 3,
where we demonstrated that the prices for one-year down-and-out puts with a strike of 110%
and barrier at 80% were less than 3% in the two scenarios. In contrast, when the put ends

in-the-money it will pay out up to 30%. Consequently, the value of an in-the-money reverse
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barrier option increases sharply the nearer the expiry date draws (i.e. has a strong theta),
rendering it more and more difficult for traders to earn the payoff by trading the gamma.
Theta risk can thus lead to a more dispersed error distribution. A second issue is gap risk.
We do not unwind the hedges at the barriers, but at the observed spots, since this is the
more realistic scenario in practice. When a barrier is breached, one still owns the hedge
and incurs unbalanced gains or losses. Again this leads to a more dispersed hedging error
distribution. As is clear from Table 1, theta risk is dominating the risk in case of the calls

and gap risk in case of the puts.

To receive a deeper insight, we refer once more to Tables 2 and 3. We report the statistics of
the hedging experiment stopped at 1 day, 5 days and 25 days before the expiry. As is seen
the dispersion measures increase the nearer expiry draws, and the distributions become less
skewed and less heavy-tailed, while the location measures prove to remain stable. In terms
of dispersion the relative order of the hedging strategies across the two products remains the
same: for the down-and-out puts the strategies are comparable, while factor hedging remains
superior for the up-and-out calls. This finding is confirmed in Figure 5, which displays the
standard deviations of the hedging errors as a function through the options’ life time. It is
intuitive to expect this function to increase. Moreover there is a sharp jump just before the
expiry date contributing a large portion of the overall cumulative hedging error in particular
for the up-and-out calls. All these observations highlight the importance of the expiry effect

relative to gap risk when interpreting the data.

We overall conclude two main findings. First, factor hedging is at least of similar quality
as traditional hedging approaches. In particular the hedging efficiency does not deteriorate.
This is a reassuring result given the huge computational effort that must be spent and that
could easily come at the costs of accuracy. This result is obtained when the barrier options
expire worthless or knock out early in life time. Second, when the option needs to be hedged
till expiry and ends in-the-money, the factor hedging approach dominates clearly. From a
trader’s perspective the first situation is the ‘easy one’ unless the knock-out occurs close
to expiry. The second one is much more intricate, because the intrinsic value needs to be

earned. This is a strong case for volatility factor hedging.
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5 Conclusion

We provide an empirical study on hedging reverse barrier options in the local volatility
model. The main focus of this study is on risk factors arising from a decomposition of
the dynamic behavior of the implied volatility surface, which are identified with a flexible
semiparametric technique. The hedging framework is constructed as a natural extension to
traditional vega hedging, where the sensitivity is measured with respect to the more complex

surface movements.

Our empirical investigation shows that hedging higher order risk with risk reversals brings
improvements to hedging with at-the-money plain vanillas only. This is consistent across
the vanna hedge and the more complex factor based hedges, thus confirming evidence of
Ederington and Guan (2007). Intuitively the vega hedge resembles a single factor based
hedge since the first dynamic factor corresponds to a parallel type of shift. Adding a vanna
hedge or another factor to the portfolio removes similar risks as can be inferred from the

comparable hedging performance.

Measured in terms of the hedging error variance, factor hedging performs at least as good as
the corresponding vega and vanna hedges, in certain cases it is superior. As is confirmed by
hedging up-and-out call options and down-and-out put options, the first case occurs when
options knock out early in life time or expire worthless, while the second occurs when the
options need to be hedged up to expiry and end in-the-money. This evidence is present
not only in the terminal hedging errors but also through the option’s life time. From a
trader’s perspective the second case is the more interesting, making factor hedging a powerful

alternative to traditional hedging.

These findings, however, are not necessarily similar for other complex derivatives sensitive
to IVS movements, such as cliquets or long-dated forward starting options. Also a portfolio
context may yield different findings. In particular, when a book of options contains assets
with several maturities it could be beneficial to consider additional factors, such as those
related to the term structure of the IVS. This exposure can be hedged by constructing the
corresponding calendar spreads. Another application in a portfolio context could be stress

test scenarios based on the volatility factors. This would provide a good understanding of
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the volatility exposure of the portfolio. We leave these issues to future research.
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Figure 1: The estimates of the SFM obtained from IVS data from January 3rd, 2000 till
June 30th, 2004 for L = 2. Upper panel: estimated latent factor series 21 and 22. Lower

panel: estimates of my, the non-uniform up-and-down shift, and ms, the slope risk.
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option type barrier strike | knock-outs in-the-money

up-and-out call 140%  80% 10% 39%
down-and-out put | 80%  110% 81% 5%

Table 1: Characteristics of the analyzed barrier options. Strikes and barriers are in percent-
age of spot at issuance. The column ‘knock-outs’ refers to the contracts that breached the

barrier and ‘in-the-money’ to those yielding a positive payoff at expiry.
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Summary This paper offers a new method for estimation and forecasting of the volatility
of financial time series when the stationarity assumption is violated. Our general, local
parametric approach particularly applies to general varying-coefficient parametric models,
such as GARCH, whose coefficients may arbitrarily vary with time. Global parametric, smooth
transition and change-point models are special cases. The method is based on an adaptive
pointwise selection of the largest interval of homogeneity with a given right-end point by a
local change-point analysis. We construct locally adaptive estimates that can perform this task
and investigate them both from the theoretical point of view and by Monte Carlo simulations.
In the particular case of GARCH estimation, the proposed method is applied to stock-index
series and is shown to outperform the standard parametric GARCH model.

Keywords: Adaptive pointwise estimation, Autoregressive models, Conditional hetero-
scedasticity models, Local time-homogeneity.

1. INTRODUCTION

A growing amount of econometrical and statistical research is devoted to modelling financial
time series and their volatility, which measures dispersion at a point in time (i.e. conditional
variance). Although many economies and financial markets have been recently experiencing
many shorter and longer periods of instability or uncertainty such as the Asian crisis (1997),
the Russian crisis (1998), the start of the European currency (1999), the ‘dot-Com’ technology-
bubble crash (2000-02) or the terrorist attacks (September, 2001), the war in Iraq (2003) and the
current global recession (2008), mostly used econometric models are based on the assumption
of time homogeneity. This includes linear and non-linear autoregressive (AR) and moving-
average models and conditional heteroscedasticity (CH) models such as ARCH (Engel, 1982)

© The Author(s). Journal compilation © Royal Economic Society 2009. Published by Blackwell Publishing Ltd, 9600 Garsington Road,
Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA, 02148, USA.
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and GARCH (Bollerslev, 1986), stochastic volatility models (Taylor, 1986), as well as their
combinations such as AR-GARCH.

On the other hand, the market and institutional changes have long been assumed to cause
structural breaks in financial time series, which was confirmed, e.g. in data on stock prices
(Andreou and Ghysels, 2002, and Beltratti and Morana, 2004) and exchange rates (Herwatz and
Reimers, 2001). Moreover, ignoring these breaks can adversely affect the modelling, estimation
and forecasting of volatility as suggested e.g. by Diebold and Inoue (2001), Mikosch and
Starica (2004), Pesaran and Timmermann (2004) and Hillebrand (2005). Such findings led to
the development of the change-point analysis in the context of CH models; see e.g. Chen and
Gupta (1997), Kokoszka and Leipus (2000) and Andreou and Ghysels (2006).

An alternative approach lies in relaxing the assumption of time homogeneity and allowing
some or all model parameters to vary over time (Chen and Tsay, 1993, Cai et al., 2000, and Fan
and Zhang, 2008). Without structural assumptions about the transition of model parameters over
time, time-varying coefficient models have to be estimated non-parametrically, e.g. under the
identification condition that their parameters are smooth functions of time (Cai et al., 2000). In
this paper, we follow a different strategy based on the assumption that a time series can be locally,
i.e. over short periods of time, approximated by a parametric model. As suggested by Spokoiny
(1998), such a local approximation can form a starting point in the search for the longest period
of stability (homogeneity), i.e. for the longest time interval in which the series is described well
by the parametric model. In the context of the local constant approximation, this strategy was
employed for volatility modelling by Hardle et al. (2003), Mercurio and Spokoiny (2004) and
Spokoiny (2009a). Our aim is to generalize this approach so that it can identify intervals of
homogeneity for any parametric CH model regardless of its complexity.

In contrast to the local constant approximation of the volatility of a process (Mercurio and
Spokoiny, 2004), the main benefit of the proposed generalization consists in the possibility to
apply the methodology to a much wider class of models and to forecast over a longer time
horizon. The reason is that approximating the mean or volatility process by a constant is in many
cases too restrictive or even inappropriate and it is fulfilled only for short time intervals, which
precludes its use for longer-term forecasting. On the contrary, parametric models like GARCH
mimic the majority of stylized facts about financial time series and can reasonably fit the data
over rather long periods of time in many practical situations. Allowing for time dependence of
model parameters offers then much more flexibility in modelling real-life time series, which can
be both with or without structural breaks since global parametric models are included as a special
case.

Moreover, the proposed adaptive local parametric modelling unifies the change-point and
varying-coefficient models. First, since finding the longest time-homogeneous interval for a
parametric model at any point in time corresponds to detecting the most recent change-point
in a time series, this approach resembles the change-point modelling as in Bai and Perron (1998)
or Mikosch and Starica (1999, 2004), for instance, but it does not require prior information
such as the number of changes. Additionally, the traditional structural-change tests require that
the number of observations before each break point is large (and can grow to infinity) as these
tests rely on asymptotic results. On the contrary, the proposed pointwise adaptive estimation
does not rely on asymptotic results and does not thus place any requirements on the number
of observations before, between or after any break point. Second, since the adaptively selected
time-homogeneous interval used for estimation necessarily differs at each time point, the model
coefficients can arbitrarily vary over time. In comparison to varying-coefficient models assuming

© The Author(s). Journal compilation © Royal Economic Society 2009.
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smooth development of parameters over time (Cai et al., 2000), our approach however allows for
structural breaks in the form of sudden jumps in parameter values.

Although seemingly straightforward, extending Mercurio and Spokoiny’s (2004) procedure
to the local parametric modelling is a non-trivial problem, which requires new tools and
techniques. We concentrate here on the change-point estimation of financial time series, which
are often modelled by data-demanding models such as GARCH. While the benefits of a flexible
change-point analysis for time series spanning several years are well known, its feasibility
(which stands in the focus of this work) is much more difficult to achieve. The reason is thus
that, at each time point, the procedure starts from a small interval, where a local parametric
approximation holds, and then iteratively extends this interval and tests it for time-homogeneity
until a structural break is found or data exhausted. Hence, a model has to be initially estimated on
very short time intervals (e.g. 10 observations). Using standard testing methods, such a procedure
might be feasible for simple parametric models, but it is hardly possible for more complex
parametric models such as GARCH that generally require rather large samples for reasonably
good estimates.

Therefore, we use an alternative and more robust approach to local change-point analysis
that relies on a finite-sample theory of testing a growing sequence of historical time intervals
on homogeneity against a change-point alternative. The proposed adaptive pointwise estimation
procedure applies to a wide class of time-series models, including AR and CH models.
Concentrating on the latter, we describe in details the adaptive procedure, derive its basic
properties, and focusing on the feasibility of adaptive estimation for CH models, study the
performance in comparison to the parametric (G)ARCH by means of simulations and real-data
applications. The main conclusion is two-fold: on one hand, the adaptive pointwise estimation
is feasible and beneficial also in the case of data-demanding models such as GARCH; on the
other hand, the adaptive estimates based on various parametric models such as constant, ARCH
or GARCH models are much closer to each other (while being better than the usual parametric
estimates), which eliminates to some extent the need for using too complex models in adaptive
estimation.

The rest of the paper is organized as follows. In Section 2, the parametric estimation of
CH models and its finite-sample properties are introduced. In Section 3, we define the adaptive
pointwise estimation procedure and discuss the choice of its parameters. Theoretical properties
of the method are discussed in Section 4. In the specific case of the ARCH(1) and GARCH(1,1)
models, a simulation study illustrates the performance of the new methodology with respect to
the standard parametric and change-point models in Section 5. Applications to real stock-index
series data are presented in Section 6. The proofs are provided in the Appendix.

2. PARAMETRIC CONDITIONAL HETEROSCEDASTICITY MODELS
Consider a time series Y, in discrete time, t+ € N. The CH assumption means that ¥, =
o &, where {&, },cn is a white noise process and {0, };cy is a predictable volatility (conditional

variance) process. Modelling of the volatility process o ; typically relies on some parametric CH
specification such as the ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models:

P q
o =w+ Y ol +> Bl (2.1)
i=1 j=1
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where pe N,ge Nand 0 = (w, ay, ..., 0p, Bi, ..., ,Bq)T is the parameter vector. An attractive
feature of this model is that, even with very few coefficients, one can model most stylized facts
of financial time series like volatility clustering or excessive kurtosis, for instance. A number
of (G)ARCH extensions were proposed to make the model even more flexible; e.g. EGARCH
(Nelson, 1991), QGARCH (Sentana, 1995) and TGARCH (Glosten et al., 1993) that account for
asymmetries in a volatility process.

All such CH models can be put into a common class of generalized linear volatility models:

Y, = 0:6 =/ 8(X1)és, (2.2)

14 q
Xi=o+ Y ah(V)+ Y BiXe ;. (2.3)

i=1 j=1

where g and 4 are known functions and X is a (partially) unobserved process (structural variable)
that models the volatility coefficient o> via transformation g : 0> = g(X,). For example, the
GARCH model (2.1) is described by g(u) = u and h(r) = r>.

Models (2.2)—(2.3) are time homogeneous in the sense that the process Y, follows the same
structural equation at each time point. In other words, the parameter # and hence the structural
dependence in Y, is constant over time. Even though models like (2.2)—(2.3) can often fit data
well over a longer period of time, the assumption of homogeneity is too restrictive in practical
applications: to guarantee a sufficient amount of data for sufficiently precise estimation, these
models are often applied over time spans of many years. On the contrary, the strategy pursued
here requires only local time homogeneity, which means that at each time point ¢ there is a
(possibly rather short) interval [t — m, t], where the process Y, is well described by models
(2.2)—(2.3). This strategy aims then both at finding an interval of homogeneity (preferably as
long as possible) and at the estimation of the corresponding parameter values @, which then
enable predicting Y, and X,.

Next, we discuss the parameter estimation for models (2.2)—(2.3) using observations Y ; from
some time interval I = [z, #1]. The conditional distribution of each observation Y, given the past
Z,_1 is determined by the structural variable X,, whose dynamics are described by the parameter
vector 0 : X, = X,(0) for ¢t € I due to (2.3). We denote the underlying value of @ by 6.

For estimating 0y, we apply the quasi-maximum likelihood (quasi-MLE) approach using
the estimating equations generated under the assumption of Gaussian errors &,. This guarantees
efficiency under the normality of innovations and consistency under rather general moment
conditions (Hansen and Lee, 1994, and Francq and Zakoian, 2007). The log-likelihood for
models (2.2)—(2.3) on an interval I can be represented in the form

Li®) =) Y, g[X.(0)])

tel

with log-likelihood function £(y, v) = —0.5{log (v) + y*/v}. We define the quasi-MLE estimate
0; of the parameter # by maximizing the log-likelihood L;(0),

51 = ar%re%ax L,(0)= ar%re%ax ZE{Y,, gl X, (0]}, 2.4)
tel

and denote by L 1(51) the corresponding maximum.
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To characterize the quality of estimating the parameter vector 6y = (w,ay, ..., &),
Bi, .. ,Bq) by ] 1, We now present an exact (non-asymptotic) exponential risk bound Th1s
bound concerns the value of maximum L ,(0,) = maxgeo L;(#) rather than the point of
maximum ;- More precisely, we consider the difference L 1(0 1,00) =L 1(0 1) — L;(0y). By
definition, this value is non-negative and represents the deviation of the maximum of the log-
likelihood process from its value at the ‘true’ point 6. Later, we comment on how the accuracy
of estimation of the parameter 6 by 9 ; relates to the value L ,(0 1, 00). We will also see that the
bound for L,(O 1, 0p) yields the confidence set for the parameter 6, which will be used for the
proposed change-point test. Now, the non-asymptotic risk bound is specified in the following
theorem, which formulates corollaries 4.2 and 4.3 of Spokoiny (2009b) for the case of the quasi-
MLE estimation of a CH model (2.2)~(2.3) at @ = 6. The result can be viewed as an extension
of the Wilks phenomenon that the distribution of L;(0;, 6,) for a linear Gaussian model is Xf, /2,
where p is the number of estimated parameters in the model.

THEOREM 2.1. Assume that the process Y, follows models (2.2)—(2.3) with the parameter 0 €
®, where the set © is compact. The function g(-) is assumed to be continuously differentiable
with the uniformly bounded first derivative and g(x) > & > O for all x. Further, let the process
X:(0) be sub-ergodic in the sense that for any smooth function f(-) there exists f* such that for
any time interval [

2

S F(Xi0) — Eq, fX,0))| < 7111, 6 €0,

1

E,,

Finally, let Eexp{%(e,2 — D1} < c(5¢) for some > 0,¢(3¢) > 0, and all t € N. Then there
are A > 0 and ¢(A, 0y) > 0 such that for any interval I and 3 > 0

Py, (L181,80) > 3) < exple(h, ) — 13). (2.5)

Moreover, for any r > 0, there is a constant ‘R, (0) such that
Eq,|L0),00)| <R, 00). (2.6)
REMARK 2.1. The condition g(x) > § > 0 guarantees that the variance process cannot reach

zero. In the case of GARCH, it is sufficient to assume @ > 0, for instance.

One attractive feature of Theorem 2.1, formulated in the following corollary, is that it enables
constructing the non-asymptotic confidence sets and testing the parametric hypothesis on the
basis of the fitted log-likelihood L;(@;, #). This feature is especially important for our procedure
presented in Section 3.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, let the value 3 fulfil e(A,0o) —
Ao < loga for some o < 1. Then the random set &(3y) = {0 : L;(0;,0) < 34} is an «-
confidence set for 0 in the sense that Py ,(0y &€ &1(34)) < «.

Theorem 2.1 also gives a non-asymptotic and fixed upper bound for the risk of estimation
L;(0;, 0,) that applies to an arbitrary sample size |/|. To understand the relation of this result to
the classical rate result, we can apply the standard arguments based on the quadratic expansion
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of the log-likelihood L(a, ). Let V2L(9) denote the Hessian matrix of the second derivatives of
L(0) with respect to the parameter #. Then

Li(B;,00)=0.50; —05) V2L(0))0, — 60), 2.7)

where @, is a convex combination of 6, and 6. Under usual regularity assumptions and for
sufficiently large ||, the normalized matrix |I|~'V2L;(@) is close to some matrix V (@), which
depends only on the stationary distribution of ¥, and is continuous in #. Then (2.5) approximately
means that ||/V(00)(@; — 00)||> < 3/|1| with probability close to 1 for large 3. Hence, the large
deviation result of Theorem 2.1 yields the root-|/| consistency of the MLE estimate ;. See
Spokoiny (2009b) for further details.

3. POINTWISE ADAPTIVE NON-PARAMETRIC ESTIMATION

An obvious feature of models (2.2)—(2.3) is that the parametric structure of the process is assumed
constant over the whole sample and cannot thus incorporate changes and structural breaks at
unknown times in the models. A natural generalization leads to models whose coefficients may
change over time (Fan and Zhang, 2008). One can then assume that the structural process X,
satisfies the relation (2.3) at any time, but the vector of coefficients # may vary with the time
t,0 = 6(t). The estimation of the coefficients as general functions of time is possible only under
some additional assumptions on these functions. Typical assumptions are (i) varying coefficients
are smooth functions of time (Cai et al., 2000) and (ii) varying coefficients are piecewise constant
functions (Bai and Perron, 1998, and Mikosch and Starica, 1999, 2004).

Our local parametric approach differs from the commonly used identification assumptions (i)
and (ii). We assume that the observed data Y, are described by a (partially) unobserved process
X, due to (2.2), and at each point T, there exists a historical interval I(T) = [to, T] in which the
process X, ‘nearly’ follows the parametric specification (2.3) (see Section 4 for details on what
‘nearly’ means). This local structural assumption enables us to apply well-developed parametric
estimation for data {Y, },c;(r) to estimate the underlying parameter § = 6(T) by 6 = 9(T). (The
estimate = 9(T) can then be used for estimating the value X 7 of the process X, at T from
equation (2.3) and for further modelling such as forecasting Y 7 ;.) Moreover, this assumption
includes the above-mentioned ‘smooth transition’ and ‘switching regime’ assumptions (i) and
(ii) as special cases: parameters 9(T) vary over time as the interval I(T) changes with T and, at
the same time, discontinuities and jumps in 0(T) as a function of time are possible.

To estimate 9(T), we have to find the historical interval of homogeneity /(7T), i.e. the longest
interval / with the right-end point 7, where data do not contradict a specified parametric model
with fixed parameter values. Starting at each time 7 with a very short interval I = [tqo, T], we
search by successive extending and testing of interval / on homogeneity against a change-point
alternative: if the hypothesis of homogeneity is not rejected for a given I, a larger interval is
taken and tested again. Contrary to Bai and Perron (1998) and Mikosch and Starica (1999), who
detect all change points in a given time series, our approach is local: it focuses on the local
change-point analysis near point 7 of estimation and tries to find only one change closest to the
reference point.

In the rest of this section, we first discuss the test statistics employed to test the
time-homogeneity of an interval / against a change-point alternative in Section 3.1. Later,
we rigorously describe the pointwise adaptive estimation procedure in Section 3.2. Its
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implementation and the choice of parameters entering the adaptive procedure are described in
Sections 3.2-3.4. Theoretical properties of the method are studied in Section 4.

3.1. Test of homogeneity against a change-point alternative

The pointwise adaptive estimation procedure crucially relies on the test of local time-
homogeneity of an interval I = [¢(, T']. The null hypothesis for / means that the observations
{Y }ier follow the parametric models (2.2)—(2.3) with a fixed parameter 6, leading to the quasi-
MLE estimate ; from (2.4) and the corresponding fitted log-likelihood L;(6;).

The change-point alternative for a given change-point location T € I can be described
as follows: process Y, follows the parametric models (2.2)—(2.3) with a parameter 6; for
t € J = [t¢, ] and with a different parameter 0 ;- forz € J* = [t + 1, T1;0; # 0 . The fitted
log-likelihood under this alternative reads as L (0 ;) + L ;<(@ ;c). The test of homogeneity can be
performed using the likelihood ratio (LR) test statistic 7' ;:

T = =, max {Li0)+ Ly(0,)} — max Li@®) ={L;@))+ L))~ LI(GI)}
Since the change-point location 7 is generally not known, we consider the supremum of the LR
statistics T'; ; over some subset t € .7 (I); cf. Andrews (1993):

T,y = sup Tj:. (3.1)
e

A typical example of a set . T(I) is T(U)={t:to+m' <t <T —m"} for some fixed
m',m" > 0.

3.2. Adaptive search for the longest interval of homogeneity

This section presents the proposed adaptive pointwise estimation procedure. At each point 7', we
aim at estimating the unknown parameters #(7) from historical data Y,,¢ < T’; this procedure
repeats for every current time point 7 as new data arrive. At the first step, the procedure selects
on the base of historical data an interval /() of homogeneity in which the data do not contradict
the parametric models (2. 2) (2.3). Afterwards, the quas1 -MLE estimation is applied using the
selected historical interval [ (T) to obtain estimate 0(T) =0; icry- From now on, we consider an
arbitrary, but fixed time point 7.

Suppose that a growing set o C I C --- C Ik of historical interval-candidates [, =
[T — my + 1, T] with the right-end point T is fixed. The smallest interval I, is accepted
automatically as homogeneous. Then the procedure successively checks every larger interval 7
on homogeneity using the test statistic 7j, 7, from (3.1). The selected interval I corresponds
to the largest accepted interval /; with index k such that

Ty.7a) <3 k<K&, (3.2)

and Ty, 7., > 3i+1, Where the critical values 3, are discussed later in this section and
specified in Section 3.3. This procedure then leads to the adaptive estimate 0=0 ; corresponding
to the selected interval [ = I.

The complete description of the procedure includes two steps. (A) Fixing the set-up and the
parameters of the procedure. (B) Data-driven search for the longest interval of homogeneity.
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(A) Set-up and parameters:

1 Select specific parametric models (2.2)-(2.3) [e.g. constant volatility, ARCH(1),
GARCH(1,1)].

2 Select the set & = (I, ..., Ix) of interval-candidates, and for each I; € .Z, the set
T (Iy) of possible change points © € I used in the LR test (3.1).
3 Select the critical values 3, ..., 3x in (3.2) as described in Section 3.3.

(B) Adaptive search and estimation: Set k = 1, I = Iy and = 5,0.

1 Test the hypothesis H  of no change point within the interval I, using test statistics
(3.1) and the critical values 3; obtained in (A3). If a change point is detected (H o is
rejected) go to (B3) Otherwise proceed with (B2).

2 Setd = 0,k and 01k = 6?1A Further, set k := k + 1. If kK < K, repeat (B1); otherwise go

to (B3).
3 Define [ =I_; = ‘the last accepted interval’ and =0 ;- Additionally, set
olk :"':011( :0lkaK

In step (A), one has to select three main ingredients of the procedure. First, the parametric
model used locally to approximate the process Y, has to be specified in (Al), e.g. the constant
volatility or GARCH(1,1) in our context. Next, in step (A2), the set of intervals . = {[;} /§=0
is fixed, each interval with the right-end point T, length m; = ||, and the set 7 () of tested
change points. Our default proposal is to use a geometric grid m; = [moa*], a > 1, and to set
I, =T —my + 1, Tl and ) = [T —my_1 + 1, T — my_,]. Although our experiments
show that the procedure is rather insensitive to the choice of m( and a (e.g. we use my = 10 and
a = 1.25 in simulations), the length my of interval I, should take into account the parametric
model selected in (Al). The reason is that /j is always assumed to be time-homogeneous
and my thus has to reflect flexibility of the parametric model; e.g. while my = 20 might be
reasonable for the GARCH(1,1) model, my = 5 could be a reasonable choice for the locally
constant approximation of a volatility process. Finally, in step (A3), one has to select the K
critical values 3, in (3.2) for the LR test statistics Ty, o) from (3.1). The critical values 3; will
generally depend on the parametric model describing the null hypothesis of time-homogeneity,
the set .# of intervals I and corresponding sets of considered change points 7 (I), k < K, and
additionally, on two constants r and p that are counterparts of the usual significance level. All
these determinants of the critical values can be selected in step (A) and the critical values are thus
obtained before the actual estimation takes place in step (B). Due to its importance, the method
of constructing critical values {3;}X_, is discussed separately in Section 3.3.

The main step (B) performs the search for the longest time-homogeneous interval. Initially,
Iy is assumed to be homogeneous. If 7;_; is negatively tested on the presence of a change point,
one continues with 7; by employing test (3.1) in step (B1), which checks for a potential change
point in 7. If no change point is found, then 7, is accepted as time-homogeneous in step (B2);
otherwise the procedure terminates in step (B3). We sequentially repeat these tests until we find a
change point or exhaust all intervals. The latest (longest) interval accepted as time-homogeneous
is used for estimation in step (B3). Note that the estimate 0 1, defined in (B2) and (B3) corresponds
to the latest accepted interval [ after the first k steps, or equivalently, the interval selected out of
Iy,.... 1.

Moreover, the whole search and estimation step (B) can be repeated at different time points 7
without reiterating the initial step (A) as the critical values 3; depend only on the approximating
parametric model and interval lengths m; = |I|, not on the time point T (see Section 3.3).
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3.3. Choice of critical values 3

The presented method of choosing the interval of homogeneity / can be viewed as multiple
testing procedure. The critical values for this procedure are selected using the general approach
of testing theory: to provide a prescribed performance of the procedure under the null hypothesis,
i.e. in the pure parametric situation. This means that the procedure is trained on the data generated
from the pure parametric time-homogeneous model from step (Al). The correct choice in this
situation is the largest considered interval / ¢ and a choice I; with k < K can be interpreted as
a ‘false alarm’. We select the minimal critical values ensuring a small probability of such a false
alarm. Our condition slightly differs though from the classical level condition because we focus
on parameter estimation rather than on hypothesis testing.

In the pure parametric case, the ‘ideal” estimate corresponds to the largest considered interval
I k. Due to Theorem 2.1, the quality of estimation of the parameter 6, by 6, can be measured
by the log-likelihood ‘loss™ Lj, (51,(, 0o), which is stochastically bounded with exponential
and polynomial moments: Eg |L, (51K, 00)" < R, (0y). If the adaptive procedure stops earlier
at some intermediate step k < K, we select instead of 51,( another estimate § = 5& with a
larger variability. The loss associated with such a false alarm can be measured by the value
Ly, (0 I 6)=1L I (0 1) — L, (0). The corresponding condition bounding the loss due to the
adaptive estimation reads as

Eg,|L1,0,,.0)] < p%.(8). (3.3)

This is in fact an implicit condition on the critical values {3;}X_,, which ensures that the loss
associated with the false alarm is at most the p-fraction of the log-likelihood loss of the ‘ideal” or
‘oracle’ estimate § 1, for the parametric situation. The constant r corresponds to the power of the
loss in (3.3), while p is similar in meaning to the test level. In the limit case when r tends to zero,
this condition (3.3) becomes the usual level condition: Py, (I is rejected) = Pg (0, # 9) <p.
The choice of the metaparameters r and p is discussed in Section 3.4.
A condition similar to (3.3) is imposed at each step of the adaptive procedure. The estimate
0 1, coming after the k steps of the procedure should satisfy

Eg|L1,8,,,0,) < R0, k=1,....K, (3.4)

where py = p k/K < p. The following theorem presents some sufficient conditions on the critical
values {3k}f:, ensuring (3.4); recall that m; = |I| denotes the length of 1.

THEOREM 3.1. Suppose that r > 0, p > 0. Under the assumptions of Theorem 2.1, there are
constants ag, a1, a, such that the condition (3.4) is fulfilled with the choice

3 = aorlog(p™") + ayr log(mg /mi_1) + az log(my), k=1,...,K

Since K and {m}£_, are fixed, the 3;’s in Theorem 3.1 have a form 3, = C + D log(my)
for k = 1,..., K with some constant C and D. However, a practically relevant choice of these
constants has to be done by Monte Carlo simulations. Note first that every particular choice of
the coefficients C and D determines the whole set of the critical values {;,k},f:l and thus the local
change-point procedure. For the critical values given by fixed (C, D), one can run the procedure
and observe its performance on the simulated data using the data-generating process (2.2)—
(2.3); in particular, one can check whether the condition (3.4) is fulfilled. For any (sufficiently
large) fixed value of C, one can thus find the minimal value D(C) < 0 of D that ensures (3.4).
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Every corresponding set of critical values in the form 3; = C + D(C)log(m;) is admissible. The
condition D(C) < 0 ensures that the critical values decreases with k. This reflects the fact that
a false alarm at an early stage of the algorithm is more crucial because it leads to the choice of
a highly variable estimate. The critical values 3; for small k£ should thus be rather conservative
to provide the stability of the algorithm in the parametric situation. To determine C, the value
31 can be fixed by considering the false alarm at the first step of the procedure, which leads to
estimation using the smallest interval I, instead of the ‘ideal’ largest interval I . The related
condition (used in Section 5.1) reads as

Eg|L1, @1, 000 W(Ty 70y > 31) < pR,(00)/K. (3.5)

Alternatively, one could select a pair (C, D) that minimizes the resulting prediction error; see
Section 3.4.

3.4. Selecting parameters r and p

The choice of critical values using inequality (3.4) additionally depends on two ‘metaparameters’
r and p. A simple strategy is to use conservative values for these parameters and the
corresponding set of critical values (e.g. our default is » = 1 and p = 1). On the other hand,
the two parameters are global in the sense that they are independent of 7. Hence, one can
also determine them in a data-driven way by minimizing some global forecasting error (Cheng

et al., 2003). Different values of r and p may lead to different sets of critical values and hence to

different estimates 9(r’p)(T) and to different forecasts Y. ;rf/?n of the future values Y 7., where h

is the forecasting horizon. Now, a data-driven choice of r and p can be done by minimizing the
following objective function:

A . . 5(r.p)
. p) = arg min PE (r. p) = arg min ;h; A(Yran. Y007), (3.6)
€SN

where A is a loss function and J# is the forecasting horizon set. For example, one can take
Ar(v, V) = |v = V|" for r € [1/2, 2]. For daily data, the forecasting horizon could be one day,
0 = {1}, or two weeks, 77 = {1, ..., 10}.

4. THEORETIC PROPERTIES

In this section, we collect basic results describing the quality of the proposed adaptive procedure.
First, the definition of the procedure ensures the performance prescribed by (3.4) in the
parametric situation. We however claimed that the adaptive pointwise estimation applies even
if the process Y, is only locally approximated by a parametric model. Therefore, we now define
a locally ‘nearly parametric’ process, for which we derive an analogy of Theorem 2.1 (Section
4.1). Later, we prove certain ‘oracle’ properties of the proposed method (Section 4.2).

4.1. Small modelling bias condition

This section discusses the concept of a ‘nearly parametric’ case. To define it rigorously, we have
to quantify the quality of approximating the true latent process X,, which drives the observed
data Y, due to (2.2), by the parametric process X,(#) described by (2.3) for some 6 € ®. Below
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we assume that the innovations ¢, in the model (2.2) are independent and identically distributed
and denote the distribution of \/ve, by P, so that the conditional distribution of Y, given .%,
i8S Py(x,). To measure the distance of a data-generating process from a parametric model, we
introduce for every interval I; € .# and every parameter § € © the random quantity

AL®) =) A {g(X,), gl X.(O)]),

tel;

where 7 (v, v’) denotes the Kullback—Leibler distance between P, and P .. For CH models
with Gaussian innovations &, J# (v, v') = —0.5{log(v/v’) + 1 — v/v’}. In the parametric
case with X, = X;(0o), we clearly have A (6p) = 0. To characterize the ‘nearly parametric
case’, we introduce a {small modelling bias} (SMB) condition, which simply means that, for
some § € ©®, Ay (#) is bounded by a small constant with a high probability. Informally, this
means that the ‘true’ model can be well approximated on the interval /; by the parametric one
with the parameter 6. The best parametric fit (2.3) to the underlying model (2.2) on I can be
defined by minimizing the value EA;,(f) over # € ® and 6, can be viewed as its estimate.

The following theorem claims that the results on the accuracy of estimation given in Theorem
2.1 can be extended from the parametric case to the general non-parametric situation under the
SMB condition. Let Q(0 #) be any loss function for an estimate 0.

THEOREM 4.1. Let for some 0 € ® and some A > 0
EAL(0) < A. 4.1)
Then it holds for an estimate 0 constructed from the observations {Y;},c;, that
Elog(1+0(8,0)/E¢0(0.0)) <1+ A.

This general result applied to the quasi-MLE estimation with the loss function L 1(51, 9)
yields the following corollary.

COROLLARY 4.1. Let the SMB condition (4.1) hold for some interval I and @ € ©. Then
Elog(l +|L,@,, o)|r/m,(o)) <1+A,

where R, (0) is the parametric risk bound from (2.6).

This result shows that the estimation loss |L 1(51, #)|"” normalized by the parametric risk
R, (0) is stochastically bounded by a constant proportional to e®. If A is not large, this result
extends the parametric risk bound (Theorem 2.1) to the non-parametric situation under the SMB
condition. Another implication of Corollary 4.1 is that the confidence set built for the parametric
model (Corollary 2.1) continues to hold, with a slightly smaller coverage probability, under
SMB.

4.2. The ‘oracle’ choice and the ‘oracle’ result

Corollary 4.1 suggests that the ‘optimal’ or ‘oracle’ choice of the interval I, from the set
I,...,Ig can be defined as the largest interval for which the SMB condition (4.1) still holds
(for a given small A > 0). For such an interval, one can neglect deviations of the underlying
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process from a parametric model with a fixed parameter 6. Therefore, we say that the choice
k* is the ‘oracle’ choice if there exists # € ® such that

EAL.(0) <A 4.2)

for a fixed A > 0 and that (4.2) does not hold for k > k*. Unfortunately, the underlying process
X, and, hence, the value A;, is unknown and the oracle choice cannot be implemented. The
proposed adaptive procedure tries to mimic this oracle on the basis of available data using the
sequential test of homogeneity. The final oracle result claims that the adaptive estimate provides
the same (in order) accuracy as the oracle one.

By construction, the pointwise adaptive procedure described in Section 3 provides the
prescribed performance if the underlying process follows the parametric model (2.2). Now,
condition (3.4) combined with Theorem 4.1 implies similar performance in the first k* steps
of the adaptive estimation procedure.

THEOREM 4.2. Let @ € ® and A > 0 be such that EA ;. (0) < A for some k* < K. Also let
maxg<i+ Eg|L1(0;,,0)|" < R.(0). Then

L1 (62, 0)[
%,(0)

|Ly,. (élk* ,05.)

E10g<l+ R0 )Sp—}-A.

>§1+A and E10g<l+

Similarly to the parametric case, under the SMB condition EAj.(6) < A, any choice k< k*
can be viewed as a false alarm. Theorem 4.2 documents that the loss induced by such a false
alarm~ at the first k* steps and measured by L;,. (0., 0 1) 1s of the same magnitude as the loss
L;.(0;,.,0) of estimating the parameter 6 from the SMB (4.2) by 0,,.. Thus, under (4.2) the
adaptive estimation during steps k < k* does not induce larger errors into estimation than the
quasi-MLE estimation itself.

For further steps of the algorithm with k > k*, where (4.2) does not hold, the value A’ =
E A} (0) can be large and the bound for the risk becomes meaningless due to the factor e’ To
establish the result about the quality of the final estimate, we thus have to show that the quality
of estimation cannot be destroyed at the steps k > k*. The next ‘oracle’ result states the final
quality of our adaptive estimate 0.

THEOREM 4.3. Let EA;.(0) < A for some k* < K.Then Ly, (0., 0)1(k > k*) < 3~ yielding

|L1k* (51,(* 5 é) |r 3;;*
E1 1 —_— A +1 1 .
°g< M) )5” * °g< +9w>>

Due to this result, the value L, (5&* , 9) is stochastically bounded. This can be interpreted
as the oracle property of @ because it means that the adaptive estimate 6 belongs with a high
probability to the confidence set of the oracle estimate 6,. .

5. SIMULATION STUDY

In the last two sections, we present simulation study (Section 5) and real data applications
(Section 6) documenting the performance of the proposed adaptive estimation procedure. To
verify the practical applicability of the method in a complex setting, we concentrate on the
volatility estimation using parametric and adaptive pointwise estimation of constant volatility,
ARCH(1) and GARCH(1,1) models (for the sake of brevity, referred to as the local constant,
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local ARCH and local GARCH). The reason is that the estimation of GARCH models requires
generally hundreds of observations for a reasonable quality of estimation, which puts the adaptive
procedure working with samples as small as 10 or 20 observations to a hard test. Additionally, the
critical values obtained as described in Section 3.3 depend on the underlying parameter values in
the case of (G)ARCH.

Here we first study the finite-sample critical values for the test of homogeneity by means
of Monte Carlo simulations and discuss practical implementation details (Section 5.1). Later,
we demonstrate the performance of the proposed adaptive pointwise estimation procedure in
simulated samples (Section 5.2). Note that, throughout this section, we identify the GARCH(1,1)
models by triplets (w, «, 8): e.g. (1, 0.1, 0.3)-model. Constant volatility and ARCH(1) are then
indicated by « = 8 = 0 and B = 0, respectively. The GARCH estimation is done using the
GARCH 3.0 package (Laurent and Peters, 2006) and Ox 3.30 (Doornik, 2002). Finally, since the
focus is on modelling the volatility o2 in (2.2), the performance measurement and comparison
of all models at time ¢ is done by the absolute prediction error (PE) of the volatility process
over a prediction horizon . : APE(t) = ), ,» |o,2+h — 6t2+h|,| /17|, where 6,2%', represents
the volatility prediction by a particular model.

5.1. Finite-sample critical values for the test of homogeneity

A practical application of the pointwise adaptive procedure requires critical values for the test
of local homogeneity of a time series. Since they are obtained under the null hypothesis that
a chosen parametric model (locally) describes the data, see Section 3, we need to obtain the
critical values for the constant volatility, ARCH(1) and GARCH(1,1) models. Furthermore, for
given r and p, the average risk (3.4) between the adaptive and oracle estimates can be bounded
for critical values that linearly depend on the logarithm of interval length |Ii| : 3(|Ik]) = 3 =
C + Dlog(|Ix|) (see Theorem 3.1). As described in Section 3.3, we choose here the smallest C
satisfying (3.5) and the corresponding minimum admissible value D = D(C) < 0 that guarantees
the conditions (3.4).

We simulated the critical values for ARCH(1) and GARCH(1,1) models with different values
of underlying parameters; see Table 1 for the critical values corresponding tor = 1 and p = 1.
Their simulation was performed sequentially on intervals with lengths ranging from || = mo =
10 to |1 x| = 570 observations using a geometric grid with multiplier a = 1.25; see Section 3.2.
(The results are, however, not sensitive to the choice of a.)

Unfortunately, the critical values depend on the parameters of the underlying (G)ARCH
model (in contrast to the constant-volatility model). They generally seem to increase with the
values of the ARCH and GARCH parameters keeping the other one fixed; see Table 1. To deal
with this dependence on the underlying model parameters, we propose to choose the largest
(most conservative) critical values corresponding to any estimated parameter in the analysed
data. For example, if the largest estimated parameters of GARCH(1,1) are @ = 0.3 and 8 = 0.8,
one should use 3(10) = 26.4 and 3(570) = 14.5, which are the largest critical values for models
with « = 0.3, < 0.8 and with @ < 0.3, 8 = 0.8. (The proposed procedure is, however, not
overly sensitive to this choice, as we shall see later.)

Finally, let us have a look at the influence of the tuning constants r and p in (3.4) on the critical
values for several selected models (Table 2). The influence is significant, but can be classified in
the following way. Whereas increasing p generally leads to an overall decrease of critical values
(cf. Theorem 3.1), but primarily for the longer intervals, increasing r leads to an increase of
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Table 1. Critical values 3, = 3(|I;|) of the supremum LR test.

314D d
o |1 ¢l 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 10 155 15.5 16.4 16.8 17.9 17.3 17.0 17.0 16.9 16.0
570 5.5 7.2 7.0 7.0 7.5 7.5 7.4 7.3 7.0 6.7
0.1 10 163 14.5 15.1 15.9 16.4 15.9 16.1 16.0 16.0
570 8.6 9.0 9.1 9.6 9.8 10.7 11.5 12.5 14.0
0.2 10 16.7 15.2 15.7 16.2 16.9 18.9 20.1 25.1
570 9.4 10.6 11.2 11.4 11.4 12.5 13.3 14.2
0.3 10 185 16.4 16.7 16.9 18.1 21.8 26.4
570 9.7 10.8 12.0 12.4 12.9 13.5 14.5
0.4 10 221 16.5 18.3 19.3 22.8 30.9
570 9.9 12.0 13.0 13.4 13.9 14.7
0.5 10 262 19.1 19.5 254 38.1
570 10.7 12.6 13.8 14.0 14.6
0.6 10 33.0 22.8 259 324
570 127 12.7 13.9 15.3
0.7 10 41.1 24.8 29.1
570 16.8 14.7 16.1
0.8 10 66.2 26.4
570 315 15.8
0.9 10 88.6
570 60.9

Note:w=1,r=1andp=1.

critical values mainly for the shorter intervals; cf. (3.4). In simulations and real applications, we
verified that a fixed choice such as r = 1 and p = 1 performs well. To optimize the performance
of the adaptive methods, one can however determine constants r and p in a data-dependent way
as described in Section 3.3. We use here this strategy for a small grid of € {0.5, 1.0} and p €
{0.5, 1.0, 1.5} and find globally optimal r and p. We will document, though, that the differences
in the average absolute PE (3.6) for various values of r and p are relatively small.

5.2. Simulation study

We aim (i) to examine how well the proposed estimation method is able to adapt to long stable
(time-homogeneous) periods and to less stable periods with more frequent volatility changes and
(ii) to see which adaptively estimated model—local volatility, local ARCH or local GARCH—
performs best in different regimes. To this end, we simulated 100 series from two change-point
GARCH models with a low GARCH effect (w, 0.2, 0.1) and a high GARCH effect (w, 0.2, 0.7).
Changes in constant w are spread over a time span of 1000 days; see Figure 1. There is a long
stable period at the beginning (500 days = 2 years) and end (250 days = 1 year) of time series
with several volatility changes between them.
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Table 2. Critical values 3(]/;|) of the supremum LR test for various values r and p.

Model (w, «, B) (0.1, 0.0, 0.0) (0.1,0.2,0.0) (0.1,0.1,0.8)
r o 3(10) 3(570) 3(10) 3(570) 3(10) 3(570)
1.0 0.5 16.3 7.3 17.4 11.2 18.7 17.1
1.0 1.0 154 55 16.7 94 16.0 14.0
1.0 1.5 14.9 4.5 15.9 8.3 15.2 134
0.5 0.5 10.7 7.1 11.7 10.1 11.7 10.1
0.5 1.0 8.9 5.5 10.3 8.5 10.3 8.5
0.5 1.5 7.7 4.6 9.3 7.5 9.3 7.5
e e
. .
=t o =f
0 200 400 600 800 1000 0 200 300 600 800 1000
Time Time

Figure 1. GARCH(1,1) parameters of low (left panel) and high (right panel) GARCH-effect simulations.

5.2.1. Low GARCH effect. Let us now discuss simulation results from the low GARCH-effect
model. First, we mention the effect of structural changes in time series on the parameter
estimation. Later, we compare the performance of all methods in terms of absolute PE.

Estimating a parametric model from data containing a change point will necessarily lead
to various biases in estimation. For example, Hillebrand (2005) demonstrates that a change
in volatility level @ within a sample drives the GARCH parameter 8 very close to 1. This is
confirmed when we analyse the parameter estimates for parametric and adaptive GARCH at
each time point # € [250, 1000] as depicted on Figure 2, where the mean (solid line), the 10%
and 90% quantiles (dotted lines), and the true values (thick dotted line) of the model parameters
are provided. The parametric estimates are consistent before breaks starting at + = 500, but the
GARCH parameter 8 becomes inconsistent and converges to 1 once data contain breaks, ¢ > 500.
The locally adaptive estimates are similar to parametric ones before the breaks and become rather
imprecise after the first change point, but they are not too far from the true value on average and
stay consistent (in the sense that the confidence interval covers the true values). The low precision
of estimation can be attributed to rather short intervals used for estimation (cf. Figure 2 for t <
500).

Next, we would like to compare the performance of parametric and adaptive estimation
methods by means of absolute PE: first for the prediction horizon of one day, ¢ = {1}, and
later for prediction two weeks ahead, 7 = {1, ..., 10}. To make the results easier to decipher,
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Figure 2. Parameter values estimated by the parametric (top row) and locally adaptive (bottom row)
GARCH methods.

we present in what follows PEs averaged over the past month (21 days). The absolute-PE
criterion was also used to determine the optimal values of parameters r and p (jointly across
all simulations and for all ¢+ = 250, ..., 1000). The results differ for different models: r = 0.5,
p = 0.5 for local constant, r = 0.5, p = 1.0 for local ARCH, and r = 0.5, p = 1.5 for local
GARCH.

Let us now compare the adaptively estimated local constant, local ARCH and local GARCH
models with the parametric GARCH, which is the best performing parametric model in this
set-up. Forecasting one period ahead, the average PEs for all methods and the median lengths
of the selected time-homogeneous intervals for adaptive methods are presented on Figure 3 for
t € [250, 1000]. First of all, let us observe in the case of the simplest local constant model that
even the (median) estimated interval of homogeneity at the end of the first homogeneous period,
1 <t < 500, can actually be shorter than the true one. The reason is that the probability of some
5 or 10 subsequent observations used as /( having their sample variance very different from the
underlying one increases with the length of the series.

Next, one can notice that all methods are sensitive to jumps in volatility, especially to the
first one at ¢t = 500: the parametric ones because they ignore a structural break, the adaptive ones
because they use a small amount of data after a structural change. In general, the local GARCH
performs rather similarly to the parametric GARCH for t < 650 because it uses all historical
data. After initial volatility jumps, the local GARCH, however, outperforms the parametric one,
650 < t < 775. Following the last jump at + = 750, where the volatility level returns closer to
the initial one, the parametric GARCH is best of all methods for some time, 775 < ¢t < 850,
until the adaptive estimation procedure detects the (last) break, and after it, ‘collects’ enough
observations for estimation. Then the local GARCH and local ARCH become preferable to the
parametric model again, 850 < t. Interestingly, the local ARCH approximation performs almost
as well as both GARCH methods and even outperforms them shortly after structural breaks
(except for break at r = 750), 600 < t < 775 and 850 < ¢ < 1000. Finally, the local constant
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Figure 3. Left-hand panel: Low GARCH-effect simulations—absolute prediction errors one period ahead.
Right-hand panel: The median lengths of the adaptively selected intervals.
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Figure 4. Left-hand panel: Low GARCH-effect simulations—absolute prediction errors 10 periods ahead.
Right-hand panel: High GARCH-effect simulations—absolute prediction errors one period ahead.

volatility is lacking behind the other two adaptive methods whenever there is a longer time period
without a structural break, but keeps up with them in periods with frequent volatility changes,
500 < ¢ < 650. All these observations can be documented also by the absolute PE averaged over
the whole period 250 < ¢ < 1000 (we refer to it as the global PE from now on): the smallest PE
is achieved by local ARCH (0.075), then by local GARCH (0.079) and the worst result is from
local constant (0.094).

Additionally, all models are compared using the forecasting horizon of 10 days. Most of the
results are the same (e.g. parameter estimates) or similar (e.g. absolute PE) to forecasting one
period ahead due to the fact that all models rely on at most one past observation. The absolute
PEs averaged over one month are summarized for ¢+ € [250, 1000] on Figure 4, which reveals
that the difference between local constant volatility, local ARCH and local GARCH models are
smaller in this case. As a result, it is interesting to note that: (i) the local constant model becomes
a viable alternative to the other methods (it has in fact the smallest global PE 0.107 from all
adaptive methods) and (ii) the local ARCH model still outperforms the local GARCH (global

© The Author(s). Journal compilation © Royal Economic Society 2009.



Adaptive estimation in CH models 265

PEs are 0.108 and 0.116, respectively) even though the underlying model is GARCH (with a
small value of 8 = 0.1 however).

5.2.2. High GARCH effect. Let us now discuss the high GARCH-effect model. One would
expect much more prevalent behaviour of both GARCH models, since the underlying GARCH
parameter is higher and the changes in the volatility level w are likely to be small compared to
overall volatility fluctuations. Note that the optimal values of tuning constant r and p differ from
the low GARCH-effect simulations: » = 0.5, p = 1.5 for local constant; r = 0.5, p = 1.5 for
local ARCH; and r = 1.0, p = 0.5 for local GARCH.

Comparing the absolute PEs for the one-period-ahead forecast at each time point (Figure 4)
indicates that the adaptive and parametric GARCH estimations perform approximately equally
well. On the other hand, both the parametric and adaptively estimated ARCH and constant
volatility models are lacking significantly. Unreported results confirm, similarly to the low
GARCH-effect simulations, that the differences among method are much smaller once a longer
prediction horizon of 10 days is used.

6. APPLICATIONS

The proposed adaptive pointwise estimation method will be now applied to real time series
consisting of the log-returns of the DAX and S&P 500 stock indices (Sections 6.1 and 6.2).
We will again summarize the results concerning both parametric and adaptive methods by
the absolute PEs one day ahead averaged over one month. As a benchmark, we employ the
parametric GARCH estimated using the last two years of data (500 observations). Since we
however do not have the underlying volatility process now, it is approximated by squared returns.
Despite being noisy, this approximation is unbiased and provides usually the correct ranking of
methods (Andersen and Bollerslev, 1998).

6.1. DAX analysis

Let us now analyse the log-returns of the German stock index DAX from January 1990 till
December 2002 depicted at the top of Figure 5. Several periods interesting for comparing the
performance of parametric and adaptive pointwise estimates are selected since results for the
whole period might be hard to decipher at once.

First, consider the estimation results for years 1991 to 1996. Contrary to later periods,
there are structural breaks practically immediately detected by all adaptive methods (July 1991
and June 1992; cf. Stapf and Werner, 2003). For the local GARCH, this differs from less
pronounced structural changes discussed later, which are typically detected only with delays
of several months. One additional break detected by all methods occurs in October 1994. Note
that parameters r and p were r = 0.5, p = 1.5 for local constant, »r = 1.0, p = 1.0 for local
ARCH, and r = 0.5, p = 1.5 for local GARCH.

The results for the period 1991-96 are summarized in the left bottom panel of Figure 5, which
depicts the PEs of each adaptive method relative to the PEs of parametric GARCH. First, one can
notice that the local constant and local ARCH approximations are preferable till July 1991, where
we have less than 500 observations. After the detection of the structural change in June 1991, all
adaptive methods are shortly worse than the parametric GARCH due to the limited amount of
data used, but then outperform the parametric GARCH till the next structural break in the second
half of 1992. A similar behaviour can be observed after the break detected in October 1994,
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Figure 5. Top panel: The log-returns of DAX series. Bottom panels: The absolute prediction errors of the
pointwise adaptive methods relative to the parametric GARCH errors for predictions one period ahead.

where the local constant and local ARCH models actually outperform both the parametric and
adaptive GARCH. In the other parts of the data, the performance of all methods is approximately
the same, and even though the adaptive GARCH is overall better than the parametric one, the
most interesting fact is that the adaptively estimated local constant and local ARCH models
perform equally well. In terms of the global PE, the local constant is best (0.829), followed by
the local ARCH (0.844) and local GARCH (0.869). This closely corresponds to our findings in
simulation study with low GARCH effect in Section 5.2. Note that for other choices of r and p,
the global PEs are at most 0.835 and 0.851 for the local constant and local ARCH, respectively.
This indicates low sensitivity to the choice of these parameters.

Next, we discuss the estimation results for years 1999 to 2001 (r = 1.0 for all methods
now). After the financial markets were hit by the Asian crisis in 1997 and the Russian crisis in
1998, the market headed to a more stable state in year 1999. The adaptive methods detected the
structural breaks in the autumn of 1997 and 1998. The local GARCH detected them, however,
with more than a one-year delay—only during 1999. The results in Figure 5 (right bottom panel)
confirm that the benefits of the adaptive GARCH are practically negligible compared to the
parametric GARCH in such a case. On the other hand, the local constant and ARCH methods
perform slightly better than both GARCH methods during the first presented year (July 1999
to June 2000). From July 2000, the situation becomes just the opposite and the performance
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Figure 6. Left-hand panel: The log-returns of S&P 500. Right-hand panel: The absolute prediction errors
of the pointwise adaptive methods relative to the parametric GARCH errors for predictions one period
ahead.

of the GARCH models is better (parametric and adaptive GARCH estimates are practically the
same in this period since the last detected structural change occurred approximately two years
ago). Together with previous results, this opens the question of model selection among adaptive
procedures as different parametric approximations might be preferred in different time periods.
Judging by the global PE, the local ARCH provides slightly better predictions on average than
the local constant and local GARCH—despite the ‘peak’ of the PE ratio in the second half of
year 2000 (see Figure 5). This, however, depends on the specific choice of loss A in (3.6).

Finally, let us mention that the relatively similar behaviour of the local constant and local
ARCH methods is probably due to the use of ARCH(1) model, which is not sufficient to capture
more complex time developments. Hence, ARCH(p) might be a more appropriate interim step
between the local constant and GARCH models.

6.2. S&P 500

Now we turn our attention to more recent data regarding the S&P 500 stock index considered
from January 2000 to December 2004; see Figure 6. This period is marked by many substantial
events affecting the financial markets, ranging from September 11, 2001, terrorist attacks and
the war in Iraq (2003) to the crash of the technology stock-market bubble (2000-02). For the
sake of simplicity, a particular time period is again selected: year 2003 representing a more
volatile period (the war in Iraq) and year 2004 being a less volatile period. All adaptive methods
detected rather quickly a structural break at the beginning of 2003, and additionally they detected
a structural break in the second half of 2003, although the adaptive GARCH did so with a delay
of more than eight months. The ratios of monthly PE of all adaptive methods to those of the
parametric GARCH from January 2003 to December 2004 are summarized on Figure 6 (r = 0.5
and p = 1.5 for all methods).
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In the beginning of year 2003, corresponding with 2002 to a more volatile period (see
Figure 6), all adaptive methods perform as well as the parametric GARCH. In the middle of year
2003, the local constant and local ARCH models are able to detect another structural change
(possibly less pronounced than the one at the beginning of 2003 because of its late detection
by the adaptive GARCH). Around this period, the local ARCH shortly performs worse than
the parametric GARCH. From the end of 2003 and in year 2004, all adaptive methods starts
to outperform the parametric GARCH, where the reduction of the PEs due to the adaptive
estimation amounts to 20% on average. All adaptive pointwise estimates exhibit a short period
of instability in the first months of 2004, where their performance temporarily worsens to the
level of parametric GARCH. This corresponds to ‘uncertainty’ of the adaptive methods about
the length of the interval of homogeneity. After this short period, the performance of all adaptive
methods is comparable, although the local constant performs overall best of all methods (closely
followed by local ARCH) judged by the global PE.

Similarly to the low GARCH-effect simulations and to the analysis of DAX in Section 6.1,
it seems that the benefit of pointwise adaptive estimation is most pronounced during periods of
stability that follow an unstable period (i.e. year 2004) rather than during a presumably rapidly
changing environment. The reason is that, despite possible inconsistency of parametric methods
under change points, the adaptive methods tend to have a rather large variance when the intervals
of time homogeneity become very short.

7. CONCLUSION

We extend the idea of adaptive pointwise estimation to parametric CH models. In the specific case
of ARCH and GARCH, which represent particularly difficult cases due to high data demands and
dependence of critical values on underlying parameters, we demonstrate the use and feasibility
of the proposed procedure: on the one hand, the adaptive procedure, which itself depends on
a number of auxiliary parameters, is shown to be rather insensitive to their choice, and on the
other hand, it facilitates the global selection of these parameters by means of fit or forecasting
criteria. The real-data applications highlight the flexibility of the proposed time-inhomogeneous
models since even simple varying-coefficients models such as constant volatility and ARCH(1)
can outperform standard parametric methods such as GARCH(1,1). Finally, the relatively small
differences among the adaptive estimates based on different parametric approximations indicate
that, in the context of adaptive pointwise estimation, it is sufficient to concentrate on simpler and
less data-intensive models such as ARCH(p), 0 < p < 3, to achieve good forecasts.

ACKNOWLEDGMENTS

This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649
‘Economic Risk’.

REFERENCES

Andersen, T. G. and T. Bollerslev (1998). Answering the skeptics: yes, standard volatility models do provide
accurate forecasts. International Economic Review 39, 885-905.

© The Author(s). Journal compilation © Royal Economic Society 2009.



Adaptive estimation in CH models 269

Andreou, E. and E. Ghysels (2002). Detecting multiple breaks in financial market volatility dynamics.
Journal of Applied Econometrics 17, 579-600.

Andreou, E. and E. Ghysels (2006). Monitoring disruptions in financial markets. Journal of Econometrics
135,77-124.

Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point.
Econometrica 61, 821-56.

Bai, J. and P. Perron (1998). Estimating and testing linear models with multiple structural changes.
Econometrica 66, 47-78.

Beltratti, A. and C. Morana (2004). Structural change and long-range dependence in volatility of exchange
rates: either, neither or both? Journal of Empirical Finance 11, 629-58.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics
31,307-27.

Cai, Z.,J. Fan and Q. Yao (2000). Functional coefficient regression models for nonlinear time series. Journal
of the American Statistical Association 95, 941-56.

Chen, J. and A. K. Gupta (1997). Testing and locating variance changepoints with application to stock
prices. Journal of the American Statistical Association 92, 739-47.

Chen, R. and R. J. Tsay (1993). Functional-coefficient autoregressive models. Journal of the American
Statistical Association 88, 298-308.

Cheng, M.-Y., J. Fan and V. Spokoiny (2003). Dynamic nonparametric filtering with application to volatility
estimation. In M. G. Akritas and D. N. Politis (Eds.), Recent Advances and Trends in Nonparametric
Statistics, 315-33. Amsterdam: Elsevier.

Diebold, F. X. and A. Inoue (2001). Long memory and regime switching. Journal of Econometrics 105,
131-59.

Doornik, J. A. (2002). Object-oriented programming in econometrics and statistics using Ox: a comparison
with C++, Java and C#. In S. S. Nielsen (Ed.), Programming Languages and Systems in Computational
Economics and Finance, 115-47. Dordrecht: Kluwer.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United
Kingdom inflation. Econometrica 50, 987-1008.

Fan, J. and W. Zhang (2008). Statistical models with varying coefficient models. Statistics and Its Interface
1, 179-95.

Francq, C. and J.-M. Zakoian (2007). Quasi-maximum likelihood estimation in GARCH processes
when some coefficients are equal to zero. Stochastic Processes and their Applications 117, 1265—
84.

Glosten, L. R., R. Jagannathan and D. E. Runkle (1993). On the relation between the expected value and
the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779-801.

Hansen, B. and S.-W. Lee (1994). Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood
estimator. Econometric Theory 10, 29-53.

Hirdle, W., H. Herwatz and V. Spokoiny (2003). Time inhomogeneous multiple volatility modelling.
Journal of Financial Econometrics 1, 55-99.

Herwatz, H. and H. E. Reimers (2001). Empirical modeling of the DEM/USD and DEM/JPY foreign
exchange rate: structural shifts in GARCH-models and their implications. 2001-83, Discussion Paper
SFB 373, Humboldt-Univerzitit zu Berlin, Germany.

Hillebrand, E. (2005). Neglecting parameter changes in GARCH models. Journal of Econometrics 129,
121-38.

Kokoszka, P. and R. Leipus (2000). Change-point estimation in ARCH models. Bernoulli 6, 513-39.

Laurent, S. and J.-P. Peters (2006). G@RCH 4.2, Estimating and Forecasting ARCH Models. London:
Timberlake Consultants Press.

© The Author(s). Journal compilation © Royal Economic Society 2009.



270 P. Cizek, W. Héirdle and V. Spokoiny

Mercurio, D. and V. Spokoiny (2004). Statistical inference for time-inhomogeneous volatility models.
Annals of Statistics 32, 577-602.

Mikosch, T. and C. Starica (1999). Change of structure in financial time series, long range dependence
and the GARCH model. Working Paper, Department of Statistics, University of Pennsylvania. See
http://citeseer.ist.psu.edu/mikosch99change.html.

Mikosch, T. and C. Starica (2004). Changes of structure in financial time series and the GARCH model.
Revstat Statistical Journal 2, 41-73.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59,
347-70.

Pesaran, M. H. and A. Timmermann (2004). How costly is it to ignore breaks when forecasting the direction
of a time series? International Journal of Forecasting 20, 411-25.

Sentana, E. (1995). Quadratic ARCH models. Review of Economic Studies 62, 639-61.

Spokoiny, V. (1998). Estimation of a function with discontinuities via local polynomial fit with an adaptive
window choice. Annals of Statistics 26, 1356-78.

Spokoiny, V. (2009a). Multiscale local change-point detection with applications to value-at-risk. Annals of
Statistics 37, 1405-36.

Spokoiny, V. (2009b). Parameter estimation in time series analysis. WIAS Preprint No. 1404, Weierstrass
Institute for Applied Analysis and Stochastics, Berlin, Germany.

Stapf, J. and T. Werner (2003). How wacky is DAX? The changing structure of German stock market
volatility. Discussion Paper 2003/18, Deutsche Bundesbank, Germany.

Taylor, S. J. (1986). Modeling Financial Time Series. Chichester: Wiley.

APPENDIX: PROOFS

Proof of Corollary 2.1: Given the choice of 3,, it directly follows from (2.5). g

Proof of Theorem 3.1: Consider the event &, = {I = I,_,} for some k < K. This particularly means that
I, is accepted while I, = [T — m; + 1, T]is rejected; i.e. there is I’ = [/, T] C I and t € J(I;) such
that Ty, ; > 3x = 35, o7a,)- Forevery fixedt € S (Iy)and J = I \ [t + 1, T],J¢ = [t + 1, T], it holds by
definition of 7T;, . that

The <L;j@))+Lye(@,0) =L 00)=1L,@,,00)+ L@, 8).

This implies by Theorem 2.1 that Py (T}, . > 23) < exp{e(}, 89) — A3}. Now,

T—mg T—mp+1 2

Po(B)= Y D 2expleChb0) = 231/2) < 255 expleCh. B0) = 23¢/2).

t'=T—mp+1 t=t'+1
Next, by the Cauchy—Schwartz inequality

K
Eoy|Li, @1 01 = E L1, @1, i)l 1)

k=1
K

< Y EPIL1 01 0001 PRl
k=1

Under the conditions of Theorem 2.1, it follows similarly to (2.6) that
Eg L1 01, 0i)”" < (mi /mi_1) 9R5,(80)
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for some constant R; (0y) and k = 1,..., K, and therefore,

K
Eg L1 (01, 0)" < 195,001 my(mg fmy1) expfe(r, 00)/2 — 3i/4}

k=1
and the result follows by simple algebra provided that a,;1/4 > 1 and a,A/4 > 2. ]

LEMMA A.1. Let P and P be two measures such that the Kullback—Leibler divergence E log(d P /d Py),
satisfies Elog(dP/dP,) < A < o0o. Then for any random variable ¢ with E{ < oo, it holds that
Elog(14+¢) < A+ Ey.

Proof: By simple algebra one can check that for any fixed y the maximum of the function f(x) = xy —
x log x + x is attained at x = ¢* leading to the inequality xy < x logx — x + ¢”. Using this inequality and
the representation E log(1 + ¢) = Eo{Z log(1 + ¢)} with Z = d P /d P, we obtain

Elog(1+¢) = Eo{Zlog(1 +¢)} < Eo(ZlogZ — Z) + Eo(1 +¢)
It remains to note that EqZ = 1 and Ey(Z log Z) = E log Z. O
Proof of Theorem 4.1: Lemma A.1 applied with ¢ = Q((;’, 0)/E gg(@, 0) yields the result in the view of

plY:, g(X))]

Ey(Z1glogZ;9) = ElogZ1g = E Y _ log DY, (X0
ts t

tel

p[Y,,g(X,)]
- E Ellog——————|.%,_,t = EA.,(0).
D Elog i 1®) O

tel

Proof of Corollary 4.1: It is Theorem 4.1 formulated for o(6’, ) = L;(¢’, ). O

Proof of Theorem 4.2: The first inequality follows from Corollary 4.1, the second one from condition
(3.4) and the property x > log x for x > 0. ]

Proof of Theorem 4.3: Let k = k > k*. This means that I is not rejected as homogeneous. Next, we
shothhathor every k > k* the inequality T}, . < T;, o) < 3 With Tt =T —mp =T — |I;+| implies
L. (04,,05) < 3. Indeed with J = [;\ I;~, this means that, by construction, 3; < 3+ for k > k* and

=Ty =Ly, (51k* , 5&) + Lj(gj, 5&) > Ly, (51,(*,6@)-
It remains to note that
|Lpe @1 0)" < |Lyp B 01,0 1k < k) + 571 > k),

which obviously yields the assertion. O

© The Author(s). Journal compilation © Royal Economic Society 2009.
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Abstract Dynamic semiparametric factor models (DSFM) simultaneously smooth in
space and are parametric in time, approximating complex dynamic structures by time
invariant basis functions and low dimensional time series. In contrast to traditional
dimension reduction techniques, DSFM allows the access of the dynamics embedded
in high dimensional data through the lower dimensional time series. In this paper, we
study the time behavior of risk assessments from investors facing random financial
payoffs. We use DSFM to estimate risk neutral densities from a dataset of option
prices on the German stock index DAX. The dynamics and term structure of risk
neutral densities are investigated by Vector Autoregressive (VAR) methods applied
on the estimated lower dimensional time series.

Keywords Dynamic factor models - Dimension reduction - Risk neutral density

1 Introduction

Large datasets containing various samples of high dimensional observations became
common in diverse fields of science with advances in measurement and computa-
tional techniques. In many applications the data come in curves, i.e., as observa-
tions of discretized values of smooth random functions, presenting evident functional
structure. In these cases, it is natural to perform statistical inference using functional
data analysis techniques.
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Consider a dataset {(Y;;, X 1)}, j=1,..., J,t =1,...,T, containing noisy sam-
ples of a real valued smooth random function F € Ly (X)), X C RY, d € N, evaluated
at unbalanced design points as

Yii =F(Xj1) +¢ej, (L.1)

where ¢;; denote unknown zero-mean error terms and {J;} are realizations of F.
Each sample &; ={(Y;s, X;1): j=1,...,J;},t =1,..., T, may correspond to ob-
servations on, e.g., different individuals, time periods or experimental conditions.
Examples in biomedicine are measurements of growth curves and brain potentials
across individuals, see Kneip and Gasser (1992) and Gasser and Kneip (1995), in
econometrics such are expenditures across households and implied volatilities across
trading days, see Kneip (1994) and Fengler et al. (2007).

A large branch of functional data analysis concentrates on approximating J by
lower dimensional objects. Distributions on function spaces are highly complex ob-
jects and dimension reduction techniques present a feasible and interpretable ap-
proach for investigating them. Functional principal components analysis (FPCA),
based on the Karhunen—Loe¢ve expansion of F is the most prominent and widely
used dimension reduction technique, see Rice and Silverman (1991) and Ramsay and
Dalzell (1991).

Asymptotic results on FPCA have been obtained by Dauxois et al. (1982) and
Hall et al. (2006) for observed functional data {;}. For non-observable data, the
standard approach is to perform FPCA on presmoothed {.7?,}, see Benko et al. (2009)
for recent developments. In practical applications, however, presmoothing may suffer
from design-sparseness, see Cont and Fonseca (2002) and Fengler et al. (2007).

In general lines, previous literature combines PCA and dimension reduction with
presmoothing for effective dimensional space at fixed time horizon. Various applica-
tions, however, involve the dynamics of the unobserved random functions, calling for
dimension reduction techniques that smooth in space and are parametric in time.

In this paper, we investigate the dynamics of {F;} by reducing dimensionality
without presmoothing. F; is considered as a linear combination of L 4+ 1 <« T un-

known smooth basis functions m; € L>(X),l =0, ..., L:
L
FoXj) =Y Zimi(X o). (12)
=0
where Z; = (Zy, ..., Z L[)T is an unobservable random vector taking values on

RE+! with Zo, = 1. Defining the tuple of functions m = (mq, ...,my) ", the Dy-
namic Semiparametric Factor Model (DSFM) reads as

Yio=Z'm(Xj1) +ejr. (1.3)

The basis functions are estimated nonparametrically avoiding specification issues.
Their estimation is performed simultaneously with Z;, i.e., the smoothing is trans-
ferred directly to m; and design-sparseness issues become secondary. In addition, the
random process {Z;} is allowed to be non-stationary. Park et al. (2009) show that
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under (1.2) the autocorrelation structures of {Z} and {Z,} are asymptotically equiva-
lent; therefore, no loss is incurred by inferring the dynamics from the estimated {Z},
and there is no payment for not knowing the true {Z;}. This result is essential for in-
vestigating cointegration between dynamical systems, see Briiggemann et al. (2008)
for an econometric application.

Note that the common regressors model, Kneip (1994), also represents unobserv-
able functions by (1.2). There are, however, crucial differences between the DSFM
and common regressors:

1. In DSFM, {Z,} is a (non-stationary) random process with autocovariance structure
inferable from {Z}.

2. DSFM is implementable in unbalanced designs.

3. DSEM avoids presmoothing by transferring the smoothing to the basis functions.

Thus DSFM goes beyond traditional dimension reductions techniques (FPCA and
common regressors) as it captures structural dynamics embedded in the observations.
In economics, there is substantial interest in the behavior (over time) of investors
facing risks and its relation to macroeconomic and financial indicators. The knowl-
edge about the dynamics of risk assessments from investors is essential for many
applications ranging from pricing of illiquid instruments to risk management.
Option prices contain information on risk assessments from investors facing future
financial payoffs, summarized in the risk neutral densities g, see Ait-Sahalia and
Lo (1998). An European call option with price C; at time 0 < ¢ < T, maturity date
T > 0 and strike K > 0 is a financial instrument that delivers the random payoff
(ST — K)T at time T where S, is the price of an underlying asset at time ¢. Breeden
and Litzenberger (1978) show that under no arbitrage assumptions the risk neutral
density is obtained from the European call price function C; through the relation

}’(T*I) 82Cl(sls r, K? T - t)
K2 K=sr

qr,T(sTlS) = e ) (1.4)

where r > 0 is interest rate, see Sect. 4 for details.

We estimate risk neutral densities based on observed intraday prices of calls on the
German stock index (DAX). Each observation consists of a price Y j; on a design point
Xt = (kjr, tjt)T where j =1, ..., J;, denote the transactions atday t =1,..., T, «
is the moneyness, a monotone transformation of strikes K, and T = T — ¢ is the time
to maturity associated with the option. Stock exchange regulations impose prespeci-
fied values for tradable maturities resulting in degenerated designs, see Fig. 1.

Following Ait-Sahalia and Lo (1998) and Fengler et al. (2007), call prices are
transformed into log-implied volatilities Y]t = log CBS (Yjs), where Cgs is the
Black—Scholes call price function defined in Sect. 4. These are assumed as discretized
noisy values of the log-implied volatility surface evaluated at {X j,}:

Yir =logVi(X ) +&jr, (1.5)

where V € Ly(X), X C R2 , is a smooth random function, called the implied volatil-
ity surface, and ¢ j; is an error term. The realizations {V,} are filtered out from the data
with DSFM and, remarking that Cgg is a function of K, the risk neutral densities are
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obtained by (1.4) with Cgg (9) as an estimator for C;. The dynamics of the estimated
{g: 7} is analyzed based on the autocorrelation structure of {Z,}.

In the sequel, the DSFM estimation method and its asymptotic properties are de-

scribed (Sect. 2). In Sect. 3, the risk neutral densities are defined, and in Sect. 4
they are estimated from observed prices of European call options on the DAX index
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(ODAX dataset). Their dynamic structure is then analyzed by vector autoregressive
models.

2 Estimation method

Consider a dataset {(Y;;, X))}, j=1,...,J,t=1,..., T, such that

L

Yi =Y Zumi(Xji) +€ji. @2.1)
=0

where ¢, are unknown error terms with E[ej;] =0 and E [8%1] < 00. The variables

Xi1,.... X1,J75 €1,15-..,€T,4; are independent. Here Z; = (Z(),,...,Zu)T is an
unobservable random vector taking values on REH! with Zg, = 1 and m; € Ly (X),
[ =0,..., L, are unknown smooth functions, called basis functions, mapping X €

R4, d € N, into real values.

Following Park et al. (2009), the basis functions are estimated using a series ex-
pansion. Defining K normed functions ¥ : X — R, fX wlf(x)dx =1,k=1,...,K,
and an ((L + 1) x K) matrix of coefficients I = (y;.x), Y.k € R, the tuple of func-
tions m = (my, ..., mL)T is approximated by FTl/f where ¥ = (Y, ..., wK)T. For
simplicity of notation, we assume that J; = J does not depend on ¢. We define the
least squares estimators as

(I, Z) = arg mlélezzz it —Z, Fw(x],)} (2.2)
t=1 j=1
where G =ML+ 1,K), Z={Ze M(T,L+1):Zy =1} and M(a, b) is the set
of all (a x b) matrices. The basis functions m are estimated by i = r V.
Theorem (2.1) gives the asymptotic behavior of the least squares estimators
(f , 2). See Park et al. (2009) for the proof.

Theorem 2.1 Suppose that DSFM holds and that (I, Z) is defined by (2.2). Under
Assumptions (A1)—(A8), see Appendix, it holds for K, J — oo:

1 P
LY ZT -z T = 0p (5 + )
1<t<T

See (AS) and (AS8) for the definitions of §x and &. Note that the model (2.1) is only
identifiable up to linear transformations. Consider an ((L + 1) x (L + 1)) regular
matrix B = (b;;) with by _31] and b,1 =¢; fori,j=1,...,L+ 1, where §;; =
1(i = j). Define Z} = B'Z,, m* = B~1m. Then from (1.2)

Fi(X)=2"m(X) =2 BB 'm(X)=Z*"m*(X)

for X € X'. On the other hand, it is always possible to chose orthonormal basis func-
tions by setting m* = Hm where H is an orthogonal matrix.
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Theorem (2.2) states that for any Z there exists a random matrix B such that
the autocovariances of {Z}, Z = BTft, are asymptotically equivalent to the auto-
covariances of the true unobservable {Z;}. This equivalence is transferred to classi-
cal estimation and testing procedures in the context of, e.g., vector autoregressive
models and, in particular, justifies inference based on {Z} when {Z;} is a VAR
process. Define for H; € Z,t=1,...,T: H=T"'Y."_ H,, H.;, = H, — H and
Hyo= (T~ Y0 He s H )™V He .

Theorem 2.2 Suppose that DSFM holds and that (I', Z) is defined by (2.2). Under
Assumptions (A1)—(A11), see Appendix, there exists a random matrix B such that for
h#0, hyg =max(l,1 —h), hy =max(T,T —h) and T — oo:

h h
1 u - - - 1 u 3
D ZeaZepin—Zen) =5 3 ZesZewn = Zen) = 0p(T712),
t=hy t=hy
where Z = BT/Z\,. Moreover,
| |
5 ST T -1/2
T D ZnaZy o~ T Y ZuiZ i =0p(T7'72).
t=hy t=hy

See Park et al. (2009) for the proof. Note that, in contrast to FPCA, DSFM does not
require stationarity neither for {Z;} nor for {&;}, but only weak assumptions on the
average behavior of Z;, like being a martingale difference, see Appendix.

3 Risk neutral density estimation
3.1 Risk neutral densities

Consider a financial market with one risky asset and one riskless bond with constant
interest rate » > 0. Let the price of the asset traded on the market be described by the
real valued random process {S;}, t = [0, T], T < oo, on a filtered probability space
(£2,{F:},P) with F; = o (Sy, u <t) and Fo = {0, £2}. Assume further no arbitrage in
the financial market in the sense that there exists a (risk neutral) probability measure
Q equivalent to IP under which the discounted price process {e~"’S;} is a martingale.

A European call option at strike K > 0 is a financial instrument that pays ¥ (St) =
(S — K)* at time T. By the risk-neutral valuation principle w.r.t. Q, the price C; of
a European call option at time ¢ is defined to be

Cr=e " TDEQw(S)|1F]. (3.1)

Assuming that {S;} is a Q-Markov process and denoting the P-density of Q by 7, the
price can be rewritten as

Cr=e "TDE[W(SHXL (S, SPISt],
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where E denotes the expectation under P and JCfT (S, S1) def. %l’;]ﬂ The condi-
tional risk neutral distribution of Sy is defined as

def. [
05,15, (ST < x1) % f KL (1. ) dPs, 15—, (32)
—0Q0

where Pg;|s,—s, is the conditional distribution of S7 under S; = s;. Specializing to
the following two factor model, we assume that the price process has dynamics given
by

dS; = S;u(Yy)dt + S0 (Y,)dW],

here W! is a standard P-Brownian motion and ¥ denotes an external economic factor
process modeled by

dY; = g(Y)) + pdW, +5dW?,

where p € [—1, 1] is some correlation factor, p def. V1 —p? and W? is a stan-
dard P-Brownian motion independent of W! under P. Market models of this type
are popular in mathematical finance and economics, in particular, if ¥ follows an
Ornstein—Uhlenbeck dynamics with mean reversion term g(y) = ¢(@ — y) for con-
stants 6 > 0 and ¢ > 0. Moreover, {S;} is a Q-Markov process for any Q, see
Hernandez-Hernandez and Schied (2007) and the conditional risk neutral distribu-
tion Qg;|s,=s, has a density function denoted by ¢; 7(-|s;). Hence, recalling (3.1),
the call prices can be expressed as

Co(si,r, K, T —1) =T / (st — K)Tqr.7(s7ls0) dst.

We assume that the observed prices in the financial market are built based on the risk
neutral valuation principle w.r.t. an unknown risk neutral measure Q. Our interest lies
in estimating the conditional risk neutral distribution Qg |s,=s,, or equivalently the
risk neutral density function g, 7 (-|s;), implied by Q through (3.2).

3.2 Estimation

Adapting Breeden and Litzenberger (1978), one can show that the risk neutral density
function g, 7(|s;) is obtained as the second derivative of the call price function C;
with respect to strike K

r-[azcl(sl’raer)

e , (3.3)

K=st

qr,7(sTlS1) = ¢

where T = T — ¢ is the time to maturity.

The unknown price function C; might be smoothed out of price observations and
used in (3.3) to recover risk neutral densities. Here we follow the semiparametric
approach from Ait-Sahalia and Lo (1998) where the smoothing is carried out in the
space of implied volatilities.
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The implied volatility surface is the function v; : Ri — Ry satisfying for all
(K,7)eR2

Ct(St,r,K,f)ZCBS{SI,V,K,T,vt(K,T)}, (34)

where Cps(s, r, K, t,v) =s®(dy) — Ke ""®(d») is the Black—Scholes price of ¥
with strike K and maturity 7, @(-) is the cumulative distribution function of the
standard normal distribution, d; = {log(%) + (r + %vz)r}/(v\/?) and db =d; —
VA/T.

More generally, the implied volatility surface is considered a smooth random func-
tion V € L,(X) on the space X C R? of strikes K and maturities 7. Combining (3.3)
and (3.4), the functional random variable H € L,(X), called the risk neutral (RN)
surface, is defined as

H(s,r, K, 7,V) =€ " D*Cps(s,r, K,1,V)
2d

:ga(dg){ IDV+KI 2(DV)? + K/TD?V }

Kyv T
(3.5)

where D™ denotes the mth partial derivative with respect to K and ¢(-) the proba-
bility density function of the standard normal distribution. The explicit derivation of
(3.5) and a detailed treatment of implied volatilities can be found in Hafner (2004)
and Fengler (2005). Clearly, lower dimension objects describing } may be used to
analyze the RN surface H.

A functional dataset containing realizations of the implied volatility surface V is,
however, not available, as in an exchange only discretized values of V; corrupted
by noise are registered from trades. On each day r = 1, ..., T there are J; options
traded, each intraday trade j =1, ..., J; corresponds to an observed option price Y j;
at a pair of moneyness « and maturities 7, X j; = (kj, rjl)T where k = " K /s;.
Let Cps(v) = Cgs(v; s, 1, K, T) denote the Black—Scholes price as a function of v
with all other arguments held constant. As Cgs(v) is continuous and monotone in
v with inverse C};sl, the observed implied volatility associated with trade j at day ¢
is then v, = CI;SI (Y;). Figure 2 shows the implied volatilities from options on the
German Stock Index DAX traded on 2 May 2000, the sparse and degenerated design
is caused by regulation imposed by stock exchanges on the tradable maturities from
call options.

For numerical tractability, see Fengler et al. (2007), observations v;; are trans-
formed into log-implied volatilities th =logv;; and based on {(Y,t, X 1)}, we use
DSFM to model

Yie=Z m(X ;) +eji. (3.6)

The implied volatility surface at 7 is estimated by V, = exp(ZTFw) recall (2.2).
The RN surface is estimated using (3.5) by H, H(sy,r, K, T, V;) The dynamics of
the unobservable sequence of RN surfaces {H;} implied in the observations may be
investigated by analyzing the lower dimensional {Z}.
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Fig. 2 Implied volatilities (leff) and data design (right), ODAX on 2 May 2000

Table 1 Descriptive statistics,
number of intraday observations
Jrt=1,..., 253

Mean Std. dev. Max Min

2845.92 1589.90 11298 616

4 Application

In this section, the implied volatility and risk neutral surfaces are estimated with
DSFM from intraday prices of calls on the DAX index, i.e., S; represents the value
of the DAX index at time ¢. The dataset contains prices observed from 1 Jan. 2001
to 1 Jan. 2002 corresponding to 7 = 253 trading days. The descriptive statistics of
the number of intraday observations J; are in Table 1, the total number of intraday
observations across days is Zthl Jiy =720017.

Tensor B-splines, quadratic in T and cubic in « directions placed on 8 x 6 knots,
are used for the series estimators of m. The number of basis functions is chosen based
on

J, S ST ~
Y Y = ZT X )

EV(L)=1- — —
ZtT:I ij'tzl(yjt - Y)2

where Y = (ZLI Z;”Zl )N’jt)/ztil J:. The value EV(L) may be interpreted as the
ratio of variation explained by the model to total variation. As established by numer-
ous simulations in Park et al. (2009), the order of the splines and number of knots
have negligible influence on EV(L).
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4.1 Simulation

The choice of the number of basis functions based on the explained variation criteria
is validated by a small simulation study. Datasets {(¥;, X j;)} are generated following

L*
Yo=Y Zumi(Xj)+ej, j=1,....J, 1=1,...T,
=0
gjr ~ N(O, 052), 4.1)

X ~U([0,17%),

where ¢j; and X j; are i.i.d. For {; = (Zy4, ..., Z1+) ", with 04 denoting the (d x 1)
vector of zeros and I; the d identity matrix we define

Ze=(1o)",

G =Arx&—1 +uy,

ur~ N(OL*, (IMQIL*),

where u; is i.i.d. and Ap+ is a square matrix containing the first L* rows and L*
columns from A,

095-02 0 0.1
0 08 0.1 02
0.1 0 0.6 —0.1
0 0.1 -0.2 05

A=

The basis functions are defined as

mo(k,7) =1,

mi(k, 1) =3.46(k —0.5),

ma(k, 7) = 9.45{(k — 0.5)* + (r — 0.5)*} - 1.6,
m3(k, 7) = 1.41sin(2w 1),

ma(k,7) =1.41cosmk),

and are close to orthogonal, enhancing similar choice from Park et al. (2009). The
value L* denotes the true number of dynamic basis functions.

Setting T = 500, J = 100, o, = 0.05, and 0, = 0.1, i =1, ..., 100 samples
following (4.1) are generated with L* = 2,3 and 4. Each of them is estimated by
DSFM with L =1, ..., 6, and the corresponding EV; (L) is computed. The average
explained variation under the true L*, defined as §V(L; L*) = ﬁ > EVi(D), is
also calculated.

Table 2 shows €V(L; L*) and indicates that the increase in the average ex-
plained variation between estimation with L* and L* + 1 dynamic basis functions,
EV(L* 4+ 1;L*) — &V(L*; L"), is close to zero across values of L*. Therefore,
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Table 2 Average explained

variation € V(L; L*) based on EV(L;LY) L*
100 samples from (4.1), across 2 3 4
number of dynamic basis
functions used in*the estimation L 1 0.86 0.75 0.71
L and the true L 2 0.99 0.90 0.89
3 0.99 0.99 0.97
4 0.99 0.99 0.99
5 0.99 0.99 0.99
Table 3 Number of basis
functions and explained L 1 2 3 4 5
variation
EV(L) 0.77 0.97 0.98 0.98 0.98

for DSFM estimation, we select the smallest L such that EV(L — 1) < EV(L) =
EV(L +1).

4.2 Results

The implied volatility and RN surfaces are estimated with DSFM as in (3.6) with
L = 3. Table 3 shows that the addition of the fourth or fifth dynamic basis function
results in negligible increase in EV(L).

Following Fengler et al. (2007) and Park et al. (2009), the estimated Z and m
are respectively transformed and orthonormalized so that {2;%1} has a larger con-
tribution than {/Z\(TlJrl)tn?lH}, l=1,...,L —1, to the total variation Zthl f/ZTn?
This transformation aims to improve the interpretation of the basis functions in the
analysis of the dynamics of implied volatility surfaces. In the analysis of risk neutral
surfaces dynamics, however, it does not present a clear advantage. The covariance
structures from {Z} and {Z,} are then asymptotically equivalent up to orthogonal
transformations.

Figures 3 and 4 depict the estimated loading factors series {Z} and basis func-
tions ;. The upward and downward peaks observed in 22z occur on days 6 Feb.
2001 and 5 Nov. 2001 and are caused respectively by extremely unbalanced design
and low price levels. The first day has J; = 1697 observations concentrated on short
maturities, while the latter has J; = 3268 with very low prices at high maturities.

From (3.5), we obtain a sequence of RN surfaces {ﬁ,}, t=1,...,253. We define
ﬁ,(K, T) as H(k, T;s8,7, i)\,) where « = ¢’ K /s;. Figure 5 shows ﬁ,(/c, T) across
moneyness x and maturity T at ¢ corresponding to 10 Jul. 2001.

In a first step, we investigate the covariance structure of {Z} by means of VAR
analysis. Table 4 presents the parameters from the VAR(2) model fitted on {Z}. The
order 2 is selected based on Akaike (AIC), Schwarz (SC) and Hannan—Quinn (HQ)
criteria, see Table 5. Moreover, the VAR(2) model is stationary as the roots of the
characteristic polynomial lie inside of the unit circle.

A natural issue is to analyze the dependences between {Z;} and the shape of the
RN surfaces {H;}. In order to investigate this relation, we compute the skewness
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Fig.3 Estimated {Z},), z
1 =1,2,3 (top to bottom) 1 ‘
0.5 ]
0 WW\/vMMW”MwTM\/‘
Jan01 Ap‘r01 Jui01 Oc{01 Jan02

0

1.2 7 maturity 12 %'maturity
moneyness moneyness

KX W\
: W

N
N

RN

N

»
moneyness

1 0.1

0.1 . .
12 maturity moneyness 2 maturity

Fig. 4 Estimated basis functions 711;, [ =0, ..., 3, clockwise

y and excess kurtosis n of g; 7(-|s;) across ¢ for a maturity T where g; 7(-|s;) =
ﬁ, (-, 7). Figure 6 displays the skewness {y;} and excess kurtosis {1, } associated with
¢:.7 for maturity T = 18 days together with {2 1¢} and { 23,}, motivating the investi-
gation of their joint autocovariance structure.

The dynamic structure of the pairs {(211, n:)} and {(23,, y¢)} for T = 18 is mod-
eled by VAR(2) models. The choice of the VAR order is again based on AIC, SC,
and HQ selection criteria. Portmanteau and LM tests on VAR residuals reject auto-
correlations up to lag 12 and the roots of the characteristic polynomial lie inside of
the unit circle.
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X 10_3

2 —

1.5 —

0.5 —

0.85 0.9 095 1 1.05
moneyness

1.1

Fig. 5 Estimated RN surface, ﬁ, at ¢ corresponding to 10 Jul. 2001

0.15

0.1

maturity

Table 4 Estimated parameters
for the VAR(2) model on {Z;} VARQ)

Const Zy;—1 Zit—2 Zat-1

Zyi—2 2311 Z31-2

Zy; 0.01 1.09 —0.16 —0.36 0.32 —-0.23
22, 0.01 -0.27 0.26 0.12 -—1.14 0.33
23, 0.01 —0.08 0.62 —0.04 0.41 0.35
Table 5 Lag selection criteria
for VAR models on {Z;}. The Order AIC SC HQ
asterisks denote t.he §mallest 1 —11.03 ~10.99 _11.01
value for each criterion
2 —15.71 —15.54* —15.64*
3 —15.77* —15.46 —15.64
4 —15.76 —15.32 —15.58
5 —15.72 —15.16 —15.45

Modeling the dynamics of risk neutral densities using DSFM allows quantifying
the mechanisms governing risk perceptions from agents acting in a market. Insights
are obtained in two directions, concerning the autocovariance structure of {Z}, ie.,
the time behavior of the RN surfaces and their cross-correlation with the skewness
and excess kurtosis from the estimated risk neutral densities, i.e., the relation between
the dynamics and shape of the obtained RN surfaces. As seen in Tables 6 and 7 the
excess kurtosis and skewness from ¢:.7 at maturity T = 18 are determined by the

corresponding lagged values of Z;.
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15} ‘ ‘ ‘ ‘ 1 15 ‘ ‘ ‘ ‘ ]
0t 0 M
15} { 15 ]

0 50 100 150 200 250 0 50 100 150 200 250

08| ‘ ‘ ‘ ‘ ]
N WW | | | | ‘
0 50 100 150 200 250 0 50 100 150 200 250

Fig. 6 Left: RN excess kurtosis {n;). = 18 (10p). {Z1,) (bottom). Right: RN skewness {y}. v = 18
(top), {Zo;} (bottom)

Table 6 Estimated parameters

for the VAR (2) model on VAR(2)
{(Z1, )} _ ~
Const Zy1-1 Z142 Nr—1 Ni—2
Z1s 0.04 0.86 0.08 0.01 0.00
n —0.51 2.63 ~1.75 0.67 0.19

Table 7 Estimated parameters

for the VAR (2) model on VAR(2)
{(Z3;, y1)} A A
Const Z3,1-1 Z31-2 Yi—1 Yi—2
Za 0.00 0.20 0.27 0.01 —0.02
Vi 0.00 —1.69 0.68 0.81 0.24

The presented methodology allows the investigation of the dynamics from risk
neutral skewness and excess kurtosis based on statistical inference on {Z,}. A natural
further step is to perform econometric analysis on the cointegration between the lower
dimensional time series and macroeconomic and financial indicators. This could pro-
vide deeper insights into the relation between risk assessments from investors acting
in a market and the flow of economic information at which they are exposed.
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Appendix: Assumptions

The results from Theorems 2.1 and 2.2, see Park et al. (2009), rely on the following
assumptions:

(A1) The variables Xq1,..., Xy, €11,...,€y7 and Zj,..., Zr are independent.
The process Z; is allowed to be nonrandom.

(A2) Fort=1,...,T, the variables Xy;, ..., X, are identically distributed, have
support [0, 1]¢ and a density f; that is bounded from below and above on
[0, 114, uniformly overt =1, ..., T.
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(A3) We assume that E[¢j;]=0fort=1,...,Tand j=1,...,J, and

2

sup Eexp[csjl] < o0

t=1,...,T,j=1,...J

for ¢ > 0 small enough.
(A4) The functions ¥, may depend on the increasing indices 7 and J and

are normed so that f[o 1 w,g(x) dx =1 for k = 1,..., K. Furthermore,
sup,.cpo.17 1% ()| = O(K1/?).
(AS) The components myo, ..., mp can be approximated by 1, ..., ¥k, i.e.,
8k = sup inf |m(x) — 'y (x)| -0 (A.])
xel0,1¢ T'€9

for/ =0,...,L and K — oo. We denote by I'* the matrix that fulfills

sup |m(x) — 'y (x)| <28k.
x€[0,174

(A6) There exist constants 0 < C; < Cy < oo such that all eigenvalues of the ran-
dom matrix 7! Zthl Z; Z;r lie in the interval [Cf,, Cy] with probability tend-
ing to one.

(A7) The minimization (2.2) runs over all values of (I, z) with

sup max ||ZITF1,D(x)|| <My,
xel0,1)1=t=T

where M7 fulfills maxi<,<7 || Z;|| < M7 /Cy (with probability tending to one)
for a constant C,, > Sup,epo,17 lm )|
(A8) It holds that

£2= (K +T)M2>log(JTM7)(JT)! = 0, (A2)

where the dimension L is fixed.

(A9) Z; is a martingale difference with E[Z;|Z;, ..., Z;;] =0 and for some C > 0
EZ:121Zy, ..., Zy] < C (as.). The matrix E[Z,ZZT] has full rank. The
process Z; is independent of X1y, ..., X7y and €11, ..., €7.

(A10) The functions my, ..., my, are linearly independent. In particular, no function
is equal to O.

(A11) It holds that (K'/2M7 + TV/*) (& + 8g) = 0(1).
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Measuring dependence in multivariate time series is tantamount to modeling its dynamic structure in
space and time. In risk management, the nonnormal behavior of most financial time series calls for non-
Gaussian dependences. The correct modeling of non-Gaussian dependences is, therefore, a key issue in
the analysis of multivariate time series. In this article we use copula functions with adaptively estimated
time-varying parameters for modeling the distribution of returns. Furthermore, we apply copulae to the
estimation of value-at-risk of portfolios and show their better performance over the RiskMetrics approach.

KEY WORDS:

1. INTRODUCTION

Time series of financial data are high dimensional and typ-
ically have a non-Gaussian behavior. The standard modeling
approach based on properties of the multivariate normal dis-
tribution therefore often fails to reproduce the stylized facts
(i.e., fat tails, asymmetry) observed in returns from financial
assets.

A correct understanding of the time-varying multivariate
(conditional) distribution of returns is vital to many standard
applications in finance such as portfolio selection, asset pric-
ing, and value-at-risk (var) calculation. Empirical evidence
from asymmetric return distributions have been reported in the
recent literature. Longin and Solnik (2001) investigate the
distribution of joint extremes from international equity returns
and reject multivariate normality in their lower orthant; Ang
and Chen (2002) test for conditional correlation asymmetries
in U.S. equity data, rejecting multivariate normality at daily,
weekly, and monthly frequencies; and Hu (2006) models the
distribution of index returns with mixtures of copulae, finding
asymmetries in the dependence structure across markets. For
a concise survey on stylized empirical facts from financial
returns see Cont (2001) and Granger (2003).

Modeling distributions with copulae has drawn attention
from many researchers because it avoids the ““procrustean bed”
of normality assumptions, producing better fits of the empirical
characteristics of financial returns. A natural extension is to
apply copulae in a dynamic framework with conditional dis-
tributions modeled by copulae with time-varying parameters.
The question, though, is how to steer the time-varying copulae
parameters. This question is the focus of this article.

A possible approach is to estimate the parameter from
structurally invariant periods. There is a broad field of econo-
metric literature on structural breaks. Tests for unit root in
macroeconomic series against stationarity with a structural

Adaptive estimation; Nonparametric estimation; Value-at-risk.

break at a known change point have been investigated by
Perron (1989), and for an unknown change point by Zivot and
Andrews (1992), Stock (1994) and Hansen (2001); Andrews
(1993) tests for parameter instability in nonlinear models;
Andrews and Ploberger (1994) construct asymptotic optimal
tests for multiple structural breaks. In a different set up,
Quintos, Fan, and Philips (2001) test for a constant tail index
coefficient in Asian equity data against a break at an unknown
point.

Time-varying copulae and structural breaks are combined in
Patton (2006). The dependence structure across exchange rates
is modeled with time-varying copulae with a parameter
specified to evolve as an ARMA-type process. Tests for a
structural break in the ARMA coefficients at a known change
point have been performed, and strong evidence of a break
was found. In a similar fashion, Rodriguez (2007) models the
dependence across sets of Asian and Latin American stock
indexes using time-varying copula where the parameter follows
regime-switching dynamics. Common to these articles is that
they use a fixed (parametric) structure for the pattern of
changes in the copula parameter.

In this article we follow a semiparametric approach, because
we are not specifying the parameter changing scheme. Rather,
we select locally the time-varying copula parameter. The
choice is performed via an adaptive estimation under the
assumption of local homogeneity: For every time point there
exists an interval of time homogeneity in which the copula
parameter can be well approximated by a constant. This
interval is recovered from the data using local change point
analysis. This does not imply that the model follows a change
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point structure. The adaptive estimation also applies when the
parameter varies smoothly from one value to another (see
Spokoiny 2008).

Figure 1 shows the time-varying copula parameter determined
by our procedure for a portfolio composed of daily prices of six
German equities and the “global” copula parameter, shown by
a constant horizontal line. The absence of parametric specifi-
cation for time variations in the dependence structure (its
dynamics is obtained adaptively from the data) allows for
flexibility in estimating dependence shifts across time.

The obtained time-varying dependence structure can be used
in financial engineering applications, the most prominent being
the calculation of the var of a portfolio. Using copulae with
adaptively estimated dependence parameters we estimate the
var from DAX portfolios over time. As a benchmark procedure
we choose RiskMetrics, a widely used methodology based on
conditional normal distributions with a GARCH specification
for the covariance matrix. Backtesting underlines the improved
performance of the proposed adaptive time-varying copulae
fitting.

This article is organized as follows: Section 2 presents the
basic copulae definitions, Section 3 discusses the var and its
estimation procedure. The adaptive copula estimation is ex-
posed in Section 4 and is applied to simulated data in Section 5.
In Section 6, the var from DAX portfolios is estimated based on
adaptive time-varying copulae. The estimation performance is
compared with the RiskMetrics approach by means of back-
testing. Section 7 concludes.

2. COPULAE

Copulae merge marginally into joint distributions, providing
a natural way for measuring the dependence structure between
random variables. Copulae are present in the literature since
Sklar (1959), although related concepts originate in Hoeffding
(1940) and Fréchet (1951), and have been widely studied in the
statistical literature (see Joe 1997, Nelsen 1998, and Mari and
Kotz 2001). Applications of copulae in finance, insurance, and
econometrics have been investigated in Embrechts, McNeil,
and Straumann (2002); Embrechts, Hoeing, and Juri (2003a);
Franke, Hérdle, and Hafner (2004); and Patton (2004) among
others. Cherubini, Luciano, and Vecchiato (2004) and McNeil,
Frey, and Embrechts (2005) provide an overview of copulae for
practical problems in finance and insurance.

Assuming absolutely continuous distributions and con-
tinuous marginals throughout this article, we have from Sklar’s

Journal of Business & Economic Statistics, January 2009

theorem that for a d-dimensional distribution function F with
marginal cdf’s Fy, ..., F, there exists a unique copula C : [0,
119 — [0, 1] satisfying

F(xl,... ,xd):C{Fl(xl),... ,Fd(xd)} (2])

for every x = (xy, ..., xd)T e R Conversely, for a random
vector X = (X, ..., Xd)T with cdf Fy, the copula of X may
be written as Cx(u1, ... ,uq) = Fx{Fy'(u1), ... ,F;' (ua)},
where u; = F(x)), F; is the cdf of X;, and F;'(a) = inf{x; :
Fj(xj) = a} its generalized inverse, j = 1, ..., d. A prominent
copula is the Gaussian

CS* (uy, ... yug) = Fy{® "(uy), ..., ® "(uy)}

where ®(s), s € R stands for the one-dimensional standard
normal cdf, Fyisthe cdf of Y = (Yq, ..., Y,)T ~ N0, W), 0 is
the (d X 1) vector of zeros, and W is a correlation matrix. The
Gaussian copula represents the dependence structure of the
multivariate normal distribution. In contrast, the Clayton cop-
ula given by

(2.2)

—1

d —0
Cg(ul,...,ud)={<l2uj_0> —d+l} (23)

for 6 > 0, expresses asymmetric dependence structures.

The dependence at upper and lower orthants of a copula C
may be expressed by the upper and lower tail dependence
coefficients Ay = lim,_o C(u,...,u)/u and A;, = lim,_q
C(u, ... u)/u, where u € (0, 1] and C is the survival copula of
C (see Joe 1997 and Embrechts, Lindskog, and McNeil 2003b).
Although Gaussian copulae are asymptotically independent at
the tails (A\;, = Ay = 0), the d-dimensional Clayton copulae
exhibit lower tail dependence (A, = d~ ") but are asymptoti-
cally independent at the upper tail (Ay = 0). Joe (1997) pro-
vides a summary of diverse copula families and detailed
description of their properties.

For estimating the copula parameter, consider a sample
{xt}tT:1 of realizations from X where the copula of X belongs to
a parametric family C = {Cy, 0 € ®}. Using Equation (2.1),
the log-likelihood reads as L(8;xi,...,x7) = > [logc
Fi(x1), . Fa(xq); 0} + Z;I:] logf;(x:;)], where c(u, ...,
ug) = 8°Cluy, . .., ug)lou,. . . uy is the density of the copula C
and f; is the probability density function of F;. The canonical
maximum likelihood estimator # maximizes the pseudo log-
likelihood with empirical marginal cdf’s L(6) =Y loge
{Fl (-xt,l)a cee 7Fd(-xt,d); 07 where

1 \_,v‘/n_'A W MW"" il ij M MN\]" VNWWWW’?
200;1 2(;02 2(;03 2('.\'04 o

2005

Figure 1. Time-varying dependence. Time-varying dependence parameter and global parameter (horizontal line) estimated with Clayton
copula, stock returns from Allianz, Miinchener Riickversicherung, BASF, Bayer, DaimlerChrysler, and Volkswagen.
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T+l Z {xj=s}

forj=1, , d. Note that F differs from the usual empirical
cdf by the denommator T+ 1 This ensures that {F, (x:1), -
Fy(x.4)}" € (0,1)* and avoids infinite values the copula
density may take on the boundary of the unit cube (see McNeil,
Frey, and Embrechts 2005). Joe (1997); Cherubini, Luciano,
and Vecchiato (2004); and Chen and Fan (2006) provide a
detailed exposition of inference methods for copulae.

(2.4)

3. VALUE-AT-RISK AND COPULAE

The dependence (over time) between asset returns is espe-
cially important in risk management, because the profit and
loss (P&L) function determines the var. More precisely, the var
of a portfolio is determined by the multivariate distribution of
risk factor increments. If w = (wy, ... ,wd)T € R? denotes a
portfolio of positions on d assets and S; = (S;1,. .. ,S,‘d)—r a
nonnegative random vector representing the prices of the assets
at time ¢, the value V, of the portfolio w is given by
vV, = ZJ‘LI w;S, ;. The random variable

L= (Vt_Vt—l)a (3-1)

called the profit and loss (P&L) function, expresses the change
in the portfolio value between two subsequent time points.
Defining the log-returns X, = (X, 1, ... ,X,ﬁd)T7 where X, ; =
log S,; —logS,_; jandlog Sy ;=0,j=1,...,d, Equation (3.1)
can be written as

(3.2)

d
Ll = ZW]'S;_LJ'{GXP(XU') — 1}
j=1

The cdf of L, is given by F, 1, (x) = P,(L, = x). The var at level
« from a portfolio w is defined as the a quantile from F,

= F;Lll (a).

It follows from Equation (3.2) that F,;, depends on the spec-
ification of the d-dimensional distribution of the risk factors X,.
Thus, modeling their distribution over time is essential for
obtaining the quantiles (Eq. 3.3).

The RiskMetrics technique, a widely used methodology for
var estimation, assumes that risk factors X, follow a conditional
multivariate normal distribution £(X,|F,—;)= N(0,%,), where
Fi—1 =o(Xy,...,X,—1) is the o field generated by the first  —
1 observations, and estimates the covariance matrix 2, for one
period return as

var,(a) (3.3)

3

where the parameter A is the so-called decay factor. A = 0.94
provides the best backtesting results for daily returns according
to Morgan (1996). Using the copulae-based approach, one first
corrects the contemporaneous mean and volatility in the log-
returns process:

th = My j + 01, j&r ), (3-5)

where w, ; = E[X, ;| F,1] is the conditional mean and o7 ; =
E[(X;; — ]) |F;—1] is the conditional variance of X, ;. The
standardized innovations & = (9,,1 S fl,d) have joint cdf F,
given by

Fﬁz(xlw" xd): va«,d(xd)}v

where F, ; is the cdf of ¢, ; and Cy is a copula belonging to a
parametnc family C = Cy, 0 € O}. For details on the previous
model specification, see Chen and Fan (2006) and Chen, Fan,
and Tsyrennikov (2006). For the Gaussian copula with Gaussian
marginals, we recover the conditional Gaussian RiskMetrics
framework.

To obtain the var in this setup, the dependence parameter and
cdf’s from residuals are estimated from a sample of log-returns
and are used to generate P&L Monte Carlo samples. Their
quantiles at different levels are the estimators for the var (see
Embrechts, McNeil, and Straumann 2002).

The whole procedure can be summarized as follows (see
Hirdle, Kleinow, and Stahl 2002; and Giacomini and Hardle
2005): For a portfolio w € R? and a sample {x, j}thl, j=
1,...,d of log-returns, the var at level « is estimated according
to the following steps:

1.

Cg{Ft71()C1),... (36)

)

Determination of innovations {1}, by, for example,
“deGARCHing”

Specification and estimation of marginal cdf’s F;(&;)
Specification of a parametric copula family C and esti-
mation of the dependence parameter 6

Generation of Monte Carlo sample of innovations ¢ and
losses L

Estimation of var(a), the empirical « quantile of F

2.
3.

4.
5.

4. MODELING WITH TIME-VARYING COPULAE

Similar to the RiskMetrics procedure, one can perform a
moving (fixed-length) window estimation of the copula
parameter. This procedure, though, does not fine-tune local
changes in dependences. In fact, the cdf F;, from Equation (3.6)
is modeled as F,, = Cg,{F.1(:),...,F.q(-)} with probability
measure Py, . The moving window of fixed width will estimate a
0, for each ¢, but it has clear limitations. The choice of a small
window results in a high pass filtering and, hence, in a very
unstable estimate with huge variability. The choice of a large

3, =A%+ (1 =-2)X HXL 15 (3.4) window leads to a poor sensitivity of the estimation procedure
ty —my ty — mig—1 to — mp—2 to
5’; R 7;:1 Il:2 |
R 11::1
I

Figure 2. Local change point proce

dure. Choice of intervals I, and 1.
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Figure 3. Homogeneity test. Testing interval I, tested interval I, and subintervals J and J¢ for a point 7 € L.

and to a high delay in the reaction to changes in dependence
measured by the parameter 6,.

To choose an interval of homogeneity, we use a local para-
metric fitting approach as introduced by Polzehl and Spokoiny
(2006), Belomestny and Spokoiny (2007) and Spokoiny
(2008). The basic idea is to select for each time point #, an
interval I,, = [fy — my,, fo] of length m,, in such a way that the
time-varying copula parameter 6, can be well approximated
by a constant value 6. The question is, of course, how to select
my, in an online situation from historical data. The aim should be
to select I, as close as possible to the so-called ““oracle” choice
interval. The oracle choice is defined as the largest interval
I = [ty — m; , to], for which the small modeling bias condition

Ai(0) =D K(Pg,, Py) =A

tel

(4.1)

for some A = 0 holds. Here, 6 is constant and KC(Py, Py') =
Eglog{p(y,?)/p(y,¥')} denotes the Kullback-Leibler diver-
gence. In such an oracle choice interval, the parameter 6,
0:],—,, can be “optimally” estimated from I = [ty — m; ,to].
The error and risk bounds are calculated in Spokoiny (2008). It
is important to mention that the concept of local parametric
approximation allows one to treat in a unified way the case
of “switching regime” models with spontaneous changes
of parameters and the ‘“‘smooth transition” case when the
parameter varies smoothly in time.

The oracle choice of the interval of homogeneity depends on
the unknown time-varying copula parameter 6,. The next sec-
tion presents an adaptive (data-driven) procedure that mimics
the oracle in the sense that it delivers the same accuracy of
estimation as the oracle one. The trick is to find the largest
interval in which the hypothesis of a local constant copula

parameter is supported. The local change point (LCP) detection
procedure originates from Mercurio and Spokoiny (2004) and
sequentially tests the hypothesis: 6, is constant (i.e., 6§, = 6)
within some interval I (local parametric assumption).

The LCP procedure for a given point 7, starts with a family of
nested intervals [y CI; C L, C ... ClIg= Ik, of the form [} =
[to — my, to]. The sequence my determines the length of these
interval ““‘candidates” (see Section 4.2). Every interval [ leads
to an estimate 6 of the copula parameter 0:,- The procedure
selects one interval / out of the given family and, therefore, the
corresponding estimate 6= éi-

The idea of the procedure is to screen each interval J; =
[fo — my, to — my_1] sequentially and check each point 7 € J;
as a possible change point location (see Section 4.1 for more
details). The family of intervals I, and J; are illustrated in
Figure 2. The interval [, is accepted if no change point is
detected within Jy, ..., J;. If the hypothesis of homogeneity is
rejected for an interval candidate I;, the procedure stops and
selects the latest accepted interval. The formal description
reads as follows:

Start the procedure with k = 1 and test the hypothesis Hy
of no structural changes within J; using the larger testing
interval I;, . If no change points were found in J, then I, is
accepted. Take the next interval J;,; and repeat the previous
step until homogeneity is rejected or the largest possible
interval Ix = [ty — mg, to] is accepted. If Hy  is rejected for Iy,
the estimated interval of homogeneity is the last accepted
interval I = I;_;. If the largest possible interval Ix is accepted,
we take I = Ix. We estimate the copula dependence parameter
6 at time instant f, from observations in I, assuming the
homogeneous model within I (i.e., we define @),U = éf). We
also denote by I the largest accepted interval after k steps of

Table 1. Critical values 3, (p, 0*)

0* =0.5

0*=1.0

0* =15

k p=02 p=05 p=10 p=02 p=05 p=10 p=02 p=05 p=1.0

1 3.64 3.29 2.88 3.69
2 3.61 3.14 2.56 3.43
3 3.31 2.86 2.29 3.32
4 3.19 2.69 2.07 3.04
5 3.05 2.53 1.89 292
6 2.87 2.26 1.48 2.92
7 2.51 1.88 1.02 2.64
8 2.49 1.72 0.35 2.33
9 2.18 1.23 0.00 2.03
10 0.92 0.00 0.00 0.82

3.29 2.84 3.95 3.49 2.96
291 2.35 3.69 3.02 2.78
2.76 221 3.34 2.80 2.09
2.57 1.80 3.14 2.55 1.86
222 1.53 2.95 2.65 1.49
2.17 1.19 2.83 2.04 0.94
1.82 0.56 2.62 1.79 0.31
1.39 0.00 2.35 1.33 0.00
0.81 0.00 2.10 0.60 0.00
0.00 0.00 0.79 0.00 0.00

NOTE: Critical values are obtained according to Equation (4.2), based on 5,000 simulations. Clayton copula, my = 20 and

c=1.25.
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Figure 4. LCP and sudden jump in copula parameter. Pointwise median (full), and 0.25 and 0.75 quantiles (dotted) from 6,. True parameter 6,
(dashed) with ¥, = 0.10, ¥, = 0.50, 0.75, and 1.00 (left, top to bottom); and %, = 0.10, ¥, = 0.50, 0.75, and 1.00 (right, top to bottom). Based on
100 simulations from Clayton copula, estimated with LCP, my = 20, ¢ = 1.25, and p = 0.5.

the algorithm and, by 6y the corresponding estimate of the
copula parameter.

It is worth mentioning that the objective of the described
estimation algorithm is not to detect the points of change for
the copula parameter, but rather to determine the current
dependence structure from historical data by selecting an
interval of time homogeneity. This distinguishes our approach
from other procedures for estimating a time-varying parameter
by change point detection. A visible advantage of our approach
is that it equally applies to the case of spontaneous changes in
the dependence structure and in the case of smooth transition in
the copula parameter. The obtained dependence structure can
be used for different purposes in financial engineering, the
most prominent being the calculation of the var (see also
Section 6).

The theoretical results from Spokoiny and Chen (2007) and
Spokoiny (2008) indicate that the proposed procedure provides
the rate optimal estimation of the underlying parameter when
this varies smoothly with time. It has also been shown that the
procedure is very sensitive to structural breaks and provides the
minimal possible delay in detection of changes, where the
delay depends on the size of change in terms of Kullback-
Leibler divergence.

4.1 Test of Homogeneity Against a Change

Point Alternative

In the homogeneity test against a change point alternative we
want to check every point of an interval I (recall Fig. 2), here
called the “tested interval,” on a possible change in the
dependence structure at this moment. To perform this check,
we assume a larger testing interval I of form I = [ty—m, t¢], so
that I is an internal subset within /. The null hypothesis H,
means that Vz € I, 6, = 6 (i.e., the observations in / follow the

model with dependence parameter 0). The alternative hypoth-
esis H; claims that 3 7 € I such that 8, = 0, fort € J = [T, 1]
and 0, = 0, # 0, for r € J° = [ty — m, 7) (i.e., the parameter
0 changes spontaneously in some point 7 € I). Figure 3 depicts
I, 1, and the subintervals J and J determined by the point 7 € 1.

Let Ly(6) be the log-likelihood and é, the maximum like-
lihood estimate for the interval 1. The log-likelihood functions
corresponding to Hy and H; are Li(0) and L;(6;) + Ly (65),
respectively. The likelihood ratio test for the single change
point with known fixed location 7 can be written as

Table 2. Detection delay statistics

O, 0p) r Mean SD Max Min
0.25 9.06 7.28 56 0
(0.50, 0.10) 0.50 13.64 9.80 60 0
0.75 21.87 14.52 89 3
0.25 5.16 4.24 21 0
(0.75, 0.10) 0.50 8.85 5.55 25 0
0.75 16.72 10.37 64 3
0.25 4.47 2.94 12 0
(1.00, 0.10) 0.50 7.94 4.28 22 0
0.75 14.79 7.38 62 5
0.25 8.94 6.65 36 0
(0.10, 0.50) 0.50 14.21 9.06 53 0
0.75 21.43 12.15 68 0
0.25 9.00 4.80 25 0
(0.10, 0.75) 0.50 14.30 5.96 40 3
0.75 21.00 10.97 75 6
0.25 7.39 3.67 19 0
(0.10, 1.00) 0.50 13.10 4.13 22 2
0.75 20.13 7.34 55 10

NOTE: The detection delays 6 are calculated as in Equation (5.1), with the statistics
based on 100 simulations. Clayton copula, my = 20, ¢ = 1.25, and p = .5. SD, standard
deviation.

[F3]
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Figure 5. Divergences for upward and downward jumps. Kullback-
Leibler divergences K(0.10,9) (full) and X(9,0.10) (dashed) for
Clayton copula.

TI,T = 1(}12(19)( {L,(Hl) + Ljf (02)} — mgtx L[(H)
1,02

—L;(0)).

The test statistic for an unknown change point location is
defined as 7; = max.¢; T;,. The change point test compares
this test statistic with a critical value ;, which may depend on
the interval I. One rejects the hypothesis of homogeneity if
T, > 3r-

= Ly(0;) + Ly (6,)

4.2 Parameters of the LCP Procedure

To apply the LCP testing procedure for local homogeneity,
we have to specify some parameters. This includes selecting
interval candidates I or, equivalently, of the tested intervals
Jr and choosing respective critical values 3,. One possible
parameter set that has been used successfully in simulations is
presented in the following section.

4.2.1 Selection of interval candidates J; and internal points
Ix. It is useful to take the set of numbers my defining the
length of [; and J; in the form of a geometric grid. We fix the

Wednesday October 22 04:23:04 2008
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value mg and define m; = [moc Jfork=1,2,...,Kandc>1
where [x] means the integer part of x. We set I}, = [t — my, fo]
and J; = [to — my,tg —my—1| fork =1, 2, ..., K (see Fig. 2).

4.2.2  Choice of the critical values 3,. The algorithm is in
fact a multiple testing procedure. Mercurio and Spokoiny
(2004) suggested selecting the critical value z; to provide the
overall first type error probability of rejecting the hypothesis
of homogeneity in the homogeneous situation. Here we follow
another proposal from Spokoiny and Chen (2007), which
focuses on estimation losses caused by the “‘false alarm”—in
our case obtaining a homogeneity interval that is too
small—rather than on its probability.

In the homogeneous situation with 6, = 6* for all ¢t € I, 4,
the desirable behavior of the procedure is that after the first k
steps the selected interval I; coincides with I, and the corre-
sponding estimate 6, coincides with 6, which means there is
no false alarm. On the contrary, in the case of a false alarm, the
selected interval fk is smaller than [, and, hence, the corre-
sponding estimate 6 has larger variability than 6. This means
that the false alarm during the early steps of the procedure is
more critical than during the final steps, because it may lead to
selecting an estimate with very high variance. The difference
between 6, and 0 can naturally be measured by the value
L, (Hk,Ok) = le(Gk) Ly, (Gk) normalized by the risk of 1%6
nonadaptive estimate 6y, R(6*) = max;=1 Eg LIk(Gk, 6%)
The conditions we impose read as

< .12 .
Eg|L1, (0, 64))| P=pmer), k=1

..., K, 0"€0.
(4.2)

The critical values 3, are selected as minimal values providing
these constraints. In total we have K conditions to select K
critical values j3;,...,3x. The values 3, can be selected
sequentially by Monte Carlo simulation, where one simulates
under Hy : 0, = 0*, Vt € Ix. The parameter p defines how
conservative the procedure is. A small p value leads to larger
critical values and hence to a conservative and nonsensitive
procedure, whereas an increase in p results in more sensitive-
ness at cost of stability. For details, see Spokoiny and Chen
(2007) or Spokoiny (2008).

25 25
* *\“\‘ﬂ
15 15 . 1
5 5F
05 0.75 1 05 0.75 1
By ﬂb

Figure 6. Mean detection delay and parameter jumps. Mean detection delays (dots) at rule r = 0.75, 0.50, and 0.25 from top to bottom. Left:
¥, = 0.10 (upward jump). Right: ¥, = 0.10 (downward jump), based on 100 simulations from Clayton copula, ny = 20, ¢ = 1.25, and p = 0.5.
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Figure 7. LCP and smooth change in copula parameter. Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from 6, and true parameter 6,
(dashed) with ¥, = 0.10 and ¥, = 1.00 (left), and ¢, = 1.00 and ¥, = 0.10 (right). Based on 100 simulations from Clayton copula, estimated

with LCP, my = 20, ¢ = 1.25, and p = 0.5.

5. SIMULATED EXAMPLES

In this section we apply the LCP procedure on simulated
data with a dependence structure given by the Clayton copula.
We generate sets of six-dimensional data with a sudden jump in
the dependence parameter given by

{ Ba
0, =
{}b

for different values of (,, ¥3): One of them is fixed at .1 (close
to independence) and the other is set to larger values.

The LCP procedure is implemented with the family of
interval candidates in form of a geometric grid defined by my =
20 and ¢ = 1.25. The critical values, selected according to
Equation (4.2) for different p and 6%, are displayed in Table 1.
The choice of 6* has negligible influence in the critical values
for fixed p, therefore we use 3, . . ., 3x obtained with 6% = 1.0.
Based on our experience, see Spokoiny and Chen (2007) and
Spokoiny (2008), the default choice for p is 0.5.

Figure 4 shows the pointwise median and quantiles of the
estimated parameter 6, for distinct values of (,,9,) based on
100 simulations. The detection delay 6 at rule r € [0, 1] to jump
of size y = 0, — 0,_; at t is expressed by

if —390=¢r=10
if 10 <t=210

8(t,y,r) = min{u = 1:0, =6, +ry}t—t (5.1)

and represents the number of steps necessary for the estimated
parameter to reach the r fraction of a jump in the true
parameter.

Detection delays are proportional to the probability of error
of type II (i.e., the probability of accepting homogeneity in case
of a jump). Thus, tests with higher power correspond to lower
delays 6. Moreover, because the Kullback-Leibler divergences
for upward and downward jumps are proportional to the power
of the respective homogeneity tests, larger divergences result in
faster jump detections.

The descriptive statistics for detection delays to jumps at t =
11 for different values of (J,9;) are in Table 2. The mean
detection delay decreases with y = 9, — 1, and are higher for
downward jumps than for upward jumps. Figure 5 shows that
for Clayton copulae the Kullback-Leibler divergence is higher
for upward jumps than for downward jumps. Figure 6 displays
the mean detection delays against jump size for upward and
downward jumps.

The LCP procedure is also applied on simulated data with
smooth transition in the dependence parameter given by

o2 if —350=t=50
0= 0,50l (9 —D,) if S0<r=150
Iy if 150 <+ = 350.

Figure 7 depicts the pointwise median and quantiles of the
estimated parameter 6, and the true parameter 6, for (3, ¥;) set
to (0.10, 1.00) and (1.00, 0.10).

6. EMPIRICAL RESULTS

In this section the var from German stock portfolios is
estimated based on time-varying copulae and RiskMetrics
approaches. The time-varying copula parameters are selected
by local change point (LCP) and moving window procedures.
Backtesting is used to evaluate the performances of the three
methods in var estimation.

Two groups of six stocks listed on DAX are used to compose
the portfolios. Stocks from group 1 belong to three different
industries: automotive (Volkswagen and DaimlerChrysler),
insurance (Allianz and Miinchener Riickversicherung), and
chemical (Bayer and BASF). Group 2 is composed of stocks
from six industries: electrical (Siemens), energy (E.ON), metal-
lurgical (ThyssenKrupp), airlines (Lufthansa), pharmaceutical
(Schering), and chemical (Henkel). The portfolio values are
calculated using 1,270 observations, from January 1, 2000 to
December 31, 2004, of the daily stock prices (data available at
http://stb649.wiwi.hu-berlin.de/fedc).

The selected copula belongs to the Clayton family (Eq. 2.3).
Clayton copulae have a natural interpretation and are well
advocated in risk management applications. In line with the
stylized facts for financial returns, Clayton copulae are asym-
metric and present lower tail dependence, modeling joint

Table 3. p Values from tests on residuals & ;

Ljung-Box ARCH
J Group 1 Group 2 Group 1 Group 2
1 0.33 0.52 0.15 0.04
2 0.13 0.35 0.15 0.98
3 0.21 0.08 0.34 0.72
4 0.99 0.05 0.10 0.18
5 0.90 0.07 0.91 0.77
6 0.28 0.81 0.28 0.94
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Figure 8. Time-varying dependence, group 1. Copula parameter 6, estimated with LCP method, Clayton copula, my = 20, ¢ = 1.25, and p = 0.5.

extreme events at lower orthants with higher probability than
Gaussian copulae for the same correlation, see McNeil, Frey,
and Embrechts (2005). This fact is essential for var calculations
and is illustrated by the ratio between Equations (2.2) and (2.3)
for off-diagonal elements of W set to 0.25 and 6 = 0.5. For the

quantiles u; = 005 ¢ = 1, ..., 6 the ratio
CS*(uy,. . .,ug)/Colur, ..., uq) equals 2.3 X 10~ 2, whereas for

the 0.01 quantiles it equals 1.3 X 107>

The var estimation follows the steps described in Section 3.
Using the RiskMetrics approach, the log-returns X, are assumed
conditionally normal distributed with zero mean and covari-
ance matrix following a GARCH specification with fixed decay
factor A = 0.94 as in Equation (3.4).

In the time-varying copulae estimation, the log-returns are
modeled as in Equation (3.5), where the innovations &, have
cdf Ftﬁsi(xl, .. .,xd) = CO,{FI,I(xl)a .. .,F,,d(xd)} and Cy is the
Clayton copula. The univariate log-returns X, ; corresponding
to stock j are devolatized according to RiskMetrics (i.e., with
zero conditional means and conditional variances o-ii estimated
by the univariate version of Equation (3.4) with a decay factor
equal to 0.94). We note that this choice sets the same specifi-
cation for the dynamics of the univariate returns across all
methods (RiskMetrics, moving windows, and LCP), making
their performances in var estimation comparable. Moreover, as
the means from daily returns are clearly dominated by the
variances and are approximately independent on the available
information sets (see Jorion 1995; Fleming, Kirby, and Ostdiek
2001; and Christoffersen and Diebold 2006), their specification
is very unlikely to cause a perceptible bias in the estimated
variances and dependence parameters. Therefore, the zero
mean assumption is, as pointed out by Kim, Malz, and Mina
(1999), as good as any other choice. Daily returns are also
modeled with zero conditional means in Fan and Gu (2003) and
Hirdle, Herwartz, and Spokoiny (2003) among others.

The GARCH specification (Eq. 3.4) with A = .94 optimizes
variance forecasts across a large number of assets (Morgan
1996), and is widely used in the financial industry. Different
choices for the decay factor (like 0.85 or 0.98) result in negligible
changes (about 3%) in the estimated dependence parameter.

The p values from the Ljung-Box test for serial correlation
and from ARCH test for heteroscedasticity effects in the
obtained residuals & ; are in Table 3. Normality is rejected by
Jarque-Bera test, with p values approximately 0.00 for all
residuals in both groups. The empirical cdf’s of residuals as
defined in Equation (2.4) are used for the copula estimation.

With the moving windows approach, the size of the esti-
mating window is fixed as 250 days corresponding to 1 busi-
ness year (the same size is used in, for example, Fan and Gu
(2003)). For the LCP procedure, following Section 4.2, we set
the family of interval candidates as a geometric grid with mg =
20, ¢ = 1.25, and p = 0.5. We have chosen these parameters
from our experience in simulations (for details on robustness of
the reported results with respect to the choice of mg and ¢, refer
to Spokoiny (2008)).

The performance of the var estimation is evaluated based on
backtesting. At each time #, the estimated var at level « for a
portfolio w is compared with the realization [, of the corre-
sponding P&L function (see Eq. 3.2), with an exceedance
occurring for each /; less than var,(a). The ratio of the number
of exceedances to the number of observations gives the
exceedance ratio

A~ 1 T
ay(a) = T Z] 1{/,<\7£(a)}'
=

Because the first 250 observations are used for estimation, 7 =
1,020. The difference between & and the desired level « is
expressed by the relative exceedance error

o+

|

1
2001 2002

1
2003

2004 2005

Figure 9. Time-varying dependence, group 2. Copula parameter 6, estimated with LCP method, Clayton copula, my = 20, ¢ = 1.25, and p = 0.5.
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Figure 10. Estimated var across methods, group 1. P&L realizations /, (dots), var,(«) (line), and exceedance times (crosses). Estimated with
LCP (top), moving windows (middle), and RiskMetrics (bottom) for equally weighted portfolio w* at level & = 0.05.

We compute exceedance ratios and relative exceedance errors
to levels @ = 0.05 and 0.01 foraset W = {w*w,;n=1, ...,
100} of portfolios, where each w, = (w1, ... ,w,m)T is a rea-
lization of a random vector uniformly distributed on S =
{(x1,.., %) €ERO: 320 x; = 1,x = .1}, and w* = 1/61,
with I, denoting the (d X 1) vector of ones, is the equally
weighted portfolio. The degree of diversification of a portfolio
can be measured based on the majorization preordering on S
(see Marshall and Olkin 1979). In other words, a portfolio w,, is
more diversified than portfolio w;, if w, < w;,. Under the
majorization preordering the vector w* satisfies w* < w for all
w € S; therefore, the equally weighted portfolio is the most
diversified portfolio from W, see Ibragimov and Walden (2007).

The average relative exceedance error over portfolios and
the corresponding standard deviation

1
fayv o Cy
Wi 2
1
LY A
Dy = {77 (ew —Aw)
|)4/||V6VV -

are used to evaluate the performances of the time-varying
copulae and RiskMetrics methods in var estimation.

The dependence parameter estimated with LCP for stocks
from groups 1 and 2 are shown in Figures 8 and 9. The different
industry concentrations in each group are reflected in the
higher parameter values obtained for group 1. The P&L and the
var at level 0.05 estimated with LCP, moving windows, and

HHHE H +  +
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Figure 11. Estimated var across methods, group 2. P&L realizations /; (dots), var,(a) (line), and exceedance times (crosses). Estimated with
LCP (top), moving windows (middle), and RiskMetrics (bottom) for equally weighted portfolio w* at level a = 0.05.
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Table 4. Exceedance ratios and errors, group 1
RiskMetrics Moving windows LCP

a=500 a=100 a=500 a=1.00 « =5.00 « =1.00
Oy 6.11 1.48 5.62 0.59 5.52 0.69
Qy, 591 1.38 5.42 0.49 5.42 0.69
Qy, 6.40 1.28 591 0.49 5.71 0.59
Aw 0.23 0.45 0.11 —0.49 0.11 —0.36
Dy, 0.04 0.14 0.06 0.08 0.06 0.10
NOTE: Exceedance ratios for portfolios w*, wy, and w,, and average and standard

deviation from relative exceedance errors. Across levels and methods, ratios and levels are
expressed as a percentage.

RiskMetrics methods for the equally weighted portfolio w* are
in Figures 10 (group 1) and 11 (group 2). Exceedance ratios for
portfolios w*, wy, and w,; average relative exceedance errors;
and corresponding standard deviations across methods and
levels are shown in Tables 4 (group 1) and 5 (group 2).

Based on the exceedance errors, the LCP procedure out-
performs the moving windows (second best) and RiskMetrics
methods in var estimation in group 1. At level 0.05, the
average error associated with copula methods is about half
the error from RiskMetrics estimation for nearly the same
standard deviation. At level 0.01, the LCP average error is the
smallest in absolute value, and copula methods present less
standard deviations. At this level, copula methods over-
estimate var, and RiskMetrics underestimates it. Although
overestimation of var means that a financial institution would
be requested to keep more capital aside than necessary to
guarantee the desired confidence level, underestimation
means that less capital is reserved and the desired level is not
guaranteed. Therefore, from the regulatory point of view,
overestimation is preferred to underestimation. In the less con-
centrated group 2, LCP outperforms moving windows and
RiskMetrics at the level 0.05, presenting the smallest average
error in magnitude for nearly the same value of Dy,. At level
0.01, copula methods overestimate and RiskMetrics under-
estimates the var by about 60%.

It is interesting to note the effect of portfolio diversification
on the exceedance errors for group 1 and level 0.01. The errors
decrease with increasing portfolio diversification for copulae
methods but become larger under the RiskMetrics estimation.
For other groups and levels, the diversification effects are not
clear. Refer to Ibragimov (2007) and Ibragimov and Walden

Table 5. Exceedance ratios and errors, group 2

RiskMetrics Moving windows LCP

a=500 =100 =500 a =100 aa=5.00 a =1.00

Ay 5.42 1.58 4.53 0.39 4.53 0.30
Qry, 5.81 1.77 5.02 0.39 5.02 0.39
Gy, 5.62 1.58 5.12 0.39 5.22 0.30
Aw 0.16 0.57 —-0.10 —0.65 —0.09 —0.65
Dw 0.04 0.16 0.06 0.09 0.06 0.08
NOTE: Exceedance ratios for portfolios w*, w;, and w,, and average and standard

deviation from relative exceedance errors. Across levels and methods, ratios and levels are
expressed as a percentage.

Journal of Business & Economic Statistics, January 2009

(2007) for details on the effects of portfolio diversification
under heavy-tailed distributions in risk management.

7. CONCLUSION

In this article we modeled the dependence structure from
German equity returns using time-varying copulae with adap-
tively estimated parameters. In contrast to Patton (2006) and
Rodriguez (2007), we neither specified the dynamics nor
assumed regime switching models for the copula parameter.
The parameter choice was performed under the local homo-
geneity assumption with homogeneity intervals recovered from
the data through local change point analysis.

We used time-varying Clayton copulae, which are asym-
metric and present lower tail dependence, to estimate the var
from portfolios of two groups of German securities, presenting
different levels of industry concentration. RiskMetrics, a widely
used methodology based on multivariate normal distributions,
was chosen as a benchmark for comparison. Based on back-
testing, the adaptive copula achieved the best var estimation
performance in both groups, with average exceedance errors
mostly small in magnitude and corresponding to sufficient
capital reserve for covering losses at the desired levels.

The better var estimates provided by Clayton copulae indi-
cate that the dependence structure from German equities may
contain nonlinearities and asymmetries, such as stronger
dependence at lower tails than at upper tails, that cannot be
captured by the multivariate normal distribution. This asym-
metry translates into extremely negative returns being more
correlated than extremely positive returns. Thus, our results for
the German equities resemble those from Longin and Solnik
(2001), Ang and Chen (2002) and Patton (2006) for interna-
tional markets, U.S. equities, and Deutsch mark/Japanese yen
exchange rates, where empirical evidence for asymmetric
dependences with increasing correlations in market downturns
were found.

Furthermore, in the non-Gaussian framework, with non-
linearities and asymmetries taken into consideration through
the use of Clayton copulae, the adaptive estimation produces
better var fits than the moving window estimation. The high
sensitive adaptive procedure can capture local changes in the
dependence parameter that are not detected by the estimation
with a scrolling window of fixed size.

The main advantage of using time-varying copulae to model
dependence dynamics is that the normality assumption is not
needed. With the proposed adaptively estimated time-varying
copulae, neither normality assumption nor specification for the
dependence dynamics are necessary. Hence, the method pro-
vides more flexibility in modeling dependences between
markets and economies over time.
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1. Introduction

The dynamics of option prices carries information on changes
in state price densities (SPDs). The SPD contains important
information on the behavior and expectations of the market and
is used for pricing and hedging. The most important application
of an SPD is that it allows one to price options with complicated
payoff functions simply by (numerical) integration of the payoff
with respect to this density.

Prices C; (K, T) of European options with strike price K observed
at time t and expiring at time T allow one to deduce the state
price density f (.) using the relationship (Breeden and Litzenberger,
1978)

2C(K, T)
231<2 (0

Eq. (1) can be used to estimate the SPD f(K) from the observed
option prices. An extensive overview of parametric and other
estimation techniques can be found, for example, in Jackwerth
(1999). An application to option pricing is given in Buehler (2006).

Kernel smoothers were in this framework proposed and suc-
cessfully applied by, for example, Ait-Sahalia and Lo (1998), Ait-
Sahalia and Lo (2000), Ait-Sahalia et al. (2000), or Huynh et al.
(2002). Ait-Sahalia and Duarte (2003) proposed a method for

fK) = exp{r(T — )}
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nonparametric estimation of the SPD under constraints like pos-
itivity, convexity, and boundedness of the first derivative. Bon-
darenko (2003) calculates arbitrage-free SPD estimates using posi-
tive convolution approximation (PCA) methodology and demon-
strates its properties in a Monte Carlo studied based on closing
prices of the S&P 500 options. Another sophisticated approach
based on smoothing splines allowing one to include these con-
straints is described and applied on simulated data in Yatchew
and Hardle (2006). In the majority of these papers, the focus was
more on the smoothing techniques rather than on a no-arbitrage
argument, although a crucial element of local volatility models is
the absence of arbitrage (Dupire, 1994). Highly numerically effi-
cient pricing algorithms, for example, by Andersen and Brotherton-
Ratcliffe (1997), rely heavily on no-arbitrage properties. Kahalé
(2004) proposed a procedure that requires solving a set of nonlin-
ear equations with no guarantee of a unique solution. Moreover, for
that algorithm the data feed is already (unrealistically) expected
to be arbitrage free (Fengler, 2005; Fengler et al., 2007). In addi-
tion, the covariance structure of the quoted option prices (Renault,
1997) is rarely incorporated into the estimation procedure.

In Table 1, we give an overview of selected properties of
different estimation techniques. The parametric approach may
be used to estimate parameters of a probability density lying in
some preselected family. The parametric models may be further
extended by considering more flexible probability densities or
mixtures of distributions. Approaches based on nonparametric
smoothing techniques are more flexible since the shape of a
nonparametric SPD estimate is not fixed in advance and the
method controls only the smoothness of the estimate. For example,
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Table 1
Summary of properties of parametric and nonparametric estimators.

Methods

Parametric Standard smoothing method Nonparametric under constraints This paper
Shape Fixed Flexible Flexible Flexible
Control Choice of family Smoothness Smoothness None
SPD support Infinite Restricted Restricted Restricted
Constraints By design Local Yes Yes

the smoothness of a kernel regression estimator depends mostly
on the choice of the bandwidth parameter, the smoothness of the
PCA estimator (Bondarenko, 2003) depends on the choice of the
kernel, and the smoothness of the NNLS estimator (Yatchew and
Hardle, 2006) is controlled by constraining the Sobolev norm of
the SPD; using these nonparametric estimators, systematic bias
may typically occur in the case of oversmoothing. Constraints
on estimators are more easily implemented for globally valid
parametric models than for local (nonparametric) models. The use
of a standard smoothing technique which does not account for
the constraints is not advisable. The value of the nonparametric
estimate cannot be calculated in regions without any data and,
therefore, the support of nonparametrically estimated SPDs is
limited by the range of the observed strike prices even for
nonparametric-under-constraints techniques.

Most of the commonly used estimation techniques do not
specify explicitly the source of random error in the observed option
prices; see Renault (1997) for an extensive review of this subject.
A common approach in SPD estimation is to use either the closing
option prices or to correct the intraday option prices by the current
value of the underlying asset. Both approaches lack interpretation
if the shape of the SPD changes rapidly. This can be made clear by a
gedankenexperiment: if the shape of the SPD changes dramatically
during the day, correcting the observed option prices by the value
of the underlying asset and then estimating the SPD would lead to
an estimate of some (nonexisting) daily average of the true SPDs.
We try to circumvent this problem by introducing a simple model
for the intraday covariance structure of option prices which allows
us to estimate the value of the true SPD at an arbitrarily chosen
fixed time; see also Hlavka and Svojik (2008). Most often, we are
interested in the estimation of the current SPD.

We develop a simple estimation technique in order to construct
constrained SPD estimates from the observed intraday option
prices which are treated as repeated observations collected
during a certain time period. The proposed technique involves
constrained LS-estimation, it enables us to construct confidence
intervals for the current value of the SPD and prediction intervals
for its future development, and it does not depend on any
tuning (smoothness) parameter. The construction of a simple
approximation of the covariance structure of the observed option
prices follows naturally from the derivation of our nonparametric
constrained estimator. This covariance structure is interesting in
itself; it separates two sources of random errors, and it is applicable
to other SPD estimators.

We study the development of the estimated SPDs in Germany
over 8 years. A no-arbitrage argument is imposed at each
time point, leading (mathematically) to the above-mentioned
no-arbitrage constraints. This, of course, is a vital feature for
trading purposes where the derived (implied) volatility surfaces for
different strikes and maturities are needed for proper judgment of
risk and return.

The resulting SPDs and implied volatility surfaces are not
smooth per se. In most applications, this is not a disadvantage
though, since, first, we may smooth the resulting SPD estimates
(Hlavka and Svojik, 2008) and, second, we are mostly interested
in functionals of the estimated SPD like, for example, the expected
payoff or the forward price. Another important feature that can be

easily estimated from the nonsmooth SPDs are the quantiles; see
Section 6.2 for an application.

In Section 2, we introduce the notation, discuss constraints that
are necessary for estimating SPDs, and we construct a very simple
unconstrained SPD estimator using simple linear regression. In
Section 3, this estimator is modified so that it satisfies the
shape constraints given in Section 2.1. We demonstrate that the
covariance structure of the option prices exhibits correlations
depending both on the strike price and time of the trade in
Section 4. In Section 5, we apply our estimation technique on
option prices observed in the year 1995, and we show that the
proposed approximation of the covariance structure removes the
dependency and heteroscedasticity of the residuals. The dynamics
of the estimated SPDs in years 1995-2003 is studied in Section 6.

2. Construction of the estimate

The fair price of a European call option with payoff (St — K); =
max (St — K, 0), with Sy denoting the price of the stock at time T, t
the current time, K the strike price, and r the risk-free interest rate,
can be written as

C(K. T) = exp{—r(T — )} / (St — K).f(Snds. @)
0

i.e., as the discounted expected value of the payoff with respect
to the SPD f(.). For the sake of simplicity of the following
presentation, we assume in the rest of the paper that the discount
factor exp{—r(T — t)} = 1. In applications, this is achieved
by correcting the observed option prices by the known risk-free
interest rate r and the time to maturity (T — t) in (2). At the time
of the trade, the current index price and volatility are common to
all options and, hence, do not appear explicitly in Eq. (2).

Let us denote the i-th observation of the strike price by K;
and the corresponding option price, divided by the discount factor
exp{—r(T — t)} from (2), by G; = C; (K, T). In practice, on any
given day t, one observes option prices repeatedly for a small
number of distinct strike prices. Therefore, it is useful to adopt the
following notation. Let € = (Cy,...,C,)" be the vector of the
observed option prices on day t sorted by strike price. Then, the
vector of strike prices has the following structure:

K] k1 1 n

Ky ka1,
K=1].1]= . ,

Ky k15,

where k1 < ky < -+ < ky,nj = YL 1K = kj), with I(.)
denoting the indicator function and 1, a vector of ones of length n.

2.1. Assumptions and constraints

Let us now concentrate on options corresponding to a single
maturity T observed at fixed time t. Let us assume that the i-th
observed option price (corresponding to strike price K;) follows the
model

Cri(Ki, T) = u(Kp) + &, (3)
where ¢; are iid random variables with zero mean and variance o2

In practice, one might expect that the errors exhibit correlations
depending on the strike price and time. Heteroscedasticity can
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be incorporated in model (3) if we assume that the random

errors ¢; have variance Vare; = oK, leading to weighted least

squares. The assumptions on the distribution of random errors will

be investigated in more detail in Section 5.3. Following Renault

(1997), we interpret the observed option price as the price given by

a pricing formula plus an error term, and in Section 4 we suggest

a covariance structure for the observed option prices taking into

account the dependencies across strike prices and times of trade.
Harrison and Pliska (1981) characterized the absence of

arbitrage by the existence of a unique risk neutral SPD f(.). From

formula (2) and the properties of a probability density it follows

that, in a continuous setting, the function w(.), defined on R*, has

to satisfy the following no-arbitrage constraints:

1': itis positive,

2': itis decreasing in K,

3': itis convex,

4': its second derivative exists and it is a density (i.e., nonnegative
and it integrates to one).

Let us now have a look at functions satisfying Constraints 1'-4'.

Lemma 1. Suppose that u : RT™ — R™ satisfies Constraints 1'-4,
Then the first derivative, £V (), is nondecreasing and such that
limy_o V(%) = —1 and lim,_, ;oo £V (x) = 0.

Proof. Constraint 4’ implies that the first derivative, u(V, exists
and that it is differentiable. lim,_, 1o u(x) exists since the
function u» is nondecreasing (Constraint 3') and bounded
(Constraint 2"). Next, limy_ . u’(x) = 0 since a negative
limit would violate Constraint 1' for large x (u”(x) cannot be
positive since w(x) is decreasing). Finally, Constraint 4’, 1 =
Joo P @dx = limy, 0o p P (x) — limeo u (x), implies that
limeou®P® =—-1. O

Remark 1. Lemma 1 allows us to restate Constraints 3’ and 4’
in terms of u™(.) by assuming that (P (.) is differentiable,
nondecreasing, and such that lim,ou®(x) = —1 and
limy_, oo V(%) = 0.

In this section, we stated only constrains guaranteeing that
the SPD estimate will be a probability density. Constraints for the
expected value of the SPD estimate are discussed in Section 3.6.

2.2. Existence and uniqueness

In this subsection we address the issue of existence and
uniqueness of a regression function, C(.), satisfying the required
assumptions and constraints. In practice, we do not deal with
a continuous function. Hence, we restate Constraints 1'-4’ for
discrete functions, defined only on a finite set of distinct points,
say ki < --- < kp, in terms of their function values, C(k;), and

their scaled first differences, G}, = {C(k)) — C(k}/{ki — k;).

1: C(ky) > 0,i=1,
2: ki < kj implies thatC(k) > C(ky),

3: ki < kj < k;implies that —1 < C,ﬁ< < Cﬁq <o

It is easy to see that Constraints 1-2 are discrete versions
of Constraints 1’ and 2’. Constraint 3 is a discrete version of
Constraints 3’ and 4’; see Remark 1.

From now on, similarly as in Robertson et al. (1988), we think
of the collection, G, of functions satisfying Constraints 1-3 as a
subset of a p-dimensional Euclidean space, where p is the number
of distinct k;’s. The constrained regression, C, is in this setting the
closest point of € to the vector C of the observed option prices with
distances measured by the usual Euclidean distance

=f-0"¢f-0)

d(f, ©) =Y {f(K) — C(Ky)Y. (4)
i=1

From this point of view, the regression function, C, consists only
of the values of the function in the points kq, ..., k,. The first and
second differences are used to approximate the first and the second
derivatives, respectively.

We claim that the set, @, of functions satisfying Constraints 1-3
is closed in the topology induced by the metric given by Euclidean
distance and it is convex, i.e.,if f,g € Cand 0 < a < 1, then
af + (1 —a)g € C.

Lemma 2. If C € Cis the regression of C(K;),i = 1,...,n, on
ki < --- < k, under Constraints 1-3 and if a and b are constants

such that a < C(K;) < b, Vi, thena < é(k,-) < b+ (k, — ky).

Proof. Itis not possible that c (k;) lies above b for all k;’s (otherwise
we would get a better fit only by shifting ¢ (k;)). The upper bound
now follows from Constraint 3.

The validity of the lower bound may be demonstrated similarly.
Clearly, it is not possible that 6(1(,-) lie below a for all k;’s. Moreover,
it is not possible that C(k;) > --- > C(k) > a > C(kir1) >

- > 6(kp) for any i, since in such a situation the fit could be
trivially improved by increasing ¢ (kix1), -, ¢ (kp) by some small

amount, for example, by a — ¢ (kiy1), without violating any of the
Constraints 1-3. O

Theorem 1. A regression, c = arg minsee d(f, C), satisfying
Constraints 1-3, exists and it is unique.

Proof. Lemma 2 implies that ¢ belongs to a subset, 4, of € bounded
below by a and above by b + (k, — k;). Thinking of the functions as
points in Euclidean space, it is clear that the continuous function
d(f, C) attains its minimum on the closed and bounded set §. The
uniqueness of C follows from the convexity of 4 using, for example,
Robertson et al. (1988, Theorem 1.3.1). O

2.3. Linear model

With the given option data, Constraints 1-3 of Section 2.2 can
be reformulated using linear regression models with constraints.

In the following, we fix the time t and the expiry date T and we
omit these symbols from the notation. In Section 2.2 we have noted
that the option prices are repeatedly observed for a small number p
of distinct strike prices. Defining the expected values of the option
prices for a given strike price, u; = u(k;) = E{C(k;)}, we can write

Mp = Bo,

Mp—1 = Bo + b1,

Mp—2 = Bo + 2B1 + B,

Mp—3 = Bo+ 3B1 + 28 + Bs,

M1=Bo+@—DB+P@—2)B+ -+ Bp-1.

Thus, we fit our data using coefficients §;, j = 1,...,p. The
conditional means w;, i = 1,...,p are replaced by the same
number of parameters g, j = 0,...,p — 1, which allow us to
impose the shape constraints in a more natural way.

The interpretation of the coefficients 8; can be seen in Fig. 1,
which shows a simple situation with only four distinct strike
prices (p = 4). Bo is the mean option price at point 4.
Constraint 1’, Section 2.1, implies that it has to be positive. 8 is the
difference between the mean option prices at point 4 and point 3;
Constraint 2’ implies that it has to be positive. The next coefficient,
B>, approximates the change in first derivative in point 3 and it
can be interpreted as an approximation of the second derivative in
point 3. Constraint 3’ implies that 8, has to be positive. Similarly,
B3 is an estimate of the (positive) second derivative in point 2.
Constraint 4’ can be rewritten as 8, + 83 < 1.
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Bo+ 301+ 268+ 3 =

Bo+ Byt B+ B2 = po

Bo+ 81 = s

Bo = pta
Fig. 1. [llustration of the dummy variables for call options.

In practice, we start with the construction of a design matrix
which allows us to write the above model in the following linear
form. For simplicity of presentation, we again set p = 4:

M 1.3 2 1\ /B

|l _ (1 2 1 0] (5B 5)
sl {1 1.0 0)|B]"

Ha 1.0 0 0/ \Bs

Ignoring the constraints on the coefficients would lead to a simple
linear regression problem. Unfortunately, this approach does not
have to lead, and usually does not, to interpretable and stable
results.

Model (5) in the above form can be reasonably interpreted only
if the observed strike prices are equidistant and if the distances
between the neighboring observed strike prices are equal to one.
If we want to keep the interpretation of the parameters §; as the
derivatives of the estimated function, we should use the design
matrix

1 1 1 1 1
1 Ag Ag_l Ag_z e Ag A
1 A A, A, - A0
a=|: N (6)
1 472 A2 0 0 0
b -
1 AT 0 0 ... 0 0
1 0 0 0 -0 0
where A} = max(k; — k;, 0) denotes the positive part of the

distance between k; and k;, the i-th and the j-th (1 < i <j < p)
sorted distinct observed values of the strike price.

The vector of conditional means w can be written in terms of
the parameters 8 as follows:

1 Bo
2 B

—u=ap=2a|" |. )
Mp ﬁpfl

The constraints on the conditional means u; can now be expressed
as conditions on the parameters of the model (7). Namely, it

suffices to request that §; > 0,i = O0,...,p — 1 and that
Y B

The model for the option prices can now be written as
C(K) = XaB +e, (8)

where X 4 is the design matrix obtained by repeating each row of
matrix A n; times,i =1, ...,p.

3. Implementing the constraints

In order to impose Constraints 1-3 on parameters f;, i =
0,...,p — 1, we propose the following reparameterization of the

model in terms of parameters 6 = (6, ..., Op,l)T:
Bo(8) = exp(th),

B1(0) = exp(61),

Bp-1(0) = exp(Gp-1),

. -1
under the constraint that Zf:z exp() <
parameters S;(0) satisfy the constraints

1. Clearly, the

Bi®)>0, i=0,....,p—1,

p—1

> O BiO) < 1.

=2

This means that the parameters B,(0),..., Bp—1(8) can be

considered as point estimates of the state price density (the
estimates have to be positive and integrate to less than one).
Furthermore, in view of Lemma 1, it is worthwhile to note that the
parameters also satisfy

k
=Y Bie(=1,0, fork=1,...,p—1.
j=1

The model (8) rewritten in terms of parameters 6;,i = 0, ..., p,
is a nonlinear regression model which can be estimated using
standard nonlinear least squares or maximum likelihood methods
(Seber and Wild, 2003). The main advantage of these methods
is that the asymptotic distribution is well known and that the
asymptotic variance of the estimator can be approximated using
numerical methods implemented in many statistical packages.

3.1. Reparameterization

The following reparameterization of the model in terms of
parameters £ = (SO,...,EP)T simplifies the calculation of
the estimates because it guarantees that all constraints are
automatically satisfied:

Bo(§) = exp(éo),

pue) = =)
3 exp(s)
=
) = 22D,
3 exp()
=

This property simplifies the numerical minimization algorithm
needed for the calculation of the estimates.

The equality
1 06
p—1 p—1
2 Bi(€) Zl exp(§))
Jj= j=

shows the meaning of the additional parameter £,. Setting
this parameter to —oo would be the same as requiring that
Z]’:]l Bj(§) = 1.Large values of the parameter &, indicate that the
estimated coefficients sum to less than one or, in other words, the
observed strike prices do not cover the support of the estimated
SPD. Notice that, by setting £, = —o0, we could easily modify our

procedure and impose the equality constraint Zf;l Bi¢) = 1.
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3.2. Inverse transformation of model parameters

For the numerical algorithm, it is useful to know how to
calculate &’s from given 8’s. This is needed, for example, to obtain
reasonable starting points for the iterative procedure maximizing
the likelihood.

BT, where B, = 1— """ B, the
., ép)T satisfy the system of equations

Lemma 3. Given 8 = (B4, ..
parameters £ = (&4, ..

(B1, —L)exp&" = AexpE’ =0, (9)
where I, is the (p x p) identity matrix. Furthermore,
rankA =p — 1. (10)

The system of Eq. (9) has infinitely many solutions, which can be
expressed as

exp(§) = (A~ A1)z, (11)

where A~ denotes a generalized inverse of A and where z is an
arbitrary vector in RP such that the right-hand side of (11) is positive.

Proof. Parts (9) and (10) follow from the definition of B(§)
and from simple algebra (notice that the sum of rows of 4 is
equal to zero). Part (11) follows, for example, from Andél (1985,
Theorem IV.18). O

It remains to choose the vector z in (11) so that the solution of
the system of Eq. (9) is positive.

Proposition 1. The rank of the matrix A~ A — 1, is 1. Hence, any
solution of the system of Eq. (9) is a multiple of the first column of the
matrix A~ A — 1,. The vector z in (11) can be chosen, for example,
as z = %1, where the sign is chosen so that the resulting solution is
positive.

Proof. The definition of a generalized inverse is
AATA — A= A(A" A — 1)) = 0. (12)

Lemma 3 says that rank4 = p — 1 and, hence, Eq. (12) implies
that rank(A~A — I,) < 1. Noticing that A~ # I, means that
rank(4~ A —I) > 0, and concludes the proof. O

3.3. The algorithm

The proposed algorithm consists of the following steps:

1: obtain a reasonable initial estimate ,@’ for example, by
running the Pool-Adjacent-Violators algorithm (Robertson
et al,, 1988, Chapter 1) on the unconstrained least squares
estimates of the first derivative of the curve, R

2: transform the initial estimate 8 into the estimate & using the
method described in Section 3.2,

3: estimate the parameters of the model (8) by minimizing the
sum of squares {C(K) — X B(E)}T{C(K) — X B(£)} in terms
of £ (see Section 3.1) using numerical methods.

An application of this simple algorithm on real data is given in
Section 5.1.

3.4. Asymptotic confidence intervals

We construct confidence intervals based on the parameteriza-
tion B(0) introduced at the beginning of this section. The confi-
dence limits for parameters 6; are exponentiated in order to obtain
valid pointwise confidence bounds for the true SPD. The main ad-
vantage of this approach is that such confidence bounds are always
positive.

An alternative approach would be to construct confidence inter-
vals based on the parameterizations in terms of 8; (Section 2.3) or &;
(Section 3.1). However, the limits of confidence intervals for §; may
be negative and confidence intervals for the SPD based on param-
eters & would have very complicated shapes in high-dimensional
space and could not be easily calculated and interpreted.

Another approach to the construction of the asymptotic
confidence intervals can be based on the maximum likelihood
theory. Assuming normality, the log-likelihood for the model (8)
can be written as

1
I(C, %X 4,0,0) = —nlogo — —{C — X480}
202

x{C — XaB(O)}, (13)

where X, is the design matrix given in (8). This normality
assumption is justified later by a residual analysis. The maximum
likelihood estimator is defined as

é:argmeaxl(C, Xa,0,0), (14)

and it has asymptotically a p-dimensional normal distribution
with mean 6 and the variance given by the inverse of the Fisher
information matrix:

32 !
Fl=1]—E I(C, X 4,0, ) 15
ot = |t (i 00| (5

More precisely, n'/2(6—6) N N, (0, F,1).In this framework, the
Fisher information matrix can be estimated by using the numeri-
cally differentiated Hessian matrix of the log-likelihood. For details
we refer, for example, to Serfling (1980, Chapter 4). The confidence
intervals calculated for parameters & may be transformed (expo-
nentiated) to a confidence intervals for the SPD (). We have not
pursued the maximum likelihood approach since it was numeri-
cally less stable in this situation.

Note that, under the assumptions of normality, the maximum
likelihood estimate is equal to the nonlinear least squares es-
timate (Seber and Wild, 2003, Section 2.2), and the asymlltotic
variance of 6 = exp(B) may be approximated by Var6 =
{diag(exp 8) X ] X 2diag(exp #)}~'52. Hence, asymptotic confi-
dence intervals for 6; may be calculated as (@ +u_, /zﬁi), where
Ui_q 2 is the 1 — /2 quantile of the standard Normal distribution

and’s; denotes the i-th diagonal element of Varf. By exponentiat-
ing both limits of this confidence interval, we immediately obtain
the 1 — « confidence interval for 8; = exp ;.

The construction of the estimator guarantees that the matrix
X 4 has full rank—this implies t/ljat XZXA is invertible and the
asymptotic variance matrix Var 8 always exists. If the number of
observations is equal to the number of distinct strike prices (if there
is only one option price for each strike price), it may happen that
&% = 0 and the confidence intervals degenerate to a single point.

3.5. Put-Call parity

The prices of put options can be easily included in our
estimation technique by applying the Put-Call parity of the option
prices. Assuming that there are no dividends or costs connected
with the ownership of the stock, each put option with price
P;(K, T) corresponds to a call option with price

G, T)=P(K,T)+S; — Ke "T=9,

In this way, the prices of the put options can be converted into
the prices of call options and used in our model (Stoll, 1969).
Statistically speaking, these additional observations will increase
the precision of the SPD and will lead to more stable results.

In Germany, the Put-Call parity might be biased by an effect of
the DAX index calculation which is based on the assumption that
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Fig. 2. Illustration of the dummy variables for both call () and put («) options.

the dividends are reinvested after deduction of corporate income
tax. As the income tax of some investors might be different, the
value of the DAX has to be corrected before using Put-Call parity
in subsequent analysis. For the exact description of this correction
we refer to Hafner and Wallmeier (2000) who were analyzing the
same data set.

The construction of our estimates allows us to include the
put option prices in a more direct way by fitting the two curves
separately using two sets of parameters. The situation is displayed
in Fig. 2. Our assumption that the same SPD drives both the put and
call option prices is naturally translated in terms of the coefficients
a; and B;:

o = ,3p—i+17

p—1
o1 = 1-— Z‘Bl
i=1

The problem of estimating regression functions under such linear
equality constraints is solved, for example, in Rao (1973). In
Section 4.3, we will also investigate the covariance of the observed
call and put option prices, and the suggested model will be
presented in detail.

fori=2,...,p—1

3.6. Expected value constraints

In Section 2.3, we have explained that the parameters
B2, ..., Bp—1 can be interpreted as estimates of the state price
density in points ky, ..., k,_;. From the construction of the
estimator, see also Fig. 1, it follows that parameter 8; can be
interpreted as the mass of the SPD lying to the right of k,_;.
Assuming that the observed strike prices entirely cover the support
of the SPD, the mass $; could be attributed to the point k,. Notice
that the reparameterization introduced in Section 3 guarantees
that Zf: Bi(€) < 1, and it immediately follows that interpreting
B1 as the estimate of the SPD in point k, does not violate any
constraints described in Section 2.2.

Referring to Section 3.5, it is clear that the parameter 8, =

ar=1-— f;l Bi can be interpreted as the estimator of the SPD
in kq. The parameterization of the problem now guarantees that

p
i=1 ,31‘ =1
lThe expected value of the underlying stock under the risk-

neutral measure can now be estimated as ES?® = Y7 k;By_i;1.

From economic theory it follows that E/Sﬁ has to be equal to
the forward price of the stock. This constraint can be easily
implemented by using the fact that 8, and B, estimate the mass
of the SPD respectively to the right of k,_; and to the left of k.

If ESPP is smaller than the forward price exp{r(T — t)}S; of the

stock, it suffices to move the mass 8; further to the right. If ESPP is
too large, we move the mass B, to the left. More precisely, setting

K1 = ki — I(ESP > exp(r(T — 0)}S)(EP — exp(r(T — £)}S,)/Bp-
Ky = ky + IESP < exp{r(T — 1)}S,)(exp{r(T — 0)}S; — EP) /By,

we get
exp{r(T — ©)}S; = k18 + Z kiBp—iv1 + kppBi.
i=2

This choice of k; and k, guarantees that the expected value
corresponding to the estimator 8, ..., B, is equal to the forward
price S; of the stock; see the beginning of Section 6 for an
application of this technique.

In Sections 4 and 5, we will concentrate on the properties
of Bo,...,Bp—1 and further improvements in the estimation
procedure.

4. Covariance structure

In this section, we use a model for the SPD development
throughout the day to derive the covariance structure of the
observed option prices depending on the strike prices and time of
the trade. Considering the covariance structure in the estimation
procedure solves the problems with heteroscedasticity and
correlation of residuals that will be demonstrated in Section 5.3.

In this model, most recent option prices have the smallest
variance and thus the largest weight in the estimation procedure.
Similarly, the covariance of two option prices with the same strike
price at approximately the same time is larger than the covariances
of prices of some more dissimilar options.

We start by rewriting the model with iid error terms so that it
can be more easily generalized. In Section 4.1, we present a model
that accounts for heteroscedasticity and which is further devel-
oped in Sections 4.2 and 4.3, where an approximation of the covari-
ance is calculated for any two options prices using only their strike
prices and time of the trade. In Section 4.4, we suggest decompos-
ing the error term into two parts, and we show how to estimate
these additional parameters by the maximum likelihood method.
The analysis of the resulting standardized residuals in Section 5.4
suggests that this covariance structure is applicable to our dataset.

Until now, we have assumed that the i-th option price (on a
fixed day t) satisfies

Gi(k) = AiB + & (16)
or

Ci(k) = Aji + &,

Bi = Bi-1, (17)
where ¢; are_iid random errors with zero mean and constant
variance 02, 8 = 1 = - - - = f; denotes the column vector of the

unknown parameters, and A; denotes the j-th row of the matrix A
defined in (6), i.e.,

_ iAd j
A= AL A AL

0,...,0).
——

(¢-1
The residual analysis in Section 5.3 clearly demonstrates that the
random errors &; are not independent and homoscedastic, and we
have to consider some generalizations that lead to a better fit of the
data set.

4.1. Heteroscedasticity

Assume that the i-th observation, corresponding to the j-th
smallest exercise price kj, can be written as

Gi(k) = AiBi, (18)

Bi=B+ei, (19)
i.e., there are iid random vectors ¢; having iid components with
zero mean and variances o2 in the state price density f;. Clearly,
the variance matrix of the vector of the observed option prices C is
then

Var C = o2diag(X,%)), (20)
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where X, is the design matrix in which each row of the matrix A
is repeated n; times,j =1, ..., p.

Remark 2. Assuming that the observed option prices have the
covariance structure (20), the least squares estimates do not
change, and

Var B = 02{X [ diag(X % ) 71X 4}

Another possible model for the heteroscedasticity would
assume that the changes are multiplicative rather than additive.

Ciky) = A
log Ei = logE + &;.

This model leads to a variance of C;(k;) that depends on the value
of the SPD:

Var Gi(ky) = o{B3 + (A))*B7 + (A_)?B3 + (A _,)* B3
ot (A§+])2/3].2},
It is straightforward that Remark 2 also applies in this situation.

4.2. Covariance

Let us now assume that there are random changes in the state
price density coefficients §; over time so that we have

Gi(k) = A;Bi,

Bi = Bi1+ s, (21)
where, for fixed i, §; is the parameter vectorand g, k = i,i—1, .. .,
are iid random vectors having iid components with zero mean and
variances o2. For nonequidistant time points, let §; denote the time
between the i-th and (i — 1)-th observation. The model is

Gi(kj) = 4;p;,

Bi =B+, (22)

and it leads to the covariance matrix with elements
Cov{Giou(ky). Ciu(ki)} = CoV(ABi_u, AiBi-y)
min(u,v)
= O'ZAJ'A,-T Z 81‘+1,1. (23)
=1
When we observe the i-th observation, we are usually interested in
the estimation of the current value of the vector of parameters S;.

4.3. Including put options

Similarly, we obtain the covariance for the price of the
put options, P;(k;). Using the relations between the « and B
parameters, ax = Bp_i4+1, fork = 2,...,p — 1, and after some
simplifications, we can write the model for the price of the put
options, P;(k;), as

Pj(kj) = Aj&i,
G =81+ 86, (24)
where @ = (ao, o1, Bp-1, Bp—2, ..., B2) | and Aj’? denotes the

corresponding row of the design matrix, i.e.,
AP =,4l, 42  A 0,0
——
[§:225)]

In this way, we obtain a joint estimation strategy for both the call
and put option prices:

Gik) = Ajgi,
P,‘(kj) = AJI-)&II‘,

(Ef) _ (EM) + 51, (25)
o i1

which directly leads to covariances

COV{Pi—u(kj)7 Pi—v(ki)} = COV(AJI'jai—uv Afai—v)

min(u,v)
= 27D Y S (26)
=1
and
Cov{Ci—u(K), Piy (ki)} = COV(AjBioy, ATGiy)
min(u,v) p—1 ;
. .~
=0 Y Sy Ay AT (27)
=1 k=2

Together with (23), Eq. (26) and (27) allow us to calculate the
covariance matrix of all observed option prices using only their
strike prices and the times between the transactions.

4.4. Error term for option prices

Using the model (25) would mean that all changes observed
in the option prices are due only to changes in the SPD. It seems
natural to add another error term, 7;, as a description of the error
in the option price:

Ci(ky) = Aif; + i,
Pi(k)) = Af@ + m;,

(El) = (Eﬂ) + 6%, (28)
o ®i—q

where 7; ~ N(0, v?) are iid random variables independent of the
random vectors &;. Here, normality assumptions are added both for
ni and &; so that the variance components parameters v> and o2
may be estimated by the maximum likelihood method.

Next, in order to simplify the notation, let us fix the index
i, and let Y denote the vector of observed call and put option
prices, X, the corresponding design matrix consisting of the
corresponding rows A; and A]’.’ , and Y the combined vector
of unknown parameters. Denoting by X; the matrix containing
the covariances defined in (23), (26) and (27), we can rewrite
model (25) as

Y = XAy +&, (29)

where Varé = VarY = 023 + 24, = 02(Z; + ¥24,) = o2V,
where 2 = v? /02 Differentiating the log-likelihood

n 1
(B, o*, ¥ = 3 log(2m) — 3 log [0 *V|

1 Ty -1 ~
—E(Y—xm/) VY = Xay),

we obtain
(B, o2, ¥?)
oY
1 -1 1 ~\ Ty —2 ~
=——tr(V" )+ —= (Y — X,Y) V(Y — X4P). (30)
2 202

For any fixed value of the parameter 2, it is straightforward
to calculate the optimal o2 and ¥. Hence, the numerical
maximization of the log-likelihood can be based on a search for
aroot (zero) of the one-dimensional function (30).

Moreover, the variance components parameters o2 and v?> =
Y202 have a very natural econometric interpretation: o 2 describes
the speed of change of the SPD and v? the error in observed option
prices.
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Fig. 3. Option prices plotted against strike price and time to maturity with a two-dimensional kernel regression surface (left) in January 1995 and the ensemble of the call
option prices with shortest time to expiry against strike price (right) on 16 January 1995. SFB and CASE data base: sfb649.wiwi.hu-berlin.de.
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Fig. 4. On 16 January 1995, the unconstrained estimate satisfies the constraints.
Hence, it is equal to the constrained estimate. The top panel shows the original
data with the fitted call pricing functions. The second and the third panels show
the estimates of the first and second derivatives, respectively.

5. Application to DAX data

We analyze a data set containing observed option prices for
various strike prices and maturities. Other variables are the interest
rate, date, and time. In 1995, one observed every day about 500
trades; in today’s more liquid option markets this number has
increased approximately 10 times. In our empirical study we will
consider the time period from 1995 to 2003, thus also covering
more recent liquid option market.

Fig. 3 displays the observed prices of European call options
written on the DAX for the 16 January 1995. The left panel
shows the ensemble of call option prices for different strikes and
maturities as a free structure together with a smooth surface. The
typical shape of dependency of the option price on the strike price
can be observed in the right panel, containing the option prices
only for the shortest time to expiry, 7 = T — t = 4 days.

In order to illustrate the method, we apply it to DAX option
prices on two consecutive days. These days (16 and 17 January

1995) were selected since they provide a nice insight into the
behavior of the presented methods.

5.1. Estimator with iid random errors

We start by a comparison of the unconstrained and constrained
estimator described respectively in Sections 2.3 and 3.1.

For the European call option prices displayed in the right-hand
plot in Fig. 3, we obtain the estimates plotted in Fig. 4. The top
plot displays the original data, the second plot shows the estimate
of the first derivative, and the third plot shows the estimate of
the second derivative, i.e., the state price density. Actually, all
plots contain two curves, both obtained using model (8). The thick
line is calculated using the parameters S; without constraints,
whereas the thin line uses the reparameterization S;(£¢) given in
Section 3.1. In Fig. 4, these two estimates coincide since the model
maximizing the likelihood without constraints, by chance, fulfills
the constraints (3¢ : B; = Bi(§),i = 0,...,p — 1), and hence it
is clear that the same parameters also maximize the constrained
likelihood.

The situation, in which the call pricing functions fitted with and
without constraints differ, is displayed in Fig. 5. Notice that the
difference between the two regression curves is small, whereas
the difference between the estimates of the state price density
(i.e., the second derivative of the curve) is surprisingly large.
The unconstrained estimate shows very unstable behavior on the
left-hand side of the plot. The constrained version behaves more
reasonably. Very small differences between the fitted call pricing
functions in the top plot in Fig. 5 lead to huge differences in the
estimates of the second derivative.

We therefore conclude that a small error in the estimate of the
call pricing function may lead to large scale error in the estimates
of the first and second derivatives. The scale of this type of error
seems to be limited by imposing the shape constraints given in
Section 2.2.

5.2. Confidence intervals

In Figs. 6 and 7, we plot both estimates together with the 95%
confidence intervals. Notice that, in the unconstrained model, the
estimates of the values of the SPD are just the parameters of the
linear regression model. Hence, the confidence intervals for the
parameters are, at the same time, also confidence intervals for the
SPD. These confidence intervals for 16 and 17 January 1995 are
displayed in the upper plots in Figs. 6 and 7. The drawbacks of
this method are clearly visible. In Fig. 6, the lower bounds of the
confidence intervals only asymptotically satisfy the condition of
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Fig. 5. On 17 January 1995, the unconstrained estimate, displayed using the thin
line, does not satisfy the constraints. The top panel shows the original data with the
two fitted call pricing functions. The estimates of the first derivative in the second
panel look rather different. The constrained estimate of the second derivative in the
bottom panel is clearly much more stable than the unconstrained estimate.
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Fig. 6. The unconstrained and constrained confidence intervals for the SPD on 16
January 1995. The description on the x-axis shows the number of observations in
each point.

positivity. In Fig. 7, we observe large variability on the left-hand
side of the plot (the region with low number of observations).
Again, some of the lower bounds are not positive. Clearly, the
confidence intervals based on the unconstrained model make
sense only if the constraints are, by chance, satisfied. Even if
this is the case, there is no guarantee that the lower bounds
will be positive. The lower panels in Figs. 6 and 7 display the
nonnegative asymptotic confidence intervals calculated according
to Section 3.4.

In Fig. 6, both types of confidence interval provide very similar
results. The only difference is at the minimum and maximum value

Unconstrained

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

26 157 180 18 10 4 &

Constrained

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

T T T T
3 2 1 2 2 26 157 180 18 10 4 5

Fig. 7. Confidence intervals for SPD on 17 January 1995. The description on the
x-axis shows the number of observations in each point.
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Fig. 8. The time dependency and the heteroscedasticity of the residuals during
one day. The circle, square, and star denote the trades carried out in the morning,
midday, and afternoon, respectively. The size of the symbols denotes the number
of residuals.

of the independent variable (strike price), where the unconstrained
method provides negative lower bounds and the conditional
method leads to very large upper bounds of the confidence
intervals.

In Fig. 7, we plot the confidence intervals for 17 January 1995.
In the central region of the graphics, both types of confidence
interval are quite similar. On the left-hand and right-hand sides,
both methods tend to provide confidence intervals that seem to
be overly wide. For the constrained method, we observe that the
length of the confidence intervals explodes when the estimated
value of the SPD is very close to zero and, at the same time, the
number of observation in that region (see the description of the
horizontal axis) is small.

5.3. Residual analysis

The residuals on 17 January 1995 are plotted in Fig. 8. The time
of trade (in hours) is denoted by the plotting symbol. The circle,
square, and star denote the trades carried out in the morning,
midday, and afternoon, respectively. The size of the symbols
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Fig. 9. Estimate using the covariance structure (28) on 17 January 1995. The upper
plot shows the observed option prices and the constrained estimate. The size of
the plotting symbols corresponds to the weight of the observations. The lower plot
shows the estimated SPD with confidence intervals.

corresponds to the number of residuals lying in the respective
areas.

The majority of the residuals correspond to the strike prices of
2075DEM and 2100DEM. The variance of the residuals is very low
on the right-hand side of the plot and it rapidly increases when
moving towards smaller strike prices. On the left-hand side of the
plot, for strike prices smaller than 2000, we have only very few
observations, and cannot judge the residual variability reliably.

Apart from the obvious heteroscedasticity we also observe a
very strong systematic movement in the SPD throughout the day:
the circles, corresponding to the first third of the day, are positive,
and all stars, denoting the afternoon residuals, are negative. Similar
patterns can be observed every day—residuals corresponding to
the same time have the same sign.

We conclude that the assumption of iid random errors is
obviously not fulfilled as the option prices tend to follow the
changes of the market during the day.

5.4. Application of the covariance structure

In Fig. 9, we present the estimator combining both put and
call option prices and using the covariance structure proposed in
Section 4.4. In comparison with the results plotted in Fig. 7, we
observe shorter length of the confidence intervals.

The estimates of the variance components parameters are @2 =
17.77,6? = 0.0041,and > = 0.0722. For interpretation, it is more
natural to consider v = 0.2687, suggesting that 95% of the option
prices were on 17 January 1995 not further than 0.5DEM from the
correct option price implied by the current (unobserved) SPD.
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Fig. 10. The development of the standardized residuals resulting from the model
with the covariance structure (28) on 17 January 1995 during the day, where circles,
squares, and stars denote the residuals from morning, midday, and afternoon, and
a histogram of the standardized residuals.

SPD estimate with prediction intervals

0.5

0.4

0.3

0.2

0.1

0.0

T T T T T T
1950 2000 2050 2100 2150 2200

Fig. 11. SPD estimate on 17 January 1995 with prediction intervals for the next 5 h
calculated for every 30 min.

The standardized residuals in the top panel of Fig. 10 were
plotted using the same technique as the residuals in Fig. 8. Whereas
the residuals for the iid model showed strong correlations and
heteroscedasticity, the structure of the standardized residuals
looks much better. It is natural that the residuals are larger in the
central part since more than 90% of observations have strike price
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Dynamics of SPD mean
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Fig. 12. Daily development of the expected value of the uncorrected SPD from
January to March 1995. The circles denote the corresponding closing value of the
DAX.
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Fig. 13. Daily development of the SPD variance from January to March 1995.

between 2050 and 2100. The largest residuals were omitted in
the residual plot so that the structure in the central part is more
visible, but the lower panel of Fig. 10 displays the histogram of all
residuals. The distribution of the residuals seems to be symmetric,
and its shape is not too far from Normal distribution. However,
the kurtosis of this distribution is too large, and formal tests reject
normality.

In Fig. 11, we plot prediction intervals for the SPD obtained only
by recalculating the covariance structure (28) with respect to some
future time. More precisely, the prediction intervals are obtained
from option prices observed until i, Then, using the notation of
Section 4.4, we have, for the future ;1 and @, 1,

Gik) = Ajgi + i,
Pi(ky) = A]@ + i,

i i 1/2
(1) = (B) + st

It is now easy to see_that the only modification that has to be
done for estimating S;;; is to add the length of the forecasting
horizon §;;1 to the sum in (23), (26) and (27), and to recalculate
the confidence regions using this variance matrix with the same
estimates of the variance parameters o2 and v2. In Fig. 11, the
95% confidence intervals for the true SPD are denoted by the black

(31)

dashed line. The grey dashed lines denote the prediction intervals
calculated for each 30 min for the next 5 h. In this way, we can
obtain a simple approximation for future short-term fluctuations
of the SPD. In the long run, the prediction intervals become too
wide to be informative.

6. Dynamics of the SPD

In order to study the dynamics of SPDs, we calculated the
basic moment characteristics of the estimated SPDs. Note that the
estimator does not allow one to estimate the SPD in the tails of the
distribution. We can only estimate the probability mass lying to
the left (1 — Zf: Bi) and to the right (1) of the available strike
price range. Hence, the moments calculated in this section are
only approximations which cannot be calculated more precisely
without additional assumptions, for example, on the tail behavior
or parametric shape of the SPD.

The estimated mean and variance in the first quarter of 1995
are plotted as lines in Figs. 12-13. Note that the SPDs in this
period were always estimated using the options with shortest time
to maturity. This means that the time to maturity is decreasing
linearly in both plots, but it jumps up whenever the option with the
shortest time to maturity expires. These jumps occurred at days 16,
36, and 56.

From no-arbitrage considerations, it follows that the mean of
the SPD should correspond to the value of the DAX,

ESP _ f Srf (Sr)dSr = exp(r(T — D}S:.

See also the discussion in Section 3.6. In Fig. 12, the observed values
of the DAX multiplied by the factor exp{r(T — t)} are plotted as
circles for the first 65 trading days in 1995, and we observe that the
estimated means of the SPD estimates, displayed as the line, follow
the theoretical value very closely. A small difference is mainly due
to the fact that, in 1995, the observed strike prices do not entirely
cover the support of the SPD. For example, on day 16, the difference
between the SPD mean (2018.7) and the DAX multiplied by the
discount factor (2012.1) is equal to 6.6. The fact that there are not
any trades for strike prices smaller than 1925 means that we only
know that the probability mass lying to the left from 1950 is equal
to 0.25. In the calculation of the estimate of the SPD mean plotted
in Fig. 12, this probability mass is assigned to the value 1925, as
this is the leftmost observed strike price. Obviously, assigning this
probability mass rather to the value 1925 — (6.6/0.25) = 1898.6
leads a more realistic estimate of the SPD and to the equality of the
SPD mean and the discounted DAX.

In Fig. 13, we see that the variance of the SPD decreases
linearly as the option moves closer to its maturity. This observation
suggests that SPD estimates calculated for neighboring maturities
can be linearly interpolated in order to obtain an SPD estimate
with arbitrary time to maturity. Such an estimate is important
for making the SPD estimates comparable and for studying the
development of the market expectations.

6.1. Estimate with the fixed time to expiry

The variances displayed in Fig. 13 suggest that the variance of
the SPD estimates changes approximately linearly in time when
moving closer to the date of expiry.

Hence, from the estimates f;,(.) and f;,(.) of centered SPDs
corresponding to the times of expiry 7; < T, we construct an
estimate f; (.) for any time of expiry t € (1, 72) as

(2 = Of, O + (¢ —)f;, ()

T2— T

fi () = (32)
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SPD based prediction
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Fig. 14. Prediction intervals for the DAX based on SPDs and historical simulation from January 1995 to March 2003.
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Fig. 16. Integral transformation for estimated SPDs.

In this way, the variance, V;, of the centered SPD with time to
expiry equal to t can be expressed as

vV, = / X*f. (x)dx
_ fxz (2 — Of; @) + (t — T)fr, ®) dx

T)— T
(—D)Vy + (T — 1)V,

To—T

We argue that such an estimate is reasonable since we observed in
Fig. 13 that the SPD variances change linearly in time.

6.2. Verification of the market’s expectations

Under the risk neutral (equivalent martingale) measure, the
SPD reflects the market’s expectation of the behavior of the value
of the DAX in 45 days. Hence, it is interesting to use our data set
to verify how these expectations compare with reality. In the left
plotin Fig. 14, we plot intervals based on the SPD together with the
true future value of the DAX: the black lines display the 2.5% and

97.5% quantiles of the estimated SPD; the future value of the DAX is
displayed as a grey line. In the right plot, we show in the same way
the 45-day ahead predictions based on the historical distribution
of the 45-day absolute returns in the last 100 trading days; the 2.5%
and 97.5% quantiles of this distribution are plotted as black lines.

Fig. 14 suggests that the method works well and that the
DAX mostly stays well within the quantiles calculated from the
estimated SPDs. The DAX was sometimes rising faster than the
market expected from 1995 to mid-1998. After a fast decrease
in the second half of 1998, the market increased again till the
beginning of year 2000. Since then, the market has decreased.
However, the changes stay mostly within or very close to the
bounds predicted by our SPD estimates. The only exception is the
large shock observed in September 2001, caused by the terrorist
attack on the World Trade Center.

The upper quantiles, 97.5%, of the historical distribution
of the 45-day absolute returns mostly agree with the upper
quantiles of the SPD. The lower quantiles, 2.5%, of the SPDs
seem to be much more variable than the same quantiles of the
historical distribution. Both the lower and the upper quantiles
of the historical distribution lie mostly above the corresponding
quantiles of the estimated SPD, respectively in 69.44% and 81.75%.
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Fig. 17. Integral transformation for historical simulation.
Table 2
Fraction of the year that the DAX stays in the prediction corridor.
Year 1996 1997 1998 1999 2000 2001 2002
SPD (%) 84.40 66.13 75.30 74.60 97.22 85.66 94.84
Historical (%) 82.00 79.44 76.89 77.38 93.25 86.06 80.56
This observation just confirms the fact that the observed SPD we define
includes effects of risk aversion. Xevh
In Table 2, we show the fraction of the year that the DAX stays in Znt = for(wdu,
—0Q

the prediction corridor. This suggests that the coverage is slightly
better for the historical simulation if the DAX is increasing and
better for the SPD based prediction if the DAX is decreasing (years
2000 and 2002).

6.3. Evaluation of the quality of the forecasts

The quality of the forecasts can be evaluated by comparing
the true future observation with its predicted distribution (the
SPD). Diebold et al. (1998) propose to evaluate density forecasts
using the probability integral transformed observations z, ;, where
t denotes the time and h the forecasting horizon. More precisely,

where ﬁ,t(.) denotes our estimate of the SPD h days ahead at
time t and X:; is the future observation. In otllgr words, zp
is the probability value of X,,, with respect to f;((.). Clearly,
the Zp¢ should be uniformly U(0, 1) distributed if the estimated
SPD fu+(.) is equal to the true density of X ;4. In Fig. 15, we
display the histograms of z;'s for each year for the estimated
SPDs and historical simulation using full and dashed histograms,
respectively. Clearly, in the ideal case, the histograms should not
be too far from a Uniform U (0, 1) distribution. In our data, for the
prediction horizon h = 45 days, we observe that the histograms
look quite different from what we would expect. Especially in
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years 1995-1999, the DAX was moving mainly in the upper
quantiles of the predicted SPD. The forecasts based on the historical
distribution of the 45-day returns behave similarly.

In order to account for the overlapping forecasting periods,
we calculate the confidence limits for the empirical distribution
function

T

-~ 1
Fu) = = Iz <u

= ; (zne < u)
of z, +’s that take into account the autocorrelation structure.
PR 1 h _I
Var(Fw} = — 1 7%(0) +2; (1 - ;) i) { (33)
where y,(j) is the sample autocovariance of order j:

1 < - -~
) = > 1@ =w —F i@ <w —Fw}.
t=j+1

The empirical distribution functions F(.) are plotted separately
for years 1995-2002 in Fig. 16. The distribution function of U(0, 1)
and the limits following from (33) are displayed as dotted lines. The
year 2003 was not included since our dataset contains only two
months of the year 2003, which did not leave enough observations
to confirm the forecasts.

In 1996 and 1997, the market was growing much faster than
the SPDs were indicating. In 1996, it never happened that the DAX
fell below the 10% quantile of the SPD, and there were only a few
days when this value was below 20%. The situation in 1998 and
1999 was less extreme even though the fast growth of the DAX
continued. The distribution given by the SPD estimate f; j,(.) for the
horizon h = 45 days does not differ significantly from the true
distribution of X, in 2000-2001, but in 2002 we again observe
significant differences. Thus, the DAX was growing faster than the
option market expected in 1996, 1997, and 1999 and it was falling
faster in 2002.

Fig. 17 shows the same graphics for the forecast based on
the historical distribution of the returns. The deviations are more
clearly visible but the overall picture is very similar; the only
difference arises in 2001 when the predictions did not stay
between the limits.

7. Conclusion

We have proposed a simple nonparametric model for arbitrage-
free estimation of the SPD. Our procedure takes care of the daily
changing covariance structure and involves both types of European
option. Moreover, the covariance structure allows us to calculate
prediction intervals capturing future behavior of the SPD. We
analyze the moment dynamics of the SPD from 1995-2003. An
application to DAX EUREX data for the years 1995-2003 produces
a corridor that is compared to the future DAX index value. The
proposed technique enables us not only to price exotic options but
also to measure the risk and volatility ahead of us.
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ABSTRACT

In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks.
The tool must be precise but also easily adaptable to the bank’s objectives
regarding the relation of false acceptances (Type I error) and false rejections
(Type 1I error). We explore the suitability of smooth support vector machines
(SSVM), and investigate how important factors such as the selection of appro-
priate accounting ratios (predictors), length of training period and structure of
the training sample influence the precision of prediction. Moreover, we show
that oversampling can be employed to control the trade-off between error types,
and we compare SSVM with both logistic and discriminant analysis. Finally,
we illustrate graphically how different models can be used jointly to support
the decision-making process of loan officers. Copyright © 2008 John Wiley
& Sons, Ltd.

KEY WORDS insolvency prognosis; support vector machines; statistical learning
theory; non-parametric classification

INTRODUCTION

Default prediction is at the core of credit risk management and has therefore always attracted special
attention. It has become even more important since the Basel Committee on Banking Supervision
(Basel II) established borrowers’ rating as the crucial criterion for minimum capital requirements of
banks. The methods for generating rating figures have developed significantly over the last 10 years
(Krahnen and Weber, 2001). The rationale behind the increased sophistication in predicting borrow-
ers’ default risk is the aim of banks to minimize their cost of capital and to mitigate their own

bankruptcy risks.
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In this paper we intend to contribute to the increasing sophistication by exploring the predicting
power of smooth support vector machines (SSVM). SSVM are a variant of the conventional support
vector machines (SVM). The working principle of SVM in general can be described very easily.
Imagine a group of observations in distinct classes such as balance sheet data from solvent and
insolvent companies. Assume that the observations are such that they cannot be separated by a linear
function. Rather than fitting nonlinear curves to the data, SVM handle this problem by using a spe-
cific transformation function—the kernel function—that maps the data from the original space into
a higher-dimensional space where a hyperplane can do the separation linearly. The constrained
optimization calculus of SVM gives a unique optimal separating hyperplane and adjusts it in such
a way that the elements of distinct classes possess the largest distance to the hyperplane. By re-
transforming the separating hyperplane into the original space of variables, the typical nonlinear
separating function emerges (Vapnik, 1995). The main difference between SSVM and SVM is the
following: the SSVM technique formulates the problem as an unconstrained minimization problem.
This formulation has mathematical properties such as strong convexity and desirable infinite
differentiability.

Our aim is threefold when using SSVM. Firstly, we examine the power of the SSVM in predict-
ing company defaults; secondly, we investigate how important factors that are exogenous to the
model, such as selecting the appropriate set of accounting ratios, length of training period and struc-
ture of the training sample, influence the precision; and thirdly, we explore how oversampling and
downsampling affect the trade-off between Type I and Type II errors. In addition, we illustrate
graphically how loan officers can benefit from jointly considering the prediction results of different
SSVM variants and different models.

There are basically three distinct approaches in predicting the risk of default: option theory-based
approaches, parametric models and non-parametric methods. While the first class relies on the rule
of no arbitrage, the latter two are based purely on statistic principles. The popular (Merton, 1974)
model treats the company’s equity as the underlying asset of a call option held by shareholders. In
case of insolvency shareholders deny exercising. The probability of default is derived from an
adapted Black—Scholes formula. Later, several authors (e.g., Longstaff and Schwartz, 1995; Mella-
Barral and Perraudin, 1997; Leland and Toft, 1996; Zhou, 2001; to name only a few) proposed
variations to ease the strict assumptions on the structure of the data imposed by the Merton model.
These approaches are frequently denoted as structural models. However, the most challenging
requirement is the knowledge of market values of debt and equity. This precondition is a severe
obstacle to using the Merton model adequately as it is only satisfied in a minority of cases.

Parametric statistical models can be applied to any type of data, whether they are market based
or book based. The first model introduced was discriminant analysis (DA) for univariate (Beaver,
1966) and multivariate models (Altman, 1968). After DA usage of the logit and probit approach for
predicting default was proposed in Martin (1977) and Ohlson (1980). These approaches rely on the
a priori assumed functional dependence between risk of default and predictor. DA requires a linear
functional dependence, or a pre-shaped polynomial functional dependence in advanced versions.
Logit and probit tools work with monotonic relationships between default event and predictors such
as accounting ratios. However, such restrictions often fail to meet the reality of observed data. This
fact makes it clear that there is a need for an approach that, in contrast to conventional methods,
relaxes the requirements on data and/or lowers the dependence on heuristics. Semi-parametric
models as in Hwang et al. (2007) are between conventional linear models and non-parametric
approaches. Nonlinear classification methods such as support vector machines (SVM) or neural
networks are even stronger candidates to meet these demands as they go beyond conventional
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discrimination methods. Tam and Kiang (1992) and Altman et al. (1994) focus on neural networks.
In contrast, we concentrate on SVM exclusively.

The SVM method is a relatively new technique and builds on the principles of statistical learning
theory. It is easier to handle compared to neural networks. Furthermore, SVM have a wider scope
of application as the class of SVM models includes neural networks (Schélkopf and Smola, 2002).
The power of SVM technology becomes evident in a situation as depicted in Figure 1 where operat-
ing profit margin and equity ratio are used as explanatory variables. A separating function similar
to a parabola (in black) appears in the two-dimensional space. The accompanying light-grey lines
represent the margin boundaries whose shape and location determine the distance of elements from
the separating function. In contrast, the logit approach and discriminant DA yield the (white) linear
separating function (Hirdle er al., 2007a).

Selecting the best accounting ratios for executing the task of predicting is an important issue in
practice but has not received appropriate attention in research. We address this issue of how impor-
tant the chosen set of predictors is for the outcome. For this purpose we explore the prediction
potential of SSVM within a two-step approach. First, we derive alternative sets of accounting ratios
that are used as predictors. The benchmark set comes from Chen et al. (2006). A second set is defined
by a 1-norm SVM, and the third set is based on the principle of adding only those variables that
contain the most contrary information with respect to an initial set that is a priori chosen. We call
the latter procedure the incremental forward selection of variables. As a result we are working with
three variants of SSVM. In the second step, these variants are compared with respect to their predic-
tion power. We also compare SSVM with two traditional methods: the logit model and linear dis-
criminant analysis.

The analysis is built on 28 accounting ratios of 20,000 solvent and 1000 insolvent German com-
panies. Our findings show that the different SSVM types have an overall good performance with the
means of correct predictions ranging from 70% to 78%. The SSVM on the basis of incremental

Probability of Default
\ SV ; L._‘

Equity ratio

_qo

T T T T T
200 -150 =100 =50 i} 50
Operating profit margin

Figure 1. SVM-separating function (black) with margin in a two-dimensional space
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forward selection clearly outperform the SSVM based on predictors selected by the 1-norm SVM.
It is also found that oversampling influences the trade-off between Type I and Type II errors. Thus,
oversampling can be used to make the relation of the two error types an issue of bank policy.

The rest of the paper is organized as follows. The following two sections describe the data, per-
formance measures and SVM methodology. In the fourth section the variable selection technique
and outcome are explained. The fifth section presents the experimental settings, estimation procedure
and findings, and illustrates selected results. The sixth section concludes.

DATA AND MEASURES OF ACCURACY

In this study of the potential virtues of SVM in insolvency prognosis the CreditReform database is
employed. The database consists of 20,000 financially and economically solvent and 1000 insolvent
German companies observed once in the period from 1997 to 2002. Although the companies were
randomly selected, accounting information dates most frequently in 2001 and 2002. Approximately
50% of the observations come from this period. The industry distribution of the insolvent companies
is as follows: manufacturing 25.7%, wholesale and retail trade 20.1%, real estate 9.4%, construction
39.7% and others 5.1%. The latter includes businesses in agriculture, mining, electricity, gas and
water supply, transport and communication, financial intermediation social service activities and
hotels and restaurants. The 20,000 solvent companies belong to manufacturing (27.4%), wholesale
and retail trade (24.8%), real estate (16.9%), construction (13.9%) and others (17.1%). There is only
low coincidence between the industries represented in the insolvent and the solvent group of ‘others’.
The latter comprises many companies in industries such as publication administration and defense,
education and health. Figure 2 shows the distribution of solvent and insolvent companies across
industries. A set of balance sheet and income statement items describes each company. The ones we
use for further analysis are described below:

e AD (amortization and depreciation)
* AP (accounts payable)
¢ AR (account receivable)
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Figure 2. The distribution of solvent and insolvent companies across industries
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¢ CA (current assets)

e CASH (cash and cash equivalents)
e CL (current liabilities)

e DEBT (debt)

» EBIT (earnings before interest and tax)
e EQUITY (equity)

* IDINV (growth of inventories)

* IDL (growth of liabilities)

e INTE (interest expense)

¢ INV (inventories)

e ITGA (intangible assets)

e LB (lands and buildings)

¢ NI (net income)

* OI (operating income)

* QA (quick assets)

¢ SALE (sales)

¢ TA (total assets)

e TL (total liabilities)

e WC (working capital (= CA — CL))

The companies appear in the database several times in different years; however, each year of
balance sheet information is treated as a single observation. The data of the insolvent companies
were collected 2 years prior to insolvency. The company sizes are measured by total assets. We
construct 28 ratios to condense the balance sheet information (see Table I). However, before dealing
with the CreditReform dataset, some companies whose behavior is very different from other ones
are filtered out in order to make the dataset more compact. The data pre-processing procedure is
described as follows:

1. We excluded companies whose total assets were not in the range of 10°~10" EUR (remaining
insolvent: 967; solvent: 15,834).

2. In order to compute the accounting ratios AP/SALE, OI/TA, TL/TA, CASH/TA, IDINV/INV,
INV/SALE, EBIT/TA and NI/SALE, we have removed companies with zero denominators
(remaining insolvent: 816; solvent 11,005).

3. We dropped outliers, that is, in the insolvent class companies with extreme values of financial
indices have been removed (remaining insolvent: 811; solvent: 10,468).

After pre-processing, the dataset consists of 11,279 companies (811 insolvent and 10,468 solvent).
In the following analysis, we focus on the revised dataset.

The performance of the SSVM is evaluated on the basis of three measures of accuracy: Type I
error rate (%), Type Il error rate (%) and total error rate (%). The Type I error is the ratio of the
number of insolvent companies predicted as solvent ones to the number of insolvent companies. The
Type 1II error is the ratio of the number of solvent companies predicted as insolvent ones to the
number of solvent companies. Accordingly, the error-type rates (in percentage) are defined as
follows

e Type I error rate = FN/(FN + TP) x 100 (%);
e Type II error rate = FP/(FP+ TN) X 100 (%);
e Total error rate = (FN + FP)/(TP + TN + FP + FN) x 100 (%);
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Table I. Definitions of accounting ratios used in the analysis

Variable Ratio Indicator for
X1 NI/'TA Profitability
X2 NI/SALE Profitability
X3 OI/'TA Profitability
X4 OI/SALE Profitability
X5 EBIT/TA Profitability
X6 (EBIT + AD)/TA Profitability
X7 EBIT/SALE Profitability
X8 EQUITY/TA Leverage
X9 (EQUITY-ITGA)/ Leverage
(TA-ITGA-CASH-LB) Leverage
X10 CL/TA Leverage
X11 (CL-CASH)/TA Leverage
X12 TL/TA Leverage
X13 DEBT/TA Leverage
X14 EBIT/INTE Leverage
X15 CASH/TA Liquidity
X16 CASH/CL Liquidity
X17 QA/CL Liquidity
X18 CA/CL Liquidity
X19 WC/TA Liquidity
X20 CL/TL Liquidity
X21 TA/SALE Activity
X22 INV/SALE Activity
X23 AR/SALE Activity
X24 AP/SALE Activity
X25 Log(TA) Size
X26 IDINV/INV Growth
X217 IDL/TL Growth
X28 IDCASH/CASH Growth

where

True positive (TP):
False positive (FP):
True negative (TN):
False negative (FN):

Predict insolvent companies as insolvent ones
Predict solvent companies as insolvent ones
Predict solvent companies as solvent ones
Predict insolvent companies as solvent ones

The following matrix explains the terms used in the definition of error rates:

Predicted class

Positive

Negative

Actual

Class

Positive
Negative

True positive (TP)
False positive (FP)

False negative (FN)
True negative (TN)

SVM METHODOLOGY

In recent years, the so-called support vector machines (SVM), which have their roots in the theory
of statistical learning (Burges, 1998; Christianini and Shawe-Taylor, 2000; Vapnik, 1995) have
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become one of the most successful learning algorithms for classification as well as for regression
(Drucker et al., 1997; Mangasarian and Musicant, 2000; Smola and Scholkopf, 2004). Some features
of SVM make them particularly attractive for predicting the default risk of companies. SVM are a
non-parametric technique that learn the separating function from the data; they are based on a sound
theoretical concept, do not require a particular distribution of the data, and deliver an optimal solu-
tion for the expected loss from misclassification. SVM estimate the separating hyperplane between
defaulting and non-defaulting companies under the constraint of a maximal margin between the two
classes (Vapnik, 1995; Scholkopf and Smola, 2002).

SVM can be formulated differently. However, in all variants either a constrained minimization
problem or an unconstrained minimization problem is solved. The objective function in these opti-
mization problems basically consists of two parts: a misclassification penalty part which stands for
model bias and a regularization part which controls the model variance. We briefly introduce three
different models: the smooth support vector machines (SSVM) (Lee and Mangasarian, 2001), the
smooth support vector machines with reduced kernel technique (RSVM) and the 1-norm SVM. The
SSVM will be used for classification and the 1-norm SVM will be employed for variable selection.
The RSVM are applied for oversampling in order to mitigate the computational burden due to
increasing the number of instances in the training sample.

Smooth support vector machines

The aim of the SVM technique is to find the separating hyperplane with the largest margin from the
training data. This hyperplane is ‘optimal’ in the sense of statistical learning: it strikes a balance
between overfitting and underfitting. Overfitting means that the classification boundary is too curved
and therefore has less ability to classify unseen data correctly. Underfitting, on the other hand, gives
a too simple classification boundary and leaves too many misclassified observations (Vapnik, 1995).
We begin with linear support vector machines. Given a training dataset S = {(X;, y1), - - -, (Xus V) }
C R?x R, where x; € R is the input data and y; € {-1, 1} is the corresponding class label, a con-
ventional SVM separating hyperplane is generated by solving a convex optimization problem given
as follows:

(w, b, g)ER.ﬂu 2 5 +—= "W"2
s.toy(w'x; + b)+ E>1
&0, fori=12,....n

ey

where C is a positive parameter controlling the trade-off between the training error (model bias) and
the part of maximizing the margin (model variance) that is achieved by minimizing llwll3. In contrast
to the conventional SVM of (1), smooth support vector machines minimizze the square of the slack

vector & with weight £ In addition, the SSVM methodology appends > to the term that is to be

minimized. This expansion results in the following minimization problem:

2 2 2

(wbg)eR‘““ 2 2, 15 ("W”2 +b )
s.t. y(w' Xi+b)+§i21

£20, fori=1,2,...,n

(@)
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In a solution of (2), & is given by & = {1 — y(w'x; + b)}, for all i where the plus function x, is
defined as x, = max{0, x}. Thus, we can replace & in (2) by {1 — y,(w'x; + b)},. This will convert
the problem (2) into an unconstrained minimization problem as follows:

2{1 y(w'x+b)F +— (II > +5?) 3)

(w b)e]R ’*‘ 2~

This formulation reduces the number of variables from d + 1 + n to d + 1. However, the
objective function to be minimized is not twice differentiable, which precludes the use of a fast
Newton method. In the SSVM, the plus function x, is approximated by a smooth p-function,

1
p(x,a)=x+—log(1+e®),a >0. Replacing the plus function with a very accurate smooth approx-
o

imation p-function gives the smooth support vector machine formulation:
2 (1= 3 (wx,+ b)) o) + (i + 5?) @
(w, b)eR i 24 2

where o > 0 is the smooth parameter. The objective function in problem (4) is strongly convex and
infinitely differentiable. Hence, it has a unique solution and can be solved by using a fast Newton—
Armijo algorithm. For the nonlinear case, this formulation can be extended to the nonlinear SVM
by using the kernel trick as follows:

(u,b) ER”” 2 2p(|: y’{zu K(X” ])+b}:| j +%("u"§+b2) (5)

where K(x;, x;) is a kernel function. This kernel function represents the inner product of @(x;) and
#(x;), where ¢ is a certain mapping from input space R?to a feature space F. We do not need to
know the mapping of ¢ explicitly. This is the so-called kernel trick. The nonlinear SSVM classifier
can be expressed in matrix form as follows:

N uK(A],x)+b=K(x, A Ju+b (6)

u;j#0

where A = [x1;...; X,] and A; =x.

Reduced support vector machine

In large-scale problems, the full kernel matrix will be very large so it may not be appropriate to use
the full kernel matrix when dealing with (5). In order to avoid facing such a big full kernel matrix,
we brought in the reduced kernel technique (Lee and Huang, 2007). The key idea of the reduced
kernel technique is to randomly select a portion of data and to generate a thin rectangular kernel
matrix, then to use this much smaller rectangular kernel matrix to replace the full kernel matrix. In
the process of replacing the full kernel matrix by a reduced kernel, we use the Nystrom approxima-
tion (Smola and Schélkopf, 2000) for the full kernel matrix:

K(A,A")=~K(A,A")K(A, A7) 'K(A,A") )
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where K(A, A7) = K., Asq is a subset of A and K(A, A) = K, is a reduced kernel. Thus, we have
K(A, A u=~K(A,A")K(A,A") 'K(A", Aju=K(A,A")a ®)

where e R" is an approximated solution of u via the reduced kernel technique. The reduced kernel
method constructs a compressed model and cuts down the computational cost from O(n’) to O(7).
It has been shown that the solution of reduced kernel matrix approximates the solution of full kernel
matrix well. The SSVM with the reduced kernel are called RSVM.

1-Norm support vector machine

The 1-norm support vector machine replaces the regularization term |lwll3in (1) with the €,-norm
of w. The €,-norm regularization term is also called the LASSO penalty (Tibshirani, 1996). It tends
to shrink the coefficients w’s towards zeros in particular for those coefficients corresponding to
redundant noise features (Zhu et al., 2003; Williams and Seeger, 2001). This nice feature will lead
to a way of selecting the important ratios in our prediction model. The formulation of 1-norm SVM
is described as follows:

min  CY" &+,

(W, b, Af)ElIRdHM
st y(w'x;+b)+& 21
£>0, fori=1,2,...,n

€))

The objective function of (9) is a piecewise linear convex function. We can reformulate it as the
following linear programming problem:

. n d
(s, vaéI)IEngMm" Czl':lé + Z j=1 Sj
S.t. y,»(WTXi+b)+§,-21 (10)
-s;<Sw;<s;, forj=12,...,d,
£>0, fori=12,...,n

where s; is the upper bound of the absolute value of w;. In the optimal solution of (10) the sum of
s; is equal to llwll.

The 1-norm SVM can generate a very sparse solution w and lead to a parsimonious model. In a
linear SVM classifier, solution sparsity means that the separating function f{x) = w'x + b depends
on very few input attributes. This characteristic can significantly suppress the number of nonzero
coefficient w’s, especially when there are many redundant noise features (Fung and Mangasarian,
2004; Zhu et al., 2003). Therefore the 1-norm SVM can be a very promising tool for the variable
selection tasks. We will use it to choose the important financial indices for our bankruptcy progno-
sis model.

SELECTION OF ACCOUNTING RATIOS

In principle any possible combination of accounting ratios could be used as explanatory variables
in a bankruptcy prognosis model. Therefore, appropriate performance measures are needed to gear
the process of variable selection towards picking the ratios with the highest separating power. In
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Chen et al. (2006) accuracy ratio (AR) and conditional information entropy ratio (CIER) determine
the selection procedure’s outcome. It turned out that the ratio ‘accounts payable divided by sales’,
X24 (AP/SALE), has the best performance values for a univariate SVM model. The second selected
variable was the one combined with X24 that had the best performance in a bivariate SVM model.
This is the analogue of forward selection in linear regression modeling. Typically, improvement
declines if new variables are added consecutively. In Chen et al. (2006) the performance indicators
started to decrease after the model included eight variables. The described selection procedure is
quite lengthy, since there are at least 216 accounting ratio combinations to be considered. We will
not employ the procedure here but use the chosen set of eight variables as the benchmark set V1.
Table II presents V1 in the first column.

We propose two different approaches for variable selection that will simplify the selection pro-
cedure. The first one is based on 1-norm SVM introduced above. The SVM were applied to the
period from 1997 to 1999. We selected the variables according to the size of the absolute values of
the coefficients w from the solution of the 1-norm SVM. Table II displays the eight selected variables
as V2. We obtain eight variables out of 28. Note that five variables, X2, X3, X5, X15 and X24, are
also in the benchmark set V1.

The second variable selection scheme is incremental forward variable selection. The intuition
behind this scheme is that a new variable will be added into the already selected set, if it brings in
the most extra information. We measure the extra information for an accounting ratio using the
distance between this new ratio vector and the space spanned by the current selected ratio subset.
This distance can be computed by solving a least-squares problem (Lee et al., 2008). The ratio with
the farthest distance will be added into the selected accounting ratio set. We repeat this procedure
until a certain stopping criterion is satisfied. The accounting ratio X24 (AP/SALE) is used as the
initial selected accounting ratio. Then we follow the procedure seven times to select seven more
extra accounting ratios. The variable set generated is called V3. We will use these three variable
sets, V1, V2 and V3, for further data analysis in the next section. The symbol " denotes the variables
that are common to all sets: X2, X3, X5 and X24.

Table II. Selected variables

Variable Definition Vi V2 V3
X2t NI/SALE X X X
X3* OI/TA X X X
X4 OI/SALE X
X5* EBIT/TA X X X
X6 (EBIT + AD)/TA X
X7 EBIT/SALE X
X8 EQUITY/TA X
X12 TL/TA X
X13 DEBT/TA X
X15 CASH/TA X X
X21 TA/SALE X
X22 INV/SALE X
X23 AR/SALE X
X24* AP/SALE X X X
X26 IDINV/INV X
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EXPERIMENTAL SETTING AND RESULTS

In this section we present our experimental setting and results. We compare the performance of three
sets of accounting ratios, V1, V2 and V3, in our SSVM-based insolvency prognosis model. The
performance is measured by Type I error rate, Type II error rate and total error rate. Fortunately, in
reality, there is only a small number of insolvent companies compared to the number of solvent
companies. Due to the small share in a sample that reflects reality, a simple classification such as
naive Bayesian or a decision tree tends to classify every company as solvent. Such a classification
would imply accepting all companies’ loan applications and would thus lead to a very high Type I
error rate while the total error rate and the Type II error rate are very small. Such models are useless
in practice.

Our cleaned dataset consists of around 10% of insolvent companies. Thus, the sample is fairly
unbalanced although the share of insolvent companies is higher than in reality. In order to deal with
this problem, insolvency prognosis models usually start off with more balanced training and testing
samples than reality can provide. For example, Hérdle et al. (2007b) employ a downsampling strat-
egy and work with balanced (50%/50%) samples. The chosen bootstrap procedure repeatedly ran-
domly selects a fixed number of insolvent companies from the training set and adds the same number
of randomly selected solvent companies. However, in this paper we adopt an oversampling strategy,
to balance the size between the solvent and the insolvent companies, and refer to the downsampling
procedure primarily for reasons of reference.

Oversampling duplicates the number of insolvent companies a certain number of times. In this
experiment, we duplicate in each scenario the number of insolvent companies as many times as
necessary to reach a balanced sample. Note that in our oversampling scheme every solvent and
insolvent company’s information is utilized. This increases the computational burden due to increas-
ing the number of training instances. We employ the reduced kernel technique introduced above to
mediate this problem.

All classifiers we need in these experiments are reduced SSVM with the Gaussian kernel, which
is defined as

K(x,z)= o VIx7lB
&

where ¥ is the width parameter. In nonlinear SSVM, we need to determine two parameters: the
penalty term C and . The 2D grid search will consume a lot of time. In order to cut down the search
time, we adopt the uniform design model selection method (Huang et al., 2007) to search an appro-
priate pair of parameters.

Performance of SSVM

We conduct the experiments in a scenario in which we always train the SSVM bankruptcy progno-
sis model from the data at hand and then use the trained SSVM to predict the following year’s cases.
This strategy simulates the real task of prediction which binds the analyst to use past data for fore-
casting future outcomes. The experimental setting is described in Table III. The number of periods
which enter the training set changes from 1 year (S1) to 5 years (S5).

In Tables IV and V we report the results for the oversampling and downsampling strategy respec-
tively. Mean and standard deviation of Type I, Type II and total error rates (misclassification rates)
are shown. We perform these experiments for the three variable sets, V1 to V3, and compare the
oversampling and downsampling scheme in each experiment. All experiments are repeated 30 times
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Table III. The scenario of our experiments

Scenario Observation period of training set Observation period of testing set
S1 1997 1998
S2 1997-1998 1999
S3 1997-1999 2000
S4 1997-2000 2001
S5 1997-2001 2002

Table IV. Results of oversampling for three variable sets (RSVM)

Set of accounting Scenario Type I error rate Type II error rate Total error rate
ratos Mean SD Mean SD Mean SD
V1 S1 33.16 0.55 26.15 0.13 26.75 0.12
S2 31.58 0.01 29.10 0.07 29.35 0.07
S3 28.11 0.73 26.73 0.16 26.83 0.16
S4 30.14 0.62 25.66 0.17 25.93 0.15
S5 24.24 0.56 23.44 0.13 23.48 0.13
V2 S1 29.28 0.92 27.20 0.24 27.38 0.23
S2 28.20 0.29 30.18 0.18 29.98 0.16
S3 27.41 0.61 29.67 0.19 29.50 0.17
S4 28.12 0.74 28.32 0.19 28.31 0.15
S5 2391 0.62 24.99 0.10 24.94 0.10
V3 S1 29.28 0.83 25.11 0.25 25.46 0.21
S2 31.27 0.62 29.79 0.34 29.94 0.35
S3 30.91 0.13 27.21 0.19 27.48 0.18
S4 32.00 0.54 25.19 0.17 25.61 0.14
S5 26.98 0.42 22.90 0.11 23.08 0.11

Table V. Results of downsampling for three variable sets (SSVM with Gaussian kernel)

Set of accounting Scenario Type I error rate Type II error rate Total error rate
ratios Mean SD Mean SD Mean SD
Vi S1 32.20 3.12 28.98 1.70 29.26 1.46
S2 29.74 2.29 28.77 1.97 28.87 1.57
S3 30.46 1.88 26.23 1.33 26.54 1.17
S4 31.55 1.52 23.89 0.97 24.37 0.87
S5 28.81 1.53 23.09 0.73 23.34 0.69
V2 S1 29.94 291 28.07 2.15 28.23 1.79
S2 28.77 2.58 29.80 1.89 29.70 1.52
S3 29.88 1.88 27.19 1.32 27.39 1.19
S4 29.06 1.68 26.26 1.00 26.43 0.86
S5 26.92 1.94 25.30 1.17 25.37 1.06
V3 S1 30.87 3.25 26.61 2.45 26.98 2.11
S2 33.31 2.16 28.60 2.01 29.08 1.65
S3 31.82 1.52 26.41 1.45 26.80 1.31
S4 35.0 2.13 24.29 0.77 24.96 0.68
S5 30.66 1.60 21.92 0.96 22.30 0.92
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because of the randomness in the experiments. The randomness is very obvious in the downsampling
scheme (see Table V). Each time we only choose negative instances with the same size of the whole
positive instances. The observed randomness in our oversampling scheme (Table IV) is due to apply-
ing the reduced kernel technique to solving the problem. We use the training set in the downsampling
scheme as the reduced set. That is, we use all the insolvent instances and the equal number of solvent
instances as our reduced set in generating the reduced kernel. Then we duplicate the insolvent part
of the kernel matrix to balance the size of insolvent and solvent companies.

Both tables reveal that different variable selection schemes produce dissimilar results with respect
to both precision and deviation of predicting. The oversampling scheme shows better results in the
Type I error rate but has slightly bigger total error rates. It is also obvious that in almost all models
a longer training period works in favor of accuracy of prediction. Clearly, the oversampling schemes
have much smaller standard deviations in the Type I error rate, Type II error rate, and total error
rate than the downsampling one. According to this observation, we conclude that the oversampling
scheme will generate a more robust model than the downsampling scheme.

Figure 3 illustrates the development (learning curve) of the Type I error rate and total error rate
with regard to variable set V3 for both oversampling and downsampling. The bullets on the lines
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Figure 3. Learning curve for variables set V3
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mark the different training scenarios. For example, the first bullets from the left represent S1 (train-
ing set from 1997, testing set from 1998), the second bullets illustrate S2 (training set from 1997 to
1998, testing set from 1999) etc. For the purpose of better visibility, the Type I error rate is only
indirectly displayed as 100 — Type I error rate. The upper solid line in gray represents the oversam-
pling scheme and the black solid line the downsampling one. Note that the performance in terms of
the Type I error rate is worse the higher the distance between the upper end of the diagram and the
solid lines. The learning curve over the time frame the training sample covers shows an upward
tendency between S1 and S5 for the number 100 — Type 1 error rate. However, the curves are non-
monotonic. There is a disturbance for the forecast of year 1999 that is based on training samples
that cover 1997 to 1998, and also one for the forecast of year 2001 based on training samples cov-
ering 1997 to 2000. Both disturbances may have been caused by the reform of the German insolvency
code that came into force in 1999. The most important objective of the reform was to allow for more
company restructuring and less liquidation than before. This reform considerably changed the behav-
ior of German companies towards declaring insolvency, and thus most likely the nature of balance
sheets that are associated with insolvent companies.

The disturbances are less visible with respect to the overall performance. The dashed lines near
the lower edge of the diagram box show total error rates, gray for the oversampling and black for
the downsampling scheme. There is a clear tendency towards a lower total error rate from S2 to S5
for both schemes. The downsampling line is slightly below the oversampling one, representing a
slightly better performance in terms of the mean of the total error rate. However, this result has to
be seen in the light of the trade-off between magnitude and stability of results, as oversampling
yields much more stable results. The standard deviations for V3 are only a small portion of the
numbers generated by the downsampling procedure across all training scenarios (Tables IV and
V).

Table VI presents the comparison between the sets by focusing on the total error rate. It indicates
by an asterisk whether the differences in means are significant at the 10% level via #-test and, in
addition, gives the set which is superior in the dual comparison. Variable set V2 is nearly absent in
Table VI. Thus V2 is clearly outperformed by both sets V1 and V3. There is no clear distinction
between V1 and V3 except for Scenario S5. Given the long training period V3 is superior in both
the downsampling and oversampling scenarios and generates the lowest total error rate in absolute
terms.

In order to investigate the effect of the oversampling versus the downsampling scheme we follow
the setting as above, but we use the V3 variable set. For each training—test pair, we carry out over-
sampling for positive instances from 6 to 15 times. We show the trend and effect in Figure 4. It is

Table VI. Statistical significance in differences in means (10% level)
between the three variable sets: total error

Sets S1 S2 S3 S4 S5

Oversampling

V1 vs. V2 Vi Vi* Vi* V1* VI1*
V1 vs. V3 V3 Vi* Vi* V3* V3*
V2 vs. V3 V3* V3* V3* V3*
Downsampling

V1 vs. V2 V2 Vi* Vi* V1* VI1*
V1 vs. V3 V3* Vi* V3
V2 vs. V3 V3* V3* V3* V3*
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Figure 4. The effect of oversampling on Type I and Type II error rates for scenario S5 and variables set V3

easy to see that the Type I (II) error rate decreases (increases) as the oversampling times increase.
This feature implies that the machine would have a tendency of classifying all companies as solvent
if the training sample had realistic shares of insolvent and solvent companies. Such behavior would
produce a Type I error rate of 100%. The more balanced the sample is, the higher the penalty for
classifying insolvent companies as solvent. This fact is illustrated in Figure 4 by the decreasing curve
with respect to the number of duplications of insolvent companies.

Often banks favor a strategy that allows them to minimize the Type II errors for a given number
of Type I errors. The impact of oversampling on the trade-off between the two types of errors—
shown in Figure 4—implies that the number of oversampling times is a strategic variable in training
the machine. This number can be determined by the bank’s aim regarding the relation of Type I and
Type 1I errors.
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Comparison with logit and linear discriminant analysis
The examination of SSVM is incomplete without comparing it to highly used traditional methods
such as the logistic model (LM) and linear discriminant analysis (DA). Therefore, we replicate the
research design of the previous section with both traditional models. In addition, we test whether
the difference in means in the total error rate is statistically significant. The comparison of means
with regard to the total error rate is presented in Tables VII and VIII for the oversampling and
downsampling strategy respectively. Table IX summarizes the comparison of the approaches and
displays the statistical significance of their mean differences. Asterisks indicate the out-performance

Table VII. Comparison of the total error rate (%) as generated by SSVM
with LM and DA: oversampling for three variable sets

Set of accounting Scenario SSVM LM DA
ratios
Mean Mean Mean
V1 S1 26.75 26.50 25.60
S2 29.35 28.96 27.22
S3 26.83 28.94 27.42
S4 25.93 26.20 25.55
S5 23.48 26.95 28.23
V2 S1 27.38 26.80 26.20
S2 29.98 28.63 28.70
S3 29.50 29.52 29.46
S4 28.31 28.43 28.08
S5 24.94 29.22 31.42
V3 Sl 25.46 25.07 23.65
S2 29.94 28.29 27.02
S3 27.48 27.89 25.84
S4 25.61 26.60 24.85
S5 23.08 25.32 26.15

Table VIII. Comparison of the total error rate (%) as generated by SSVM
with LM and DA: downsampling for three variable sets

Set of accounting Scenario SSVM LM DA
ratios
Mean Mean Mean
V1 S1 29.26 26.86 27.34
S2 28.87 28.62 28.26
S3 26.54 27.54 28.22
S4 24.37 24.80 25.47
S5 23.34 24.81 25.86
V2 S1 28.23 27.28 28.62
S2 29.70 29.29 29.65
S3 27.39 28.56 29.58
S4 26.43 26.41 27.96
S5 25.37 26.52 29.69
V3 S1 26.98 26.03 25.47
S2 29.08 28.04 27.22
S3 26.80 26.60 26.51
S4 24.96 25.25 25.44
S5 22.30 23.96 2431
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Table IX. Statistical significance in differences of means (10% level)
between SSVM and LM and SSVM and DA, respectively, for the sets V1
to V3: total error rate

V1 S1 S2 S3 S4 S5
Oversampling

SSVM vs. LM * * *
SSVM vs. DA * *
Downsampling

SSVM vs. LM * * *
SSVM vs. DA * * *
V2 S1 S2 S3 S4 S5
Oversampling

SSVM vs. LM * *
SSVM vs. DA *
Downsampling

SSVM vs. LM * *
SSVM vs. DA * * *
V3 S1 S2 S3 S4 S5
Oversampling

SSVM vs. LM * * *
SSVM vs. DA *
Downsampling

SSVM vs. LM #
SSVM vs. DA * *

of the logistic model or discriminant analysis by SSVMs at the 10% level via #-test. It is obvious
that the SSVM technique yields the better results, the longer the period is from which the training
observations are taken. In fact, the results show that the SSVM works significantly better than LM
and DA in most cases in S3 to S5, with the clearest advantage for testing sets S4 and S5, where the
accounting information of the predicted companies dates most frequently in 2001 and 2002.

We also investigate the effect of oversampling on LM and DA. We follow the same setting in the
previous section, doing oversampling for positive instances from 6 to 15 times. Unlike the SSVM-
based insolvency prognosis model, the DA approach is insensitive in both Type I and Type II error
rates to the replication of positive instances. The result for DA is illustrated in Figure 5. The LM
approach has very similar results to the SSVM model. We will not show the result here.

More data visualization
Each SSVM model has its own output value. We use this output to construct 2D coordinate systems.
Figure 6 shows an example for scenario S5 where the scores of the SSVM,; model (SSVM,, model)
are represented by the horizontal (vertical) line. A positive (negative) value indicates predicted
insolvency (solvency). We then map all insolvent companies in the testing set onto the coordinate
systems. There are 132 insolvent companies and 2866 solvent companies in this testing set. We also
randomly choose the same amount of solvent companies from the testing set.

The plus points in the lower left quadrant and the circle points in the upper right quadrant show
the number of Type I errors and Type II errors, respectively, in both models. Plus points in the upper
right quadrant and circle points in the lower left quadrant reflect those companies that are predicted
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Figure 5. The effect of oversampling on Type I and Type II error rates for scenario S5 and variables set V3
in DA

correctly by both models. Circles and plus points in the lower right quadrant (upper left quadrant)
represent conflicting prognoses. We also report the number of insolvent companies and the number
of solvent companies in each quadrant of Figure 6. The two different insolvency prognosis models
based on V1 and V3, respectively, can be considered as alternative experts. The two forecasts for
each instance in the testing set is plotted in the diagram. The proposed visualization scheme could
be used to support loan officers in their final decision on accepting or rejecting a client’s application.
Furthermore, this data visualization scheme can also be applied to two different learning algorithms,
such as SSVMy; vs. LMy; and SSVMy; vs. DA ;. We show these data visualization plots in Figures
7 and 8. If the loan application has been classified as solvent or insolvent by alternative machines,
it is most likely that the prognosis meets reality (the plus points in the upper right quadrant and the
circle points in the lower left quadrant). Opposing forecasts, however, should be taken as a hint to
evaluate the particular company more thoroughly, for example by employing an expert team, or even
by using a third model.
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with V1) in scenario S5

CONCLUSION

In this paper we apply different variants of support vector machines to a unique dataset of German
solvent and insolvent companies. We use a priori a given set of predictors as a benchmark, and
suggest two further variable selection procedures; the first procedure uses the 1-norm SVM and the
second, incremental way consecutively selects the variable that is the farthest one from the column
space of the current variable set. Given the three SSVM based on distinct variable sets, the relative
performance of the types of smooth support vector machines is tested. The performance is measured
by error rates. The two sets of variables newly created here lead to a dissimilar performance of
SSVM. The selection of variables by the 1-norm SVM clearly underperforms compared to the
incremental selection scheme. This difference in accuracy hints at the need for further research with
respect to the variable selection. The training period makes a clear difference, though. Results
improve considerably if more years of observation are used in training the machine. The SSVM
Copyright © 2008 John Wiley & Sons, Ltd. J. Forecast. 28, 512-534 (2009)
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Figure 7. Data visualization via model one (generated by SSVM with V3) and model two (generated by LM
with V3) in scenario S5

model benefits more from longer training periods than traditional methods do. As a consequence the
logit model and discriminant analysis are both outperformed by the SSVM in long-term training
scenarios. Moreover, the oversampling scheme works very well in dealing with unbalanced datasets.
It provides flexibility to control the trade-off between Type I and Type II errors, and is therefore a
strategic instrument in a bank’s hand. The results generated are very stable in terms of small devia-
tions of Type I, Type II and total error rates.

Finally, we want to stress that SSVM should be considered not as a substitute for traditional
methods but rather as a complement which, when employed side by side with either the logit model
or discriminant analysis, can generate new information that helps practitioners select those compa-
nies that are difficult to predict and, therefore, need more attention and further treatment.
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Time Series Modelling With Semiparametric

Factor Dynamics

Byeong U. PARK, Enno MAMMEN, Wolfgang HARDLE, and Szymon BORAK

High-dimensional regression problems, which reveal dynamic behavior, are typically analyzed by time propagation of a few number of
factors. The inference on the whole system is then based on the low-dimensional time series analysis. Such high-dimensional problems
occur frequently in many different fields of science. In this article we address the problem of inference when the factors and factor loadings
are estimated by semiparametric methods. This more flexible modeling approach poses an important question: Is it justified, from an
inferential point of view, to base statistical inference on the estimated times series factors? We show that the difference of the inference
based on the estimated time series and ““‘true” unobserved time series is asymptotically negligible. Our results justify fitting vector
autoregressive processes to the estimated factors, which allows one to study the dynamics of the whole high-dimensional system with a low-
dimensional representation. We illustrate the theory with a simulation study. Also, we apply the method to a study of the dynamic behavior
of implied volatilities and to the analysis of functional magnetic resonance imaging (fMRI) data.

KEY WORDS: Asymptotic inference; Factor models; Implied volatility surface; Semiparametric models; Vector autoregressive process.

1 INTRODUCTION

Modeling for high-dimensional data is a challenging task in
statistics especially when the data comes in a dynamic context
and is observed at changing locations with different sample
sizes. Such modeling challenges appear in many different
fields. Examples are Stock and Watson (2005) in empirical
macroeconomics, Lee and Carter (1992) in mortality analysis,
Nelson and Siegel (1987) and Diebold and Li (2006) in bond
portfolio risk management or derivative pricing, Martinussen
and Scheike (2000) in biomedical research. Other examples
include the studies of radiation treatment of prostate cancer
by Kauermann (2000) and evoked potentials in Electroence-
phalogram (EEG) analysis by Gasser, Mocks, and Verleger
(1983). In financial engineering, it is common to analyze the
dynamics of implied volatility surface for risk management.
For functional magnetic resonance imaging data (fMRI), one
may be interested in analyzing the brain’s response over time as
well as identifying its activation area, see Worsley et al. (2002).

A successful modeling approach utilizes factor type models,
which allow low-dimensional representation of the data. In an
orthogonal L-factor model an observable J-dimensional ran-
dom vector ¥, = (¥, 1, .. ., Y,,J)T can be represented as

Yij=moj+Zimyj+ -+ Zipmpj+ &, (1)
where Z, ; are common factors, €, are errors or specific factors,
and the coefficients m;; are factor loadings. In most applica-
tions, the index t = 1, ..., T reflects the time evolution of the
whole system, and Y, can be considered as a multidimensional
time series. For a method to identify common factors in this
model we refer to Pefia and Box (1987). The study of high-
dimensional Y; is then simplified to the modeling of Z, = (Z, |,
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. Z,,L)T, which is a more feasible task when L < J. The
model (1) reduces to a special case of the generalized dynamic
factor model considered by Forni, Hallin, Lippi, and Reichlin
(2000), Forni and Lippi (2001) and Hallin and Liska (2007),
when Z;; = a;,(B)U;; + -+ + a;(B)U, , where the g-dimensional
vector process U, = (U, , ..., U,,q)T is an orthonormal white
noise and B stands for the lag operator. In this case, the model
(1)isexpressedas Y, ; = mg j + » ¢_, b j(B)U,x + &, j, where
bej(B) = Yy aix(B)my ;.

In a variety of applications, one has explanatory variables
X, € R at hand that may influence the factor loadings m,. An
important refinement of the model (1) is to incorporate the
existence of observable covariates X, ;. The factor loadings are
now generalized to functions of X, ;, so that the model (1) is
generalized to

L
Yij=mo(Xe)) + > Zym(Xej) + ey 1 =j=<J. (2)
=1

In this model, Z,, for each [: 1 = [ = L enters into all Y, ; for j
such that m,(X, ;) # 0. Note that the probability of the event that
miX, ;) = 0 for some 1 = j = J equals zero if m;(x) = 0 at
countably many points of x and the density f; of X, ; is supported
on an interval with nonempty interior, as we assume at (A2) in
Section 5.

The model (2) can be interpreted as a discrete version of the
following functional extension of the model (1):

Yi(x) = mo(x) + Zzz,lml(x) + & (x), 3)
I=1

where ¢,(-) is a mean zero stochastic process, and also regarded
as a regression model with embedded time evolution. It is
different from varying-coefficient models, such as in Fan, Yao,
and Cai (2003) and Yang, Park, Xue, and Hirdle (2006),
because Z, is unobservable. Our model also has some sim-
ilarities to the one considered in Connor and Linton (2007) and
Connor, Hagmann, and Linton (2007), which generalized the
study of Fama and French (1992) on the common movements
of stock price returns. There, the covariates, denoted by X ;, are
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Figure 1. The typical IV data design on two different days. In the maturity direction observations appear in the discrete points for each
particular day. Bottom solid lines indicate the observed maturities. Left panel: observations on 2004.07.08, J, = 5,606. Right panel: observations

on 2004.08.19, J, = 8,152.

time-invariant and are different for different m;, which allows a
direct application of backfitting procedures and makes the
problem quite different from our setting. Some linear models,
which allow time-varying coefficients, as considered in Hansen,
Nielsen, and Nielsen (2004) and Brumback and Rice (1998),
may be recognized as a special case of (2).

In this article we consider the model (2) with unknown
nonparametric functions m;. We call this model a dynamic
semiparametric factor model (DSFM). The evolution of com-
plex high-dimensional objects may be described by (2), so that
their analysis can be reduced to the study of a low-dimensional
vector of factors Z,. In the present article, we consider an
efficient nonparametric method of fitting the model. We pro-
vide relevant theory for the method as well as illustrate its
empirical aspects through a simulation and a real data appli-
cation. Fengler, Hérdle, and Mammen (2007) used a kernel
smoothing approach for the same model, but it was focused on
a particular data application without offering any discussion of
numerical issues, statistical theory, and simulation analysis.

One of the main motivations for the model (2) comes from a
special structure of the implied volatility (IV) data, as is
observed in Figure 1. The IV is a volatility parameter that
matches the observed plain vanilla option prices with the theo-
retical ones given by the formula of Black and Scholes (1973).
Figure 1 shows the special “string” structure of the IV data
obtained from the European option prices on the German stock
index DAX (ODAX) for two different days. The volatility strings
shift toward expiry, which is indicated by the bottom line in the
figure. Moreover the shape of the IV strings is subject to sto-
chastic deformation. Fengler et al. (2007) proposed to use the
model (2) to describe the dynamics of the IV data, where Y, ; are
the values of IV or those of its transformation on the day ¢, and
X, ; are the two-dimensional vectors of the moneyness and time-
to-maturity. For more details on the data design and econometric
motivation, we refer to Fengler et al. (2007).

One may find another application of the model (2) in the
analysis of functional magnetic resonance imaging (fMRI)
data. The fMRI is a noninvasive technique of recording brain’s
signals on spatial area in every particular time period (usually
1-4 sec). One obtains a series of three-dimensional images of
the blood-oxygen-level-dependent (BOLD) fMRI signals,
whereas an exercised person is subject to certain stimuli. An
example of the images in 15 different slices at one particular
time point is presented in Figure 2. For the more detailed

description on the fMRI methodology we refer to Logothetis
and Wandell (2004). The main aims of the statistical methods
in this field are identification of the brain’s activation areas and
analysis of its response over time. For this purpose the model
(2) can be applied. DSFM may be applied to many other
problems, such as modeling of yield curve evolution where the
standard approach is to use the parametric factor model pro-
posed by Nelson and Siegel (1987).

Our methods produce estimates of the true unobservable Z,,
say Z,, as well as estimates of the unknown functions ;. In
practice, one operates on these estimated values of Z, for fur-
ther statistical analysis of the data. In particular, for the IV
application, one needs to fit an econometric model to the
estimated factors Z,. For example, Hafner (2004) and Cont and
da Fonseca (2002) fitted an AR(1) process to each factor, and
Fengler et al. (2007) considered a multivariate VAR(2) model.
The main question that arises from these applications is
whether the inference based on Z, is equivalent to the one based
on Z,. Attempting to give an answer to this question forms the
core of this article.

It is worthwhile to note here that Z, is not identifiable in the
model (2). There are many versions of (Z;, m), where m = (my,
. mL)T, that give the same distribution of Y,. This means that
estimates of Z; and m; are not uniquely defined. We show that
for any version of {Z,} there exists a version of {Z,} whose
lagged covariances are asymptotically the same as those of
{Z,}. This justifies the inference based on {Z,} when {Z,} is a
VAR process, in particular. We confirm this theoretical result
by a Monte Carlo simulation study. We also discuss fitting the
model to the real ODAX IV and fMRI data.

The article is organized as follows. In the next section we
propose a new method of fitting DSFM and an iterative algo-
rithm that converges at a geometric rate. In Section 3 we
present the results of a simulation study that illustrate the
theoretical findings given in Section 5. In Section 4 we apply
the model to the ODAX IV and fMRI data. Section 5 is devoted
to the asymptotic analysis of the method. Technical details are
provided in the Appendix.

2. METHODOLOGY

We observe (X, ;, Y, ) forj=1,...,J;andt =1, ..., T such

that

A

Yo =2/ mX.))+ e, (4)
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Figure 2. Typical fMRI data in one particular time point. The figure presents 15 parallel horizontal images. The brightness corresponds to the

strength of the observed signals.

Here Z| = (1, Z/)and Z, = (Z,,, ..., Z;;)" is an unobservable
L- dlmenswnal process. The function m is an (L + 1)-tuple (i,

., my) of unknown real-valued functions m; defined on a subset
of RY. The variables X1, ooy Xrgp, €105, 67,7, are inde-
pendent. The errors ¢,; have zero means and finite second
moments. For simplicity of notation, we will assume that the
covariates X;; have support [0, 11, and also that J, = J do not
depend on .

For the estimation of m, we use a series estimator. For an
integer K = 1, we choose functions 1, ..., ¥ [0, 1]d — R,
which are normalized so that f[o"l]d i (x)dx = 1. For example,

one may take {¢: 1 = k = K} to be a tensor B-spline basis
(e.g., see de Boor 2001). Then, an (L + 1)-tuple of functions

m= (m, ...,my)" may be approximated by A, where A = (o)
isan (L+ 1) X K matriannd ‘li (¢1, T/ L _ We define
the least squares estimators Z, = (Z; 1, .. Z, L) and A = (al.k) :

J
AZEZZ{Y,, 1,z .Al!/X,,} —mm' (3)
t=1 j=1
where z = (z/,...
at hand, we estimate m by m = Ai.

We note that, given z or A, the function S in (5) is quadratic
with respect to the other variables, and thus has an explicit
unique minimizer. However, minimization of S with respect to
A and z simultaneously is a fourth-order problem. The solution
is neither unique nor explicit. It is unlque only up to the values
of Z T.A T.A where ZT (1,Z,"). We will come back
to this 1dent1f1ab1hty issue later in this sectlon

To find a solution (A Z) of the minimization problem (5),
one might adopt the following iterative algorithm: (i) Given an
initial choice Z”, minimize S(A, Z©’) with respect to A, which
is an ordinary least squares problem and thus has an explicit
unique solution. Call it A™. (ii) Minimize S(A", z) with
respect to z now, which is also an ordinary least squares

z3) " for L-dimensional vectors z,. With A

problem. (iii) Iterate (i) and (ii) until convergence. This is the
approach taken by Fengler et al. (2007). However, the proce-
dure is not guaranteed to converge to a solution of the original
problem.

We propose to use a Newton-Raphson algorithm. Let o =
a(A) denote the stack form of A = (a;y) [i.e., @ = (a0, - - -
QL1 Q02s + s ALy - Qs - 0p ) . In a slight abuse of
notation we write S(«, z) for S(A, z). Define

0 0
Fio(a,z) = %5(0,2)7 Foi(a,z) = a—zs(a,Z)7
2 82
Fao(a,z) = @S(aaz)a Fii(a,z) = ms(aaz)»
2
Fog(a,z) = a—ZZS(a,Z).
LetWV, = [¥(X,,), ..., (X, )] be a K X J matrix. Define A to be

the L X K matrix obtained by deleting the first row of A.
Writing ¢ = (1,z,), it can be shown that

T T
Fio(a,2) =2 [(W W)@ L)) a=2> (W) @,

t=1

Fala,z) =2) [(¥¥))

M'ﬂ

® (L],

t=1

Foi(e,2) =2(L] AV WAT — Y[ W/AT, . AV P AT~
Y;‘I’;AT), and Foy(a, 7) equals a (TL) X (TL) matrix that
consists of T diagonal blocks A‘I’,‘I’,TAT fortr=1,..., T Here
and later, ® denotes the Kronecker product operator. Also, by
some algebraic manipulations it can be shown that

(&&)]a =

Let Z be an (L + 1) X L matrix such that ZT =
denote the identity matrix
Fll,t(avz) = (\Pt\P;TAT) ® ¢

(v ¥])® (WY AT )®E.  (6)

(0, IL) and IL
of dimension L. Define
+ (VYA 9T (V,Y) @
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7. Then? we get Fl](aa Z) =2 (Fll,l(aa Z)’ F11,2(a5 Z)? s
Fllj(a, Z)) Let

_ ( Fiola,2) y _ ([ Fola,z) Ful(a,z)
F(OZ,Z) - (FOI(OHZ)), F (CY,Z) - (Fll(a;Z)TFOZ(Ol,Z) )
We need to solve the equation F(a, z) = 0 simultaneously for
a and z. We note that the matrices (W, W) ® ({{) =
(U, @)V, ®¢)" and AV, W/ AT are nonnegative defi-
nite. Thus, by Miranda’s existence theorem (for example, see
Vrahatis 1989) the nonlinear system of equations F(«a, z) = 0
has a solution.

Given (a°P, 7P

the updating equation for (o

), the Newton-Raphson algorithm gives
NEW’ ZNEW):

aNEW aOLD
<ZNEW> _ <ZOLD > _ F*/(OéOLD, ZOLD)_IF(aOLD7 ZOLD)7

(7)

where F(«, z) for each given (e, 2) is the restriction to F., of
the linear map defined by the matrix F'(e, z) and F, is
the llnear space of values of (a, z) with Z, 12 =0 and
STz ( 7 — Z,(O))T = 0. We denote the initial value of the
algorlthm by (@, Z). We will argue later that under mild
conditions, (é&,Z) can be chosen as an element of F,.

The algorithm (7) is shown to converge to a solution of (5) at
a geometric rate under some weak conditions on the initial
choice (a(o), Z(O)), as is demonstrated by Theorem 1 later. We
collect the conditions for the theorem.

(C1) It holds that 3", Z}") = 0. The matrix 3./, Z
and the map F; (a(o) Z(O)) are invertible.

(C2) There exists a version (&, Z) with ST 1Z, =0 such
that Zl ,Zt 79T is invertible. Also, & = (ayy,. . a;K)T
for/ =0, ..., L are linearly independent.

>Z£0)T

Let a® and Z® denote the kth updated Vectors in the iter-
ation with the algorithm (7). Also we write A® for the matrix
that corresponds to «'©, and zH =(1, zT ).

Theorem 1. LetT,J and K be held fixed. Suppose that the
initial choice («'?, Z©) satisfies (C1) and (C2). Then, for any
constant 0 < y < 1 there exist ¥ >0 and C > 0, which are random

variables depending on {(X,;, Y;;)}, such that, if Zthl HZ;O)T

tj>
AD _ ZT L2 = r, then

TA ||2 =2 2(k—1) 2<2k 1)

T
ol zTaAn

t=1

We now argue that under (C1) and (C2), (&,Z A) can be
chosen as an element of F.. Note first that one can always
take Z* and Z, so that 3., 2" =0 and 3., Z, = 0. This
is because, for any version (&, Z) one has

L
TT A _ AT 7 ~T
Z A=a, + g 10y =
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'L th,, Z7T = (1,Z7) and A" is the ma-
trix obtained from A by replacing its first row by &(’;T Fur-
thermore, the minimization problem (5) has no unique solutlon
If (Z,,A) or (Z,m = Azp) is a minimizer, then also (BZ,,
B~ ') is a minimizer. Here

(o 5)

and B is an arbitrary invertible matrix. The special structure of
B assures that the first component of B Zt equals 1 In par-
ticular, with the choice B = (Zl 1 zH 'Sz z07

we get for Z' = B'Z, that Y1, Z (Z* Z(O)) O.

In Sectlon 5, we will show that for any solution Z, and for
any verswn of true Z,, there exists a random matrix B such that
7, = B'Z, has asymptotically the same covariance structure as
Z,. This means that the difference of the inferences based on Zt
and Z, is asymptotically negligible.

We also note that one can always choose m = Alﬁ such that
the components 71y, . . mL are orthonormal in Lx([0, 1] ) orin
other L, [e.g., in Lg(T ST ;) where f, is a kernel estimate
of the density of X, ;]. If one selects 1 in this way, then the
matrix B should be an orthogonal matrix and the underlying
time series Z, is estimated up to such transformations.

In practice one needs to choose an initial estimate (@, 2
to run the algorithm. One may generate normal random variates
for ZE 1>> and then find the initial «” by solving the equation
Fio(e, Z?). This initial choice was found to work well in our
numerical study presented in Sections 3 and 4.

As an alternative way of fitting the model (2), one may
extend the idea of the principal component method that is used
to fit the orthogonal factor model (1). In this way, the data {Y, :
1 =j = J} are viewed as the values of a functional datum Y,(-)
observed at x = X, ;, 1 =j = J, and the functional factor model
given at (3) may be fitted with smooth approximations of Y,
obtained from the original dataset. If one assumes EZ, = 0,
var(Z;) = I, as is typically the case with the orthogonal factor
model (1), then one can estimate m; and Z, by performing
functional principal component analysis with the sample
covariance function

=7 Z{Yt

where Y(x) = T-' 3.7, ¥,(x). There are some limitations for
this approach. First, it requires initial fits to get smooth
approximations of Y,(-), which may be difficult when the de-
sign points X, ; are sparse as is the case with the IV application.
Our method av01ds the preliminary estimation and shifts the
discrete representation directly to the functions m;,. Second, for
the method to work one needs at least stationarity of Z, and ¢,
whereas our theory does not rely on these assumptions.

where Z;

(8)

OHY:() =Y},

3. SIMULATION STUDY

In Theorem 3 we will argue that the inference based on the
covariances of the unobserved factors Z, is asymptotically
equivalent to the one based on B'Z, for some invertible B. In
this section we illustrate the equivalence by a simulation study.
We compare the covariances of Z, and Z, =B' Z,, where
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Figure 3. The boxplots based on 250 values of the entries of the scaled difference of the covariance matrices given at (10). The lengths of the
series Z, and Z, were 500, 1,000, 2,000. The thick lines represent the upper and lower quartiles of (11).

T ! T
B= (Tl > ZCJZC_:) Ty 7.7/, (9)
=1 =1

Zei=2,—T 'S 7, and Z,, =7, —T' 3., Z,. Note
that B at (9) minimizes S, || Ze, — (BT)'Z, || . In the
Appendix we will prove that Theorem 3 holds with the choice
at (9).

We took T = 500, 1,000, 2,000, J = 100, 250, 1,000 and K =
36, 49, 64. We considered d = 2, L = 3 and the following tuple
of 2-dimensional functions:

mo(x1,x2) =1,  my(x1,x2) = 3.46(x; —.5),
mo (1, %2) = 9.45{(x1 — 5 4 (- .5)2} — 1.6,

m3(x1,x2) = 1.41sin(27x,).

The coefficients in these functions were chosen so that m;,
m,, my are close to orthogonal. We generated Z, from a centered
VAR(1) process Z, = RZ,_; + U, where U, is N30, 2y)
random vector, the rows of R from the top equal (0.95, — 0.2, 0),
(0,0.8,0.1), (0.1, 0, 0.6), and 2, = 10*413. The design points
X, ; were independently generated from a uniform distribution
on the unit square, &, ; were iid N(0, 0'2) with o =0.05,and Y, ;

were obtained according to the model (4). The simulation
experiment was repeated 250 times for each combination of (7,
J, K). For the estimation we employed, for is;, the tensor
products of linear B-splines. The one-dimensional linear B-
splines %( are defined on a consecutive equidistant knots x5,
K ¥ by b () = (x—28) /(T —xF) for
x € (xk, Xy (x) = (K2 —x)) (2 — 5k for x € (&,
x*2], and ¢, (x) = 0 otherwise. We chose K = 8 X 8 = 64.
We plotted in Figure 3 the entries of the scaled difference of
the covariance matrices
~ 1 T . =/~ =T <& _ T
D:—{Z (z, —z) (zr —Z) S 2z -2)(z-2) }
\/T t=1 t=1

(10)

Each panel of Figure 3 corresponds to one entry of the matrix
D, and the three boxplots in each panel represent the dis-
tributions of the 250 values of the corresponding entry for 7 =
500, 1,000, 2,000. In the figure we also depicted, by thick lines,

the upper and lower quartiles of

D :\/LT{XT:(Z,—Z)(Z—Z)T—TF}, (11)

t=1
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where I is the true covariance matrix of the simulated VAR
process. We refer to Liitkepohl (1993) for a representation of I.

Our theory in Section 5 tells that the size of D is of smaller
order than the normalized error D of the covariance estimator
based on Z,. It is known that the latter converges to a non-
degenerate law as T — <. This is well supported by the plots in
Figure 3 showing that the distance between the two thick lines
in each panel is almost invariant as 7 increases. The fact that
the additional error incurred by using Z, instead of Z, is neg-
ligible for large T is also confirmed. In particular, the long
stretches at tails of the distributions of D get shorter as T
increases. Also, the upper and lower quartiles of each entry of
5, represented by the boxes, lie within those of the corre-
sponding entry of D, represented by the thick lines, when 7' =
1,000 and 2,000.

4. APPLICATIONS

This section presents an application of DSFM. We fit the
model to the intraday IV based on ODAX prices and to fMRI
data.

For our analysis we chose the data observed from July 1,
2004 to June 29, 2005. The one year period corresponds to the
financial regulatory requirements. The data were taken from
Financial and Economic Data Center of Humboldt-Universitét
zu Berlin. The IV data were regressed on the two-dimensional
space of future moneyness and time-to-maturity, denoted by
(K+, T,)T. The future moneyness k;, is a monotone function of
the strike price K: k, = K/(S,e™""), where S, is the spot price
at time ¢ and r, is the interest rate. We chose r, as a daily Euro
Interbank Offered Rate (EURIBOR) taken from the Ecowin
Reuters database. The time-to-maturity of the options were
measured in years. We took all trades with 10/365 <7< 0.5. We
limit also the moneyness range to k € [0.7, 1.2].

The structure of the IV data, described already in Section 1,
requires a careful treatment. Apart from the dynamic degen-
eration, one may also observe nonuniform frequency of the
trades with significantly greater market activities for the
options closer to expiry or at-the-money. Here, ‘‘at-the-money”’
means a condition in which the strike price of an option equals
the spot price of the underlying security (i.e., K = S,). To avoid
the computational problems with the highly skewed empirical
distribution of X, = (k,, 7,), we transformed the initial space
[0.7, 1.2] X [0.03, 0.5] to [0, 1]2 by using the marginal em-
pirical distribution functions. We applied the estimation algo-
rithm to the transformed space, and then transformed back the
results to the original space.

Because the model is not nested, the number of the dynamic
functions needs to be determined in advance. For this, we used

Y {Yu ritg (X, j) — Zlez,l’ﬂl(xw)}z

RV(L > 7
= SIS (v, )

(12)

although one may construct an Akaike information (AIC) or
Bayesian information (BIC) type of criterion, where one
penalizes the number of the dynamic functions in the model, or
performs some type of cross-validation. The quantity 1 — RV(L)
can be interpreted as a proportion of the variation explained by
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Table 1. Proportion of the explained variation by the models with

L =1, ..., 5 dynamic factors
No. factors L=1 L=2 L=3 L=4 L=5
1 - RV(L) 0.848 0.969 0.976 0.978 0.980

the model among the total variation. The computed values of
RV(L) are given in Table 1 for various L. Because the third,
fourth, and fifth factor made only a small improvement in the
fit, we chose L = 2.

For the series estimators of 77;; we used tensor B-splines that
are cubic in the moneyness and quadratic in the maturity
direction. In the transformed space we placed 10 X 5 knots, 10
in the moneyness and 5 in the maturity direction. We found that
the results were not sensitive to the choice of the number
of knots and the orders of splines. For several choices of knots
in the range 5 X 5-15 X 10 and for the spline orders (2, 1), (2,
2), (3, 2), the values of 1 — RV(2) were between 0.949 and
0.974. Because the model is identifiable only up to the trans-
formation (8), one has a freedom for the choice of factors.
Here, we chose the approach taken by Fengler et al. (2007) with
L2[0,1]2 norm. Specifically, we orthonormalized y; and
transformed 7 according to their Equation (19) with ' =
[ (x) " dx, where i = (i, .. .,imz) . Call them rh;‘ and
Z* respectlvely Then we transformed them further by ;™"

p/ " and Zt*;‘ T , where p; were the orthonormal eigen-

vectors of the matrlx Z,:l Z;‘Zt"T that correspond to the

eigenvalues A; > A,. Note that Z T = Z* T In this way,
{z; 7"} makes a larger contribution than { Z%iw5" ) to the total

Varlatlon ST J(Z i) because 1 1f(Z**“**) =\
and 31, f(Z**T A**) = A; +A,. Later, we continue to write

7, and s for such Z,* * and m™, respectively.

The estimated functions 72, and 71, are plotted in Figure 4 in
the transformed estimation space. The intercept function rig
was almost flat around zero, thus is not given. By construction,
my + ZA,Jnﬁl explain the principal movements of the surface. It
was observed by Cont and da Fonseca (2002) and Fengler et al.
(2007) that most dominant innovations of the entire surface are
parallel level shifts. Note that VDAX is an estimated at-the-
money IV for an option with 45 days to maturity, and thus
indicates up-and-down shifts. The left panel of Figure 5 shows
the values of VDAX together with i (X;0) +Z,1n%1(Xt,0),
where X, is the moneyness and maturity corresponding to an
option at-the-money with 45 days to maturity. The right panel
of Figure 5 depicts the factor Z,, where one can find that Z,
shows almost the same dynamic behavior as the index VDAX.
This similarity supports that DSFM catches leading dynamic
effects successfully. Obviously the model in its full setting
explains other effects, such as skew or term structure changes,
which are not explicitly stated here.

Statistical analysis on the evolution of a high-dimensional
system ruling the option prices can be simplified to a low-
dimensional analysis of the Z.. In particular, as our theory in
Section 5 and the simulation results in Section 3 assert, the
inference based on the Z, is well justified in the VAR context.
To select a VAR model we computed the Schwarz (SC), the
Hannan-Quinn (HQ), and the Akaike criterion, as given in
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Figure 4. The estimated factor functions for the ODAX IV data in the period 20040701-20050629.

Table 2. One can find that SC and HQ suggest a VAR(1)
process, whereas AIC selects VAR(2). The parameter estimates
for each selected model are given in Table 3. The roots of the
characteristic polynomial lie inside the unit circle, so the
specified models satisfy the stationarity condition. For each of
VAR(1) and VAR(2) models, we conducted a portmanteau test
for the hypothesis that the autocorrelations of the error term at
lags up to 12 are all zero, and also a series of LM tests, each of
which tests whether the autocorrelation at a particular lag up
to 5 equals zero. Some details on selection of lags for these
tests can be found in Hosking (1980, 1981) and Briiggemann,
Liitkepohl, and Saikkonen (2006). We found that in any test the
null hypothesis was not rejected at 5% level. A closer inspec-
tion on the autocorrelations of the residuals, however, revealed
that the autocorrelation of 2,2 residuals at lag one is slightly
significant in the VAR(1) model, see Figure 6. But, this effect
disappears in the VAR(2) case, see Figure 7. Similar analyses
of characteristic polynomials, portmanteau and Lagrange
multiplier (LM) tests supported VAR(2) as a successful model
for Z

As a second application of the model, we considered fitting
an fMRI dataset. The data were obtained at Max-Planck Institut
fiir Kognitions-und-Neurowissenschaften Leipzig by scanning
a subject’s brain using a standard head coil. The scanning was
done every two seconds on the resolution of 3 X 3 X 2 mm’
with 1 mm gap between the slices. During the experiment, the
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subject was exposed to three types of objects (bench, phone and
motorbike) and rotated around randomly changing axes for
four seconds, followed by relaxation phase of six to ten sec-
onds. Each stimulus was shown 16 times in pseudo-randomized
order. As a result, a series of 290 images with 64 X 64 X 30
voxels was obtained.

To apply the model (2) to the fMRI data, we took the voxel’s
index (i), i», i3) as covariate X, ;, and the BOLD signal as Y, ;.
For numerical tractability we reduced the original data to a
series of 32 X 32 X 15 voxels by taking every second slice in
each direction. Thus, J, = 32 X 32 X 15 and T = 290. The
voxels’ indices (iy, i, i3) for 1 =iy, i, =32 ;1 = i3 = 15 are
associated with 32 X 32 X 15 equidistant points in R®. The
function mg represents the “average’ signal as a function of the
three-dimensional location, and m; for each [ = 1 determines
the effect of the /th common factor Z,; on the brain’s signal. In
Figure 8, each estimated function 7, is represented by its
sections on the 15 slices in the direction of i3 [i.e., by those
my(+, -, x3) for which x; are fixed at the equidistant points cor-
responding to iz = 1, ..., 15]. We used quadratic tensor B-
splines on equidistant knots. The number of knots in each
direction was 8, 8, 4, respectively, so that K =9 X 9 X 5 =405.
For the model identification we used the same method as in the
IV application, but normalized Z to have mean zero.

In contrast to the IV application, there was no significant
difference between the values of 1 — RV(L) for different L = 1.

Jan05 Apr05

Oct04

Julo4 Julos

Figure 5. Left panel: VDAX in the period 20040701-20050629 (solid) and the dynamics of the corresponding IV given by the submodel
mo + Z; 1m; (dashed). Right panel: The obtained time series Z, on the ODAX IV data in the period 20040701-20050629. The solid line

represents Z,l, the dashed line Z,z-
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Table 2. The VAR model selection criteria. The smallest value for each
criterion is marked by an asterisk

Order AlIC SC HQ

1 —14.06 —13.98* —14.03*
2 —14.07* —13.93 —14.02

3 —14.06 —13.86 —13.98

4 —14.06 —13.81 —13.96

5 —14.07 —13.76 —13.95

All the values for L = 1 were around 0.871. The fMRI signals
Y,; were explained mostly by (X, ;) + Z, 111 (X, ;), and the
effects of the common factors Z,; for [ = 2 were relatively
small. The slow increase in the value of 1 — RV(L) as L = 1
grows in the fMRI application, contrary to the case of the IV
application, can be explained partly by the high complexity of
human brain. Because the values of 1 — RV(L) were similar for
L = 1, one might choose L = 1. However, we chose L = 4,
which we think still allows relatively low complexity, to
demonstrate some further analysis that might be possible with
similar datasets. The estimated functions my; for 0 = [ = 4 and
the time series ZA,J for 1 = [ = 4 are plotted in Figures 8 and 9,
respectively. The function 17y can be recognized as a smoothed
version of the original signal. By construction the first factor
and loadings incorporate the largest variation. One may see the
strong positive trend in Z, ;1 and relatively flat patterns of
Z, 2 Zt 3 Z, 4. These effects could be typically explained by the
mixture of several components, such as physiological pulsa-
tion, subtle head movement, machine noise, and so on. For a
description of different artifacts, which significantly influence
the fMRI signals, we refer to Biswal, Yetkin, Haughton, and
Hyde (1995). The function estimates r; for 1 = [ < 4 appear to
have a clear peak, and ZA,J for 2 = I = 4 show rather mild mean
reverting behavior.

To see how the recovered signals interact with the given
stimuli, we plotted Ztﬂ | — Z against t in Figure 10, where s 18
the time when a stimulus appears. The mean changes of Z, 1 and
Z,3 show mild similarity, up to sign change, to the hemody-
namic response (see Worsley et al. 2002). The case of Z, shasa
similar pattern as those of Z,1 and Z, 3 but with larger ampli-
tude, whereas the changes in Z,vz seem to be independent of the
stimuli. In fitting the fMRI data, we did not use any external
information on the signal. From the biological perspective it
could be hardly expected that a pure statistical procedure gives
full insight into understanding of the complex dynamics of MR
images. For the latter one needs to incorporate into the pro-
cedure the shape of hemodynamic response, for example, or
consider physiologically motivated identification of the fac-
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tors. It goes however beyond the scope of this illustrative
example.

5. ASYMPTOTIC ANALYSIS

In the simulation study and the real data application in
Sections 3 and 4, we considered the case where Z, is a VAR-
process. Here, we only make some weak assumptions on the
average behavior of the process. In our first theorem we allow
that it is a deterministic sequence. In our second result we
assume that it is a mixing sequence. For the asymptotic anal-
ysis, we let K, J, T — . This is a very natural assumption often
also made in cross-sectional or panel data analysis. It is
appropriate for data with many observations per data point that
are available for many dates. It allows us to study how J and T
have to grow with respect to each other for a good performance
of a procedure. The distance between m and its best approx-
imation Ay does not tend to zero unless K — oo, see
Assumption (AS5) later. One needs to let ] — o to get con-

sistency of Z:T/T and m = ,Za,[; as estimates of Z, A" and m,
respectively, where A" is defined at (A5). One should let 7 — o
to describe the asymptotic equivalence between the lagged
covariances of Z, and those of Z, see Theorem 3 below. In our
analysis the dimension L is fixed. Clearly, one could also study
our model with L growing to infinity. We treat the case where
X;; are random. However, a theory for deterministic designs can
be developed along the lines of our theory.
Our first result relies on the following assumptions.

(A1) The variables X, 1, ..., X7, €115 - - » érys and Zy, .. ., Zy
are independent. The process Z, is allowed to be nonrandom.
(A2) For t =1, ..., T the variables X, ;, ..., X, are identi-
cally distributed, have support [0, 1]¢ and a density f, that
is bounded from below and above on [0, 1]d, uniformly over
t=1,..,T.

(A3) We assume that E¢, ;j =0for 1 =t =T, 1 =j=J, and
for ¢ > 0 small enough sup; <=7, 1<j=/E exp(csfj) < o,
(A4) The functions ¢, may depend on the increasing indices
T and J, but are normed so that fm ¥ (x)dx = 1 for k = 1,
..., K. Furthermore, it holds that sup,coy) || $(x) | =
O(KI/Z)

(A5) The vector of functions m = (my, ... 7mL)T can be
approximated by i, i.e.,
Ox= sup inf ||m(x) — Ay(x)|| — 0

xe[o,1]¢ AERHHDX

as K — . We denote A that fulfills sup, _, ||m(x)—
Ap(x)|| = 28k by A”.
(A6) There exist constants 0 < C; < Cy < o such that all
eigenvalues of the matrix 7~ ZtT:I Z,Z! lie in the interval
[C;, Cy] with probability tending to one.

Table 3. The estimated parameters for VAR(1) and VAR(2) models. Those that are not significant at 5% level are marked by asterisk

VAR(1) VAR(2)
27111 Zi 12 Const. Z 1 27112 Zi 2. 2—2,2 Const.
Z\"] 0.984 —0.029* —0.001 0913 —0.025 0.071 —0.004 —0.001
Zio 0.055 0.739 0.005 0.124 0.880 —0.065 —0.187* 0.006
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Figure 6. Cross-autocorrelogram for the VAR(1) residuals. The dashed line-bounds indicate =2 X (standard deviations), which correspond to

an approximate 95% confidence bound.

(A7) The minimization (5) runs over all values of (A4, z) with

sup Lnta<xT || (LZ;T)-A‘/f(x) | = Mr,

x€f01] T T T

Cor(U1,U1(-i))

where the constant My fulfils max | =<7 ||Z|| = M{/C,,
(with probability tending to one) for a constant C,, such
that Sup xejo, llllm(-x)“ < Cm~
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Figure 7. Cross-autocorrelogram for the VAR(2) residuals. The dashed line-bounds indicate =2 X (standard deviations), which correspond to

an approximate 95% confidence bound.
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Figure 8. The estimated functions 7 for the fMRI signals.

(A8) It holds that p*> = (K + T)M3%log(JTM7)/(JT) — 0.
The dimension L is fixed.

Assumption (A7) and the additional bound M7 in the mini-
mization is introduced for purely technical reasons. We con-
jecture that to some extent the asymptoic theory of this article
could be developed under weaker conditions. The independence
assumptions in (A1) and Assumption (A3) could be relaxed to
assuming that the errors ¢, ; have a conditional mean zero and
have a conditional distribution with subgaussian tails, given the
past values X;;, Z; (1 =i = J, 1 = s = 1). Such a theory would

require an empirical process theory that is more explicitly
designed for our model and it would also require a lot of more
technical assumptions. We also expect that one could proceed
with the assumption of subexponential instead of subgaussian
tails, again at the cost of some additional conditions. Recall that
the number of parameters to be estimated equals 7L + K(L + 1).
Because L is fixed, Assumption (A8) requires basically that,
neglecting the factor M;> log(JTMy), the number of parameters
grows slower than the number of observations, J7.

Our first result gives rates of convergence for the least
squares estimators Z; and A.
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Figure 9. The estimated time series Z\,’l for the fMRI signals.
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Theorem 2. Suppose that model (4) holds and that (ZA:MT)
is defined by the minimization problem (5). Make the
Assumptions (A1)—(A8). Then it holds that

1 ot~ e
3 HZ,TA—Z,TA' = Op(p” + %)

1=t=T

(13)

At this point we have made no assumptions on the sequence
Z;: 1 =t =T, besides the bound in (A7). Up to now it is allowed
to be a deterministic or a random sequence. We now assume
that it is a random process. We discuss how a statistical analysis
differs if inference on Z, is based on Z instead of using (the
unobserved) process Z,, We will show that the differences
are asymptotically negligible (except an orthogonal trans-
formation). This is the content of the following theorem, where
we consider estimators of autocovariances and show that these
estimators differ only by second order terms. This asymptotic
equivalence carries over to classical estimation and testing
procedures in the framework of fitting a vector autoregresssive
model. For the statement of the theorem we need the following
assumptions:

(A9) Z, is a strictly stationary sequence with E(Z,) = O,
E(|Z]") < o for some y > 2. It is strongly mixing with
S (i)"Y <o, The matrix EZZ" has full rank. The
process Z, is independent of Xy, ..., X7y, €11, - .., €7
(A10) The functions my, . . ., my are linearly independent. In
particular, no function is equal to 0.

(A11) It holds that [log(KT)*{(K My /J)"* + T"/2M3J2
K2 4 KA RTOY L )TV (02 4 8%) = o(1).

Assumption (A11) poses very weak conditions on the growth
of J, K, and T. Suppose, for example, that M is of logarithmic

order and that K is of order (7J)" so that the variance and the
bias are balanced for twice differentiable functions. In this
setting, (A11) only requires that 7/J> times a logarithmic factor
converges to zero. Define Z~, = BTZ,

~ ~ = T ~
Ze=2,-T"'Y 7,

_ T
Zei=2,—T"'Y  Z,

and Z,, = (173" 2.2 )77,

Theorem 3. Suppose that model (4) holds and that (2, .AT)
is defined by the minimization problem (5). Make the
Assumptions (A1)—(A11). Then there exists a random matrix B
such that for # # 0

1 min(T,T—h| o o1 min[T,T—h]
™ Zc,t (ch+h - Zc,t) - T Zc,r
t=max|[l,—h+1] t=max[l,—h+1]
T —
(Zearn = Zea) = op(T712),
1 min(7,7—h| 1 min[7T,7—h|
7 77T T
T Z Z’lJZn,t+h - ? Z Z”JZn,t+h
t=max[l,—h+1] t=max[l,—h+1]
— OP(Tfl/Z)'

To illustrate an implication of Theorem 3, suppose that the
factor process Z, in (4) is a stationary VAR(p) process in a mean
adjusted form:
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Zi—pu=01Z 1 —p)+...+0,(Z,—pn)+ U, (14)

where u = E(Z,), ©;is a L X L matrix of coefficients and U, is a
white noise with a nonsingular covariance matrix. Let I';, be the
autocovariance matrix of the process Z, with the lag h = 0,

which is estimated by T, = 7' .7 w1 (Zi=Z) (2w —2)".

Let Y = (Zys1 — fhe o Zr — ). © = (O, ....0,), and U =
-

(Upir. . . Up). Define W, = ((Z, ) Zipir — p,)T)

and W= (W, ..., Wr_;). Then, the model (14) can be rewritten
asY=0W+U and the least squares estimator of O is given by
0= YWT(WWT)™!, where ¥ and W are the same as Yand W,
respectively, except that w is replaced by Z. Likewise, , fitting a
VAR(p) model w1th the estimated factor process Z, yields
® =YW (WW')™', where ¥ and W are defined as Y and W
with Z; being replaced by 7. Both ¥ and w are matrices
composed of Fh for various h. The matrices Y and W have the
same forms as Y and W, respectively, but with Fh being
replaced by I, = T~ DY h+1(Zt Z)(Zin — Z)". 1t is well
known that /T (® ®) = Op(1), see Liitkepohl (1993). By

Theorem 3, we have v/7(0 — (:)) =op(1).

APPENDIX: PROOFS OF THEOREMS

A.1 Proof of Theorem 1

We use the Newton-Kantorovich theorem to prove the the-
orem. The statement of the theorem may be found in Kant-
orovich and Akilov (1982), for example.

Suppose that 37, || zOT Z:?ZTA\ |> = rforsomer>
0, which will be chosen later. With the Frobenius norm ||M]|
for a matrix M, we get

> -1

T
| A® - A = H (Z 202"
t=1

2

2

2

t=1

><<,i
|

t=1

A© ZgO)ZAZT/T

)‘ (Siare)

For a matrix M, define |M||,= sup ||Mx]|. It is known that
|M]]> = |IM]]. We get [l1]|=1

_ .2
= rcy.

[P
Nz

IAT(Z" - 2)) =

(A2)
ICAAT T

721‘ Ha
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| (@ - 2)" Al =) 27 (A-A%) |z PTA0-
ZTAN= 1200 N A=A |+ 20 AT - ZT A
(A3)

The two inequalities (A.2) and (A.3) together with (A.1) give
ZIP=2r [AR- (AL P

<1+c12 = ||2>

I z0) _
(A4)

Because F'(a, z) is quadratic in (e, z), there exists 0 < ¢3 < ®©
for any compact set D in R¥* + D+ quch that ||F'(a’, z') —
Fl(a, Dl = cill(a’", 2T = (@', z2")T| for all (a', z")7,
@7,z eD.Letey = ||F'.(a®,Z®)"||,<%. Because F
is continuous and F' (&,ZA) = 0, there exists 7' > 0 such that, if
|a® -G ||+ z9-Z]|| = 7, then

20y =2

F.(af .
| F'o(a Yeres

), Z(O))—IF(Q(O)

By the Newton-Kantorovich theorem,
©_a | +l 7k _ 7 | = Clz—(k—l),y?—l

for some C; > 0. This gives that if || al
Z|| =/, then

(A.5)
0-g |+ 20~

I«

T
S ETAY - ZTAP =G ¥ - @ P+
=1
” zk) _ 7 H2)S C272(k71),y2(2"71)
for some C, C, > 0. We take r = (¢; + c¢») >r'*. Then, by

(A.1) and (A4), || @
ZOT 40 _
theorem.

—alH zO-Z| =it
ZA,T./Zl\ |> = r. This completes the proof of the

A.2 Proof of Theorem 2

For functions g(t, x) we define the norms | g ||?=

T 2 112 T 2
(L/TI) 3>y Yo gt X )7 gl =(1/T) 2oy [ g(t,x)7fi(x)
dx,and || g 3= (1/T) I, [ g(t,x)* dx. Note that because of
Assumption (A2) the last two norms are equivalent. Thus, for
the statement of the theorem we have to show for A(t,x) =

(ZTA—Z T A" )(x) that

A3 = Op(p* + 8%)- (A.6)
We start by showing that
1A [I}= Op([(K + T)10g(JTM)]/(JT) +8). (A7)

For this aim we apply Theorem 10.11 in Van de Geer
(2000) that treats rates of convergence for least squares
estimators on sieves. In our case we have the following sieve:
Gy ={g: {1,...,T}X[0,1]">R, g(t,x) = (1,2 ). As(x) for an
(L + 1)X K matrix A and z; € RL with the following properties:
|(1,2))Ap(x)] = Myforl << Tandx € [0,1]"}. With a
constant C the 8-entropy Hr(8,G;) of G with respect to the
empirical norm ||g||; is bounded by

Hr(8,Gy) = CTlog(M7/8) + CK log(KM7/8).  (A.8)
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For the proof of (A.8) note first that each element g(#,x) =
(1,2])A¢s(x) of Gp can be chosen such that 7' S0 7,z is
equal to the L X L identity matrix /;. Then the bound
|(1,z] ) A¥(x)| = M7 implies that || A(x) || = My. For the
proof of (A.8) we use that the (6/M7)-entropy of a unit ball in
R” is of order O(T log(Mz/8)) and that the 8-entropy with
respect to the sup-norm for functions Ay (x) with || Ay (x) || =
M7y is of order O(K log(KM7/8)). In the last entropy bound we
used that for each x it holds that [[(x)|| = K"?. These two
entropy bounds imply (A.8). Application of Theorem 10.11 in
Van de Geer (2000) gives (A.7).

We now show that (A.7) implies (A.6). For this aim note first
that by Bernstein’s inequality for a, d > 0, g € G5 with

gl = d
2JT
P 2 _gl?l =a)=2 e )
sl ~lsl5l=a exp( 20L+dﬂw%)
(A.9)

Furthermore, for g, h € g’; it holds with constants C, C’ that

. 1/2
e lf =Rl I= CK<T_1 S le—f II2>
=1

r 1/2
<T1 dolets ||2> =CK|lg=hl2(lgll2+1l-),
=1

(A.10)

where ¢, and f; are chosen such that g(x,7) = e, (x) and
h(x,t) = f, ¥(x). From (A.9) and (A.10) we get with a constant
C>0thatford=1,2, ...

P sup gl =1lglll =dp*/2)
$€G;dp?= |gl3=(d+1)p?

= Cexp((C + K + T) log(dKMr) — dp*JT /[20M3]).

By summing these inequalities over d = 1 we get ||A||§ = p’or
2 2 2 2 2 2
Al = [lIAlly = [IAlR[+ [IAll; = [IA[l2/2 + [|A];

with probability tending to one. This shows Equation (A.6) and
concludes the proof of Theorem 2.

A.3 Proof of Theorem 3

We will prove the first equation of the theorem for /2 # 0. The
second equation follows from the first equation. We first prove

that the matrix 7! Z;T | Zeu ALT, is invertible, where ZZJ =
(1,2]), 2. = (1 Z.),

Zei and Zt =7 71! ZSTZI Z.. This
implies that T~ lel CJZACI is invertible. Suppose that the
assertion is not true. We can choose a random vector e such that
el =1ande” 37 | Z.,2,7 = 0. Let A and A* be the L X K
matrices that are obtainedA by deleting the first rows of
Aand A", respectively. Let A. and A be the matrices obtained
from A and A by replacing thelr flrst rows by aj+
(TS Z) A and o + (T7' S, Z,)T A", respectively.
By definition, it follows that

ETA-ZTA, ZA

= Z] AL (A.11)
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Note that

T
Ty 2,2 A —T! Z 2o 20 AL
t=1

=T ZC‘,r( TA z! A*) H

2 20 1)2
= (T : ) ( ZTA-z] A )
= Op(p + 8k), (A.12)

because of Assumption (A6) and Theorem 2. Thus with
f=T1" Zthl ZC_’[ZCTJ@, we obtain

LT =1 £ T (A || +Op(T72 + 8k)

T
e' 77! Z ZL.,,ZAC
=1

= OP(T*l/2 +p + k).
This implies that my, ..., my are linearly dependent, contra-
dicting to Assumption (A10).

Let B be the matrix given at (8) with B defined as in (9). Define
Z”_B ZL, and A, = B~'A,. Then ZTA =Z A and
'y 2 =T 'Y 2.2, This gives with (A.12)

H,ZC—A: T“ZZHZT (4. — Ao

= T,/TLIIJ +Op(T™'? + p + 8k)

k(1)

T
= T*‘ZZC,, A =Ty 20, 2] AL Op(1)
t=1 t=1
= Op(p+51<). (Al3)
Because of Theorem 2 this implies
|A-a| = 0n(o+8). (A.14)

Define ZC,by Z T =(1,Z ) Note thatz, =B Z: Also,
define A = B~'A, Wthh equals A without the first row. From
(A10), (AS), (A.14), and Theorem 2, we get

2 . T o\~ 2
—zl =1 ZHZ,—Z,
=1

T _ . 2
:T*IZHZtT(mO,...,mL) —ZtT(mo,...,mL) H OP(

=1

LTS 2
—7'y HZtTA*— ZtTAH Op(1)+ T~ TA-z A

=1

X Op(l) + OP((O‘%()

T
ST“ZHZ,—Z,

t=1

2 || A —A|Pop(

T
D+73 ")z
=1

X | A—A" | Op(1)

T
+ T N1 ZTA=Z] A P Op(1) + Op(p* + 8%)
=1
= Op(p* +8%).

(A.15)
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From Equation (A.15) one gets

T
U A
t=1

We will show that for & # 0

ZoJ||* = Op(p? + 82). (A.16)

T
7! Z {Zeyin = Zeysn) — (Zey — Ze t)}ZC L= OP(T—I/z)'
1=h+1
(A.17)

This implies the first statement of Theorem 3, because by
(A.16)

T
T Z (Zet = Ze)Zegin = Zi i) = Op(p? + 8%)
t=—h+1
= Op(T'/?).

For the proof of (A.17), let &, be the stack form of ./Zlvc and
&IO be its first row. Using the representation (6) and the first
identity of (A.11), it can be verified that

J
Zey = S;p0 7Y {1 AW, ) — AP(X, )Xo j) @),

J=1

(A.18)

T J

@ =8, T Y S (X)) © 2o}y, (A19)
=1 j=1

where S,z = J 'S0 Ap(X, (X)) AT and S = 771!

Sl T (X)) @ 2 He(X, ) © 2.} Define S,z as

Sz with A, replacing A. Also, define S,z = AE{y(X,;)

W(Xe) VAT Sz = ATE{(X, (X, )" AT and

Se=T"" ZE[{lﬂ(Xt,j) ® Ze H(Xej) ® Zei} ' |Z4).

t=1

Lety=T""(p + )"
18z = Siz lI=op(v),

', We argue that

sup I Sa = Sa || =or(¥)

l=t=T
(A.20)

We show the first part of (A.20). The second part can be
shown similarly. To prove the first part it suffices to show that,
uniformly for | =7 =T,

J7! ZA: (X (X)) — (X, (X ) YA — AT

:l OP(Y);
(A21)

(Ac — AWK )Y(Xe) " — EQb(Xe )Xo ;) )]

1

J*l
J

(A — AT

J

= op(y),
(A.22)

(X)) = E{p(X, )X, ;) HAT

J
TN AL (X )y
j=1

= op(7),
(A.23)

297

AEWX ) (X)) HA — AT =op(y), (A24)

M\

.
Il
=

(Ae — ADE{W(Xe (X, ) (A — AT = op(y).

M\

J 1
1

(A.25)

The proof of (A.23)-(A.25) follows by simple arguments.
We now show (A.21). Claim (A.22) can be shown similarly. For
the proof of (A.21) we use Bernstein’s inequality for the fol-
lowing sum:

J 2

1 X
P W) >x ) =2exp(—5——).
('. i x) eXp( 2V+Mx/3)

j=1

(A.26)

Here for a value of ¢ with 1 = ¢ = T, the random variable W; is
an element of the (L + 1) X l-matrix §=J'A [zﬁ(X, )
W(X,;) e — E{p(X,))¥(X;) " e}] where e € R¥ with ||e|| =1.In
(A.26), Vis an upper bound for the variance of Z — Wjand M
is a bound for the absolute values of W; (i.e. [W)| = M for 1=j
= J, a.s.). With some constants C; and C2 that do not depend on
t and the row number we get V = lefl and M = C2K1/2J71.
Application of Bernstein’s inequality gives that, uniformly for
1 =¢=Tande € R¥ with || = 1, all (L + 1) elements of S are
of order op(7y). This shows claim (A.21).
From (A.13), (A.15), (A.18), (A.19), and (A.20) it follows
that uniformly for 1 = ¢t =T,
J J
Zey—Zey= S,TZIJ71 Z SrﬁjA*‘l/(Xz,j) + S;Zl-]71 Z &t,j
j=1 j=1
X (A _A*)‘l’(xt,j)
(A.27)

J
+8,20 7Y (A= AKX (Ko ) AT E 1/2)
J=1
= At.,l,Z + A,"g,z + Az,S,Z +op(T
For the proof of the theorem it remains to show that for 1 =
=3

c,t + OP(T7

71/2).

T

T Z (Arnjz — AtJ,Z)ZIZ =op(T™

t=—h+1

2y (A28)

This can be easily checked for j = 1. For j = 2 it follows from
| A—A" = O(p +8,) and

{”m 122&1 S, Mip(X. ) ||2} OKJI~'T™)

t=1 j=

for any L X K matrix M with || M || = 1. For the proof of
(A.28) for j = 3, it suffices to show that
T+h

TS A 2(Zesn—Zes) =op(T7?).

=1

(A.29)

We note first that for ] = [ =L

T+h
7! Z A3z(Zesng —

T+h

=T IZZ{(V,I,A* XepX,) )@ 82 }(@—a),

=1 j=

Zc,t,l)
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where Vi = (Zcini — Zes1)Zes, and @ and a* denote the
stack forms of A and A*, respectively. For the proof of (A.29) it

suffices to show
T+h J

1‘]122{ Vht

X (@ — a*) = op(T~

Ap(Xo (X )") @ S5}

2,
(A.30)

T+h J
T Z Z {({Vis = E[Va}  Ap(Xe (X))

® S} = Op(KJ7'TH).

(A31)

Claim (A.31) can be easily shown by calculating the
expectation of the left hand side of (A.31) and by using the
mixing condition at Assumption (A9). For a proof of (A.30) we
remark first that by construction

IZ et — ZT

Using (A.27) and similar arguments as in the proof of (A.28)
for j = 1, 2 we get that

T
7! ZA&ZZT. =71'J!
ITI J
S {@az Ax u(x,) )

t=1 j=1

©5 1}( ) = op(T'?).
As in the proof of (A.31) one can show that
T+h J

T S {{Zei 2], -
=1 j=1

2
@S| = Op(KJ'T).

E[Zes 2 FAWXe (X )

The last two equalities imply that

TS {(ElZ

=1 j=1
X (@—a*) = op(

ZetZL)AW(X, (X)) ® S, 4}
77172,

Because of Assumption (A9) this implies claim (A.29) and
concludes the proof of Theorem 3.

[Received June 2007. Revised August 2008.]
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1 Introduction

It is well known that many time series data exhibit long memory, or long-range dependence,
including the Nile river level, ex post real interest rate, forward premium, and the dynamics
of aggregate partisanship and macroideology. Among the many other examples that Beran
(1994) gives the Nile river data has been known for its long memory behavior since an-
cient times, and this is one of the time series that led to the discovery of the Hurst effect
(Hurst, 1951) and motivated Mandelbrot and his co-workers (Mandelbrot and van Ness, 1968;
Mandelbrot and Wallis, 1969) to introduce fractional Gaussian noise to model long memory
phenomenon.

Long range dependence also has been observed in financial data. As demonstrated by
Ding et al. (1993), de Lima and Crato (1993) and Bollerslev and Mikkelsen (1996) that the
volatility of most financial time series exhibits strong persistency and can be well described as
a long memory process. Evidence of financial market volatility’s strong persistency inspired
Breidt et al. (1998) to propose a class of long memory stochastic volatility (LMSV) models.
Deo et al. (2006) also show that the LMSV model is useful for forecasting realized volatility
(RV) which is an important quantity in finance.

Figure 1 displays the yearly Nile river minima based on measurements at the Roda gauge
near Cairo during the years 622-1284. Beran (1994, p.33) documents that “When one only
looks at short time periods, then there seem to be cycles or local trend. However, looking at
the whole series, there is no apparent persisting cycle.” The changing pattern of the Nile river
data leads Bhattacharya et al. (1983) to argue that the so-called Hurst effect can also be
explained as if the observations are composed as the sum of a weakly dependent stationary
process and a deterministic function. As a consequence it is important to distinguish between
a long memory time series and a weakly dependent time series with change-points in the
mean. This question has been intensively considered in the literature, including Kiinsch
(1986) and Heyde and Dai (1996). Berkes et al. (2006) presents an overview about this
strand of literature. Similarly, Diebold and Inoue (2001) shows that long memory also may
be easily confused with a Markov-switching mean. Thus, most of the existing literature
considers long memory as a competing modeling framework against the structural change
and Markov-switching models.

The Nile river level time series is far more complicated than a pure long memory or
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Figure 1: Yearly Nile river minima based on measurements at the Roda gauge near Cairo.

a weakly dependent time series with change-points in the mean to describe. Beran and
Terrin (BT) (1996) suggest therefore that the Hurst parameter characterizing the yearly Nile
river might change over time. When estimating the Nile river data with the autoregressive
fractionally-integrated moving-average (ARFIMA) or I(d) process introduced by Granger
(1980), Granger and Joyeux (1980) and Hosking (1981), Beran and Terrin (1996, p.629)
show that the data can be well fitted with an ARFIMA(0, d,0) model with d = 0.4, where
the fractional differencing parameter d of ARFIMA process acts like the Hurst parameter
H of fractional Gaussian noise in characterizing the hyperbolic decay of the autocovariance
function of a long memory process. BT further claim that the observations 1 to about
100 seem to be more independent than the subsequent observations, and the value of the
fractional differencing parameter might be lower for the first 100 observations than for the
subsequent data. If this claim is right, then there should be a structural change in the
long range persistence of the Nile river data around the year 720, and the Nile river data
neither can be described with a pure long memory nor a weakly dependent time series with
change-points in the mean.

The possible change of the differencing parameter stimulate BT to propose a statistic for
testing the stability of the fractional differencing parameter. This testing statistic has been

further discussed and extended in Horvath and Shao (1999) and Horvath (2001). However,



their methods can not identify the change points of the fractional differencing parameter.
A Bayesian random persistent-shift (RPS) method for detecting structural change in the
differencing parameter and the process level has been considered in Ray and Tsay (2002).
Nevertheless, the RPS method is not built on the Markov-switching framework, thus may not
fully characterize the cycling behavior of the data series, i.e., “seven years of great abundance”
and “seven years of famine” — the Joseph effect named by Mandelbrot and van Ness (1968)
and Mandelbrot and Wallis (1969).

The above considerations lead us to combine the long memory and Markov-switching liter-
ature into a unified framework. We introduce a Markov-switching-ARFIMA (MS-ARFIMA)
process by extending the hidden Markov model. Given that the hidden Markov model has
become extremely popular in speech recognition as shown in Juang and Rabiner (1991) and
Qian and Titterington (1991), and in econometrics, finance, genetics, and neurophysiology
as outlined in Robert et al. (2000), the MS-ARFIMA model provides a flexible modeling
framework for many applications to these fields. Moreover, the research conducted in this
paper also solve the puzzle raised by Diebold and Inoue (2001) by estimating the differencing
parameter allowing for the parameters of interest are Markov-switching.

The remaining parts of this paper are arranged as follows: Section 2 presents the MS-
ARFIMA process and the algorithms for estimating the parameters of interest. In Section 3
we consider the finite sample performance of the proposed algorithm under the simple mixture
of a Markov-switching mean and an ARFIMA(1,d, 1) process. We then apply the proposed
methodology to the U.S. real interest rates, the Nile river data, and the U.S. unemployment

rates in Section 4. Section 5 provides a conclusion.

2 Models and Main Results

The objective of this paper is to propose a general class of Markov-switching-ARFIMA
processes in order to combine strands of long memory and Markov-switching literature. This
class of models offers a rich dynamic mixture of a Markov chain and an I(d) process.

Let {s;}_, be the latent sample path of an N-state Markov chain. At each time s, can



assume only an integer value of 1,2, --- N, and its transition probability matrix is

P11 P21 " DPN1
P12 P22 - DPN2

P = ;
PiN P2N - DNN

where p;; = P(s; = j | s;-1 = i) and Zj.v:lpij =1 for all 1.
An I(d) process, x, is defined as:

(1 — L)dl't = ht,

where L is the lag operator (Lk; = k;—1) and h; is a short memory process. When d > 0, the
I(d) process is often called the long memory process, because its autocovariance function is
not summable so as to capture the long range dependence of a time series. In addition, the
I(d) process is nonstationary when d > 7, otherwise, it is covariance stationary.

Combining the defining feature of a Markov chain and that of an I(d) process, we propose

the following MS-ARFIMA (p, d, q) process:
Wy = /’Lstl{t > 1} + (1 - L)_dStUSzztl{t > 1} = :U’Stl{t > 1} + Yses (1)

where I{.} is the indicator function and z; is stationary process with mean zero and bounded
positive spectral density f,(\) ~ Gp as A — 0 at each possible regime, thus including
stationary and invertible ARMA process as its special case. The most distinguished feature
of the process is that the fractional differencing parameter d,, well known in the long memory

literature is allowed to be a Markov chain satisfying the following Assumption A:
Assumption A. s; is independent of z. for all t and T.

The model in (1) subsumes many interesting models in the literature. When N = 1, wy,

reduces to the specification in (7) of Shimotsu and Phillips (2005):
wy = o + (1 — L) ®aoz I{t > 1} (2)

which also can be represented as:

B t—1 (dO)k
Wy = o + Z 2 00Zt—k; (3)
k=0




where
[(do + k)
['(do)

is Pochhammer’s symbol for the forward factorial and I'(.) is the gamma function. More-

(do)r = = (do)(do +1)...(do + k —1) (4)

over, under the model in (1) and d;, = 0, w; still includes the Markov-switching AR model
considered in Hamilton (1989) as one of its special cases. We will show that the estimation
of the model in (1) can be easily implemented with the algorithm proposed in this paper,
even though the parameter estimation from a noisy version of realizations of Markov mod-
els is extremely difficult in all but very simple examples as well documented in Qian and
Titterington (1991).

Let the total sample size be T, and denote W, = (wy,wy, - - - ,wt)T the column vector
containing the observations from time 1 to time ¢, while S; = (s, 89,--,8;) represents
the corresponding states, and Y; = (y1, o, -+,%;) " in (1) is similarly defined. The column
vector & = (f1, ..y ANy O1y+ oy ONy P11y - oy Plpy D215 -« s ONpy A1y - - -, A, 011, -+, 0ny) T and
pij (transition probabilities) consist of the parameters characterizing the conditional density
function (cdf) of w;. After stacking the parameter vector o and the transition probabilities
pij into one column vector &, we can represent the cdf of w; as f(w; | S, Wi—1;€), clearly
showing that the cdf of w; depends on the entire past routes of states (in general). Indeed,
there are N7 possible paths of states running throughout the observations Wry.

To illustrate the proposed algorithm for the model in (1), we first consider the simplest

case where w, in (1) is generated as:
Wy = /”[‘St]{t Z 1} + (1 - L)_doaogtf{t Z 1} = :U’Stl{t Z 1} + Yt (5)

where d < % and &; is a zero mean normally, independently and identically distributed white
noise (i.i.d.) with E(e?) = 1. That is, w; in (5) is a special type of MS-ARFIMA(0, d,0)
process whose differencing parameter is fixed across different regimes. Under Assumption A
and g, ~ N(0,1) i.i.d. process, the likelihood function of Wy, L(Sy, Wr; §) hereafter, for the
hidden Markov model in (5) equals
1 T

LS Wri€) = () A esp (<A [T Prtsc ). (O

where A = E(Y7);}), and Pr(s; | sq) is evaluated with the unconditional probability that

the process will be in regime s;. Given that y; in (5) is a simple ARFIMA(0, d,0) process,



we can use the Durbin-Levinson algorithm to derive
1 T - Ry
(27T>7T/2|A|71/2 exp (—§)};A1)}T) _ H (2ﬂ)71/2?)t_11/2 exp {_ (e — Ut) } 7 (7)
t=1
where 7; denotes the one-step ahead predictor of y, with the observation ), ; as j > 2,
and v;_1 is the corresponding one-step ahead prediction variance. Deriche and Tewfik (1993)
also have employed the Durbin-Levinson algorithm to estimate a univariate ARFIMA(0, d, 0)
processes without Markov-switching characteristic. Note that as ¢ =1, y; = 0, and vy =
corresponds to the variance of y;. As a result, the likelihood function in (6) can be rewritten
as:

L(Sr. Wri€) = [ 2m) /202 exp {—u} Pr(s: | si1), (®)

t=1 2041
indicating that the wunconditional likelihood function of the mixture model in (5) can be
exactly and recursively evaluated provided that we can identify the true path of s;, &7.

We do not know in reality the value of S}.. However, the recursive structure shown in (8)
is especially suitable for implementing the Viterbi (1967) algorithm in the digital commu-
nication literature to identify the most likely path of states among the N7 possible routes
within Wr. We thus combine the Durbin-Levinson algorithm and the Viterbi algorithm to
suggest a Durbin-Levinson-Viterbi (DLV) algorithm for the model in (5). When compared
to the original Viterbi algorithm designed for solving the problem of maximum a posteri-
ori probability estimate of the state sequence of a finite-state discrete-time Markov process
observed in white noise, the DLV algorithm proposed in this paper is concerned with the
hidden Markov process observed in a much more general ARFIMA noise. Since the DLV
algorithm can estimate the differencing parameter of a time series allowing for the presence
of a Markov-switching mean, the puzzle raised by Diebold and Inoue (2001) that long mem-
ory can be easily confused with a Markov-switching mean is thus resolved by using this DLV
algorithm.

To locate the most likely path running through the data Wy with the idea of Viterbi
(1967), we note first that, for each time ¢, there are N possible states ending at time ¢, i.e.,
(s =1i),i=1,...,N. For a particular node of these N end points at time ¢, say (s; = j),

there exists a corresponding most likely path:

(St—1(st=174), 80 =J) = (s1(s8¢ = j), s2(s6 = 4), - -+, se-1(80 = J), 80 = J) (9)



which ends at this particular node (s; = 7). We refer to the path (S;_1(s; = j),s; = j) in
(9) as the survivor associated with the node (s; = j). Note that, with little loss of clarity,
we do not explicitly specify that the path depends on the parameter £ and the observations
W, in order to simplify the notation. The likelihood function generated from this survivor
(Si—1(s¢ = j), 8¢ = j) and the formula in (8) is recorded as L(S;_1(s; = j), 8¢ = 4, Wy; &) and
is crucial for locating the most likely path running from time 1 to time 7. In short, for each
node (s; = 7) at time ¢, there exists a most likely path, survivor (S;_1(s; = j), sy = j), and its
associated likelihood function L(S;_1(s; = j), st = J, Wi;€). Most importantly, the number
of survivors at each time ¢ is always equal to N.

Given the N survivors at time ¢ and in order to locate the survivor (S;(si41 = 1), S¢11 = 1)
for a particular node (s;y7 = i) at time ¢ + 1, among the N segments connecting the node
(¢4 = 1) and the N time-t survivors (S;_1(s; = j), sy = j) recorded at time ¢, we select the
one producing the largest likelihood function L(S;(s¢y1 = 1), Si01 = 7, Wyi1;€) among these
N possible candidates, and name it as the survivor (S;(s;11 = 1), $¢41 = @) for this particular
node (sgr1 = 4). The computation of the aforementioned likelihoods is simple, because we
record the likelihood functions of the N time-¢ survivors at each time ¢.

This recursive updating process proceeds from time 1 to time 7" and results in N time-
T survivors (Sy_1(sp = i),sr = i) and their associated likelihood function L(Sy_1(sr =
i), s7 = i, Wr; &), for each i = 1,..., N. From these N time-T" survivors we select the one
producing the largest likelihood function, say L(Sy_1(s7 = g),s7 = g, Wr; &), as the most
likely path running from time 1 to time 7. Combining a numerical optimization procedure
and this chosen likelihood function L(Sr_1(sy = g),sr = ¢, Wr; &) generated from the
Viterbi algorithm and the Durbin-Levinson algorithm displayed in (7), we can estimate the
parameters £ and identify the states Sy hidden in the observations Wry.

We now consider another special type of MS-ARFIMA((p, d, q) process:
wy = p I{t > 1}y + 5y = po, [{t > 1} + (1 — L) ®ooz I{t > 1}, é(L)z =0(L)s, (10)

where

HL)=1—¢L—...— I, O(L)=1+0L+...+0,L (11)

and the roots of the polynomial ¢(L) and those of §(L) in (11) are all outside the unit circle

and share no common roots. The model in (10) is much more general than that in (5), but



still can be estimated with the preceding Viterbi algorithm after some modifications. Please
note that the value of fractional differencing parameter is unchanged across different regimes
as that imposed in (5).

Note that the term y; in (10) can be rearranged as

yo=(1— L) ®ogp(L)0(L)e;,  t=1,2,.... (12)
We then have
d(L)yy = (1 — L) ™000(L)e; = 0of(L)(1 — L) %e, = 000(L)7, t=1,2,..., (13)

where 7; = (1 — L)"%¢g, is an ARFIMA(0, d,0) process. Dueker and Serletis (2000) use the
same transformation method for estimating an ARFIMA(p, d, q) process. Conditional on a
set of ¢(L) and (L) and a suitable starting value, the conditional likelihood function of y;
in (12) can still be evaluated exactly with the transformed ARFIMA(0,d,0) 7, in (13) and
the Durbin-Levinson algorithm defined in (7). For example, conditional on ¥y, being equal to

0, we can extract an ARFIMA(0, d,0) process from an ARFIMA(1,d, 1) process as follows:

009t = Yt — P1Y1—1 — 000111, t=1,....,T. (14)
Conditional on a set of ¢(L) and 6(L) and a suitable starting value for the parameter &, we
can recursively and exactly evaluate the conditional likelihood function of the hidden Markov
model using the DLV algorithm proposed previously.

The same idea also applies to the class of MS-ARFIMA(p, d, q) processes in (1) where d
can be Markov-switching. However, we cannot use the Durbin-Levinson algorithm when the
fractional differencing parameter is allowed to be Markov-switching. Nevertheless, the Viterbi
algorithm is still powerful enough to locate the most likely path under this circumstance.
That is, conditional on a suitable starting value for the parameter &, we employ the recursive
structure inherent in Viterbi algorithms to identify the most likely path running through the

data set.

3 Monte Carlo Experiment

In this section we consider a Monte Carlo experiment to demonstrate the finite sample per-

formance of the proposed DLV algorithm on a special version of the model in (1):

we = s, I{t > 1} + (1= L)™00(1 — ¢1 L)~ (1 + 61 L)e I {t > 1}. (15)



We employ three different values of the fractional differencing parameter:
dy ={0.2,0.3,0.4}, (16)
along with the following parameters:
w =4, pp=1, ¢1=0.5, 6, =0.5, p11 = pw = 0.95, (17)

and oy is chosen to ensure that the variance of the ARFIMA(1,d, 1) noise in (15) is equal
to 1 across different configurations. Note that the positive values of dy in (16) are chosen to
reflect the variations used in the long memory literature.

All the computations are performed with GAUSS. Two hundred replications are conducted
for each specification at 3 different sample sizes (7" = 100, 200, 400) usually encountered in
the empirical applications. For each sample size T, 200 additional values are generated in
order to obtain random starting values. The optimization algorithm used to implement the
DLV algorithm is the quasi-Newton algorithm of Broyden, Fletcher, Goldfarb, and Shanno
(BFGS) contained in the GAUSS MAXLIK library. The maximum number of iterations for
each replication is 100.

Table 1 contains the simulation results when the true value of parameters are used as
the initial values for estimation procedure. The results reveal that the bias performance
from the DLV algorithm is satisfactory (especially when the sample size is larger) for all
configurations considered. Moreover, the associated root-mean-squared error (RMSE) almost
always decreases with the increasing sample size. We find only two cases where the pattern
of RMSE change is not what we expect, i.e., when dy = 0.4, the RMSE of estimating the
parameters py and po as T = 400 is found to be a little higher than that of estimating the
parameters pq and po as T = 200. These two observations demonstrate the ability of the
DLV algorithm to deal with the mixture model considered in this section. The performance of
DLV algorithm for estimating the fractional differencing parameter is particularly displayed
with the box-plots in Figure 2. The above-mentioned observations are clearly borne out in
this figure.

We also check the robustness of the preceding simulation results by changing the choice
of initial values for estimation. The simulations in Table 1 are replicated by setting the

initial values for parameters at the true values except that of dg is set at zero. The results
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Table 1. Finite sample performance of the DLV algorithm:

Initial values of parameters are set at the true values of parameters

Parameter Ha 2 P11 D22 o) do ®1 th

T =100 Bias -0.010 -0.106 0.010 0.016 0.008 0.183 -0.128 -0.040
RMSE 1.008 0.991 0.039 0.060 0.022 0.294 0.233 0.138

T =200 Bias -0.094 -0.098 0.006 0.006 0.003 0.135 -0.101 -0.026
RMSE 0978 0978 0.028 0.025 0.015 0.233 0.191  0.086

T =400 Bias -0.074 -0.076 0.004 0.004 0.001 0.096 -0.073 -0.013
RMSE 0.990 0.990 0.019 0.017 0.010 0.192 0.163  0.060

T =100 Bias -0.057 -0.070 0.009 0.017 0.012 0.175 -0.109 -0.041
RMSE 1.042 1.024 0.037 0.060 0.030 0.319 0.245 0.131

T =200 Bias -0.058 -0.055 0.006 0.006 0.005 0.122 -0.079 -0.030
RMSE 0947 0944 0.027 0.025 0.020 0.260 0.212  0.086

T =400 Bias -0.038 -0.043 0.004 0.004 0.001 0.090 -0.061 -0.016
RMSE 0.885 0.883 0.019 0.017 0.015 0.217 0.185 0.061

do = 0.2
T =100 Bias -0.017 -0.041 0.009 0.017 0.014 0.201 -0.115 -0.044
RMSE 0874 0.853 0.037 0.060 0.037 0.341 0.258  0.128

T =200 Bias -0.042 -0.047 0.006 0.006 0.006 0.167 -0.106 -0.037
RMSE 0.795 0.792 0.028 0.025 0.024 0.297 0.239  0.088

T =400 Bias -0.038 -0.046 0.004 0.004 0.002 0.122 -0.085 -0.019
RMSE  0.670 0.669 0.019 0.017 0.018 0.239 0.203  0.061

Notes: Simulations are based on 200 replications. The data is generated from the
mixture model defined in (15), (16) and (17). DLV algorithm is the Durbin-Levinson-
Viterbi algorithm proposed in this paper. Bias is computed as the true parameter

minus the corresponding average estimated values.
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Figure 2: Box-plots of the estimated d from the model defined in (15), (16) and (17) with 200 realizations.
The initial values of parameters are set at the true values of parameters. The value f(g) denotes the model

specification where d = f and 7' = 100 x g.

contained Table 2 and Figure 3 indicate that the finite sample performance of our procedure

is not sensitive to the initial values used for estimation.

4 Empirical Applications

The methodology developed in this paper is motivated by the dynamic pattern of long mem-
ory behavior. Evidence has been given by many methods for such a changing covariance
behavior of the Nile river. The applications of the proposed MS-ARFIMA model to actual
data are far reaching. For that reason, we consider three data set. The first one is the
U.S. real interest rates, the second one is the Nile river data, and the third one is the U.S.

unemployment rates.

4.1 Example with real interest rates

In this subsection we first consider the U.S. ex post monthly real interest rate constructed
from monthly inflation and Treasury bill rates from January 1953 to December 1990 in
Mishkin (1990). The reason we use the original dataset of Mishkin (1990) is to employ it as

a benchmark for a clear comparison between the results from the MS-ARFIMA model and
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Table 2. Finite sample performance of the DLV algorithm:
Initial values of parameters are set at the true values of parameters

except that of d, is set at zero

Parameter 1 [bo P11 D22 09 do 01 0,

do =04
T'=100 Bias -0.116 -0.122 0.010 0.017 0.009 0.188 -0.130 -0.041
RMSE  1.030 1.017 0.039 0.060 0.021 0.298 0.235 0.137

T =200 Bias -0.093 -0.096 0.006 0.006 0.003 0.138 -0.103 -0.027
RMSE 0979 0979 0.028 0.025 0.015 0.238 0.193  0.087

T =400 Bias -0.074 -0.076 0.004 0.004 0.001 0.096 -0.073 -0.013
RMSE  0.990 0.990 0.019 0.017 0.010 0.192 0.163  0.060

dp = 0.3
T =100 Bias -0.021 -0.034 0.010 0.017 0.012 0.186 -0.115 -0.040
RMSE 0972 0.949 0.039 0.060 0.030 0.325 0.241  0.127

T =200 Bias -0.046 -0.049 0.006 0.006 0.005 0.126 -0.081 -0.030
RMSE 0936 0937 0.028 0.025 0.021 0.261 0.212  0.086
T =400 Bias -0.040 -0.044 0.004 0.004 0.002 0.088 -0.059 -0.016
RMSE 0912 0.912 0.019 0.017 0.015 0.217 0.184 0.060

dy = 0.2
T =100 Bias -0.018 -0.038 0.009 0.016 0.014 0.195 -0.110 -0.045
RMSE 0.802 0.864 0.037 0.060 0.037 0.340 0.260 0.130

T =200 Bias -0.036 -0.040 0.006 0.006 0.006 0.160 -0.100 -0.037
RMSE 0.804 0.801 0.028 0.025 0.024 0.294 0.238  0.087

T =400 Bias -0.044 -0.051 0.004 0.004 0.002 0.117 -0.082 -0.018
RMSE 0.674 0.673 0.019 0.017 0.018 0.235 0.200  0.060

Notes: Simulations are based on 200 replications. The data is generated from the
mixture model defined in (15), (16) and (17). DLV algorithm is the Durbin-Levinson-
Viterbi algorithm proposed in this paper. Bias is computed as the true parameter

minus the corresponding average estimated values.
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Figure 3: Box-plots of the estimated d from the model defined in (15), (16) and (17) with 200 realizations.
The initial values of parameters are set at the true values except that of dy is set at zero. The value f(g)

denotes the model specification where d = f and 7' = 100 x g.

those generated from the methodology employed in earlier papers.

The main feature of the real interest rate is that the whole dataset can be split into
three subperiods, January 1953-October 1979, November 1979-October 1982, and November
1982-December 1990, because the operating procedure of the monetary authority changed in
October 1979 and October 1982 as argued in Mishkin (1990). Another interesting feature of
the real interest rate is that the data of these three subperiods can be well described with
the ARFIMA models as shown in Tsay (2000). The simultaneous presence of structural
break and long memory within the real interest rate allows itself to be an ideal subject to be
investigated with the MS-ARFIMA model.

Allowing the break points to be endogenously determined, Table 3 contains the para-

meter estimates from the following mixture model with a 2-state Markov chain and an

ARFIMA(1,d, 1) noise:
wy = pe, I{t > 1Y+ (1 — L) Yooz, I{t > 1}, (1 —¢1L)z = (1+6,L)ey, (18)

where ¢; or #; is assumed to be zero depending on the noise specification. Following Hamilton
(1989), asymptotic standard errors are calculated numerically.

Table 3 shows that the estimates of 1, p2, p11, P2, 0o, and dy from the DLV algorithm
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Table 3. Estimates of Parameters Based on Data for U.S. Monthly Real
Interest Rate and the DLV Algorithm

ARFIMA(0,d,0) ARFIMA(0,d,1) ARFIMA(1,d,0) ARFIMA(1,d,1)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

Ji1 5.3455 0.7494 5.3168 0.7162 5.3116  0.7124 5.3626  0.7706
Lbo 0.7226 0.4814 0.7194 0.4383 0.7184 0.4322 0.7352  0.4958
P11 0.9833 0.0150 0.9833 0.0150 0.9833 0.0150 0.9833  0.0150
D22 0.9977 0.0023 0.9977 0.0023 0.9977 0.0023 0.9977  0.0023
o) 2.5094 0.0831 2.5091 0.0831 2.5091 0.0831 24979  0.0827

dy 0.2225 0.0367 0.2062 0.0520 0.2034 0.0653 0.2337  0.0376

o1 - - - - 0.0324 0.0946  -0.9847 0.0155
01 - - 0.0279 0.0663 - - 0.9675  0.0200
L* 1079.0875 1079.0009 1078.9918 1077.0173

Notes: The results are based on the MS-ARFIMA model defined in (18). S.E. stands
for the standard error of the estimate. L* represents the negative of the log-likelihood
function of the switching model. DLV algorithm is the Durbin-Levinson-Viterbi

algorithm proposed in this paper.
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Figure 4: US monthly ex post real interest rates, January 1953-December 1990. Solid line denotes the path
of estimated switching means from the specification ARFIMA(0, d,0) in Table 3, while dotted line denotes

the observed monthly ex post real interest rates.

are quite robust across all 4 different configurations. More importantly, two identical break
points are identified with these four models, thus divide the whole data into three subperiods
as suggested in Mishkin (1990). The endogenous break points identified are November 1980
and May 1986, respectively.

Figure 4 displays the U.S. monthly ex post real interest rates and the path of estimated
switching means generated from the DLV algorithm. Without loss of generality, only the
path of the estimated switching means from the specification ARFIMA(0, d,0) in Table 3 is
reported. Figure 4 shows that the model in (18) provides a satisfactory fitting of the U.S.
monthly real interest rates. Although the endogenously identified break points are later than
the well-known monetary operating procedure change points (October 1979 and October
1982), this finding is quite reasonable, because it takes some time for the ex post real interest
rate to adjust its path after new information arrives. This argument is buttressed with the
findings in Figure 4 that the endogenously identified break points are more closely connected
to the observed path of the U.S. monthly ex post real interest rates than the monetary
operating procedure change points are.

Table 3 also shows that a long memory phenomenon is found in the real interest rate as
has been documented in Tsay (2000). Nevertheless, the estimate of the fractional differencing

parameter in Table 3 is much lower than that of 0.666 in Table 3 of Tsay (2000) where the
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change points are exogenenously determined, and it is more in line with the estimates of
0.204, 0.275, and 0.193 from the individual subperiod data presented in Table 3 of Tsay
(2000). This implies that the persistence of long memory in the real interest rate is much
more mitigated, once we take the potentially switching mean of the data into account, thus
confirming the arguments of Diebold and Inoue (2001) that the presence of Markov-switching

level might increase the persistence of the data under investigation.

4.2 Example with Nile river data

In this subsection we apply the Viterbi algorithm to the Nile river data with the following
model:

wy = pg, I{t > 1} 4+ (1 — L) %o, e, I{t > 1}, (19)

where N is assumed to be 2. For the purpose of comparison, we estimate a fixed regime
ARFIMA(0,d,0) model for the Nile river data, i.e., N = 1 is imposed on this model. The
estimated value of d from such a fixed regime ARFIMA(0, d,0) model is 0.3986 and is almost
identical to the finding in Beran and Terrin (1996).

When estimating the model in (19) with the Viterbi algorithm, we find that the value of
the differencing parameter in Table 4 is 0.5770 (nonstationary) for one state, and is 0.2143
(stationary) for the other one. In addition, we identify 5 transitions within the Nile river
data in the year 720, 805, 815, 878, and 1070. The estimated path of d, from the MS-
ARFIMA(0, d,0) model in Table 4 is graphed in Figure 5.

Most impressively, the first transition data occurs in the year of 720, and the associated
estimated value of ds, within the period 622 to 719 is 0.2143 which is lower than the 0.5770
observed in the other regime. These two findings correspond closely to the conjectures in
Beran and Terrin (1996) that the observations 1 to about 100 seem to be more independent
than the subsequent observations and the value of differencing parameter might be lower for
the first 100 observations than for the subsequent data.

In Figures 6 and 7 we present the observations and the fitted values generated from
the estimated parameters displayed in Table 4. It is clear that the fitted value from the
MS-ARFIMA(0, d,0) model is much closer to the real data than that generated from the
model whose differencing parameter is not Markov switching. Combining the findings of

the likelihood values in Table 4, we find that the MS-ARFIMA(0, d,0) model is a promising
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Table 4. Estimates of MS-ARFIMA (0, d,0) Model based on the Nile

River Data
MS-ARFIMA(0, d, 0) ARFIMA(0,d, 0)

Estimate S.E. Estimate S.E.
18] 10.8593 0.6903 11.4847 0.2607
Lo 11.4939 0.0917 - -
P11 0.9930 0.0042 - -
D22 0.9918 0.0050 - -
o1 0.5430 0.0202 0.6995 0.0192
09 0.8143 0.0332 - -
dq 0.5770 0.0430 0.3986 0.0309
do 0.2143 0.0510 - -
L* 687.5642 703.8541

Notes: The MS-ARFIMA(0, d,0) model is defined in (19). S.E. stands for the
standard error of the estimate based on numerical derivative. L* represents the

negative of the log-likelihood function of the estimated model.
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Figure 5: Estimated ds, from the MS-ARFIMA(0, d,0) model in Table 4.
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Figure 6: Solid line denotes the Nile river water level divided by 100, while dotted line denotes the corre-

sponding fitted values from the MS-ARFIMA (0, d,0) model in Table 4.
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Figure 7: Solid line denotes the Nile river water level divided by 100, while dotted line denotes the corre-

sponding fitted values from the ARFIMA(0, d,0) model in Table 4.
alternative to describe the Nile river data.

4.3 Example with unemployment rates

In this subsection we apply the Viterbi algorithm to the U.S. quarterly unemployment
rates rates from 1948 to 2006. This data is based on the monthly unemployment rates con-
tained in Bureau of Labour Statistics as those employed in van Dijk et al. (2002) for estimating
a fractionally integrated smooth transition autoregressive (FI-STAR) model. However, van
Dijk et al (2002) employ the original monthly unemployment rates ranging from July 1986
to December 1999, while we use all the data contained in Bureau of Labour Statistics, but
focusing on the quarterly frequency usually considered in the business cycle related studies.

As clearly argued in van Dijk et al. (2002) and shown in Figure 8, there are two important
empirical features of U.S. unemployment rates, i.e., the shocks to the series is quite persistent
and the series seem to rise faster during recessions than it falls during expansions. van Dijk et
al. (2002) find that the estimated d is 0.43 from a FI-STAR model presented in their Table 1.
This implies that a time series model describing long memory and nonlinearity simultaneously
may be useful for modeling U.S. unemployment rates and many other applications.

The aforementioned two features contained in U.S. unemployment also provide another
good opportunity to test the applicability of the MS-ARFIMA model. As a consequence
we estimate the U.S. quarterly unemployment rates with the following MS-ARFIMA(p, d, 0)
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Figure 8: U.S. quarterly seasonally adjusted unemployment rates, 1948-2006.

model:

wi = po I{t > 1} + (1= L) %0, 6(B) I {t > 1}, (20)

where N is assumed to be 2, and p = {3,4}. The choice of p = 4 is adopted by following
the model specification in (30) of van Dijk et al (2002), while p = 3 is chosen to check the
robustness of the estimation results from the specification p = 4. The major objective of this
subsection is to investigate whether the long memory observed in van Dijk et al. (2002) can
also be retained from the MS-ARFIMA methodology.

When estimating the model in (20) with the Viterbi algorithm, we find that the values
of the estimated fractional differencing parameter from both MS-ARFIMA (3, d, 0) and MS-
ARFIMA(4, d,0) models in Table 5 are very close to that found in van Dijk et al. (2002), thus
confirming that long memory phenomenon seems to be present in the U.S. unemployment
rates. For clarity of exposition, the estimated path of d,, from the MS-ARFIMA(3,d, 0)
model and that of dg, from the MS-ARFIMA (4, d, 0) one are graphed in Figure 9 and Figure
10, respectively. These figures clearly show that ds, are around 0.4-0.5 for both regimes
estimated in each MS-ARFIMA (p, d, 0) model in Table 5.

We also check to what extent the fitted values generated from the models in Table 5 can
capture the feature of U.S. unemployment rates. This task is not taken in van Dijk et al.
(2002) when estimating their FI-STAR model for the U.S. monthly unemployment rates. It
is interesting to find in Figure 11 and Figure 12 that the MS-ARFIMA (p, d,0) model in (20)
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Table 5. Estimates of MS-ARFIMA (p,d,0) Model based on the U.S.

quarterly unemployment rates

MS-ARFIMA(3,d,0) MS-ARFIMA(4,d,0)
Estimate S.E. Estimate S.E.

L1 3.8080 0.1552 3.4572 0.3711
Lbo 5.1358 0.4403 3.8254 0.3334
P11 0.9939 0.0067 0.9877 0.0093
D22 0.9896 0.0083 0.9867 0.0101
o1 0.1973 0.0135 0.1535 0.0101
09 0.3380 0.0206 0.3921 0.0274
dy 0.4919 0.1215 0.4429 0.0987
do 0.4143 0.1337 0.4342 0.1058
o1 1.2570 0.1415 1.1325 0.1215
02 -0.3822 0.1510 -0.2301 0.1239
?3 -0.0666 0.0788 -0.0141 0.1053
®4 - - -0.0495 0.0712
L 36.1377 14.7662

Notes: The results are based on the MS-ARFIMA (p, d, 0) model defined in (20).
S.E. stands for the standard error of the estimate based on numerical derivative.

L* represents the negative of the log-likelihood function of the estimated model.
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Figure 9: Estimated ds, from the MS-ARFIMA (3, d,0) model in Table 5.
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Figure 10: Estimated ds, from the MS-ARFIMA(4, d,0) model in Table 5.
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Figure 11: Solid line denotes the U.S. quarterly seasonally adjusted unemployment rates (1948-2006), while

dotted line denotes the corresponding fitted values from the MS-ARFIMA(3,d, 0) model in Table 5.

provides a reasonable fit to the data, even though we do not include some seasonal control
variables, like seasonal difference operator, as van Dijk et al. (2002) have done for their

empirical studies.

5 Conclusions

A general class of MS-ARFIMA processes is suggested to combine long memory and Markov-
switching models into one unified framework. The coverage of this class of MS-ARFIMA
models is far-reaching, but we show that they still can be easily estimated with the original
Viterbi algorithm or the DLV algorithm proposed in this paper. In addition, the simulation
reveals that the finite sample performance of the DLV algorithm for a simple mixture model
of Markov-switching mean and ARFIMA(1,d, 1) process is satisfactory. When applying the
MS-ARFIMA models to the U.S. real interest rates, the Nile river level, and the U.S. unem-
ployment rates, the estimation results are both highly compatible with the conjectures made
in the literature. Accordingly, the MS-ARFIMA model considered in this paper not only can
be used for solving the puzzle raised by Diebold and Inoue (2001), but can also find many

potential applications in several scientific research fields.
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Figure 12: Solid line denotes the U.S. quarterly seasonally adjusted unemployment rates (1948-2006), while

dotted line denotes the corresponding fitted values from the MS-ARFIMA (4, d, 0) model in Table 5.
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Functional principal component analysis (FPCA) based on the
Karhunen—Loeéve decomposition has been successfully applied in many
applications, mainly for one sample problems. In this paper we con-
sider common functional principal components for two sample prob-
lems. Our research is motivated not only by the theoretical challenge
of this data situation, but also by the actual question of dynamics
of implied volatility (IV) functions. For different maturities the log-
returns of IVs are samples of (smooth) random functions and the
methods proposed here study the similarities of their stochastic be-
havior. First we present a new method for estimation of functional
principal components from discrete noisy data. Next we present the
two sample inference for FPCA and develop the two sample theory.
We propose bootstrap tests for testing the equality of eigenvalues,
eigenfunctions, and mean functions of two functional samples, illus-
trate the test-properties by simulation study and apply the method
to the IV analysis.

1. Introduction. In many applications in biometrics, chemometrics, econo-
metrics, etc., the data come from the observation of continuous phenomenons
of time or space and can be assumed to represent a sample of i.i.d. smooth
random functions Xi(¢),..., X,(t) € L?[0,1]. Functional data analysis has
received considerable attention in the statistical literature during the last
decade. In this context functional principal component analysis (FPCA)
has proved to be a key technique. An early reference is Rao (1958), and im-
portant methodological contributions have been given by various authors.
Case studies and references, as well as methodological and algorithmical de-
tails, can be found in the books by Ramsay and Silverman (2002, 2005) or
Ferraty and Vieu (2006).
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The well-known Karhunen—Loeve (KL) expansion provides a basic tool to
describe the distribution of the random functions X; and can be seen as the
theoretical basis of FPCA. For v,w € L?[0,1], let (v, w) = fol v(t)w(t)dt, and
let || - ||= (-,-)/? denote the usual L>norm. With A\; > Xy > --- and 71,72, . ..
denoting eigenvalues and corresponding orthonormal eigenfunctions of the
covariance operator I' of X;, we obtain X; = p+ > 22, Brive,i = 1,...,n,
where p = E(X;) is the mean function and §,; = (X; — p,~,) are (scalar)
factor loadings with E(8%) = A,. Structure and dynamics of the random
functions can be assessed by analyzing the “functional principal compo-
nents” ., as well as the distribution of the factor loadings. For a given
functional sample, the unknown characteristics \,,~, are estimated by the
eigenvalues and eigenfunctions of the empirical covariance operator I, of
X1,...,X,. Note that an eigenfunction ~, is identified (up to sign) only if the
corresponding eigenvalue A, has multiplicity one. This therefore establishes
a necessary regularity condition for any inference based on an estimated
functional principal component 4, in FPCA. Signs are arbitrary (v, and ,;
can be replaced by —v, and —f,;) and may be fixed by a suitable standard-
ization. More detailed discussion on this topic and precise assumptions can
be found in Section 2.

In many important applications a small number of functional principal
components will suffice to approximate the functions X; with a high degree
of accuracy. Indeed, FPCA plays a much more central role in functional data
analysis than its well-known analogue in multivariate analysis. There are two
major reasons. First, distributions on function spaces are complex objects,
and the Karhunen—Loeéve expansion seems to be the only practically feasible
way to access their structure. Second, in multivariate analysis a substantial
interpretation of principal components is often difficult and has to be based
on vague arguments concerning the correlation of principal components with
original variables. Such a problem does not at all exists in the functional
context, where v1(t),72(t),... are functions representing the major modes
of variation of X;(t) over t.

In this paper we consider inference and tests of hypotheses on the struc-
ture of functional principal components. Motivated by an application to
implied volatility analysis, we will concentrate on the two sample case. A
central point is the use of bootstrap procedures. We will show that the
bootstrap methodology can also be applied to functional data.

In Section 2 we start by discussing one-sample inference for FPCA. Basic
results on asymptotic distributions have already been derived by
Dauxois, Pousse and Romain (1982) in situations where the functions are di-
rectly observable. Hall and Hosseini-Nasab (2006) develop asymptotic Tay-
lor expansions of estimated eigenfunctions in terms of the difference I, — T
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Without deriving rigorous theoretical results, they also provide some qualita-
tive arguments as well as simulation results motivating the use of bootstrap
in order to construct confidence regions for principal components.

In practice, the functions of interest are often not directly observed, but
are regression curves which have to be reconstructed from discrete, noisy
data. In this context the standard approach is to first estimate individual
functions nonparametrically (e.g., by B-splines) and then to determine prin-
cipal components of the resulting estimated empirical covariance operator—
see Besse and Ramsay (1986), Ramsay and Dalzell (1991), among others.
Approaches incorporating a smoothing step into the eigenanalysis have been
proposed by Rice and Silverman (1991), Pezzulli and Silverman (1993) or
Silverman (1996). Robust estimation of principal components has been con-
sidered by Lacontore et al. (1999). Yao, Miiller and Wang (2005) and
Hall, Miiller and Wang (2006) propose techniques based on nonparametric
estimation of the covariance function E[{X;(¢t) — u(t) }{ X;(s) — u(s)}] which
can also be applied if there are only a few scattered observations per curve.

Section 2.1 presents a new method for estimation of functional princi-
pal components. It consists in an adaptation of a technique introduced by
Kneip and Utikal (2001) for the case of density functions. The key-idea is
to represent the components of the Karhunen—Loeve expansion in terms of
an (L?) scalar-product matrix of the sample. We investigate the asymptotic
properties of the proposed method. It is shown that under mild conditions
the additional error caused by estimation from discrete, noisy data is first-
order asymptotically negligible, and inference may proceed “as if” the func-
tions  were  directly  observed.  Generalizing the results  of
Dauxois, Pousse and Romain (1982), we then present a theorem on the
asymptotic distributions of the empirical eigenvalues and eigenfunctions.
The structure of the asymptotic expansion derived in the theorem provides
a basis to show consistency of bootstrap procedures.

Section 3 deals with two-sample inference. We consider two independent
samples of functions {Xi(l)}?:ll and {Xi(z) 2,. The problem of interest is
to test in how far the distributions of these random functions coincide. The
structure of the different distributions in function space can be accessed by
means of the respective Karhunen—Loéve expansions

X0 =0 £ 340D, p=12
r=1
Differences in the distribution of these random functions will correspond to
differences in the components of the respective KL expansions above. With-
out restriction, one may require that signs are such that (7,(11),752)> > 0.
Two sample inference for FPCA in general has not been considered in the

literature so far. In Section 3 we define bootstrap procedures for testing
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the equality of mean functions, eigenvalues, eigenfunctions and eigenspaces.
Consistency of the bootstrap is derived in Section 3.1, while Section 3.2 con-
tains a simulation study providing insight into the finite sample performance
of our tests.

It is of particular interest to compare the functional components charac-
terizing the two samples. If these factors are “common,” this means 7, :=

52), then only the factor loadings ﬁg’ ) may vary across samples. This
situation may be seen as a functional generalization of the concept of “com-
mon principal components” as introduced by Flury (1988) in multivariate
analysis. A weaker hypothesis may only require equality of the eigenspaces
spanned by the first L € N functional principal components. [N denotes the
set of all natural numbers 1,2,... (0 ¢ N)]. If for both samples the common
L-dimensional eigenspaces suffice to approximate the functions with high
accuracy, then the distributions in function space are well represented by a

low-dimensional factor model, and subsequent analysis may rely on compar-

ing the multivariate distributions of the random vectors (ﬂg), ey 512))?

The idea of “common functional principal components” is of considerable
importance in implied volatility (IV) dynamics. This application is discussed
in detail in Section 4. Implied volatility is obtained from the pricing model
proposed by Black and Scholes (1973) and is a key parameter for quoting
options prices. Our aim is to construct low-dimensional factor models for
the log-returns of the IV functions of options with different maturities. In

=

our application the first group of functional observations—{Xi(l)}?:ll, are

log-returns on the maturity “1 month” (1M group) and second group—

{XZ-(z) 2., are log-returns on the maturity “3 months” (3M group).

The first three eigenfunctions (ordered with respect to the correspond-
ing eigenvalues), estimated by the method described in Section 2.1, are
plotted in Figure 1. The estimated eigenfunctions for both groups are of
similar structure, which motivates a common FPCA approach. Based on
discretized vectors of functional values, a (multivariate) common principal
components analysis of implied volatilities has already been considered by
Fengler, Hardle and Villa (2003). They rely on the methodology introduced
by Flury (1988) which is based on maximum likelihood estimation under
the assumption of multivariate normality. Our analysis overcomes the lim-
itations of this approach by providing specific hypothesis tests in a fully
functional setup. It will be shown in Section 4 that for both groups L =3
components suffice to explain 98.2% of the variability of the sample func-
tions. An application of the tests developed in Section 3 does not reject the
equality of the corresponding eigenspaces.

2. Functional principal components and one sample inference. In this
section we will focus on one sample of i.i.d. smooth random functions X7, ...,
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X, € L?[0,1]. We will assume a well-defined mean function p = E(X;), as
well as the existence of a continuous covariance function o (t,s) = E[{X;(t) —
pw(t)HXi(s) — u(s)}]. Then E(||X; — u||?) = [o(t, ) dt < oo, and the covari-
ance operator I' of X; is given by

(Tw)(t) = /a(t, s)u(s)ds, v e L*0,1].

The Karhunen—Loeve decomposition provides a basic tool to describe the
distribution of the random functions X;. With Ay > Xo > -+ and 71,79, ...
denoting eigenvalues and a corresponding complete orthonormal basis of
eigenfunctions of I', we obtain

o0
(1) Xi:,u—kZﬂm"yr, i=1,...,n,

r=1
where 3,; = (X; — u,7,) are uncorrelated (scalar) factor loadings with E(3,;) =
0, E(8%) = A\ and E(B,i8;) =0 for r # k. Structure and dynamics of the
random functions can be assessed by analyzing the “functional principal
components” ~,, as well as the distribution of the factor loadings.

A discussion of basic properties of (1) can, for example, be found in
Gihman and Skorohod (1973). Under our assumptions, the infinite sums in
(1) converge with probability 1, and 32, A, = E(||X; — p||?) < co. Smooth-
ness of X; carries over to a corresponding degree of smoothness of o(t,s)
and ~,.. If, with probability 1, X;(¢) is twice continuously differentiable, then
o as well as 7, are also twice continuously differentiable. The particular case
of a Gaussian random function X; implies that the (,; are independent
N (0, \)-distributed random variables.

Estimated Eigenfunctions. 1M Estimated Eigenfunctions, 3M
.85 0.90 0.95 ATM 1.05 085 0.9 0,95 ATM 1.05

0.85 0.90 095 ATM 1.05 0.85 0.90 0.95 ATM 1.05

Fic. 1.  Estimated eigenfunctions for 1M group in the left plot and 3M group in the right
plot: solid—first function, dashed—second function, finely dashed—third function.
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An important property of (1) consists in the known fact that the first L
principal components provide a “best basis” for approximating the sample
functions in terms of the integrated square error; see Ramsay and Silverman
(2005), Section 6.2.3, among others. For any choice of L orthonormal basis

functions vq,...,vr, the mean integrated square error
L 2
(2) ,()(Ul,...,’L)L):E<||XZ‘—/L—Z<XZ'—,U,’U7«>UT )
r=1

is minimized by v, = ;.

2.1. Estimation of functional principal components. For a given sample
an empirical analog of (1) can be constructed by using eigenvalues A\; > Ao >

- and orthonormal eigenfunctions 41,%2,... of the empirical covariance
operator fn, where

(B0)(t) = / 5(t, s)o(s) ds,

with X =n=!S" | X; and 6(¢,8) =n" ' 30 {X;(t) — X () H{Xi(s) — X(s)}

denoting sample mean and covariance function. Then

n
(3) XZ:X—I_ZﬁM’?T) i=1,...,n,
r=1
where Bm- = (4, X; — X). We necessarily obtain n=1 ", ﬁm- =0,n"tY, ﬁmﬁsi =
0 for r# s, and n='Y; 6% = A,

Analysis will have to concentrate on the leading principal components
explaining the major part of the variance. In the following we will assume
that Ay > Ay > -+ > Ay > Apy41, where 79 denotes the maximal number of
components to be considered. For all »=1,...,ry, the corresponding eigen-
function ~, is then uniquely defined up to sign. Signs are arbitrary, decom-
positions (1) or (3) may just as well be written in terms of —~,, —f,; or
— Ay —Bm-, and any suitable standardization may be applied by the statisti-
cian. In order to ensure that 4, may be viewed as an estimator of , rather
than of —~,, we will in the following only assume that signs are such that
{(vr,4r) = 0. More generally, any subsequent statement concerning differences
of two eigenfunctions will be based on the condition of a nonnegative inner
product. This does not impose any restriction and will go without saying.

The results of Dauxois, Pousse and Romain (1982) imply that, under reg-
ularity conditions, |5, — .|| = Op(n=2), |Ar = M| = Op(n1/2), as well as
Bri — Bril = Op(n=1/2) for all r < ry.

However, in practice, the sample functions X; are often not directly ob-
served, but have to be reconstructed from noisy observations Y;; at discrete
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design points ;:
(4) }/zk‘:Xz(tzk)"i_Ezky kzl,,ﬂ,

where &, are independent noise terms with E(g;;,) =0, Var(g;,) = o2.

Our approach for estimating principal components is motivated by the
well-known duality relation between row and column spaces of a data matrix;
see Héardle and Simar (2003), Chapter 8, among others. In a first step this
approach relies on estimating the elements of the matrix:

(5) My, =(X; — X, X}, — X), Lk=1,...,n.

Some simple linear algebra shows that all nonzero eigenvalues M >Agee-of
Iy, and Iy >y --- of M are related by A\, =1./n, r=1,2,.... When using the
corresponding orthonormal eigenvectors pi, pa, ... of M, the empirical scores
Bri, as well as the empirical eigenfunctions #,, are obtained by £; = /1, pir
and

1 & _ 1 &
(6) Yr=—"=) pir(Xi—X)=—7)> piXi.
s s

The elements of M are functionals which can be estimated with asym-

potically negligible bias and a parametric rate of convergence Ti_l/ 2 If the
data in (4) is generated from a balanced, equidistant design, then it is easily
seen that for ¢ # j this rate of convergence is achieved by the estimator

T

Mij =Ty (Yi = V) (Vi = V), i#7,
k=1

and

1

T
M;=T" Z(sz —Yy)? - 67
k=1

1

where 67 denotes some nonparametric estimator of variance and Y., =n~! x

Z;L:1 Yik.

In the case of a random design some adjustment is necessary: Define the
ordered sample t;(1) < t;(2) < -+ <ty of design points, and for j =1,...,T;,
let Y;(;) denote the observation belonging to ¢;;. With ;) = —t;1) and
Li(r+1) = 2 — Li(1y), set

T:
: ticim1) T ticy tic) T Tics

(0 =Y V1 (re [A0 Tt o)) oy
=1

where I(-) denotes the indicator function, and for i # j, define the estimate
of Mij by

o~

W= [ (att) ~ O} )~ X(0)
0
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where Y(t) =n =1 321 xi(t). Finally, by redefining tiy = —tie) and typ, 1) =
« p tii—1) iy ticiyFtics

2 — tymy, set XF(t) = YL, Vip)I(t € [ SWTHGEny) -t ¢ [0,1].

Then construct estimators of the diagonal terms M;; by

@) W= [ () - O 0 - X0} .

The aim of using the estimator (7) for the diagonal terms is to avoid the
additional bias implied by E.(Y;) = X;(ti;)* + o?. Here E. denotes con-
ditional expectation given t;;, X;. Alternatively, we can construct a bias
corrected estimator using some nonparametric estimation of variance 0?,
for example, the difference based model-free variance estimators studied in
Hall, Kay and Titterington (1990) can be employed.

The eigenvalues [; > [y - -+ and eigenvectors pi,po, ... of the resulting ma-

trix M then provide estimates XT;T = l; /n and ﬁm;T = \/Zﬁir of 5\7, and Bm-.
Estimates 4.7 of the empirical functional principal component 4, can be
determined from (6) when replacing the unknown true functions X; by non-
parametric estimates X; (as, for example, local polynomial estimates) with
smoothing parameter (bandwidth) b:
1 & .

(8) ’AYT’;T == Zﬁerz

\/17 =1
When considering (8), it is important to note that 4,.p is defined as a
weighted average of all estimated sample functions. Averaging reduces vari-
ance, and efficient estimation of 4, therefore requires undersmoothing of
individual function estimates X;. Theoretical results are given in Theorem
1 below. Indeed, if, for example, n and T = min; T; are of the same order
of magnitude, then under suitable additional regularity conditions it will be
shown that for an optimal choice of a smoothing parameter b ~ (nT")~/?
and twice continuously differentiable X;, we obtain the rate of convergence
14 — A7l = Op{(nT)~%/°}. Note, however, that the bias corrected esti-
mator (7) may yield negative eigenvalues. In practice, these values will be
small and will have to be interpreted as zero. Furthermore, the eigenfunc-
tions determined by (8) may not be exactly orthogonal. Again, when using
reasonable bandwidths, this effect will be small, but of course (8) may by
followed by a suitable orthogonalization procedure.

It is of interest to compare our procedure to more standard methods
for estimating A, and 4, as mentioned above. When evaluating eigenvalues
and eigenfunctions of the empirical covariance operator of nonparametrically
estimated curves XZ-, then for fixed r < rq the above rate of convergence for
the estimated eigenfunctions may well be achieved for a suitable choice of
smoothing parameters (e.g., number of basis functions). But as will be seen
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from Theorem 1, our approach also implies that |\, — %T| =0,(T 1 +n71).
When using standard methods it does not seem to be possible to obtain
a corresponding rate of convergence, since any smoothing bias |E[X;(t)] —
X;(t)] will invariably affect the quality of the corresponding estimate of A

We want to emphasize that any finite sample interpretation will require
that T is sufficiently large such that our nonparametric reconstructions of
individual curves can be assumed to possess a fairly small bias. The above ar-
guments do not apply to extremely sparse designs with very few observations
per curve [see Hall, Miiller and Wang (2006) for an FPCA methodology fo-
cusing on sparse data).

Note that, in addition to (8), our final estimate of the empirical mean
function i = X will be given by ir =n"13"; X;. A straightforward approach
to determine a suitable bandwidth b consists in a “leave-one-individual-out”
cross-validation. For the maximal number ry of components to be considered,
let fir —; and 4.7 —;, 7 =1,..., 19, denote the estimates of /i and 4, obtained
from the data (Yj;,%;;), l=1,...,i—1,i+1,...,n,j=1,...,T;. By (8), these
estimates depend on b, and one may approximate an optimal smoothing
parameter by minimizing

0 . 2
ZZ{YW — fir,—i(tij) — Zﬁri%T,—i(tij)}
P r=1

over b, where ¥, denote ordinary least squares estimates of Bm-. A more
sophisticated version of this method may even allow to select different band-
widths b, when estimating different functional principal components by (8).
Although, under certain regularity conditions, the same qualitative rates
of convergence hold for any arbitrary fized r < rg, the quality of estimates
decreases when r becomes large. Due to (7vs,7,) =0 for s <r, the number
of zero crossings, peaks and valleys of v, has to increase with r. Hence, in
tendency ~, will be less and less smooth as 7 increases. At the same time,
Ar — 0, which means that for large r the rth eigenfunctions will only possess
a very small influence on the structure of X;. This in turn means that the
relative importance of the error terms e;; in (4) on the structure of 4.,z will
increase with .

2.2. One sample inference. Clearly, in the framework described by (1)-
(4) we are faced with two sources of variability of estimated functional prin-
cipal components. Due to sampling variation, 4, will differ from the true
component 7,, and due to (4), there will exist an additional estimation er-
ror when approximating 4, by 4,.7.

The following theorems quantify the order of magnitude of these different
types of error. Our theoretical results are based on the following assumptions
on the structure of the random functions Xj.
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ASSUMPTION 1. Xi,...,X, € L?[0,1] is an i.i.d. sample of random func-
tions with mean p and continuous covariance function o(¢,s), and (1) holds
for a system of eigenfunctions satisfying sup,eysupejo 1 |[7s(t)| < oo. Fur-
thermore, 2%, "%, E[3,62] < 00 and 3¢, 3°0%, B[32, ] < oo for all
reN.

Recall that E[3,;] =0 and E[3,;0s;] = 0 for r # s. Note that the assump-
tion on the factor loadings is necessarily fulfilled if X; are Gaussian random
functions. Then 3,; and fs; are independent for r # s, all moments of [3,;
are finite, and hence E[3%3,:8s] = 0 for q # s, as well as E[3% %] = A\
for r # s; see Gihman and Skorohod (1973).

We need some further assumptions concerning smoothness of X; and the
structure of the discrete model (4).

ASsUMPTION 2. (a) X; is a.s. twice continuously differentiable. There
exists a constant D7 < oo such that the derivatives are bounded by
sup; E[X}(t)*] < D1, as well as sup, E[X/(t)*] < D;.

(b) The design points t;, i =1,...,n, k=1,...,T;, are ii.d. random
variables which are independent of X; and g;;. The corresponding design
density f is continuous on [0,1] and satisfies inf,c(g 1) f(t) > 0.

(c) For any i, the error terms e, are i.i.d. zero mean random variables
with Var(e;,) = 02. Furthermore, €, is independent of X;, and there exists
a constant Do such that E(e8,) < Dy for all i, k.

(d) The estimates X; used in (8) are determined by either a local linear or
a Nadaraya—Watson kernel estimator with smoothing parameter b and kernel
function K. K is a continuous probability density which is symmetric at 0.

The following theorems provide asymptotic results as n,T — oo, where
T =min] {T;}.

THEOREM 1. In addition to Assumptions 1 and 2, assume that inf s, |\, —
As| >0 holds for some r=1,2,.... Then we have the following:

(1) n! zn:l(BT’i - /BT’i;T)2 = Op(T_l) and

(9) A — L =0 (T +07h).

(ii) If additionally b— 0 and (Tb)~t — 0 as n,T — oo, then for all t €
[0, 1],

(10)  JAr(t) = Arr ()] = Op{b? + (nTb) V2 4+ (THY/?) 7! 4 n 71}

A proof is given in the Appendiz.
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THEOREM 2. Under Assumption 1 we obtain the following:
(i) For all t€0,1],

\/_{X( } Z{\/—Zﬂm}’}’r _>N<0,Z)\T’Yr(t)2>.
If, furthermore, Ap—1 > A\ > Ap11 holds for some fized r € {1,2,...}, then
(i)
. 1 X
(11) vV —\) = %;( 2 )+ O, (Y2 & N0, A, ),

where A, = E[(8% — \.)?],
(iii) and for all t €]0,1]

’?T(t) - /VT(t) = 2{0\7_)\ Zﬁszﬁm}lys( ) + RT(t)’
S#ET
(12)
where ||R.|| = Op(n=1).

Moreover,

\/_Z{ )\8 Zﬂszﬁm}’)/s( )

s#T

57‘@ QZ/BSZ] )
5N |o, Ye()ys(t) |-
(s m e

A proof can be found in the Appendix. The theorem provides a general-
ization of the results of Dauxois, Pousse and Romain (1982) who derive ex-
plicit asymptotic distributions by assuming Gaussian random functions Xj;.

Note that in this case A, =2\? and D gtr Dustr %%( )Ys(t) =

Zsyﬁr %fys(t);

When evaluating the bandwidth-dependent terms in (10), best rates of
convergence |4,.(t) — Y7 (t)] = Op{(nT) 2> + T=%5 4 n=1} are achieved
when choosing an undersmoothing bandwidth b ~ max{(nT)~1/5,T-2/5},
Theoretical work in functional data analysis is usually based on the implicit
assumption that the additional error due to (4) is negligible, and that one
can proceed “as if” the functions X; were directly observed. In view of
Theorems 1 and 2, this approach is justified in the following situations:

(1) T is much larger than n, that is, n/T%® — 0, and the smoothing
parameter b in (8) is of order 7-/® (optimal smoothing of individual func-
tions).
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(2) An undersmoothing bandwidth b ~ max{(nT")~ /% T=2/5} is used and
n/T®/> — 0. This means that T may be smaller than n, but 7 must be at
least of order of magnitude larger than n®/8.

In both cases (1) and (2) the above theorems imply that |\, — k)= op(| A —
Arl), as well as |5 — 7|l = 0p (|9 — ¥r||)- Inference about functional prin-
cipal components will then be first-order equivalent to an inference based
on known functions X;.

In such situations Theorem 2 suggests bootstrap procedures as tools for
one sample inference. For example, the distribution of |5, — 7| may by
approximated by the bootstrap distribution of || — 4,||, where 4 are es-
timates to be obtained from i.i.d. bootstrap resamples X7, X5,..., X of
{X1,Xs,...,X,}. This means that X = X;,,..., X)) = X for some indices
i1,...,i, drawn independently and with replacement from {1,...,n} and,
in practice, 4; may thus be approximated from corresponding discrete data
(Yirs, tilj)jzl,...,Til vooos (Yij,ting)j=1,..1, - The additional error is negligible
if either (1) or (2) is satisfied.

One may wonder about the validity of such a bootstrap. Functions are
complex objects and there is no established result in bootstrap theory which
readily generalizes to samples of random functions. But by (1), i.i.d. boot-
strap resamples { X }i—1 , may be equivalently represented by correspond-
ing, i.i.d. resamples {37;, 85;, . .}i=1,..n of factor loadings. Standard multi-
variate bootstrap theorems imply that for any ¢ € N the distribution of mo-
ments of the random vectors (514, ..., 34) may be consistently approximated
by the bootstrap distribution of corresponding moments of (57;, ..., 3;;). To-
gether with some straightforward limit arguments as ¢ — oo, the structure of
the first-order terms in the asymptotic expansions (11) and (12) then allows
to establish consistency of the functional bootstrap. These arguments will
be made precise in the proof of Theorem 3 below, which concerns related
bootstrap statistics in two sample problems.

REMARK. Theorem 2(iii) implies that the variance of 4, is large if one of
the differences A._1 — A\, or A, — .11 is small. In the limit case of eigenval-
ues of multiplicity m > 1 our theory does not apply. Note that then only the
m-dimensional eigenspace is identified, but not a particular basis (eigenfunc-
tions). In multivariate PCA Tyler (1981) provides some inference results on
corresponding projection matrices assuming that A\, > A0 >+ > Ay, >
Ar+ma1 for known values of r and m.

Although the existence of eigenvalues A, r < rg, with multiplicity m > 1
may be considered as a degenerate case, it is immediately seen that A\, — 0
and, hence, A\, — A\,11 — 0 as r increases. Even in the case of fully observed
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functions Xj;, estimates of eigenfunctions corresponding to very small eigen-
values will thus be poor. The problem of determining a sensible upper limit
of the number ry of principal components to be analyzed is addressed in
Hall and Hosseini-Nasab (2006 ).

3. Two sample inference. The comparison of functional components across
groups leads naturally to two sample problems. Thus, let

xM xVx and xP xP L x@

denote two independent samples of smooth functions. The problem of inter-
est is to test in how far the distributions of these random functions coincide.
The structure of the different distributions in function space can be accessed
by means of the respective Karhunen—Loéeve decompositions. The problem
to be considered then translates into testing equality of the different com-
ponents of these decompositions given by

r=1

where again ’yﬁp ) are the eigenfunctions of the respective covariance operator

I'®) corresponding to the eigenvalues )\gp) = E{(ﬂg))z} > )\ép) =E{( éf))z} >
---. We will again suppose that )\gp_)l > )\Sp) > )\5,121, p=1,2, for all r <rq
components to be considered. Without restriction, we will additionally as-
sume that signs are such that <’y7§1),’yr(,2)> >0, as well as <A7§1),’%(,2)> > 0.

It is of great interest to detect possible variations in the functional compo-
nents characterizing the two samples in (13). Significant difference may give
rise to substantial interpretation. Important hypotheses to be considered
thus are as follows:

Ho, : M =p®  and Hy,, ) =~2), r <rp.

T
Hypothesis Hy,, is of particular importance. Then 77(,1) = 7€2) and only the

factor loadings 3,; may vary across samples. If, for example, Ho,, is ac-
cepted, one may additionally want to test hypotheses about the distribu-
tions of ﬁff), p=1,2. Recall that necessarily E{ﬁg’)} =0, E{ﬁff;)}2 = )\fnp),
and ﬁg ) is uncorrelated with ﬁﬁf ) if # s. If the Xi(p ) are Gaussian random
variables, the ﬁff;) are independent N (0, \,) random variables. A natural
hypothesis to be tested then refers to the equality of variances:

HOS,T':)\’g‘l) :)\9)7 7"21,2,....

Let 4®)(t) = n—lpziXi(p)(t), and let ;\gp) > Xgp) > .- and %p)ﬁép),... de-
note eigenvalues and corresponding eigenfunctions of the empirical covari-
ance operator f,(f;) of X }p ), Xép ) (t),..., 7(5,). The following test statistics are
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defined in terms of /i(P), X(!’ ) and %gp ). As discussed in the proceeding section,
all curves in both samples are usually not directly observed, but have to be
reconstructed from noisy observations according to (4). In this situation, the
“true” empirical eigenvalues and eigenfunctions have to be replaced by their
discrete sample estimates. Bootstrap estimates are obtained by resampling

)

the observations corresponding to the unknown curves Xi(p . As discussed in
Section 2.2, the validity of our test procedures is then based on the assump-
tion that 7' is sufficiently large such that the additional estimation error is
asymptotically negligible.

Our tests of the hypotheses Ho,, Ho,, and Ho,, rely on the statistics

def 2
1 S M - @)

Dy, def HA(I) _ A(2)”2

9

)

Dy, 3~ 5OIP.

T

The respective null-hypothesis has to be rejected if Dy > Aq1_q, Do, >
A2,r;1—a or D37T > A3,r;1—a, where Al;l—aa A27r;1_a and Ag,r;l_a denote the
critical values of the distributions of

def ~
|2 — (@ — u?)|P,
def N
Agy Z |IHY) — 4D — (32 — 422,
RO 0 - (GO AP

T

Of course, the distributions of the different A’s cannot be accessed directly,
since they depend on the unknown true population mean, eigenvalues and
eigenfunctions. However, it will be shown below that these distributions and,
hence, their critical values are approximated by the bootstrap distribution
of

D

« def 1 .
Al = ||,u(1 -

(ﬂ( )H
* def A~
5o = A — 40 — (52

A AW 2RO (@ - X@)\Q,

where (10*, %(’1)*, 5\7(})*, as well as (%, %(»2) ; 5\5»2)*, are estimates to be
obtained from independent bootstrap samples X{*(t), X3*(t),..., X}*(t), as
well as X7*(t), X5* (), ..., X2 (t).

This test procedure is motivated by the following insights:

(1) Under each of our null-hypotheses the respective test statistics D is

equal to the corresponding A. The test will thus asymptotically possess the
correct level: P(D > Aj_,) ~ .
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(2) If the null hypothesis is false, then D # A. Compared to the distribu-
tion of A, the distribution of D is shifted by the difference in the true means,
eigenfunctions or eigenvalues. In tendency D will be larger than Aj_,.

Let 1 < L <ry. Even if for r < L the equality of eigenfunctions is rejected,
we may be interested in the question of whether at least the L-dimensional
eigenspaces generated by the first L eigenfunctions are identical. Therefore,

let Sg), as well as 5£2)7 denote the L-dimensional linear function spaces

generated by the eigenfunctions ’yg), .. ,'yé ) and 7(2) ey f), respectively.

We then aim to test the null hypothesis:
1) _ (2
4 L 5 gL :
Of course, Hy, , corresponds to the hypothesis that the operators projecting

into 5]9) and 5]?) are identical. This in turn translates into the condition
that

Z% ) 27 (s) for all t,s € [0,1].

Similar to above a suitable test statistic is given by

D4Ldif//{2’}’ ny )33 (s) }2dtds

and the null hypothesis is rejected if D47L > Ay L:1—a, Where Ay de-
notes the critical value of the distribution of

L
aun ff [Z{%F)(twﬁl)(s) =% ()}

2
Z{v — (¢ m@(s)}] dt ds.

The distribution of A4, 1, and, hence, its critical values are approximated
by the bootstrap distribution of

L
N lZ{%l)*(t)%l)*(s) =3O ()}

2
—Z{% £)3?) )—’?ﬁ”(t)%z)(s)}] dt ds.

It will be shown in Theorem 3 below that under the null hypothesis, as well as
under the alternative, the distributions of nA1,nAs ., nAs,,nAy 1, converge
to continuous limit distributions which can be consistently approximated by
the bootstrap distributions of nA, nAj ., nAj  nAj ;.
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3.1. Theoretical results. Let n = (ny+ns9)/2. We will assume that asymp-
totically n1 =n-q; and ny =n - ¢y for some fixed proportions ¢; and go. We
will then study the asymptotic behavior of our statistics as n — oo.

We will use X} = {Xfl),...,Xr(Lll)} and Xy = {X{2),...,XT(L22)} to denote
the observed samples of random functions.

THEOREM 3. Assume that {X{l), . ,Xr(}l)} and {X%z), . ,Xy(fz)} are two
independent samples of random functions, each of which satisfies Assump-
tion 1. As n — oo we then obtain the following:

(i) There exists a nondegenerated, continuous probability distribution F
such that nAq £ Fy, and for any § >0,

|P(nA; >9) — P(nA} > 0|X), X2)| = 0,(1).

(ii) If, furthermore, )\51_)1 > A0 > )\521 and )\52_)1 > A2 > )‘512421 hold for
some fixed r =1,2,..., there exist a nondegenerated, continuous probability
distributions Fy, , such that nAy,, £ Fyr, k=2,3, and for any 6 >0,

|P(nAg, >6) — P(nAj . > 0]X1, X2)| = 0p(1), k=23.

(i) 7 AN > AN >0 and AP > AP >0 hold for all r=1,..., L, there
exists a nondegenerated, continuous probability distribution Fy 1 such that

nAy 1 £ Fy 1, and for any 6 >0,
]P(nA;l,L > 5) — P(HAZL > (5’X1,X2)’ = Op(l).

The structures of the distributions Fiy, F ., I3, Fy are derived in the
proof of the theorem which can be found in the Appendix. They are obtained
as limits of distributions of quadratic forms.

3.2. Simulation study. In this paragraph we illustrate the finite behavior
of the proposed test. The basic simulation-setup (setup “a”) is established
as follows: the first sample is generated by the random combination of or-
thonormalized sine and cosine functions (Fourier functions) and the second
sample is generated by the random combination of the same but shifted
factor functions:

XD (t) = B0 V2sin(2nt,) + B V2 cos(2mty),
X(2 (tix) = 511 \/isin{27r(tik +0)} + ﬁéf)\/icos{%r(tik +0)}.

The factor loadings are i.i.d. random variables with ﬁﬁ)) ~ N (O,Agp )) and

éf )N (0, /\gp )). The functions are generated on the equidistant grid ¢;; =
ty=k/T, k=1,...T=100,i=1,...,n="70. The simulation setup is based
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TABLE 1
The results of the simulations for o =0.1, n =70, T = 100, number of simulations 250

Setup /shift 0 0.05 0.1 0.15 0.2 0.25
(a) 10, 5, 8, 4 0.13 0.41 0.85 0.96 1 1
(a) 4,2, 2,1 0.12 0.48 0.87 0.96 1 1
(a) 2,1, 15,2 0.14 0.372 0.704 0.872 0.92 0.9
(b) 10, 5,8,4 D;  0.10 0.44 0.86 0.95 1 1
(b) 10, 5,8,4 Dy 1 1 1 1 1 1

on the fact that the error of the estimation of the eigenfunctions simulated
by sine and cosine functions is, in particular, manifested by some shift of
the estimated eigenfunctions. The focus of this simulation study is the test
of common eigenfunctions.

For the presentation of results in Table 1, we use the following notation:
“(a) )\( ) )\(1) )\52),)\52).” The shift parameter ¢ is changing from 0 to 0.25
with the step 0.05. It should be mentioned that the shift 6 =0 yields the
simulation of level and setup with shift 6 = 0.25 yields the simulation of the
alternative, where the two factor functions are exchanged.

In the second setup (setup “b”) the first factor functions are the same
and the second factor functions differ:

XD (t) = B V2sin(2nty) + By V2 cos(2mtiy),
XP(t) = BPV2sin{2n (ty + 6)} + B V2sin{dn(ty, + 6)}-

In Table 1 we use the notation “(b) /\gl),)\(l) /\é ),/\g ) D,.” D, means the
test for the equality of the rth eigenfunction. In the bootstrap tests we used
500 bootstrap replications. The critical level in this simulation is a = 0.1.
The number of simulations is 250.

We can interpret Table 1 in the following way: In power simulations (§ # 0)
test behaves as expected: less powerful if the functions are “hardly distin-
guishable” (small shift, small difference in eigenvalues). The level approxima-

tion seems to be less precise if the difference in the eingenvalues (/\gp ) )\;p ))
becomes smaller. This can be explained by relative small sample-size n, small
number of bootstrap-replications and increasing estimation-error as argued
in Theorem 2, assertion (iii).

In comparison to our general setup (4), we used an equidistant and
common design for all functions. This simplification is necessary, it sim-
plifies and speeds-up the simulations, in particular, using general random
and observation-specific design makes the simulation computationally un-
tractable.

Second, we omitted the additional observation error, this corresponds to
the standard assumptions in the functional principal components theory. As
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TABLE 2
The results of the simulation for a =0.1, n =70, T'= 100 with additional error in
observation
Setup/shift 0 0.05 0.1 0.15 0.2 0.25
(a) 10, 5, 8, 4 0.09 0.35 0.64 0.92 0.94 0.97

argued in Section 2.2, the inference based on the directly observed functions
and estimated functions X; is first-order equivalent under mild conditions
implied by Theorems 1 and 2. In order to illustrate this theoretical result in
the simulation, we used the following setup:

X(1 (tik) = Bl \/isin(27rtik) + 55?\/5003(27#%) + EZ(-,?,
X(2 (tix) = 511 \/isin{27r(tik +9)}+ 553)\/5005{277@2-%C +0)} + EEZ),

where Egi) ~ N(0,0.25), p=1,2, all other parameters remain the same as
in the simulation setup “a.” Using this setup, we recalculate the simulation
presented in the second “row” of Table 1, for estimation of the functions

Xl-(p ), p=1,2, we used the Nadaraya—Watson estimation with Epanechnikov
kernel and bandwidth b= 0.05. We run the simulations with various band-
widths, the choice of the bandwidth does not have a strong influence on
results except by oversmoothing (large bandwidths). The results are printed
in Table 2. As we can see, the difference of the simulation results using es-
timated functions is not significant in comparison to the results printed in
the second line of Table 1—directly observed functional values.

The last limitation of this simulation study is the choice of a partic-
ular alternative. A more general setup of this simulation study might be

based on the followmg model: X(l)( t) = (1) ( (t) + ﬁ22 72 ( ) XZ-(2) (t) =

S)% (t) + 522- 72 ( ), where % ),79,751) and g are mutually orthogonal

functions on L?[0,1] and 752) =(1+0v?)" 1/2{751) + vg}. Basically we create
the alternative by the contamination of one of the “eigenfunctions” (in our

case the second one) in the direction g and ensure |]’y§2)H = 1. The amount
of the contamination is controlled by the parameter v. Note that the exact
squared integral difference ||7§1) - 752)”2 does not depend on function g.
Thus, in the “functional sense” particular “direction of the alternative hy-
pothesis” represented by the function g has no impact on the power of the
test. However, since we are using a nonparametric estimation technique, we
might expect that rough (highly fluctuating) functions g will yield higher er-
ror of estimation and, hence, decrease the precision (and power) of the test.
Finally, a higher number of factor functions (L) in simulation may cause less
precise approximation of critical values and more bootstrap replications and
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larger sample-size may be needed. This can also be expected from Theorem
2 in Section 2.2—the variance of the estimated eigenfunctions depends on
all eigenfunctions corresponding to nonzero eingenvalues.

4. Implied volatility analysis. In this section we present an application
of the method discussed in previous sections to the implied volatilities of Eu-
ropean options on the German stock index (ODAX). Implied volatilities are
derived from the Black—Scholes (BS) pricing formula for European options;
see Black and Scholes (1973). European call and put options are derivatives
written on an underlying asset with price process S;, which yield the pay-off
max (St — K,0) and max(K — S, 0), respectively. Here i denotes the current
day, I the expiration day and K the strike price. Time to maturity is defined
as 7 =1 —i. The BS pricing formula for a Call option is

(14) CZ'(SZ',K,T,T’,U) :Siq)(dl) —Ke_rTq)(dg),
where dy = ln(Si/K);:/(gUz/z)T, dy = di — o+/T, 7 is the risk-free interest rate,

o is the (unknown and constant) volatility parameter, and ® denotes the
c.d.f. of a standard normal distributed random variable. In (14) we assume
the zero-dividend case. The Put option price P, can be obtained from the
put—call parity P, =C; — S; + e 7" K.

The implied volatility ¢ is defined as the volatility o, for which the BS
price C; in (14) equals the price C; observed on the market. For a single
asset, we obtain at each time point (day ) and for each maturity 7 a IV
function &7 (K). Practitioners often rescale the strike dimension by plotting
this surface in terms of (futures) moneyness k = K/F;(7), where F;(1) =
SierT.

Clearly, for given parameters S;,r, K, 7 the mapping from prices to IVs is
a one-to-one mapping. The IV is often used for quoting the European options
in financial practice, since it reflects the “uncertainty” of the financial market
better than the option prices. It is also known that if the stock price drops,
the IV raises (so-called leverage effect), motivates hedging strategies based
on IVs. Consequently, for the purpose of this application, we will regard the
BS-1V as an individual financial variable. The practical relevance of such
an approach is justified by the volatility based financial products such as
VDAX, which are commonly traded on the option markets.

The goal of this analysis is to study the dynamics of the IV functions for
different maturities. More specifically, our aim is to construct low dimen-
sional factor models based on the truncated Karhunen-Loeve expansions
(1) for the log-returns of the IV functions of options with different maturi-
ties and compare these factor models using the methodology presented in
the previous sections. Analysis of IVs based on a low-dimensional factor
model gives directly a descriptive insight into the structure of distribution
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of the log-IV-returns—structure of the factors and empirical distribution of
the factor loadings may be a good starting point for further pricing models.
In practice, such a factor model can also be used in Monte Carlo based pric-
ing methods and for risk-management (hedging) purposes. For comprehen-
sive monographs on IV and IV-factor models, see Hafner (2004) or Fengler
(2005b).

The idea of constructing and analyzing the factor models for log-IV-
returns for different maturities was originally = proposed by
Fengler, Hardle and Villa (2003), who studied the dynamics of the IV via
PCA on discretized IV functions for different maturity groups and tested the
Common Principal Components (CPC) hypotheses (equality of eigenvectors
and eigenspaces for different groups). Fengler, Héardle and Villa (2003) pro-
posed a PCA-based factor model for log-IV-returns on (short) maturities
1, 2 and 3 months and grid of moneyness [0.85,0.9,0.95,1,1.05,1.1]. They
showed that the factor functions do not significantly differ and only the
factor loadings differ across maturity groups. Their method relies on the
CPC methodology introduced by Flury (1988) which is based on maximum
likelihood estimation under the assumption of multivariate normality. The
log-IV-returns are extracted by the two-dimensional Nadaraya—Watson es-
timate.

The main aim of this application is to reconsider their results in a func-
tional sense. Doing so, we overcome two basic weaknesses of their approach.
First, the factor model proposed by Fengler, Hardle and Villa (2003) is per-
formed only on a sparse design of moneyness. However, in practice (e.g.,
in Monte Carlo pricing methods), evaluation of the model on a fine grid is
needed. Using the functional PCA approach, we may overcome this difficulty
and evaluate the factor model on an arbitrary fine grid. The second difficulty
of the procedure proposed by Fengler, Hiardle and Villa (2003) stems from
the data design—on the exchange we cannot observe options with desired
maturity on each day and we need to estimate them from the IV-functions
with maturities observed on the particular day. Consequently, the two-
dimensional Nadaraya—Watson estimator proposed by Fengler, Hardle and Villa
(2003) results essentially in the (weighted) average of the IVs (with clos-
est maturities) observed on a particular day, which may affect the test

of the common eigenfunction hypothesis. We use the linear interpolation

(o7

scheme in the total variance O'%OTJ-(K},T) T(k))%7, in order to recover
the IV functions with fixed maturity (on day 7). This interpolation scheme is
based on the arbitrage arguments originally proposed by Kahalé (2004) for
zero-dividend and zero-interest rate case and generalized for deterministic
interest rate by Fengler (2005a). More precisely, having IVs with matu-
rities observed on a particular day i: 5;“(/1), Ji=1,...,ps, we calculate

the corresponding total variance éroT,i(k,7;,). From these total variances
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we linearly interpolate the total variance with the desired maturity from
the nearest maturities observed on day ¢. The total variance can be easily
transformed to corresponding IV 67 (k). As the last step, we calculate the

log-returns Aloga] (k) o logo7, (k) —log ] (k). The log-IV-returns are ob-
served for each maturity 7 on a discrete grid «],.. We assume that observed
log-IV-return Alogé7 (k],) consists of true log-return of the IV function
denoted by Alogo] (k ZT ) and possibly of some additional error €],. By set-
ting Y} := Aloga] (k],.), X7 (k) := Alog o] (k), we obtain an analogue of the
model (4) with the argument K:

(15) =X (Kik) + €l 1=1,...,n;.

In order to simplify the notation and make the connection with the theoret-
ical part clear, we will use the notation of (15).

For our analysis we use a recent data set containing daily data from
January 2004 to June 2004 from the German-Swiss exchange (EUREX).
Violations of the arbitrage-free assumptions (“obvious” errors in data) were
corrected using the procedure proposed by Fengler (2005a). Similarly to
Fengler, Hardle and Villa (2003), we excluded options with maturity smaller
then 10 days, since these option-prices are known to be very noisy, par-
tially because of a special and arbitrary setup in the pricing systems of the
dealers. Using the interpolation scheme described above, we calculate the
log-IV-returns for two maturity groups: “1M” group with maturity 7 =0.12
(measured in years) and “3M” group with maturity 7 = 0.36. The observed
log-IV-returns are denoted by YZ-}CM, k=1,.. .,KZ-IM, YZ%M, k=1,... ,KZ?’M.
Since we ensured that for no i, the interpolation procedure uses data with
the same maturity for both groups, this procedure has no impact on the
independence of both samples.

The underlying models based on the truncated version of (3) are as fol-
lows:

Ly

(16) XM (k)=X"M(x +Zﬁ1MA1M i=1,...,n1,
~ L3y

(17 XM(g) = XM (k) + Z BEMBM (1) i=1,...,n30.

Models (16) and (17) can serve, for example, in a Monte Carlo pricing tool
in the risk management for pricing exotic options where the whole path of
implied volatilities is needed to determine the price. Estimating the factor
functions in (16) and (17) by eigenfunctions displayed in Figure 1, we only

need to fit the (estimated) factor loadings ]Z M and 63M The pillar of the
model is the dimension reduction. Keeping the factor function fixed for a
certain time period, we need to analyze (two) multivariate random processes
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of the factor loadings. For the purposes of this paper we will focus on the
comparison of factors from models (16) and (17) and the technical details of
the factor loading analysis will not be discussed here, since in this respect
we refer to Fengler, Hardle and Villa (2003), who proposed to fit the factor
loadings by centered normal distributions with diagonal variance matrix
containing the corresponding eigenvalues. For a deeper discussion of the
fitting of factor loadings using a more sophisticated approach, basically based
on (possibly multivariate) GARCH models; see Fengler (2005b).

From our data set we obtained 88 functional observations for the 1M group
(n1ar) and 125 observations for the 3M group (nsar). We will estimate the
model on the interval for futures moneyness x € [0.8,1.1]. In comparison
to Fengler, Hérdle and Villa (2003), we may estimate models (16) and (17)
on an arbitrary fine grid (we used an equidistant grid of 500 points on the
interval [0.8,1.1]). For illustration, the Nadaraya—Watson (NW) estimator
of resulting log-returns is plotted in Figure 2. The smoothing parameters
have been chosen in accordance with the requirements in Section 2.2. As
argued in Section 2.2, we should use small smoothing parameters in order
to avoid a possible bias in the estimated eigenfunctions. Thus, we use for
each i essentially the smallest bandwidth b; that guarantees that estimator
X; is defined on the entire support [0.8,1.1].

Using the procedures described in Section 2.1, we first estimate the eigen-
functions of both maturity groups. The estimated eigenfunctions are plot-
ted in Figure 1. The structure of the eigenfunctions is in accordance with
other empirical studies on IV-surfaces. For a deeper discussion and econom-
ical interpretation, see, for example, Fengler, Hardle and Mammen (2007)
or Fengler, Hérdle and Villa (2003).

Clearly, the ratio of the variance explained by the kth factor function is
given by the quantity oM =AM/ Z?g‘f )\JI-M for the 1M group and, corre-
spondingly, by IQIZ’M for the 3M group. In Table 3 we list the contributions of
the factor functions. Looking at Table 3, we can see that 4th factor functions
explain less than 1% of the variation. This number was the “threshold” for
the choice of Lqy; and Lojy.

We can observe (see Figure 1) that the factor functions for both groups
are similar. Thus, in the next step we use the bootstrap test for testing the

TABLE 3
Variance explained by the eigenfunctions

Var. explained 1M  Var. explained 3M

o7 89.9% 93.0%
g 7.7% 4.2%
3 1.7% 1.0%

Uy 0.6% 0.4%
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log IV returns, 1M log I'V returns, 3M
0.50

0.35 0.95 ATM 1.05 0.85 0,90 0.95 ATM 1.05
y : ) s 3 : : y s
t t t t + t t t

010 T-0.10

0,154 T+-015 015+ +-015

0.85 0.90 0.95 ATM 1.05 0.85 0.90 0.95 ATM 1.05

Fic. 2.  Nadaraya—Watson estimate of the log-IV-returns for maturity 1M (left figure)
and 3M (right figure). The bold line is the sample mean of the corresponding group.

equality of the factor functions. We use 2000 bootstrap replications. The test
of equality of the eigenfunctions was rejected for the first eigenfunction for
the analyzed time period (January 2004—June 2004) at a significance level
a = 0.05 (P-value 0.01). We may conclude that the (first) factor functions are
not identical in the factor model for both maturity groups. However, from
a practical point of view, we are more interested in checking the appropri-
ateness of the entire models for a fixed number of factors: L =2 or L =3 in
(16) and (17). This requirement translates into the testing of the equality of
eigenspaces. Thus, in the next step we use the same setup (2000 bootstrap
replications) to test the hypotheses that the first two and first three eigen-
functions span the same eigenspaces E}JM and E%M . None of the hypotheses
for L =2 and L = 3 is rejected at significance level o = 0.05 (P-value is 0.61
for L =2 and 0.09 for L =3). Summarizing, even in the functional sense we
have no significant reason to reject the hypothesis of common eigenspaces
for these two maturity groups. Using this hypothesis, the factors governing
the movement of the returns of IV surface are invariant to time to ma-
turity, only their relative importance can vary. This leads to the common
factor model: X7 (k) = X7 (k) + Zf;l Bfﬁ;(ﬁ;),z =1,....,n., 7=1M,3M,
where 7, 1= y!M = ~3M  Beside contributing to the understanding of the
structure of the IV function dynamics, the common factor model helps
us to reduce the number of functional factors by half compared to mod-
els (16) and (17). Furthermore, from the technical point of view, we also
obtain an additional dimension reduction and higher estimation precision,
since under this hypothesis we may estimate the eigenfunctions from the
(individually centered) pooled sample X;(k)*™ i=1,... ,n1ar, XPM(k),i=
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1,...,n3p. The main improvement compared to the multivariate study by
Fengler, Hardle and Villa (2003) is that our test is performed in the func-
tional sense — it does not depend on particular discretization and our factor
model can be evaluated on an arbitrary fine grid.

APPENDIX: MATHEMATICAL PROOFS

In the following, [jv| = fo (t)2dt)"/? will denote the L?-norm for any
square integrable function v. At the same time, [la| = (3 KoL) /?
indicate the Euclidean norm, whenever a € R¥ is a k-vector for some k € N.

In the proof of Theorem 1, E. and Var. denote expectation and variance
with respect to € only (i.e., conditional on ¢;; and X;).

will

PROOF OF THEOREM 1. Recall the definition of the x;(¢) and note that
Xi(t) = xi* () + x5 (1), where

ZE ( [ G-1) T ti) z(j)“i(jﬂ)))
Z 2 2 )

as well as

T.

. tii—1) T ti) tig) TG+
=ZXi(ti(j))I(te[ G )2 © i) . G+ )))

j=1

for ¢ € [0,1], ti0) = —ti1) and tyg,41) = 2 — ty(z,)- Similarly, x} (£) = x; (£) +
Xi (1)

By Assumption 2, E(|t;;) — tij—1)|°) = O(T7°) for s=1,...,4, and the
convergence is uniform in j < n. Our assumptions on the structure of X;
together with some straightforward Taylor expansions then lead to

(X X)) = (X5, Xj) + Op(1/T)

and
(xirX7) = 1XG[1? + O, (1/T).
Moreover,
E.((x{,x;)) =0, E(|[x{[]*) = o7,
E-((x§.x;")) =0, Ec((x;,x{%)%) = 0,(1/T),
E((X5 X)) = 0p(1/T),  Eo((xx7 )Xo xi ) =0 fori#k,

E-((XE X5 (X6 xi)) =0 for j# k and Ec(|[x5[|") = Op(1)

hold (uniformly) for all 4,5 =1,...,n.
Consequently, Ee(||x[|* — [|X[[?) = Op(T ™! +n71).
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When using these relations, it is easily seen that for all 4,5 =1,....,n

(18) Mij — Mij = Op(T"2 4 n71) and
tr{ (M — M)*}"/2 = O, (1 + nT~/?).

Since the orthonormal eigenvectors p, of M satisty ||py|| =1, we furthermore
obtain for any i=1,...,n and all ¢=1,2,...

n _ 1
(19) ijq{Mij — M;; —/0 X5 (x5 (1) dt} = O, (T~ Y2 4+ 0712,

j=1
as well as
- ! 15 X n1/2
(20) lejq/() X; (x5 () dt:Op<m>
]:
and
S s ! X nl/2
(21) Z%ijq/o Xi ()X (t)dt:@p<m>
i=1 j=1

for any further vector a with ||a|| =1.
Recall that the jth largest eigenvalue [; satisfies n\; = [;. Since by as-
sumption inf,, |Ar — As| > 0, the results of Dauxois, Pousse and Romain

1
o = (),
which leads to sups;ﬁrur—ils' = Op(1/n). Assertion (a) of Lemma A of
Kneip and Utikal (2001) together with (18)—(21) then implies that

(1982) imply that A, converges to A, as n — 00, and sup;_,

.0 . _
)\7" - E = n_1|l7‘ - lr| = n_1|p;r(M - M)pr| + OP(T_I —I—’I’L_l)

(22)
=0 {(nT) V2 + T 4071}
When analyzing the difference between the estimated and true eigenvec-

tors p, and p,., assertion (b) of Lemma A of Kneip and Utikal (2001) together
with (18) lead to

(23) pr—pr=—8(M —M)p,+ Ry,  with |R.|| =0T " +n")

and S, = 3, T2-psPy - Since supj, =y a’ Spa <sup,, “r—ils‘ = 0,(1/n),
we can conclude that

(24) or — prll = OP(T_1/2 + n_l)a

and our assertion on the sequence n=*>",(3, — ﬂm-;T)2 is an immediate con-
sequence.
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Let us now consider assertion (ii). The well-known properties of local lin-
ear estimators imply that |E.{X; () — X;(t)}| = Op(b?), as well as Var.{X;(t)} =
Op{T'b}, and the convergence is uniform for all 7,n. Furthermore, due to the
independence of the error term e;;, Cov{X;(t), X;(t)} =0 for i # j. There-

fore,
1
7" W b2 —) .
Z bi < nTb

On the other hand, (18)-(24) imply that with X (t) = (X1 (t),..., Xn(t))"

0 g Lot

1=

‘\szw X0+ S 3= L)~ <>}‘

+O0,(T +n7h
_ Isx@ll }
VL [ el
L O,T V24 T2 Y
— O (02T T2 T2 g,

p, (M — M)S,

This proves the theorem. [

PROOF OF THEOREM 2. First consider assertion (i). By definition,

X(t) = ut)=n"" Y AX(t) —p(t)} =) (n‘l Zﬁn) Yr(t)
i=1 r i=1

Recall that, by assumption, (3,; are independent, zero mean random variables
with variance )., and that the above series converges with probability 1.
When defining the truncated series

Vig z( 12@«2)%

r=1

standard central limit theorems therefore imply that \/nV(q) is asymptoti-
cally N(0,>°7_; A, (t)?) distributed for any possible ¢ € N.

The assertion of a N(0,32°; A\,7,-(t)?) limiting distribution now is a
consequence of the fact that for all §1,09 > 0 there exists a g5 such that

P{|v/nV(q) —vn>, (n 1" Bri)ve(t)| > 61} < 3 for all ¢ > g5 and all n
sufficiently large.
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In order to prove assertions (i) and (ii), consider some fixed r € {1,2,...}
with A,_1 > A > Ar41. Note that I' as well as fn are nuclear, self—adjoipt and
non-negative linear operators with T'v = [o(¢,s)v(s)ds and T,v =
[6&(t,s)v(s)ds, v e L?[0,1]. For m € N, let II,,, denote the orthogonal projec-
tor from L?[0, 1] into the m-dimensional linear space spanned by {v1,...,vm},
that is, v =370 (v,75)7), v € L?[0,1]. Now consider the operator 1,1, 10,0,
as well as its eigenvalues and corresponding eigenfunctions denoted by 5\1,m >
;\27m > - and Y1 m,Y2,m,--., respectively. It follows from well-known re-
sults in the Hilbert space theory that 1,1, 1L, converges strongly to I, as
m — 0o. Furthermore, we obtain (Rayleigh-Ritz theorem)

(25) lim_ Arm=Ar and im 4 = Arml =0 if A1 > A > A1

Note that under the above condition 4, is uniquely determined up to sign,
and recall that we always assume that the right “versions” (with respect
to sign) are used so that (4.,%.m) > 0. By definition, 3;; = [~;(t){X;(t) —
p(t)}dt, and therefore, [~;(t){Xi(t) — X(t)}dt = Bj; — B;, as well as X; —
X =32,(Bji — Bj)vj, where 3; = %Z?Zl Bji. When analyzing the structure
of 11,,,I",I1,,, more deeply, we can verify that IL,,[',IL,,v = [ Gm(t,s)v(s)ds,
v € L?[0,1], with
O'm(ty 3) = gm(t)—rimgm(s)y

where g (t) = (71(t), ..., 7m(t)) T, and where 3,, is the m x m matrix with
elemfants {% 2}'1:1(@2‘ —ﬁj)(ﬁki—ﬁk)}j,kzl,...,m- Let Al(zm) > >\2(Em) > 2>
Am(2m) and Cim, - ., Gm,m denote eigenvalues and corresponding eigenvec-

~

tors of 3,,. Some straightforward algebra then shows that
(26) ;\r,m = /\r(im)a 'Ayr,m =3dm (t)Tgr,m-

We will use ¥, to represent the m x m diagonal matrix with diagonal
entries \; > -+ > \p,. Obviously, the corresponding eigenvectors are given
by the m-dimensional unit vectors denoted by €1 p,...,€m m. Lemma A of
Kneip and Utikal (2001) now implies that the differences between eigenval-
ues and eigenvectors of ¥, and 3, can be bounded by

j\r,m - /\r = tr{er,mezm(im - Em)} + Rr,m,

(27) T
- 6 su _a (= 20)2%a
with B, < 05 Plal=1 (Bm —2m) |
' ming [As — Ay
CAr,m — €rm = _Sr,m(f:m - Em)er,m + R:,my
(28)

6sup|gj=1 @’ (Sm — Sm)?a

with [[R7,,[| <

ming | As — A\|? '
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where Sy =3 ) v+ —Com€d .
) SFET Xs—Ap ~SMEs,m B
Assumption 1 implies E(S,) =0, Var(5,) = %, and with d; =1, as well
as 0;; = 0 for i # j, we obtain

E{ sup a' (S, — Em)za}
llall=1

< B{tr[(Sm — Z)?]}

m [1 n 12
= E{ Z % Z(ﬁji — Bi) (Bri — Br) — kA }
J

ik=1L""i=1 |
(29) oo [ n 12
< E{ > % > (Bji = B5) (Bri — Br) — GjkA; }
jk=1L"i=1 |
<ZZE{ i ) o(n~')=0(n""),
for all m. Since tr{enme:’ ( S)t =130 (Bri — Br)? — Ay (25), (26),

(27) and (29) together with standard central limit theorems imply that

n ) — n ri r r D n_1/2
Vil - \F; b= B = Ay + O, (n~12)
(30) _ \%g[(ﬁﬂ)? CB{(B)%)] + Opn1?)
—>N(0,AT).

It remains to prove assertion (iii). Relations (26) and (28) lead to

’A}/r,m(t) - ’Yr(t) = gm(t)—r(érm —€r m)
(31) i{ Z Bt — o) (B — @)}%(t)
z:l

+ gm(t) Ry,
where due to (29) the function gm(t)TR:m satisfies

E(l|gm R ml) = E(I R 1)

= n ming |fs\ — A2 (ZZE{ﬁﬂﬁlﬂ}) +o(n™h),
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for all m. By Assumption 1, the series in (31) converge with probability 1
as m — 0o.

Obviously, the event N1 > A > 5\T+1 occurs with probability 1. Since m
is arbitrary, we can therefore conclude from (25) and (31) that

’AYT (t) - Tr (t)
(32) :—Z{ znj (Bsi = Bs) (Bri — Br)}fys(t) + Ry(1)

z:l

:_Z{ (As — Ar Zﬂszﬁm}’ys(t) + Re(1),

SFET

where ||R*|| = 0,(n7Y), as well as ||R,|| = Op(n~t). Moreover, \/n x
> 37"T{m Sy BsiBri}vs(t) is a zero mean random variable with vari-

ance Yo, gty %%( )Ys(t) < 0o. By Assumption 1, it follows
from standard central flmlt arguments that for any ¢ € N the truncated series

def
VW (q) = = \/_Zs 1 S#[ﬁ S BsifBrilys(t) is asymptotically normal
distributed. The asserted asymptotic normality of the complete series then

follows from an argument similar to the one used in the proof of assertion
(i). O

PROOF OF THEOREM 3. The results of Theorem 2 imply that

nA1=/<z¢q11_nzﬁ D(t)

LS e0)

Furthermore, independence of XZ-( ) and XZ-( ) together with (30) imply that

(33)

) ) r AL A@)
VAR =30 - (32 a2 & N (0,5 4 ) and

(34) 1 2
i Ag ix%

AV g+ AP gy

Furthermore, (32) leads to

1
T

nAgm =

Zﬁsz 1 }’Ys

(35)

2
+0,(n?)

1
- ﬁsz ﬁm } s)
sz;é;{ Vama(A& —a?) ;



30 M. BENKO, W. HARDLE AND A. KNEIP

and

T [z% D w))
+ M W) {3 () — v (1)}
L
=S AP O (u) =+ (u)}
r=1

2
+ 1D (W) {52 (t) ’Yﬁz)(t)}i dt du+ Op(n~'/?)

L 1
o JEs i)

r=1s>L
x {7 () (u) + 'vf«”(U)’vﬁ” ()}

L ng
1 @) <2>}
o Z Z Zﬁsz ﬁri
r=1 s>L{ \/qwz(/\gz) - /\5*2)) i=1

2
< {2 (7P (u) + 92 (u)y? (t)}i dt du

+ O, (n~Y?).

In order to verify (36), note that %, ZSL:LS# mar% =0 for
p=1,2 and all possible sequences aq,...,ar. It is clear from our assumptions
: : o (p) 5(P)y _
that all sums involved converge with probability 1. Recall that E(ﬁf; ﬁs‘f )=
0, p=1,2 for r #s.
B85 ()

(r) ._ n . .
It follows that X" : \/W St i Gt = 1,2, is a continu-

ous, zero mean random function on L?[0, 1], and, by assumption, E(HX H ) <
oo. By Hilbert space central limit theorems [see, e.g., Araujo and Giné (1980)],
Xﬁp ) thus converges in distribution to a Gaussian random function §,§p ) as

n — oo. Obviously, fﬁl) is independent of 552). We can conclude that nAy 1,
possesses a continuous limit distribution Fyp, deﬁned by the distribution

of [J1Z7{6" O () +67 (! (1) = Sl e (09” (w) + &7 (u)
£2)( t)}]? dt du. Similar arguments show the existence of continuous limit
distributions F; and Fy, of nA; and nAg,.

For glven q € N, define vectors bg)) :( ﬁ)),. él),) € RY, bg) =

(5 /87”2 ety r 1257’2 757“4—1267’2 77B¢§120 51"1' )T e RI™ ! and b7«3:( 12)5517,))7
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...,ﬁé’;)ﬁg?)T € R4~DEL When the infinite sums over r in (33), respectively
s#rin (35) and (36), are restricted to ¢ € N components (i.e., >, and > o f
are replaced by 37, and > ;. .), then the above relations can generally
be presented as limits nA = lim, .., nA(q) of quadratic forms

1 ibu) ! L o0
o | VIS | vmET
n l(q) TL2 Ql no 9
LZb(? R e
1 M ) T 1 M )
—N 'y ——
( ) n 2,7‘((]) 1 no (2) QQ 1 no (2) 9
— N —Zb'z
\/n—zg 12 \/n—2i21 A
1 & m)! 1 &)
—=> by —= b
ny — ny —
nda= | VUE | e VE

1 (2) 1 )
B WA — N
\/71_2 ; i3 \/71—2 ; i3

where the elements of the 2¢ x 2¢q, 2(¢—1) x2(¢—1) and 2L(g—1) x2L(¢—1)
matrices Q, Q1 and Q% can be computed from the respective (g-element)
version of (33)-(36). Assumption 1 implies that all series converge with
probability 1 as ¢ — oo, and by (33)—(36), it is easily seen that for all €,0 > 0
there exist some ¢(e,6),n(e, ) € N such that

P(lnA1 —nAq(q)| >€) <4, P(|nAg, —nlso,(q)] >€) <0,

P(‘nALl’L — nA4,L(q)\ > 6) <4

hold for all ¢ > ¢(¢,0) and all n > n(e,d). For any given ¢, we have E(b;;) =
E(bi2) = E(biz) =0, and it follows from Assumption 1 that the respective
covariance structures can be represented by finite covariance matrices €2y 4,
Q4 and Q3 4. It therefore follows from our assumptions together with stan-
LT

(38)

dard multivariate central limit theorems that the vectors {% >

)

\/— > ( il )T}T k=1,2,3, are asymptotically normal with zero means

and covariance matrices €2 4, 22 ;, and €23 ;. One can thus conclude that, as
n — oo,

c c c
(39) nAi(q) = Fig, nlo,(q) = Fapg, nAdy1(q) = Fur.q

where F 4, F» 4, F4 1,4 denote the continuous distributions of the quadratic
forms z; lel, z;ngg, 23 Q323 with 21 ~ N(0,Q14), 22 ~ N(0,Q2,), 23 ~
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N(0,€34). Since €,6 are arbitrary, (38) implies

40)  lim Fg=F,  hm Fye=F,,  lm Fpe=Fr
We now have to consider the asymptotlc propertles of bootstrapped eigen-
values and eigenfunctions. Let X (P)* = E"” X , (p)* = f’y(p) (t){Xi(p)*(t)—
u(t)}y, BY ::@z miaMnmmmnﬁw {X@<> X®x(t)} =
BT(,f B *. When considering unconditional expectations, our assumptions
imply that for p=1,2
B8] =0, E[(87")%] = AP,
e AP (p)*+\2 2
E[(BP) ===,  B{(BY) = AP} = AP,
np
[e'e} 1 Np 2
(41) E{ F—(W—FW&’ @>mWﬂ}
Lh=1L"P =1

1
1 (Z A 4 ZA?U?)) +o(nsh)
l

One can infer from (41) that the arguments used to prove Theorem 1

can be generalized to approximate the difference between the bootstrap

eigenvalues and eigenfunctions XS” )*, ’Ayﬁp )* and the true eigenvalues )\Sp ),

’yT(»p ). All infinite sums involved converge with probability 1. Relation (30)

then generalizes to
NS
— O ) = () - AP

_ LSS g0x a2
—\/n_p;(ﬂm- BF")

_—Z M +O( _1/2)

p i=1
1 &
=—E{ EWQW<W»
p i=1 np k=1
Similarly, (32) becomes

A =3

(43) =3P A = () =)
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L 5 a0 _ 3y g0 _ 73
= (B = BE) (87" = BP")
SZ#{ )\(P )\(P Zl
o1 %(ﬁ@’) IO B(p))}V(p) (t)
)\gp) B )\7(!,) n, P s1 s i T s

+ R®*(t)

——Z{A(p A(piff(ﬁsz o L 5™ g gt )} 210

sEr i=1 ”Pk 1
+ R (1),
where due to (28), (29) and (41), the remainder term satisfies Hanp)*H =
(’)p(n;l).

We are now ready to analyze the bootstrap versions A* of the different
A. First consider A3, and note that {(67(5)*)2} are i.i.d. bootstrap resam-

ples from {(67(5 ))2}. It therefore follows from basic bootstrap results that
the conditional distribution of \/L_ Sy [(ﬂr(,f)*)2 - nip Sy (ﬂ(p))2] given X,
converges to the same N (O,A&p )) limit distribution as \/—n_p S [(ﬂr(,f )2 —

E{(ﬁﬁé)))Q}]. Together with the independence of (ﬁm- “)2 and (ﬁﬁi) )2, the
assertion of the theorem is an immediate consequence.

Let us turn to Aj, Aj and A} ;. Using (41)—(43), it is then easily seen
that nA7, nAj . and nA4 ;, admit expansions similar to (33), (35) and (36),

when replacmg there \/? Z ﬁ r ZZ‘PIW P _ nlp Z )7 as

Replacmg ﬂ” , ﬂg by ﬂm.)*, ﬂm leads to bootstrap analogs b(p of

the vectors bz(.z), k=1,2,3. For any ¢q € N, define bootstrap versions nAj(q),
nAj,.(q) and nA (@) of nA ( ), nlAz,(q) and nA4L(q) by using

(e 3o, " — 3oy )T, e, (62— L 2 42)T) instead of
(S () T, o= 12, (b)), k= 1,2,3, in (37). Applying again (41)-
(43), one can conclude that for any e > 0 there exists some ¢(¢) such that,
as m — 0o,
P(InAT = nAj(q)] <€) — 1,
(44) P(nAs, —nls,(q)] <€) — 1,
P(InA} L —nA (q)] <€) —1
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hold for all ¢ > g(e). Of course, (44) generalizes to the conditional probabil-
ities given Aj, Ab.

In order to prove the theorem, it thus only remains to show that for any
given ¢ and all §
(45) [P(nA(q) > 6) = P(nA™(q) 2 6] X1, X)| = 0,(1)
hold for either A(q) = A1(q) and A*(q) = Aj(q), A(g) = Az, (¢) and A*(q) =
A3 (q), or A(g) = Ayr(q) and A*(q) = A} ;(g). But note that for k =
1,2, 3 E(bix) =0, {b J)* } are iid. bootstrap resamples from {b } and

( i \Xl,Xg) Z k are the corresponding conditional means. It
therefore follows from bas1c bootstrap results that as n — oo the condltlonal
distribution of (\/% ot ( ik - b(l)) ) \/% iz (b(2) il bﬁi)
given Xi, AXs converges to the same N(0,€y,) limit d1str1but10n as
(\/E Z?:ll(bl(.,i )7, W >, (b, ))T). This obviously holds for all ¢ € N, and

(45) is an immediate consequence. The theorem then follows from (38), (39),
(40), (44) and (45). O
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Abstract

Over recent years, study on risk management has been prompted by the Basel committee
for regular banking supervisory. There are however limitations of some widely-used risk
management methods that either calculate risk measures under the Gaussian distributional
assumption or involve numerical difficulty. The primary aim of this paper is to present a
realistic and fast method, GHICA, which overcomes the limitations in multivariate risk
analysis. The idea is to first retrieve independent components (ICs) out of the observed
high-dimensional time series and then individually and adaptively fit the resulting ICs in the
generalized hyperbolic (GH) distributional framework. For the volatility estimation of each
IC, the local exponential smoothing technique is used to achieve the best possible accuracy
of estimation. Finally, the fast Fourier transformation technique is used to approximate the

density of the portfolio returns.

The proposed GHICA method is applicable to covariance estimation as well. It is compared
with the dynamic conditional correlation (DCC) method based on the simulated data with
d = 50 GH distributed components. We further implement the GHICA method to calculate
risk measures given 20-dimensional German DAX portfolios and a dynamic exchange rate
portfolio. Several alternative methods are considered as well to compare the accuracy of
calculation with the GHICA one.

Keywords: multivariate risk management, independent component analysis, generalized

hyperbolic distribution, local exponential estimation, value at risk, expected shortfall
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1 Introduction

Over recent years, study on risk management has been prompted by the Basel committee
for regular banking supervisory. Given a d-dimensional portfolio, the conditionally het-

eroscedastic model is widely used to describe the movement of the underlying series:
2(t) = Y2 (t)ea(t), (1)

where z(t) € IR? are risk factors of the portfolio, e.g. (log) returns of the financial instru-
ments. The covariance 3, is assumed to be predictable with respect to (w.r.t.) the past
information and e, (t) € IR is a sequence of standardized innovations with E[e, ()| F;_1] = 0
and E[e2(t)|F;_1] = I4. There is a sizeable literature on risk management methods. Among

others, we refer to Jorion (2001) for a systematic description.

In this paper, we focus on the calculation of two risk measures, value at risk (VaR) and
expected shortfall (ES). These two risk measures are inherently related to the joint density
of z(t). The VaR is in fact the distributional quantile of loss, i.e. —xz(t), at a prescribed level
over a target time horizon and the ES measures the size of loss once the loss exceeds the
VaR value. Indicated by formula (1), the joint density estimation depends on the covariance

estimation and the distributional assumption of the innovations.

The largest challenge of risk management is due to the high-dimensionality of real port-
folios. Above all, the covariance estimation is really computationally demanding as high
dimensional series, e.g. a dimension d > 10, is considered, see Hardle, Herwartz and
Spokoiny (2003). For example, the dynamic conditional correlation (DCC) model proposed
by Engle (2002), Engle and Sheppard (2001), which is one multivariate GARCH model, is
recommended due to the good performance of its univariate version. In the estimation, the
covariance matrix is approximated by the product of a diagonal matrix and a correlation
matrix, which reduces the number of unknown parameters much relative to the BEKK
specification proposed by Engle and Kroner (1995). In spite of the appealing dimensional
reduction, the mentioned estimation method is time consuming and numerically difficult to

handle given high-dimensional data.

Moreover, many widely-used risk management methods rely on the unrealistic Gaussian
distributional assumption, e.g. the RiskMetrics product introduced by JP Morgan in 1994.
In the Gaussian framework with an estimate 3, (t) of $,(t), the standardized returns é,(t) =
2 (t)x(t) are asymptotically independent and the joint distributional behavior can
be easily measured by the marginal distributions. However the Gaussian distributional
assumption is merely used for computational and numerical purposes and not for statistical
reasons. The conditional Gaussian marginal distributions and the resulting joint Gaussian

distribution are at odds with empirical facts, i.e. financial series are heavy tailed distributed.



The heavy tails are typically reduced but not eliminated as the series are standardized by
the estimated volatility, see Anderson, Bollerslev, Diebold and Labys (2001).

We illustrate this effect based on two real data sets, the Allianz stock and a DAX
portfolio from 1988/01/04 to 1996/12/30. The DAX is the leading index of Frankfurt
stock exchange and a 20-dimensional hypothetic portfolio with a static trading strategy
b(t) = (1/20,---,1/20)" is considered. The portfolio returns r(t) = b(t) " z(t) are analyzed
in the univariate version of (1). This simplified calculation is used in practice, but it often
suffers from low accuracy of calculation. Suppose now that the two return processes have
been properly standardized, by using a local volatility estimation technique discussed later.
The standardized returns are empirically heavy-tailed distributed, indicated by the sample
kurtoses 12.07 for the Allianz and 22.38 for the portfolio respectively.

Figure 1 displays the estimated logarithmic density curves under several distributional
assumptions. Among them, the estimate using the nonparametric kernel estimation is con-
sidered as benchmark. The comparison w.r.t. the Allianz stock shows that the GH estimate
is most close to the benchmark among others. The Gaussian estimate presents lighter tails.
To alleviate the limitation, the Student-¢(6) distribution with degrees of freedom of 6 has
been recommended in practice. However this distribution is found to over-fit the heavy
tails, namely the ¢(6) estimate displays heavier tails relative to the benchmark. The sim-
ilar result is observed w.r.t. the DAX portfolio. It is rational to surmise that the risk
management methods under the Gaussian and ¢(6) distributional assumptions generate low

accurate results.

To overcome these limitations, Chen, Hardle and Spokoiny (2006) present a simple VaR
calculation approach that achieves much better accuracy than the alternative RiskMetrics
method. In their study, univariate approaches that involve more realistic but complex
procedures can be easily extended for multivariate risk measurement. To be more specific,
financial risk factors are first converted to independent components (ICs) using a linear
filtering and the univariate method is applied to identify the distributional behavior of
each IC. We name here two univariate approaches which measure the risk exposure in the
realistic distributional framework. One is the univariate VaR calculation proposed by Chen,
Hérdle and Jeong (2005), which implements local constant model to estimate volatility
and fit the standardized returns under the GH distributional assumption. The other is
proposed by Chen and Spokoiny (2006), who apply the local exponential smoothing method
to estimate volatility and calculate the risk measure in the GH distributional framework.
The standardization of the Allianz and DAX returns in Figure 1 is in fact based on the

local exponential smoothing technique.

The primary aim of this paper is to present an realistic and fast multivariate risk manage-
ment method, GHICA, by implementing the IC analysis (ICA) to the high dimensional
series and adaptively fitting the ICs in the GH distributional framework. The GHICA
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Fig. 1. Density comparisons of the standardized returns in log scale based on the Al-
lianz stock (top) and the DAX portfolio (bottom) with static weights b(t) =
unit(1/20).  Time interval: 1988/01/04 - 1996/12/30.  The nonparamet-
ric kernel density is considered as benchmark. The GH distributional pa-
rameters are respectively GH(—0.5,1.01,0.05,1.11,—0.03) for the Allianz and
GH(-0.5,1.21,-0.21,1.21,0.24) for the DAX portfolio. ~Data source: FEDC
(http://stb649.wiwi.hu-berlin.de).

method improves the work of Chen et al. (2006) from two aspects. The volatility estima-
tion is driven by the local exponential smoothing technique to achieve the best possible
accuracy of estimation. The fast Fourier transformation (FFT) technique is used to ap-
proximate the density of the portfolio returns. Compared to the Monte Carlo simulation

technique used in the former study, it significantly speeds up the calculation.

In addition, the proposed GHICA method is easily applicable for covariance estimation.
Relative to the widely used DCC setup, the GHICA method is fast and delivers sensitive

estimates. We demonstrate the comparison based on simulated data. Furthermore, the



GHICA method is implemented to risk management on the base of DAX stocks and foreign
exchange rates. Several hypothetic portfolios are constructed by assigning static and dy-
namic trading strategies to the data sets. The results are compared with those calculated
using alternative methods, i.e. the RiskMetrics method, the method using the exponential
smoothing to estimate volatility and assuming the Student-#(6) distribution, and the method
using the DCC to estimate covariance in the Gaussian distributional framework. All the
results are analyzed from the viewpoints of regulatory, investors and internal supervisory.
The GHICA method, in general, produces better results than the others.

The paper is organized as follows. The GHICA method is described in Section 2, by
which the ICA method, the local exponential smoothing technique and the FFT technique
are detailed. Section 3 compares the covariance estimation using the GHICA and DCC
methods based on the simulated data with d = 50 GH components. The real data analysis
in Section 4 demonstrates the implementation of the GHICA method in risk management
based on the 20-dimensional German DAX portfolios and a dynamic exchange rate portfolio.
Several alternative methods are considered as well to compare the accuracy of calculation
with the GHICA one.

2 GHICA Methodology

Given multidimensional time series, for example prices of financial assets, s(t) € R, the
(log) returns are calculated as z(t) = log{s(t)/s(t — 1)}. Without loss of generality, the
drift of the returns is set to be 0. Given the time homogeneous model, z(t) = Eiﬂsx(t)
with standardized innovations £,(t), the maximum Gaussian likelihood estimate of the time
independent covariance >, is the sample covariance based on the whole past information.
Since the covariance is in fact time dependent, one considers the conditional heteroscedastic

model:
w(t) = S/ 2 (D)ea(t).

Many techniques have been used to approximate the local covariance by specifying a “local
homogeneous” interval (e.g. one year or 250 trading days). Inside the homogeneous interval,
the unknown covariance should be time-invariant and can be identified using the ML esti-
mation. Among many others, the multivariate GARCH setup such as the DCC is successful
in characterizing the clustering feature of covariance under the Gaussian distributional as-
sumption. As the dimension d increases, it however needs to estimate many parameters and
becomes numerically difficult. Moreover, the standardized returns &,(t) = X5 1/2 (t)z(t) are
empirically not Gaussian distributed. Under a realistic distributional assumption, on the
other hand, by which the distributional behaviors such as asymmetry and heavy tails are
well matched, it is hard to identify the unknown distributional parameters due to complex

density form.



The GHICA method proposes a solution to balance the numerical tractability and the
realistic distributional assumption on the risk factors. It first converts the return series
using a linear transformation and filters out ICs: y(¢) = Wx(¢). The transformation matrix
W is assumed to be time constant and nonsingular and y(¢) is the independent vector. The

heteroscedastic model is now reformulated as:
a(t) = Wly(t) = WS/ 2(t)ey (t) = WD, 2 (t)ey (1)

Due to the statistical property of independence, the covariance of the ICs ¥, (t) is a diagonal
matrix and is denoted as D,(t) to emphasize this feature. Its diagonal elements are the
time varying variances of the ICs. The stochastic innovations e,(t) = {gy, (t), -, ey, (t)} "
are cross independent and can be individually identified in the realistic and univariate
distributional framework. By doing so, the GHICA method converts the high dimensional

analysis to univariate study and significantly speeds up the calculation.

In this section, the building blocks of the GHICA method are detailed: The FastICA
procedure is used to estimate the transformation matrix W; The resulting ICs are indi-
vidually analyzed, by which the univariate volatility process is estimated using the local
exponential smoothing technique and the innovations are assumed to be GH distributed;

The quantile of the portfolio return is approximated using the FFT technique.

The GHICA algorithm is summarized as follows:

1. Do ICA to the given risk factors to get ICs.

2. Implement local exponential smoothing to estimate the variance of each IC

3. Identify the distribution of every IC’s innovation in the GH distributional framework

4. Estimate the density of the portfolio return using the FFT technique

5. Calculate risk measures

In addition, the GHICA method can be used to estimate the covariance matrix ¥(t).
Given the matrix estimate W in the ICA and the variance estimates of the ICs, the covari-
ance of the observed time series are: 3, (t) = VAVfllA)y(t)WflT. An alternative covariance

estimation approach, the DCC, is briefly described as well. We will compare the GHICA-

based covariance estimation with the DCC estimation in the later simulation study.

2.1 Independent component analysis (ICA) and FastlCA approach

The aim of ICA is to retrieve, out of high dimensional time series, stochastically ICs through

a linear transformation: y(t) = Wx(t), where the transformation matrix W = (wy, - - -, wq) "



is nonsingular. It is essential to use high order moments in the ICA. In the Gaussian
framework, high order moments are however fixed such as skewness with value of 0 and
kurtosis with value of 3. Therefore the ICs are assumed to be nongaussian distributed.
Furthermore, the ICA transformation has scale identification problem, i.e. the equation
holds true by simultaneously multiplying the same constants to the unknown terms y(t)
and W: {cy(t)} = {cW}z(t). To avoid this problem, it is natural to standardize the
dependent series and assume that every IC has unit variance E(y;) = 1 with j = 1,---,d.
The Mahalanobis transformation Z(t) = S Y 2ac(1t) helps to standardize the return series

and the resulting series are considered:
y(t) = Wi(t),

where ¥, is the sample covariance based on the available data. It is easy to show that
after the standardization the transformation matrix W turns to be an orthogonal matrix
with unit norm. The corresponding matrix w.r.t. the return series is W = Wi;lp. For
notational simplification, we eliminate the mark ~ in the following text in this section.
Various ideas have been proposed to estimate the transformation matrix W. Among
others, one intuitive ICA estimation is motivated by the definition of mutual information.

The mutual information is a natural measure of independence. It is defined as the difference

of the sum of marginal entropy and the mutual entropy:

d
I(y) = Z (y;) — H(y) (2)

where H(y;) = /fy] u)log fy,; (u)du

The mutual information is nonnegative and goes to 0 if the vector y is cross independent,
see Cover and Thomas (1991). Hence for a candidate transformation W, one can minimize
the mutual information to achieve independence. Based on the linear transformation of the

ICA, the mutual information in (2) can be reformulated as:
d
I(W,y) :Z () — log | det(WW)].

Notice that the entropy of the return series H (z) is a fixed value and does not depend on the
ICs, and the last term in the equation is 0 due to the orthogonality of the transformation
matrix W. The optimization problem is: miny Z;lzl H(y;) and can be further simplified

to d optimization problems according to the inequality:

d d
mm Z H(y;) > Z min H (y;)
X wy
7=1 7j=1



This simplification leads to some loss in the W estimation but it extensively speeds up
the estimation procedure by merely considering d elements of W every time. Equivalently,
one can formulate the optimization problem concerning negentropy J(y;) = H(yo) — H(y;)
since the entropy and the negentropy are in one-to-one correspondence, where yo ~ N(0, 1)
is a standard Gaussian vector and H(yg) is merely a constant. The negentropy is always
nonnegative since the Gaussian random variable has the largest entropy given the same

variance, see Hyvérinen (1998).
w; = argminH (y;) = argmaxJ(wj, y;).

In the estimation, the approximation of negentropy is used to construct the optimization

object function w.r.t. the j-th row of the transformation matrix W:

w; = argminH(y;) = argmaxJ(y;)
Jy) ~ const{EIG(y)] - E[G(yo)]}*
= const.{E[G( JT ) — E[G(y )]}2
G(y;) = logcosh(y)) (3)

This optimization problem is solved by using the symmetric FastICA algorithm, see
Hyvérinen, Karhunen and Oja (2001):

1. Initialization: Choose initial vectors w( ) for W = {wy, -, wg}" with j =1,---,d,

each has a unit norm.
2. Loop:

e At step n, Calculate ’lI)J(-n) =E [m—r(t)g {wj(-n_l)—rx(t)}} —E {g’ {uA)J(.n_l)Tx(t)H 12)](-”_1),

where g is the first derivative of G(y) in form (3) and ¢’ is the second derivative.

The expectation E[-] is approximated by the sample mean.

e Do a symmetric orthogonalization of the estimated transformation matrix W,

_1/2 ~

W — (e Ty 2 m)

e If not converged, i.e. det{W(") — W("_l)} # 0, go back to 2. Otherwise, the

algorithm stops.

3. Final result: the last (converged) estimate is the final estimate W.



2.2 Local exponential smoothing and dynamically conditional correlation

Suppose that the ICs and the transformation matrix W are given. The covariance matrices

of the ICs and the original return series are respectively:

Dy(t) = diag{oy (t), -, 05, (1)}
Y.(t) = WD, w1T (4)

where oy, (t) is the heteroscedastic volatility of the j-th IC with j = 1,---,d. Recall that
(4) has a similar decomposition structure as the often-used principal component analysis
(PCA), by which the covariance is decomposed as: ¥, = TAT' " with the eigenvector matrix
I' and the diagonal eigenvalue matrix A, see Flury (1998). Among other distinctions, the
PCA method orders the resulting PCs whereas the ICs have equal importance. In the

estimation of the unknown variance, the local exponential smoothing method is used.

Local exponential smoothing: Given the univariate conditional heteroscedastic model:
y;j(t) = oy, (t)ey, (t) with E[e,, (t)|F—1] = 0 and E[egj (t)|Fi—1] = 1, we now focus on the
adaptive estimation of the volatility oy, for j =1,---,d. For notational simplification, the

subscripts y; in 0y, and j in y; are eliminated here.

Suppose that a finite set {ng,k =1, -+, K} of values of smoothing parameter is given.
Every value n;, leads to a localizing weighting scheme {77,2_5} for s <t to the local Gaussian
MLE &) (1)

o o 1/2
sM(@t) = l{ Z_ mity?(t —m—1)}/{ Z_: n?}]

In practice, one truncates the smoothing window at M}, such that 772/‘[ <o 0:

. M, 1/2
5(k)(t) = [{ Z iy (t —m — 1)}/{ Z 7721}]
m=0 m=0

where the Gaussian log-likelihood function given 7y is:

~ (k) Ni () (112 1 s
L(ny,a\™(t)) = —7108; (2m{c"™(t)}7) — 2o (D)2 Syt —m—1)
m=0
My,
where N, = 2772” (5)
m=0
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The fitted log-likelihood ratio L (nk, k) (1), U(t)) reads as:

L(m,6M@®),00)) = L (P ) = Lk, o(t))

The idea of local exponential smoothing is to aggregate all the local likelihood estimate to
achieve the best possible accuracy of estimation. In this sense, the local MLEs () (¢) are

referred as “weak” estimates.

In our study, we concern the heavy-tailedness of financial time series and assume the
normal inverse Gaussian (NIG) distribution, one subclass of the GH distribution, see Section
2.3 for more details. Since the NIG distributional parameters of the innovations are unknown
at this stage, we use the quasi ML estimation instead of estimating the variance based on
the NIG density form. The quasi ML estimation is applicable if the exponential moment of

the squared innovations E[exp{pe®(t)}] exists. A power transformation guarantees that:

sign{y(t) Hy(t)[?
0(t) = Var{yy(t)|Fi-1} = E{y2(t)|Fi-1} = E{Jy(t)[*"|Fi—1}
= o) Ele(t)*? = o (t)C, (6)

<

—~
~

S—
I

where C), = E(|e(t)|?P|F—1) is a constant and only relies on 0 < p < 1/2. Notice that the
power transformed variable 6(t) is one-to-one correspondence to the variance o(t) and can

be estimated on the base of the transformed observations |y(t)|?":
00 = {> 'yt —m—1)PP}/Ny
m=0

Here the smoothing parameter 7 is designed to run over a wide range from values close
to zero to one, so that the variability of the unknown process 6(¢) reduces and at least one
of the resulting MLESs is good in the sense of small estimation bias. Polzehl and Spokoiny
(2006) show that the inverse of Ny in (5) is positively related to the variation of the MLEs.

This result is used to construct the sequence of the smoothing parameter {n}:

N; 1-
Lad Mk _ a>1, (7)
Ne 1 —nkm

where the coefficient a controls the decreasing speed of the variations.

The procedure is sequential and starts with the estimate é(l)(t) that has the largest
variability but small bias, i.e. we set 00 () = 6D (¢). At every step k > 2, the new
estimate 9()(t) is constructed by aggregating the next “weak” estimate %) (¢) and the
previously constructed estimate é(k_l)(t). Following to Belomestny and Spokoiny (2006),
the aggregation is done in terms of the parameter v = —1/(26) so that the variable y(t)

11



belongs to the exponential distributional family with a density form: p(y,v) = p(y) exp{yv—

d(v)}:
W) = ™)+ (1 -y ()

-1
or equivalently, 0% (1) = (éu?)k(t) ' éikjlyft))

The mixing weights {7;} are computed on the base of the fitted log-likelihood ratio by
checking that the previously accepted estimate é(kfl)(t) is in agreement with the next
“weak” estimate 0()(¢), i.e. the difference between these two estimates is bounded by

critical values j:

Y& = Kag {L (771437 é(k) (t)v é(k_l)(t)) /5k}

The aggregation kernel K, guarantees that the mixing coefficient +;, is one if there is no
essential difference between %) (¢) and =1 (¢t), and zero if the difference is significant.
The significance level is measured by the critical value (. In the intermediate case, the
mixing coefficient ~; is between zero and one. The procedure terminates after step k if
v& = 0 and we define in this case 6™ (¢) = 64+~ (¢) for all m > k.

The critical values {(;} are calculated by using Monte Carlo simulation. We briefly
summarize the procedure here. Since the NIG distributional parameters of the innovations
are unknown and the transformed variable is close to Gaussian variable, we start from the

Gaussian assumption. To be more specific, we generate y(t) = o*e(t) with (t) ~ N(0,1) and

o* 1. The “weak” estimates are calculated given the sequence of {n}. For k =2,..., K
with (1,00, -+, 00, the value (7 is selected as the minimal one to fulfill
~ A(k QrT,
Eq-|Z (e, 09 (1), 65 (0) 1" < ==, (8)

where 7. = 2r [, ("le=Cd¢ = 2rI'(r), and 7 = 0.5 and o = 1 have been suggested
in Chen and Spokoiny (2006). Consequently for [ = k + 1,..., K with the parameters

(1, C,y00,...,00, we select (i as the minimal value which fulfills
~(l) "(l) r kOéTr
Eg-|L (m, 00 t), 00 (t))\ < T (9)

As said before, the transformed variable is close to Gaussian variable, we use the gener-
ated critical values under the Gaussian assumption to estimate the volatility. The constant
C) is calculated based on the estimates é(t) such that the innovation is standardized, i.e.
Var{é(t)} = Var [y(t){ép/é(t)}ﬁ} = 1. One then estimates the NIG distributional pa-

rameters of £(t) = y(t)/6(t) where 6(t) = {é(t)/ép}i To get more accurate results, one

12



generates NIG innovations with the estimated distributional parameters and recalculates

the critical values as in the Gaussian case.

The local exponential smoothing algorithm is described as follows:

1. Initialization: 61 (¢) = 61 (¢).

2. Loop: for k > 2,
R 1—
k) (1) — ~’Yk 4= Ve -1
0= G i

where the aggregating parameter 7 is computed as:

W = Kag(L(m, 0(8),07D(8)) /Ger) (10)
If v, = 0 then terminate by letting (%) (t)y=...= oK) (t) = é(k_l)(t).

t) =0 (t).

(¢
{0(t)/C }217, where the constant C), is computed such that
/6

(t) have a unit variance as assumed in the heteroscedastic

3. Aggregation estimate:

4. Final estimate: (t) =
the residuals £(¢) = y(t)

model.

Consequently, the covariance matrices D, (t) and ¥,(t) are calculated.

Dynamic conditional correlation (DCC) model: Alternatively, the covariance of the

return series can be estimated by the DCC model:

This technique first identifies the elements of the diagonal matrix D, (¢) in the GARCH(1,1)

setup and adaptively specifies the correlation matrix as:
Ro(t) = Ry(1— 01 — 02) + 01 {ex(t — Dex(t — 1) "} + 62R,(t — 1),

where R, is the sample correlation of the risk factors, e, € IR? are the standardized returns,
i.e. risk factors divided by the univariate GARCH(1,1) volatilities, or equivalently by the
squared diagonal elements in D, (t). The standardized returns are assumed to be Gaussian

distributed. The parameters 6, and 6o are identified by the ML estimation.

2.3 Normal inverse Gaussian (NIG) distribution and fast Fourier
transformation (FFT)

The estimated ICs are assumed to be NIG distributed. The NIG is a subclass of the
GH distribution with a fixed value of A = —1/2, see Eberlein and Prause (2002). With 4
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distributional parameters, the NIG distribution is flexible to well match the behavior of real
data. Compared to many other subclasses of GH distribution, the NIG distribution has a
desirable property, saying that the scaled NIG variable belongs to the NIG distribution as

well. The density of NIG random variable has a form of:

§ Kion/o% + (y — p)?
fNIc;(y;oa,ﬁ,&#):% 1{ ) }exp{5\/a2—ﬁ2+ﬁ(y—u)},

where the distributional parameters fulfill 4 € IR, 6 > 0 and |3| < a. The modified Bessel
function of the third kind K(-) with an index A = 1 has a form of:

Kx(y) = 5 /UOO y ! exp{*%(y +y N} dy

The characteristic function of the NIG variable is:

wﬂwzem{uu+aﬁﬂﬂ—ﬁr—¢M—wﬁ+uv}

Proof: The characteristic function of the GH random variable has a form of:

o2 M Ka{ove? = (BT}
a? — (B +1iz)? EA(0v/a? = B?)

Using the representation of the modified Bessel function with a fixed index A = —1/2 derived
in Barndorff-Nielsen and Bleesild (1981):

2 _ _
Kaf) = |/ 2y,

it is straightforwardly to show that the assertion holds. O

oy (2) = exp(izp) {

One desirable feature of the NIG distribution is its explicit scaling transformation. Mul-
tiplying the random variable by ¢, the resulting variable 3’ = cy belongs to the NIG distri-

bution as well:

INigW'se!, 80", 1) = faig ey /el B/e |eld, ep). (11)
Proof: It is easy to show the result by using the Jacobian transformation, see Hardle and
Simar (2003). Given the density of y and let o/ = «/|c|, ' = B/c, &' = |c|d and u' = cp,
the density of 3/ = cy has a form of:

o K1 O/\/ 52 + (y/ - M,)Q
f) = ify(%) _ o0 { } exp{d'\/o/* — 8% + B'(y — 1)}

’C‘ s 5’2 4 (y/ _ H/)Z
= NieWsd, B8, 1),
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To calculate risk measures, it requires the identification of the portfolio returns’ density.

Based on the GHICA model, the portfolio returns are calculated as:
r(t) = b(t) WDy (1) e, (1)

where b(t) is the trading strategy. Notice that the linear transformation of the NIG variable
is not necessarily NIG distributed. In other words, the density of the return is unknown
although the marginal densities are clear. On the meanwhile its characteristic function is
explicitly writable. This is the same case as approximating the a-stable distribution in
Menn and Rachev (2004), by which the Fourier transformation is used to approximate the
density of the variable based on its characteristic function. This motivates us to use the

technique to approximate the density of the return in the GHICA procedure.

Set a = (a1, -, aq) = b(t) TW 1D, (t)/2, the variable (; = a;¢; is NIG distributed with
j=1,---,d, according to (11):

¢ ~ NIG(G, &, B, 05, 1) = NIG(C, 5/ |ajl, B/ aj, |a;16;, ajuj).

The characteristic function of the return r = Z;l:l ¢; at time ¢ is:

d d d
or(2) = [T o (2) = exp iz ) jij + 253'{\/56? — 07— \/]2 — (B +1i2)?}
j=1 j=1 j=1
The density function is approximated by the Fourier transformation:

f(r) ! /+OO exp(—itr)y(z)dt ~ 2i /S exp(—itr)y(z)dt

21 J oo T J s

The procedure of quantile estimation is summarized as follows:

e Implement the discrete fast Fourier transformation (DFT) to approximate the density

of r at every time point ¢:

1. Let N = 2™ with m € IN and define an equidistance grid over the integral interval
2s

[—s, 5] by setting h = 57 and the grid points z; = —s + j * h with j =0,---, N.
2. Calculate the input of the DFT: y; = (—1)74(2}) with 2} = 0.5(z; + z;41) are
the middle points. Notice that the characteristic function is time dependent.
3. The density f(r) = £=CyDFT(y); with C = Z(-1)fexp(—%2)i with k =

0,---,N — 1. We refer to Borak, Detlefsen and Hérdle (2005) and Menn and

_Nm + Lk‘

Rachev (2004) for more details. The corresponding values of r = — 57 + ™

e The cumulative density function and the quantile are then approximated based on
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Structure shifts of covariance matrix
Sigma2 - f
Sigma1 T
Sigma3 -
0 4(;0 7(;0 10‘00 1 3‘00 14‘00 1 5‘00 16‘00 17‘00 18‘00 1900

Fig. 2: Structure shifts of the generated covariance through time. Notice that there are
shifts among matrices not up-and-down movements.

the resulting density.

3 Covariance estimation with simulated data

In this section, the GHICA versus the DCC, are implemented to estimate covariance of
simulated data. The dimension is set to be d = 50. The simulation study is designed
to include structure shifts of covariance. To be more specific, the designed covariance
changes among three matrices over time, one is an identity matrix denoted as ¥, meaning
uncorrelatedness, and two symmetric and semi-positive defined matrices ¥ and 33. (Here
we first generate d * d matrix U; whose elements are uniform random variables for o
and standard Gaussian variables for X3, then calculate a new matrix Uy = Uy * U] to
guarantee the semi-positiveness. The elements X(4, j) of the target matrix are calculated as
¥(i,7) = Ua(i,7)//U2(1,1)Ua(4,7).) The eigenvalues of these two matrices are distributed
in [5.92e — 004, 3.779] (32) and [0.002, 3.573] (X3) respectively. The off-diagonal values span
over [—0.433,0.468] in the first self-correlated matrix (X2) and [—0.447,0.464] in the second
one (X3). Temporal stationarity is assumed to be long for 400 time units and short for 100
units. The structure shifts of the generated covariance are illustrated in Figure 2. The level
of the shifts is either small with a shift from one self-correlated matrix (32 or ¥3) to the

identity matrix or contrariwise, e.g. at the point 700, or large with a shift between the two
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self-correlated matrices, e.g. at the point 1800.

Furthermore, two distributional parameters y and 3 of the standardized NIG innovations
e.(t) are set to be 0, meaning that the innovations are centered around 0 and symmetric
distributed, see Barndorff-Nielsen and Bleesild (1981). By doing so, the mean and variance

of the NIG innovations only depend on « and §:

)
Var(e,) — —— g8y

This result is used to generate the standardized innovations, by which o ~ U[1,2] is sug-

gested by our experience on real data analysis and § = a.

In the Monte Carlo simulation, we generate d = 50 NIG variables with the designed

covariance and distributional parameters:
x(t) = 532 (t)ea (D).

The sample size is T' = 1900 and the scenarios are repeated N = 100 times. The covariance

matrix is estimated using the GHICA procedure and the DCC method respectively.

The GHICA method first converts the underlying series to ICs by a linear transforma-
tion:
w(t) = Why(t) = WD, 2 (), (b),

by which the elements of Dy(t) on the diagonal are estimated using the local exponential
smoothing method. In the local exponential smoothing estimation, we set the involved
parameters ¢ = 0.01, a = 1.25 and p = 0.25. The sequence of the smoothing parameters
{nk} are 0.600, - - -,0.982 with K = 15, based on the condition (1—n;)/(1—nk+1) = ain (7).
The first 300 observations are reserved as training set for the very beginning estimations,
since the largest smoothing parameter used in this study corresponds to a window with 259

observations.

The covariance of z(t) is calculated by the basic statistical property:

Y. (t) =W D,tyw1T

The DCC method assumes that the underlying series are Gaussian distributed. It de-
composes the covariance matrix to a product of diagonal variance matrix and correlation

matrix:

17
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— — Sigma(2,5)(t)
— - DCC estimates

Sigma(2,5) d = 50 dimensions — GHICA estimates
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300 400 700 1000 1300 1400 1500 1600 1700 1800 1900

Fig. 3: Realized estimates of (2, 5) based on the GHICA and DCC methods. The generated
data consists of 50 NIG distributed components.

where D,(t) consists of the variances of x(¢) on the diagonal that are estimated in the
GARCH(1,1) setup.

Figure 3 displays one realization of ¥(2,5), i.e. the covariance of the second and fifth
risk factors x2(t) and x5(t), based on one simulation data. The true values are 0.365 in
Yo and —0.124 in X3. As expected, the GHICA estimates are sensitive to structure shifts
through time. The DCC estimates, on the contrary, are over-smooth and slowly follow the
shifts. Given more often shifts around the last hundreds of time points, the DCC estimates
deliver less information on the movements. Recall that 100 points correspond to 4 months
observations of daily returns. It is rational to surmise that structure shifts happen so
often in the active financial markets, see Merton (1973). The similar estimation results are

observed in the other elements of the covariance, which are eliminated here.

To measure the accuracy of estimation, ratio of absolute estimation error (RAE) of the
estimates w.r.t. the true covariance are calculated pointwise.
T -GHICA
S [EEH A0 - 2y (1)

RAE(,j) = )
S s BRSC®) - S, ()]

If RAE(7, j) < 1, it means that the GHICA method reaches higher accuracy in the estima-
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Fig. 4: Boxplot of the proportion 22 (d><d (7)=D) for i,j = 1,--+,d. Here d = 50 and

the proportions on the base of 100 simulations are considered.

tion of X(4,7) than the DCC. To compare the general performance of these two methods in

covariance estimation, we check the proportion of the RAEs among the 2500 (d*d) elements

S 1(RAEG,)<1
that are smaller or equal to one, i.e. 22 (d><d )= for ¢,7 = 1,---,d. Notice that

the proportion with value of 0.5 indicates that half elements are better estimated by using
the GHICA and the other half are better done by the DCC. In other words, the considered
methods have a comparable accuracy of estimation. Figure 4 displays the boxplot of the
100 proportions. The mean of the proportion is 0.4904 among the 100 simulations. It states
that the DCC method performs a little bit better than the GHICA in the sense of accuracy.
On the meanwhile, the GHICA method is much fast and sensitive to structure shifts.

4 Risk management with real data

In this section, we implement the proposed GHICA method to calculate risk measures
using real data sets: 20-dimensional German DAX portfolio and 7-dimensional exchange
rate portfolio. The results are compared with those based on alternative risk management
models. The data sets have been kindly provided by the financial and economic data center
(FEDC) of the Collaborative Research Center 649 on Economic Risk of the Humboldt-

19



Universitét zu Berlin (http://sfb649.wiwi.hu-berlin.de). Before giving detailed description
of the data sets, we analyze the risk measures from the viewpoints of regulatory, investors

and internal supervisory.

Regulatory requirement: Financial institutions generally face market risk that arises
from the uncertainty due to changes in market prices and rates such as share prices, foreign
exchange rates and interest rates, the correlations among them and their levels of volatility,
see Jorion (2001). The market risk is the main risk source and has a great negative influence
on the development of economic. The famous example is the stock crashes in the autumn
1929 and 1987 which caused a violent depression in the United States and some other
countries, with the collapse of financial markets and the contraction of production and
employment. To alleviate the down influence of market risks, regulation on banking and
other financial institutions has been strengthened since the mid-1990s. The goals of the
regulation are to restrict the happening of extremely large losses and require banks to
reserve adequate capital. In 1998 the Basel accord officially allowed financial institutions
to use their internal models to measure market risks. Among others, Value at Risk (VaR)

has been considered as industry standard risk measure:
VaRy,pr = —quantilep; {r(t)}.

where pr is the h = 1-day or h = 5-day forecasted probability of the portfolio returns.
Internal models for risk management are verified in accordance with the “traffic light” rule
that counts the number of exceptions over VaR at 1% probability spanning the last 250
days and identifies the multiplicative factor My in the market risk charge calculation, see
Franke, Hardle and Hafner (2004):

60
Risk charge, = max (MfGlO ; VaRt_i,l%, VaRt71%>
The multiplicative factor My has a floor value 3. It increases corresponding to the number
of exceptions, see Table 1. For example, if an internal model generates 7 exceptions at 1%
probability over the last 250 days, the model is in the yellow zone and its multiplicative
factor is My = 3.65. Financial institutions whose internal model is located in the yellow or
red zone, with a very high probability, are required to reserve more risk capital than their
internal-model-based VaRs. Notice that the increase of risk charge will reduce the ratio of
profit since the reserved capital can not be invested. On the meanwhile, an internal model
is automatically accepted if the number of exceptions does not exceed 4. This regulatory
rule in fact suggests banks to control VaR at 1.6% (i.e. 4/250) instead of 1% probability. It
is clear that 1.6%-VaR is smaller than 1%-VaR. Therefore an internal model is particularly
desirable by financial institutions if its empirical probability is smaller or equal to 1.6%,

and simultaneously requires risk charge as small as possible. Here a simplified calculation
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No. exceptions | Increase of M;  Zone
0 bis 4 0
5 0.4
6 0.5
7 0.65
8 0.75
9 0.85
More than 9 1 red

Tab. 1: Traffic light as a factor of the exceeding amount, cited from Franke, Hardle and
Hafner (2004).

on the average value of VaRs is used as risk charge for comparison:

Risk charge (RC) = mean (VaRy pr)

Investor: It is known that VaR is inappropriate for the measurement of capital adequacy,
since it controls only the probability of default, i.e. the frequency of losses, but not the size
of losses in the case of default. For this reason, investors concern expected shortfall (ES)

more than VaR to measure and control their risks.
ES = E{—r(t)] — r(t) > VaRypr}

Investors suffer loss once bankruptcy happens. Even in the “best” situation, their loss
equals to the difference between the total loss and the reserved risk capital, i.e. the value
of ES. Generally risk-averse investors care the amount of loss and thus prefer an internal
model with small value of ES. Risk-seeking investors, on the other hand, care profit and

hence the small value of risk charge favors their requirement.

Internal supervisory: It is important for internal supervisory to exactly measure the
market risk exposures before risk controlling. For this reason, internal supervisory prefers
the model delivering accurate probability prediction, i.e. the empirical probability pr is as

close to the expected values as possible:

No. exceptions

r =
No. total observations

Given two models with the same empirical probability, the model has a smaller value of
ES is considered better than the other. Here two extreme probabilities are considered, i.e.
pr = 1% for regulatory reason and pr = 0.5% used by financial institutions with AAA

rating.
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4.1 Data analysis 1: DAX portfolio

The primary target of the real data analysis is to compare the forecasting ability of the
GHICA method with two alternatives, the RiskMetrics method under the Gaussian dis-
tributional assumption and a modification with the Student-¢(6) distributional assumption
(abbreviated as t(6) method) in the market. The comparison is demonstrated based on 20
DAX stocks over a long time period, starting on 1974/01/02 and ending on 1996,/12/30
(5748 observations). The return series are all centered around 0 and have heavy tails
(kurtosis> 3), the smallest correlation coefficient is 0.3654. Hypothetical German DAX
portfolios are constructed with two static trading strategies b(t) = bV = (1/d,---,1/d)"
and b(t) = b ~ U[0,1]%. Such a simple portfolio construction eliminates the influence
of strategy adjustments on the calculation. The portfolio returns are analyzed using the
RiskMetrics or the ¢(6) method. Here the unknown volatility process of the portfolio is

estimated using the exponential smoothing method with n = 0.94:

r(t) = blz(t) = o.(t)eq(t)

M M
ar(t) = {D nmrt(t—m—=1} (0™
m=0 m=0

where the truncated value M fulfills the condition n™+1) < 0.01. Notice that given a
dynamic trading strategy, this simplification needs to repeatedly estimate the density of
the time varying hypothetical portfolio returns, and it often suffers from a low accuracy of

estimation.

Figure 5 depicts the one day log-returns of the DAX portfolio with the static trading
strategy b(t) = bM). The VaRs from 1975/03/17 to 1996/12/30 at pr = 0.5% are displayed
w.r.t. three methods, the GHICA, the RiskMetrics and the ¢(6). The most volatile time
period over ¢ € [3300,4300] is detailed in the bottom diagram. Recall that on the Monday,
19 October 1987, the worldwide downward jump of stocks happened. Dow Jones Industrial
Average for example dropped by over 500 points. At this market quiver around ¢t = 3446, the
GHICA method exactly achieves the locations of extreme losses whereas the RiskMetrics and
t(6) methods over-react to them. Such over reactions induce large risk charges unnecessarily.
On the other hand, it is observed that these two alternative methods give close forecasts to
some extreme losses, e.g. around time points 4000 and 4500. As a result, the associating

values of ES are small and satisfy the requirement of risk-averse investors.

Table 2 reports the risk measures based on the three methods. In general, the Risk-
Metrics is successful in fulfilling the minimal requirement of regulatory. The ¢(6) method
is preferred by investors who consider risk happened with 1% probability. The GHICA

method performs better than the other two for internal supervisory and requirement of
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Fig. 5: One day log-returns of the DAX portfolio with the static trading strategy b(t) = b(1).
The VaRs are from 1975/03/17 to 1996/12/30 at pr = 0.5% w.r.t. three methods,
the GHICA, the RiskMetrics and the ¢(6). Part of the VaR time plot is enlarged

and displayed on the bottom.
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GHICA RiskMetrics N(u, 0?) Exponential smoothing #(6)

h b(t) pr pr RC ES pr RC ES pr RC ES
1 v 1% 0.55%  0.0264 0.0456 1.18%° 0.0229” 0.0279 | 0.40% 0.0292

¥ 0.5% | 0.44%°  0.0297 0.75%  0.0254 0.0317 | 0.23% 0.0345 0.0506

@ 1% 0.59%  0.0265 0.0448 1.03%° 0.02317 0.0288 | 0.38%  0.0294

b@  05% | 0.42%°  0.0298 0.71%  0.0256 0.0315 | 0.21% 0.0347 0.0514
5 oY 1% | 0.83%  0.0550 0.0841 1.15%° 0.0481" 0.0602 | 0.19% 0.0665

b 05% | 0.51%°  0.0612 0.64%  0.0536 0.0683 | 0.09% 0.0784 0.1067

@ 1% 0.83%°  0.0554 1.18%  0.0488" 0.0613 | 0.16% 0.0673 0.0852

b@  05% | 0.50%° 0.0617 0.63%  0.0543 0.0676 | 0.07% 0.0794 0.1218

Tab. 2: Risk analysis of the DAX portfolios with two static trading strategies. The con-
cerned forecasting interval is h = 1 or A = 5 days. The best results to fulfill
the regulatory requirement are marked by . The method preferred by investor is
marked by ‘. For the internal supervisory, the method marked by ¢ is recommended.

risk-averse investors who care the extreme risk happened with 0.5% probability.

4.2 Data analysis 2: Foreign exchange rate portfolio

In financial markets, traders adjust trading strategy according to information obtained.
The GHICA is easily applicable to dynamic portfolios. We consider here 7 actively traded
exchange rates, Euro (EUR), the US dollar (USD), the British pounds (GBP), the Japanese
yen (JPY) and the Singapore dollar (SGD) from 1997/01/02 to 2006/01/05 (2332 obser-
vations). The foreign exchange rate (FX) market is the most active and liquid financial
market in the world. It is realistic to analyze a dynamic portfolio with daily time varying
trading strategy b (t). The strategy at time point ¢ relies on the realized returns at t — 1,

the proportions of which w.r.t the sum of returns:

z(t—1)

b(3) )=~
W= =1

where x(t) = {z1(t),---,24(t)} . Among these data sets, the returns of the EUR/SGD
and USD/JPY rates are least correlated with the correlation coefficient 0.0071 whereas
the returns of the EUR/USD and EUR/SGD rates are most correlated with the coefficient
0.6745. The resulting portfolio returns span over [—0.7962,0.7074].

The GHICA method is compared with an alternative method, abbreviated as DCCN,

that applies the DCC covariance estimation under the Gaussian distributional assumption.
r(t) = b(t)Ta(t) = b(t) TP ()eu (t)

where £, ~ N(u,Y.) with the diagonal covariance matrix ¥.. Notice that the quantile
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GHICA DCCN
h  b(t) pr pr RC ES pr RC ES
1 3@ 1% | 1.28%° 0.0453" 0.0778 | 1.59% 0.0494
b3 (t)  0.5% | 0.59%° 0.0493 0.94% 0.0547 0.0289
5 b)) 1% | 1.53%° 0.0806" 4.17% 0.0993 0.1735
b3 () 0.5% | 0.79%°  0.1092 3.44% 0.1100 0.1389

Tab. 3: Risk analysis of the dynamic exchange rate portfolio. The best results to fulfill the
regulatory requirement are marked by ". The recommended method to the investor

is marked by ‘. For the internal supervisory, we recommend the method marked by
S

vector with pr-quantiles of individual innovations does not necessarily correspond to the
pr-quantile of the portfolio return. Under the Gaussian distributional assumption, the
standardized DCCN returns are theoretically cross independent and the Gaussian quantiles
of the portfolio can be easily calculated. The dynamic mean, variance of the portfolio’s

returns have values of:

E{r(t)} = b(t)"={/?(8) E{ea(t)}
Var{r(t)} = b(t) =02 (¢) Var{e, (6)}£5/2T (0)b(1)

The GHICA method in general presents better results than the DCCN. Except the value
of ES at 1% level, the GHICA fulfills the requirements of regulatory, internal supervisory
and investors, see Table 3. For h = 1 day forecasts, the DCCN gives although a closer VaR
value to 1.6%, i.e. the ideal probability for regulatory, its risk charge with a value of 0.0494
is larger than that based on the GHICA, 0.0453. Therefore the GHICA is more favored in

fulfilling the minimal regulatory requirement.

The two real data studies show that the GHICA method fulfills the minimal regulatory
requirement by controlling the risk inside 1.6% level and requiring small risk charge, in
particular satisfies the internal supervisory requirement by precisely measuring risk level as
expected and favors the investors’ requirement by delivering small size of loss. In summary,
the GHICA method is not only a realistic and fast procedure given either static or dy-
namic portfolios but also produces better results than several alternative risk management
methods.
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Abstract

This paper analyzes empirical market utility functions and pricing kernels
derived from the DAX and DAX option data for three market regimes. A
consistent parametric framework of stochastic volatility is used. All empirical
market utility functions show a region of risk proclivity that is reproduced by
adopting the hypothesis of heterogeneous individual investors whose utility
functions have a switching point between bullish and bearish attitudes. The
inverse problem of finding the distribution of individual switching points is
formulated in the space of stock returns by discretization as a quadratic opti-
mization problem. The resulting distributions vary over time and correspond
to different market regimes.

JEL classification: G12, G13, C50

Keywords: Utility function, pricing kernel, behavioral finance, risk aversion,
risk proclivity, Heston model



1 Introduction

Numerous attempts have been undertaken to describe basic principles on
which the behaviour of individuals are based. Expected utility theory was
originally proposed by J. Bernoulli in 1738. In his work J. Bernoulli used such
terms as risk aversion and risk premium and proposed a concave (logarithmic)
utility function, see Bernoulli (1956). The utilitarianism theory that emerged
in the 18th century considered utility maximization as a principle for the
organisation of society. Later the expected utility idea was applied to game
theory and formalized by von Neumann and Morgenstern (1944). A utility
function relates some observable variable, in most cases consumption, and an
unobservable utility level that this consumption delivers. It was suggested
that individuals’ preferences are based on this unobservable utility: such
bundles of goods are preferred that are associated with higher utility levels.
It was claimed that three types of utility functions — concave, convex and
linear — correspond to three types of individuals — risk averse, risk neutral
and risk seeking. A typical economic agent was considered to be risk averse
and this was quantified by coefficients of relative or absolute risk aversion.
Another important step in the development of utility theory was the prospect
theory of Kahneman and Tversky (1979). By behavioural experiments they
found that people act risk averse above a certain reference point and risk
seeking below it. This implies a concave form of the utility function above
the reference point and a convex form below it.

Besides these individual utility functions, market utility functions have
recently been analyzed in empirical studies by Jackwerth (2000), Rosenberg
and Engle (2002) and others. Across different markets, the authors observed
a common pattern in market utility functions: There is a reference point
near the initial wealth and in a region around this reference point the market
utility functions are convex. But for big losses or gains they show a concave
form — risk aversion. Such utility functions disagree with the classical utility
functions of von Neumann and Morgenstern (1944) and also with the findings
of Kahneman and Tversky (1979). They are however in concordance with
the utility function form proposed by Friedman and Savage (1948).

In this paper, we analyze how these market utility functions can be ex-
plained by aggregating individual investors’ attitudes. To this end, we first
determine empirical pricing kernels from DAX data. Our estimation proce-
dure is based on historical and risk neutral densities and these distributions
are derived with stochastic volatility models that are widely used in indus-
try. From these pricing kernels we construct the corresponding market util-
ity functions. Then we describe our method of aggregating individual utility
functions to a market utility function. This leads to an inverse problem for



the density function that describes how many investors have the utility func-
tion of each type. We solve this problem by discrete approximation. In this
way, we derive utility functions and their distribution among investors that
allow to recover the market utility function. Hence, we explain how (and
what) individual utility functions can be used to form the behaviour of the
whole market.

The paper is organized as follows: In section 2, we describe the theoretical
connection between utility functions and pricing kernels. In section 3, we
present a consistent stochastic volatility framework for the estimation of both
the historical and the risk neutral density. Moreover, we discuss the empirical
pricing kernel implied by the DAX in 2000, 2002 and 2004. In section 4, we
explain the utility aggregation method that relates the market utility function
and the utility functions of individual investors. This aggregation mechanism
leads to an inverse problem that is analyzed and solved in this section. In
section 5, we conclude and discuss related approaches.

2 Pricing kernels and utility functions

In this section, we derive the fundamental relationship between utility func-
tions and pricing kernels. It describes how a representative utility function
can be derived from historical and risk-neutral distributions of assets. In the
following sections, we estimate the empirical pricing kernel and observe in
this way the market utility function.

First, we derive the price of a security in an equilibrium model: we con-
sider an investor with a utility function U who has as initial endowment
one share of stock. He can invest into the stock and a bond up to a final
time when he can consume. His problem is to choose a strategy that maxi-
mizes the expected utility of his initial and terminal wealth. In continuous
time, this leads to a well known optimization problem introduced by Merton
(1973) for stock prices modelled by diffusions. In discrete time, it is a basic
optimization problem, see Cochrane (2001).

From this result, we can derive the asset pricing equation

Py =E” [{(Sr) My]

for a security on the stock (S;) with payoff function 1 at maturity 7. Here,
P, denotes the price of the security at time 0 and E is the expectation with
respect to the real/historical measure P. The stochastic discount factor My
is given by

My = pU'(St)/U"(So) (1)



where (3 is a fixed discount factor. This stochastic discount factor is actually
the projection of the general stochastic discount factor on the traded asset
(S¢). The stochastic discount factor can depend on more variables in general.
But as discussed in Cochrane (2001) this projection has the same interpre-
tation for pricing as the general stochastic discount factor.

Besides this equilibrium based approach, Black and Scholes (1973) de-
rived the price of a security relative to the underlying by constructing a
perfect hedge. The resulting continuous delta hedging strategy is equivalent
to pricing under a risk neutral measure () under which the discounted price
process of the underlying becomes a martingale. Hence, the price of a se-
curity is given by an expected value with respect to a risk neutral measure

Q:

Py = E [exp(—rT)t(Sr)]
If p denotes the historical density of Sy (i.e. P(Sp <s) = [°_ p(z) dz) and
¢ the risk neutral density of Sy (i.e. Q(Sy < s) = [°__q(x) dz) then we get

Py =exp(—rT) /z/z(as)q(x)dx

Combining equations (1) and (2) we see

U'(s)
U'(So)

= exp(—rT)@.

g p(s)

Defining the pricing kernel by K = ¢/p we conclude that the form of the
market utility function can be derived from the empirical pricing kernel by
integration:

U(S) _ U(So) + /Ss U/(S())exp(gTT) ;.;Ei; dx

—U(S0) + /S "0 (5 D)

0 3 K(x)dx

because Sj is known.



As an example, we consider the model of Black and Scholes (1973) where
the stock follows a geometric Brownian motion

dSt/St = Mdt + O'th (3)

Here the historical density p of 5 is log-normal, i.e.

(2) 1 1 1 (logx — [ 2 -0
x) = — expg —= | ——— x
p T/ On52 P 2 ol ’

where i = (u—02/2)t +log Sy and & = ov/t. Under the risk neutral measure
@ the drift p is replaced by the riskless interest rate r, see e.g. Harrison and
Pliska (1981). Thus, also the risk neutral density ¢ is log-normal. In this
way, we can derive the pricing kernel

p—r

X

K(z) = (S—) 7 exp{(u— )+ — o)T/(207),

This pricing kernel has the form of a derivative of a power utility

. (=) (utr=c®)T _ .
where the constants are given by A = e 207 and v = £5-. This gives

a utility function corresponding to the underlying (3)
(1-£55)

Usr) = (12501 s,

o2

where we ignored additive and multiplicative constants. In this power utility
function the risk aversion is not given by the market price of risk (u —r)/o.
Instead investors take the volatility more into account. The expected return
i — r that is adjusted by the riskfree return is related to the variance. This
results in a higher relative risk aversion than the market price of risk.

A utility function corresponding to the Black-Scholes model is shown in
the upper panel of figure 1 as a function of returns. In order to make different
market situations comparable we consider utility functions as functions of
(half year) returns R = Sp5/S0. We chose the time horizon of half a year
ahead for our analysis. Shorter time horizons are interesting economically
and moreover the historical density converges to the Dirac measure so that
results become trivial (in the end). Longer time horizons are economically

4
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Figure 1: up: Utility function in the Black Scholes model for T" = 0.5 years
ahead and drift © = 0.1, volatility ¢ = 0.2 and interest rate r = 0.03. down:
Market utility function on 06/30/2000 for 7" = 0.5 years ahead.



more interesting but it is hardly possible to estimate the historical density
for a long time ahead. It neither seems realistic to assume that investors have
clear ideas where the DAX will be in e.g. 10 years. For these reasons we use
half a year as future horizon. Utility functions U of returns are defined by:

U(R) := U(RSy), R>0

where Sy denotes the value of the DAX on the day of estimation. Because of
U’ = c¢K for a constant ¢ we have U'(R) = c¢K(RS;)Sy and we see that also
utility functions of returns are given as integrals of the pricing kernel. The
change to returns allows us to compare different market regimes indepen-
dently of the initial wealth. In the following we denote the utility functions
of returns by the original notation U. Hence, we suppress in the notation
the dependence of the utility function U on the day of estimation t.

The utility function corresponding to the model of Black and Scholes
(1973) is a power utility, monotonically increasing and concave. But such
classical utility functions are not observed on the market. Parametric and
nonparametric models that replicate the option prices all lead to utility func-
tions with a hump around the initial wealth level. This is described in detail
later but is shown already in figure 1. The upper panel presents the utility
function corresponding to Black-Scholes model with a volatility of 20% and
an expected return of 10%. The function is concave and implies a constant
relative risk aversion. The utility function estimated on the bullish market
in summer 2000 is presented in the lower panel. Here, the hump around the
money is clearly visible. The function is no more concave but has a region
where investors are risk seeking. This risk proclivity around the money is
reflected in a negative relative risk aversion.

3 Estimation

In this section, we start by reviewing some recent approaches for estimating
the pricing kernel. Then we describe our method that is based on estimates
of the risk neutral and the historical density. The risk neutral density is
derived from option prices that are given by an implied volatility surface and
the historical density is estimated from the independent data set of historical
returns. Finally, we present the empirical pricing kernels and the inferred
utility and relative risk aversion functions.



3.1 Estimation approaches for the pricing kernel

There exist several ways and methods to estimate the pricing kernel. Some
of these methods assume parametric models while others use nonparametric
techniques. Moreover, some methods estimate first the risk neutral and sub-
jective density to infer the pricing kernel. Other approaches estimate directly
the pricing kernel.

Ait-Sahalia and Lo (1998) derive a nonparametric estimator of the risk
neutral density based on option prices. In Ait-Sahalia and Lo (2000), they
consider the empirical pricing kernel and the corresponding risk aversion
using this estimator. Moreover, they derive asymptotic properties of the es-
timator that allow e.g. the construction of confidence bands. The estimation
procedure consists of two steps: First, the option price function is deter-
mined by nonparametric kernel regression and then the risk neutral density
is computed by the formula of Breeden and Litzenberger (1978). Advantages
of this approach are the known asymptotic properties of the estimator and
the few assumptions necessary.

Jackwerth (2000) analyses risk aversion by computing the risk neutral
density from option prices and the subjective density from historical data
of the underlying. For the risk neutral distribution, he applies a variation
of the estimation procedure described in Jackwerth and Rubinstein (1996):
A smooth volatility function derived from observed option prices gives the
risk neutral density by differentiating it twice. The subjective density is
approximated by a kernel density computed from historical data. In this
method bandwidths have to be chosen as in the method of Ait-Sahalia and
Lo (1998).

Rosenberg and Engle (2002) use a different approach and estimate the
subjective density and directly (the projection of) the pricing kernel. This
gives the same information as the estimation of the two densities because the
risk neutral density is the product of the pricing kernel and the subjective
density. For the pricing kernel, they consider two parametric specifications
as power functions and as exponentials of polynomials. The evolution of
the underlying is modelled by GARCH processes. As the parametric pricing
kernels lead to different results according to the parametric form used this
parametric approach appears a bit problematic.

Chernov (2003) also estimates the pricing kernel without computing the
risk neutral and subjective density explicitly. Instead of assuming directly a
parametric form of the kernel he starts with a (multi dimensional) modified
model of Heston (1993) and derives an analytic expression for the pricing
kernel by the Girsanov theorem, see Chernov (2000) for details. The ker-



nel is estimated by a simulated method of moments technique from equity,
fixed income and commodities data and by reprojection. An advantage of
this approach is that the pricing kernel is estimated without assuming an
equity index to approximate the whole market portfolio. But the estimation
procedure is rather complex and model dependent.

In a recent paper, Barone-Adesi et al. (2004) price options in a GARCH
framework allowing the volatility to differ between historical and risk neutral
distribution. This approach leads to acceptable calibration errors between
the observed option prices and the model prices. They estimate the histori-
cal density as a GARCH process and consider the pricing kernel only on one
day. This kernel is decreasing which coincides with standard economic the-
ory. But the general approach of changing explicitly the volatility between
the historical and risk neutral distribution is not supported by the standard
economic theory.

We estimate the pricing kernel in this paper by estimating the risk neu-
tral and the subjective density and then deriving the pricing kernel. This
approach does not impose a strict structure on the kernel. Moreover, we
use accepted parametric models because nonparametric techniques for the
estimation of second derivatives depend a lot on the bandwidth selection al-
though they yield the same pricing kernel behaviour over a wide range of
bandwidths. For the risk neutral density we use a stochastic volatility model
that is popular both in academia and in industry. The historical density is
more difficult to estimate because the drift is not fixed. Hence, the estima-
tion depends more on the model and the length of the historical time series.
In order to get robust results we consider different (discrete) models and dif-
ferent lengths. In particular, we use a GARCH model that is the discrete
version of the continuous model for the risk neutral density. In the following,
we describe these models, their estimation and the empirical results.

3.2 Estimation of the risk neutral density

Stochastic volatility models are popular in industry because they replicate
the observed smile in the implied volatility surfaces (IVS) rather well and
moreover imply rather realistic dynamics of the surfaces. Nonparametric
approaches like the local volatility model of Dupire (1994) allow a perfect fit
to observed price surfaces but their dynamics are in general contrary to the
market. As Bergomi (2005) points out the dynamics are more important for
modern products than a perfect fit. Hence, stochastic volatility models are
popular.

We consider the model of Heston (1993) for the risk neutral density be-



cause it can be interpreted as the limit of GARCH models. The Heston
model has been refined further in order to improve the fit, e.g. by jumps in
the stock price or by a time varying mean variance level. We use the original
Heston model in order to maintain a direct connection to GARCH processes.
Although it is possible to estimate the historical density also with the Heston
model e.g. by Kalman filter methods we prefer more direct approaches in or-
der to reduce the dependence of the results on the model and the estimation
technique.

The stochastic volatility model of Heston (1993) is given by the two
stochastic differential equations:

dS;

- = rdt + /VidW]
t

where the variance process is modelled by a square-root process:
dVy = &(n — Vy)dt + 0+/V,dW?

and W' and W? are Wiener processes with correlation p and r is the risk free
interest rate. The first equation models the stock returns by normal inno-
vations with stochastic variance. The second equation models the stochastic
variance process as a square-root, diffusion.

The parameters of the model all have economic interpretations: n is called
the long variance because the process always returns to this level. If the
variance V; is e.g. below the long variance then n — V; is positive and the
drift drives the variance in the direction of the long variance. ¢ controls the
speed at which the variance is driven to the long variance. In calibrations,
this parameter changes a lot and makes also the other parameters instable.
To avoid this problem, the reversion speed is kept fixed in general. We follow
this approach and choose £ = 2 as Bergomi (2005) does. The volatility of
variance 6 controls mainly the kurtosis of the distribution of the variance.
Moreover, there are the initial variance Vj of the variance process and the
correlation p between the Brownian motions. This correlation models the
leverage effect: When the stock goes down then the variance goes up and vice
versa. The parameters also control different aspects of the implied volatility
surface. The short (long) variance determines the level of implied volatility
for short (long) maturities. The correlation creates the skew effect and the
volatility of variance controls the smile.

The variance process remains positive if the volatility of variance 6 is
small enough with respect to the product of the mean reversion speed £ and



the long variance level n (i.e. 2£n > 0%). As this constraint leads often to
significantly worse fits to implied volatility surfaces it is in general not taken
into account and we follow this approach.

The popularity of this model can probably be attributed to the semiclosed
form of the prices of plain vanilla options. Carr and Madan (1999) showed
that the price C(K,T) of a European call option with strike K and maturity
T is given by

C(K,T) = exp{—aln

()} /0+00 exp{—iv In(K) }¢r(v)dv

™

for a (suitable) damping factor @ > 0. The function 7 is given by

_exp(=rT)¢r{v — (e + 1)i}
@/JT(U) T 24+ a—v?+ i(2a + 1)1)

where ¢r is the characteristic function of log(Sr). This characteristic func-
tion is given by

— (22 +12)V
v(2) coth @ + & —iphz
exp{w +i2Tr + iz log(Sy) } (1)
2¢n

(cosh W(Z)T + g;égfz sinh W(Z)T)T?

¢r(z) = exp{

where 7(z) &f VO2(22 +i2) + (€ — ipf2)?, see e.g. Cizek et al. (2005).

For the calibration we minimize the absolute error of implied volatilities
based on the root mean square error:

ASE, <\ |3 n {IVmo(r) — TV (1)}
=1

where mod refers to a model quantity, mar to a quantity observed on the
market and IV (t) to an implied volatility on day ¢. The index i runs over
all n observations of the surface on day t.

It is essential for the error functional ASE; which observed prices are used
for the calibration. As we investigate the pricing kernel for half a year to
maturity we use only the prices of options that expire in less than 1.5 years.
In order to exclude liquidity problems occurring at expiry we consider for the
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calibration only options with more than 1 month time to maturity. In the
moneyness direction we restrict ourselves to strikes 50% above or below the
spot for liquidity reasons.

The risk neutral density is derived by estimation of the model parameters
by a least squares approach. This amounts to the minimization of the error
functional ASE;. Cont and Tankov (2004) provided evidence that such error
functionals may have local minima. In order to circumvent this problem we
apply a stochastic optimization routine that does not get trapped in a local
minimum. To this end, we use the method of differential evolution developed
by Storn and Price (1997).

Having estimated the model parameters we know the distribution of
X7 = log Sy in form of the characteristic function ¢r, see (4). Then the
corresponding density f of X1 can be recovered by Fourier inversion:

Fla) = = /oo e o (1),

:§ N

see e.g. Billingsley (1995). This integral can be computed numerically.
Finally, the risk neutral density ¢ of Sr = exp(X7) is given as a trans-
formed density:

o) =  f{log()).

This density ¢ is risk neutral because it is derived from option prices and
options are priced under the risk neutral measure. This measure is applied
because banks replicate the payoff of options so that no arbitrage conditions
determine the option price, see e.g. Rubinstein (1994). An estimated risk
neutral density is presented in figure 2. It is estimated from the implied
volatility shown in figure 3 for the day 24/03/2000. The distribution is right
skewed and its mean is fixed by the martingale property. This implies that
the density is low for high profits and high for high losses. Moreover, the dis-
tribution is not symmetrical around the neutral point where there are neither
profits nor losses. For this and all the following estimations we approximate
the risk free interest rates by the EURIBOR. On each trading day we use the
yields corresponding to the maturities of the implied volatility surface. As
the DAX is a performance index it is adjusted to dividend payments. Thus,
we do not have to consider dividend payments explicitly.

3.3 Estimation of the historical density

While the risk neutral density is derived from option prices observed on the
day of estimation we derive the subjective density from the historical time
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model time period
GARCH in mean 2.0y
discrete Heston 2.0y
observed returns 1.0y

Table 1: Models and the time periods used for their estimation.

series of the index. Hence, the two data sets are independent in the sense
that the option prices reflect the future movements and the historical time
series the past.

The estimation of the historical density seems more difficult than the
estimation of the risk neutral density because the drift is not fixed and it de-
pends in general on the length of the time series. Because of these difficulties
we use different models and time horizons for the historical density: First,
we estimate a GARCH in mean model for the returns. Returns are generally
assumed to be stationary and we confirmed this at least in the time intervals
we consider. The mean component in the GARCH model is important to
reflect different market regimes. We estimate the GARCH model from the
time series of the returns of the last two year because GARCH models require
quite long time series for the estimation in order to make the standard error
reasonably small. We do not choose longer time period for the estimation
because we want to consider special market regimes. Besides this popular
model choice we apply a GARCH model that converges in the limit to the
Heston model that we used for the risk neutral density. As this model is also
hard to estimate we use again the returns of the last 2 years for this model.
Moreover, we consider directly the observed returns of the last year. The
models and their time period for the estimation are presented in table 1. All
these models give by simulation and smoothing the historical density for half
a year ahead.

The GARCH estimations are based on the daily log-returns
R; = log(Sti) - log(stifl)

where (S;) denotes the price process of the underlying and ¢;, i = 1,2,...
denote the settlement times of the trading days. Returns of financial assets
have been analyzed in numerous studies, see e.g. Cont (2001). A model that
has often been successfully applied to financial returns and their stylized facts
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is the GARCH(1,1) model. This model with a mean is given by
Ry = pn+o0iZ
o} =w+aR}, + fo},

where (Z;) are independent identically distributed innovations with a stan-
dard normal distribution, see e.g. Franke et al. (2004). On day t; the model
parameters p,w,a and 3 are estimated by quasi maximum likelihood from
the observations of the last two years, i.e. Rj_504, ..., R; assuming 252 trad-
ing days per year.

After the model parameters have been estimated on day ¢; from historical
data the process of logarithmic returns (R;) is simulated half a year ahead,
i.e. until time ¢; 4+ 0.5. In such a simulation p,w,a and 3 are given and the
time series (0;) and (R;) are unknown. The values of the DAX corresponding
to the simulated returns are then given by inverting the definition of the log
returns:

Sti = Stifl exp(Ri)

where we start with the observed DAX value on day t;. Repeating the
simulation N times we obtain N samples of the distribution of S;, 195. We
use N = 2000 simulations because tests have shown that the results become
robust around this number of simulations.

From these samples we estimate the probability density function of Sy, 1.5
(given (Si,_,44,---,5,)) by kernel density estimation. We apply the Gaus-
sian kernel and choose the bandwidth by Silverman’s rule of thumb, see e.g.
Silverman (1986). This rule provides a trade-off between oversmoothing — re-
sulting in a high bias — and undersmoothing — leading to big variations of the
density. We have moreover checked the robustness of the estimate relative
to this bandwidth choice. The estimation results of a historical density are
presented in figure 4 for the day 24/03/2000. This density that represents a
bullish market is has most of its weight in the profit region and its tail for
the losses is relatively light.

As we use the Heston model for the estimation of the risk neutral density
we consider in addition to the described GARCH model a GARCH model
that is a discrete version of the Heston model. Heston and Nandi (2000)
show that the discrete version of the square-root process is given by

Vi=w+ Vi + a(Ziy — v/ Vie1)

and the returns are modelled by

Ri:M—%Vz“F\/ViZz‘
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Figure 4: Historical density on 24/03/2000 half a year ahead.

where (Z;) are independent identically distributed innovations with a stan-
dard normal distribution. Having estimated this model by maximum likeli-
hood on day t; we simulate it half a year ahead and then smooth the samples
of St; 105 in the same way as in the other GARCH model.

In addition to these parametric models, we consider directly the observed
returns over half a year

Ri = Sti/Sti7126'

In this way, we interpret these half year returns as samples from the distribu-
tion of the returns for half a year ahead. Smoothing these historical samples
of returns gives an estimate of the density of returns and in this way also an
estimate of the historical density of S, 195.

3.4 Empirical pricing kernels

In contrast to many other studies that concentrate on the S&P500 index we
analyze the German economy by focusing on the DAX, the German stock
index. This broad index serves as an approximation to the German economy.
We use two data sets: A daily time series of the DAX for the estimation of
the subjective density and prices of European options on the DAX for the
estimation of the risk neutral density.
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Figure 5: DAX, 1998 - 2004.

1.0y 2.0y
03/2000 | 1.63 1.57
07/2002 | 0.66 0.54
06/2004 | 1.11 0.98

Table 2: Market regimes in 2000, 2002 and 2004 described by the return
So/So_a for periods A = 1.0y, 2.0y.

In figure 5, we present the DAX in the years 1998 to 2004. This figure
shows that the index reached its peak in 2000 when all the internet firms
were making huge profits. But in the same year this bubble burst and the
index fell afterwards for a long time. The historical density is estimated from
the returns of this time series. We analyze the market utility functions in
March 2000, July 2002 and June 2004 in order to consider different market
regimes. We interpret 2000 as a bullish, 2002 as a bearish and 2004 as a
unsettled market. These interpretations are based on table 2 that describes
the changes of the DAX over the preceding 1 or 2 years. (In June 2004 the
market went up by 11% in the last 10 months.)

A utility function derived from the market data is a market utility func-

tion. It is estimated as an aggregate for all investors as if the representative
investor existed. A representative investor is however just a convenient con-
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struction because the existence of the market itself implies that the asset
is bought and sold, i.e. at least two counterparties are required for each
transaction.

In section 2 we identified the market utility function (up to linear trans-

formations) as
R

U(R) = K(x)dx
Ry

where K is the pricing kernel for returns. It is defined by

K(z) = q(x)/p(x)

in terms of the historical and risk neutral densities p and ¢ of returns. Any
utility function (both cardinal and ordinal) can be defined up to a linear
transformation, therefore we have identified the utility functions sufficiently.
In section 3.3 we proposed different models for estimating the historical den-
sity. In figure 6 we show the pricing kernels resulting from the different
estimation approaches for the historical density. The figure shows that all
three kernels are quite similar: They have the same form, the same charac-
teristic features like e.g. the hump and differ in absolute terms only a little.
This demonstrates the economic equivalence of the three estimation methods
on this day and this equivalence holds also for the other days. In the fol-
lowing we work with historical densities that are estimated by the observed
returns.

Besides the pricing kernel and the utility function we consider also the
risk attitudes in the markets. Such risk attitudes are often described in terms
of relative risk aversion that is defined by

U//(R)
RRA(R) = —R 0(R)
Because of U’ = ¢K = ¢q/p for a constant ¢ the relative risk aversion is also
given by

_ pd(R)p(R) — q(R)p'(R) _ _
RRA(R) = —R (B

P*(R) p(R)  q(R)

Hence, we can estimate the relative risk aversion from the estimated histori-
cal and risk neutral densities.

/q(R) _ R (p’(R) Q’(R)) _

In figure 7 we present the empirical pricing kernels in March 2000, July
2002 and June 2004. The dates represent a bullish, a bearish and an unsettled
markets, see table 2. All pricing kernels have a proclaimed hump located
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Figure 6: Empirical pricing kernel on 24/03/2000 (bullish market).

at small profits. Hence, the market utility functions do not correspond to
standard specification of utility functions. We present the pricing kernels
only in regions around the initial DAX (corresponding to a return of 1) value
because the kernels explode outside these regions. This explosive behaviour
reflects the typical pricing kernel form for losses. The explosion of the kernel
for large profits is due to numerical problems in the estimation of the very
low densities in this region. But we can see that in the unsettled market the
kernel is concentrated on a small region while the bullish and bearish markets
have wider pricing kernels. The hump of the unsettled market is also narrower
than in the other two regimes. The bullish and bearish regimes have kernels
of similar width but the bearish kernel is shifted to the loss region and the
bullish kernel is located mainly in the profit area. Moreover, the figures show
that the kernel is steeper in the unsettled markets than in the other markets.
But this steepness cannot be interpreted clearly because pricing kernels are
only defined up to a multiplicative constant.

The pricing kernels are the link between the relative risk aversion and
the utility functions that are presented in figure 8. These utility functions
are only defined up to linear transformations, see section 2. All the utility
functions are increasing but only the utility function of the bullish market is
concave. This concavity can be seen from the monotonicity of the kernel, see
figure 7. Actually, this non convexity can be attributed to the quite special
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Figure 7: Empirical pricing kernel on 24/03/2000 (bullish), 30/07/2002
(bearish) and 30/06/2004 (unsettled or sidewards market).

form of the historical density which has two modes on this date, see figure
4. Hence, we presume that also this utility function has in general a region
of convexity. The other two utility functions are convex in a region of small
profits where the bullish utility is almost convex. The derivatives of the
utility functions cannot be compared directly because utility functions are
identified only up to multiplicative constants. But we can compare the ratio
of the derivatives in the loss and profit regions for the three dates because the
constants cancel in these ratios. We see that the derivatives in the loss region
are highest in the bullish and lowest in the bearish market and vice versa in
the profit region. Economically these observations can be interpreted in such
a way that in the bullish market a loss (of 1 unit) reduces the utility stronger
than in the bearish market. On the other hand, a gain (of 1 unit) increases
the utility less than in the bearish market. The unsettled market shows a
behaviour between these extreme markets. Hence, investors fear in a good
market situation losses more than in a bad situation and they appreciate
profits in a good situation less than in a bad situation.

Finally, we consider the relative risk aversions in the three market regimes.
These risk aversions are presented in figure 9, they do not depend on any
constants but are completely identified. We see that the risk aversion is
smallest in all markets for a small profit that roughly corresponds to the
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Figure 8: Market utility functions on 24,/03/2000 (bullish), 30/07/2002
(bearish) and 30/06/2004 (unsettled or sidewards market).

initial value plus a riskless interest on it. In the unsettled regime the market
is risk seeking in a small region around this minimal risk aversion. But then
the risk aversion increases quite fast. Hence, the representative agent in this
market is willing to take small risks but is sensitive to large losses or profits.
In the bullish and bearish regimes the representative agent is less sensitive to
large losses or profits than in the unsettled market. In the bearish situation
the representative agent is willing to take more risks than in the bullish
regime. In the bearish regime the investors are risk seeking in a wider region
than in the unsettled regime. In this sense they are more risk seeking in the
bearish market. In the bullish market — on the other hand — the investors
are never risk seeking so that they are less risk seeking than in the unsettled
market.

The estimated utility functions most closely follow the specification pro-
posed by Friedman & Savage (1948). The utility function proposed by Kah-
neman & Tversky (1979) consists of one concave and one convex segment and
is less suitable for describing the observed behaviour, see figure 10. Both util-
ity functions were proposed to account for two opposite types of behaviour
with respect to risk attitudes: buying insurance and gambling. Any utility
function that is strictly concave fails to describe both risk attitudes. Most
notable examples are the quadratic utility function with the linear pricing
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Figure 9: Relative risk aversions on 24/03,/2000 (bullish), 30/07/2002 (bear-
ish) and 30/06/2004 (unsettled or sidewards market).

kernel as in the CAPM model and the CRRA utility function. These func-
tions are presented in figure 10. Comparing this theoretical figure with the
empirical results in figure 7 we see clearly the shortcoming of the standard
specifications of utility functions to capture the characteristic hump of the
pricing kernels.

4 Individual investors and their utility func-
tions

In this section, we introduce a type of utility function that has two regions
of different risk aversion. Then we describe how individual investors can be
aggregated to a representative agent that has the market utility function.
Finally, we solve the resulting estimation problem by discretization and es-
timate the distribution of individual investors.

4.1 Individual Utility Function

We learn from figures 10 and 7 that the market utility differs significantly
from the standard specification of utility functions. Moreover, we can observe
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from the estimated utility functions 8 that the loss part and the profit part of
the utility functions can be quite well approximated with hyperbolic absolute
risk aversion (HARA) functions, k =1, 2:

UM(R) = ax(R — cx)* + by,

where the shift parameter is ¢;. These power utility functions become in-
finitely negative for R = ¢;, and can be extended by U®(R) = —oo for
R < ¢, i.e. investors will avoid by all means the situation when R < ¢y.
The CRRA utility function has ¢, = 0.

We try to reconstruct the market utility of the representative investor by
individual utility functions and hence assume that there are many investors
on the market. Investor ¢ will be attributed with a utility function that
consists of two HARA functions:

( ) —0Q, if RSCl

{max{U(R, 01,¢1);U(R,02,¢0,)}, if R>c¢
where U(R,0,c) = a(R —¢)” +b, 0 = (a,b,7)", co; > c1. Ifa; = ay = 1,
by = by =0 and ¢; = ¢co = 0, we get the standard CRRA utility function.

The parameters #; and 6, and ¢; are the same for all investors who differ
only with the shift parameter c¢,. #; and c¢; are estimated from the lower
part of the utility market function, where all investors probably agree that
the market is “bad”. 6 is estimated from the upper part of the utility
function where all investors agree that the state of the world is “good”. The
distribution of ¢y uniquely defines the distribution of switching points and is
computed in section 4.3. In this way a bear part Upeq(R) = U(R, 61, ¢1) and
a bull part Uy, (R) = U(R, 61, cy) can be estimated by least squares.

The individual utility function can then be denoted conveniently as:
ULR) = {maX{Ubem:(R); Upar(R,c)}, if R>cp )

—00, if R<e.

Switching between Upe,, and Uy, happens at the switching point z, whereas
Upear(2) = Upuu(z,¢;). The switching point is uniquely determined by ¢; =
ca2;. The notations bear and bull have been chosen because Uy, is activated
when returns are low and Uy,; when returns are high.

Each investor is characterised by a switching point z. The smoothness
of the market utility function is the result of the aggregation of different
attitudes. U4 characterizes more cautious attitudes when returns are low
and Uy, describes the attitudes when the market is booming. Both Upeg,
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Figure 11: Market utility function (solid) with bearish (dashed) and bullish
(dotted) part of an individual utility function 5 estimated in the unsettled
market of 30/06/2004.

and Uy, are concave. However, due to switching the total utility function
can be locally convex.

These utility functions are illustrated in figure 11 that shows the results
for the unsettled market. We observe/estimate the market utility function
that does not correspond to standard utility approaches because of the convex
region. We propose to reconstruct this phenomenon by individual utility
functions that consist of a bearish part and a bullish part. While the bearish
part is fixed for all investors the bullish part starts at the switching point that
characterizes an individual investor. By aggregating investors with different
switching points we reconstruct the market utility function. We describe the
aggregation in section 4.2 and estimate the distribution of switching points
in section 4.3. In this way we explain the special form of the observed market
utility functions.

4.2 Market Aggregation Mechanism

We consider the problem of aggregating individual utility functions to a rep-
resentative market utility function. A simple approach to this problem is to
identify the market utility function with an average of the individual utility
functions. To this end one needs to specify the observable states of the world
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in the future by returns R and then find a weighted average of the utility
functions for each state. If the importance of the investors is the same, then
the weights are equal:

U(R) =+ S U(R),

where N is the number of investors. The problem that arises in this case is
that utility functions of different investors can not be summed up since they
are incomparable.

Therefore, we propose an alternative aggregation technique. First we
specify the subjective states of the world given by utility levels u and then
aggregate the outlooks concerning the returns in the future R for each per-
ceived state. For a subjective state described with the utility level U, such
that

u = Ul(Rl) = UQ(RQ) =...= UN(RN)

the aggregate estimate of the resulting returns is

Ra(w) = 5 YU W) )

if all investors have the same market power. The market utility function Uy,
resulting from this aggregation is given by the inverse Rzl.

In contrast to the naive approach described at the beginning of this sec-
tion, this aggregation mechanism is consistent under transformations: if all
individual utility functions are changed by the same transformation then the
resulting market utility is also given by the transformation of the original
aggregated utility. We consider the individual utility functions U; and the
resulting aggregate Uj;. In addition, we consider the transformed individ-
ual utility functions U?(x) = ¢{U;(x)} and the corresponding aggregate U¢,
where ¢ is a transformation. Then the aggregation is consistent in the sense
that U?, = ¢(Up;). This property can be seen from

1 N

(U3 () = 5 D_(U) " (w)

1 —1g -1
= Uy {07 (u)}

The naive aggregation is not consistent in the above sense as the following
example shows: We consider the two individual utility functions Uy (x) = \/x
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and Us(z) = +/x/2 under the logarithmic transformation ¢ = log. Then the
naively aggregated utility is given by Uy (z) = 3y/x/4. Hence, the trans-
formed aggregated utility is ¢p{Up(z)} = log(3/4) + log(x)/2. But the ag-
gregate of the transformed individual utility functions is

U () = 5 {los(v/) + log(v/z/2)}
1 1
= Qlog (5) + log(x)/2.
This implies that U](\Z # ¢(Uypr) in general.

This described aggregation approach can be generalized in two ways: If
the individual investors have different market power then we use the corre-
sponding weights w; in the aggregation (6) instead of the uniform weights.
As the number of market participants is in general big and unknown it is bet-
ter to use a continuous density f instead of the discrete distributions given
by the weights w;. These generalizations lead to the following aggregation

where U (-, z) is the utility function of investor z. We assume in the follow-
ing that the investors have utility function of the form described in section
4.1. In the next section we estimate the distribution of the investors who are
parametrized by z.

4.3 The Estimation of the Distribution of Switching
Points

Using the described aggregation procedure, we consider now the problem of
replicating the market utility by aggregating individual utility functions. To
this end, we choose the parametric utility functions U(+, z) described in 4.1
and try to recover with them the market utility Uy;. We do not consider
directly the utility functions but minimize instead the distance between the
inverse functions:

win | [ U7, 2) )z — Uy g g

where P is image measure of the historical measure P on the returns under
the transformation Upy;. As the historical measure has the density p the
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transformation theorem for densities implies that P has the density

p(u) = p{Uy' (u)} /U AU (w)}.

With this density the functional to be minimized in problem (7) can be stated

/(/U_1<“’Z)f(2>dz—UA?(U))Q p(u) du

:/(/U*w@ﬂ@@—mﬂwfp%ﬁ@ﬂﬂhWﬁ@ﬂw
= / ( / U™ (u, 2) f(2)dz — UMl(u>)2 p{Uxy' ()} Uy () du

because the derivative of the inverse is given by (¢7')'(y) = 1/¢'{9 ' (v)}.
Moreover, we can apply integration by substitution to simplify this expression
further

([ <Z>dZ—UM1<U>>2 PV @MUY (u) du
-[(/ U_l{UM(w),Z}f(Z>dZ—m)2 p(a) di

For replicating the market utility by minimizing (7) we observe first that
we have samples of the historical distribution with density p. Hence, we can
replace the outer integral by the empirical expectation and the minimization
problem can be restated as

n

min % 3 </ G {Un (), 2} f(2)d= — xi>2

i=1

where z; ..., x, are the samples from the historical distribution and g = U~
Replacing the density f by a histogram f(z) = Z}]:1 0;1p,(z) with bins
B;, hj = |Bj]|, the problem is transformed into

n J 2
1 o
35 a0,
i=1 \j=1
where () = [, 9{Uni(as), 2}z
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Hence, the distribution of switching points can be estimated by solving
the quadratic optimization problem

n J 2
1 L
min — > {E g<luj>9j_xi} )
7 i=1 \j=1

s.t. 9]' > O,

Such quadratic optimization problems are well known and their solutions
can be obtained using standard techniques, see e.g. Mehrotra (1992) or
Wright (1998).

We present in figures 12-14 the estimated distribution of switching points
in the bullish (24,/03/2000), bearish (30/07/2002) and unsettled (30/06/2004)
markets. The distribution density f was computed for 100 bins but we
checked the broad range of binwidths. The width of the distribution varies
greatly depending on the regularisation scheme, for example as represented
by the number of bins. The location of the distribution maximum, however,
remains constant and independent from the computational method.

The maximum and the median of the distribution, i.e. the returns at
which half of investors have bearish and bullish attitudes, depend on the year.
For example, in the bullish market (Figure 12) the peak of the switching
point distribution is located in the area of high returns around R = 1.07
for half a year. On the contrary, in the bearish market (Figure 13) the
peak of switching points is around R = 0.93. This means that when the
market is booming, such as in year 1999-2000 prior to the dot-com crash,
investors get used to high returns and switch to the bullish attitude only
for comparatively high R’s. An overall high level of returns serves in this
respect as a reference level and investors form their judgements about the
market relative to it. Since different investors have different initial wealth,
personal habits, attitudes and other factors that our model does not take into
account, we have a distribution of switching points. In the bearish market
the average level of returns is low and investors switch to bullish attitudes
already at much lower R’s.
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Figure 12: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 24
March 2000, a bullish market.
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Figure 13: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 30
July 2002, a bearish market.
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Figure 14: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 30
June 2004, an unsettled market.

5 Conclusion

We have analyzed in this paper empirical pricing kernels in three market
regimes using data on the German stock index and options on this index.
In the bullish, bearish and unsettled market regime we estimate the pric-
ing kernel and derive the corresponding utility functions and relative risk
aversions.

In the unsettled market of June 2004, the market investor is risk seeking
in a small region around the riskless return but risk aversion increases fast for
high absolute returns. In the bullish market of March 2000, the investor is on
the other hand never risk seeking while he becomes more risk seeking in the
bearish market of July 2002. Before the stock market crash in 1987 FEuropean
options did not show the smile and the Black-Scholes model captured the data
quite well. Hence, utility functions could be estimated at that times by power
utility functions with a constant positive risk aversion. Our analysis shows
that this simple structure does not hold anymore and discusses different
structures corresponding to different market regimes.

The empirical pricing kernels of all market regimes demonstrate that the
corresponding utility functions do not correspond to standard specifications
of utility functions including Kahneman and Tversky (1979). The observed
utility functions are closest to the general utility functions of Friedman and
Savage (1948). We propose a parametric specification of these functions,
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estimate it and explain the observed market utility function by aggregating
individual utility functions. In this way, we can estimate a distribution of
individual investors.

The proposed aggregation mechanism is based on homogeneous investors
in the sense that they differ only with switching points. Future research can
reveal how nonlinear aggregation procedures could be applied to heteroge-
neous investors.
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Copulae: An Overview
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Abstract: Normal distribution of the residuals is the traditional assumption in the classical
multivariate time series models. Nevertheless it is not very often consistent with the real data.
Copulae allows for an extension of the classical time series models to nonelliptically distributed
residuals. In this paper we apply different copulae to the calculation of the static and dynamic
Value-at-Risk of portfolio returns and Profit-and-Loss function. In our findings copula based
multivariate model provide better results than those based on the normal distribution.

Keywords: copula; multivariate distribution; value-at-risk; multivariate dependence.
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1 Introduction

Understanding the joint distribution of high dimensional data is fundamental in applied
statistics. The conventional procedure to model joint distributions is to approximate them
with multivariate normal distributions.

That implies, however, that the dependence structures is reduced to a fixed type. Prede-
termining a multivariate normal distribution means that the tails of the distribution are
not too heavy, the distribution is symmetric and that the dependence between variables
is linear.

Empirical evidence for these assumptions are barely verified and an alternative model
is needed, with more flexible dependence structure and arbitrary marginal distributions.
These are exactly the characteristics of copulae.

Copulae are very useful for modelling and estimating multivariate distributions. The
flexibilty of copulae basically follows from Sklar’s Theorem, which says that each joint
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distribution can be “decomposed” into its marginal distributions and a copula C' “re-
sponsible” for the dependence structure:

F(ar...,20) = C{Fi(n1)...., Falza)}.
Two important factors for practical applications rely on this theorem:

1. The construction of multivariate distributions may be done in two independent
steps: the specification of marginal distributions - not necessarily identical - and
the specification of a dependence structure. Copulae “couple together” the marginal
distributions into a multivariate distribution with the desired dependence structure.

2. Joint distributions can be separately estimated from a sample of observations: the
marginal distributions are estimated first, the dependence structure later.

The copula approach gives us more freedom than the normality assumptions, marginal
distributions with asymmetric heavy tails (typical for financial returns) can be combined
with different dependence structures, resulting in multivariate distributions (far different
from the multivariate normal) that better describe the empirical characteristics of financial
returns distribution.

Moreover, copulae allow for dynamical modelling and adaption to portfolios, different
copulae with distinct properties can be associated to different portfolios according to
their specific dependence structures. Furthermore, copulae may change as time evolves,
reflecting the evolution of the dependence between financial assets.

The structure of this paper is as follows. In the next section we give a short review of
the copula theory. In the Section 3 we deals with different copula classes used in the
calculation. The simulation and estimation techniques are provided in Sections 4 and
5 respectively. The first static problem on the calculation of the Value-at-Risk for the
portfolio return has been discussed in Sections 6 and in the beginning of Section 7. Sub-
sections 7.1 and 7.2 deals with the dynamic estimation of the Value-at-Risk for the Profit
and Loss function. The paper is finished with summary.

2 Copulae

The description of copulae for measuring and modelling dependence with its main proper-
ties is the subject of this section. The term copula goes back to the works of Sklar (1959)
were it was first mentioned. There are a lot of different equivalent definitions that could
define the copula, but the most general is the following one.

Definition 1 (Copula) A d-dimensional copula is a d-dimensional distribution with all
uniform marginal distributions.

Note that by considering random variables X, ..., X; with univariate distribution func-
tions Fly,,..., Fx, and the random variables U; = F,(X;), ¢ = 1,...,d uniformly dis-
tributed in [0,1], a copula may be interpreted as the joint distribution of the marginal
distributions.



Copulae gained popularity through Sklar’s (1959) work where the term was first coined.
However, many results had already been proved by Hoeffding (1940) and Hoeffding (1941),
who could have been the founder of a copula theory, if he had considered the stochasti-
cally more intuitive dependency over the unit cube [0, 1]* rather than over [—1/2,1/2]* as
he had done. Copulae allow marginal distributions to be separated from the dependency
structure. Sklar’s theorem connects copulae with distribution functions such that from
the one side every distribution function can be “decomposed” into its marginal distri-
bution and (at least) one copula and from the other side a (unique) copula is obtained
from “decoupling” every (continuous) multivariate distribution function from its marginal
distributions.

Theorem 1 (Sklar’s theorem) Let F' be a multivariate distribution function with mar-
gins F,..., Fy, then a copula C exists such that

F(x1,...,2q) = C{Fi(x1),..., Fp(xq)}, x1,...,24€ R.

If F; are continuous fori =1,...,d then C is unique. Otherwise C is uniquely determined

on Fi(R) x -+ x Fy(R).

Conversely, if C' is a copula and FY, ..., F; are univariate distribution functions, then the
function F' defined above is a multivariate distribution function with margins Fi, ..., Fy.

The representation in Sklar’s Theorem can be used to construct new multivariate distri-
butions by changing either the copula function or marginal distributions. For an arbitrary
continuous multivariate distribution we can determine its copula from the transformation

Cut, ... uq) = F{F (w), ..., Fy (ua)},  wi,...,uq €[0,1], (1)
where F; ! are inverse marginal distribution functions.
Since the copula function is a multivariate distribution with uniform margins, it follows
that the copula density can be determined in the usual way
90w, - . ug)
Oup...0ug '

Being armed with Theorem 1 and (??) we can write the density function f(-) of the
d-variate distribution F' in terms of copula as follows

c(ug, ..., uq) U, ..., uqg € [0,1],

d
flr, .. zg) = c{Fi(z1), ... . Fa(wa)} [ filwi), 21, za €R.
=1

A detailed discussion with proofs and deep mathematical treatment can be found in Joe
(1997) and Nelsen (2006). A practical introduction is given in Deutsch and Eller (1999).
Embrechts, McNeil and Straumann (1999b) discuss restrictions of the copula technique
and their relation to the classical correlation analysis.

3 Copula Classes

Since there are plenty of functions satisfying the assumption of Theorem 1 they should
be classified by construction and properties. Here we consider several main classes, like
simplest, elliptical, Archimedean copulae and hierarchical Archimedean copulae.



3.1 Simplest Copulae

Special cases, like independence and perfect positive or negative dependence can be repre-
sented by copulae. If d random variables X, ..., X, are stochastically independent from
Theorem 1, then the structure of such a relationship is given by the product copula

H(ul,...,ud):Huj. (2)

Copulae are bounded, this means that for all u = (uy,...,uq)" € [0,1]%
Wiuy, ... uq) < Clug, ... uq) < M(ug, ..., ug)

where
M(uy, ..., ug) = min(uy, ..., uq)

is called the Fréchet-Hoeffding lower bound and

d
W(uy,...,uq) = max (Zui—dle,O)

=1

is the Fréchet-Hoeffding upper bound. While M is not a copula for d > 2, W is a copula
for all d. Both structures represent the perfect negative and perfect positive dependence.
From this observation we may conclude that an arbitrary copula C' reflects dependence
which lies between the perfect negative and positive one.

3.2 Elliptical Copulae

The elliptical copulae are derived from the elliptical distributions using Theorem 1. In
the bivariate case one has that a bivariate copula is elliptical if, and only if, it is equal to
its associated copula

C(Ul,UQ,Q) = C(Ul,UQ,Q)
u tuy—1+C(1 —uy, 1 —ug,0), up,uy €10,1].

The most prominent examples of elliptical copulae are Gaussian and t-copula.

Gaussian Copula

The Gaussian copula represents the dependence structure of the multivariate normal dis-
tribution, that means that normal marginal distributions are combined with a Gaus-
sian copula to form multivariate normal distributions. The combination of non-normal
marginal distributions with a Gaussian copula results in meta-Gaussian distributions, i.e.,
distributions where only the dependence structure is Gaussian.



To obtain the Gaussian copula, let X = (X,..., X;)" ~ Ng(p,¥) with X; ~ N(u;,0;)
for j=1,...,d. A copula C exists:

F(z1,...,2q) = C{Fi(z1), ..., Fa(za)},

where F} is the distribution function of X; and F' the distribution function of X. Let
Y; = Ty(X;), Tj(x) = (x — p;)/oj. Then Y; ~ N(0,1) and Y = (Y7,...,Yy) " ~ Ny(0,¥)
where W is the correlation matrix associated with ¥. A copula C$%, called Gaussian
copula exists as follows:

Fy(y1, ..., ya) = Cga{q)(yl)a---aq)(yd)}- (3)

An explicit expression for the Gaussian copula is obtained by rewriting (3) with u; =
D(y;):

Cy(urs . ug) = Fy {7 (w), .., @7 (ug)}
o~ () >~ (ua) p . 1
= / / (2m) 2 |V |2 exp(—§rT\I/’1r)dr1 .odrg.

o0

The density of the Gaussian copula is given by

§ouy, .. ug) = | V|2 exp {—%U(qf—l - Jd)g}. (4)

Student’s t-Copula

The t-copula, containing the dependence structure from the multivariate ¢-distribution,
may be obtained in a similar way.

Let X = (X1,...,X9)" ~tq(v, 1, ) and Y = (Y1,...,Yy) " ~ t4(v,0,¥) where ¥ is the
correlation matrix associated with ¥. The unique copula from Y is the Student’s t-copula
Cly. Foru = (uy,... ,ug)’ €[0,1]%, the Student’s t-copula is given by

C’;\I,(ul, cooug) = toft) uy),t  (ug)}

where ¢! is the quantile function from the univariate ¢-distribution and t,,w the distribu-
tion function of Y.

The density of the t-copula is given by

c,t/’\l,(ul,...,ud) = t”’qj{t;( ooty (U )}

H_] b {ty Huy)}t
) (M) (1 fTemg
ey I 0 1)

= v




3.3 Archimedean Copulae

As opposed to elliptical copulae, Archimedean copulae are not constructed using Theorem
1, but are related to Laplace transforms of univariate distribution functions. Let IL denote
the class of Laplace transforms which consists of strictly decreasing differentiable functions
Joe (1997), i.e.

L= {¢:[0;00) = [0,1][$(0) = 1, ¢(00) = 0; (~1)'¢" > 0; j =1,..., 00}.
The function C': [0,1]¢ — [0,1] defined as
Cluy,...,ug) = ¢{d (u) + -+ (ug)}, u,...,uq €[0,1]

is a d-dimensional Archimedean copula, where ¢ € IL and is called the generator of
the copula. It is straightforward to show that C(uy,...,uy) satisfies the conditions of
Definition 1.

Some d-dimensional Archimedean copulae are presented below.

Frank (1979) copula, 0 < 0 < oc.

The first popular Archimedean copula is the so called Frank copula, which is the only
elliptical Archimedean copula. Its generator and copula functions are

o(x,0) = 0 log{l —(1—ee™}, 0<0<o0, z€]0,00).

| et -1
Co(u,...,ug) = ~3 log |1+ F{lexp(—G) - 1}d71

The dependence becomes maximal when 8 tends to infinity and independence is achieved
when 6 = 0.

Gumbel (1960) copula, 1 < 6 < occ.

The Gumbel copula is frequently used in financial applications. Its generator and copula
functions are

o(x,0) = exp{—z?}, 1<60< o0, ze€0,00)

Co(u,...,uq) = exp —{Z(—loguj)e}

j=1

Consider a bivariate distribution based on the Gumbel copula with univariate extreme
value marginal distributions. Genest and Rivest (1989) showed that this distribution is
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the only bivariate extreme value distribution based on an Archimedean copula. Moreover,
all distributions based on Archimedean copulae belong to its domain of attraction under
common regularity conditions. In contrary to the elliptical copulae, the Gumbel cop-
ula leads to asymmetric contour diagrams. The Gumbel copula shows stronger linkage
between positive values, however, it also shows more variability and more mass in the
negative tail.

For 6 > 1 this copula allows for the generation of dependence in the upper tail. For
0 — 1, the Gumbel copula reduces to the product copula and for § — oo we obtain the
Fréchet-Hoeffding upper bound.

Clayton (1978) copula, —1 <6 < oo, 6 # 0.

The Clayton copula which, in contrast to the Gumbel copula, has more mass on the lower
tail, and less on the upper. The generator and copula function are

d(x,0) = (Br+1)7, —1<6<o00,0+£0,z¢c]0,00),

Cg(ul,...,ud) = {(Zuj9>—d+1} .

The Clayton copula is one of few copulae that has a simple explicit form of density for
any dimension

d d (07" +d)
colur, ... uq) = [ [{1+ (j — Do}u; Y (Z ui® —d+ 1> .
j=1 J=1

As the parameter 0 tends to infinity, dependence becomes maximal and as # tends to zero,
we have independence. As § — —1, the distribution tends to the lower Fréchet bound.

3.4 Hierarchical Archimedean Copulae

A recently developed flexible method is provided by hierarchical Archimedean copulae
(HAC). The special, so called fully nested case of the copula function is:

Clu, ..., uq) Ga-1{dzly 0 Gaa(.. [05" 0 dr{e) (1) + &1 (ua)}
92551(“3)] +ooet ¢¢;—12(Ud—1)) + 9255—11(%)}

= Ga1[ogly 0 C{or, ..., da—a})(ua,. .. ua1) + & (uq)]

+

for ¢! 0 pa_; € L*, i < j, where

L*={w:[0;00) — [0,00) | w(0) =0,
w(oo) = o0; (=1) 1w >0;j=1,... 00}

In contrast to the Archimedean copula, the HAC defines the whole dependency structure
in a recursive way. At the lowest level the dependency between the first two variables is

7



modelled by a copula function with the generator ¢y, i.e. z; = C(uy, up) = {7 (u1) +
#7 " (uz)}. At the second level an another copula function is used to model the dependency
between z; and us, etc. Note that the generators ¢; can come from the same family and
they differ only through the parameter or, to introduce more flexibility, they come from
different generator families. As an alternative to the fully nested model, we can consider
copula functions, with arbitrary chosen combinations at each copula level. Okhrin, Okhrin
and Schmid (2009a) provide several methodologies in determining the structure of the
HAC from the data. The case of d = 3 which we use further in applications is quite
a simple one. If 75,73 and 73 are Kendall’s 7, pairwise rank correlation coefficients,
we join together those X; and X; such that max; jef123y, ixj = 7ij. Next we introduce
z= 6{131()(1), Fy(X;)}. Estimation techniques will be considered later. Variable X;-, i* €
{1,2,3}/{i, 7} is joined afterwards with the z.

Whelan (2004) provides tools for generating samples from Archimedean copulae, Savu
and Trede (2006) derived the density of such copulae and Joe (1997) proves their positive
quadrant dependence (see Theorem 4.4). Okhrin et al. (2009a) and Okhrin, Okhrin and
Schmid (2009b) considered methods for determining the optimal structure of the HAC,
provided asymptotic theory for the estimated parameters and derive theoretical properties
of this copula family.

4 Monte Carlo Simulation

The Monte-Carlo simulation is often a single reliable solution to many financial problems.
Within the simulation study the random variables are generated from some prescribed
distributions. There are numerous methods of simulating from copula-based distributions,
see Frees and Valdez (1998), Whelan (2004), Marshall and Olkin (1988),McNeil (2008),
Embrechts, McNeil and Straumann (1999), Frey and McNeil (2003), Devroye (1986), etc.
Here we focus on two of them, on the conditional inversion method and on the method
proposed by Marshall and Olkin (1988) for Archimedean copulae with generalizations to
hierarchical Archimedean copulae by McNeil (2008).

4.1 Conditional Inverse Method

The simulation from d pseudo random variables with joint distribution defined by a copula
C and d marginal distributions F}, j = 1,...,d, may follow different techniques.

Defining the copula j-dimensional marginal distribution C; for j = 2,...,d—1as Cj(uy, ..., u;) =
C(uy,...,uj,1,...,1) and the derivative of C; with respect to the first j — 1 arguments
as

; 10 (u, .., u
iy (ur,. .. u5) = i )

0U1, c. ,an_l
the probability P(U; < u;, Uy = uy,...,Uj—1 = uj_1) can be written as

Cj(ul + Aul, cee U -+ Auj,l,uj) — C’j(ul, c. ,Uj)
Aug,...,Auj_1—0 Aul, R ,Auj_l

= 471(U1, Ce ,Uj).



Thus, the conditional distribution A(w;) (given fixed uy,...,u;_1) is a function of the
ratio of derivatives:

A(UJ) = P(Uj S Uyj | U1 = Uy, .. .,Uj,1 = Ujfl)
C§_1<U1,...,Uj)

C’;:%(Ul, s 7“]’*1).

The generation of d pseudo random numbers with given marginal distributions Fj, j =
1,...,d and dependence structure given by the copula C' follows the steps:

1. generate iid vy, ..., vy ~ U|0, 1].
2. for j =1,...,d calculate u; = A~'(v;).

3. set x; = F; ' (uy).

4.2 Marshal-Olkin Method

The Marshal-Olkin method is developed for the simulations only from Archimedean copu-
lae. The idea this approach is based on the fact that the Archimedean copulae are derived
from Laplace transforms. Let M be a univariate cdf of a positive random variable (so
that M(0) = 0) and ¢ be the Laplace transform of M, i.e.

o(s) = / exp{—sw}dM(w), s > 0.
0
For any univariate distribution function F', a unique distribution G exists:
Fa) = [ G () aM(a) = o~ loz Gla).

Considering d different univariate distributions Fi, ..., Fy, we obtain

Cluy, ... ug) = /OOOHG? dM(a) = ¢ [Z ¢ {Fi(u) }

which is a multivariate distribution function. By replacing the product of univariate
distributions G; for i = 1,...,d with an arbitrary copula function R we get:

Clun, . ug / / R(GS, .. G2 dM(a).

Note that for the classical Archimedean copula R is equal to a product copula.

One proceeds with the following three steps to make a draw from a distribution described
by an Archimedean copula:

1. generate an observation u from M;

2. generate an observations (vy,...,vy) from R;

9



3. the generated vector is computed by x; = G;l(v;/ “).
This method works faster than the conditional inverse technique. The drawback is that
the distribution M can be determined explicitly only for a few generator functions ¢ like,
for example for the Frank, Gumbel and Clayton families. The same problem arises in
the case of hierarchical copulae, where ¢; o ¢, +11 should satisfy the properties of generator
functions.

5 Copula Estimation

The estimation of a copula based multivariate distribution involves both the estimation
of the copula parameters ¢ and the estimation of the margins F}, 7 = 1,...,d, however all
the parameters from the copula and from the margins could be also estimated in one step.
The properties and goodness of the estimator of 6 heavily depend on the estimators of

F;, 5 =1,...,d. We distinguish between a parametric and a nonparametric specification
of the margins. If we are interested only in the dependency structure, the estimator
of {d1,...,d4,0} should be independent of any parametric models for the margins. In

practical applications, however, we are interested in a complete distribution model and,
therefore, parametric models for margins are preferred.

For nonparametrically estimated margins, one may show the consistency and asymp-
totic normality of maximum-likelihood (ML) estimators and derive the moments of the
asymptotic distribution. The ML estimation can be performed simultaneously for the pa-
rameters of the margins and of the copula function. Alternatively, a two-stage procedure
can be applied, where we estimate the parameters of margins at the first stage and the
copula parameters at the second stage.

Let X be a d-dimensional random variable with parametric univariate marginal distri-
butions Fj(z;;6;), j = 1,...,d. Further let a copula belong to a parametric family
C = {Cy,0 € ©}. The distribution of X can be expressed as

F(zy,...,2q) = C{F(21;01),. .., Fa(xg;6q); 0}

and its density as
d
flan,. o xa; 61, 00,0) = o Fi(w1561), ., Fa(aa; 6a); 03 [ | £(5:6;)
=1

where c(-) is the copula density (??). For a sample of observations {x;}1 |, z; = (T14,. .., Tas) "
and a vector of parameters a = (d1,...,04,0)" € R4 the likelihood function is given by

T
L(a;zy,...,27) = Hf(l"l,t, s Zg 301, ..., 04,0)

and the log-likelihood function by

T
oz, ... xp) = Z log c{F1(x14;61), ..., Fa(xays; 04); 0}

t=1

d
ZlogfJ x5 05).

1 j=1

Mﬂ

+
t

10



The vector of parameters a = (01, ...,d4,6) " contains d parameters d; from the marginals
and the copula parameter 6. All these parameters can be estimated in one step. For
practical applications, however, a two step estimation procedure is more efficient.

5.1 FML — Full Maximum Likelihood Estimation

In the Maximum Likelihood estimation method (also called full mazimum likelihood), the
vector of parameters « is estimated in one single step through

appr = arg max ()

The estimates app;, = (51, o 0~)T solve
(00]Ddy, . ..,00]D04,00/00) = 0.

Following the standard theory on ML estimation it is efficient and asymptotically normal.
However, it is often computationally demanding to solve the system simultaneously.

5.2 IFM — Inference for Margins

In the IFM (inference for margins) method, the parameters d; from the marginal distri-
butions are estimated in the first step and used to estimate the dependece parameter 6
in the second step:

1. for j = 1,...,d the log-likelihood function for each of the marginal distributions are

T
05(6;) =Y log fi(w;; 6;)
t=1

and the estimated parameters

o; = argmax £;(5;)
5
2. the pseudo log-likelihood function

T
000,61,...,04) = Z log c{Fi(x14;01), ..., Fa(zas;0q); 0}

t=1

is maximised over 6 to get the dependence parameter estimate 0.

The estimates &py = (51, . ,5d, é)T solve
(001001, . ..,0Ly]Ddq,00]00) = 0.

Detailed discussion on this method could be found in Joe and Xu (1996) Note, that this
procedure does not lead to efficient estimators, however, as argued by Joe (1997) the loss
in the efficiency is modest. The advantage of the inference for margins procedure lies in
the dramatic reduction of the numerical complexity. Detailed discussion on the inference
for margins procedure can be found in Joe and Xu (1996). Note, that this method does
not lead to efficient estimators, however, as argued by Joe (1997) the loss in the efficiency
is modest.
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5.3 CML — Canonical Maximum Likelihood

In the CML (canonical mazimum likelihood) method, the univariate marginal distributions
are estimated through the edf F. The asymptotic properties of the multistage estimators
of 6 do not depend explicitly on the type of the nonparametric estimator, but on its
convergence properties. For j =1,....,d

T
~ 1
t=1

The pseudo log-likelihood function is
T A
5(0) = Zlog C{Fl(l'l’t), e Fd<xd,t); 6}
t=1

and the copula parameter estimator Ocnrr is given by

- argmax £(0).
0

Notice that the first step of the IMF and CML methods estimates the marginal distribu-
tions. After marginals are estimated, a pseudo sample {u;} of observations transformed
in the unit d-cube is obtained and used in the copula estimation. As in the IFM, the semi-
parametric estimator 0 is asymptotically normal under suitable regularity conditions.

6 Asset Allocation

We illustrate the extension of the classical asset allocation problem to copula-based mod-
els. We consider an investor with a CRRA utility function U(z) = (1—+) 2’7 willing to
allocate his wealth to d risky assets. We denote the d-dimensional vector of d asset prices

by S; = (Si4,- .- ,det)T and their continuously compounded asset returns at time ¢ + 1
by Xiv1 = (X141, -, Xaer1) where X,y = log Sy1 — log Sy The vector of portfolio
weights by w = (wy, ... ,wd)T. Let F;;q1 be the d-dimensional distribution function of

X1 with the mean p;,1 and covariance matrix ;1. The aim is to forecast F;,; for the
time period ¢ + 1 using the data up to time ¢. The estimator is denoted by Ft+1 with the
mean fi;,1, the covariance matrix i\)t+1 and the density ftﬂ. The objective of the investor
is to maximise the expected utility at the time point ¢t 4+ 1. This leads to the optimisation
problem

max EEHU(l +w' Xppq). (5)
In the case of no short sales constraint we set W = {w € [0,1]¢ : w1 = 1} else we set
W ={w e R?: w'l =1}. The conditional expectation in (5) implies that we integrate
the utility with respect to the forecasted distribution Fi,;. This reduces the problem (5)
to the problem

gleai/}v(/ e / U(]_ + U}TXt+1)ft+1(Xt+1)dXt+1.
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There are several alternative parametric approaches to modelling Fj.q. Let 4,41 de-
note the diagonal matrix containing only the main diagonal of ¥,,;. Then >,,; =
ZilﬁrlRtHZ;/il, where R;.; denotes the correlation matrix. A standard approach is
to define the model of the asset returns in the form

S0, (Xe = ) ~ Na(0, Ry), (6)
where the conditional moments y; and ¥; are modelled by a GARCH type process.

To introduce a copula-based distribution into the asset allocation we deviate from the
normality assumption and assume that F' = C(F},..., F;). Thus (7) is replaced by:

z;tl/Q(Xt — ) ~C(Fy, ..., Fy) (7)

with some given functional forms of the copula and the marginal distributions. Similarly
as above, the parameters of the conditional moments of the copula and of the marginal
distributions are estimated using the ML method.

In Patton (2004) the investor allocates his wealth between small cap and large cap stocks
(i.e. d = 2). The conditional mean is defined as linear function of the lagged asset
returns and additional explanatory variables. The conditional variance is stated in the
TARCH(1,1) form. The rotated Gumbel copula with skewed ¢ margins are used to con-
struct the bivariate distribution of the residuals. This model reveals the highest likelihood
function and the lowest AIC and BIC criterion. It is concluded that unconstrained port-
folios derived from the normality assumption performed worse in 9 of 10 different trading
strategies compared to the Gumbel model.

7 Value-at-Risk of the Portfolio Returns

If the return of the stock i at time point ¢ is denoted as X;; then the portfolio value V' at
time t is defined recursively as

d
Vi=Viy (1 +) wl-Xit> :
=1

where w; fort =1, ..., d are the corresponding portfolio weights. Ruled with this notation
the portfolio return is then given by

v, d
Rtp: ‘/ttl _1:ZXthZ
N 1=1

In our study we consider the case of equally weighted portfolio, i.e. w; = % fori=1,....,d.
The portfolio return is the random variable and its distribution strongly depends on the
underlying distribution of the indices.

The distribution function of R, dropping the time index, is given by
Fr, (&) = P(R, <) (8)

One of the main advantages of copulae is the fact that they allow flexible modelling of
the tail behaviour of multivariate distributions. Since the tail behaviour explains the
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simultaneous outliers of asset returns, it is of special interest in risk management. The
Value-at-Risk of a portfolio at level « is defined as the lower a-quantile of the distribution
of the portfolio return, i.e.

VaR(a) = ngl(a). (9)

The VaR is a reasonable measure of risk if we assume that the returns are elliptically
distributed. Moreover, the assumption of ellipticity implies that minimising the variance
in the Markowitz problem also minimises the VaR, the expected shortfall and any other
coherent measure of risk. However, this statement is false in the non-elliptical case.
Moreover, regarding the effect of diversification the variance is the smallest (highest)
for perfect negative (positive) correlation of the assets. This also holds for the VaR in
the elliptical case, however, not for the non-elliptical distributions. This implies that
for copula based distribution the VaR should be used with caution and its computation
should be awarded more attention. Detailed description of the VaR estimation procedure
at prescribed level a can be found in Giacomini and Hérdle (2005).

Our aim is to determine such ¢ that P(R, < &) = a. Note that

R = U)TX Z sz Z wz 2

where F; denotes the marginal distributions of individual asset returns, u; = F;(X;) ~
Ul0,1] for all i = 1,...,d and uy,...,uq ~ C. The copula C' defines the dependency
structure between the asset returns. This implies that

Fr,(§) =P(R, <) = /uc(ul,...,ud)dul...dud, (10)

with
U={0.1"" % [0,ug(€)]}, ual) = {s/wd—zwz (ui) fwa}. (11)

For fixed «, the VaR is determined by solving (10) numerically for . Direct multidi-
mensional numerical integration is a tedious task which can be substantially simplified by
using the Monte-Carlo integration. For this purpose we have to generate random samples
from C' using the methods described in Section 4.

In the empirical study we consider four countries Canada, Germany, U.S. and U.K. from
the MCSI index and eleven models of the joint multivariate distribution of indices, which
include t-copula, Gaussian copula, simple exchangeable Archimedean copula, binary HAC
and aggregated binary HAC, with normally and ¢-distributed margins. As a benchmark
we use the empirical VaR, based purely on the real data.

In the cases where margins are t-distributed, we consider ¢-distribution with three degrees
of freedom, while estimated t-distributions for this data are t51¢3, t3420, £3.023, t2.879.
Multivariate t-copula in this case has eight degrees of freedom. Let us consider the
simulation procedure, where on the first stage we estimate the covariance matrix ¥ =
{3 }ij=1,..4, mean vector i = {fi; }i=1,.q from the real data set and assume, or estimate,

the marginal distributions F(-) (in our case they are normally or ¢-distributed), for i =
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1,...,d. Next we show how to sample uy,...,us € U from (11). First we simulate the
vector u of a dimension d — 1

Uty ..., Ug—1 ™ U(O,l)

Based on u we consider z = {z;};,=1_4—1 which for normal margins is equal to

xi:qfl(ui) in—i—ﬁ“ izl,...,d—l,

and for ¢ margins is

v, — 24
xizt—l(ui),/ S+, i=1,....d—1,
V’L

where v;, 1 = 1,...,d are degrees of freedom for marginal distributions. This transfor-
mation returns a normally or ¢-distributed vector x with the same parameters as the real
data set.

Theoretically, in further steps we have to find bounds for the last stock (or index) to
gain the portfolio & which is the a quantile. Thus, we separate our maximally reachable
portfolio return £ into two parts

a1, .
£ = Z EXi + EXda
i=1

then the return of the last index given the return of the portfolio is

where the upper bound for our last value in vector u is then
d—1
= F, <d§ — Zx) .
i=1
Value u}; is uniformly distributed on [0, 1] and we simulate the last element of the vector
ug ~ U(0,uf).
As mentioned above, the goal is to compute (10) which for this setting is
FRp / / ul,..., du1 dd
[0,1]9=1 x [0,u]

Then by solving Fg, (§) = a we find R, = VaR(a). In our study we solve the equations
numerically using the golden section method. The integration is performed using the
Monte-Carlo technique

— 1 &

P(Rp S 5) = _Zc(ulia"'7udi)
Ns
where n, is equal to 10%, « is set to be 1% and the values wy;, ..., uqg for i = 1,...,n,

are simulated using the method described above. The precision of R is set at 0.00015.
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Table 1: VaR for the 4-dimensional data set

N ts
N -0.0194 | -0.0210
tg -0.0199 | -0.0213
AC -0.0174 | -0.0154
HAChinary -0.0187 | -0.0194
HACbmary aggr. -0.0188 -0.0194
Empirical -0.0235

The final results for all methods are given in Table 1. In the left-hand column we provide
the models with normal margins and in the right-hand column with ¢ margins. From top
to bottom we have five different copula functions like Gaussian, ¢, simple Archimedean
copula, binary HAC and binary aggregated HAC. The empirical VaR which is at the bot-
tom of the table is derived from the empirical quantile. Bold fonts in the table emphasize
those results which are closest in absolute value to the empirical one in each column, and
italic fonts the worst cases in absolute value.

As can be seen from Table 1, the results which are the best in absolute value are those
returned by the model with ¢-copula and ¢t margins. The model based on the simple
Archimedean copula is the worst one. This is quite natural, since this copula needs
exchangeability between variables, which is not observable here (see previous section).
HAC with binary as well as aggregated binary structures, unfortunately, give us results
that are not much worse compared to t-copula and Gaussian copula. For VaR(0.01) the
t-copula with ¢ margins provided the best result.

7.1 VaR of the P&L

This sub-section introduces the main assumptions and steps necessary to estimate the
VaR from a Profit and Loss of a linear portfolio using copulae. Static and time-varying
methods and their VaR performance evaluation through backtesting are described below.

In this section w is the portfolio, which is represented by the number of assets for a
specified stock in the portfolio, w = {wy,...,ws}, w; € Z. The value V; of the portfolio
w is given non-recursively by

d
Vi= ijsj,t (12)
j=1
and the random variable
Lt+1 = (Vi+1 - V;t)

d
= > w8 {exp(Xje41) — 1}

j=1

also called profit and loss (P&L) function, expresses the absolute change in the portfolio
value in one period.
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Similarly to the previous case, the distribution function of L, dropping the time index, is
given by

Fr(x) =P(L < z). (13)

As usual the Value-at-Risk at level a from a portfolio w is defined as the a-quantile from
FLI

VaR(a) = F; Y(a). (14)

It follows from (13) that F, depends on the d-dimensional distribution of log-returns F.
In general, the loss distribution Fr, depends on a random process representing the risk
factors influencing the P&L from a portfolio. In the present case log-returns are a suitable
risk factor choice. Thus, modelling their distribution is essential to obtain the quantiles
from Fry.

Contrary to the previous section, here log-returns are assumed to be time-dependent, thus
a log-returns process {X;} can be modelled as

Xjt = Wit + 05151

where e, = (e14,...,€44) " are standardised i.i.d. innovations with E[e;,] = 0 and E[e3,] =
1 for j =1,...,d; F; is the available information at time ¢:

i = E[Xj¢ | Fid]
is the conditional mean given F;_; and

02, = B[( X0 — p0)? | Fooi]

is the conditional variance given F;_;. The innovations ¢ = (e1,...,&4)" have joint
distribution
F.(e1,...,eq) = Co{Fi(e1),..., Falea)}, (15)

where Cj is a copula belonging to a parametric family C = {Cy,0 € O}, and F}, j =
1,...,d are continuous marginal distributions of ¢;. To obtain the Value-at-Risk in this
set up, the dependence parameter and distribution function from residuals are estimated
from a sample of log-returns and used to generate P&L Monte Carlo samples. Their
quantiles at different levels are the estimators for the Value-at-Risk.

For a portfolio w on d assets and a sample {z;,}{_;, j = 1,...,d of log-returns, the
Value-at-Risk at level « is estimated according to the following steps:

1. Estimation of residuals &; from the prespecified time-series model;

2. Specification and estimation of marginal distributions F}(é,);

3. Specification of a parametric copula family C and estimation of dependence param-
eter 0;

4. Generation of Monte Carlo sample of innovations € and losses L, for the forecast on
the one day;
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5. Estimation of m(a), the empirical a-quantile from the forecasted L.

The application of the (static) procedure described above on sliding windows of a time
series {z;,}7_, delivers a sequence of parameters for a copula family. Hence the denomi-
nation time-varying copulae.

Using moving windows of size 7 in time ¢

{xt}?:s—w-‘rl
for s = r,..., T, the procedure described in the section above generates the time series
{VaR;}L, of Value-at-Risk and {6;}._, dependence parameters estimates.

Afterwards Backtesting is used to evaluate the performance of the specified copula family
C. The estimated values for the VaR are compared with the true realisations {l;} of the
P&L function, an ezceedance occuring for each [, smaller than Va\Rt(a). The ratio of the
number of exceedances to the number of observations gives the exceedances ratio &:

T
A 1 .
a = T——T E I{lt < VaRt(oz)}.

t=r

The estimation methods described before are used on two portfolio, the first composed of
2 positions, the second of 3 positions. Different copulae are used in static and dynamic
setups and their VaR performance is compared based on backtesting.

In this section, the Value-at-Risk of portfolios for two companies (Tyssenkrupp (TKA) and
Volkswagen (VOW) from 01.12.1997 to 03.07.2007) is computed using different copulae.

Assuming the log-returns {X;,} follow a GARCH(1,1) process we have
Xjt = Hjp + 0je€j
where

2 2 2
07 = wj+ ;o5 g+ Bi( Xy — 1)

andw >0,a; >0, 3 >0, o; + 3; < 1.

The fit of a GARCH(1,1) model to the sample of log returns {x;}-,, X; = (X14, Xo4) ",
T = 2500, gives the estimates w;, &; and Bj, as in Table 2, and empirical residuals
{é,}L,, where é, = (£14,€2,)". The marginal distributions are specified as normal, i.e.,
¢; ~ N(ji;,6;) with parameters 0; = (ji;, 5;) estimated from the data.

Figure 1 displays the Kernel density estimator of the residuals and of the normal den-
sity, estimated with an Quartic kernel. The dependence parameters are estimated for
different copula families (Gaussian, Clayton and Gumbel). Residuals £ and fitted copulae
(Gaussian, Clayton and Gumbel) are plotted in Figure 2.

In the dynamic approach, the empirical residuals are sampled in moving windows with
a fixed size r = 250, {&};_, ., for s = r,...,T. The time series from estimated
dependence parameters for each copula family are in Figure 3.

The same portfolio compositions as in the static case are used to generate P&L samples.
The series of estimated Value-at-Risk and the P&L function for selected portfolios are
plotted in Figure 4, 5 and 6.
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i) wj Q; Bj BL KS
MRK | 7.392e-04  4.588¢-06  3.333e-02  9.572e-01  0.1285 1.255e-11
(3.672e-04)  (1.557e-06) (6.225¢-03) (8.568¢-03)
TKA 7.845e-04 3.549e-06 7.087e-02 9.252e-01 0.1360 4.189e-05
(3.308¢-04)  (1.149¢-06)  (9.837¢-03)  (9.915¢-03)
VOW 9.720e-04 1.239e-05 9.303e-02 8.830e-01 1.927e-05 3.422e-06
(3.480e-04)  (2.699¢-06) (1.301e-02) (1.566¢-02)

Table 2: Fitting of univariate GARCH(1,1) to asset returns. The standard deviation
of the parameters are given in parentheses. The last two columns provide the p-values
of the Box-Ljung test (BL) for autocorrelations and Kolmogorov-Smirnov test (KS) for
normality applied to the residuals

L
o o |
[=)
<
o <
o
@ |
o g,
> >
N N
=) A
51 -
Q| <
e T T T T T T T e T T T T T T
-8 -6 -4 -2 0 2 4 -4 -2 0 2 4 6
X X

Fig. 1. Kernel density estimator of the residuals and of the normal density from TKA
(left) and VOW (right). Quartic kernel, h = 2.786n 2.

Fig. 2. Residuals € and fitted copulae: Gaussian (p = 0.462), Clayton (0 = 0.880),
Gumbel (6 = 1.439).
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X
Fig. 3: Dependence parameter 9, estimated using the IFM method, Gaussian (upper

panel), Gumbel (middle panel) and Clayton (lower panel) copulae, moving window (w =
250).
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VaR - Clayton Copula
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Fig. 4: %7—2(@) (solid line), P&L (dots) and exceedances (crosses), o = 0.05, & = 0.0424.
P&L samples generated with Clayton copula.

VaR - Gumbel Copula

P&L
-0.41 2.32 5.06 7.8
L1 Il Il

-3.15

-5.89

-8.63

T T T T T T T T T T
1997 1999 2000 2001 2002 2003 2004 2005 2006 2007

time

Fig. 5: @(a) (solid line), P&L (dots) and exceedances (crosses), a = 0.05, & = 0.0508.
P&L samples generated with Gumbel copula.
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VaR - Normal Copula
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P&L
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time

Fig. 6: @(a) (solid line), P&L (dots) and exceedances (crosses), o = 0.05, & = 0.0464.
P&L samples generated with Gaussian copula.

7.2 3-dimensional Portfolio

In this section, the Value-at-Risk of portfolios composed of 3 positions (Merck (MRK),
Tyssenkrupp (TKA) and Volkswagen (VOW) from 01.12.1997 to 03.07.2007) is computed
using a time-varying simple Gumbel copula and time-varying hierarchical Archimedean
copula with generators from the Gumbel family.

The estimation of the parameters of the 3-dimensional copula was done by the IFM
method. Concerning the HAC, we determine the structure under each window and re-
estimate the parameters.

The fit of a GARCH(1,1) model to the sample of log returns {X; }7_;, X; = (X1, Xoy, X34) ',
T = 2500, gives the estimates w;, &; and Bj, as in Table 2, and empirical residuals {&;}L,,
where &, = (€14,94,€3,)", as in upper right part of Figure 8. The marginal distributions
are specified as normal, €; ~ N(fi;,5;) with the estimated parameters 5j = (f15,0;).

The estimated Value-at-Risk at level a together with the P&L function are plotted in
Figure 9 for the simple Archimedean Copula (AC) and on 10 for the HAC. As can be seen
from the backtesting results for different VaR levels, HAC outperforms the simple AC in
all levels. This implies the necessity of dependence flexibility in modelling of log-returns.

8 Summary

To conclude, a summary of the main findings of this paper. We calculated the Value-
at-Risk for the static and dynamic portfolio constructed by different methods. Three
different copulae - Gumbel, Clayton and Gaussian - were used to estimate the Value-at-
Risk from the two- (MRK and TKA) and three- (MRK, TKA and VOW) dimensional
portfolios. From the time series of estimated dependence parameters, we can verify that
the dependence structure is represented in a similar form with all copula families, as in
Figure 3.
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Fig. 7: Dependence parameter é, estimated using the IFM method, Clayton (upper panel)
and Gumbel (lower panel) copulae, moving window (w = 250).

Using backtesting results to compare the performance in the VaR estimation, we remark
that on average the Clayton and Gaussian copulae overestimate the VaR. In terms of
capital requirement, a financial institution computing VaR with those copulae would be
requested to keep more capital aside than necessary to guarantee the desired confidence
level.

The estimation with Gumbel copula, on another side, produced results close to the de-
sired level. Gumbel copulae seems to represent specific data dependence structures (like
lower tail dependencies, relevant to explain simultaneous losses) better than Gaussian and
Clayton copulae.

References

Clayton, D. G. (1978). A model for association in bivariate life tables and its application in
epidemiological studies of familial tendency in chronic disease incidence, Biometrika
65: 141-151.

Deutsch, H. and Eller, R. (1999). Derivatives and Internal Models, Macmillan Press.

Devroye, L. (1986). Non-uniform Random Variate Generation, Springer Verlag, New
York.

Embrechts, P., McNeil, A. J. and Straumann, D. (1999). Correlation and dependence in
risk management: Properties and pitfalls, RISK pp. 69-71.

23



et

i -.g:'

DGk [
Ty

#]

>
o
[}

Fig. 8: Scatterplots from GARCH residulas (upper triangular) and from residuals mapped
on unit square by the cdf (lower triangular).

24



VaR - Gumbel 3D Copula
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Fig. 9: 17(17%(04) and P&L (dots), estimated with 3-dimensional simple Gumbel copula,

a; = 0.05 (&4 = 0.0612), as = 0.01 (G = 0.0232), a3 = 0.005 (&3 = 0.016) and
ays = 0.001 (&4 = 0.006).
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CONFIDENCE BANDS IN
QUANTILE REGRESSION

WOLFGANG K. HARDLE AND SONG SONG
Humboldt-Universitat zu Berlin

Let (X1,Y}),...,(Xn,Yy) be independent and identically distributed random vari-
ables and let /(x) be the unknown p-quantile regression curve of ¥ conditional on X.
A quantile smoother [, (x) is a localized, nonlinear estimator of /(x). The strong uni-
form consistency rate is established under general conditions. In many applications
it is necessary to know the stochastic fluctuation of the process {/,; (x) —{(x)}. Using
strong approximations of the empirical process and extreme value theory, we con-
sider the asymptotic maximal deviation supg< < |/n(x) —{(x)|. The derived result
helps in the construction of a uniform confidence band for the quantile curve /(x).
This confidence band can be applied as a econometric model check. An economic
application considers the relation between age and earnings in the labor market by
means of parametric model specification tests, which presents a new framework to
describe trends in the entire wage distribution in a parsimonious way.

1. INTRODUCTION

In standard regression function estimation, most investigations are concerned with
the conditional mean regression. However, new insights about the underlying
structures can be gained by considering other aspects of the conditional distribu-
tion. The quantile curves are key aspects of inference in various economic prob-
lems and are of great interest in practice. These describe the conditional behavior
of a response variable (e.g., wage of workers) given the value of an explanatory
variable (e.g., education level, experience, occupation of workers) and investigate
changes in both tails of the distribution, other than just the mean.

When examining labor markets, economists are concerned with whether dis-
crimination exists, e.g., for different genders, nationalities, union status, etc. To
study this question, we need to separate out other effects first, e.g., age, educa-
tion, etc. The crucial relation between age and earnings or salaries belongs to
the most carefully studied subjects in labor economics. The fundamental work
in mean regression can be found in Murphy and Welch (1990). Quantile
regression estimates could provide more accurate measures. Koenker and Hallock
(2001) present a group of important economic applications, including quantile
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Universitdt zu Berlin, is gratefully acknowledged. We thank the editor and two referees for concrete suggestions on
improving the manuscript and restructuring the paper. Their valuable comments and suggestions are gratefully ac-
knowledged. Address correspondence to Song Song, Institute for Statistics and Econometrics, Humboldt-Universitit
zu Berlin, Spandauer Strafle 1, 10178 Berlin, Germany; e-mail: songsong @cms.hu-berlin.de.
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Engel curves, and claim that “quantile regression is gradually developing into a
comprehensive strategy for completing the regression prediction.” Besides this,
it is also well known that a quantile regression model (e.g., the conditional me-
dian curve) is more robust to outliers, especially for fat-tailed distributions. For
symmetric conditional distributions the quantile regression generates the nonpara-
metric mean regression analysis because the p = 0.5 (median) quantile curve co-
incides with the mean regression.

As first introduced by Koenker and Bassett (1978), one may assume a para-
metric model for the p-quantile curve and estimate parameters by the interior
point method discussed by Koenker and Park (1996) and Portnoy and Koenker
(1997). Similarly, we can also adopt nonparametric methods to estimate condi-
tional quantiles. The first one, a more direct approach using a check function such
as a robustified local linear smoother, is provided by Fan, Hu, and Troung (1994)
and further extended by Yu and Jones (1997, 1998). An alternative procedure
is first to estimate the conditional distribution function using the double-kernel
local linear technique of Fan, Yao, and Tong (1996) and then to invert the con-
ditional distribution estimator to produce an estimator of a conditional quantile
by Yu and Jones (1997, 1998). Beside these, Hall, Wolff, and Yao (1999) pro-
posed a weighted version of the Nadaraya—Watson estimator, which was further
studied by Cai (2002). Recently Jeong and Hirdle (2008) have developed the
conditional quantile causality test. More generally, for an M-regression function
that involves quantile regression as a special case, the uniform Bahadur repre-
sentation and application to the additive model are studied by Kong, Linton, and
Xia (2010). An interesting question for parametric fitting, especially from labor
economists, would be how well these models fit the data, when compared with
the nonparametric estimation method.

Let (X1,Y1),(X2,Y2),...,(X,,Y,) be a sequence of independent and iden-
tically distributed (i.i.d.) bivariate random variables with joint probability den-
sity function (pdf) f(x, y), joint cumulative distribution function (cdf) F(x,y),
conditional pdf f(y|x), f(x|y), conditional cdf F(y|x), F(x|y) for ¥ given X
and X given Y, respectively, and marginal pdf fx(x) for X, fy(y) for Y where
x € J and J is a possibly infinite interval in R? and y € R. In general, X may
be a multivariate covariate, although here we restrict attention to the univariate
case and J = [0, 1] for convenience. Let /(x) denote the p-quantile curve, i.e.,
1(x) = Fy(p).

Under a “check function,” the quantile regression curve /(x) can be viewed as
the minimizer of L(6) &ef E{p,(y —0)|X = x} (with respect to &) with p, (1) =
pul{u € (0,00)} — (1 — p)ul{u € (—o0,0)}, which was originally motivated by
an exercise in Ferguson (1967, p. 51) in the literature.

A kernel-based p-quantile curve estimator /,,(x) can naturally be constructed
by minimizing:

Ly@)=n""Y pp(Yi —0)Kn(x — X;) @)
i=1



1182 WOLFGANG K. HARDLE AND SONG SONG

with respect to € € I where [ is a possibly infinite, or possibly degenerate, inter-
val in R and K}, (u) = h~'K (u/ h) is a kernel with bandwidth 4. The numerical
solution of (1) may be found iteratively as in Lejeune and Sarda (1988) and Yu,
Lu, and Stander (2003).

In light of the concepts of M-estimation as in Huber (1981), if we define

w(u) as
ypu) = pl{u € (0,00)} = (1 = p)1{u € (=00, 0)}
=p— 1{” € (—O0,0)},

l,,(x) and I(x) can be treated as a zero (with respect to 6) of the function

H,0,0) 07" Ky(x = Xy (Vi —0), )
i=1
~ def
A,x) & /R FOy) (v —0)dy, 3)
correspondingly.

To show the uniform consistency of the quantile smoother, we shall reduce the
problem of strong convergence of [, (x) — [(x), uniformly in x, to an application
of the strong convergence of H,(#, x) to H(0, x), uniformly in x and 0, as given
by Theorem 2.2 in Hérdle, Janssen, and Serfling (1988). It is shown that under
general conditions almost surely (a.s.)

sup |l (x) — [(x)| < B* max {(nh/(logn))_l/z,h&}, as n — o,
xeJ

where B* and o are parameters defined more precisely in Section 2.
Note that without assuming K has compact support (as we do here) under sim-
ilar assumptions Franke and Mwita (2003) obtain

In(x) = Fy4(p).

i Kn(x = Xi)1(Y; <y)
;’121 Kp(x —X;)

Fylx) =

b

sup |1, (x) — 1(x)] < B**{(nh/(s,, 1ogn))—1/2+h2}, asn — 00

xelJ

for a-mixing data where B** is some constant and s,,n > 1 is an increasing
sequence of positive integers satisfying 1 < s, < n/2 and some other criteria.
Thus {nh/(logn)}~"? < {nh/(s,logn)}~ /2.

By employing similar methods to those developed in Hardle (1989) it is shown
in this paper that

P ((2510gn)1/2 [supr(x)l{l,, () = 1)}/ A(K)V? —d,,] < z)
xelJ

— exp{—2exp(—z)}, asn— oo 4
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from the asymptotic Gumbel distribution where r(x), J, A(K), d, are suitable
scaling parameters. The asymptotic result (4) therefore allows the construction
of (asymptotic) uniform confidence bands for /(x) based on specifications of the
stochastic fluctuation of /,(x). The strong approximation with Brownian bridge
techniques that we use in this paper is available only for the approximation of the
two-dimensional empirical process. The extension to the multivariate covariable
can be done by partial linear modeling, which deserves further research.

The plan of the paper is as follows. In Section 2, the stochastic fluctuation of the
process {/,,(x) —[(x)} and the uniform confidence band are presented through the
equivalence of several stochastic processes, with a strong uniform consistency rate
of {l,,(x) —1(x)} also shown. In Section 3, in a small Monte Carlo study we inves-
tigate the behavior of /,(x) when the data are generated by fat-tailed conditional
distributions of (Y| X = x). In Section 4, an application considers a wage-earning
relation in the labor market. All proofs are sketched in the Appendix.

2. RESULTS

The following assumptions will be convenient. To make x and X clearly distin-
guishable, we replace x by # sometimes, but they are essentially the same.

(A1) The kernel K (-) is positive and symmetric, has compact support [—A, A],
and is Lipschitz continuously differentiable with bounded derivatives.

(A2) (nh)~'%(logn)*>? — 0, (nlogn)'?h3? — 0, (nh3)~'(ogn)> < M,
where M is a constant.

(A3) h=3(logn) f|y|>an fr(y)dy = O(1), where fy(y) is the marginal density
of Y and {a,};° ; is a sequence of constants tending to infinity as n — oo.

(A4) infie;lg(@)] = g0 > 0, where (1) = 0 E{y (Y —0)|t}/30lo=i(1y - fx (1) =
FU@)e} fx @)

(A5) The quantile function /() is Lipschitz twice continuously differentiable
forallt e J.

(A6) 0 <my < fx(t) < M| < o0, t € J; the conditional densities f(-]y), y €
R, are uniform local Lipschitz continuous of order a (ulL-a) on J, uniformly in
yeR, withO <a < 1.

Define also

a?(t) = E[y*(Y —1()}1] = p(1 = p),

Hy() = (nh)™" Y, K{(t — X))/ Ryp (Y = 1(1)},

i=1

Dy(t)=0(nh)™" Y K{(t = X;)/ h}y{Y; — 0}/30lo=i()

i=1

and assume that o 2(¢) and fx (r) are differentiable.
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Assumption (A1) on the compact support of the kernel could possibly be re-
laxed by introducing a cutoff technique as in Csoérgo and Hall (1982) for den-
sity estimators. Assumption (A2) has purely technical reasons: to keep the bias
at a lower rate than the variance and to ensure the vanishing of some nonlinear
remainder terms. Assumption (A3) appears in a somewhat modified form also
in Johnston (1982). Assumptions (A5) and (A6) are common assumptions in ro-
bust estimation as in Huber (1981) and Hérdle et al. (1988) that are satisfied by
exponential and generalized hyperbolic distributions.

For the uniform strong consistency rate of /,(x) —I(x), we apply the result
of Hirdle et al. (1988) by taking f(y) = w(y—6), yeR,for0 e I =R, g =
g2 = —1, 71(y) = max{0, —y (y — 0)}, y2(y) = min{0, —y (y — 0)}, and 2 = 00
to satisfy the representations for the parameters there. Thus from Hirdle et al.’s
Theorem 2.2 and Remark 2.3(v), we immediately have the following lemma.

LEMMA 2.1. Let I-Nln @,x) and I-NI(H,x) be given by (2) and (3). Under
Assumption (A6) and (nh/logn)_l/2 — o0 through Assumption (A2), for some
constant A* not depending on n, we have a.s. as n — o0

sup sup }1-7,,(9, x)— H(, x)| < A" max{(nh/logn)_l/z, h } 5)
Oel xeJ

For our result on /,,(-), we shall also require

inf | [ yly =10+ e} dF(s10)| > lel,  for Je] <1, ®
X

where J; and g are some positive constants; see also Hardle and Luckhaus (1984).
This assumption is satisfied if there exists a constant ¢ such that f(I(x)|x) > g/p,
xel.

THEOREM 2.1. Under the conditions of Lemma 2.1 and also assuming (6),
we have a.s. as n — 00

sup |1, (x) —1(x)| < B*max{(nh/logn)—l/Z’h&} -
xeJ

with B* = A*/mq not depending on n and m a lower bound of fx(t). If addi-
tionally a > {log(y/logn) —log(~/nh)}/logh, it can be further simplified to

suply (x) —1(x)| < B*{(nh/logn)~/?}.
xeJ
THEOREM 2.2. Leth=n"" + <o < 1 A(K) = [, K*(u)du, and
1
d, = (26logn)'/? + (26logn)~'/? {log {c] (K)/x 1/2} + E{1og5+1oglogn} ,

ifc1(K) ={K*(A)+ K*(—A)}/{2A(K)} > 0;
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d, = (261ogn)'/? —1/2
e gn) '~ +(20logn)™ /“log{c2(K) /27 }

otherwise with ¢;(K) = ffA{K’(u)}zdu/{Ll(K)}. Then (4) holds with

r(x) = (k)" FL() M fx (x)/ p(1 = p)}/2.

This theorem can be used to construct uniform confidence intervals for the
regression function as stated in the following corollary.

COROLLARY 2.1. Under the assumptions of Theorem 2.2, an approximate
(1 —a) x 100% confidence band over [0, 1] is

12 .

LO£@n) ™2 p=p)aK)/ f®} O {di+ () @otogn T2},

where c(a) =log2—log|log(l —a)| and fx @), f{l(t) |t} are consistent estimates

Jor fx (o), fL(@D)]t}.

In the literature, according to Fan et al. (1994, 1996), Yu and Jones (1997,
1998), Hall et al. (1999), Cai (2002), and others, asymptotic normality at inte-
rior points for various nonparametric smoothers, e.g., local constant, local linear,
reweighted Nadaraya—Watson methods, etc., has been shown:

V(L (t) = 1(t)} ~ N(0, 7%(r))

with 72(t) = A(K) p(1 — p)/[ fx () f>{l(2)|t}]. Note that the bias term vanishes
here as we adjust 4. With 7 (¢) introduced, we can further write Corollary 2.1 as

Ly(t) £ (nh)_l/z{dn +c(a)(2510gn)_1/2}f(t).

Through minimizing the approximation of asymptotic mean square error, the
optimal bandwidth /), can be computed. In practice, the rule of thumb for £, is
given by Yu and Jones (1998):

1. Use ready-made and sophisticated methods to select optimal bandwidth
hmean from conditional mean regression, e.g., Ruppert, Sheather, and Wand
(1995);

2. hy=[p(- )/ (p)N'/3 - himean with ¢, @ as the pdf and cdf of a
standard normal distribution

Obviously the further p lies from 0.5, the more smoothing is necessary.

The proof is essentially based on a linearization argument after a Taylor series
expansion. The leading linear term will then be approximated in a similar way
as in Johnston (1982) and Bickel and Rosenblatt (1973). The main idea behind
the proof is a strong approximation of the empirical process of {(X;, ¥;)!_,} by a
sequence of Brownian bridges as proved by Tusnady (1977).
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As 1,(t) is the zero (with respect to ¢) of H,(0,1), it follows by applying
second-order Taylor expansions to H, (@, t) around /(¢) that

(1) = 1(t) = {Hn(t) — EH, (1)} /q (t) + Ry (1), ®)
where {H,(t) —E H,,(t)}/q(¢) is the leading linear term and
R (1) = Hy(t){q (1) — Dn(0)}/{Dn (1) - q (1)} + E H, (1) /q (1)

1
+ 5 1l (®) — (1)) (D (1)} )

A(nh)™V Y K= X0)/ Yy (Y = 1) +ra (1)}, (10)
i=1

[rn (D] < 11 (t) = 1(1)]
is the remainder term. In the Appendix it is shown (Lemma A.1) that |R,| =

sup,e s | Rn(1)] = 0, { (nhlogn)~'/2}.
Furthermore, the rescaled linear part

Y (t) = (nh) 2 {a?(t) fx ()}~

is approximated by a sequence of Gaussian processes, leading finally to the
Gaussian process

Y2 (H, (1) — E H, (1)}

Ys,n(t)=h—‘/2/K{(t—x)/h}dW(x). a1

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain asymp-
totically the Gumbel distribution.
We also need the Rosenblatt (1952) transformation,

T(x,y)={Fxpy(xly), Fr(»)},

which transforms (X;,Y;) into 7'(X;,Y;) = (X}, Y/) mutually independent uni-
form random variables. In the event that x is a d-dimensional covariate, the trans-
formation becomes

T(x1,x2, ..., %4, ) ={Fx, 1y x11y)s Fxoly(21x1, ¥) ooy Fxylxg_t,ox1,y

(xXklxa—1,...,x1,¥), Fy (y)}. 12)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be applied
to obtain the following lemma.

LEMMA 2.2. On a suitable probability space a sequence of Brownian bridges
B,, exists such that

SUp 17, (x, ) = BalT (v, ) = O{n™"2(logn*}  as.,
xel,yeR
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where Z,(x,y) = n'/*{F,(x,y) — F(x,y)} denotes the empirical process of
{(Xi, Y}z,

For d > 2, it is still an open problem that deserves further research.

Before we define the different approximating processes, let us first rewrite (11)
as a stochastic integral with respect to the empirical process Z, (x, y):

Y (1) = {hg' (1)} ~/2 / K{(t—x)/hyy{y —1(t)}dZ,(x, ),

g =) fx ().

The approximating processes are now

You(0) = thg()™2 [ KL=/ By ly =10}z (5, ), (13)
where I, = {|y| <an}, ¢(t) = Ely*{y =1()} - 1(1y| < an)|X =1]- fx (1)

Va0 = g} [ KA =)/ Mty = 1OV dB T (. ), (14)
{B,} being the sequence of Brownian bridges from Lemma 2.2.

Vau(®) = hg@) ™2 [ KL=/ By ly = 1O} (TG, ) 15)

{W,} being the sequence of Wiener processes satisfying

Bn(x/a y/) = Wn(x/y y/) _x/y/Wn(la 1)5

Y3.(1) = {hg ()} ™2 / KL=/ By (y =1} AWT (3, ), (16)
Yan(r) = (hg (1))~ / ¢ () 2K (1 — x)/ h) dW(x), (17)
Ysa(t)=h"1/2 / K{(t —x)/ h}dW(x), (18)

{W(-)} being the Wiener process.
Lemmas A.2—A.7 in the Appendix ensure that all these processes have the same
limit distributions. The result then follows from the next lemma.

LEMMA 2.3 (Theorem 3.1 in Bickel and Rosenblatt, 1973). Let d,,, A(K), J as
in Theorem 2.2. Let

Ysn(t) = h_‘/z/K{(t —x)/h}dW(x).
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Then, as n — 00, the supremum of Ys ,,(t) has a Gumbel distribution.:

P{(Zélogn)l/2 [sup|Y5’n(t)|/{/1(K)}l/2 —dn} < z} — exp{—2exp(—2)}.
teJ

3. A MONTE CARLO STUDY
We generate bivariate data {(X;, ¥;)}?_,n = 500 with joint pdf:

flx,y)=¢ (y—Vx+2.5) 1(x € [-2.5,2.5)), 19)

9 1
=— — 9).
g(w) = 1,00) + 550 /9
The p-quantile curve /(x) can be obtained from a zero (with respect to ) of
90 (0)+ D(@/9) = 10p,

with @ as the cdf of a standard normal distribution. Solving it numerically gives
the 0.5-quantile curve /(x) = +/x + 2.5 and the 0.9-quantile curve /(x) = 1.5296+
X +2.5. We use the quartic kernel:

15
K(u)=R(1—u2>2, lul <1,

=0,  |ul> 1.

In Figure 1 the raw data, together with the 0.5-quantile curve, are displayed.
The random variables generated with probability % from the fat-tailed pdf

%go(u /9) (see eqn. (19)) are marked as squares whereas the standard normal ran-
dom variables are shown as stars. We then compute both the Nadaraya—Watson
estimator m (x) and the 0.5-quantile smoother /,(x). The bandwidth is set to
1.25, which is equivalent to 0.25 after rescaling x to [0, 1] and fulfills the require-
ments of Theorem 2.2.

In Figure 1 I(x), m} (x), and [, (x) are shown as a dotted line, dashed-dot line,
and solid line, respectively. At first sight m, (x) has clearly more variation and has
the expected sensitivity to the fat tails of f(x, y). A closer look reveals that m; (x)
for x &~ 0 apparently even leaves the 0.5-quantile curve. It may be surprising that
this happens at x &~ 0 where no outlier is placed, but a closer look at Figure 1
shows that the large negative data values at both x &~ —0.1 and x = 0.25 cause the
problem. This data value is inside the window (4 = 1.10) and therefore distorts
m} (x) for x = 0. The quantile smoother /,,(x) (solid line) is unaffected and stays
fairly close to the 0.5-quantile curve. Similar results can be obtained in Figure 2
corresponding to the 0.9 quantile (k2 = 1.25) with the 95% confidence band.
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(x), and the 0.5-quantile smoother 7, (x).

*
n

FIGURE 1. The 0.5-quantile curve, the Nadaraya—Watson estimator m
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4. APPLICATION

Recently there has been great interest in finding out how the financial returns of
a job depend on the age of the employee. We use the Current Population Survey
(CPS) data from 2005 for the following group: male aged 25-59, full-time em-
ployed, and college graduate containing 16,731 observations, for the age-earning
estimation. As is usual for wage data, a log transformation to hourly real wages
(unit: U.S. dollar) is carried out first. In the CPS all ages (25-59) are reported
as integers. We rescaled them into [0, 1] by dividing 40 by bandwidth 0.059 for
nonparametric quantile smoothers. This is equivalent to setting bandwidth 2 for
the original age data.

In Figure 3 the original observations are displayed as small stars. The local
0.5 and 0.9 quantiles at the integer points of age are shown as dashed lines,
whereas the corresponding nonparametric quantile smoothers are displayed as
solid lines with corresponding 95% uniform confidence bands shown as dashed-
dot lines. A closer look reveals a quadratic relation between age and logged
hourly real wages. We use several popular parametric methods to estimate the
0.5 and 0.9 conditional quantiles, e.g., quadratic, quartic, and set of dummies
(a dummy variable for each 5-year age group) models; the results are displayed
in Figure 4. With the help of the 95% uniform confidence bands, we can con-
duct the parametric model specification test. At the 5% significance level, we
could not reject any model. However, when the confidence level further decreases
and the uniform confidence bands get narrower, the “set of dummies” paramet-
ric model will be the first one to be rejected. At the 10% significance level,
the set of dummies (for age groups) model is rejected whereas the other two
are not. As the quadratic model performs quite similarly to the quartic one, for
simplicity it is suggested in practice to measure the log(wage)-earning relation
in mean regression, which coincides with the approach of Murphy and Welch
(1990).
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APPENDIX

Proof of Theorem 2.1 . By the definition of /,,(x) as a zero of (2), we have, for ¢ > 0,
if I,(x) >1(x)+e, then ﬁ,,{l(x) +é&,x} > 0. (A1)
Now

Hp{l(x) +&,x} < H{l(x) +&,x} +sup | Hy (0, x) — H(O,x)|. (A2)
el
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Also, by the identity H{l(x),x} = 0, the function H{l(x) + ¢, x} is not positive and has

a magnitude > mge by Assumption (A6) and (6), for 0 < ¢ < d;. Thatis, for 0 < & < Jy,

H{l(x)+e,x} < —mge. (A3)
Combining (A.1)-(A.3), we have, for 0 < & < Jy,

if I,(x) > [(x)+e, then supsup|Hy(0,x)—H(®,x)|>mge.
Oel xelJ

With a similar inequality proved for the case I, (x) < I(x)+¢, we obtain, for 0 < & < Jy,

it sup |ln(x)—1(x)| > &, then supsup|Hy(0,x)—H(©,x)| > mge. (A4
xelJ Oelxel
It readily follows that (A.4) and (5) imply (7). n

Subsequently we first show that || Ry, [|co = sup;c s | R (t)| vanishes asymptotically faster
than the rate (nhlog n)~1/2; for simplicity we will just use || - || to indicate the sup-norm.

LEMMA A.1. For the remainder term Ry (t) defined in (9) we have

I Rall = Op{ (nhlogn)=1/2}. (A.5)
Proof. First we have by the positivity of the kernel K,

-1
||Rn||<[ inf {IDn(l)I-q(t)}} {IHnll - llg = Dpll + 11 Dull - | E Hp 1}
0<r<1

£ Ol =12-{_int 1Dy} -1l
1-1ltn o<r<1 n Jnlloo,

where f,(x) = (nh) "' 3| K{(x — X;)/h}.
The desired result, Lemma A.1, will then follow if we prove

| Hall = 0p{ (ah) ™2 (togm) /2, (4.6)
lg = Dall = 0 { i)~ 10gm) =112}, A7
IE Hull = O(h?), (A8)
I =112 = 0p { (ah) =2 togm) =12, (49

Because (A.8) follows from the well-known bias calculation
EH(0)=h™" [ Ki=u)/hElyly —1O}X = ul fx () du = O(h?),
where O(hz) is independent of 7 in Parzen (1962), we have from Assumption (A2) that
IE Hull = 0p{(a) ="/ 2 (logn) = /2.
According to Lemma A.3 in Franke and Mwita (2003),

sup| Hi (1) — E Hy ()] = O{ (ah) ™2 (logm) /2 |
teJ
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and the following inequality

| Hnll < |Hn — EHyll + | E Hyl

- O{(nh)_l/z(logn)]/z} +(9p{(nh)_l/2(logn)_l/2}

=0{wh) ™" (0gm' 2},

statement (A.6) thus is obtained.

Statement (A.7) follows in the same way as (A.6) using Assumption (A2) and the
Lipschitz continuity properties of K, v, I.

According to the uniform consistency of /,, (¢) —I(t) shown before, we have

1y =11l = Op{(nh) =2 (logn) /2y,

which implies (A.9).
Now the assertion of the lemma follows, because by tightness of D, (f), infy< <1
| Dy, (1) = qo a.s. and thus

IRl = Op{(nhlogn) ™21 + || full).

Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), || || = Op(1); thus the desired
result || R, | = Op{(nhlogn)~'/2} follows. |

We now begin with the subsequent approximations of the processes Y( ,~Y5 ;.

LEMMA A.2.

1Yo, = Y10l =O{ )2 10gm?}  as.

Proof. Let ¢ be fixed and put L(y) = w{y —1I(¢)} still depending on . Using integration
by parts, we obtain

//F LO)K{(t =)/ h}dZu (x, y)
A an
= | LK@z ey
A ay
—— [ [ zat=heuydiLmk w
A
+ L(an)(an) / Zn(t = h-u, an) dK(u)
—A
A
— L(=an)(~an) / Zn(t —h -, —an) dK(u)
—A
sk { [" zya-n-ayao)

+ L(an)(an)Zn,(t —h-A,an) — L(=an)(—an) Zn(t —h - A, —an)}
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—K(=A) {/_a Zu(t+h- A, y)dL(Y) + L(an)an) Zn(t +h- A, ay)

— L(—=ap)(=an)Zy(t+h-A, _an)} .

If we apply the same operation to Y , with B,{T (x,y)} instead of Z,(x,y) and use
Lemma 2.2, we finally obtain

sup hl/zg(t)1/2|Y0’n(t) =Y ()] = O{n_l/z(logn)z} a.s. |
0<r<1
LEMMA A3. Y], — Yol = Op(h'/?).
Proof. Note that the Jacobian of 7' (x, y) is f(x,y). Hence
Vi (0) = Yo, (1) = '{g(t)h}—”z//r w{y—l(t)}K{(t—x)/h}f(x,y)dxdy"IWn(l, Dl
It follows that

HV2IY = Yl < IWa (1117172

- sup h“//r lurly —LOVK(t = x)/ B} £ (x. y) dx dy.

0<r<1

Because ||g_1/2|| is bounded by assumption, we have
RV = Yol < IWa (1, 1)] - C4 -7 /K{(z—x)/h}dx= Op(D). u
LEMMA A 4. ||Y2, —Y3,] = Op(h!/?).
Proof. The difference |Y; ,,(¢) — Y3, (¢)| may be written as
'{g(z)h}—‘/z//rn[w{y—l(z)}—w{y—l(x)}]K{(r—x)/h}dwn{T(x,y)} .

If we use the fact that / is uniformly continuous, this is smaller than
W12 15712 0p(h),
and the lemma thus follows. u

LEMMA A5. ||Yy,, — Y5, ] = Op(h!/?).

/ {M}l/z_l
g(®)

A 0 gt —hu) /2

Proof.

Y, (t) = Y5, (1) = h™1/2 K{(t —x)/ h}dW(x)

<h~12 K (u)du
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_ 1/2
K(A)W(t—hA) {M} -1
g()

{g(z+Ah)}1/2_l
g(1)

Sl,n )+ S2,n(t) + S3,n (t), say.

{g(z—Ah)}‘/z_l
8() '

a1

+h~ V2 K (=AWt +hA)

The second term can be estimated by

h=V2)1Sy.,1l S K(A)- sup |W(t—Ah)|- sup h~!
0<r<1 0<r<1

By the mean value theorem it follows that
W12 182, = Op (D).

The first term Sy , is estimated as

W28y () = h_l/i Wt —uh)K' (u)

gt —uh)\'/?
) _1} a

1 /A gt —um) Y V2 ( g'(t —uh)
'5/_AW“‘“'”K(”){ ) } { 50) }d”

= |T1,n([) - T2,n(t)|> say;

1751l < Cs ~ffA |W(t — hu)|du = Op(1) by assumption on g(t) = 02(t) - fx (). To
estimate T ,, we again use the mean value theorem to conclude that

t—uh)\'/?
sup A~ {M} —1| < Cg-lul;
0<r<1 g(1)
hence
A /
71,0l < Ce - sup Wt —hu)| K" (u)u/du = Op(1).
0<r<1/—A
Because 83 ,,(t) is estimated as S, ,, (¢), we finally obtain the desired result. n

The next lemma shows that the truncation introduced through {a,} does not affect the
limiting distribution.

LEMMA A.6. ||V, — Yo Il = Op{(logn)~1/2).

Proof. We shall only show that g'(t)~1/2h=1/2 [fp 1 wi{y —1(0)}K{(t —x)/h}dZ,
(x, y) fulfills the lemma. The replacement of g’(t) by g(¢) may be proved as in Lemma A.4
of Johnston (1982). The preceding quantity is less than 2~ 1/2 | g=1/2|| . Iy any vy =
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[()}KA{(-=x)/h}dZ(x,y)]. It remains to be shown that the last factor tends to zero at a
rate Op{(logn)_l/z}. We show first that

Va0 = (Qogm) 20712 [ty 1)K (¢ =)/ W) dZa (. v)

{lyl>an}

£0 foralls,

and then we show tightness of Vj,(¢). The result then follows:

V() = (ogm) 2 um) ™2 3 [y (Y; — 1OLAYi] > an)K (¢ = X;)/ )

i=1

—Ey{Y; —1(O(Yi| > an)K{(r — X;)/ h}]

n
= 2 Xn,t (1),
i=1

where {Xn,;(t)}l'.':l are i.i.d. for each n with EX;, ;(t) =0 for all # € [0, 1]. We then have

EXZ (1) < (logn)(nh) " Ey?(Y; —1(OYL(Y;] > an) K*{(t = X;)/ 1)

< sup K2()-(logn)(nh) T E (Y —1(0OYL(Y;| > ap).
—A<u<A

Hence

n 2
Var{V, (1)} = E{ Y Xn,t(l)} =n-EX; (1)

i=1
< s K2hTogn) [ fy(dy My,
—A<u<A {lyl>an}

where My, denotes an upper bound for 1//2. This term tends to zero by Assumption (A3).
Thus by Markov’s inequality we conclude that

Vo) 20 forallze[0,1].

To prove tightness of {V,,(t)} we refer again to the following moment condition as stated
in Lemma A.1:

E(IVa () = Va ()1 [V (t2) = Va (D1} < €'+ (1 = 11)?
c’ denoting a constant, telt,n]

We again estimate the left-hand side by Schwarz’s inequality and estimate each factor
separately:

E{(V(t) = Va(1)}* = (logn) (nh) ' E 2 P (11, Xi, Y) - 1(1Y; | > ap)
i=1

—E{Wn (@, 11, X, Y1) - 1(1Y;| > an)} |
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where Wy (1,11, X, Y;) = y{Yi = IOYKA( = X;)/ h} — y{Y; = L)} K{( — X1)/ k).

Because y, K are Lipschitz continuous except at one point and the expectation is taken
afterward, it follows that

[E{V () — Vi (17))*1"/2

< €7+ (logn) 232 —m-{/{

If we apply the same estimation to V, (#p) — V;,(t1) we finally have

1/2
fy(y)dy} .
[yI>an}
E{|Vn(t) - Vn(t1)| . |Vn(t2) - Vn(t)”

< C2(logmh ™3|t —1|[t2 — 1] x /{ )y
dap

[y1>
<C -1 |2 because 7 € [t],1,] by Assumption (A3). |

LEMMA A.7. Let A(K) = [ Kz(u)du and let {dy,} be as in Theorem 2.2. Then
(20logn) ' 2[I1¥3 4 1/ (2(K)}/? = dy]
has the same asymptotic distribution as
(201ogn) 211 Yy I AAKOY? = dy].
Proof. Y3 ,(t) is a Gaussian process with
E¥3,(1) =0
and covariance function
r3(t1, 1) = EY3 5 (1) Y3, (22)
= g™ 207 [[ 2ty =1 K i —0/h)
Ty
x K{(tp —x)/h} f(x,y)dxdy
= (8ng@) ™21 [ Py =1@) Ol dKi( =)/ 1)
r?l
x K{(tp —x)/h} fx (x)dx
= (8g @)™ 20" [ (K (1 = 0)/ MK (12 = )/

=r4(ty, 1),

where r4(t1, 1) is the covariance function of the Gaussian process Y4 ,(¢), which proves
the lemma.
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INVESTORS’ PREFERENCE: ESTIMATING AND
DEMIXING OF THE WEIGHT FUNCTION IN
SEMIPARAMETRIC MODELS FOR BIASED SAMPLES

Ya’acov Ritov and Wolfgang K. Hardle

The Hebrew University of Jerusalem and Humboldt- Universitat zu Berlin

Abstract: We consider a semiparametric model for the weight function in a biased
sample model. The object of our interest parametrizes the weight function, and
it is non-Euclidean. The model discussed is motivated by the estimation of the
mixing distribution of individual utility functions in the DAX market. We discuss
the estimation rate of different functionals of the weight functions.

Key words and phrases: Empirical pricing kernel, exponential mixture, inverse
problem, mixture distribution, risk aversion.

1. Introduction

A sample X1,..., Xy is considered biased if it is sampled from a density p
which is represented as : @)
’ _ q(z)w(z
PE) = Fofu(wdu S
Here g is some ‘natural’ pdf (probability density function) for the problem, rep-
resenting the ‘true’ underlying distribution, while w is a given weight function
that biases the sample. In a standard example, X represents the severity of
the disease, and ¢ is the density of X among patients at admission to the hos-
pital. However, it may be more convenient to take a random sample from the
population of patients who are in the hospital at a given time. If the time of hos-
pitalization is proportional to the severity of the case, then the sample is taken
from the density p, which is equal to g ‘length biased’ with w(z) = z. Vardi
(1985) was the first to systematically analyze these models; asymptotic theory
was developed in Gill, Vardi and Wellner (1988); Gilbert, Lele and Vardi (1999)
extended the model to the situation where the weight function depends on some
parameter, w(z) = w(z; f); the large sample properties were discussed in Gilbert
(2000). Equation (1.1) has some similarities to the classical choice-based sam-
ple problem, Manski and Lerman (1977), or retrospective case-control studies,
Mantel (1973). In fact one can consider the situation as if one has an infinite
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Distribution of the Switching Points (2000)
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Figure 1. The DAX data, 24/03/2000 half a year look ahead: (a) p, the
historical density; (b) g, the risk neutral density; (c) The estimate of f, the
mixing density. Figures are taken from DHM.

sample from the control group, and hence ¢ is known, and a finite sample from
the control, the biased sample. The likelihood ratio between the two is the given
w(z; f). The main difficulty we face in this paper is the particular form of w(z; f)
we have.

Technically speaking, our paper is about estimating f, the parameter of the
weight function, w(z) = w(z; f). In the model we consider, g is taken as known,
while the weight function is parametrized by a non-Euclidean parameter. This
brings us to an inverse problem of estimating and demixing the weight function.

In subject matter, our model is motivated by the research on risk aversion
and proclivity, and more precisely on the empirical pricing kernel (EPK), see
Detlefsen, Héardle and Moro (2007) (hereafter DHM). The EPK describes the
apparent utility behavior as function of the individual investors utility function.
In this model ¢ is the risk neutral density of asset pricing, and is derived from
theoretical considerations. The density p on the other hand is the density of the
empirical (historical) prices. See parts (a) and (b) of Figure 1 for an example.
In asset pricing the EPK links a risk neutral investor’s behavior to individual
utilities, which gives in our notation a semiparametric modeling of the weight
function w. The integral function of the pricing kernel ¢/p is the utility function
used by a representing individual. Knowing p and g yields the exact form of the
utility function, cf. Ait-Sahalia and Lo (2000), and Rosenberg and Engle (2002).
The risk neutral (state price) density (SPD) g can be calculated from market
data on European options. There are more than 5,000 observations each day for
maturity from one week to two years. The SPD can therefore be estimated very
precisely. Much empirical research work has demonstrated the so called EPK
paradox: the resulting utility function is partially concave and partially convex,
more precisely of the Friedman and Savage type, Friedman and Savage (1948).
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Figure 2. The utility function U(-;€) of (3.5) (a1 = 2, ag = 2.25, ¢ = 2)
for two different values of £ (solid lines), and of (3.8) for two values broken
lines.

This so called risk aversion puzzle has also been recently discussed in Chabi- Yo,
Garcia and Renault (2008); a recursive utility approach to dynamic pricing kernel
estimation is published in Gallant and Hong (2007); a fundamental reference on
asset pricing theory is the book by Cochrane (2005).

It is assumed in DHM that the observed density of the DAX value has density
of the form p(z) = cq(x)w(z; f), where ¢ € {g,,v € N C R%} is the theoretical
derived risk neutral density, assumed to follow a given parametric function, and
¢ is a normalization factor, that is, of the type (1.1). The weight function is

theoretically derived as
1

w(z: f) = g (@), (1.2)
where U is the market utility function, and prime denotes derivative. The mar-
ket utility is estimated for option data and available historical data, and it also
showed the risk aversion puzzle for the DAX stock market. In DHM an aggre-
gation mechanism was proposed that similarly to Chabi-Yo, Garcia and Renault
(2008) uses a switching point {. This point characterizes the investors switch
from a bearish (low return) to a bullish (high return) risk aversion pattern. A
graph of two different utility functions u(-;€) with switching points §; < & is
presented in Figure 2.
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Simply averaging the utilities is not possible since utilities for different in-
vestors are incomparable. One therefore specifies first a utility level % and aggre-
gates the outlooks on the returns R; with u = UlR:&), i=1,92,.. .. The aggre-
gate estimator of the switching return equals average{U!(u,&),i =1, -
all investors have the same market power. Denoting the investors inverse utility
function by g and assuming a distribution of éwitching points, the market utility
function Uy is itself assumed to be a function of the mixture of the individual
investors:

v =U7 ) = [ gus)fie)ae. (13)

Here £ € E denotes an investor type, f is the density of the investors’ distribution,
and {g(;€) : £ € E} is the (known) class of possible inverse utility functions of
the different investors. A subject of type ¢ has the inverse utility function g(-;¢€)
or, equivalently, he has the utility function u(;€) satisfying g{u(z;€): £} = 2.
The problem we consider is finding the density f. We obtain from (1.1)—(1.3)
the representation:

p(@) = cale) [ 2ol &) (E)de,
where u solves

r= [ 9(u; €)£(€)de. (14)

See Figure 1 for an example taken from DHM of estimates of D, ¢, and f. See
also Figure 2 for an example of g1+ €).

Aggregation problem (1.3) is a way of aggregating preferences that is not
based on the equilibrium theory usually associated with Walras (1874). The
situation considered here is of a different type and is hypothetical when applied
to real markets. The DAX market data were mentioned as suitable for testing
the disaggregation techniques described in the paper.

Aggregation procedure (1.3) relates to the situation where the price of an
asset is obtained as the result of a survey of investors (or experts) before they
made trades. Thus, this price should be considered as a forecast for the next
period, not a reflection of the struggle for limited resources in the market between
investors with different preferences and endowments.

The survey proceeds as following. Each market participant is asked what the
price will be if the conditions in the market are, for example, extremely good.
Extremely good corresponds to some utility level @; in the minds of investors. In
this way all investors agree that they are discussing an economic situation with
the same utility level. As the next step, each investor forms his forecast about
how high the prices would be in such a situation. Those forecasted prices are
recorded and averaged to produce an aggregate opinion of all market participants

is |
{‘/1'
the
tha

vV 1f
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(or experts). If the investors have equal market power, their individual opinions
will be averaged with equal weights. The forecast for different economic situations
corresponding to other utility levels is formed in a similar way.

To sum up, (1.3) describes a mechanism for forming a forecast about future
prices. It gives an idea of which opinions prevailed in a group of investors or
experts that was able to predict prices correctly before trading, for example if
they were more optimistic or pessimistic investors (experts), and to what degree.

In this paper we investigate the estimation of the non-Euclidean parameter
f of a few utility functions. The result is typical for inverse problems, in that
slightly different assumption yield completely different results. In fact, we present
three similar models, similar to those investigated in DHM, that exhibit these
behaviors:

(i) there is no consistent estimator of f;

(ii) f can be estimated at a regular nonparametric rate of n=%;

1

(iii) f can be estimated, but at a very slow rate.

Interestingly, there is a a sort of uncertainty principle: the better we can
estimate the function U~ (u), the worse we can demix it and estimate f. This
is not unexpected. We cannot estimate f well when large differences in f have
only minor impact on [ g(+; &) f(£)d¢.

The structure of the rest of the paper is as follows. In Section 2, we suggest an

algorithm for calculating the generalized maximum-likelihood estimator (GMLE)
for the semiparametric weight function of the model suggested by DHM. Rates
of convergence of the demixing estimator for the DHM’s model are discussed in
Section 3, as well as of estimates of the mixture itself.

2. EPK: Model and an EM estimator

We consider the EPK problem. We start from (1.4) and we assume that g
is known. In practice, it is assumed only to belong to some parametric family
{a,}. However, we deal in the following with rates that are much slower than
the parametric \/n rate, and the estimate of v is based on a much larger sample
than the estimates of the rest of the parameters. Therefore, the assumption that
v is known considerably simplifies the discussion without impacting the results.

Rewrite (1.4) as
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where p is some dominating -measure (e.g., Lebesgue or the counting measure).
Noting that the LHS of (2.1) integrates to 1, ¢ can be found to yield

_ " _ 9w ) f(©)du(©)} [ £a(u; &) F(€)du(€)
o [otworemo] T ] 9w FQAEN] Zo(w: )7 €)duie)Pdo

The market utility U(z) = U(x; f) is given by

v= [ o{Ut@i i€} 1@ante) = v, {vii 1)),
We obtain
9@) [ 5w9(U(@: 1 F©du©)  _ al@wi{v; (@)}
JaW) | 529Uy £:0F©)du(€)dy — [alw)v {67 () }dy’

The statistical model assumed by DHM is that we obtain a simple random sample
from p, where p is parametrized in (2.2) by the non-Euclidean parameter f. A
natural approach is to estimate f by the MLE or a variant of it, which we
develop now. Note that Vivg(u) = g(u;-), and by taking the gradient of z =
J 9{w7 (); €} £(£)dp(€) we obtain

0=g{vr' (@)} + ¥{v; (2)} Vv (2).
The derivative of the log-likelihood is given therefore by

p(z) = (2.2)

(€)= ! TN W PRl v
£p(€) = ; m [ag{wf "X 43 7, {¥7 (X }e{v; (X0); €}

- TLAf(ﬁ),

& merr o ome
{ oty - 7 U998 | =n(o),

with U; = 7,{);1{X%-), and for all § € suppf, where A(£) is the mean of the first
term under f. Since the density of U; is given by

, {9 () Hup (u) )2
i) =gyt = e b

we obtain that
_ S el HY () & 9w ) — 9 (u)g(u; €) ydu
[ a{ws () H', (0) o '

We discusse now how a GMLE can be constructed, and suggest a pseudo-EM
algorithm, that is justified as being the limiting result of proper EM algorithms
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applied in approximate models. To be clear, the approximation introduced in the
following is needed only as a justification for an algorithm applied to the formal
model. The algorithm itself is “exact” and maximizes the exact likelihood. The
technical problem we want to circumvent is the exact functional dependency of X;
and U; which affects the EM. As an intermediate step we weaken the functional
dependency into a proper statistical dependency.

The model of a random sample from the density p can be well-approximated
aso — 0byaX; =9p(U;)+e;,i=1,...,n, where ey, ..., &, is a random sample
from N(0,0?) independent from the random sample Uy, ...,U, taken from the
density ry. Now, the log-likelihood of the joint density is given by

i n

ffZZ[logq{wf i)} + 2log{v}(U;)} TnCE=59

i=1 =1

(X1 — Wf(Ul))za

where Cf = logfql{z[)f('u)}{w}(v)}de. By a well-known formula for the Bayes
estimator in the Gaussian measurement error model, here the distribution of
1/) f( i) —Xi, given X, i 1&; normal with mean o2 f 4 (Xi)/ fx(X;) and second moment

% (Xi)/fx(X;) + 0%, where fx is the marginal density of X;. At the limit
as 02 — 0, the conditional expectation of the log-likelihood, given the X,’s,
amounts therefore to replacing U; by vy L(X;). We conclude that the limiting
EM algorithm iterates therefore between the following steps.

The E step:

Ui — 97 (Xy), i=1,...,n, (2.3)
The M step:

f < argmax [Z { log g{v¢(U3)} + 210g{1[)f(U )}} - an}

Let U = (Uy,...,Un), X = (X1,...,X,), and denote the E-step by U =
w;l(X )- The M-step can be accomplished by solving the likelihood equation:

e i iU ST S
0=(60) =3 | o0 + s o) - 6], @4

for all £ € suppf, where

J1(@{r@)} a{ws(0) (v €) + (2/w}(v))%g(v,a)m{wf(fv)}{w;(v)}?dv

Crlt)= T 1)} 0, @))do
@) 2 o
= | U)}Q(U’f”w}(U)W(U’@J

=E ¢ {T§(U;¢)}, say.
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However, there is no need in the M-step to find the exact maximizer of the
log-likelihood. All that is needed is that the likelihood be strictly increasing
(if possible at all) at every M-step. Therefore, the exact M-step given above
can be replaced by an approximate M-step, that is obtained by considering an
approximate Newton-Raphson solution of (2.4), where the Op(+/n) terms in the
Hessian of the log-likelihood are discarded. That is the term

n

% {Vfo(Uf;f) - EfoTf(U;é)}-

i=1
We consider therefore the Newton-Raphson EM (NR-EM) algorithm:
7 “1pMy.. —1
PO {fi £ S+ H 597 (X)) € > 4y,

the solution of (2.3) otherwise,
where Hy : Ly(u) — Lo(u) is the operator Helf, C) =Coy HTHU; ), T (U3 0) -

3. EPK: Rates of Convergence

In the previous section we considered the MLE estimate of f. In this sec-
tion we consider simple estimators of the type suggested by DHM. Using these
estimators we will be able to discuss possible minimax rates of convergence. In
essence, we start with a naive nonparametric estimator of the mixture, and in
the second step we improve it or demix it for i

One simple method for demixing the EPK is to start with (1.4) which can
be written as

e | gatsorew{ [wosen) = cgunt [ st o).

Hence q/p{ [ g(u; §)f(€)dE} = a + Pu for some « and 3, or

[ swored = (2) @+ ou, (31)

The utility function of an individual is defined up to affine transformation. To
assure that it is well defined, we assume that that at the return of 1 the value
of the utility is 0, and that of the derivative is 1. In terms of the inverse utility
function this translates to g(0,¢) = Q—ig(o,g) = 1. Hence
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The parameter f is therefore the solution of

] 0(u; €) F(€)dE = () (3.3)

for some 9 given explicitly by (3.1) and (3.2). Since q is estimated as a parametric
density (based on a much larger sample), and p can be estimated at a standard
non-parametric rate based on a direct sample from p, v can as well be estimated
at a regular density estimation rate.

The analysis of this section starts with (3.3). We assume that 1 and its rele-
vant derivatives can be estimated at a polynomial rate || — || = Op(n=%)
for some a; > 0. The natural estimator suggested by DHM is given by the in-
verse function of a weighed density estimator. Under strict monotonicity and
boundness, the inverse function inherits most properties from the density kernel
estimator.

Note that model (3.3) looks like a linear model. For example, if f is ap-

proximated by a finite distribution with point mass at &;,...,&n, and (3.3) is
considered at the k points u1,...,u, then it can be written as
m
dlw) =) Biglus &) +&,  i=1,...,k (3.4)
j=1

(3.4) looks like a standard linear model and, indeed, we suggest estimating f by
solving it. However, it is not. Most linear model assumptions are violated, e.g.,
€1,...,Ek are not i.i.d. and they are not independent of the random wuq, ..., ug.

The basic idea of this section is as follow. We assume that we have.some
naive nonparametric estimator of 1». We then proceed to use the pseudo linear
model (3.4) to to estimate the mixing distribution and to improve the estimate
of 1) itself. We show that this method yields the minimax rates.

How fast can f be estimated? In the rest of the section we present simple
examples following DHM. These examples show that in a very similar models
very different types of behavior can be obtained. It can be that (i) There is no
consistent estimator of f; (ii) f can be estimated at a regular nonparametric rate
of n~%; (iii) f can be estimated but at a very slow rate. Thus one can suspect
that any optimistic result of demixing depends too heavily on assumptions, and
are a priori not robust (at least in the minimax sense). In particular, any result
should be checked to stand against different changes in the model.

3.1. Switching between two utilities

Following DHM assume that for z,£& > 0,

U@:§) = (1= ) Vo {le g { V@ -9/} —ap(1-c),  (35)
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where ay > oy > 1 are given, ¢ < 0, and [z]4 = zl(x > 0). See Figure 2. Then
9(05€) = min {5 {u + aa(1 = ) +¢, B {u+ar(l )} +¢),

where § = oy 11 — ¢~/ Ty simplify the notation and generalize the dis-
cussion, we consider a slightly more general case.

Theorem 3.1. Suppose q is known and bounded away from 0 on a open interval,
P has s > 2 bounded derivatives, and

9(u;€) = {gz(u) mHRAIE i) £>0,

n@+Eé  co>u>h@E)’
where g1, ga are continuous with bounded derivatives, and h given by
hl=g—g (3.6)

is a strictly increasing function. Then, f can be estimated with an O,
(n=(=2)/@s+1)) eppop,

Proof. Note that g(u;€) is continuous in ¢. Equation (3.3) can be translated to

h™1(u)
v = [ e + ) ) + ({1 - ),

where F' is the cdf corresponding to the pdf f. Changing variables and consid-
ering (3.6),

${h(s)} = ] “EF(E)dE — sF(s) + ga{h(s)}.

Taking a derivative gives F(s) = h'(s){gh{h(s)} — v'{ h(s)}}. Hence estimating
F at s is equivalent to the estimation of ¢/ at h(s). In other words, f(-) can be
estimated at the same rate as the rate of the estimation of second derivative of
v, which in turn is governed by the rate of estimation of the second derivative of
p. Since, by assumption, p has s bounded derivatives, f can be estimated with
an Op(n~(#=2/(2s+)) error, cf. Silverman (1986).

3.2. Polynomial and exponential inverse utility function

Theorem 3.1 described a relatively optimistic example. However, modest
changes in the inverse utility function may create situations in which f can hardly
be estimated, or even not at all.

Here is a pessimistic example:
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Theorem 3.2. Suppose the CRRA (constant relative risk aversion) utility

90 = (@ )N+~ ¢*} +1, ueR ¢eRY,  @37)

where a is a known integer. Then there is no consistent estimator of f.

Note that g in (3.7) is scaled such that both its value and its derivative at zero
are equal to 1, that is, it represents one branch of (3.5). The proof of Theorem
3.2 is simple. Since « is an integer, ¥(-) is a function of f only through its first
o moments. Hence, these moments can be estimated, but no other aspects of f
can be estimated or identified.

Seemingly, more and more moments are revealed as a — oo, and therefore,
by the above argument, f is going to be identified at the limit. However, it
is not clear that the high moments can be estimated effectively. We consider
the limiting case explicitly. The limiting form of the inverse utility function, as
a — 00 and /¢ — &, is given by

9(u;§) = €7 (e —1) + 1. (3.8)

The density f is now identified. For example, all its moments can be estimated,
eg., by [£'f(¢)de = v+ (0). We are now going to analyze this model in some
detail. We will argue that if f(-) is assumed to have two bounded derivatives,
then its value at a point can indeed be estimated, but this can be done only at
a very slow convergence rate, slower than any polynomial rate.

Theorem 3.3. Assume that g is given by (3.8) and f is bounded and has two
bounded derivatives. Suppose the minimaz rate of estimation of v is n", v €

(0,1/2). Then there is an estimator f such that f(s)—j(s) =0, (n~loglogn/logn)

for some «, and for any o > 0 there is no estimator f(s) such that f(s) — f(s) =
Op(n—u/ log log n).

The proof is given in the on-line supplement, see http://www.stat.sinica.
edu.tw/statistica.

3.3. Smoothing the empirical estimate and an uncertainty principle

We start, as in the previous subsections, with a nonparametric @ The
purpose of this subsection is to show that this initial estimator can be improved
considerably by a simple projection.

We argued in Subsection 3.2 that there is no reasonable estimator of f for g
given in (3.8). If (3.8) is believed to be true, does this means that there is nothing
to do? The surprising answer is no. Although f cannot be estimated per-se, many
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of its functionals can be estimated quite easily and quite well. For example, as

mentioned in Subsection 3.2, its moments. Similarly 1(u), another functional of

[, can be estimated quite easily, considered as a simple linear functional.
Suppose that f is supported on some compact interval [a,b]. Then one can

approximate ¥ (u) = 3", Biu’ + Rp(u), where, for some @ € (0, u);

1 pm Bub

b -
V@) = G, O < s 09)

< R (1) = !

(m+1)!

Generally speaking, the faster the coefficients 3 converge to 0, the easier it is to
estimate ¢ and the harder it is to estimate the mixing density g. As (3.9) shows,
we need only a few terms to approximate v quite well. In fact we show that in
this smooth case, where as on the one hand f can be hardly estimated, 1 can

be estimated almost at the parametric rate. This is not an accident — these are .

two faces of one phenomena. The shape of the observable 1 hardly depends on
the fine details of f, and essentially depends only on a few aspects of f. These
aspects can be estimated well (and hence 1 can be estimated quite precisely).
The other aspects can hardly be estimated and hence f cannot be estimated in a
reasonable rate. This yields an uncertainty principle — the more you are certain
about ¢ the less certain you are about f.

Recall that a function g is called completely monotone if (—1)*g*) > 0, and
it is called a Bernstein function if its first derivative is completely monotone.
It is well-known (Feller (1966)) that g is completely monotone if, and only if,
g(u) = [;7e ™ dF(¢). In other words, 1 is a Bernstein function. Nonpara-
metric maximum likelihood estimation for an exponential mixture (and hence
completely monotone density) was discussed in Jewell (1982). Balabdaoui and
Wellner (2007) discussed the estimation of a k-monotone density.

We assume that there is an estimate w = 1, at our disposal. For any
U1, ..., up > 0, let L(ug,...,ux) € R¥** where Bij(ut,. .., u) = Cov{(w),
J)(uj)}. Consider the following assumption:

Assumptions 1. For any n there is k = &, and uy,...,u; € (c, d), 0 < e @
such that the spectral radius of X(uy,...,ux) is O(k/n), and max; |E(u;)
¥(w)[* = O(logn/n).

Assumption 1 is satisfied by many nonparametric density and regression esti-
mators, when they strictly under-smooth. We care much more about bias than
about variance of the original estimator ¢. Thus, we have in mind a kernel es-
timator with bandwidth of order n=1/4*¢. The spectral radius is based on the
assumptions that the estimator at points that are a multiple of the bandwidth
apart are (almost) independent, for example this is trivially the case with ker-
nel estimators having a compact support. The relationships in the assumption
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obtain when the bias of the estimator is O(0?), the variance is O(1/no), and
E=0O(c1). ;

Consider now the least squares regression of ¥ = {9)(uy),..., w(uk)}T on the
design matrix Z € kamh Zij = u. That is, § = (Z'Z)7'Z'Y, where 3 € R™,
Finally let 1(u) = Z;n:;[ Biw’, u > 0. We argue that the error achieved by 1 is

almost the parametric rate even though 3 can be estimated at a strictly lower
rate.

Theorem 3.4. Suppose glurl) = £ (e — 1) and that f is supported on
a compact interval. Assume 1 holds and m — mp = logn/loglogn. Then

K71 (D) — ()} = O,{(logm)?/n}.
Proof. Let 8% be the true value ﬁ? = [&71F(€)de/5). Write Y = Z3+e, where

¢ includes both the random error and the bias terms due to both the estimator

and the truncation. The latter term is given in (3.9). By standard least squares
results,

. T} it 1o a1 T 72(7T 7 —1,T
k Eg{w( 2 = 1)} k E{ Z(Z7 2) zg}

= k! trace {Z(ZTZ)_IZTE (EET)}.
Since Z(ZTZ)"1Z7 is a projection matrix on a m-dimensional space, the RHS

is bounded by the largest eigenvalue of E (eeT) times m/k. This has three com-
ponents (variance and two biases) and hence

fle i {(us) - w(ui)}z —0 [%{S 4 plosm k(@f}]

n m!

The factor k before the last two terms is due to the norm of the unit vector in Rk,
and, the last term is by (3.9). The theorem follows by taking m = logn/loglog n.

A more general result can be based on an assumption like the following.

Assumptions 2. For some ¢, d and each ¢ there are he1,..., he M(e) such that

M(e)

9(u; &) = > ysh;(u)
j=1

Sup min max

< 8
¢ Y e<u<d

Note that clearly the assumption ensures the existence of y(-) such that MaXccqy<d
A(e
lg(u; &) — Z?:(I)ﬁ/j(g)hj(u)l < &, but then there are also Bi = [ (&) f(&)de,

J=1,...,M(e), such that max,c,4 [¥(u) — Z?i(f) Bih;(u)| <e.
The following theorem can be proved similarly to Theorem 3.4:




784

YA’ACOV RITOV AND WOLFGANG K. HARDLE

Theorem 3.5. Suppose Assumptions 1 and 2 hold. Let En = argmin {M(e)
/n+e}, and let 1 be the least squares estimate of the regression of 1 on he,, 1,.

P M (en)- Then k20 {h(ui) — d(us)}? = Op(en).

‘g

In practice, Theorems 3.4 and 3.5 may seem to be of limited use — &, knowl-
edge of the structure of the span of the individual utility functions is needed, and
the regression is based on an identified efficient base, which may not be natural.
For example, we used a polynomial base for the exponential utility function. The
practical approach is a histogram or discrete approximation of f. Does such a
procedure yield an effective estimator, an estimator which is both statistically
speaking efficient, but at the same time easy to compute and can be be used in
off-the-shelf manner?

This is indeed the case. Let &1,...,¢ M(e) be reasonably spaced points in the
support of f. With the notation introduced after Assumption 2, and by a similar
argument, for a vector 3 on the simplex

M(z) M(e)  M(e)
sup| 3 Big(ui &) — > 6 Y nl)hi(w)| <e.
volg= j=1 =1
Hence, one can use the base function g(:; E1 )i s a4 EM(e)) as well.

References

Ait-Sahalia, Y. and Lo, A. (2000). Nonparametric risk-management and implied risk aversion.
J. Econometrics 94.

Balabdaoui, F. and Wellner, J. A. (2007). Estimation of a k-monotone density: limit distribution
theory and the spline connection. Manuscript.

Chabi-Yo, F., Garcia, R. M. and Renault, R. (2008). State dependence can explain the risk
aversion puzzle. Rev. Finan. Stud. 21, 973-1011.

Cochrane, J. H. (2005). Asset Pricing (Revised). Princeton University Press, Princeton.

Detlefsen, K., Hérdle, W. K. and Moro, R. A. (2007). Empirical pricing kernels and investor pref-

erences. SFB649 Discussion paper 2007-017, http://sfb649.wiwi.hu-berlin.de/fedc/
discussionPapers_de.php.

Feller, W. (1966). An Introduction to Probability Theory and its Applications, Vol. II. Wiley,
New-York.

Friedman, M. and Savage, L. P. (1948). The utility analysis of choices involving risk. J. Polit.
Economy 56, 279-304.

Gallant, A. R. and Hong, H. (2007). A statistical inquiry into the plausibility of Epstein-Zin-Weil
Utility. J. Finan. Econom. 5, 523-559.

Gilbert, P. B. (2000). Large sample theory of maximum likelihood estimates in semiparametric
biased sampling models. Ann. Statist. 28, 151-194.

Gilbert, P. B., Lele, S. R. and Vardi, Y.(1999). Maximum likelihood estimation in semiparamet-
ric selection bias models with application to AIDS vaccine trials. Biometrika 86, 27-43.

Gill, R. 1
ink
Jewell, N
Manski,
base
Mantel, I
Rosenber
Silvermai
Vardi, Y.
Walras, D

Departme
E-mail: y
CASE - C
Humbold
E-mail: h




, = argmin_ {M ()
m of Y on he, 1, 08

ted use — a knowl-
iions is needed, and
nay not be natural.
tility function. The
of f. Does such a
s both statistically
| can be be used in

paced points in the
2, and by a similar

1\
™

s well.

| implied risk aversion.
sity: limit distribution
e can explain the risk
ress, Princeton.

rnels and investor pref-
.hu-berlin.de/fedc/
ations, Vol. II. Wiley,
nvolving risk. J. Polit.

ity of Epstein-Zin-Weil

ates in semiparametric

1ation in semiparamet-
iometrika 86, 27-43.

DEMIXING OF SEMIPARAMETRIC BIAS SAMPLE 785

Gill, R. D., Vardi, Y. and Wellner, J. A. (1988). Large sample theory of empirical distributions
in biased sampling models. Ann. Statist. 16, 1069-1112.

Jewell, N. P. (1982). Mixtures of exponential distributions. Ann. Statist. 10, 479-482.

Manski, C. F. and Lerman, S. R. (1977). The estimation of choice probabilities from choice
based samples. Econometrica 45, 1977-1988.

Mantel, N. (1973). Synthetic restropective studies and related topics. Biometrics 29, 479-486.
Rosenberg, J. and Engle, R. (2002). Empirical pricing kernels. J. Finan. Econom. 64, 341-372.
Silverman, B., (1986). Density Estimation. Chapman and Hall, London.

Vardi, Y. (1985). Empirical distributions in selection bias models. Ann. Statist. 13, 178-203.
Walras, M.-E. L. (1874). Eléments d’économie politique pure, ou théorie de la richesse sociale.

Department of Statistics, The Hebrew University of Jerusalem 91905, Jerusalem, Israel.

E-mail: yaacov.ritov@gmail.com

CASE - Center for Applied Statistics and Economics, Institute for Statistics and Econometrics,
Humboldt-Universitat zu, 10178 Berlin, Germany.

E-mail: haerdle@wiwi.hu-berlin.de.

(Received February 2008; accepted February 2009)




The Bayesian Additive Classification Tree Applied to Credit Risk Modelling

Junni L. Zhang!, Wolfgang K. Hardle?

'Department of Business Statistics and Econometrics, Guanghua School of Man-
agement, Peking University, Beijing 100871, P. R. China; email: zjn@gsm.pku.edu.cn.
2Center for Applied Statistics and Economics, Wirtschaftswissenschaftliche Fakultat,
Humboldt-Universitdat zu Berlin, Spandauer Strafe 1, 10178, Berlin, Germany;

email: haerdle@wiwi.hu-berlin.de.

Abstract: We propose a new nonlinear classification method based on a Bayesian
“sum-of-trees” model, the Bayesian Additive Classification Tree (BACT), which
extends the Bayesian Additive Regression Tree (BART) method into the classi-
fication context. Like BART, the BACT is a Bayesian nonparametric additive
model specified by a prior and a likelihood in which the additive components are
trees, and it is fitted by an iterative MCMC algorithm. Each of the trees learns
a different part of the underlying function relating the dependent variable to
the input variables, but the sum of the trees offers a flexible and robust model.
Through several benchmark examples, we show that the BACT has excellent
performance. We apply the BACT technique to classify whether firms would be
insolvent. This practical example is very important for banks to construct their
risk profile and operate successfully. We use the German Creditreform database
and classify the solvency status of German firms based on financial statement

information. We show that the BACT outperforms the logit model, CART and



the Support Vector Machine in identifying insolvent firms.
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1 Introduction

Classification techniques have been popularly used in many fields. Standard classification
tools include linear and quadratic discriminant analysis and the logistic model. The support
vector machine (SVM) (Vapnik, 1995, 1997) recently arises as an important nonlinear classi-
fication tool. It maps the input space nonlinearly into a high dimensional feature space, and
tries to find linear separating hyperplanes for the classes in the feature space, penalizing the
distances of misclassified cases to the hyperplanes. The SVM has been widely and success-
fully applied to classification problems in many domains and often shown to have excellent
performance compared to other classification methods.

Decision trees compose an important category of nonlinear classification methods. Ever
since the introduction of the classification and regression tree (CART) by Breiman et al.
(1984), it has attracted strong interest from researchers and practitioners. Figure 1 shows
an example of a classification tree, where the root node (1) contains all training observations,
and the training data are recursively partitioned by values of the input variables (z’s) until
reaching the leaf (terminal) nodes (t3, t4, ts and t7) where the classification decision (for y) is
made for all observations contained therein. For regression problems in which the dependent
variable is continuous, a predicted value for the dependent variable would be assigned for all
observations contained in each leaf node.

Traditional search methods for CART models use locally greedy algorithms to find the
partitions. The Bayesian approaches for CART models (Chipman et al., 1998; Denison et al.,
1998; Wu et al., 2007) specify a formal prior distribution for trees and other parameters and

use Markov Chain Monte Carlo methods to sample them from the posterior distribution.
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Figure 1: Example of a classification tree.

Chipman et al. (2006) proposed the Bayesian Additive Regression Tree (BART), in which
the mean of a continuous dependent variable is approximated by a sum of trees rather
than a single tree. This “sum-of-trees” model is defined by a prior and a likelihood, and
fitted by iterative MCMC algorithm. Each individual tree explains a different portion of the
underlying mean function, but the sum of these trees turns out to be a flexible and adaptive
model. Chipman et al. (2006) showed that BART outperforms several competitive models,
including LASSO (Efron et al., 2004), gradient boosting (Friedman, 2001), random forests
(Breiman, 2001), and neural networks with one layer of hidden units. We will extend BART
into the classification context, and therefore term the resulting classification technique as
the Bayesian Additive Classification Tree (BACT).

To investigate the differences among the logit model, SVM, CART and BACT, we plot
in Figure 2 the contours of these models trained to classify the solvency status of German
firms using the German Creditreform database based on only two variables — the ratio

of operating income to total assets (3 in Figure 2) and the ratio of accounts payable to



total sales (224 in Figure 2). Details of this application will be discussed in Section 4. The
contours for the logit model are linear, thus making it inflexible for complex applications.
The SVM finds flexible smooth curves in the input space (linear hyperplanes in the feature
space) that can separate the classes. The CART is based on a single tree which recursively
partitions the observations by the input variables, and hence the contours are piecewise
linear. The BACT is based on the sum of many trees, so the contours are not constrained
to be piecewise linear as in CART; although these contours are not as smooth as in SVM,
they are quite flexible in explaining complex structure.

The rest of this paper is organized as follows. Section 2 will describe the BACT in
detail. Section 3 will use several benchmark examples from the UCI Machine Learning
Repository to compare the performance of the BACT with the logit model and the SVM.
Section 4 will discuss our application to classification of solvency status of Germany firms

using the German Creditreform database. Section 5 then concludes.

2 The Bayesian Additive Classification Tree (BACT)

2.1 The Model

Consider a binary classification problem in which an dependent variable Y € {1,0} needs
to be predicted based on a set of input variables * = (zy,---,7,)". The majority of

classification models assume that there is a latent continuous variable Y* that determines
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Figure 2: The contour plots for the logit model,

stars represent insolvent firms and solvent firms respectively. The numbers by the contours

indicate the probabilities of insolvency.



the value of Y as follows

Y=1ifY*>0
Y=0ifY*<0
In the context of generalized linear models (GLM), the relationship of Y* and @ is

Y* =060+ bz + - + By + €,

where the distribution of € determines the link function, e.g. logit or probit. The generalized
additive models (GAM, Hastie and Tibshirani (1990)) replace each linear term in the GLM

by a more generalized functional form and relate Y* to @ by

Y* =06+ fi(w) + -+ fplzp) + &,

where each f; is an unspecified smooth function.

Following the idea of the BART in Chipman et al. (2006), we assume that Y* is related
to x through an additive model, where each additive component is a tree based on all input
variables (rather than a flexible function based on a single input variable as in GAM). In
order to formally introduce the model, we first introduce some notation. Let m denote the
number of trees to be used. For j = 1,--- ,m, let T; denote the j'th tree with a set of
partition rules based on the input variables, and let L; denote the number of leaf nodes in
Ty for i =1,---,Lj, let pj denote the (continuous) predicted value associated with the ’th
leaf node in T}, and let Mj; = {1, ptjo, -+, iz, ;. For a given value of x, let g(x, T}, M;)
denote the predicted value associated with the leaf node that an observation with input
variables being & would land in based on the partition rules for 7;. Thus Y™ is formally

modelled as

Y* = g(x;Th, My) + g(x; To, Ma) + - - + g(x; Thny Myy,) + €, (2)
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and we further assume that ¢ ~ N(0, 1), using a probit-like link.

2.2 Prior Specification

In order to make inferences from the model given by (1) and (2) in a Bayesian way, we
need to specify a joint prior distribution for the unknown tree structures and leaf nodes
parameters. We assume a priori that the tree structures and the leaf node parameters have

independent distributions, so the full prior distribution can be written as

m mL

p{(Th, My), (T3, Ma), - -+, (T, M) } = HP(TJ) HHP(NJJ)-

j=1 j=11=1

<

We further assume that every tree follows the same prior distribution, and every p;; follows
the same prior distribution. So the task of prior specification is reduced to specifying the
prior distribution for a single tree 7" and that for a single uj; parameter.

For a single tree T, we need to specify the prior distributions for its partition rules,
including whether to further split a node or leave it as a leaf node, and if a further split is
needed, which input variable and what values to be used for that split. We use the prior
distribution for a single tree 7" as in Chipman et al. (2006). The prior probability of splitting
any node n in tree 7T is

psplit(na T) X 05(1 + dn>_ﬁa

where d,, is the depth of node n in tree T (the depth of node n is the length of the path
from the root node to node n; e.g., in Figure 1, the node t; has depth 0, and the nodes
and t3 have depth 1). « and [ here are positive hyperparameters, hence the deeper a node
is, the smaller probability there is to further split it, or the larger probability that this node

becomes a leaf node. It turns out that the performance of BACT is not very sensitive to the
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Table 1: Prior distribution on number of terminal nodes based on different values of a and

G.
Setting 1 Setting 2 Setting 3

a 0.5 0.95 0.95
16} 2 2 0.1

prior probability of trees with 1 terminal node 0.5 0.05 0.05
prior probability of trees with 2 terminal nodes 0.383 0.552 0.012
prior probability of trees with 3 terminal nodes 0.098 0.275 0.004
prior probability of trees with 4 terminal nodes 0.017 0.092 0.002
prior probability of trees with > 5 terminal nodes 0.003 0.031 0.932

choice of alpha and beta. We tried three different settings listed in Table 1 where a priori
the trees range from small size to large size, and the resulting performance was quite similar.
So we just pick o = .95 and § = 2 as in Chipman et al. (2006). If a node needs to be split,
the prior for the associated splitting rules assigns equal probability to each available input
variable and equal probability on each available rule given the variable.

The prior distribution of pj is taken to be a conjugate normal distribution p;; ~
N(0,07) (conjugate because ¢ in (2) follows a normal distribution). From (2), we can see
that the expected value of Y* is equal to the sum of m different p;; parameters (recall that
g(x,T;, M;) is the pj; parameter associated with the leaf node that an observation with
input variables being @ would land in based on the partition rules for 7}); because of the a
priori independence of ji;;’s, the prior distribution for the expected value of Y* is N (0, moﬁ).
Combining this with (1), it can be inferred that a priori each observation has probability 0.5
belonging to class 1 and probability 0.5 belonging to class 0.

To specify 03, we use the following procedure. We first estimate the range of Y* (to be

explained soon), and then choose O'i such that there is at least 95% prior probability that the



expected value of Y* is in the estimated range. Let the training data be D = {(z;, vi)}Y,,
where N is the number of observations in the training data. We first randomly sample y; for
each observation 7 in the training data from truncated standard normal distributions such
that the relationship in (1) holds between y; and the observed y;. Suppose that the sam-
pled values are y*© = {y~ © N |, and denote the minimum and maximum values of ¥ ©) as
min(y*(?) and max(y*©@) respectively. Then [min(y*®), max(y*(?))] is a very rough estimate
of the range of Y*. We choose an initial O'Z(O) such that there is at least 95% prior prob-
ability that the expected value of Y* is in this interval, i.e., [—2\/503(0), 2\/505(0)] covers
[min(y*®), max(y*®)] and therefore 020 = max {— min(y*?)/2y/m, max(y*)/2/m}.
We then run the Markov Chain Monte Carlo (MCMC) algorithm to be described in Section
2.3 to generate posterior samples of ¥, and suppose that we obtain one posterior draw of
gy = {y (1)}?;1 after dropping the first By posterior draws used to reach convergence.
We assume this set of y can be used to estimate reasonably the range of the true under-
lying Y*, and choose the value of O'i for further analysis such that there is at least 95%

prior probability that the expected value of Y* is in the interval [min(y*®")), max(y*M)], i.e.,

02 = max { — min(y*™)/2y/m, max(y*V)/2y/m}.

2.3 Generation of Posterior Samples and Inference

We use the data augmentation method (Tanner and Wong, 1987) by treating y* = {y; }¥,
as missing data, and then use the Gibbs sampler to generate samples from the posterior
distribution p{(Tl, Ml), (TQ, MQ), ety (Tm, Mm), y*|D}

Let T(; denote the m — 1 trees other than 7}, and let M(; denote the parameters
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associated with the leaf nodes in 7{;). The Gibbs sampler composes of drawing m successive
draws of (T}, M;) for j = 1,--- ,m from p{(7}, M;)|T{;), M(;),y*, D} followed by draw of
y* from p{y*|(Th, My),(T5, Ms),- -+, (T, M,,), D}. The draws of (T}, M;) can be generated
similar to Chipman et al. (2006). Let g; = >'", g(@; T}, M;) denote the fitted value for
observation ¢ from the m trees. Then y (i = 1,---,N) can be independently generated

from truncated normal distributions:

yf ~ N(gf,1)andyf >0 ify, =1

yi ~ NG 1) and yf <0 if g, =0
After ai has been chosen according to the procedure described in Section 2.2, we can
drop the first By posterior draws used to reach convergence, and use subsequent S posterior
draws for inference. Denote these S posterior draws as {(T\”, M\V), - (T, MG},
Given the s’th draw, the probability that an observation with input variables & belongs to
class 1is ® {Z;”:l g(x, Tj(s), M J(S)) }, where ® is the cumulative distribution function of stan-
dard normal distribution. Therefore, the posterior average probability that an observation
with input variables & belongs to class 1 can be estimated as

1S m
§Zq>{zg(w,Tf),Mf>)}. (3)

s=1 j=1
We can use (3) to classify observations in training data or other data: if the probability

calculated from (3) is larger than 0.5, then the observation is classified into class 1; otherwise

it is classified into class 0.
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Table 2: For five benchmark data sets from the UCI Machine Learning Repository, the

number of cases, the number of variables, and the average misclassification rates for the test
data using the logit model, the SVM and the BACT.

Data Set # Cases # Variables Logit SVM BACT
breast cancer 683 9 3.8% 28%  3.3%
ionosphere 351 34 12.8% 45%  7.2%
diabetes 768 8 21.8% 25.2% 24.8%
sonar 208 60 29.8% 19.4% 17.2%
German credit 1000 30 23.6% 27.3% 23.6%

3 Benchmark Examples

To compare the performance of the BACT with the logit model and SVM (in which radial
basis function is used as the kernel, and the parameters are chosen by cross-validation),
we use five data sets for binary classification from the UCI Machine Learning Repository
(Asuncion and Newman, 2007): breast cancer, ionosphere, diabetes, sonar, and German
credit. Columns 2-3 in Table 2 summarize the number of cases and the number of variables
for these data sets. Throughout the rest of the paper, in the BACT method, we fix m = 200,
B; =500, By = 1000 and S = 1000.

We partition each data set randomly into 80% of training data and 20% of test data.
The training data is used to fit the models, and misclassification rate on the test data is
calculated. Such procedure is repeated for 20 times, and columns 4-6 in Table 2 report
the average misclassification rates on the test data using the logit model, the SVM and the
BACT. We can see that the BACT has comparable performance with the SVM, and has no

worse performance than the logit model except for the “diabetes” data set.
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4 Classification of Solvency Status of German Firms

We use the German Creditreform database, which contains financial statement information
on 20,000 solvent and 1,000 insolvent firms in Germany and spans the period from 1996 to
2002. Information on the insolvent firms were collected two years prior to insolvency. Chen
et al. (2007); Hardle et al. (2008) applied SVM to classify the solvency status of German
firms, with the former using the German Creditreform database. We will preprocess the
data set in the same way as Chen et al. (2007) do, and compare the results of our BACT
with those of the logit model, CART and SVM.

Following Chen et al. (2007), we clean the data of firms whose characteristics are very
different from the others. We first eliminate firms within industries with small percentage
in the industry composition and are left with 949 insolvent firms and 16583 solvent firms in
four main industries — Construction, Manufacturing, Wholesale & Retail Trade and Real
Estate. We then exclude those firms whose asset size is less than 10> EUR or greater than
10® EUR, because the credit quality of small firms often depends as much on the finances
of a key individual as on the firm itself and largest firms rarely go bankrupt in Germany.
We further exclude the solvent firms in 1996 due to lack of insolvent firms in that year. We
also eliminate firms with zero value for some variables used as denominators in calculating
financial ratios to be used in classification. Several apparent outliers are then deleted and
we end up with a data set with 783 insolvent firms and 9,575 solvent firms (due to slightly
different ways of deleting outliers, our remaining solvent firms differ a little from the 9,583
solvent firms in Chen et al. (2007)).

We adopt the same set of financial variables to be used for classification as in Chen et al.

13



(2007) and list them in Table 3. The five number summary of these financial variables are
listed in Table 4 for insolvent firms and solvent firms separately. In order to avoid sensitivity
to outliers in applying the SVM, Chen et al. (2007) truncated each financial variable to be
between its 5% quantile and 95% quantile. The BACT, however, only uses the ordering of
values of the input variables in the partition rules, so there is no need to do such truncation.

We use the data from 1997 to 1999 to train the model, and use the data from 2000
to 2002 to test the resulting model. The training set contains 387 insolvent firms and 3535
solvent firms, and the test set contains 396 insolvent firms and 6040 solvent firms. Because
the density of insolvent firms is rather low, we need to oversample the insolvent firms in
order for the models to pick up the patterns predictive of insolvency (e.g., Berry and Linoff
(2000), chap. 5). This is done through the bootstrap technique (Efron and Tibshirani, 1993;
Sobehart et al., 2001). For each bootstrap sample, a training subset is constructed as follows.
We use all 387 insolvent firms in the training set and randomly sample 387 solvent firms from
the training set. This subset of 774 firm with 50% being insolvent is then used to train the
model. When training the CART model, the training subset is further randomly partitioned
into two parts stratified by the solvency status of the firms. The first part comprises of 80%
of the training subset and is used to grow the tree, and the second part comprises of the
remaining 20% of the training subset and is used to prune the tree. Performance measures
are then evaluated using all observations (396 insolvent firms and 6040 solvent firms) in the
test set. The average performance measures over 30 bootstrap samples are then calculated.
We can compare average performance measures across different models.

We consider two performance measures: Accuracy Ratio (AR) (Sobehart and Keenan,
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Table 3: Definition of financial variables to be used for classification for the Creditreform

data.
Var. Definition
x1  Net Income/Total Assets
x2  Net Income/Total Sales
x3  Operating Income/Total Assets
x4 Operating Income/Total Sales
xb  Earnings before Interest and Tax/Total Assets
x6  Earnings Before Interest, Tax, Depreciation and Amortization/Total Assets
x7  Earnings before Interest and Tax/Total Sales
x8  Own Funds/Total Assets
9 (Own Funds — Intangible Assets)
x /(Total Assets — Intangible Assets — Cash and Cash Equivalents — Lands and Buildings)
x10  Current Liabilities/Total Assets
x11  (Current Liabilities — Cash and Cash Equivalents)/Total Assets
x12  Total Liabilities/Total Assets
x13  Debt/Total Assets
x14  Earnings before Interest and Tax/Interest Expense
x15  Cash and Cash Equivalents/Total Assets
x16  Cash and Cash Equivalents/Current Liabilities
x17  (Cash and Cash Equivalents — Inventories)/Current Liabilities
x18  Current Assets/Current Liabilities
x19  (Current Assets — Current Liabilities)/Total Assets
x20  Current Liabilities/Total Liabilities
x21  Total Assets/Total Sales
x22  Inventories/Total Sales
x23  Accounts Receivable/Total Sales
x24  Accounts Payable/Total Sales
x25  log(Total Assets)
x26  Increase (Decrease) in Inventories/Inventories
x27  Increase (Decrease) in Liabilities/Total Liabilities
x28 Increase (Decrease) in Cash Flow/Cash and Cash Equivalents
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Table 4: Five number summary (minimum, lower quartile, median, upper quartile, maxi-

mum) of the financial variables for insolvent firms and solvent firms.

Insolvent Firms

Solvent Firms

Var. min Q1 mdn. Q3 max min Q1 mdn. Q3 max
x1 -1.51  -0.02 0.00 0.02 1.13 -4.82  0.00 0.02 0.06 5.92
x2 -5.41 -0.02 0.00 0.01 6.10 -17.13  0.00 0.01  0.03 15.91
x3 -0.97 -0.04 0.00 0.03 1.14 -4.82  0.00 0.03 0.09 5.97
x4 -3.38 -0.02 0.00 0.02 10.15 -44.81  0.00 0.02 0.04 20.39
XD -0.99 -0.01 0.02 0.05 1.15 -1.51  0.02 0.056 0.11 5.95
x6 -0.91  0.03 0.07 0.11 1.17 -1.46  0.06 0.11 0.18 5.95
x7 -3.55 -0.01 0.01 0.04 10.27 -39.63  0.01  0.02 0.05 14.53
x8 0.00 0.00 0.06 0.14 0.96 0.00 0.05 0.14 0.28 0.99
x9 -0.86  0.00 0.05 0.17 2.31 -2.68 0.05 0.16 0.37 49.18
x10 0.01 037 052 0.73 1.00 0.00 025 042 0.64 4.13
x11 -0.35 033 049 0.69 0.99 -0.86  0.17 0.36  0.58 4.12
x12 0.01 054 0.76 0.89 1.00 0.00 042 0.65 0.82 4.37
x13 0.00 0.09 021 0.37 0.91 0.00 0.02 0.15 0.33 0.98
x14 -17658.06 -0.56 1.05 1.92 433.40 -22796.04 086 2.16 6.55 516896.73
x15 0.00 0.00 0.02 0.06 0.44 0.00 0.01 0.03 0.11 0.90
x16 0.00 0.01 0.03 0.12 25.01 0.00 0.01 0.08 0.30 40.61
x17 0.01 043 0.68 0.97 57.44 0.00 0.59 094 1.58 238.37
x18 0.03 1.00 1.26 1.84 62.63 0.06 1.11 1.58 2.67 989.76
x19 -0.69 0.00 0.15 0.36 0.92 -3.45  0.06 0.25 047 0.98
x20 0.07 062 084 0.99 1.18 0.01 056 0.85 1.00 1.00
x21 0.07 040 0.61 094 97.26 0.02 032 048 0.74 828.76
x22 0.00 0.08 0.16 0.34 89.96 -0.14  0.05 0.11 0.21 451.09
x23 0.00 0.07 0.12 0.18 0.87 0.00 0.05 0.09 0.14 21.85
x24 0.00 0.09 0.14 0.19 43.96 0.00 0.04 0.07 0.11 61.29
x25 11.72 14.07 14.87 15.76  18.25 11.51 14.25 1541 16.62 18.42
x26 -46.89 -0.09 0.00 0.26 2.83 -282.51 -0.01 0.00 0.06 145.12
x27 -12.75 -0.04 0.00 0.11 1.00 -2891 -0.04 0.00 0.10 1.00
x28  -1283.20 -0.61 0.00 0.18 1.00  -2513.39 -0.27 0.00 0.26 1.75
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2001; Engelmann et al., 2003) and misclassification rate. AR is calculated using the Cumu-
lative Accuracy Profiles (CAP) (Sobehart and Keenan, 2001; Engelmann et al., 2003) curve.
To obtain the CAP curve, the firms are first ordered by risk scores from riskiest to safest. For
BACT and the Logit model, the risk score is simply the predicted probability of insolvency;
for SVM, the risk score can be calculated as distance to the separating hyperplane. The
higher the risk score is, the riskier the firm is. For a given fraction ¢ of the total number of
firms, the CAP curve is constructed by calculating the fraction r(gq) of the insolvent firms
whose risk scores are equal to or larger than the minimum score at fraction q.

Figure 3 plots the CAP curve for the test set of the Creditreform data where the scoring
model is the BACT model trained using one bootstrap training subset. In the ideal case, the
insolvent firms will be assigned the highest risk scores, and therefore the CAP curve would
be increasing linearly and then stay at one. For a random model without any discriminative
power, the fraction ¢ of all firms with the highest risk scores will contain fraction ¢ of all
insolvent firms, and therefore the corresponding CAP curve will be a straight line connecting
the points (0,0) and (1,1). AR is defined as the ratio of the area between the CAP curve
for a scoring model and that for the random model to the area between the CAP curve for
the ideal case and that for the random model. The value of AR lies between zero and one,
with zero indicating no discriminative power of the scoring model and one indicating perfect

discriminative power. Mathematically, AR is defined as

fol Tmodel(Q>dq - %

AR = =5 =,
f() T’ideal(Q>d )

(4)

where 7,,04e1(q) and 7r4eq1(q) indicate 7(g) for the scoring model and the ideal case respec-

tively, and the integrals can be approximated by % Zf\il r(i/N) where N is the number of
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observations in the test set.

1.0

ideal case

0.8

scoring model

random model

fraction of insolvent companies

0.2
1

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0

fraction of all firms

Figure 3: The CAP curve for the test set of the Creditreform data where the scoring model

is the BACT model trained using one bootstrap training subset.

We also consider three types of misclassification rates: the overall misclassification rate,
the type I misclassification rate and type II misclassification rate. Here type I misclassifica-
tion refers to the case when the firm is in fact insolvent, but the model classifies the firm as
solvent; whereas type II misclassification refers to the case when the firm is in fact solvent,
but the model classifies the firm as insolvent. Financial institutions usually seek to keep
either type of misclassification rate as low as possible (Sobehart et al., 2001).

Table 5 reports the average values of AR in (4) and the three types of misclassification
rates for the Logit model, CART and BACT. Apparently, BACT outperforms the Logit
model and CART in all aspects except for average Type I misclassification rate for which

BACT is slightly worse than CART.
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Table 5: The average values of AR and the three types of misclassification rates for the Logit
model, CART and BACT.

Performance Measure Logit CART BACT
AR 52.1% 58.7%  60.4%
Overall Misclassification Rate  30.2% 33.8%  26.6%
Type I Misclassification Rate  28.3% 27.2% 27.6%
Type II Misclassification Rate 30.3% 34.3%  26.5%

Rather than using all data from 2000 to 2002 as the test set, Chen et al. (2007)
used a test subset for each bootstrap sample, which comprises of all insolvent firms and a
random sample of the same number of solvent firms in the test set. They reported that the
median AR value for 30 bootstrap samples was 60.5%, using % Zlﬂl p(i/10) to approximate
the integrals in calculating the AR value. The median overall misclassification rate was
calculated as 28.2%. If we adopt the same procedure, BACT yields a median AR value of

66.5% and median overall classification rate as 27.2%. So BACT also outperforms SVM in

identifying the insolvent firms.

5 Concluding Remarks

In this paper, we propose the Bayesian Additive Classification Tree as a general nonlinear
classification method. We show that, based on the sum of many trees, the BACT can yield
flexible class boundaries, and that it has excellent performance compared with the logit
model, CART and SVM, as demonstrated through several benchmark examples and a real
application to credit risk modelling.

Because the partitions in each tree depend only on the ordering of the values of the
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input variables rather than the values themselves, the BACT is robust to extreme values
in the input variables, and the results do not change with monotone transformation of any
input variable. Hence little data processing is needed when using the BACT technique.
Another thing to note is that although we only discuss binary classification in this paper,

extension to multi-class classification is straightforward and left as future research.
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ABSTRACT

Recently, support vector machine (SVM), a novel artificial neural network
(ANN), has been successfully used for financial forecasting. This paper deals
with the application of SVM in volatility forecasting under the GARCH frame-
work, the performance of which is compared with simple moving average,
standard GARCH, nonlinear EGARCH and traditional ANN-GARCH models
by using two evaluation measures and robust Diebold—Mariano tests. The real
data used in this study are daily GBP exchange rates and NYSE composite
index. Empirical results from both simulation and real data reveal that, under
a recursive forecasting scheme, SVM-GARCH models significantly outper-
form the competing models in most situations of one-period-ahead volatility
forecasting, which confirms the theoretical advantage of SVM. The standard
GARCH model also performs well in the case of normality and large sample
size, while EGARCH model is good at forecasting volatility under the high
skewed distribution. The sensitivity analysis to choose SVM parameters
and cross-validation to determine the stopping point of the recurrent SVM
procedure are also examined in this study. Copyright © 2009 John Wiley &
Sons, Ltd.

KEY WORDS (recurrent) support vector machine; GARCH model; volatility
forecasting; Diebold—Mariano test

INTRODUCTION

Volatility is important in financial markets since it is a key variable in portfolio optimization, securi-
ties valuation and risk management. Much attention of academics and practitioners has been focused
on modeling and forecasting volatility in the last few decades (see Franses and McAleer, 2002, and
Poon and Granger, 2003, for a comprehensive review). So far in the literature, the predominant
model of the past is the GARCH model by Bollerslev (1986), who generalizes the seminal idea on

*Correspondence to: Shiyi Chen, China Center for Economic Studies, School of Economics, Fudan University, Guoquan
Road 600, Shanghai, China 200433. E-mail: shiyichen@fudan.edu.cn
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ARCH by Engle (1982), and its various extensions; see Li et al. (2002) for recent surveys of the
models. The GARCH family models, together with the simplest historical price model prevalent in
the pre-GARCH era' and stochastic volatility model studied a decade later than GARCH develop-
ment,” comprise one of the two broad categories of methods widely used in volatility forecasting,
the so-called time series volatility model; another is the market determined option implied volatility
model.* This paper limits itself mainly to the analysis within the GARCH framework.

The popularity of the GARCH model is due to its ability to capture volatility persistence or clus-
tering, supported by many studies (Akgiray, 1989; Bollerslev et al., 1992; West and Cho, 1995;
Andersen and Bollerslev, 1998; Marcucci, 2005). However, some empirical studies report that the
GARCH model provides poor forecasting performance (Jorion, 1995, 1996; Brailsford and Faff,
1996; Figlewski, 1997; McMillan et al., 2000; Choudhry and Wu, 2008). To improve the forecasting
ability of the GARCH model, some alternative approaches have been advocated by innovating the
model specification and estimation, by using different evaluation metrics and definitions of realized
volatility,” or by enriching the informational content of the model.®

As for GARCH model specification and estimation, for example, many financial returns are
skewed distributed and nonlinearly dependent such that the linear GARCH model cannot cope with
them and therefore forecast of symmetric GARCH model would be biased (Pagan and Schwert,
1990; Bollerslev et al., 1992). To deal with this problem the regime-switching (RS) volatility model
is proposed to detect nonlinear behavior in the variance by various tests for asymmetry or threshold

'This includes simple moving average method, exponential smoothing method, random walk model, ARMA model,
exponentially weighted moving average (EWMA) method and its current extension of Riskmetrics™ model, etc.

>The stochastic volatility (SV) model has an additional innovative term in the volatility dynamics (Taylor, 1986). For a
detailed discussion on the SV model and its relation to the GARCH class models, see the survey articles by Ghysels et al.
(1996) and Chib et al. (2002), among others.

3The time series volatility model is based on historical price information only, while the option implied volatility (IV) model
uses market traded option information alone or in addition to historical price sets to forecast volatility. Many studies examine
the relative performance of the IV model to forecasting volatility (Day and Lewis, 1992; Lamoureux and Lastrapes, 1993;
Pong et al., 2004; Dotsis et al., 2007; Becker et al., 2009; Neely, 2009). This paper limits itself mainly to analysis within
the GARCH framework.

“Except for the introduction below, other relatively sophisticated GARCH models and estimations include the multivariate
GARCH model (Bauwens et al., 2006; Rosenow, 2008), outlier-corrected GARCH model (Park, 2002; Zhang and King,
2005; Ané et al., 2008), Markov chain Monte Carlo (MCMC) sampling techniques to estimate the GARCH model (Gerlach
and Tuyl, 2006), other semiparametric or nonparametric specification and estimation such as genetic algorithm, wavelet
smoother, kernel density etc. (Franke et al.,, 2004; Lux and Schornstein, 2005; Reno, 2006; Chen et al., 2008; Feng and
McNeil, 2008; Corradi et al., 2009) and combination forecasts from competing approaches (Hu and Tsoukalas, 1999; Dunis
and Huang, 2002).

*Many studies find that the relative accuracy of various models is also highly sensitive to the measures used to evaluate
them (Taylor, 1999; Brooks and Persand, 2003). Most comparisons are based on the average figure of mean absolute error
(MAE) and mean square error (MSE) etc. Diebold and Mariano (1995) and West (1996) show how standard errors for MAE
and MSE are derived taking into account serial correlation in the forecast errors for statistical inference. Lehar et al. (2002)
applies value-at-risk (VaR)-oriented evaluation measures to compare the out-of-sample performance. In addition to the sym-
metric measures of MAE and MSE, Balaban (2004) also uses asymmetric evaluation criteria such as mean mixed error sta-
tistics to compare the forecasting performance, penalizing under/over-predictions of volatility more heavily. Recent research
has also suggested that this relative failure of GARCH models arises not from a failure of the model but a failure to specify
correctly the true volatility measure against which forecasting performance is measured. It is argued that the standard
approach of using ex post daily squared returns as the measure of true volatility includes a large noisy component. An alter-
native measure for true volatility has therefore been suggested based on the cumulative squared returns from intra-day data,
also referred to as realized, or integrated volatility (Andersen and Bollerslev, 1998; Andersen et al., 2003; Meddahi, 2003;
McMillan and Speight, 2004; Galbraith and Kisinbay, 2005; Ghysels et al., 2006).

°In many instances, the researchers find the inclusion of implied volatility or trade volume as an exogenous variable in the
framework of the GARCH model to be beneficial (Brooks, 1998; Fleming, 1998; Blair et al., 2001; Koopman et al., 2005;
Gospodinov er al., 2006; Becker et al., 2007).
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nonlinearity (Franses and Dijk, 2000). The first class of RS volatility model assumes that the regime
can be determined by an observable variable, including the nonlinear exponential GARCH (EGARCH)
model of Nelson (1991), threshold GJR-GARCH model of Glosten ef al. (1992) and quadratic
GARCH model of Engle ef al. (1993) and Sentana (1995). The second class of RS model for volatil-
ity implements GARCH with a Hamilton (1989) type framework that assumes the regime is the
realization of a hidden Markov chain, such as (double) Markov switching GARCH model of Gray
(1996), Klaassen (2002) and Chen et al. (2008).

Both the linear and nonlinear GARCH model described above are parametric and normally esti-
mated jointly by maximum likelihood estimation (MLE). That is, they make specific assumptions
about the functional form of the data generation process and the distribution of error terms that is
necessary for MLE. Such parametric models are easy to estimate and readily interpretable, but these
advantages may come at a cost. Perhaps nonparametric models are better representations of the
underlying data generation process. Instead of specifying a particular functional form and making a
priori distributional assumption, the nonparametric model will search for the best fit over a large set
of alternative functional forms. Thus, in the literature, many nonlinear nonparametric GARCH
models are developed and still developing fast, among which the artificial neural network (ANN) is
extensively used. This paper focuses on one of the neural network algorithms, the support vector
machine (SVM), and investigates its forecasting ability of volatility as compared with the simplest
moving average method, standard linear GARCH model, nonlinear EGARCH model and traditional
recurrent ANN-based nonlinear GARCH model. The moving average method is chosen as the
benchmark because some studies find that it provides more accurate forecasts than GARCH models
(Dimson and Marsh, 1990; Tse and Tung, 1992; Figlewski, 1997). Among the number of nonlinear
parametric GARCH models the EGARCH model is also the most commonly used (Cao and Tsay,
1992; Cumby et al., 1993; Heynen and Kat, 1994; Chong et al., 1999; Hu and Tsoukalas, 1999;
Gokcan, 2000; Balaban, 2004).

In recent years, ANN has been successfully used for forecasting financial time series; for
recent work, see Fernandez-Rodriguez er al. (2000), Qi and Wu (2003), and Pantelidaki and
Bunn (2005). The studies in favor of ANN-based GARCH model as opposed to parametric
GARCH model in forecasting conditional volatility include Donaldson and Kamstra (1997),
Schittenkopf et al. (2000), Taylor (2000), Dunis and Huang (2002), Hamid and Igbal (2004), Ferland
and Lalancette (2006), Tseng et al. (2008). However, the traditional ANN algorithm also suffers
from its own weaknesses such as the need for many controlling parameters, difficulty in obtaining
a global solution and the danger of over-fitting (Tay and Cao, 2001). Thus, SVM that can obtain a
unique global solution by solving a quadratic programming is developed by Vapnik and his co-
workers (1995, 1997). Naturally, SVM also keeps the advantages of conventional ANN such as the
flexibility in approximating any nonlinear function arbitrarily well, without a priori assumptions
about the properties of the data and without the requirement of large sample size that MLE-based
parametric GARCH models have. Unlike traditional ANN implementing the empirical risk minimi-
zation (ERM) principle, the most particular principle of SVM is to implement the structural risk
minimization (SRM), which seeks to achieve a balance between the training error and generalization
error, leading, theoretically, to better forecasting performance than traditional ANN (Gunn, 1998;
Haykin, 1999). Recently, SVM has gained popularity in predicting financial variables owing to such
attractive features (Cao and Tay, 2001; Hirdle et al., 2005, 2007; Chen et al., 2009). Pérez-Cruz
et al. (2003) also propose an SVM-based GARCH (1, 1) model and shows that it provides better
volatility forecasts than the standard GARCH model. However, they use the feedforward SVM
procedure, which has the same structure as the autoregressive (AR) process and has poor ability

Copyright © 2009 John Wiley & Sons, Ltd. J. Forecast. 29, 406433 (2010)
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to model a long-time memory. Inspired by the merit of recurrent ANN (Kuan and Liu, 1995; Dunis
and Huang, 2002; Bekiros and Georgoutsos, 2008), in this paper we propose a recurrent SVM pro-
cedure which can model the ARMA process and apply it to forecast the conditional variance equation
of the GARCH model in real data analysis.

The forecasting accuracy of the recurrent SVM-based GARCH model in one-period-ahead volatil-
ity forecasting is compared with the competing models in terms of two evaluation metrics of mean
absolute error (MAE) and directional accuracy (DA). The statistical hypothesis of equal forecasting
accuracy between pairwise models is also investigated by using the Diebold and Mariano (1995)
test, calculated according to the Newey—West procedure (Newey and West, 1987). The Diebold and
Mariano (DM) test is one of the most important contributions to the study of out-of-sample forecast-
ing accuracy evaluation over the past two decades, and has been further generalized and extensively
used in many studies since then (Corradi and Swanson, 2004; Awartani and Corradi, 2005; Preminger
and Franck, 2007; Taylor, 2008; Groen et al., 2009; Wong and Tu, 2009).

This paper is organized as follows. The next section briefly introduces the theory of SVM. The
third section specifies the empirical model and forecasting scheme. The fourth section uses the Monte
Carlo simulation to evaluate how the models perform under controlled conditions. The fifth section
describes the GBP exchange rates and NYSE composite index data and discusses the volatility
forecasting performance of all models for the real data. The paper concludes with the sixth
section.

SUPPORT VECTOR MACHINE

The support vector machine (SVM) originates from Vapnik’s statistical learning theory (Vapnik,
1995, 1997), which has the design of a feedforward network with an input layer, a single hidden
layer of nonlinear units and an output layer, and formulates the regression problem as a quadratic
programming (QP) problem. SVM estimates a function by nonlinearly mapping the input space into
a high-dimensional hidden space and then running the linear regression in the output space. Thus,
the linear regression in the output space corresponds to a nonlinear regression in the low-dimensional
input space. The theory denotes that if the dimensions of feature space (or hidden space) are high
enough, SVM may approximate any nonlinear mapping relations. As the name implies, the design
of the SVM hinges upon the extraction of a subset of the training data that serves as support vectors,
which represent a stable characteristic of the data.

Given a training dataset (X, y,), where input vector x; € R” and output scalar y, € R'. Indeed, the
desired response y, known as a ‘teacher’, represents the optimum action to be performed by the
SVM. We aim at finding a sample regression function f(x), or denoted by y, as below to approximate
the latent, unknown decision function g(x):

fx)=w'o(x)+b ey

where the superscript 7 is a transposing operator that should be differentiated from the sample size
T of the time series used later in this paper. In equation (1), ¢(x) = [¢(X), ..., X)), w=[w,, ...,
w,]". The ¢(x) is known as the nonlinear transfer function which represents the features of the input
space and projects the inputs into the feature space. The dimension of the feature space is /, which
is directly related to the capacity of the SVM to approximate a smooth input—output mapping; the
higher the dimension of the feature space, the more accurate the approximation will be. Parameter
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w denotes a set of linear weights connecting the feature space to the output space, and b is the
threshold.

To get the function f(x), the optimal w* and b* have to be estimated from the data. First, we define
a linear &-insensitive loss function, L., originally proposed by Vapnik (1995):

ly—f(x)|-¢ forly—f(x)=¢
0 otherwise

L(x,y, f(x))= { 2

This function indicates the fact that it does not penalize errors below &. The training points within
the &-tube have no loss and do not provide any information for decision. Therefore, these points do
not appear in the decision function f(x). Only those data points located on or outside the &-tube will
serve as the support vectors and are finally used to construct the f(x). This property of sparseness
algorithm results only from the &-insensitive loss function and greatly simplifies the computation of
SVM. The non-negative slack variables, & and £’ (below or above the &-tube, or denoted together
by &”; see Figure 1) are employed to describe this kind of e-insensitive loss.

The derivation of SVM follows the principle of structural risk minimization (SRM) that is rooted
in the Vapnik—Chervonenkis (VC) dimension theory (Haykin, 1999). Structural risk is the upper
boundary of empirical loss, denoted by &-insensitive loss function, plus the confidence interval (or
called margin), which is constructed in equation (3). The primal constrained optimization problem
of SVM is obtained below:

min
weR’, &()eR?", beR

C(w,b,&, 6{)=%IIWII2+CZ(§ +8) 3)

Figure 1. Principle of structural risk minimization (SRM) of SVM
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such that
WT¢(Xt)+b_yt $5+§ “)
-wo(x)-b<e+& ()
£=0,E=0,t=1,2,...,T (6)

The formulation of the cost function C(-) in equation (3) is in perfect accord with the SRM principle,
which is illustrated in Figure 1 (in which the dark circles are data points extracted as support vectors).
In equation (3), the first term indicates the Euclidean norm of the weight vector w(||w||*> = w’w) and
measures the function flatness; to minimize it is equivalent to maximizing the separation margin
@/ llwll), that is, maximizing the generalization ability. The second term represents the empirical risk
loss determined by the &-insensitive loss function and is similar to the sum of residual squares in the
objective function of ANN. Finally, SVM obtains the tradeoff between the two terms; as a result, it
not only fits the historical data well but also forecasts the future data excellently. As shown in Figure
1, both regression lines 1 and 2 can classify the data points correctly and then minimize the empirical
loss; however, the separation margin of the two lines are different, in which the regression line 1 has
the larger margin. It is the special design of minimizing the structural risk that endows SVM with the
excellent forecasting ability among all candidates. In addition, the convex quadratic programming and
linear restrictions in the above primal problem ensure that SVM can always obtain the global unique
optimal solution, which is different from the usual networks that easily get trapped in local minima.
The penalty parameter C > 0 controls the penalizing extent on the sample points which lie outside &-
tube. Both € and C, the free parameter of SVM, must be selected by the user.

The corresponding dual problem of the SVM can be derived from the primal problem by using
the Karush—-Kuhn—Tucker conditions as follows:

1 T T , T , T )
nin, Ezz o —OCS)(OQ—(Xr)K(XS-x,)+82(OC[+(X[)—Zy,((xt—at) (7)
€ s=1 =1 =1 P
such that
T
Y (a,—a)=0 (8)
=1
0oy, 0/<Cs,1=12,....T 9)

where ¢, and o] (or ¢”) are the Lagrange multipliers. The dual problem can be solved more easily
than the primal problem (Scholkopf and Smola, 2001; Deng and Tian, 2004). Making use of any
solution of ¢, and ¢, the optimal solutions of the primal problem can be calculated in which w* is
unique and expressed as follows:

T

wE= (0 —,)p(x,) (10)

t=1
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However, b* is not unique and formulated in terms of different cases. If i € {t|(x, € (0, O)}, then

b=y, = (o~ o) K (x %)+ € an

t=1

If j e {tl &) €(0, C)}, then

b*zyj—i(a,'—a,)l((xt-xj)—e (12)

t=1

The cases of both i, j € {tlo’ = 0} and i, j € {t|or’ = C} rarely occur in reality.
Thus the regression decision function f(x) will be computed by using w* and b* in the following
forms:

f(x)=w¥o(x)+b*

= 200 - ) (x)9(x)+ * (13)

=Y (0 o) K (x.x) + b

t=1

where K(x,, X) = ¢"(x)¢(x) is the inner-product kernel function. In fact, the SVM theory considers
only the form of K(x, X) in the feature space without specifying explicitly ¢(x) and without computing
all corresponding inner products. Therefore, the kernel function greatly reduces the computational
complexity of high-dimensional hidden space and becomes the crucial part of SVM. The func-
tion which satisfies the Mercer theorem can be chosen as the SVM kernel. No analytical method
is currently available to determine the most suitable kernel for a particular dataset. This paper
experiments with three different kernels to investigate the effect of a kernel type in Monte
Carlo simulation:

Linear: K (X, X)=x'x (14)
Polynomial: K (x,,X)=(x{x+ l)d (15)

G ian: K _ _"X_Xt”2
aussian: (%, X) =exp T (16)

where d and o are the parameters for the polynomial and Gaussian kernel. Before implementation
of the SVM, the appropriate values of the coefficients &, C, d and 6 must be determined in advance
through cross-validation. The sensitivity analysis of the parameters and the kernel type will be illus-
trated by using the simulated data below (‘Monte Carlo Simulation’).
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EMPIRICAL MODELING

In this study, the forecasts are obtained first by applying the Monte Carlo Simulation, following the
suggestions in Andersen and Bollerslev (1998) and Clements and Smith (1999, 2001). The main
motivation for conducting a simulation experiment is that, since the true volatility is known, the
candidate volatility measures can be compared with certainty. We then fit each of the models to the
daily returns on the GBP exchange rate and NYSE stock indexes and forecast their respective
volatility. The empirical modeling and forecasting scheme described below are employed for both
simulation and real data.

Model specification
In this paper the real data we analyze are the daily financial returns, y, converted from the
corresponding price or index, I,, using continuous compounding transformation as

y, =100x(log1,,, —log1,) (17

Empirical findings suggest that GARCH is a more parsimonious model than ARCH, and GARCH
(1, 1) specification is sufficient to model the variance changing over long sample periods and has
become the most popular structure when capturing financial volatility (Akgiray, 1989; Franses and
Dijk, 1996; Brooks, 1998; Gokcan, 2000; Andersson, 2001; Brooks and Persand, 2003; Poon and
Granger, 2003; Gerlach and Tuyl, 2006). As such, throughout the paper, the analysis is restricted to
the case of the GARCH (1, 1) process for the second conditional variance function and the AR(1)’
process for the conditional mean equation, for the sake of candidate comparison under the same
conditions.

Thus the linear standard GARCH (1, 1) model is specified as follows:

Ve=c+ ¢y +u  u ~NQO,h) (18a)
h, = K+5]h,,1 + Ollu,z,l (18b)

where ¢, ¢, k, 0, and ¢ are constant parameters. Such restrictions on the parameters that x, 6, and
o are non-negative and 0, + o < 1 prevent negative variances (Bollerslev, 1986).

All odd moments of u, in the standard GARCH model equal zero, and hence u, and y, are sym-
metric time series. The nonlinear EGARCH (1, 1) model that is able to capture the asymmetry is
similar to the linear GARCH model but the A, process is given by

log(h,)=x+9, log(ht1)+ocl(\|7%—\/2/7r)+ﬂlM}V;T:l_1 (19)

where K, 8;, o and J; are the constant parameters. The EGARCH model is fundamentally different
from the standard GARCH model in that the standardized innovation serves as the forcing variable
for the conditional variance. Also, there are no restrictions on the parameters to ensure non-negativity

"Franses and Dijk (1996) also denote that the order of autoregression in the first conditional mean equation of the GARCH
framework is usually O or small. Thus, the order 1 is specified for this study.
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of the variances. The coefficient §, is introduced to capture the asymmetry. If 8, = 0, a positive return
shock has the same effect on A, as the negative return shock of the same amount; if 8, < 0, a positive
return shock actually reduces h,; if 8, > 0, then a positive return shock increases h,. Previous studies
have viewed this coefficient as typically negative, indicating that negative return shocks normally
generate more volatility than positive return shocks, so generating the so-called leverage effect.

The conditional variance of u, is given by h, = E,_ju? = it},_,. Roughly speaking, in a GARCH
process the conditional variances can be modeled by an ARMA type process (Franses and Dijk,
1996). For instance, the ARMA process of the conditional variance of u, in a linear GARCH model
can be expressed as below (Hamilton, 1997; Enders, 2004):

u,z =K+ (61 + (Xl)u,z,l +w, — 51W,,1 (20)

where w, = u? — 6i,., = u> — h,, which is white noisy error. Inspired by this, the nonparametric recur-
rent ANN and SVM based nonlinear GARCH (1, 1) model is specified as the following form:

ye=f(y)+u (21a)
uj = g (Ui, wi)+w, (21b)

where f(-) and g(-) are nonlinear nonparametric function forms for conditional mean and variance
equations, respectively. Note that equation (21b) is adopted for the analysis of real data because the
actual volatility /4, is unobservable, while in the case of simulation the conditional variance equation
is just specified as &, = f(h,_,, ui;) due to h, being known. Because of the way GARCH (1, 1) class
models are constructed, the volatility is known at time # — 1. Thus the one-step-ahead forecast of
volatility is readily available.

The moving average method uses weighted moving averages of past squared innovations to fore-
cast volatility (Niemira and Klein, 1994). For simulated data, the moving average forecast for the
next-day volatility, using the five most recent observations, is expressed as

N
3 = 3 > (22)

For real data, the moving average forecast for the next-day volatility is expressed as (Engle et al.,
1993)

N e _
U = g 2 (v =¥ )2 (23)
j=t-4
where
_ 1
Vs =7 2 Yj
5 4

The recurrent ANN used in this study is the feedback multilayer perceptrons (MLP) network with
the addition of a global feedback connection from the output layer to its input space. We specify
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this kind of recurrent back-propagation network with the following architecture: one nonlinear
hidden layer with four neurons, each using a tan-sigmoid differentiable transfer function to generate
the output, and one linear output layer with one neuron. As a training algorithm, the fast training
Levenberg—Marquardt algorithm is chosen. The value of the learning rate parameter used in the
training process is set to be 0.05. These specifications and choices are standard in the neural network
literature.

Recurrent SVM procedure

As Haykin (1999) said, the standard SVM described above usually appears in the design of a simple
network in which an input layer of source nodes projects onto an output layer of computation
node, but not vice versa (see Figure 2(a)). This process is known as feedforward SVM and could be
easily employed to estimate such AR process as the first conditional mean function (21a),
v, = fiy.1) + u,, and the second conditional variance function in the situation of simulation, &, =
f(hey, u>,). However, because the unobservable error term w, is introduced into the GARCH
model which indeed exhibits the nonlinear ARMA process, how to estimate the conditional volatility
model (21b) for real data?

To estimate the nonlinear ARMA model, a feedback process of SVM with unobservable moving
average part as inputs, not addressed before our application®, has to be described, which distinguishes
itself from feedforward SVM in that it has at least one feedback loop (see Figure 2(b)). In this paper,
we abuse terminology and refer to this process as ‘recurrent SVM’. The feedback loops involve the
use of particular branches composed of one-delay operator, 7', which result in nonlinear dynamical
behavior and have a profound impact on the learning capability of SVM. Thus the recurrent SVM
will capture more dynamic characteristics of y, than does feedforward SVM.

To overcome the problem that the series of error term w, is unavailable, we employ the model
residuals as estimates of the errors in an iterative way, which is similar to the way that the linear
ARMA model is iteratively estimated by MLE (Box et al., 1994; Hamilton, 1997). Likewise, the

9(x) W
x O > O > O fix)
(a)
oo Y o s
Z-1
(b)

Figure 2. Signal-flow graphs of feedforward and recurrent SVM. (a) Signal-flow graph of a feedforward SVW.
(b) Signal-flow graph of a single-loop recurrent SVW

8Suykens and Vandewalle (2000) proposed the algorithm of recurrent least squares SVM. The difference between the two
recurrent SVM algorithms is their sparseness solutions.
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error term is initially set to be its expectation: zero. The empirical procedure of the recurrent SVM
executed during the training phase is described as follows. The letter i indicates the iterative epoch
and ¢ denotes the period:

 Step 1: Set i = 1 and star with all residuals at zero: w'" = 0.

* Step 2: Run an SVM procedure to get the decision function f to the points {x, y,} = {uZ,, u?}
with all inputs x, = {u?,, wi’;}.

* Step 3: Compute the new residuals wi*" = u? — @,

e Step 4: Terminate the computational process when the stopping criterion is satisfied; otherwise,
set i =i+ 1 and go back to Step 2.

Note that the first iterative epoch is in fact a feedforward SVM process and results in an AR (1)
model and that the following epochs provide results of the ARMA (1, 1) model, being estimated by
the recurrent SVM.

In general, the procedure cannot be shown to converge, and there are no well-defined criteria for
stopping its operation. Rather, some reasonable criteria can be found, although with its own practical
drawback, which may be used to terminate the computational process.

To formulate such a criterion, it is logical to think in terms of the properties of the estimated
residual series. After sufficiently long iterative steps, the autocorrelation displayed behind the residu-
als during the first AR epoch should disappear, and the information in the residual behavior has been
completely adopted and the final residual series should be white noisy. Accordingly, we may suggest
a sensible convergence criterion for the recurrent SVM procedure as follows:

The recurrent SVM procedure is considered to have converged when the corresponding residuals
become white noisy, or has no autocorrelation.

To quantify the measurement of white noise, we use the formal hypothesis test, the Ljung—Box—
Pierce Q-test, to investigate a departure from randomness based on the ACF of the residuals. Under
the null hypothesis of no autocorrelation in residuals, the O-test statistic is asymptotically distributed
as chi-square. In fact, we just check the actual p-values (exact level of significance) of the Q-test of
lag 1. It is reasonable to think there is no higher-order autocorrelation if there is no one-order auto-
correlation in residuals. Only if the p-values of the Q-test for five consecutive epochs are simultane-
ously higher than 0.1 is the iterative computational process stopped. To overcome the drawback of
this convergence criterion, we use cross-validation to avoid the possible over-fitting problem; see
‘Real data analysis’ below for the iterative process in detail.

Forecasting scheme

To illustrate the forecasting scheme, the SVM-GARCH model is also exemplified. First, estimate
the conditional mean equation (21a) by using the feedforward SVM in the full sample period
(1, 2,..., T) to obtain residuals, uy, u,, . .., ur. Then, recursively run the SVM-GARCH (1, 1)
model for squared residuals thus obtained to forecast the one-period-ahead volatility. The
recursive forecasting scheme is employed with an updating sample window; the estimating and
forecasting process is carried out recursively by updating the sample with one observation each
time, rerunning the SVM approach and recalculating the model parameters and corresponding
forecasts. Here, the SVM approach to estimate the conditional volatility is feedforward for simula-
tion and recurrent, as described in the above subsection, for real data. The first training sample is
wioud, ., uzrl (Ty, < T). The observations of T — T, are retained as a forecasting or test sample.

Copyright © 2009 John Wiley & Sons, Ltd. J. Forecast. 29, 406433 (2010)
DOI: 10.1002/for



Forecasting Volatility with SVM-Based GARCH Model 417

Therefore, we can estimate and forecast the SVM-based conditional volatility equation forn=7T—-T)
times. We set n = 60 for both simulation and real data in this study. Thus, 60 one-period-ahead
forecast volatilities, @25y, #rsg, ..., Ury, H7, will be acquired for out-of-sample forecasting
evaluation.

Evaluation measures and pairwise comparison of competing models

We evaluate the forecasting performance using two standard statistical criteria: mean absolute fore-
cast error (MAE) and directional accuracy (DA), expressed as follows (Brooks, 1998; Moosa,
2000):

1 o
MAE = — 2|ut2+l - ul‘2+l (24)

=T,

100 S
DA(%)=— .4, (25)

=T}

where

oo {1 (s =1 ) (82 —2) = 0
0 otherwise

MAE measures the average magnitude of forecasting error which disproportionately weights
large forecast errors more gently relative to MSE; and DA measures the correctness of the
turning point forecasts, which gives a rough indication of the average direction of the forecast
volatility.

The fundamental problem with the evaluation of volatility forecasts of real data is that volatility
is unobservable and so actual values with which to compare the forecasts do not exist. Therefore,
researchers are necessarily required to make an auxiliary assumption about how the actual ex post
volatility is calculated. In this paper, we use the square of the return minus its mean value as the
surrogate of actual volatility against which MAE and DA can be calculated. This approach is similar
to the standard one, squared returns, because the mean of returns is usually close to zero. The proxy
of actual volatility in real data is expressed as

u? =(y,-y) (26)

where y, is returns and ¥ is mean of returns. This proxy has been used in many recent papers, such
as Pagan and Schwert (1990), Day and Lewis (1992), Chan et al. (1995), West and Cho (1995),
Chong et al. (1999), Brooks (2001) and Brooks and Persand (2003).

To test for equal forecasting accuracy of two competing models, we use the two-sided DM test
statistic proposed by Diebold and Mariano (1995) for the difference of MAE loss function. The null
and alternative hypotheses in this case are

H,: MAE, —MAE, =0 versus H: MAE, —MAE, #0
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where the subscript O denotes the benchmark model and 1 the competing model. The DM statistic
in a robust form is then based on the following large sample statistic:

1 1 T-1 . R
DM = —=—— 3" (|11 = 7| = 721 = 83,011]) ~ N (0, 1) 27)

n \/S:Tt:n

where $? denotes a heteroscedasticity and autocorrelation consistent (HAC) robust (co)variance
matrix which is estimated according to the Newey—West procedure (Newey and West, 1987). We
use Andrews’ (1991) approximation rule to automatically select the number of lags for the HAC
matrix. If n grows at a rate such that as 7 — e, n — oo and n/T; — 0, then the DM statistic converges
in distribution to a standard normal.

MONTE CARLO SIMULATION

Data-generating process

In this section we investigate the forecasting performance of all candidates using artificial simulated
data under controlled conditions. To generate the data, we first need to parameterize the GARCH
(1, 1) model in equation (18) with the following settings (¢, ¢y, &, &;, &) = (0, 0.5, 0.0005, 0.8, 0.1)
for medium persistence and a disturbance term u, distributed first as Gaussian and then as a Student’s
t with five degrees of freedom (kurtosis = 5). The second distribution tries to model the skewness
and excess of kurtosis that usually appears in real financial series. Using the same specified models,
two artificial samples of size 500 and 1000 are created under a two-distributions assumption, giving
a total of four situations. To limit the computational burden, each situation is replicated only 50
times. Then the multiple simulated y, and 4, are 500 X 50 and 1000 x 50 element matrices for
different distribution.

Parameter selection

The use of cross-validation is appealing particularly when we have to design a somewhat complex
approach with good generalization as the goal. For example, here we may use cross-validation to
determine the values of free parameters of SVM with the best performance. One series of 50 simu-
lated returns and volatility of 1000 size and Student’s ¢ distribution, one of the four situations, is
exemplified as below. The first training data, that is, the former 940 observations, are used to deter-
mine the appropriate values taken by the free parameters. The training data are further randomly
partitioned into two disjoint subsets: estimating sample and validating sample (700 and 240 observa-
tions, respectively).

As shown above, two free parameters (€ and C) and two kernel coefficients (d and 62) have to be
selected by users before running the SVM procedure. The motivation for using cross-validation here
is to validate the model on a dataset different from the one used for parameter estimation. In this
way we may use the training set to assess the performance of various values of parameters, and
thereby choose the best one. The sensitivity investigation of SVM (represented by the generalization
error, MAE) with respect to four parameters is illustrated in Figures 3 and 4 for conditional mean
and variance estimation, respectively.

Figure 3 describes the sensitivity analysis for the conditional mean equation. Parameter C varies
from a very small value of 0.0001 to infinity, with € being fixed at 0.0001 and o 0.4. Clearly, when
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Figure 3. Sensitivity analysis of SVM in conditional mean estimation

C = 0.05, MAE of the validation sample obtains the lowest value, 0.046. Parameter ¢ takes values
in the range [0.00001, 0.00005, 0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001, 0.005, 0.01, 0.05,
0.1], with C = 0.05 and o = 0.4. The values of & to the left of the point = 0.0001 have no influence
on the performance of SVM. Coefficient 67 varies from values of 0.001 to 1000, with C being 0.05
and 0.0001. Obviously, the value of 6 = 0.4 leads to the best validation performance. If we set C
=0.05 and 0.0001 and the polynomial kernel parameter d = [0.1, 0.5, 1, 2, 3,4, 5, 6, 7, 8, 10, 100],
the validating MAE attains the minima when d = 8; after that, over-fitting the training set occurs.
Note that the polynomial kernel with d = 1 is similar to the linear kernel. Thus, the appropriate
parameters of SVM for the conditional mean returns are: C = 0.05, € = 0.0001, ¢* = 0.4 and
d=28.

Figure 4 describes the parameter selection process for conditional variance series. Similar to the
return series, the MAE of both estimating and validating sample decreases as the values of C increase
and become stable when C takes a value greater than 10; in contrast to C, as the values of € increase,
both MAE of SVM are considerably more stable before the point of € =0.0001 and increase slowly,
and sharply after £=0.001. The value of 6>=0.01 results in the best validation performance; namely,
its MAE reaches the minimum value, about 0.000065. The values of d taken between 100 and 1000
have not much effect on the performance of SVM but after that range the over-fitting phenomenon
becomes serious. Likewise, when one parameter is analyzed, the others are set to be fixed. Therefore,
the correct parameters chosen for the conditional variance series are C = 10, £ = 0.00005, o> = 0.01
and d = 250, respectively.
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Figure 4. Sensitivity analysis of SVM in conditional variance estimation

Thus far we discuss the sensitivity investigation of parameters by using the simulated data with
1000 observations and ¢ distribution. The parameter selection for the other three random samples is
similar to this and not reported here to save space.

EFFECT OF KERNEL TYPE AND FORECASTING EVALUATION

There is still the possibility of over-fitting after training. Therefore, the generalization performance
of the competing models is further measured and evaluated on the test set, which is different from
the validation subset. For the simulated data, the forecasting sample is the last 60 observations. For
each replication, the SVM-based GARCH (1, 1) model and the others are estimated, and the fore-
casting errors are calculated using the forecasting schemes described above. The results of out-of-
sample one-period-ahead volatility forecasting measures for four situations are shown in Table L.
The reported results are the mean values of 50 independent replications. Table II presents the p-
values of Diebold-Mariano (DM) test for the MAE difference, which are defined as the significance
levels at which the null hypothesis under investigation can be rejected. In calculating the DM sta-
tistic, the null hypothesis of equal forecasting ability is related to the four benchmark models: moving
average, standard GARCH, EGARCH and traditional ANN models. We report the results of the DM
test, say DM1, in the third and seventh columns for two simulated series, respectively, under the
null hypothesis that the absolute forecast error produced by the moving average method is equal to
those obtained using the other models. DM2, DM3 and DM4 are organized in the same manner and
show the test results when the benchmark models are respectively the standard GARCH, EGARCH
and recurrent ANN models. The DM tests in this study are investigated in a robust form, by simply
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Table I. Diebold—Mariano test for the MAE difference on real data

Models Sample Size = 500 Sample Size = 1000
Normality Student’s ¢ Normality Student’s ¢
MAE DA MAE DA MAE DA MAE DA

Moving Average 0.0001276  44.07 0.0001747 59.32  0.0001198 54.24  0.0002130  40.68
Standard GARCH  0.0000972  76.27  0.0001765 55.93  0.0000488 79.66  0.0001083  59.32
EGARCH 0.0001312  67.80 0.0002075 64.41 0.0000730  57.63  0.0001864  74.58
ANN-GARCH 0.0001517  72.88 0.0002481 57.63 0.0000904 62.71 0.0001442 67.80
SVMI-GARCH 0.0000960  76.27  0.0001369  71.19  0.0000501  74.58  0.0000715  72.88
SVMp-GARCH 0.0000924  76.27 0.0001371  71.19 0.0000479 71.19 0.0000714  77.97
SVMg-GARCH 0.0000796  86.44  0.0001397 81.36  0.0000456  83.05 0.0000769  98.31

Note: SVMI, SVMp and SVMg represent the SVM with linear, polynomial and Gaussian kernel, respectively, for short.

scaling the numerator by a heteroscedasticity and autocorrelation consistent (HAC) (co)variance
matrix calculated according to Newey-West procedures (Newey and West, 1987).

Table I firstly shows the effect of kernel functions on out-of-sample forecasting performance of
SVM. The linear kernel behaves better in the sample with 500 sizes and ¢ distribution based on DA
measure. The polynomial kernel is the most suitable for forecasting the #-distributed 1000 sample
size also based on DA. For all the other six cases, the Gaussian kernel looks promising, however,
which is not a general conclusion but only true for the case we are studying. As a whole, three types
of kernel-based SVM have a similar volatility forecasting performance and almost behave better
than the benchmarks. Since no single kernel function dominates all volatility predictions, practitio-
ners could try any kernel function. In the real data analysis later, for example, we only investigate
the performance of the Gaussian kernel-based SVM-GARCH model.

Now, based on Table I, we revert to comparing the volatility forecasting ability among all com-
peting models. In terms of the average ranking of MAE measures, the order of the forecasting ability
of the different methods from highest to lowest is displayed in turn as follows: SVMp-GARCH,
SVMg-GARCH, SVMI-GARCH?, standard GARCH, EGARCH, moving average and ANN-GARCH
model. Concretely, in the situation of normal distribution, the standard GARCH model behaves not
badly, which is ranked fourth (only inferior to three SVM models) in the 500 sizes and even ranked
third (only defeated by Gaussian and polynomial SVM models) in the series of 1000 sizes. Even
though the data satisfy the normality assumption that is required for MLE in the standard GARCH
model, the SVM-GARCH models still outperform it in forecasting the magnitude of the volatility
error. Nonlinear EGARCH and ANN-GARCH models perform worse than the linear GARCH
model. In the situation of ¢ distribution, the forecasting performance of the linear GARCH model
grows poorer and the difference of MAE values between SVM-GARCH and standard MLE-GARCH
models becomes larger than that under normality. Possibly this results from the fact that the normal-
ity assumption required for MLE is violated but it is not necessary for the SVM method. Not as
expected, the asymmetric EGARCH model is weak in reducing the forecasting error even in the case
of skewed distribution.

Based on the DA measures in Table I, on average, the Gaussian SVM-GARCH model ranks
highest (for all four situations) in forecasting volatility directions, followed by polynomial and linear

That is, corresponding to SVM-based GARCH models with polynomial, Gaussian and linear kernel function,
respectively.

Copyright © 2009 John Wiley & Sons, Ltd. J. Forecast. 29, 406433 (2010)
DOI: 10.1002/for



422 S. Chen, W. K. Hiirdle and K. Jeong

SVM-GARCH models, linear GARCH model, EGARCH model, ANN-GARCH model and moving
average, in turn. In the situation of the normal distribution, the standard GARCH model behaves
even better than forecasting error magnitude—ranked second for both the series of 500 sizes (only
inferior to Gaussian but equal to linear and polynomial SVM models) and 1000 sizes (worse than
Gaussian but better than the other two SVM type models). In the case of normality and large sample
sizes, particularly favorable for MLE, the standard GARCH model still cannot defeat the Gaussian-
based SVM-GARCH model. It is not surprising for EGARCH to behave badly in this case. As for
the situation of ¢ distribution, the linear GARCH model is ranked last for the 500 sizes (55.93%)
and second last for the 1000 sizes (59.32%); while the asymmetric EGARCH model is good at
forecasts of volatility turning points—ranked fourth for short series (only behind the three SVM
models) and even third for long series (inferior to Gaussian and polynomial but better than the linear
SVM-GARHC model). This time the ANN-GARCH model defeats the linear GARCH model. As
for the linear GARCH model and moving average method, in the situation of 500 sizes and 7 distri-
bution the standard GARCH model performs worse than the moving average, the simplest time series
method, in terms of both MAE and DA measures. The conclusions described above are obtained on
average based on 50 replications.

Table II displays the p-values of the DM test when the moving average method, standard GARCH,
EGARCH and ANN models are compared with each of the other models considered in the study.
We denote these tests DM1, DM2, DM3 and DM4, respectively. For instance, DM1 presents the
test results for the simple moving average, where a p-value no greater than 0.05 indicates that the
moving average method yields a higher forecast error (in terms of absolute error) relative to
the competing model at 5% significance level, a p-value no smaller than 0.95 means that the moving
average produces a lower forecast error at the 5% level, while a p-value between 0.05 and 0.95
implies that the benchmark and competing model have equivalent forecasting accuracy from the
viewpoint of statistics. The same interpretation applies to the p-values reported for DM2-DM4.

Table II. Diebold—Mariano test for the MAE difference on Monte Carlo simulation

Distribution ~ Models Sample size = 500 Sample size = 1000
bM1 DM2 DM3 DM4 DMl DM2 DM3 DM4
Normality Moving average 0.976  0.401  0.070 1.000 0.999 0.875
Standard GARCH  0.024 0.001  0.000  0.000 0.001  0.000
EGARCH 0.600  0.999 0.005 0.001  0.999 0.033
ANN-GARCH 0.930  1.000  0.995 0.125 1.000  0.967

SVMI-GARCH 0.018 0460 0.002 0.000 0.000 0574 0.002 0.000
SVMp-GARCH 0.023 0413 0.004 0.000 0.000 0.420 0.003 0.000
SVMg-GARCH 0.002  0.097 0.000 0.000 0.000 0.354 0.000 0.000

Student’s ¢ Moving average 0.480 0.036  0.000 1.000  0.822  0.984
Standard GARCH  0.520 0.054  0.003  0.000 0.000  0.001
EGARCH 0.964  0.946 0.021  0.178  1.000 0.966
ANN-GARCH 1.000  0.997 0979 0.016  0.999 0.034

SVMI-GARCH 0.043  0.037 0.002 0.000 0.000 0.019 0.000 0.000
SVMp-GARCH 0.056 0.043 0.001 0.000 0.000 0.025 0.000 0.000
SVMg-GARCH 0.070  0.050 0.000 0.000  0.000 0.033 0.000 0.000

Note: DM1, DM2, DM3 and DM4 are the robust Diebold and Mariano (1995) test by using the Newey—West procedures
(Newey and West, 1987) when the benchmark models are the moving average, linear GARCH model, EGARCH model and
traditional ANN-GARCH model, respectively. For each test we consider the MAE loss functions.
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Under the normal distribution, DM tests indicate that there is equivalent forecasting ability
between moving average and EGARCH for short series, and between moving average and ANN-
GARCH for long series. Such models as standard GARCH and the three SVM-GARCH all have
higher volatility forecasting accuracy than moving average for both series at least at the 5% signifi-
cance level. Moving average outperforms the ANN-GARCH model at the 10% level for a series of
500 size and EGARCH outperforms moving average at the 0.1% significance level for long series.
According to DM2, three SVM type models have statistically equivalent forecasting ability to stan-
dard GARCH model for both series, with only one exception that the Gaussian SVM-GARCH model
behaves better than the standard GARCH model at 10% significance level for short series. For both
series, the standard GARCH model outperforms EGARCH and ANN-GARCH models at extremely
low significance level. The DM3 statistic reveals that, for two series, three SVM-GARCH models
perform better than the EGARCH model and EGARCH better than the ANN-GARCH model all at
extremely significant levels. Finally, the ANN-GARCH model is found statistically and consistently
inferior to the three SVM models for any series based on DM4 tests.

In the case of Student’s ¢ distribution, the out-of-sample performance of the standard GARCH
model deteriorates. Now, according to DM2, the three SVM-GARCH models forecast volatility
significantly better than the standard GARCH model at the 5% level for both series. The standard
GARCH model cannot statistically defeat the moving average, either, for short series. However, both
EGARCH and ANN-GARCH models are still statistically inferior to the standard GARCH model.
In fact, according to DM1, DM3 and DM4, the three SVM-GARCH models all consistently outper-
form such benchmarks as moving average, EGARCH and ANN-GARCH models in forecasting
volatility for any series. In terms of DM, furthermore, the null hypothesis of equal forecasting
accuracy between moving average and EGARCH cannot be rejected for a series of 1000 size rather
500 size. Moving average is significantly better than the ANN-GARCH model for short series, but
the case is reversed for long series. In a series of 500 sizes, the ANN-GARCH model is significantly
outperformed by the EGARCH model, while for the series of 1000 size the ANN type model statisti-
cally defeats the EGARCH model.

In summary, it appears that the three SVM-GARCH models do a better job of forecasting volatility
than the moving average, standard GARCH, EGARCH and ANN-GARCH models in terms of MAE
measures, which is statistically supported by the DM1, DM3, DM4 tests and DM?2 in the case of ¢
distribution. The DM2 test reveals that under the normal distribution the three SVM-GARCH models
and standard GARCH model have similar volatility forecasting ability. Based on DA measures, the
standard GARCH model too has a better ability in forecasting volatility turning points under normal-
ity and large sample sizes, while the asymmetric EGARCH model behaves better under the skewed
t distribution. But both linear GARCH and nonlinear EGARCH cannot defeat all SVM-type models,
at least the Gaussian-based SVM-GARCH model, in forecasting volatility directions.

REAL DATA ANALYSIS

In this section, we investigate the volatility forecasting performance of all candidates by using real
data for two kinds of financial variables: GBP/USD exchange rates and NYSE average index.

Data description
The first dataset consists of the daily nominal bilateral exchange rates of British pounds (GBP)
against the US dollar for the period January 5, 2004 to December 31, 2007. The data are obtained
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from a database provided by Policy Analysis Computing and Information Facility in Commerce
(PACIFIC) at the University of British Columbia, which contains the closing rates for a total of 81
currencies and commodities. The second dataset consists of the daily closing price of the New York
Stock Exchange (NYSE) composite stock index for the period January 8, 2004 to December 31,
2007. The data are downloaded directly from the Market Information section of the NYSE web
page.

It has been widely accepted that a variety of financial variables including foreign exchange rates
and stock prices are integrated of order one. To avoid the issue of possible nonstationarity, both sets
of raw real data are transformed into daily returns via equation (17), giving a returns series of 1001
observations and then a residual series is obtained from a fitted conditional mean equation of the
GARCH class models. For the squared residuals of 1000 observations, the recursive estimating
samples for the conditional volatility function are updated from the former 940 observations through
the former 999 and then 60 numbers of one-period-ahead volatility forecasts are obtained, corre-
sponding to an evaluation sample spanned from the 941st through the 1000th data points, that is,
out-of-sample period of October 3, 2007 to December 31, 2007 for GBP and October 5, 2007 to
December 31, 2007 for NYSE data.

The daily series for the log-levels and the returns of the GBP and NYSE are depicted in Figure
5. This figure shows that the returns series are mean-stationary, and exhibit the typical volatility
clustering phenomenon with periods of unusually large volatility followed by periods of relative
tranquility. Table III reports the summary of the descriptive statistics for the GBP and NYSE returns.
Both series are typically characterized by excessive kurtosis and asymmetry. The Bera and Jarque
(1981) tests all strongly reject the normality hypothesis. For GBP series, the Ljung—Box Q(6) statistic

4
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Figure 5. Log levels and returns of GBP exchange rates and NYSE stock index
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Table III. Descriptive statistics for daily financial returns

Returns GBP NYSE
Statistics p-value Statistics p-value

Mean —0.0092 0.0393

Variance 0.2827 0.6197

Skewness 0.1206 —0.3489

Kurtosis 3.7130 4.9343

Normality 23.1860 0.00001 174.7200 0.00000

Q(6) 3.0313 0.80490 12.7100 0.04788

0(6)* 31.6390 0.00002 150.2400 0.00000

ARCH(6) 28.9280 0.00006 101.8400 0.00000

Notes: Normality is the Bera-Jarque (1981) normality test; Q(6) is the Ljung-Box
Q test at 6 order for raw returns; Q(6)* is LB Q test for squared returns; ARCH(6)
is Engle’s (1982) LM test for ARCH effect.

0.3 0.3
g (a) GBP g (B) NYSE
.12 = 02
o g
5 5
5 01 g
5 o s
> >
o o .
20 40 60O 8O 100 120
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Figure 6. Iterative epochs of recurrent SVR procedure for real data

of raw returns indicates no significant correlation, but the Q(6) value of the squared returns reveals
that there is significant autocorrelation in the squared returns. The Q(6) tests of both raw and squared
returns of NYSE are all significant. Engle’s (1982) LM tests for ARCH effect show significant evi-
dence in support of GARCH effects (i.e., heteroscedasticity) for both series. Note that the number
in parentheses indicates testing at 6 lag order. This examination of daily returns on the GBP and
NYSE data reveals that returns can be characterized by heteroscedasticity and time-varying autocor-
relation; therefore, we expect the GARCH class models to capture it adequately. Furthermore, as
seen from Figure 5 and Table III, it seems that NYSE returns exhibit more variability, skewness,
kurtosis and volatility clustering than GBP series such that nonlinear asymmetric EGARCH model
should fit it more accurately.

Iterative epochs of recurrent SVM
Because the actual volatility 4, is unobservable for real data analysis, the second conditional variance
equation (21b) of the GARCH (1, 1) model should be estimated by using the recurrent SVM procedure,
as proposed above. Again, we use cross-validation to determine when the procedure is stopped.

With good forecasting performance as the goal, it is very difficult to figure out when it is best
to stop training only in terms of fitting performance. It is possible for the procedure to end up
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over-fitting the training data if the training session is not stopped at the right point. We can identify
the onset of over-fitting and the stopping point through the use of cross-validation. Figure 6(a) and
(b) describes the iterative epochs for volatility prediction of the first training sample of GBP and
NYSE, respectively. For the GBP series, the iterative process of recurrent SVM procedure is stopped
at the 51st epoch; while, for NYSE, the iterative process is longer and stopped after 121 iterative
steps, possibly due to higher kurtosis and more variability and noise behind the NYSE series. Now,
we could say, at about the 10% level of significance, the final residuals of equation (21b) obtained
from the recurrent SVM procedure have no autocorrelation. In addition, the p-value curves of both
estimating and validating samples exhibit a similar pattern (namely, increase with an increasing
number of epochs) and point to almost the same stopping point. That is to say, there is no over-fitting
phenomenon for the examples illustrated here; the recurrent SVM model does as well on the validat-
ing subset as it does on the estimating subset, on which its design is based.

The values taken by the free parameter of SVM and kernel coefficients are also selected according
to the sensitivity investigation, similar to that done in Monte Carlo simulation. We do not report the
parameter selection process here but present the formal results throughout the real data analysis. For
both conditional mean and variance estimation of GBP and NYSE series, fortunately, similar param-
eter values of feedforward and recurrent SVM procedure could be found as follows: C = 0.005,
€ =0.05 and 0? = 0.2. Note that in the analysis of financial returns only the Gaussian kernel is
employed for the sake of simplicity due to its best performance among linear, polynomial and
Gaussian kernels, as described in Monte Carlo simulation.

Comparing the forecasting ability

The results of out-of-sample volatility forecasting accuracy for each model by using real data are
presented in Table IV. Table V reports the p-values of the Diebold— Mariano (DM) test for the dif-
ference of MAE loss function in a robust HAC form from Newey—West procedures. In calculating
the DM statistic, the null hypothesis of equal forecasting accuracy is related to the four benchmark

Table IV. Measure of volatility forecasting performance for real data

Models Measures Moving average Standard GARCH EGARCH ANN-GARCH SVM-GARCH

GBP MAE 0.28895 0.24713 0.25719 0.24691 0.23257
DA 37.29 38.98 49.15 38.98 45.76

NYSE MAE 1.69610 1.51000 1.44880 1.62980 1.50410
DA 32.20 42.37 55.93 32.20 57.63

Table V. Diebold—Mariano test for the MAE difference on real data

Models GBP NYSE

DM1 DM2 DM3 DM4 DM1 DM2 DM3 DM4
Moving average 0.990 0.970 0.981 0.935 0.970 0.813
Standard GARCH 0.010 0.017 0.583 0.065 0.902 0.061
EGARCH 0.030 0.983 0.980 0.030 0.098 0.044
ANN-GARCH 0.019 0.417 0.020 0.187 0.939 0.956
SVM-GARCH 0.001 0.076 0.000 0.067 0.047 0.054 0.885 0.042

Note: DM1, DM2, DM3 and DM4 are the robust Diebold and Mariano (1995) test by using the Newey—West procedures
(Newey and West, 1987) when the benchmark models are the moving average, linear GARCH model, EGARCH model and
traditional ANN-GARCH model, respectively. For each test we consider the MAE loss functions.
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models: moving average, standard GARCH, EGARCH and ANN models. We specify them as DM1,
DM?2, DM3 and DM4, respectively. A p-value no greater than 0.05 indicates that the benchmark
model yields a higher forecast error (in terms of absolute error) relative to the competing model at
the 5% significance level, a p-value no smaller than 0.95 means that benchmark model produces a
lower forecast error at 5% level, while a p-value between 0.10 and 0.90 implies that the benchmark
and competing models have the equal forecasting accuracy at 10% significance level.

According to MAE measures in Table IV, the SVM-GARCH model is the best one for the GBP
series and second for the NYSE series in forecasting the magnitude of volatility error. DM tests in
Table V almost statistically favor the SVM-GARCH model as the best model, too, at least at 10%
significance level. Even though the MAE metric reveals that the EGARCH model outperforms the
SVM-GARCH model for the NYSE series, it is not supported by the DM3 test, which means both
models have equal forecasting ability. The better performance of the EGARCH model for NYSE is
perhaps due to its ability to capture higher skewness and asymmetry occurring in the SYSE series
than in GBP. The standard GARCH model performs modestly in terms of MAE measures, statisti-
cally inferior to EGARCH and superior to the ANN-GARCH model for NYSE and significantly
better than EGARCH and similar to the ANN-GARCH model for GBP according to DM?2 tests. The
moving average method is always ranked last in forecasting the magnitude of volatility error, the
evidence being significantly supported at least at the 10% level by the DM1 tests in Table V with
just one exception, that for NYSE series moving average and ANN-GARCH model have equal
forecasting ability. MAE measures and DM3 and DM4 tests denote that the EGARCH model also
significantly outperforms the ANN-GARCH model for highly skewed NYSE series but the case is
totally reverse for the GBP sample.

Based on DA measures in Table IV, on average, the moving average method is still ranked last,
the ANN-GARCH model is ranked second last and the standard GARCH model is ranked at the
middle position in forecasting volatility directions. For the GBP series, EGARCH performs best with
DA value to be highest 49.15%, followed closely by the SVM-GARCH model; while, for the NYSE
model, the best model to forecast volatility turning points is the SVM-GARCH model, with the
asymmetric EGARCH model is ranked second, their DA values being 57.63% and 55.93%,
respectively.

The empirical evidence of real data also confirms the conclusion obtained in Monte Carlo simula-
tion and favors the theoretical advantage of the SVM-GARCH model. Due to high skewness in
financial returns, the asymmetric EGARCH model normally behaves better than the standard GARCH
model, particularly in the case of higher skewness or in forecasting volatility turning points. The
moving average method always behaves worst and the ANN-GARCH model sometimes good in
forecasting one-period-ahead financial volatilities among all candidates.

CONCLUSIONS

In many applications, SVM has shown excellent forecasting performance due to its particular struc-
tural design of SRM principle rather than ERM employed by conventional ANN and MLE methods.
This inspires us to use it to improve the volatility forecasting ability of the parametric GARCH
models. Empirical applications are made for forecasting the simulated data and the real data of daily
GBP exchange rates and NYSE stock index.

To avoid the problem that the actual volatility for real data is unobservable, we propose a recur-
rent SVM procedure with a global feedback loop from the output layer to the input, as opposed to
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the feedforward one for simulation, to estimate the conditional volatility equation, that is the ARMA
process in nature, of the nonlinear GARCH model. The forecasting performance of the SVM-
GARCH model is compared with the moving average, standard GARCH, asymmetric EGARCH
and traditional ANN-GARCH models based on two quantitative evaluation measures and robust
Diebold—Mariano tests following the Newey—West procedure.

The real data results, together with the simulation evidence, consistently and significantly support
the use of the feedforward and recurrent SVM-based GARCH (1, 1) models in forecasting the one-
period-ahead volatility error magnitude and direction. The standard GARCH model also performs
well in the case of normality and large sample size, while the asymmetric EGARCH model is good
at forecasting volatility under the high skewed distribution; but they rarely exceed SVM-GARCH
models, at least the Gaussian-type SVM. The recurrent ANN-GARCH model and moving average
method behave well only in a few cases. Overall, empirical analysis is in favor of the theoretical
advantage of the SVM.

How to choose the appropriate values of free parameters and kernel coefficients and what effect
of kernel type in the SVM procedure are investigated by using the sensitivity analysis in Monte
Carlo simulation. The iterative process of the proposed recurrent SVM procedure in real data analysis
is also examined in detail by the cross-validation method, which is shown to be implemented very
easily and could be adopted as another standard SVM construction procedure in other
applications.
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