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Does hedging with implied volatility factors improve the hedging e�ciency of

barrier options?

Abstract

The price of a barrier option depends on the shape of the entire implied volatility

surface which is a high-dimensional dynamic object. Barrier options are hence exposed

to nontrivial volatility risk. We extract the key risk factors of implied volatility surface

fluctuations by means of a semiparametric factor model. Based on the factors we

define a practical hedging procedure within a local volatility framework. The hedging

performance is evaluated using DAX index options.

JEL classification codes: G11

Keywords: implied volatility surface, smile, local volatility, exotic options, semiparametric

factor model, hedging
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1 Introduction

In equity derivative markets barrier options are appealing instruments for investors looking

for a partial protection of their equity allocation. From the perspective of an institution

issuing barrier options this demand raises the need of e�cient hedging strategies. This is

a challenging task for at least two reasons. First, reverse barrier options, such as down-

and-out puts and up-and-out calls, have discontinuous payo↵ profiles and knock out deep

in-the-money thereby loosing the maximum possible intrinsic value. Second, barrier options,

as many other exotic options, are exposed to nontrivial volatility risk, since the knock-out

probability strongly depends on the skew of the implied volatility smile. The latter e↵ect

also prevents simple Black-Scholes type formulae, such as those by Rubinstein and Reiner

(1991), from being usable in practice.

Nowadays there is a plethora of models available that take the shape of the implied volatility

surface (IVS) into account for option valuation. Potential candidates are: the local volatility

(LV) model proposed by Dupire (1994), Derman and Kani (1994), and Rubinstein (1994),

which introduces a nonparametric local volatility function that deterministically depends

on the asset price and time; stochastic volatility models like Hull and White (1987), Stein

and Stein (1991), Heston (1993), Carr et al. (2003); jump-di↵usion models, such as Merton

(1976), Bates (1996), and Kou (2002). When calibrated to the IVS, all these models are

able to replicate the plain vanilla market to a similar extent, whereas their prices for barrier

options may di↵er due to the di↵erent properties of the underlying asset price dynamics,

see Hull and Suo (2002) and Hirsa et al. (2003) on model risk for barrier options. The

more challenging part is hedging. For it is straight forward to compute derivatives for the

parameters of these models, but it is intricate to give the parameter greeks a meaning by

mapping them on tradable instruments provided by the plain vanilla market. More seriously,

since the prices of the hedging instruments, either over-the-counter or as listed options, are

given in terms of implied volatility, they necessarily follow the dynamics of the IVS. Indeed it

is in question whether the IVS dynamics inherent in the model that is calibrated to a static

surface and used for pricing truly match the stylized facts of IVS dynamics, see Hagan et al.

(2002) and Bergomi (2005) for such a discussion in context of the LV model and the Heston

model, respectively. In contrast, the dynamics of the IVS are empirically well understood,

see Skiadopoulos et al. (1999), Alexander (2001), Cont and da Fonseca (2002), Fengler et al.
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(2003), Hafner (2004), Fengler et al. (2007) among others. The typical approach extracts

the main driving factors like level, slope, or term structure movements and models these

factors. It therefore appears natural to exploit this knowledge for hedging and portfolio risk

management.

The aim of this paper is to study dynamic hedges of reverse barrier options built on factor

functions of empirically observed IVS dynamics. We project the complex, high dimensional

dynamics of the IVS on a low and finite dimensional space spanned by the semiparametric

factor model (SFM)

b�t(, ⌧) = exp

(
LX

l=0

Zt,l ml(, ⌧)

)
, (1)

where b�t(, ⌧) denotes the implied volatility of a certain moneyness  and maturity ⌧ ob-

served in time t. The functions m are nonparametric components and invariant in time,

while the time evolution is modelled by the latent factor series Zt,l. In order to estimate (1)

we apply an estimation technique suggested in Fengler et al. (2007). The SFM estimates the

prevalent movements of the IVS in an (L + 1)-dimensional function space.

Given the estimated factor functions bm, we construct hedges for barrier options priced in

a LV model. We use a LV model, since by the nonparametric nature of the local volatility

function it can match any arbitrage-free set of option prices to an arbitrarily precise degree.

It will hence replicate the deformations of the IVS defined by the estimated factor functions

and allow for a precise computation of factor greeks not prone to calibration error. Moreover,

the LV model is numerically very e�cient and allows for fast and accurate price valuations

using the finite di↵erence method. The factor hedges we obtain are more general than the

usual vega hedges which are defined by a parallel shift of the IVS since they will take into

account nontrivial surface movements, such as nonparallel up-and-down shifts, slope and

term structure risks. Depending on the payo↵ profile of an exotic option, these risks can

be substantial. Our approach is hence similar in spirit to Diebold et al. (2006) who define

factor based duration measures and study the e�cacy of these measures for the insurance of

bond portfolios.

We note that strictly speaking it may not be necessary to vega hedge in an LV framework,
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since it defines a complete market. This however is a theoretical perspective which does not

correspond to market practice. When minimizing portfolio risk, traders are likely to set up

vega hedges as soon as a liquid over-the-counter or listed option markets allow them to do

so. In this sense our approach is e.g. similar to the practice of hedging a long dated plain

vanilla option which are priced by means of a smile-adjusted Black-Scholes model by adding

a short dated option to the portfolio.

The dynamic hedging performance of plain vanilla options in a LV model is studied in Dumas

et al. (1998), Coleman et al. (2001), McIntyre (2001) and Vähämaa (2004), while the case

of reverse barrier options is treated in Engelmann et al. (2006). Engelmann et al. (2006)

implement hedging strategies that are delta (@/@S), vega (@/@�) and vanna (@2/@�@S)

neutral where vega and vanna are obtained by parallel shifts of the IVS and computing the

di↵erence quotient. We complement this analysis by defining sensitivities with respect to

the most prevalent IVS movements motivated by model (1), namely (@/@Z
1

), (@/@Z
2

) and

by constructing portfolios neutral to these greeks. For this purpose we establish a portfolio

containing a reverse barrier option and hedge it on a daily basis with plain vanillas and the

underlying asset using DAX data from January 3rd, 2000 to June 30th, 2004. We then study

the distribution of the hedging errors across the di↵erent hedging strategies.

For completeness we remark that static hedging of barrier options is a competing way of

portfolio insurance, see Derman et al. (1995), Carr and Chou (1997), Carr et al. (1998), An-

dersen et al. (2002), Tompkins (2002), Nalholm and Poulsen (2006a), Nalholm and Poulsen

(2006b). For a static hedge one sets up a portfolio of plain vanillas which replicates the pay-

o↵ of the barrier option as close as possible. The hedge is unwound in case of a knock-out

or at expiry and no other adjustment of the hedge is necessary. In fact, Engelmann et al.

(2007) and Maruhn et al. (2008) show that there are static hedges outperforming dynamic

hedges. However, the practical use of static hedges is limited, since they may not always be

implementable due to insu�cient market depth of listed plain vanilla options.

The paper is structured as follows. In Section 2 we present the framework on which the

empirical procedure is based. Section 3 concentrates on the description of the hedging

method. In Section 4 we present the data, describe the empirical hedging design and discuss

the empirical results. Section 5 concludes.
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2 Models

2.1 Local Volatility Model

In the LV model the risk neutral price of the underlying asset is governed by the stochastic

di↵erential equation:

dSt = rtStdt + �(St, t)StdWt, (2)

where Wt is a Wiener process and rt denotes the instantaneous interest rate. Dividends are

assumed to be zero, since the DAX, on which our empirical study is based, is a performance

index. �(St, t) is the local volatility function which depends on the underlying price and

time. This function has a unique representation if an arbitrage-free set of call options is

given for all strikes and maturities, Dupire (1994). It can be shown that

�2(St, t) =
2@b�(K,T )

@T
+ b�(K,T )

T
+ 2K

R T

0

rsds@b�(K,T )

@K

K2

⇢
@2b�(K,T )

@K2 � d
1

p
T
⇣

@b�(K,T )

@K

⌘
2

+ 1

b�(K,T )

⇣
1

K
p

T
+ d

1

@b�(K,T )

@K

⌘
2

�
�����
K=St,T=t

(3)

where d
1

=
log(S0/K)+

R T
0 rsds+0.5b�2

(K,T )T

b�(K,T )

p
T

and where b�(K, T ) is the implied volatility at strike K

and expiry T . Formula (3) gives a correspondence between local and implied volatility

surfaces.

The LV model received much attention in the finance community since it achieves an al-

most exact fit of the observed vanilla market and is numerically and computationally very

tractable. The price of the barrier option denoted by V with barrier B and expiry date T is

obtained by numerically solving the partial di↵erential equation

rtV (S, t) =
@V (S, t)

@t
+

1

2
�2(S, t)S2

@V (S, t)

@S2

+ rtS
@V (S, t)

@S
(4)

with additional boundary conditions, i.e. V (B, t) = 0 for t < T and V (S, T ) equal to

the payo↵ at expiry. For calibration of the model a number of methods are available, see

Bouchouev and Isakov (1999) for comprehensive review. For example one may directly apply
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the formula (3). Here we adopt the approach of Andersen and Brotherton-Ratcli↵e (1997)

which determines r and � so that forwards, zero coupon bonds and plain vanilla options are

priced correctly on each grid point. The finite di↵erence method then gives barrier option

prices and sensitivities very e�ciently.

Yet the LV is also subject to criticism, see Fengler (2005, Chapter 3.11) for the details of this

discussion. The severest objection was brought forward by Hagan et al. (2002) by showing

that the LV model implies unrealistic smile dynamics and consequently wrong spot greeks.

In practice this problem can be addressed by enforcing the desired smile dynamics when

computing the greeks. Instead of calculating model-consistent LV greeks, one fixes the IVS

in strikes (sticky-strike) or in moneyness (sticky-moneyness) and recalibrates the LV surface

under the spot movements. Engelmann et al. (2006) find that the empirical performance of

the dynamic hedges is negligible under di↵erent stickiness assumptions, if a vega hedge is

implemented. Overall they find that the sticky-strike approach, which we will adopt here,

performs best. We therefore believe that the LV model serves well for the purpose of this

study.

2.2 The Semiparametric Factor Model

To model the IVS dynamics we employ the SFM which yields estimates of the IVS for

each day of the sample and explains its dynamic behavior by extracting a small number

of key driving factors of the surface movements. For this aim one could use any other

factor model like the functional principal components model of Cont and da Fonseca (2002)

or the parametric model of Hafner (2004). An alternative definition of the skew shifts

can be also found in Taleb (1997). Our choice for the SFM is motivated by the flexible

nonparametric structure, which allows to extract the most important factors along with a

dimension reduction, and its adaptedness to the expiry behavior of implied volatility data,

see Fengler et al. (2007) for details.

To describe the SFM denote by Yt,j the log-implied volatility observed on day t = 1, . . . , T .

The index j = 1, . . . , Jt counts the implied volatilities observed on day t. Let Xt,j be a

two-dimensional variable containing (forward) moneyness t,j and time to maturity ⌧t,j. We

define the moneyness t,j
def

= Kt,j/F⌧t,j , where Kt,j is a strike and F⌧t,j the forward price of
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the underlying asset at time t. The SFM regresses Yt,j on Xt,j by:

Yt,j =
LX

l=0

Zt,l ml(Xt,j) + "t,j, (5)

where ml (l = 1, ...L) are nonparametric components and the Zt,l form a latent factor

series depending on time t. The estimation error is denoted by "t,j. The basis functions

m
0

, . . . ,mL are constant in time, while the dynamic propagation of the IVS is modelled by

the time varying weights Zt,l.

The estimation procedure is based on minimizing the following least squares criterion ( bZt,0 ⌘
1 for identification):

TX

t=1

JtX

j=1

Z (
Yt,j �

LX

l=0

bZt,l bml(u)

)
2

Kh(u�Xt,j) du, (6)

where Kh denotes a two-dimensional kernel function. A possible choice for a two-dimensional

kernel is a product of one-dimensional kernels Kh(u) = kh1(u1

)⇥kh2(u2

), where h = (h
1

, h
2

)>

are bandwidths and kh(v) = h�1k(h�1v) is a one dimensional kernel function. The mini-

mization procedure searches across all functions bml : R2 �! R (l = 0, ..., L) and time series
bZt,l 2 R (t = 1, ..., T ; l = 1, ..., L). Details concerning the estimation algorithm can be found

in Fengler et al. (2007) and Park et al. (2009). In the final step of the procedure one orthog-

onalizes the functions bm
1

, . . . , bmL and orders them with respect to the variance explained.

As a consequence the largest portion of variance is explained by the quantity bZt,1 bm1

and the

second largest by bZt,1 bm1

+ bZt,2 bm2

and so forth.

In order to illustrate the decomposition of the IVS dynamics achieved by the SFM we present

in Figure 1 the results on DAX option data from January 3rd, 2000 till June 30th, 2004. The

figure presents the estimated bZt,l time series in the upper panel and the estimates of the basis

functions in the lower panel. The function bm
0

is not presented to save space. It has no e↵ect

on the dynamics of the IVS but has to be included to set the correct level of the surface. The

function bm
1

is relatively flat and corresponds to the most important shocks. Changes in bZt,1

result in up-and-down type of movements of the whole surface, but the deviations from a
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flat basis function give di↵erent weight for each maturity-moneyness location. This e↵ect is

illustrated in Figure 2, where we plot several surfaces and one particular smile with di↵erent

values of bZt,1. The second factor function can be interpreted as a tilting of the smile. This

can be inferred from the shape of bm
2

and its influence on the IVS in the plots. The variation

in bZt,2 results in changing the slope of the smile by making it steeper or flatter while keeping

roughly the same implied volatility levels.

We finally remark that the SFM has spurred further research on IVS dynamics and beyond.

Brüggemann et al. (2008) study the statistical properties of the estimated factor series using

a vector autoregressive framework and analyze the associated movements of macroeconomic

variables. Giacomini and Härdle (2008) apply the modelling idea for an explanation of the

dynamics of risk neutral densities. The CO
2

allowance term structure is studied in Trück

et al. (2006) and electricity forward curves in Borak and Weron (2009).

3 Hedging Framework

Dynamic hedging of the asset V , in our case the reverse barrier option, is based on frequent

adjustments of the hedge portfolio. This hedging strategy requires to construct a portfolio

which is to first (or higher) order neutral to the relevant risk factors. Apart from standard

delta hedging, a successful strategy requires hedging the vega, and possibly higher order

greeks as pointed out by Ederington and Guan (2007).

For the LV framework Engelmann et al. (2006) study delta, delta-vega and delta-vega-vanna

hedges. One knock-out option is hedged with the underlying asset and a set of plain vanilla

options. Let the value of the barrier option be denoted by V and let HP
1

and HP
2

be

portfolios of plain vanilla options. The corresponding hedge ratios are then given by solving

0

B@
1 @HP1

@S
@HP2

@S

0 @HP1
@b�

@HP2
@b�

0 @2HP1
@b�@S

@2HP2
@b�@S

1

CA .

0

B@
a

0

a
1

a
2

1

CA =

0

B@

@V
@S
@V
@b�

@2V
@b�@S

1

CA . (7)

Equation (7) reflects the full delta-vega-vanna hedge. Putting a
2

= 0 reduces (7) to the
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delta-vega hedge and a
1

= a
2

= 0 to the pure delta hedge. Since good hedges have a

large exposure to the risk factors to be hedged, one could use an at-the-money plain vanilla

option for the HP
1

and for HP
2

a risk reversal. A risk reversal is a combination of a long

out-of-the-money call and a short out-of-the-money put (or vice versa).

In order to compute the sensitivities one reprices the option under di↵erent scenarios and

computes the greeks by a finite di↵erence quotient. Following Engelmann et al. (2006), we

make a sticky strike assumption for our greeks, i.e. the IVS remains constant in strikes.

Vega and vanna are computed shifting the IVS in a parallel fashion. To be more specific, we

compute

@V

@S

def⇡ V (S + �S, b�)� V (S ��S, b�)

2�S
, (8)

@V

@b�
def⇡ V (S, b� + �b�)� V (S, b� ��b�)

2�b� , (9)

@2V

@S@b�
def⇡

�
V (S + �S, b� + �b�)� V (S + �S, b�)

�V (S ��S, b� + �b�) + V (S ��S, b�)
 
/(2�S�b�). (10)

With small abuse of notation V (S, b�) denotes here the price obtained with spot S and IVS

b�, where we omit its arguments for simplicity. b� + �b� means the parallel shift of the whole

surface.

It is empirically widely confirmed that parallel shifts are the most prevalent movements

of the IVS. It would be misleading, however, to conclude from this observation that other

types of surface variations do only negligibly influence the prices of exotic derivatives, such

as barrier options. Contrariwise a higher slope leads to a smaller price of an in-the-money

down-and-out put. Consider an artificial example of two one year down-and-out put with

strike 110, barrier 80 at the current spot level of 100. The first option is priced with the IVS

observed on January 3rd, 2000 and the second one on January 2nd, 2001. Figure 3 shows the

surfaces of these days. The LV prices of these options are 1.91% and 2.37% respectively (in

percentage of the spot price), which is quite a di↵erence. From the upper panel of Figure 1

one observes that the level related factor assumes similar values on these days, while the

slope factor di↵ers significantly. This price discrepancy stems mainly from the slope e↵ect,
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which is an exposure not directly hedged in traditional approaches. Our procedure will hedge

such volatility shocks.

In our hedging framework we define new sensitivities with respect to the variation of the

(log)-IVS, which we call ⇣-greeks. Based on the results discussed in Section 2.2, the ⇣
1

-greek

(@/@Zt,1) reflects an adjusted up-and-down shift, while the ⇣
2

-greek (@/@Zt,2) corresponds

to the slope e↵ect. Similarly to (7) we obtain the hedge ratios by

0

BB@

1 @HP1
@S

@HP2
@S

0 @HP1
@Zt,1

@HP2
@Zt,1

0 @HP1
@Zt,2

@HP2
@Zt,2

1

CCA .

0

B@
a

0

a
1

a
2

1

CA =

0

BB@

@V
@S
@V

@Zt,1

@V
@Zt,2

1

CCA . (11)

We call the full setting a ⇣
1

⇣
2

-hedge, the reduced one with a
2

= 0 a ⇣
1

-hedge. As in the

traditional hedge we use an at-the-money plain vanilla for HP
1

, again due to the high vega.

For HP
2

, we employ risk reversals because they primarily respond to changes in the wings of

the IVS. Moreover, by selecting appropriate strikes it can even be set up in a vega-neutral,

i.e. ⇣
1

-neutral, way.

We calculate the ⇣-greeks by means of a di↵erence quotient. As pricing input for the barrier

options we do not use the estimate of the IVS obtained by the SFM, as it is necessarily

subject to an estimation error. Instead, in order to avoid mispricings, we use the truly

observed ones. Thus, by the definition of the ⇣-greeks, the approximations are given by

@V

@Zt,l

def⇡ V (S, b� exp(�Zt,l bml))� V (S, b� exp(��Zt,l bml))

2�Zt,l

. (12)

In the practical implementation of (12) one faces a couple of numerical issues, which need

to be addressed. First, the size of the �Zt,l has to be chosen. An increment too small or

too large can distort the meaning of the greeks. Moreover it cannot be unique for all Zt,l,

since the shift size depends on the basis functions bml and on the IVS on a particular day.

Therefore we choose for each t a �Zt,l such that the (absolute) mean upward (downward)

shift amounts approximately to one volatility-point. Note that we do not use bZt,l for these

perturbations. Another challenge is an accurate calculation of the barrier greeks. To reduce

11



numerical errors we employ a constant grid in the pricing algorithm for calculating the ⇣-

greeks. Furthermore, the IVS b� needs to be arbitrage-free. However, the shifted surfaces

do not necessarily possess this property. We thus additionally check no-arbitrage conditions

before calculating the ⇣-greeks and apply an algorithm due to Fengler (2008) in case of

violations. This method estimates the option price function by means of a natural smoothing

spline under no-arbitrage constraints, i.e. under convexity, monotonicity and bounds on

the price function and on the first order strike derivatives. The resulting estimate is then

converted back to implied volatility. The algorithm is not applied when computing vega and

vanna since parallel shifts do typically not result into arbitrage violations.

The aforementioned greeks are demonstrated in Figure 4 for the down-and-out put with

half a year to expiry. The plot displays the greeks as a function of spot and keeps other

characteristics of the barrier option unchanged. It has to be noted that the SFM, i.e. bZt,l and

bml , can only be identified up to sign. The sign of the ⇣-greeks therefore has no particular

meaning. Hence vega and ⇣
1

display similar patterns. For the spot values close to the

barrier level vega is negative and approaches zero as it becomes a delta product. For out-of-

the money options vega is positive since the option then resembles a plain vanilla contract.

A similar behavior is observed for ⇣
2

and vanna, but the vanna is discontinues at the barrier

as it is derived from the delta.

4 Empirical Results

4.1 Data

The data set covers DAX index options traded at the EUREX from January 3rd, 2000

till June 30th, 2004 which give 1135 trading days. We use settlement prices, which are

prices published by the EUREX based on the last intra-day trades. The DAX index is a

capital weighted performance index comprising 30 German blue chips. Since dividends less

corporate tax are reinvested into the index, they do not need to be taken into account for

option valuation.

We preprocess the data by eliminating implied volatilities bigger than 80% and maturities
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smaller than 10 days. Arbitrage violations in the option data are removed by the arbitrage

free smoothing procedure described in Fengler (2008). After smoothing, the data are con-

verted into a regular grid of moneyness and time to maturities. For option pricing, the

zero rates from EURIBOR quotes are linearly interpolated, see Dumas et al. (1998) for this

practice.

4.2 Experimental Design

In our empirical study we assume no transaction costs, no restrictions on short selling and

the possibility of trading each asset at arbitrary size. Each security is priced using the LV

model calibrated to daily market data. We implement the hedging strategies described in

Section 3, i.e. we focus exclusively on volatility and spot risks, leaving other risks like interest

rate exposure unhedged.

In the first step of our experiment we estimate the SFM. As kernel function we use a product

quartic kernel, where k(u) = 15/16(1� u2)2 for |u| < 1 and 0 otherwise. For a data driven

bandwidth choice and the model size selection, we refer to Fengler et al. (2007). The basic

idea is to estimate the model for di↵erent combinations of L and h and compare various

information criteria. For the moneyness direction we finally use a bandwidth of 0.04, but

we slightly oversmooth the surfaces in the time to maturity direction in order to reduce

numerical errors for the subsequent price computations. More precisely, we use a local

bandwidth modelled by an arctangent function which increases monotonously from 0.02

to 0.15 (expressed in years). Since in the hedging procedure only two main factors are

included, we set L = 2. With this choice the model describes su�ciently well the IVS

dynamics, since the measure of explained variation is close to 98%.

For each day up to one year before the last observation date in the sample, a long position in

the reverse barrier option is created. This is to evaluate all initiated hedges at market prices

within the sample. We use up-and-out calls with strikes at 80% of the spot and barriers at

140% and down-and-out put with strikes at 80% and barriers at 110%. These specifications

correspond to typically traded contracts. Based on the calibrated LV model, ⇣-greeks, delta,

vega and vanna are calculated and the hedging strategies as described in Section 3 are set

up. We concentrate on vega, vanna, ⇣
1

and ⇣
1

⇣
2

strategies since the pure delta hedge is of
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inferior quality. As HP
1

we use at-the-money puts for the up-and-out calls and at-the-money

calls for the down-and-out puts. The risk reversal are structured by taking 80% and 120%

strikes of the current spot.

Positions that have not knocked are updated on a daily basis. This choice is motivated by

the results of Engelmann et al. (2006) who do not obtain di↵erent rankings of the strategies

for other re-balancing frequencies. For each day we calculate the greeks to solve (7) and (11)

and adjust the hedge ratios a
0

, a
1

, a
2

. The hedges are financed from the cash account and

if the barrier is breached or the barrier option expires we unwind the hedge and record the

hedging error. All positions are traded at market prices. In case of a knock-out event, the

hedging error pays or earns interest until expiry in order to render the results comparable.

Also the cash account bears interest or is financed at the riskless short rate of the concurrent

trading day. Summing up, we have a collection of hedging errors for the two types of barrier

options with four di↵erent hedging strategies for each of them.

One could object that the experimental design su↵ers from an in-sample problem, since the

SFM is estimated on the same data set as the hedging experiment. It is however a common

finding in the empirical literature, either on interest rates or on the IVS, that eigenvectors

or eigenfunctions are remarkably stable across time. Formal tests on IVS data between the

years 1995 to 2001 confirming this hypothesis are provided by Fengler (2005, Chapter 5.2.3).

Even if we made use of a training-sample, we would therefore recover very similar factor

functions. Thus the issue will not seriously a↵ect the results.

4.3 Results

For evaluating the performance we use a pool of 885 hedging errors (1135 trading days less

250 days, since products issued thereafter would not expire within the sample). In order

to make them comparable we normalize by the spot price at the time when the hedge is

initiated. This normalization is common in practice and is meant to remove the dependence

from the underlying’s level. Another normalizing factor could be the option price itself, but

since the risk reversal has a market price close to zero, measuring errors with respect to the

spot appears to be more natural.
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The aim of hedging is to replicate the payo↵ of the option. In the ideal case the hedge

portfolio should have zero variance and zero mean, but for obvious reasons this cannot

be realized in practice. Our aim is to give a comparative analysis of the hedging error

distributions in order to check how the volatility factors a↵ect the hedging performance.

We use traditional descriptive statistics to assess the location and dispersion of the errors.

Clearly, a superior method would keep these quantities close to zero in absolute terms.

The empirical results are summarized in Tables 2 and 3 for up-and-out calls and down-

and-out puts respectively. We present the minimum, maximum, mean, median, standard

deviation, and the absolute deviation around the median. The terminal hedging error dis-

tributions are given in the rows marked with a ‘0’. As can be inferred from the tables, the

center of all distributions is located around zero, with means slightly below zero for the up-

and-out calls and slightly above zero for the down-and-out puts. Thus the di↵erent hedges

are hardly distinguishable in terms of the center of the distribution. This finding corresponds

to our expectations: the volatiliy risk is removed, both for the vega and the ⇣
1

-hedges, and

vanna and ⇣
1

⇣
2

-hedges do not add any additional drift, since they are almost costless.

For evaluating the dispersion of the hedging errors we focus on the standard deviation and

the absolute deviation around the median (madev.). The first observation is that hedges

relying on higher order greeks tend to exhibit lower variance. In case of the down-and-

out puts the vanna hedge has a slightly smaller dispersion than the ⇣
1

⇣
2

-hedge, and the

traditional vega hedge performs very similar to the ⇣
1

-hedge. For the up-and-out calls the

ranking is reversed: the standard hedges are clearly outperformed by the factor hedges. How

can this asymmetry be explained and how is the quality of the factor hedges to be judged?

There are two major sources of bias in the hedging strategies due to the behavior of the un-

derlying. Observe that during the analyzed time period the DAX had a downward trend: 81%

out of the down-and-out put options knocked out, but only 10% of the up-and-out call op-

tions, while 5% of the puts and 39% calls expired in-the-money, see Table 1. As a first issue

consider the huge amount of up-and-out calls ending in-the-money. This gives rise to what is

known among practitioners as ‘theta risk’. For explanation reconsider the case in Section 3,

where we demonstrated that the prices for one-year down-and-out puts with a strike of 110%

and barrier at 80% were less than 3% in the two scenarios. In contrast, when the put ends

in-the-money it will pay out up to 30%. Consequently, the value of an in-the-money reverse
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barrier option increases sharply the nearer the expiry date draws (i.e. has a strong theta),

rendering it more and more di�cult for traders to earn the payo↵ by trading the gamma.

Theta risk can thus lead to a more dispersed error distribution. A second issue is gap risk.

We do not unwind the hedges at the barriers, but at the observed spots, since this is the

more realistic scenario in practice. When a barrier is breached, one still owns the hedge

and incurs unbalanced gains or losses. Again this leads to a more dispersed hedging error

distribution. As is clear from Table 1, theta risk is dominating the risk in case of the calls

and gap risk in case of the puts.

To receive a deeper insight, we refer once more to Tables 2 and 3. We report the statistics of

the hedging experiment stopped at 1 day, 5 days and 25 days before the expiry. As is seen

the dispersion measures increase the nearer expiry draws, and the distributions become less

skewed and less heavy-tailed, while the location measures prove to remain stable. In terms

of dispersion the relative order of the hedging strategies across the two products remains the

same: for the down-and-out puts the strategies are comparable, while factor hedging remains

superior for the up-and-out calls. This finding is confirmed in Figure 5, which displays the

standard deviations of the hedging errors as a function through the options’ life time. It is

intuitive to expect this function to increase. Moreover there is a sharp jump just before the

expiry date contributing a large portion of the overall cumulative hedging error in particular

for the up-and-out calls. All these observations highlight the importance of the expiry e↵ect

relative to gap risk when interpreting the data.

We overall conclude two main findings. First, factor hedging is at least of similar quality

as traditional hedging approaches. In particular the hedging e�ciency does not deteriorate.

This is a reassuring result given the huge computational e↵ort that must be spent and that

could easily come at the costs of accuracy. This result is obtained when the barrier options

expire worthless or knock out early in life time. Second, when the option needs to be hedged

till expiry and ends in-the-money, the factor hedging approach dominates clearly. From a

trader’s perspective the first situation is the ‘easy one’ unless the knock-out occurs close

to expiry. The second one is much more intricate, because the intrinsic value needs to be

earned. This is a strong case for volatility factor hedging.
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5 Conclusion

We provide an empirical study on hedging reverse barrier options in the local volatility

model. The main focus of this study is on risk factors arising from a decomposition of

the dynamic behavior of the implied volatility surface, which are identified with a flexible

semiparametric technique. The hedging framework is constructed as a natural extension to

traditional vega hedging, where the sensitivity is measured with respect to the more complex

surface movements.

Our empirical investigation shows that hedging higher order risk with risk reversals brings

improvements to hedging with at-the-money plain vanillas only. This is consistent across

the vanna hedge and the more complex factor based hedges, thus confirming evidence of

Ederington and Guan (2007). Intuitively the vega hedge resembles a single factor based

hedge since the first dynamic factor corresponds to a parallel type of shift. Adding a vanna

hedge or another factor to the portfolio removes similar risks as can be inferred from the

comparable hedging performance.

Measured in terms of the hedging error variance, factor hedging performs at least as good as

the corresponding vega and vanna hedges, in certain cases it is superior. As is confirmed by

hedging up-and-out call options and down-and-out put options, the first case occurs when

options knock out early in life time or expire worthless, while the second occurs when the

options need to be hedged up to expiry and end in-the-money. This evidence is present

not only in the terminal hedging errors but also through the option’s life time. From a

trader’s perspective the second case is the more interesting, making factor hedging a powerful

alternative to traditional hedging.

These findings, however, are not necessarily similar for other complex derivatives sensitive

to IVS movements, such as cliquets or long-dated forward starting options. Also a portfolio

context may yield di↵erent findings. In particular, when a book of options contains assets

with several maturities it could be beneficial to consider additional factors, such as those

related to the term structure of the IVS. This exposure can be hedged by constructing the

corresponding calendar spreads. Another application in a portfolio context could be stress

test scenarios based on the volatility factors. This would provide a good understanding of

17



the volatility exposure of the portfolio. We leave these issues to future research.
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Figure 1: The estimates of the SFM obtained from IVS data from January 3rd, 2000 till

June 30th, 2004 for L = 2. Upper panel: estimated latent factor series bZ
1

and bZ
2

. Lower

panel: estimates of bm
1

, the non-uniform up-and-down shift, and bm
2

, the slope risk.

23



0
0.2

0.4
0.6

0.8
1

0.7
0.8

0.9
1

1.1
1.2

1.3
0.2

0.25

0.3

0.35

maturity

Z1 infuence on the IVS

moneyness 0
0.2

0.4
0.6

0.8
1

0.7
0.8

0.9
1

1.1
1.2

1.3
0.2

0.25

0.3

0.35

maturity

Z2 infuence on the IVS

moneyness

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

moneyness

im
pl

ie
d 

vo
la

til
ity

Z1 infuence on the IVS

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

moneyness

im
pl

ie
d 

vo
la

til
ity

Z2 infuence on the IVS

Figure 2: Impact of bZ
1

and bZ
2

on the IVS. Shocks in bZ
1

trigger up-and-down movements

while shocks in bZ
2

tilt the smile around at-the-money point. Upper panel: a visualization
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Figure 5: Standard deviations of the hedging errors as a function of time from option is-

suance. Solid lines represent the factor hedging methods motivated by the SFM. Dashed

lines represent the vega and vanna hedges. Upper panel: up-and-out call. Lower panel:

down-and-out put.
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option type barrier strike knock-outs in-the-money

up-and-out call 140% 80% 10% 39%

down-and-out put 80% 110% 81% 5%

Table 1: Characteristics of the analyzed barrier options. Strikes and barriers are in percent-

age of spot at issuance. The column ‘knock-outs’ refers to the contracts that breached the

barrier and ‘in-the-money’ to those yielding a positive payo↵ at expiry.
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Summary This paper offers a new method for estimation and forecasting of the volatility
of financial time series when the stationarity assumption is violated. Our general, local
parametric approach particularly applies to general varying-coefficient parametric models,
such as GARCH, whose coefficients may arbitrarily vary with time. Global parametric, smooth
transition and change-point models are special cases. The method is based on an adaptive
pointwise selection of the largest interval of homogeneity with a given right-end point by a
local change-point analysis. We construct locally adaptive estimates that can perform this task
and investigate them both from the theoretical point of view and by Monte Carlo simulations.
In the particular case of GARCH estimation, the proposed method is applied to stock-index
series and is shown to outperform the standard parametric GARCH model.

Keywords: Adaptive pointwise estimation, Autoregressive models, Conditional hetero-
scedasticity models, Local time-homogeneity.

1. INTRODUCTION

A growing amount of econometrical and statistical research is devoted to modelling financial
time series and their volatility, which measures dispersion at a point in time (i.e. conditional
variance). Although many economies and financial markets have been recently experiencing
many shorter and longer periods of instability or uncertainty such as the Asian crisis (1997),
the Russian crisis (1998), the start of the European currency (1999), the ‘dot-Com’ technology-
bubble crash (2000–02) or the terrorist attacks (September, 2001), the war in Iraq (2003) and the
current global recession (2008), mostly used econometric models are based on the assumption
of time homogeneity. This includes linear and non-linear autoregressive (AR) and moving-
average models and conditional heteroscedasticity (CH) models such as ARCH (Engel, 1982)
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and GARCH (Bollerslev, 1986), stochastic volatility models (Taylor, 1986), as well as their
combinations such as AR-GARCH.

On the other hand, the market and institutional changes have long been assumed to cause
structural breaks in financial time series, which was confirmed, e.g. in data on stock prices
(Andreou and Ghysels, 2002, and Beltratti and Morana, 2004) and exchange rates (Herwatz and
Reimers, 2001). Moreover, ignoring these breaks can adversely affect the modelling, estimation
and forecasting of volatility as suggested e.g. by Diebold and Inoue (2001), Mikosch and
Starica (2004), Pesaran and Timmermann (2004) and Hillebrand (2005). Such findings led to
the development of the change-point analysis in the context of CH models; see e.g. Chen and
Gupta (1997), Kokoszka and Leipus (2000) and Andreou and Ghysels (2006).

An alternative approach lies in relaxing the assumption of time homogeneity and allowing
some or all model parameters to vary over time (Chen and Tsay, 1993, Cai et al., 2000, and Fan
and Zhang, 2008). Without structural assumptions about the transition of model parameters over
time, time-varying coefficient models have to be estimated non-parametrically, e.g. under the
identification condition that their parameters are smooth functions of time (Cai et al., 2000). In
this paper, we follow a different strategy based on the assumption that a time series can be locally,
i.e. over short periods of time, approximated by a parametric model. As suggested by Spokoiny
(1998), such a local approximation can form a starting point in the search for the longest period
of stability (homogeneity), i.e. for the longest time interval in which the series is described well
by the parametric model. In the context of the local constant approximation, this strategy was
employed for volatility modelling by Härdle et al. (2003), Mercurio and Spokoiny (2004) and
Spokoiny (2009a). Our aim is to generalize this approach so that it can identify intervals of
homogeneity for any parametric CH model regardless of its complexity.

In contrast to the local constant approximation of the volatility of a process (Mercurio and
Spokoiny, 2004), the main benefit of the proposed generalization consists in the possibility to
apply the methodology to a much wider class of models and to forecast over a longer time
horizon. The reason is that approximating the mean or volatility process by a constant is in many
cases too restrictive or even inappropriate and it is fulfilled only for short time intervals, which
precludes its use for longer-term forecasting. On the contrary, parametric models like GARCH
mimic the majority of stylized facts about financial time series and can reasonably fit the data
over rather long periods of time in many practical situations. Allowing for time dependence of
model parameters offers then much more flexibility in modelling real-life time series, which can
be both with or without structural breaks since global parametric models are included as a special
case.

Moreover, the proposed adaptive local parametric modelling unifies the change-point and
varying-coefficient models. First, since finding the longest time-homogeneous interval for a
parametric model at any point in time corresponds to detecting the most recent change-point
in a time series, this approach resembles the change-point modelling as in Bai and Perron (1998)
or Mikosch and Starica (1999, 2004), for instance, but it does not require prior information
such as the number of changes. Additionally, the traditional structural-change tests require that
the number of observations before each break point is large (and can grow to infinity) as these
tests rely on asymptotic results. On the contrary, the proposed pointwise adaptive estimation
does not rely on asymptotic results and does not thus place any requirements on the number
of observations before, between or after any break point. Second, since the adaptively selected
time-homogeneous interval used for estimation necessarily differs at each time point, the model
coefficients can arbitrarily vary over time. In comparison to varying-coefficient models assuming
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smooth development of parameters over time (Cai et al., 2000), our approach however allows for
structural breaks in the form of sudden jumps in parameter values.

Although seemingly straightforward, extending Mercurio and Spokoiny’s (2004) procedure
to the local parametric modelling is a non-trivial problem, which requires new tools and
techniques. We concentrate here on the change-point estimation of financial time series, which
are often modelled by data-demanding models such as GARCH. While the benefits of a flexible
change-point analysis for time series spanning several years are well known, its feasibility
(which stands in the focus of this work) is much more difficult to achieve. The reason is thus
that, at each time point, the procedure starts from a small interval, where a local parametric
approximation holds, and then iteratively extends this interval and tests it for time-homogeneity
until a structural break is found or data exhausted. Hence, a model has to be initially estimated on
very short time intervals (e.g. 10 observations). Using standard testing methods, such a procedure
might be feasible for simple parametric models, but it is hardly possible for more complex
parametric models such as GARCH that generally require rather large samples for reasonably
good estimates.

Therefore, we use an alternative and more robust approach to local change-point analysis
that relies on a finite-sample theory of testing a growing sequence of historical time intervals
on homogeneity against a change-point alternative. The proposed adaptive pointwise estimation
procedure applies to a wide class of time-series models, including AR and CH models.
Concentrating on the latter, we describe in details the adaptive procedure, derive its basic
properties, and focusing on the feasibility of adaptive estimation for CH models, study the
performance in comparison to the parametric (G)ARCH by means of simulations and real-data
applications. The main conclusion is two-fold: on one hand, the adaptive pointwise estimation
is feasible and beneficial also in the case of data-demanding models such as GARCH; on the
other hand, the adaptive estimates based on various parametric models such as constant, ARCH
or GARCH models are much closer to each other (while being better than the usual parametric
estimates), which eliminates to some extent the need for using too complex models in adaptive
estimation.

The rest of the paper is organized as follows. In Section 2, the parametric estimation of
CH models and its finite-sample properties are introduced. In Section 3, we define the adaptive
pointwise estimation procedure and discuss the choice of its parameters. Theoretical properties
of the method are discussed in Section 4. In the specific case of the ARCH(1) and GARCH(1,1)
models, a simulation study illustrates the performance of the new methodology with respect to
the standard parametric and change-point models in Section 5. Applications to real stock-index
series data are presented in Section 6. The proofs are provided in the Appendix.

2. PARAMETRIC CONDITIONAL HETEROSCEDASTICITY MODELS

Consider a time series Y t in discrete time, t ∈ N . The CH assumption means that Y t =
σ tε t , where {ε t}t∈N is a white noise process and {σ t}t∈N is a predictable volatility (conditional
variance) process. Modelling of the volatility process σ t typically relies on some parametric CH
specification such as the ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models:

σ 2
t = ω +

p∑

i=1

αiY
2
t−i +

q∑

j=1

βjσ
2
t−j , (2.1)

C⃝ The Author(s). Journal compilation C⃝ Royal Economic Society 2009.
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where p ∈ N , q ∈ N and θ = (ω,α1, . . . ,αp,β1, . . . , βq)⊤ is the parameter vector. An attractive
feature of this model is that, even with very few coefficients, one can model most stylized facts
of financial time series like volatility clustering or excessive kurtosis, for instance. A number
of (G)ARCH extensions were proposed to make the model even more flexible; e.g. EGARCH
(Nelson, 1991), QGARCH (Sentana, 1995) and TGARCH (Glosten et al., 1993) that account for
asymmetries in a volatility process.

All such CH models can be put into a common class of generalized linear volatility models:

Yt = σtεt =
√

g(Xt )εt , (2.2)

Xt = ω +
p∑

i=1

αih(Yt−i) +
q∑

j=1

βjXt−j , (2.3)

where g and h are known functions and Xt is a (partially) unobserved process (structural variable)
that models the volatility coefficient σ 2

t via transformation g : σ 2
t = g(Xt ). For example, the

GARCH model (2.1) is described by g(u) = u and h(r) = r2.
Models (2.2)–(2.3) are time homogeneous in the sense that the process Y t follows the same

structural equation at each time point. In other words, the parameter θ and hence the structural
dependence in Y t is constant over time. Even though models like (2.2)–(2.3) can often fit data
well over a longer period of time, the assumption of homogeneity is too restrictive in practical
applications: to guarantee a sufficient amount of data for sufficiently precise estimation, these
models are often applied over time spans of many years. On the contrary, the strategy pursued
here requires only local time homogeneity, which means that at each time point t there is a
(possibly rather short) interval [t − m, t], where the process Y t is well described by models
(2.2)–(2.3). This strategy aims then both at finding an interval of homogeneity (preferably as
long as possible) and at the estimation of the corresponding parameter values θ , which then
enable predicting Y t and Xt .

Next, we discuss the parameter estimation for models (2.2)–(2.3) using observations Y t from
some time interval I = [t 0, t 1]. The conditional distribution of each observation Y t given the past
Ft−1 is determined by the structural variable Xt , whose dynamics are described by the parameter
vector θ : Xt = Xt (θ) for t ∈ I due to (2.3). We denote the underlying value of θ by θ0.

For estimating θ0, we apply the quasi-maximum likelihood (quasi-MLE) approach using
the estimating equations generated under the assumption of Gaussian errors ε t . This guarantees
efficiency under the normality of innovations and consistency under rather general moment
conditions (Hansen and Lee, 1994, and Francq and Zakoian, 2007). The log-likelihood for
models (2.2)–(2.3) on an interval I can be represented in the form

LI (θ) =
∑

t∈I

ℓ{Yt , g[Xt (θ )]}

with log-likelihood function ℓ(y, υ) = −0.5{log (υ) + y2/υ}. We define the quasi-MLE estimate
θ̃ I of the parameter θ by maximizing the log-likelihood LI (θ),

θ̃ I = argmax
θ∈(

LI (θ) = argmax
θ∈(

∑

t∈I

ℓ{Yt , g[Xt (θ )]}, (2.4)

and denote by LI (̃θ I ) the corresponding maximum.
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To characterize the quality of estimating the parameter vector θ0 = (ω,α1, . . . ,αp,

β1, . . . ,βq)⊤ by θ̃ I , we now present an exact (non-asymptotic) exponential risk bound. This
bound concerns the value of maximum LI (̃θ I ) = maxθ∈( LI (θ ) rather than the point of
maximum θ̃ I . More precisely, we consider the difference LI (̃θ I , θ0) = LI (̃θ I ) − LI (θ0). By
definition, this value is non-negative and represents the deviation of the maximum of the log-
likelihood process from its value at the ‘true’ point θ0. Later, we comment on how the accuracy
of estimation of the parameter θ0 by θ̃ I relates to the value LI (̃θ I , θ0). We will also see that the
bound for LI (̃θ I , θ0) yields the confidence set for the parameter θ0, which will be used for the
proposed change-point test. Now, the non-asymptotic risk bound is specified in the following
theorem, which formulates corollaries 4.2 and 4.3 of Spokoiny (2009b) for the case of the quasi-
MLE estimation of a CH model (2.2)–(2.3) at θ = θ0. The result can be viewed as an extension
of the Wilks phenomenon that the distribution of LI (̃θ I , θ0) for a linear Gaussian model is χ2

p/2,
where p is the number of estimated parameters in the model.

THEOREM 2.1. Assume that the process Y t follows models (2.2)–(2.3) with the parameter θ0 ∈
(, where the set ( is compact. The function g(·) is assumed to be continuously differentiable
with the uniformly bounded first derivative and g(x) ≥ δ > 0 for all x. Further, let the process
Xt (θ) be sub-ergodic in the sense that for any smooth function f (·) there exists f ∗ such that for
any time interval I

Eθ0

∣∣∣∣
∑

I

{
f (Xt (θ )) − Eθ0f (Xt (θ ))

}∣∣∣∣
2

≤ f ∗|I |, θ ∈ (.

Finally, let E exp{κ(ε2
t − 1)|Ft−1} ≤ c(κ) for some κ > 0, c(κ) > 0, and all t ∈ N . Then there

are λ > 0 and e(λ, θ0) > 0 such that for any interval I and z > 0

Pθ0

(
LI (̃θ I , θ0) > z

)
≤ exp{e(λ, θ0) − λz}. (2.5)

Moreover, for any r > 0, there is a constant Rr (θ0) such that

Eθ0

∣∣LI (̃θ I , θ0)
∣∣r ≤ Rr (θ0). (2.6)

REMARK 2.1. The condition g(x) ≥ δ > 0 guarantees that the variance process cannot reach
zero. In the case of GARCH, it is sufficient to assume ω > 0, for instance.

One attractive feature of Theorem 2.1, formulated in the following corollary, is that it enables
constructing the non-asymptotic confidence sets and testing the parametric hypothesis on the
basis of the fitted log-likelihood LI (̃θ I , θ ). This feature is especially important for our procedure
presented in Section 3.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, let the value zα fulfil e(λ, θ0) −
λzα < log α for some α < 1. Then the random set EI (zα) = {θ : LI (̃θ I , θ ) ≤ zα} is an α-
confidence set for θ0 in the sense that Pθ0 (θ0 ̸∈ EI (zα)) ≤ α.

Theorem 2.1 also gives a non-asymptotic and fixed upper bound for the risk of estimation
LI (̃θ I , θ0) that applies to an arbitrary sample size |I |. To understand the relation of this result to
the classical rate result, we can apply the standard arguments based on the quadratic expansion
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of the log-likelihood L(̃θ, θ ). Let ∇2L(θ) denote the Hessian matrix of the second derivatives of
L(θ) with respect to the parameter θ . Then

LI (̃θ I , θ0) = 0.5(̃θ I − θ0)⊤∇2LI (θ ′
I )(̃θ I − θ0), (2.7)

where θ ′
I is a convex combination of θ0 and θ̃ I . Under usual regularity assumptions and for

sufficiently large |I |, the normalized matrix |I |−1∇2LI (θ) is close to some matrix V (θ), which
depends only on the stationary distribution of Y t and is continuous in θ . Then (2.5) approximately
means that ∥

√
V (θ0)(̃θ I − θ0)∥2 ≤ z/|I | with probability close to 1 for large z. Hence, the large

deviation result of Theorem 2.1 yields the root-|I | consistency of the MLE estimate θ̃ I . See
Spokoiny (2009b) for further details.

3. POINTWISE ADAPTIVE NON-PARAMETRIC ESTIMATION

An obvious feature of models (2.2)–(2.3) is that the parametric structure of the process is assumed
constant over the whole sample and cannot thus incorporate changes and structural breaks at
unknown times in the models. A natural generalization leads to models whose coefficients may
change over time (Fan and Zhang, 2008). One can then assume that the structural process Xt

satisfies the relation (2.3) at any time, but the vector of coefficients θ may vary with the time
t, θ = θ(t). The estimation of the coefficients as general functions of time is possible only under
some additional assumptions on these functions. Typical assumptions are (i) varying coefficients
are smooth functions of time (Cai et al., 2000) and (ii) varying coefficients are piecewise constant
functions (Bai and Perron, 1998, and Mikosch and Starica, 1999, 2004).

Our local parametric approach differs from the commonly used identification assumptions (i)
and (ii). We assume that the observed data Y t are described by a (partially) unobserved process
Xt due to (2.2), and at each point T , there exists a historical interval I (T ) = [t 0, T ] in which the
process Xt ‘nearly’ follows the parametric specification (2.3) (see Section 4 for details on what
‘nearly’ means). This local structural assumption enables us to apply well-developed parametric
estimation for data {Y t}t∈I (T ) to estimate the underlying parameter θ = θ (T ) by θ̂ = θ̂ (T ). (The
estimate θ̂ = θ̂ (T ) can then be used for estimating the value X̂T of the process Xt at T from
equation (2.3) and for further modelling such as forecasting Y T +1.) Moreover, this assumption
includes the above-mentioned ‘smooth transition’ and ‘switching regime’ assumptions (i) and
(ii) as special cases: parameters θ̂(T ) vary over time as the interval I(T) changes with T and, at
the same time, discontinuities and jumps in θ̂ (T ) as a function of time are possible.

To estimate θ̂ (T ), we have to find the historical interval of homogeneity I(T), i.e. the longest
interval I with the right-end point T , where data do not contradict a specified parametric model
with fixed parameter values. Starting at each time T with a very short interval I = [t 0, T ], we
search by successive extending and testing of interval I on homogeneity against a change-point
alternative: if the hypothesis of homogeneity is not rejected for a given I, a larger interval is
taken and tested again. Contrary to Bai and Perron (1998) and Mikosch and Starica (1999), who
detect all change points in a given time series, our approach is local: it focuses on the local
change-point analysis near point T of estimation and tries to find only one change closest to the
reference point.

In the rest of this section, we first discuss the test statistics employed to test the
time-homogeneity of an interval I against a change-point alternative in Section 3.1. Later,
we rigorously describe the pointwise adaptive estimation procedure in Section 3.2. Its
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implementation and the choice of parameters entering the adaptive procedure are described in
Sections 3.2–3.4. Theoretical properties of the method are studied in Section 4.

3.1. Test of homogeneity against a change-point alternative

The pointwise adaptive estimation procedure crucially relies on the test of local time-
homogeneity of an interval I = [t 0, T ]. The null hypothesis for I means that the observations
{Y t}t∈I follow the parametric models (2.2)–(2.3) with a fixed parameter θ0, leading to the quasi-
MLE estimate θ̃ I from (2.4) and the corresponding fitted log-likelihood LI (̃θ I ).

The change-point alternative for a given change-point location τ ∈ I can be described
as follows: process Y t follows the parametric models (2.2)–(2.3) with a parameter θJ for
t ∈ J = [t 0, τ ] and with a different parameter θJ c for t ∈ J c = [τ + 1, T ]; θJ ̸= θJ c . The fitted
log-likelihood under this alternative reads as LJ (̃θJ ) + LJc (̃θJ c ). The test of homogeneity can be
performed using the likelihood ratio (LR) test statistic T I,τ :

TI,τ = max
θJ ,θJc ∈(

{LJ (θJ ) + LJc (θJ c )} − max
θ∈(

LI (θ) =
{
LJ (̃θJ ) + LJc (̃θJ c ) − LI (̃θ I )

}
.

Since the change-point location τ is generally not known, we consider the supremum of the LR
statistics T I,τ over some subset τ ∈ T (I ); cf. Andrews (1993):

TI,T (I ) = sup
τ∈T (I )

TI,τ . (3.1)

A typical example of a set T (I ) is T (I ) = {τ : t0 + m′ ≤ τ ≤ T − m′′} for some fixed
m′, m′′ > 0.

3.2. Adaptive search for the longest interval of homogeneity

This section presents the proposed adaptive pointwise estimation procedure. At each point T , we
aim at estimating the unknown parameters θ (T ) from historical data Y t , t ≤ T ; this procedure
repeats for every current time point T as new data arrive. At the first step, the procedure selects
on the base of historical data an interval Î (T ) of homogeneity in which the data do not contradict
the parametric models (2.2)–(2.3). Afterwards, the quasi-MLE estimation is applied using the
selected historical interval Î (T ) to obtain estimate θ̂ (T ) = θ̃ Î (T ). From now on, we consider an
arbitrary, but fixed time point T .

Suppose that a growing set I 0 ⊂ I 1 ⊂ · · · ⊂ I K of historical interval-candidates I k =
[T − mk + 1, T ] with the right-end point T is fixed. The smallest interval I0 is accepted
automatically as homogeneous. Then the procedure successively checks every larger interval I k

on homogeneity using the test statistic TIk,T (Ik) from (3.1). The selected interval Î corresponds
to the largest accepted interval Ik̂ with index k̂ such that

TIk,T (Ik) ≤ zk, k ≤ k̂, (3.2)

and TIk̂+1,T (Ik̂+1) > zk̂+1, where the critical values zk are discussed later in this section and
specified in Section 3.3. This procedure then leads to the adaptive estimate θ̂ = θ̃ Î corresponding
to the selected interval Î = Ik̂ .

The complete description of the procedure includes two steps. (A) Fixing the set-up and the
parameters of the procedure. (B) Data-driven search for the longest interval of homogeneity.
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(A) Set-up and parameters:

1 Select specific parametric models (2.2)–(2.3) [e.g. constant volatility, ARCH(1),
GARCH(1,1)].

2 Select the set I = (I0, . . . , IK ) of interval-candidates, and for each Ik ∈ I , the set
T (Ik) of possible change points τ ∈ I k used in the LR test (3.1).

3 Select the critical values z1, . . . , zK in (3.2) as described in Section 3.3.

(B) Adaptive search and estimation: Set k = 1, Î = I0 and θ̂ = θ̃ I0 .

1 Test the hypothesis H 0,k of no change point within the interval I k using test statistics
(3.1) and the critical values zk obtained in (A3). If a change point is detected (H 0,k is
rejected), go to (B3). Otherwise proceed with (B2).

2 Set θ̂ = θ̃ Ik
and θ̂ Ik

= θ̃ Ik
. Further, set k := k + 1. If k ≤ K , repeat (B1); otherwise go

to (B3).
3 Define Î = Ik−1 = ‘the last accepted interval’ and θ̂ = θ̃ Î . Additionally, set

θ̂ Ik
= · · · = θ̂ IK

= θ̂ if k ≤ K .

In step (A), one has to select three main ingredients of the procedure. First, the parametric
model used locally to approximate the process Y t has to be specified in (A1), e.g. the constant
volatility or GARCH(1,1) in our context. Next, in step (A2), the set of intervals I = {Ik}Kk=0
is fixed, each interval with the right-end point T , length mk = |I k|, and the set T (Ik) of tested
change points. Our default proposal is to use a geometric grid mk = [m0a

k], a > 1, and to set
I k = [T − mk + 1, T ] and T (Ik) = [T − mk−1 + 1, T − mk−2]. Although our experiments
show that the procedure is rather insensitive to the choice of m0 and a (e.g. we use m0 = 10 and
a = 1.25 in simulations), the length m0 of interval I0 should take into account the parametric
model selected in (A1). The reason is that I0 is always assumed to be time-homogeneous
and m0 thus has to reflect flexibility of the parametric model; e.g. while m0 = 20 might be
reasonable for the GARCH(1,1) model, m0 = 5 could be a reasonable choice for the locally
constant approximation of a volatility process. Finally, in step (A3), one has to select the K
critical values zk in (3.2) for the LR test statistics TIk,T (Ik) from (3.1). The critical values zk will
generally depend on the parametric model describing the null hypothesis of time-homogeneity,
the set I of intervals I k and corresponding sets of considered change points T (Ik), k ≤ K , and
additionally, on two constants r and ρ that are counterparts of the usual significance level. All
these determinants of the critical values can be selected in step (A) and the critical values are thus
obtained before the actual estimation takes place in step (B). Due to its importance, the method
of constructing critical values {zk}Kk=1 is discussed separately in Section 3.3.

The main step (B) performs the search for the longest time-homogeneous interval. Initially,
I0 is assumed to be homogeneous. If I k−1 is negatively tested on the presence of a change point,
one continues with I k by employing test (3.1) in step (B1), which checks for a potential change
point in I k . If no change point is found, then I k is accepted as time-homogeneous in step (B2);
otherwise the procedure terminates in step (B3). We sequentially repeat these tests until we find a
change point or exhaust all intervals. The latest (longest) interval accepted as time-homogeneous
is used for estimation in step (B3). Note that the estimate θ̂ Ik

defined in (B2) and (B3) corresponds
to the latest accepted interval Îk after the first k steps, or equivalently, the interval selected out of
I 1, . . . , I k .

Moreover, the whole search and estimation step (B) can be repeated at different time points T
without reiterating the initial step (A) as the critical values zk depend only on the approximating
parametric model and interval lengths mk = |I k|, not on the time point T (see Section 3.3).
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3.3. Choice of critical values zk

The presented method of choosing the interval of homogeneity Î can be viewed as multiple
testing procedure. The critical values for this procedure are selected using the general approach
of testing theory: to provide a prescribed performance of the procedure under the null hypothesis,
i.e. in the pure parametric situation. This means that the procedure is trained on the data generated
from the pure parametric time-homogeneous model from step (A1). The correct choice in this
situation is the largest considered interval I K and a choice Ik̂ with k̂ < K can be interpreted as
a ‘false alarm’. We select the minimal critical values ensuring a small probability of such a false
alarm. Our condition slightly differs though from the classical level condition because we focus
on parameter estimation rather than on hypothesis testing.

In the pure parametric case, the ‘ideal’ estimate corresponds to the largest considered interval
I K . Due to Theorem 2.1, the quality of estimation of the parameter θ0 by θ̃ IK

can be measured
by the log-likelihood ‘loss’ LIK

(̃θ IK
, θ0), which is stochastically bounded with exponential

and polynomial moments: Eθ0 |LIK
(̃θ IK

, θ0)|r ≤ Rr (θ0). If the adaptive procedure stops earlier
at some intermediate step k < K , we select instead of θ̃ IK

another estimate θ̂ = θ̃ Ik
with a

larger variability. The loss associated with such a false alarm can be measured by the value
LIK

(̃θ IK
, θ̂ ) = LIK

(̃θ IK
) − LIK

(θ̂). The corresponding condition bounding the loss due to the
adaptive estimation reads as

Eθ0

∣∣LIK
(̃θ IK

, θ̂ )
∣∣r ≤ ρRr (θ0). (3.3)

This is in fact an implicit condition on the critical values {zk}Kk=1, which ensures that the loss
associated with the false alarm is at most the ρ-fraction of the log-likelihood loss of the ‘ideal’ or
‘oracle’ estimate θ̃ IK

for the parametric situation. The constant r corresponds to the power of the
loss in (3.3), while ρ is similar in meaning to the test level. In the limit case when r tends to zero,
this condition (3.3) becomes the usual level condition: Pθ0 (IK is rejected) = Pθ0 (̃θ IK

̸= θ̂ ) ≤ ρ.
The choice of the metaparameters r and ρ is discussed in Section 3.4.

A condition similar to (3.3) is imposed at each step of the adaptive procedure. The estimate
θ̂ Ik

coming after the k steps of the procedure should satisfy

Eθ0

∣∣LIk
(̃θ Ik

, θ̂ Ik
)
∣∣r ≤ ρkRr (θ0), k = 1, . . . , K, (3.4)

where ρ k = ρ k/K ≤ ρ. The following theorem presents some sufficient conditions on the critical
values {zk}Kk=1 ensuring (3.4); recall that mk = |I k| denotes the length of I k .

THEOREM 3.1. Suppose that r > 0, ρ > 0. Under the assumptions of Theorem 2.1, there are
constants a0, a1, a2 such that the condition (3.4) is fulfilled with the choice

zk = a0r log(ρ−1) + a1r log(mK/mk−1) + a2 log(mk), k = 1, . . . , K.

Since K and {mk}K
k=1 are fixed, the zk’s in Theorem 3.1 have a form zk = C + D log(mk)

for k = 1, . . . , K with some constant C and D. However, a practically relevant choice of these
constants has to be done by Monte Carlo simulations. Note first that every particular choice of
the coefficients C and D determines the whole set of the critical values {zk}Kk=1 and thus the local
change-point procedure. For the critical values given by fixed (C, D), one can run the procedure
and observe its performance on the simulated data using the data-generating process (2.2)–
(2.3); in particular, one can check whether the condition (3.4) is fulfilled. For any (sufficiently
large) fixed value of C, one can thus find the minimal value D(C) < 0 of D that ensures (3.4).
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Every corresponding set of critical values in the form zk = C + D(C) log(mk) is admissible. The
condition D(C) < 0 ensures that the critical values decreases with k. This reflects the fact that
a false alarm at an early stage of the algorithm is more crucial because it leads to the choice of
a highly variable estimate. The critical values zk for small k should thus be rather conservative
to provide the stability of the algorithm in the parametric situation. To determine C, the value
z1 can be fixed by considering the false alarm at the first step of the procedure, which leads to
estimation using the smallest interval I0 instead of the ‘ideal’ largest interval I K . The related
condition (used in Section 5.1) reads as

Eθ0

∣∣LIK
(̃θ IK

, θ̃ I0 )
∣∣r1(TI1,T (I1) > z1) ≤ ρRr (θ0)/K. (3.5)

Alternatively, one could select a pair (C, D) that minimizes the resulting prediction error; see
Section 3.4.

3.4. Selecting parameters r and ρ

The choice of critical values using inequality (3.4) additionally depends on two ‘metaparameters’
r and ρ. A simple strategy is to use conservative values for these parameters and the
corresponding set of critical values (e.g. our default is r = 1 and ρ = 1). On the other hand,
the two parameters are global in the sense that they are independent of T . Hence, one can
also determine them in a data-driven way by minimizing some global forecasting error (Cheng
et al., 2003). Different values of r and ρ may lead to different sets of critical values and hence to
different estimates θ̂

(r,ρ)
(T ) and to different forecasts Ŷ

(r,ρ)
T +h|T of the future values Y T +h, where h

is the forecasting horizon. Now, a data-driven choice of r and ρ can be done by minimizing the
following objective function:

(r̂ , ρ̂) = arg min
r>0,ρ>0

PE.,H (r, ρ) = arg min
r,ρ

∑

T

∑

h∈H

.
(
YT +h, Ŷ

(r,ρ)
T +h|T

)
, (3.6)

where . is a loss function and H is the forecasting horizon set. For example, one can take
.r (υ, υ ′) = |υ − υ ′|r for r ∈ [1/2, 2]. For daily data, the forecasting horizon could be one day,
H = {1}, or two weeks, H = {1, . . . , 10}.

4. THEORETIC PROPERTIES

In this section, we collect basic results describing the quality of the proposed adaptive procedure.
First, the definition of the procedure ensures the performance prescribed by (3.4) in the
parametric situation. We however claimed that the adaptive pointwise estimation applies even
if the process Y t is only locally approximated by a parametric model. Therefore, we now define
a locally ‘nearly parametric’ process, for which we derive an analogy of Theorem 2.1 (Section
4.1). Later, we prove certain ‘oracle’ properties of the proposed method (Section 4.2).

4.1. Small modelling bias condition

This section discusses the concept of a ‘nearly parametric’ case. To define it rigorously, we have
to quantify the quality of approximating the true latent process Xt , which drives the observed
data Y t due to (2.2), by the parametric process Xt (θ) described by (2.3) for some θ ∈ (. Below
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we assume that the innovations ε t in the model (2.2) are independent and identically distributed
and denote the distribution of

√
υεt by P υ so that the conditional distribution of Y t given Ft−1

is Pg(Xt ). To measure the distance of a data-generating process from a parametric model, we
introduce for every interval Ik ∈ I and every parameter θ ∈ ( the random quantity

/Ik
(θ) =

∑

t∈Ik

K {g(Xt ), g[Xt (θ)]},

where K (υ, υ ′) denotes the Kullback–Leibler distance between P υ and P υ ′ . For CH models
with Gaussian innovations εt ,K (υ, υ ′) = −0.5{log(υ/υ ′) + 1 − υ/υ ′}. In the parametric
case with Xt = Xt (θ0), we clearly have /Ik

(θ0) = 0. To characterize the ‘nearly parametric
case’, we introduce a {small modelling bias} (SMB) condition, which simply means that, for
some θ ∈ (, /Ik

(θ) is bounded by a small constant with a high probability. Informally, this
means that the ‘true’ model can be well approximated on the interval I k by the parametric one
with the parameter θ . The best parametric fit (2.3) to the underlying model (2.2) on I k can be
defined by minimizing the value E/Ik

(θ) over θ ∈ ( and θ̃ Ik
can be viewed as its estimate.

The following theorem claims that the results on the accuracy of estimation given in Theorem
2.1 can be extended from the parametric case to the general non-parametric situation under the
SMB condition. Let ϱ(θ̂ , θ ) be any loss function for an estimate θ̂ .

THEOREM 4.1. Let for some θ ∈ ( and some / ≥ 0

E/Ik
(θ ) ≤ /. (4.1)

Then it holds for an estimate θ̂ constructed from the observations {Yt }t∈Ik
that

E log
(
1 + ϱ(θ̂ , θ )/Eθϱ(θ̂, θ )

)
≤ 1 + /.

This general result applied to the quasi-MLE estimation with the loss function LI (̃θ I , θ )
yields the following corollary.

COROLLARY 4.1. Let the SMB condition (4.1) hold for some interval I k and θ ∈ (. Then

E log
(

1 +
∣∣LIk

(̃θ Ik
, θ )

∣∣r/Rr (θ )
)

≤ 1 + /,

where Rr (θ) is the parametric risk bound from (2.6).

This result shows that the estimation loss |LI (̃θ I , θ )|r normalized by the parametric risk
Rr (θ ) is stochastically bounded by a constant proportional to e/. If / is not large, this result
extends the parametric risk bound (Theorem 2.1) to the non-parametric situation under the SMB
condition. Another implication of Corollary 4.1 is that the confidence set built for the parametric
model (Corollary 2.1) continues to hold, with a slightly smaller coverage probability, under
SMB.

4.2. The ‘oracle’ choice and the ‘oracle’ result

Corollary 4.1 suggests that the ‘optimal’ or ‘oracle’ choice of the interval I k from the set
I 1, . . . , I K can be defined as the largest interval for which the SMB condition (4.1) still holds
(for a given small / > 0). For such an interval, one can neglect deviations of the underlying
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process from a parametric model with a fixed parameter θ . Therefore, we say that the choice
k∗ is the ‘oracle’ choice if there exists θ ∈ ( such that

E/Ik∗ (θ ) ≤ / (4.2)

for a fixed / > 0 and that (4.2) does not hold for k > k∗. Unfortunately, the underlying process
Xt and, hence, the value /Ik

is unknown and the oracle choice cannot be implemented. The
proposed adaptive procedure tries to mimic this oracle on the basis of available data using the
sequential test of homogeneity. The final oracle result claims that the adaptive estimate provides
the same (in order) accuracy as the oracle one.

By construction, the pointwise adaptive procedure described in Section 3 provides the
prescribed performance if the underlying process follows the parametric model (2.2). Now,
condition (3.4) combined with Theorem 4.1 implies similar performance in the first k∗ steps
of the adaptive estimation procedure.

THEOREM 4.2. Let θ ∈ ( and / > 0 be such that E/Ik∗ (θ) ≤ / for some k∗ ≤ K . Also let
maxk≤k∗ Eθ |LIk

(̃θ Ik
, θ )|r ≤ Rr (θ). Then

E log
(

1 +
∣∣LIk∗

(̃
θ Ik∗ , θ

)∣∣r

Rr (θ)

)
≤ 1 + / and E log

(
1 +

∣∣LIk∗

(̃
θ Ik∗ , θ̂ Ik∗

)∣∣r

Rr (θ)

)
≤ ρ + /.

Similarly to the parametric case, under the SMB condition E/Ik∗ (θ) ≤ /, any choice k̂ < k∗

can be viewed as a false alarm. Theorem 4.2 documents that the loss induced by such a false
alarm at the first k∗ steps and measured by LIk∗ (̃θ Ik∗ , θ̂ Ik∗ ) is of the same magnitude as the loss
LIk∗ (̃θ Ik∗ , θ ) of estimating the parameter θ from the SMB (4.2) by θ̃ Ik∗ . Thus, under (4.2) the
adaptive estimation during steps k ≤ k∗ does not induce larger errors into estimation than the
quasi-MLE estimation itself.

For further steps of the algorithm with k > k∗, where (4.2) does not hold, the value /′ =
E/Ik

(θ) can be large and the bound for the risk becomes meaningless due to the factor e/′
. To

establish the result about the quality of the final estimate, we thus have to show that the quality
of estimation cannot be destroyed at the steps k > k∗. The next ‘oracle’ result states the final
quality of our adaptive estimate θ̂ .

THEOREM 4.3. Let E/Ik∗ (θ) ≤ / for some k∗ ≤ K . Then LIk∗ (̃θ Ik∗ , θ̂ )1(k̂ ≥ k∗) ≤ zk∗ yielding

E log
(

1 +
∣∣LIk∗

(̃
θ Ik∗ , θ̂

)∣∣r

Rr (θ)

)
≤ ρ + / + log

(
1 + zr

k∗

Rr (θ )

)
.

Due to this result, the value LIk∗ (̃θ Ik∗ , θ̂ ) is stochastically bounded. This can be interpreted
as the oracle property of θ̂ because it means that the adaptive estimate θ̂ belongs with a high
probability to the confidence set of the oracle estimate θ̃ Ik∗ .

5. SIMULATION STUDY

In the last two sections, we present simulation study (Section 5) and real data applications
(Section 6) documenting the performance of the proposed adaptive estimation procedure. To
verify the practical applicability of the method in a complex setting, we concentrate on the
volatility estimation using parametric and adaptive pointwise estimation of constant volatility,
ARCH(1) and GARCH(1,1) models (for the sake of brevity, referred to as the local constant,
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local ARCH and local GARCH). The reason is that the estimation of GARCH models requires
generally hundreds of observations for a reasonable quality of estimation, which puts the adaptive
procedure working with samples as small as 10 or 20 observations to a hard test. Additionally, the
critical values obtained as described in Section 3.3 depend on the underlying parameter values in
the case of (G)ARCH.

Here we first study the finite-sample critical values for the test of homogeneity by means
of Monte Carlo simulations and discuss practical implementation details (Section 5.1). Later,
we demonstrate the performance of the proposed adaptive pointwise estimation procedure in
simulated samples (Section 5.2). Note that, throughout this section, we identify the GARCH(1,1)
models by triplets (ω, α, β): e.g. (1, 0.1, 0.3)-model. Constant volatility and ARCH(1) are then
indicated by α = β = 0 and β = 0, respectively. The GARCH estimation is done using the
GARCH 3.0 package (Laurent and Peters, 2006) and Ox 3.30 (Doornik, 2002). Finally, since the
focus is on modelling the volatility σ 2

t in (2.2), the performance measurement and comparison
of all models at time t is done by the absolute prediction error (PE) of the volatility process
over a prediction horizon H : APE(t) =

∑
h∈H |σ 2

t+h − σ̂ 2
t+h|t |/|H |, where σ̂ 2

t+h|t represents
the volatility prediction by a particular model.

5.1. Finite-sample critical values for the test of homogeneity

A practical application of the pointwise adaptive procedure requires critical values for the test
of local homogeneity of a time series. Since they are obtained under the null hypothesis that
a chosen parametric model (locally) describes the data, see Section 3, we need to obtain the
critical values for the constant volatility, ARCH(1) and GARCH(1,1) models. Furthermore, for
given r and ρ, the average risk (3.4) between the adaptive and oracle estimates can be bounded
for critical values that linearly depend on the logarithm of interval length |Ik| : z(|Ik|) = zk =
C + D log(|Ik|) (see Theorem 3.1). As described in Section 3.3, we choose here the smallest C
satisfying (3.5) and the corresponding minimum admissible value D = D(C) < 0 that guarantees
the conditions (3.4).

We simulated the critical values for ARCH(1) and GARCH(1,1) models with different values
of underlying parameters; see Table 1 for the critical values corresponding to r = 1 and ρ = 1.
Their simulation was performed sequentially on intervals with lengths ranging from |I 0| = m0 =
10 to |I K | = 570 observations using a geometric grid with multiplier a = 1.25; see Section 3.2.
(The results are, however, not sensitive to the choice of a.)

Unfortunately, the critical values depend on the parameters of the underlying (G)ARCH
model (in contrast to the constant-volatility model). They generally seem to increase with the
values of the ARCH and GARCH parameters keeping the other one fixed; see Table 1. To deal
with this dependence on the underlying model parameters, we propose to choose the largest
(most conservative) critical values corresponding to any estimated parameter in the analysed
data. For example, if the largest estimated parameters of GARCH(1,1) are α̂ = 0.3 and β̂ = 0.8,
one should use z(10) = 26.4 and z(570) = 14.5, which are the largest critical values for models
with α = 0.3, β ≤ 0.8 and with α ≤ 0.3, β = 0.8. (The proposed procedure is, however, not
overly sensitive to this choice, as we shall see later.)

Finally, let us have a look at the influence of the tuning constants r and ρ in (3.4) on the critical
values for several selected models (Table 2). The influence is significant, but can be classified in
the following way. Whereas increasing ρ generally leads to an overall decrease of critical values
(cf. Theorem 3.1), but primarily for the longer intervals, increasing r leads to an increase of
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Table 1. Critical values zk = z(|Ik|) of the supremum LR test.
β

z(|Ik|)
α |I k| 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 10 15.5 15.5 16.4 16.8 17.9 17.3 17.0 17.0 16.9 16.0

570 5.5 7.2 7.0 7.0 7.5 7.5 7.4 7.3 7.0 6.7

0.1 10 16.3 14.5 15.1 15.9 16.4 15.9 16.1 16.0 16.0

570 8.6 9.0 9.1 9.6 9.8 10.7 11.5 12.5 14.0

0.2 10 16.7 15.2 15.7 16.2 16.9 18.9 20.1 25.1

570 9.4 10.6 11.2 11.4 11.4 12.5 13.3 14.2

0.3 10 18.5 16.4 16.7 16.9 18.1 21.8 26.4

570 9.7 10.8 12.0 12.4 12.9 13.5 14.5

0.4 10 22.1 16.5 18.3 19.3 22.8 30.9

570 9.9 12.0 13.0 13.4 13.9 14.7

0.5 10 26.2 19.1 19.5 25.4 38.1

570 10.7 12.6 13.8 14.0 14.6

0.6 10 33.0 22.8 25.9 32.4

570 12.7 12.7 13.9 15.3

0.7 10 41.1 24.8 29.1

570 16.8 14.7 16.1

0.8 10 66.2 26.4

570 31.5 15.8

0.9 10 88.6

570 60.9

Note: ω = 1, r = 1 and ρ = 1.

critical values mainly for the shorter intervals; cf. (3.4). In simulations and real applications, we
verified that a fixed choice such as r = 1 and ρ = 1 performs well. To optimize the performance
of the adaptive methods, one can however determine constants r and ρ in a data-dependent way
as described in Section 3.3. We use here this strategy for a small grid of r ∈ {0.5, 1.0} and ρ ∈
{0.5, 1.0, 1.5} and find globally optimal r and ρ. We will document, though, that the differences
in the average absolute PE (3.6) for various values of r and ρ are relatively small.

5.2. Simulation study

We aim (i) to examine how well the proposed estimation method is able to adapt to long stable
(time-homogeneous) periods and to less stable periods with more frequent volatility changes and
(ii) to see which adaptively estimated model—local volatility, local ARCH or local GARCH—
performs best in different regimes. To this end, we simulated 100 series from two change-point
GARCH models with a low GARCH effect (ω, 0.2, 0.1) and a high GARCH effect (ω, 0.2, 0.7).
Changes in constant ω are spread over a time span of 1000 days; see Figure 1. There is a long
stable period at the beginning (500 days ≈ 2 years) and end (250 days ≈ 1 year) of time series
with several volatility changes between them.
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Table 2. Critical values z(|Ik|) of the supremum LR test for various values r and ρ.

Model (ω, α, β) (0.1, 0.0, 0.0) (0.1, 0.2, 0.0) (0.1, 0.1, 0.8)

r ρ z(10) z(570) z(10) z(570) z(10) z(570)

1.0 0.5 16.3 7.3 17.4 11.2 18.7 17.1

1.0 1.0 15.4 5.5 16.7 9.4 16.0 14.0

1.0 1.5 14.9 4.5 15.9 8.3 15.2 13.4

0.5 0.5 10.7 7.1 11.7 10.1 11.7 10.1

0.5 1.0 8.9 5.5 10.3 8.5 10.3 8.5

0.5 1.5 7.7 4.6 9.3 7.5 9.3 7.5

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time

Pa
ra

m
et

er
 v

al
ue

W
B

A

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time

Pa
ra

m
et

er
 v

al
ue

W
B

A

Figure 1. GARCH(1,1) parameters of low (left panel) and high (right panel) GARCH-effect simulations.

5.2.1. Low GARCH effect. Let us now discuss simulation results from the low GARCH-effect
model. First, we mention the effect of structural changes in time series on the parameter
estimation. Later, we compare the performance of all methods in terms of absolute PE.

Estimating a parametric model from data containing a change point will necessarily lead
to various biases in estimation. For example, Hillebrand (2005) demonstrates that a change
in volatility level ω within a sample drives the GARCH parameter β very close to 1. This is
confirmed when we analyse the parameter estimates for parametric and adaptive GARCH at
each time point t ∈ [250, 1000] as depicted on Figure 2, where the mean (solid line), the 10%
and 90% quantiles (dotted lines), and the true values (thick dotted line) of the model parameters
are provided. The parametric estimates are consistent before breaks starting at t = 500, but the
GARCH parameter β becomes inconsistent and converges to 1 once data contain breaks, t > 500.
The locally adaptive estimates are similar to parametric ones before the breaks and become rather
imprecise after the first change point, but they are not too far from the true value on average and
stay consistent (in the sense that the confidence interval covers the true values). The low precision
of estimation can be attributed to rather short intervals used for estimation (cf. Figure 2 for t <

500).
Next, we would like to compare the performance of parametric and adaptive estimation

methods by means of absolute PE: first for the prediction horizon of one day, H = {1}, and
later for prediction two weeks ahead, H = {1, . . . , 10}. To make the results easier to decipher,
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Figure 2. Parameter values estimated by the parametric (top row) and locally adaptive (bottom row)
GARCH methods.

we present in what follows PEs averaged over the past month (21 days). The absolute-PE
criterion was also used to determine the optimal values of parameters r and ρ ( jointly across
all simulations and for all t = 250, . . . , 1000). The results differ for different models: r = 0.5,
ρ = 0.5 for local constant, r = 0.5, ρ = 1.0 for local ARCH, and r = 0.5, ρ = 1.5 for local
GARCH.

Let us now compare the adaptively estimated local constant, local ARCH and local GARCH
models with the parametric GARCH, which is the best performing parametric model in this
set-up. Forecasting one period ahead, the average PEs for all methods and the median lengths
of the selected time-homogeneous intervals for adaptive methods are presented on Figure 3 for
t ∈ [250, 1000]. First of all, let us observe in the case of the simplest local constant model that
even the (median) estimated interval of homogeneity at the end of the first homogeneous period,
1 ≤ t < 500, can actually be shorter than the true one. The reason is that the probability of some
5 or 10 subsequent observations used as I0 having their sample variance very different from the
underlying one increases with the length of the series.

Next, one can notice that all methods are sensitive to jumps in volatility, especially to the
first one at t = 500: the parametric ones because they ignore a structural break, the adaptive ones
because they use a small amount of data after a structural change. In general, the local GARCH
performs rather similarly to the parametric GARCH for t < 650 because it uses all historical
data. After initial volatility jumps, the local GARCH, however, outperforms the parametric one,
650 < t < 775. Following the last jump at t = 750, where the volatility level returns closer to
the initial one, the parametric GARCH is best of all methods for some time, 775 < t < 850,
until the adaptive estimation procedure detects the (last) break, and after it, ‘collects’ enough
observations for estimation. Then the local GARCH and local ARCH become preferable to the
parametric model again, 850 < t . Interestingly, the local ARCH approximation performs almost
as well as both GARCH methods and even outperforms them shortly after structural breaks
(except for break at t = 750), 600 < t < 775 and 850 < t < 1000. Finally, the local constant
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Figure 3. Left-hand panel: Low GARCH-effect simulations—absolute prediction errors one period ahead.
Right-hand panel: The median lengths of the adaptively selected intervals.
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Figure 4. Left-hand panel: Low GARCH-effect simulations—absolute prediction errors 10 periods ahead.
Right-hand panel: High GARCH-effect simulations—absolute prediction errors one period ahead.

volatility is lacking behind the other two adaptive methods whenever there is a longer time period
without a structural break, but keeps up with them in periods with frequent volatility changes,
500 < t < 650. All these observations can be documented also by the absolute PE averaged over
the whole period 250 ≤ t ≤ 1000 (we refer to it as the global PE from now on): the smallest PE
is achieved by local ARCH (0.075), then by local GARCH (0.079) and the worst result is from
local constant (0.094).

Additionally, all models are compared using the forecasting horizon of 10 days. Most of the
results are the same (e.g. parameter estimates) or similar (e.g. absolute PE) to forecasting one
period ahead due to the fact that all models rely on at most one past observation. The absolute
PEs averaged over one month are summarized for t ∈ [250, 1000] on Figure 4, which reveals
that the difference between local constant volatility, local ARCH and local GARCH models are
smaller in this case. As a result, it is interesting to note that: (i) the local constant model becomes
a viable alternative to the other methods (it has in fact the smallest global PE 0.107 from all
adaptive methods) and (ii) the local ARCH model still outperforms the local GARCH (global
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PEs are 0.108 and 0.116, respectively) even though the underlying model is GARCH (with a
small value of β = 0.1 however).

5.2.2. High GARCH effect. Let us now discuss the high GARCH-effect model. One would
expect much more prevalent behaviour of both GARCH models, since the underlying GARCH
parameter is higher and the changes in the volatility level ω are likely to be small compared to
overall volatility fluctuations. Note that the optimal values of tuning constant r and ρ differ from
the low GARCH-effect simulations: r = 0.5, ρ = 1.5 for local constant; r = 0.5, ρ = 1.5 for
local ARCH; and r = 1.0, ρ = 0.5 for local GARCH.

Comparing the absolute PEs for the one-period-ahead forecast at each time point (Figure 4)
indicates that the adaptive and parametric GARCH estimations perform approximately equally
well. On the other hand, both the parametric and adaptively estimated ARCH and constant
volatility models are lacking significantly. Unreported results confirm, similarly to the low
GARCH-effect simulations, that the differences among method are much smaller once a longer
prediction horizon of 10 days is used.

6. APPLICATIONS

The proposed adaptive pointwise estimation method will be now applied to real time series
consisting of the log-returns of the DAX and S&P 500 stock indices (Sections 6.1 and 6.2).
We will again summarize the results concerning both parametric and adaptive methods by
the absolute PEs one day ahead averaged over one month. As a benchmark, we employ the
parametric GARCH estimated using the last two years of data (500 observations). Since we
however do not have the underlying volatility process now, it is approximated by squared returns.
Despite being noisy, this approximation is unbiased and provides usually the correct ranking of
methods (Andersen and Bollerslev, 1998).

6.1. DAX analysis

Let us now analyse the log-returns of the German stock index DAX from January 1990 till
December 2002 depicted at the top of Figure 5. Several periods interesting for comparing the
performance of parametric and adaptive pointwise estimates are selected since results for the
whole period might be hard to decipher at once.

First, consider the estimation results for years 1991 to 1996. Contrary to later periods,
there are structural breaks practically immediately detected by all adaptive methods (July 1991
and June 1992; cf. Stapf and Werner, 2003). For the local GARCH, this differs from less
pronounced structural changes discussed later, which are typically detected only with delays
of several months. One additional break detected by all methods occurs in October 1994. Note
that parameters r and ρ were r = 0.5, ρ = 1.5 for local constant, r = 1.0, ρ = 1.0 for local
ARCH, and r = 0.5, ρ = 1.5 for local GARCH.

The results for the period 1991–96 are summarized in the left bottom panel of Figure 5, which
depicts the PEs of each adaptive method relative to the PEs of parametric GARCH. First, one can
notice that the local constant and local ARCH approximations are preferable till July 1991, where
we have less than 500 observations. After the detection of the structural change in June 1991, all
adaptive methods are shortly worse than the parametric GARCH due to the limited amount of
data used, but then outperform the parametric GARCH till the next structural break in the second
half of 1992. A similar behaviour can be observed after the break detected in October 1994,
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Figure 5. Top panel: The log-returns of DAX series. Bottom panels: The absolute prediction errors of the
pointwise adaptive methods relative to the parametric GARCH errors for predictions one period ahead.

where the local constant and local ARCH models actually outperform both the parametric and
adaptive GARCH. In the other parts of the data, the performance of all methods is approximately
the same, and even though the adaptive GARCH is overall better than the parametric one, the
most interesting fact is that the adaptively estimated local constant and local ARCH models
perform equally well. In terms of the global PE, the local constant is best (0.829), followed by
the local ARCH (0.844) and local GARCH (0.869). This closely corresponds to our findings in
simulation study with low GARCH effect in Section 5.2. Note that for other choices of r and ρ,
the global PEs are at most 0.835 and 0.851 for the local constant and local ARCH, respectively.
This indicates low sensitivity to the choice of these parameters.

Next, we discuss the estimation results for years 1999 to 2001 (r = 1.0 for all methods
now). After the financial markets were hit by the Asian crisis in 1997 and the Russian crisis in
1998, the market headed to a more stable state in year 1999. The adaptive methods detected the
structural breaks in the autumn of 1997 and 1998. The local GARCH detected them, however,
with more than a one-year delay—only during 1999. The results in Figure 5 (right bottom panel)
confirm that the benefits of the adaptive GARCH are practically negligible compared to the
parametric GARCH in such a case. On the other hand, the local constant and ARCH methods
perform slightly better than both GARCH methods during the first presented year (July 1999
to June 2000). From July 2000, the situation becomes just the opposite and the performance
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Figure 6. Left-hand panel: The log-returns of S&P 500. Right-hand panel: The absolute prediction errors
of the pointwise adaptive methods relative to the parametric GARCH errors for predictions one period
ahead.

of the GARCH models is better (parametric and adaptive GARCH estimates are practically the
same in this period since the last detected structural change occurred approximately two years
ago). Together with previous results, this opens the question of model selection among adaptive
procedures as different parametric approximations might be preferred in different time periods.
Judging by the global PE, the local ARCH provides slightly better predictions on average than
the local constant and local GARCH—despite the ‘peak’ of the PE ratio in the second half of
year 2000 (see Figure 5). This, however, depends on the specific choice of loss . in (3.6).

Finally, let us mention that the relatively similar behaviour of the local constant and local
ARCH methods is probably due to the use of ARCH(1) model, which is not sufficient to capture
more complex time developments. Hence, ARCH(p) might be a more appropriate interim step
between the local constant and GARCH models.

6.2. S&P 500

Now we turn our attention to more recent data regarding the S&P 500 stock index considered
from January 2000 to December 2004; see Figure 6. This period is marked by many substantial
events affecting the financial markets, ranging from September 11, 2001, terrorist attacks and
the war in Iraq (2003) to the crash of the technology stock-market bubble (2000–02). For the
sake of simplicity, a particular time period is again selected: year 2003 representing a more
volatile period (the war in Iraq) and year 2004 being a less volatile period. All adaptive methods
detected rather quickly a structural break at the beginning of 2003, and additionally they detected
a structural break in the second half of 2003, although the adaptive GARCH did so with a delay
of more than eight months. The ratios of monthly PE of all adaptive methods to those of the
parametric GARCH from January 2003 to December 2004 are summarized on Figure 6 (r = 0.5
and ρ = 1.5 for all methods).
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In the beginning of year 2003, corresponding with 2002 to a more volatile period (see
Figure 6), all adaptive methods perform as well as the parametric GARCH. In the middle of year
2003, the local constant and local ARCH models are able to detect another structural change
(possibly less pronounced than the one at the beginning of 2003 because of its late detection
by the adaptive GARCH). Around this period, the local ARCH shortly performs worse than
the parametric GARCH. From the end of 2003 and in year 2004, all adaptive methods starts
to outperform the parametric GARCH, where the reduction of the PEs due to the adaptive
estimation amounts to 20% on average. All adaptive pointwise estimates exhibit a short period
of instability in the first months of 2004, where their performance temporarily worsens to the
level of parametric GARCH. This corresponds to ‘uncertainty’ of the adaptive methods about
the length of the interval of homogeneity. After this short period, the performance of all adaptive
methods is comparable, although the local constant performs overall best of all methods (closely
followed by local ARCH) judged by the global PE.

Similarly to the low GARCH-effect simulations and to the analysis of DAX in Section 6.1,
it seems that the benefit of pointwise adaptive estimation is most pronounced during periods of
stability that follow an unstable period (i.e. year 2004) rather than during a presumably rapidly
changing environment. The reason is that, despite possible inconsistency of parametric methods
under change points, the adaptive methods tend to have a rather large variance when the intervals
of time homogeneity become very short.

7. CONCLUSION

We extend the idea of adaptive pointwise estimation to parametric CH models. In the specific case
of ARCH and GARCH, which represent particularly difficult cases due to high data demands and
dependence of critical values on underlying parameters, we demonstrate the use and feasibility
of the proposed procedure: on the one hand, the adaptive procedure, which itself depends on
a number of auxiliary parameters, is shown to be rather insensitive to their choice, and on the
other hand, it facilitates the global selection of these parameters by means of fit or forecasting
criteria. The real-data applications highlight the flexibility of the proposed time-inhomogeneous
models since even simple varying-coefficients models such as constant volatility and ARCH(1)
can outperform standard parametric methods such as GARCH(1,1). Finally, the relatively small
differences among the adaptive estimates based on different parametric approximations indicate
that, in the context of adaptive pointwise estimation, it is sufficient to concentrate on simpler and
less data-intensive models such as ARCH(p), 0 ≤ p ≤ 3, to achieve good forecasts.
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APPENDIX: PROOFS

Proof of Corollary 2.1: Given the choice of zα , it directly follows from (2.5). !
Proof of Theorem 3.1: Consider the event Bk = {Î = Ik−1} for some k ≤ K . This particularly means that
I k−1 is accepted while I k = [T − mk + 1, T ] is rejected; i.e. there is I ′ = [t ′, T ] ⊆ I k and τ ∈ T (Ik) such
that TIk,τ > zk = zIk ,T (Ik ). For every fixed τ ∈ T (Ik) and J = I k \ [τ + 1, T ], J c = [τ + 1, T ], it holds by
definition of TIk,τ that

TIk,τ ≤ LJ (̃θJ ) + LJc (̃θJ c ) − LI (θ 0) = LJ (̃θJ , θ 0) + LJc (̃θJ c , θ 0).

This implies by Theorem 2.1 that P θ0 (TIk,τ > 2z) ≤ exp{e(λ, θ 0) − λz}. Now,

P θ0 (Bk) ≤
T −m0∑

t ′=T −mk+1

T −m0+1∑

τ=t ′+1

2 exp{e(λ, θ 0) − λzk/2} ≤ 2
m2

k

2
exp{e(λ, θ 0) − λzk/2}.

Next, by the Cauchy–Schwartz inequality

Eθ0 |LIK (̃θ IK , θ̂ )|r =
K∑

k=1

Eθ0 [|LIK (̃θ IK , θ̃ k−1)|r1(Bk)]

≤
K∑

k=1

E1/2
θ0

|LIK (̃θ IK , θ̃ k−1)|2r P1/2
θ0

(Bk).

Under the conditions of Theorem 2.1, it follows similarly to (2.6) that

Eθ0 |LIK (̃θ IK , θ̃ k−1)|2r ≤ (mK/mk−1)2rR∗
2r (θ 0)
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for some constant R∗
2r (θ0) and k = 1, . . . , K , and therefore,

Eθ0 |LIK (̃θ IK , θ̂ )|r ≤ [R∗
2r (θ 0)]1/2

K∑

k=1

mk(mK/mk−1)r exp{e(λ, θ 0)/2 − λzk/4}

and the result follows by simple algebra provided that a1λ/4 ≥ 1 and a2λ/4 > 2. !
LEMMA A.1. Let P and P0 be two measures such that the Kullback–Leibler divergence E log(d P/d P0),
satisfies E log(d P/d P0) ≤ / < ∞. Then for any random variable ζ with E0ζ < ∞, it holds that
E log(1 + ζ ) ≤ / + E0ζ.

Proof: By simple algebra one can check that for any fixed y the maximum of the function f (x) = xy −
x log x + x is attained at x = ey leading to the inequality xy ≤ x log x − x + ey . Using this inequality and
the representation E log(1 + ζ ) = E0{Z log(1 + ζ )} with Z = d P/d P0 we obtain

E log(1 + ζ ) = E0{Z log(1 + ζ )} ≤ E0(Z log Z − Z) + E0(1 + ζ )

= E0(Z log Z) + E0ζ − E0Z + 1.

It remains to note that E0Z = 1 and E0(Z log Z) = E log Z. !
Proof of Theorem 4.1: Lemma A.1 applied with ζ = ϱ(θ̂ , θ )/Eθϱ(θ̂, θ ) yields the result in the view of

Eθ (ZI,θ log ZI,θ ) = E log ZI,θ = E
∑

t∈I

log
p[Yt , g(Xt )]

p[Yt , g(Xt (θ ))]

= E
∑

t∈I

E

⎧
⎨

⎩ log
p[Yt , g(Xt )]

p[Yt , g(Xt (θ))]

∣∣∣∣∣∣
Ft−1

⎫
⎬

⎭ = E/Ik (θ ). !

Proof of Corollary 4.1: It is Theorem 4.1 formulated for ϱ(θ ′, θ ) = LI (θ ′, θ ). !
Proof of Theorem 4.2: The first inequality follows from Corollary 4.1, the second one from condition
(3.4) and the property x ≥ log x for x > 0. !
Proof of Theorem 4.3: Let k̂ = k > k∗. This means that I k is not rejected as homogeneous. Next, we
show that for every k > k∗ the inequality TIk,τ ≤ TIk,T (Ik ) ≤ zk with τ = T − mk∗ = T − |Ik∗ | implies
LIk∗ (̃θ Ik∗ , θ̃ Ik ) ≤ zk∗ . Indeed with J = Ik\Ik∗ , this means that, by construction, zk ≤ zk∗ for k > k∗ and

zk ≥ TIk,τ = LIk∗ (̃θ Ik∗ , θ̃ Ik ) + LJ (̃θJ , θ̃ Ik ) ≥ LIk∗ (̃θ Ik∗ , θ̃ Ik ).

It remains to note that

|LIk∗ (̃θ Ik∗ , θ̂ )|r ≤ |LIk∗ (̃θ Ik∗ , θ̂ Ik∗ )|r1(k̂ < k∗) + zr
k∗ 1(k̂ > k∗),

which obviously yields the assertion. !
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Abstract Dynamic semiparametric factor models (DSFM) simultaneously smooth in
space and are parametric in time, approximating complex dynamic structures by time
invariant basis functions and low dimensional time series. In contrast to traditional
dimension reduction techniques, DSFM allows the access of the dynamics embedded
in high dimensional data through the lower dimensional time series. In this paper, we
study the time behavior of risk assessments from investors facing random financial
payoffs. We use DSFM to estimate risk neutral densities from a dataset of option
prices on the German stock index DAX. The dynamics and term structure of risk
neutral densities are investigated by Vector Autoregressive (VAR) methods applied
on the estimated lower dimensional time series.

Keywords Dynamic factor models · Dimension reduction · Risk neutral density

1 Introduction

Large datasets containing various samples of high dimensional observations became
common in diverse fields of science with advances in measurement and computa-
tional techniques. In many applications the data come in curves, i.e., as observa-
tions of discretized values of smooth random functions, presenting evident functional
structure. In these cases, it is natural to perform statistical inference using functional
data analysis techniques.
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Consider a dataset {(Yjt ,Xjt )}, j = 1, . . . , Jt , t = 1, . . . , T , containing noisy sam-
ples of a real valued smooth random function F ∈ L2(X ), X ⊆ Rd , d ∈ N, evaluated
at unbalanced design points as

Yjt = Ft (Xjt ) + εj t , (1.1)

where εj t denote unknown zero-mean error terms and {Ft } are realizations of F .
Each sample St = {(Yjt ,Xjt ) : j = 1, . . . , Jt }, t = 1, . . . , T , may correspond to ob-
servations on, e.g., different individuals, time periods or experimental conditions.
Examples in biomedicine are measurements of growth curves and brain potentials
across individuals, see Kneip and Gasser (1992) and Gasser and Kneip (1995), in
econometrics such are expenditures across households and implied volatilities across
trading days, see Kneip (1994) and Fengler et al. (2007).

A large branch of functional data analysis concentrates on approximating F by
lower dimensional objects. Distributions on function spaces are highly complex ob-
jects and dimension reduction techniques present a feasible and interpretable ap-
proach for investigating them. Functional principal components analysis (FPCA),
based on the Karhunen–Loève expansion of F is the most prominent and widely
used dimension reduction technique, see Rice and Silverman (1991) and Ramsay and
Dalzell (1991).

Asymptotic results on FPCA have been obtained by Dauxois et al. (1982) and
Hall et al. (2006) for observed functional data {Ft }. For non-observable data, the
standard approach is to perform FPCA on presmoothed {F̂t }, see Benko et al. (2009)
for recent developments. In practical applications, however, presmoothing may suffer
from design-sparseness, see Cont and Fonseca (2002) and Fengler et al. (2007).

In general lines, previous literature combines PCA and dimension reduction with
presmoothing for effective dimensional space at fixed time horizon. Various applica-
tions, however, involve the dynamics of the unobserved random functions, calling for
dimension reduction techniques that smooth in space and are parametric in time.

In this paper, we investigate the dynamics of {Ft } by reducing dimensionality
without presmoothing. Ft is considered as a linear combination of L + 1 ≪ T un-
known smooth basis functions ml ∈ L2(X ), l = 0, . . . ,L:

Ft (Xjt ) =
L∑

l=0

Zltml(Xjt ), (1.2)

where Zt = (Z0t , . . . ,ZLt )
⊤ is an unobservable random vector taking values on

RL+1 with Z0t = 1. Defining the tuple of functions m = (m0, . . . ,mL)⊤, the Dy-
namic Semiparametric Factor Model (DSFM) reads as

Yjt = Z⊤
t m(Xjt ) + εj t . (1.3)

The basis functions are estimated nonparametrically avoiding specification issues.
Their estimation is performed simultaneously with Zt , i.e., the smoothing is trans-
ferred directly to ml and design-sparseness issues become secondary. In addition, the
random process {Zt } is allowed to be non-stationary. Park et al. (2009) show that
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under (1.2) the autocorrelation structures of {Ẑt } and {Zt } are asymptotically equiva-
lent; therefore, no loss is incurred by inferring the dynamics from the estimated {Ẑt },
and there is no payment for not knowing the true {Zt }. This result is essential for in-
vestigating cointegration between dynamical systems, see Brüggemann et al. (2008)
for an econometric application.

Note that the common regressors model, Kneip (1994), also represents unobserv-
able functions by (1.2). There are, however, crucial differences between the DSFM
and common regressors:

1. In DSFM, {Zt } is a (non-stationary) random process with autocovariance structure
inferable from {Ẑt }.

2. DSFM is implementable in unbalanced designs.
3. DSFM avoids presmoothing by transferring the smoothing to the basis functions.

Thus DSFM goes beyond traditional dimension reductions techniques (FPCA and
common regressors) as it captures structural dynamics embedded in the observations.

In economics, there is substantial interest in the behavior (over time) of investors
facing risks and its relation to macroeconomic and financial indicators. The knowl-
edge about the dynamics of risk assessments from investors is essential for many
applications ranging from pricing of illiquid instruments to risk management.

Option prices contain information on risk assessments from investors facing future
financial payoffs, summarized in the risk neutral densities q , see Ait-Sahalia and
Lo (1998). An European call option with price Ct at time 0 ≤ t ≤ T , maturity date
T > 0 and strike K > 0 is a financial instrument that delivers the random payoff
(ST − K)+ at time T where St is the price of an underlying asset at time t . Breeden
and Litzenberger (1978) show that under no arbitrage assumptions the risk neutral
density is obtained from the European call price function Ct through the relation

qt,T (sT |st ) = er(T −t) ∂
2Ct(st , r,K,T − t)

∂K2

∣∣∣∣
K=sT

, (1.4)

where r > 0 is interest rate, see Sect. 4 for details.
We estimate risk neutral densities based on observed intraday prices of calls on the

German stock index (DAX). Each observation consists of a price Yjt on a design point
Xjt = (κj t , τj t )

⊤ where j = 1, . . . , Jt , denote the transactions at day t = 1, . . . , T , κ

is the moneyness, a monotone transformation of strikes K, and τ = T − t is the time
to maturity associated with the option. Stock exchange regulations impose prespeci-
fied values for tradable maturities resulting in degenerated designs, see Fig. 1.

Following Ait-Sahalia and Lo (1998) and Fengler et al. (2007), call prices are
transformed into log-implied volatilities Ỹj t = logC−1

BS (Yjt ), where CBS is the
Black–Scholes call price function defined in Sect. 4. These are assumed as discretized
noisy values of the log-implied volatility surface evaluated at {Xjt }:

Ỹj t = logVt (Xjt ) + εj t , (1.5)

where V ∈ L2(X ), X ⊂ R2
+, is a smooth random function, called the implied volatil-

ity surface, and εj t is an error term. The realizations {Vt } are filtered out from the data
with DSFM and, remarking that CBS is a function of K , the risk neutral densities are
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Fig. 1 Samples St , t = 1, . . . ,22, of DAX call prices traded on January 2001 (left). Corresponding un-
balanced design {Xjt } (right)

obtained by (1.4) with CBS(V̂) as an estimator for Ct . The dynamics of the estimated
{̂qt,T } is analyzed based on the autocorrelation structure of {Ẑt }.

In the sequel, the DSFM estimation method and its asymptotic properties are de-
scribed (Sect. 2). In Sect. 3, the risk neutral densities are defined, and in Sect. 4
they are estimated from observed prices of European call options on the DAX index
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(ODAX dataset). Their dynamic structure is then analyzed by vector autoregressive
models.

2 Estimation method

Consider a dataset {(Yjt ,Xjt )}, j = 1, . . . , Jt , t = 1, . . . , T , such that

Yjt =
L∑

l=0

Zltml(Xjt ) + εj t , (2.1)

where εj t are unknown error terms with E[εj t ] = 0 and E[ε2
j t ] < ∞. The variables

X11, . . . ,XT,JT , ε1,1, . . . , εT ,JT are independent. Here Zt = (Z0t , . . . ,ZLt )
⊤ is an

unobservable random vector taking values on RL+1 with Z0t = 1 and ml ∈ L2(X ),
l = 0, . . . ,L, are unknown smooth functions, called basis functions, mapping X ⊆
Rd , d ∈ N, into real values.

Following Park et al. (2009), the basis functions are estimated using a series ex-
pansion. Defining K normed functions ψk :X → R,

∫
X ψ2

k (x)dx = 1, k = 1, . . . ,K,
and an ((L + 1) × K) matrix of coefficients Γ = (γl,k), γl,k ∈ R, the tuple of func-
tions m = (m0, . . . ,mL)⊤ is approximated by Γ ⊤ψ where ψ = (ψ1, . . . ,ψK)⊤. For
simplicity of notation, we assume that Jt = J does not depend on t . We define the
least squares estimators as

(Γ̂ , Ẑ) = arg min
Γ ∈G,Z∈Z

T∑

t=1

J∑

j=1

{
Yjt − Z⊤

t Γ ψ(Xjt )
}2

, (2.2)

where G = M(L + 1,K), Z = {Z ∈ M(T ,L + 1) : Z0t = 1} and M(a, b) is the set
of all (a × b) matrices. The basis functions m are estimated by m̂ = Γ̂ ψ .

Theorem (2.1) gives the asymptotic behavior of the least squares estimators
(Γ̂ , Ẑ). See Park et al. (2009) for the proof.

Theorem 2.1 Suppose that DSFM holds and that (Γ̂ , Ẑ) is defined by (2.2). Under
Assumptions (A1)–(A8), see Appendix, it holds for K,J → ∞:

1
T

∑

1≤t≤T

∥∥Ẑ⊤
t Γ̂ − Z⊤

t Γ ∗∥∥2 = OP

(
δ2
K + ξ2).

See (A5) and (A8) for the definitions of δK and ξ . Note that the model (2.1) is only
identifiable up to linear transformations. Consider an ((L + 1) × (L + 1)) regular
matrix B = (bij ) with b1j = δ1j and bi1 = δi1 for i, j = 1, . . . ,L + 1, where δij =
1(i = j). Define Z∗

t = B⊤Zt , m∗ = B−1m. Then from (1.2)

Ft (X) = Z⊤
t m(X) = Z⊤

t BB−1m(X) = Z∗
t
⊤m∗(X)

for X ∈ X . On the other hand, it is always possible to chose orthonormal basis func-
tions by setting m∗ = Hm where H is an orthogonal matrix.
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Theorem (2.2) states that for any Ẑt there exists a random matrix B such that
the autocovariances of {Z̃t }, Z̃t = B⊤Ẑt , are asymptotically equivalent to the auto-
covariances of the true unobservable {Zt }. This equivalence is transferred to classi-
cal estimation and testing procedures in the context of, e.g., vector autoregressive
models and, in particular, justifies inference based on {Z̃t } when {Zt } is a VAR
process. Define for Ht ∈ Z , t = 1, . . . , T : H = T −1 ∑T

t=1 Ht , Hc,t = Ht − H and
Hn,t = (T −1 ∑T

s=1 Hc,sH
⊤
c,s)

−1/2Hc,t .

Theorem 2.2 Suppose that DSFM holds and that (Γ̂ , Ẑ) is defined by (2.2). Under
Assumptions (A1)–(A11), see Appendix, there exists a random matrix B such that for
h ≠ 0, hd = max(1,1 − h), hu = max(T ,T − h) and T → ∞:

1
T

hu∑

t=hd

Z̃c,t (Z̃c,t+h − Z̃c,t )
⊤ − 1

T

hu∑

t=hd

Zc,t (Zc,t+h − Zc,t )
⊤ = OP

(
T −1/2),

where Z̃t = B⊤Ẑt . Moreover,

1
T

hu∑

t=hd

Z̃n,t Z̃
⊤
n,t+h − 1

T

hu∑

t=hd

Zn,tZ
⊤
n,t+h = OP

(
T −1/2).

See Park et al. (2009) for the proof. Note that, in contrast to FPCA, DSFM does not
require stationarity neither for {Zt } nor for {εt }, but only weak assumptions on the
average behavior of Zt , like being a martingale difference, see Appendix.

3 Risk neutral density estimation

3.1 Risk neutral densities

Consider a financial market with one risky asset and one riskless bond with constant
interest rate r > 0. Let the price of the asset traded on the market be described by the
real valued random process {St }, t = [0, T ], T < ∞, on a filtered probability space
(Ω, {Ft },P) with Ft = σ (Su,u ≤ t) and F0 = {∅,Ω}. Assume further no arbitrage in
the financial market in the sense that there exists a (risk neutral) probability measure
Q equivalent to P under which the discounted price process {e−rtSt } is a martingale.

A European call option at strike K > 0 is a financial instrument that pays Ψ (ST ) =
(ST − K)+ at time T . By the risk-neutral valuation principle w.r.t. Q, the price Ct of
a European call option at time t is defined to be

Ct = e−r(T −t)EQ[
Ψ (ST )|Ft

]
. (3.1)

Assuming that {St } is a Q-Markov process and denoting the P-density of Q by π , the
price can be rewritten as

Ct = e−r(T −t)E
[
Ψ (ST )K t

π (St , ST )|St

]
,
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where E denotes the expectation under P and K t
π (St , ST )

def.= E[π |St ,ST ]
E[π |St ] . The condi-

tional risk neutral distribution of ST is defined as

QST |St=st

(
[ST ≤ x]

) def.=
∫ x

−∞
K t

π (st , ·) dPST |St=st , (3.2)

where PST |St=st is the conditional distribution of ST under St = st . Specializing to
the following two factor model, we assume that the price process has dynamics given
by

dSt = Stµ(Yt ) dt + Stσ (Yt ) dW 1
t ,

here W 1 is a standard P-Brownian motion and Y denotes an external economic factor
process modeled by

dYt = g(Yt ) + ρ dW 1
t + ρ dW 2

t ,

where ρ ∈ [−1,1] is some correlation factor, ρ
def.=

√
1 − ρ2 and W 2 is a stan-

dard P-Brownian motion independent of W 1 under P. Market models of this type
are popular in mathematical finance and economics, in particular, if Y follows an
Ornstein–Uhlenbeck dynamics with mean reversion term g(y) = ι(θ − y) for con-
stants θ ≥ 0 and ι > 0. Moreover, {St } is a Q-Markov process for any Q, see
Hernández-Hernández and Schied (2007) and the conditional risk neutral distribu-
tion QST |St=st has a density function denoted by qt,T (·|st ). Hence, recalling (3.1),
the call prices can be expressed as

Ct(st , r,K,T − t) = e−r(T −t)

∫
(sT − K)+qt,T (sT |st ) dsT .

We assume that the observed prices in the financial market are built based on the risk
neutral valuation principle w.r.t. an unknown risk neutral measure Q. Our interest lies
in estimating the conditional risk neutral distribution QST |St=st , or equivalently the
risk neutral density function qt,T (·|st ), implied by Q through (3.2).

3.2 Estimation

Adapting Breeden and Litzenberger (1978), one can show that the risk neutral density
function qt,T (·|st ) is obtained as the second derivative of the call price function Ct

with respect to strike K

qt,T (sT |st ) = erτ ∂2Ct(st , r,K, τ )

∂K2

∣∣∣∣
K=sT

, (3.3)

where τ = T − t is the time to maturity.
The unknown price function Ct might be smoothed out of price observations and

used in (3.3) to recover risk neutral densities. Here we follow the semiparametric
approach from Ait-Sahalia and Lo (1998) where the smoothing is carried out in the
space of implied volatilities.



394 E. Giacomini et al.

The implied volatility surface is the function vt : R2
+ → R+ satisfying for all

(K, τ ) ∈ R2
+

Ct(st , r,K, τ ) = CBS
{
st , r,K, τ, vt (K, τ )

}
, (3.4)

where CBS(s, r,K, τ, v) = sΦ(d1) − Ke−rτΦ(d2) is the Black–Scholes price of Ψ

with strike K and maturity τ , Φ(·) is the cumulative distribution function of the
standard normal distribution, d1 = {log( s

K ) + (r + 1
2v2)τ }/(v√

τ ) and d2 = d1 −
v
√

τ .
More generally, the implied volatility surface is considered a smooth random func-

tion V ∈ L2(X ) on the space X ⊂ R2 of strikes K and maturities τ . Combining (3.3)
and (3.4), the functional random variable H ∈ L2(X ), called the risk neutral (RN)
surface, is defined as

H(s, r,K, τ,V) = erτD2CBS(s, r,K, τ,V)

= ϕ(d2)

{
1

K
√

τV
+ 2d1

V
DV + K

√
τ

d1d2

V
(DV)2 + K

√
τD2V

}
,

(3.5)

where Dm denotes the mth partial derivative with respect to K and ϕ(·) the proba-
bility density function of the standard normal distribution. The explicit derivation of
(3.5) and a detailed treatment of implied volatilities can be found in Hafner (2004)
and Fengler (2005). Clearly, lower dimension objects describing V may be used to
analyze the RN surface H.

A functional dataset containing realizations of the implied volatility surface V is,
however, not available, as in an exchange only discretized values of Vt corrupted
by noise are registered from trades. On each day t = 1, . . . , T there are Jt options
traded, each intraday trade j = 1, . . . , Jt corresponds to an observed option price Yjt

at a pair of moneyness κ and maturities τ , Xjt = (κj t , τj t )
⊤ where κ = erτK/st .

Let CBS(v) = CBS(v; s, r,K, τ ) denote the Black–Scholes price as a function of v

with all other arguments held constant. As CBS(v) is continuous and monotone in
v with inverse C−1

BS , the observed implied volatility associated with trade j at day t

is then vjt = C−1
BS (Yjt ). Figure 2 shows the implied volatilities from options on the

German Stock Index DAX traded on 2 May 2000, the sparse and degenerated design
is caused by regulation imposed by stock exchanges on the tradable maturities from
call options.

For numerical tractability, see Fengler et al. (2007), observations vjt are trans-
formed into log-implied volatilities Ỹj t = logvjt and based on {(Ỹj t ,Xjt )}, we use
DSFM to model

Ỹj t = Z⊤
t m(Xjt ) + εj t . (3.6)

The implied volatility surface at t is estimated by V̂t = exp(Ẑ⊤
t Γ̂ ψ), recall (2.2).

The RN surface is estimated using (3.5) by Ĥt = H(st , r,K, τ, V̂t ). The dynamics of
the unobservable sequence of RN surfaces {Ht } implied in the observations may be
investigated by analyzing the lower dimensional {Ẑt }.
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Fig. 2 Implied volatilities (left) and data design (right), ODAX on 2 May 2000

Table 1 Descriptive statistics,
number of intraday observations
Jt , t = 1, . . . ,253

Mean Std. dev. Max Min

2845.92 1589.90 11298 616

4 Application

In this section, the implied volatility and risk neutral surfaces are estimated with
DSFM from intraday prices of calls on the DAX index, i.e., St represents the value
of the DAX index at time t . The dataset contains prices observed from 1 Jan. 2001
to 1 Jan. 2002 corresponding to T = 253 trading days. The descriptive statistics of
the number of intraday observations Jt are in Table 1, the total number of intraday
observations across days is

∑T
t=1 Jt = 720017.

Tensor B-splines, quadratic in τ and cubic in κ directions placed on 8 × 6 knots,
are used for the series estimators of m. The number of basis functions is chosen based
on

EV(L) = 1 −
∑T

t=1
∑Jt

j=1{Ỹj t − Ẑ⊤
t m̂(Xjt )}2

∑T
t=1

∑Jt
j=1(Ỹj t − Y )2

,

where Y = (
∑T

t=1
∑Jt

j=1 Ỹj t )/
∑T

t=1 Jt . The value EV(L) may be interpreted as the
ratio of variation explained by the model to total variation. As established by numer-
ous simulations in Park et al. (2009), the order of the splines and number of knots
have negligible influence on EV(L).
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4.1 Simulation

The choice of the number of basis functions based on the explained variation criteria
is validated by a small simulation study. Datasets {(Yjt ,Xjt )} are generated following

Yjt =
L∗∑

l=0

Zltml(Xjt ) + εj t , j = 1, . . . , J, t = 1, . . . , T ,

εj t ∼ N
(
0,σ 2

ε

)
, (4.1)

Xjt ∼ U
(
[0,1]2),

where εj t and Xjt are i.i.d. For ζt = (Z1t , . . . ,ZL∗t )
⊤, with 0d denoting the (d × 1)

vector of zeros and Id the d identity matrix we define

Zt = (1, ζt )
⊤,

ζt = AL∗ζt−1 + ut ,

ut ∼ N
(
0L∗ ,σ 2

u IL∗
)
,

where ut is i.i.d. and AL∗ is a square matrix containing the first L∗ rows and L∗

columns from A,

A =

⎛

⎜⎜⎝

0.95 −0.2 0 0.1
0 0.8 0.1 0.2

0.1 0 0.6 −0.1
0 0.1 −0.2 0.5

⎞

⎟⎟⎠ .

The basis functions are defined as

m0(κ, τ ) = 1,

m1(κ, τ ) = 3.46(κ − 0.5),

m2(κ, τ ) = 9.45
{
(κ − 0.5)2 + (τ − 0.5)2}−1.6,

m3(κ, τ ) = 1.41 sin(2πτ ),

m4(κ, τ ) = 1.41 cos(2πκ),

and are close to orthogonal, enhancing similar choice from Park et al. (2009). The
value L∗ denotes the true number of dynamic basis functions.

Setting T = 500, J = 100, σε = 0.05, and σu = 0.1, i = 1, . . . ,100 samples
following (4.1) are generated with L∗ = 2,3 and 4. Each of them is estimated by
DSFM with L = 1, . . . ,6, and the corresponding EVi (L) is computed. The average
explained variation under the true L∗, defined as EV(L;L∗) = 1

100
∑

i EVi (L), is
also calculated.

Table 2 shows EV(L;L∗) and indicates that the increase in the average ex-
plained variation between estimation with L∗ and L∗ + 1 dynamic basis functions,
EV(L∗ + 1;L∗) − EV(L∗;L∗), is close to zero across values of L∗. Therefore,
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Table 2 Average explained
variation EV(L;L∗) based on
100 samples from (4.1), across
number of dynamic basis
functions used in the estimation
L and the true L∗

EV(L;L∗) L∗

2 3 4

L 1 0.86 0.75 0.71

2 0.99 0.90 0.89

3 0.99 0.99 0.97

4 0.99 0.99 0.99

5 0.99 0.99 0.99

Table 3 Number of basis
functions and explained
variation

L 1 2 3 4 5

EV(L) 0.77 0.97 0.98 0.98 0.98

for DSFM estimation, we select the smallest L such that EV(L − 1) < EV(L) ≈
EV(L + 1).

4.2 Results

The implied volatility and RN surfaces are estimated with DSFM as in (3.6) with
L = 3. Table 3 shows that the addition of the fourth or fifth dynamic basis function
results in negligible increase in EV(L).

Following Fengler et al. (2007) and Park et al. (2009), the estimated Ẑt and m̂

are respectively transformed and orthonormalized so that {Ẑ⊤
lt m̂l} has a larger con-

tribution than {Ẑ⊤
(l+1)t m̂l+1}, l = 1, . . . ,L − 1, to the total variation

∑T
t=1

∫
Ẑ⊤

t m̂.
This transformation aims to improve the interpretation of the basis functions in the
analysis of the dynamics of implied volatility surfaces. In the analysis of risk neutral
surfaces dynamics, however, it does not present a clear advantage. The covariance
structures from {Ẑt } and {Zt } are then asymptotically equivalent up to orthogonal
transformations.

Figures 3 and 4 depict the estimated loading factors series {Ẑt } and basis func-
tions m̂l . The upward and downward peaks observed in Ẑ2t occur on days 6 Feb.
2001 and 5 Nov. 2001 and are caused respectively by extremely unbalanced design
and low price levels. The first day has Jt = 1697 observations concentrated on short
maturities, while the latter has Jt = 3268 with very low prices at high maturities.

From (3.5), we obtain a sequence of RN surfaces {Ĥt }, t = 1, . . . ,253. We define
Ĥt (κ, τ ) as H(κ, τ ; st , r, V̂t ) where κ = erτK/st . Figure 5 shows Ĥt (κ, τ ) across
moneyness κ and maturity τ at t corresponding to 10 Jul. 2001.

In a first step, we investigate the covariance structure of {Ẑt } by means of VAR
analysis. Table 4 presents the parameters from the VAR(2) model fitted on {Ẑt }. The
order 2 is selected based on Akaike (AIC), Schwarz (SC) and Hannan–Quinn (HQ)
criteria, see Table 5. Moreover, the VAR(2) model is stationary as the roots of the
characteristic polynomial lie inside of the unit circle.

A natural issue is to analyze the dependences between {Zt } and the shape of the
RN surfaces {Ĥt }. In order to investigate this relation, we compute the skewness
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Fig. 3 Estimated {Ẑlt },
l = 1,2,3 (top to bottom)

Fig. 4 Estimated basis functions m̂l , l = 0, . . . ,3, clockwise

γ and excess kurtosis η of q̂t,T (·|st ) across t for a maturity τ where q̂t,T (·|st ) =
Ĥt (·, τ ). Figure 6 displays the skewness {γt } and excess kurtosis {ηt } associated with
q̂t,T for maturity τ = 18 days together with {Ẑ1t } and {Ẑ3t }, motivating the investi-
gation of their joint autocovariance structure.

The dynamic structure of the pairs {(Ẑ1t ,ηt )} and {(Ẑ3t ,γt )} for τ = 18 is mod-
eled by VAR(2) models. The choice of the VAR order is again based on AIC, SC,
and HQ selection criteria. Portmanteau and LM tests on VAR residuals reject auto-
correlations up to lag 12 and the roots of the characteristic polynomial lie inside of
the unit circle.
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Fig. 5 Estimated RN surface, Ĥt at t corresponding to 10 Jul. 2001

Table 4 Estimated parameters
for the VAR(2) model on {Ẑt } VAR(2)

Const Ẑ1,t−1 Ẑ1,t−2 Ẑ2,t−1 Ẑ2,t−2 Ẑ3,t−1 Ẑ3,t−2

Ẑ1t 0.01 1.09 −0.16 0.10 −0.36 0.32 −0.23

Ẑ2t 0.01 −0.27 0.26 0.31 0.12 −1.14 0.33

Ẑ3t 0.01 −0.08 0.62 −0.05 −0.04 0.41 0.35

Table 5 Lag selection criteria
for VAR models on {Ẑt }. The
asterisks denote the smallest
value for each criterion

Order AIC SC HQ

1 −11.03 −10.99 −11.01

2 −15.71 −15.54* −15.64*

3 −15.77* −15.46 −15.64

4 −15.76 −15.32 −15.58

5 −15.72 −15.16 −15.45

Modeling the dynamics of risk neutral densities using DSFM allows quantifying
the mechanisms governing risk perceptions from agents acting in a market. Insights
are obtained in two directions, concerning the autocovariance structure of {Ẑt }, i.e.,
the time behavior of the RN surfaces and their cross-correlation with the skewness
and excess kurtosis from the estimated risk neutral densities, i.e., the relation between
the dynamics and shape of the obtained RN surfaces. As seen in Tables 6 and 7 the
excess kurtosis and skewness from q̂t,T at maturity τ = 18 are determined by the
corresponding lagged values of Ẑt .
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Fig. 6 Left: RN excess kurtosis {ηt }, τ = 18 (top), {Ẑ1t } (bottom). Right: RN skewness {γt }, τ = 18
(top), {Ẑ2t } (bottom)

Table 6 Estimated parameters
for the VAR(2) model on
{(Ẑ1t ,ηt )}

VAR(2)

Const Ẑ1,t−1 Ẑ1,t−2 ηt−1 ηt−2

Ẑ1t 0.04 0.86 0.08 0.01 0.00

ηt −0.51 2.63 −1.75 0.67 0.19

Table 7 Estimated parameters
for the VAR(2) model on
{(Ẑ3t ,γt )}

VAR(2)

Const Ẑ3,t−1 Ẑ3,t−2 γt−1 γt−2

Ẑ3t 0.00 0.20 0.27 0.01 −0.02

γt 0.00 −1.69 0.68 0.81 0.24

The presented methodology allows the investigation of the dynamics from risk
neutral skewness and excess kurtosis based on statistical inference on {Ẑt }. A natural
further step is to perform econometric analysis on the cointegration between the lower
dimensional time series and macroeconomic and financial indicators. This could pro-
vide deeper insights into the relation between risk assessments from investors acting
in a market and the flow of economic information at which they are exposed.
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Appendix: Assumptions

The results from Theorems 2.1 and 2.2, see Park et al. (2009), rely on the following
assumptions:

(A1) The variables X11, . . . ,XJT , ε11, . . . , εJT and Z1, . . . ,ZT are independent.
The process Zt is allowed to be nonrandom.

(A2) For t = 1, . . . , T , the variables X1t , . . . ,XJ t are identically distributed, have
support [0,1]d and a density ft that is bounded from below and above on
[0,1]d , uniformly over t = 1, . . . , T .
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(A3) We assume that E[εj t ] = 0 for t = 1, . . . , T and j = 1, . . . , J, and

sup
t=1,...,T ,j=1,...,J

E exp
[
cε2

j t

]
< ∞

for c > 0 small enough.
(A4) The functions ψk may depend on the increasing indices T and J and

are normed so that
∫
[0,1]d ψ2

k (x) dx = 1 for k = 1, . . . ,K . Furthermore,
supx∈[0,1] ∥ψ(x)∥ = O(K1/2).

(A5) The components m0, . . . ,mL can be approximated by ψ1, . . . ,ψK , i.e.,

δK = sup
x∈[0,1]d

inf
Γ ∈G

∣∣m(x) − Γ ψ(x)
∣∣ → 0 (A.1)

for l = 0, . . . ,L and K → ∞. We denote by Γ ∗ the matrix that fulfills

sup
x∈[0,1]d

∣∣m(x) − Γ ψ(x)
∣∣ ≤ 2δK.

(A6) There exist constants 0 < CL < CU < ∞ such that all eigenvalues of the ran-
dom matrix T −1 ∑T

t=1 ZtZ
⊤
t lie in the interval [CL,CU ] with probability tend-

ing to one.
(A7) The minimization (2.2) runs over all values of (Γ, z) with

sup
x∈[0,1]

max
1≤t≤T

∥∥Z⊤
t Γ ψ(x)

∥∥ ≤ MT ,

where MT fulfills max1≤t≤T ∥Zt∥ ≤ MT /Cm (with probability tending to one)
for a constant Cm > supx∈[0,1] ∥m(x)∥.

(A8) It holds that

ξ2 = (K + T )M2
T log(JT MT )(JT )−1 → 0, (A.2)

where the dimension L is fixed.
(A9) Zt is a martingale difference with E[Zt |Z1, . . . ,Zt1 ] = 0 and for some C > 0

E[∥Zt∥2|Z1, . . . ,Zt1] < C (a.s.). The matrix E[ZtZ
⊤
t ] has full rank. The

process Zt is independent of X11, . . . ,XT J and ε11, . . . , εT J .
(A10) The functions m0, . . . ,mL are linearly independent. In particular, no function

is equal to 0.
(A11) It holds that (K1/2MT + T 1/4)(ξ + δK) = O(1).
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Measuring dependence in multivariate time series is tantamount to modeling its dynamic structure in
space and time. In risk management, the nonnormal behavior of most financial time series calls for non-
Gaussian dependences. The correct modeling of non-Gaussian dependences is, therefore, a key issue in
the analysis of multivariate time series. In this article we use copula functions with adaptively estimated
time-varying parameters for modeling the distribution of returns. Furthermore, we apply copulae to the
estimation of value-at-risk of portfolios and show their better performance over the RiskMetrics approach.

KEY WORDS: Adaptive estimation; Nonparametric estimation; Value-at-risk.

1. INTRODUCTION

Time series of financial data are high dimensional and typ-
ically have a non-Gaussian behavior. The standard modeling
approach based on properties of the multivariate normal dis-
tribution therefore often fails to reproduce the stylized facts
(i.e., fat tails, asymmetry) observed in returns from financial
assets.

A correct understanding of the time-varying multivariate
(conditional) distribution of returns is vital to many standard
applications in finance such as portfolio selection, asset pric-
ing, and value-at-risk (var) calculation. Empirical evidence
from asymmetric return distributions have been reported in the
recent literature. Longin and Solnik (2001) investigate the
distribution of joint extremes from international equity returns
and reject multivariate normality in their lower orthant; Ang
and Chen (2002) test for conditional correlation asymmetries
in U.S. equity data, rejecting multivariate normality at daily,
weekly, and monthly frequencies; and Hu (2006) models the
distribution of index returns with mixtures of copulae, finding
asymmetries in the dependence structure across markets. For
a concise survey on stylized empirical facts from financial
returns see Cont (2001) and Granger (2003).

Modeling distributions with copulae has drawn attention
from many researchers because it avoids the ‘‘procrustean bed’’
of normality assumptions, producing better fits of the empirical
characteristics of financial returns. A natural extension is to
apply copulae in a dynamic framework with conditional dis-
tributions modeled by copulae with time-varying parameters.
The question, though, is how to steer the time-varying copulae
parameters. This question is the focus of this article.

A possible approach is to estimate the parameter from
structurally invariant periods. There is a broad field of econo-
metric literature on structural breaks. Tests for unit root in
macroeconomic series against stationarity with a structural

break at a known change point have been investigated by
Perron (1989), and for an unknown change point by Zivot and
Andrews (1992), Stock (1994) and Hansen (2001); Andrews
(1993) tests for parameter instability in nonlinear models;
Andrews and Ploberger (1994) construct asymptotic optimal
tests for multiple structural breaks. In a different set up,
Quintos, Fan, and Philips (2001) test for a constant tail index
coefficient in Asian equity data against a break at an unknown
point.

Time-varying copulae and structural breaks are combined in
Patton (2006). The dependence structure across exchange rates
is modeled with time-varying copulae with a parameter
specified to evolve as an ARMA AU2-type process. Tests for a
structural break in the ARMA coefficients at a known change
point have been performed, and strong evidence of a break
was found. In a similar fashion, Rodriguez (2007) models the
dependence across sets of Asian and Latin American stock
indexes using time-varying copula where the parameter follows
regime-switching dynamics. Common to these articles is that
they use a fixed (parametric) structure for the pattern of
changes in the copula parameter.

In this article we follow a semiparametric approach, because
we are not specifying the parameter changing scheme. Rather,
we select locally the time-varying copula parameter. The
choice is performed via an adaptive estimation under the
assumption of local homogeneity: For every time point there
exists an interval of time homogeneity in which the copula
parameter can be well approximated by a constant. This
interval is recovered from the data using local change point
analysis. This does not imply that the model follows a change

1
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point structure. The adaptive estimation also applies when the
parameter varies smoothly from one value to another (see
Spokoiny 2008).

Figure 1F1 shows the time-varying copula parameter determined
by our procedure for a portfolio composed of daily prices of six
German equities and the ‘‘global’’ copula parameter, shown by
a constant horizontal line. The absence of parametric specifi-
cation for time variations in the dependence structure (its
dynamics is obtained adaptively from the data) allows for
flexibility in estimating dependence shifts across time.

The obtained time-varying dependence structure can be used
in financial engineering applications, the most prominent being
the calculation of the var of a portfolio. Using copulae with
adaptively estimated dependence parameters we estimate the
var from DAXAU3 portfolios over time. As a benchmark procedure
we choose RiskMetrics, a widely used methodology based on
conditional normal distributions with a GARCH specification
for the covariance matrix. Backtesting underlines the improved
performance of the proposed adaptive time-varying copulae
fitting.

This article is organized as follows: Section 2 presents the
basic copulae definitions, Section 3 discusses the var and its
estimation procedure. The adaptive copula estimation is ex-
posed in Section 4 and is applied to simulated data in Section 5.
In Section 6, the var from DAX portfolios is estimated based on
adaptive time-varying copulae. The estimation performance is
compared with the RiskMetrics approach by means of back-
testing. Section 7 concludes.

2. COPULAE

Copulae merge marginally into joint distributions, providing
a natural way for measuring the dependence structure between
random variables. Copulae are present in the literature since
Sklar (1959), although related concepts originate in Hoeffding
(1940) and Fréchet (1951), and have been widely studied in the
statistical literature (see Joe 1997, Nelsen 1998, and Mari and
Kotz 2001). Applications of copulae in finance, insurance, and
econometrics have been investigated in Embrechts, McNeil,
and Straumann (2002); Embrechts, Hoeing, and Juri (2003a);
Franke, Härdle, and Hafner (2004); and Patton (2004) among
others. Cherubini, Luciano, and Vecchiato (2004) and McNeil,
Frey, and Embrechts (2005) provide an overview of copulae for
practical problems in finance and insurance.

Assuming absolutely continuous distributions and con-
tinuous marginals throughout this article, we have from Sklar’s

theorem that for a d-dimensional distribution function F with
marginal cdf’s AU4F1, . . . , Fd there exists a unique copula C : [0,
1]d ! [0, 1] satisfying

Fðx1; . . . ; xdÞ ¼ CfF1ðx1Þ; . . . ;FdðxdÞg ð2:1Þ

for every x ¼ (x1, . . . , xd)T 2 Rd. Conversely, for a random
vector X ¼ (X1, . . . , Xd)T with cdf FX, the copula of X may
be written as CXðu1; . . . ; udÞ ¼ FXfF$1

1 ðu1Þ; . . . ;F$1
d ðudÞg,

where uj ¼ Fj(xj), Fj is the cdf of Xj, and F$1
j ðaÞ ¼ inffxj :

FjðxjÞ $ ag its generalized inverse, j ¼ 1, . . . , d. A prominent
copula is the Gaussian

CGa
C ðu1; . . . ; udÞ ¼ FYfF$1ðu1Þ; . . . ;F$1ðudÞg ð2:2Þ

where F(s), s 2 R stands for the one-dimensional standard
normal cdf, FY is the cdf of Y¼ (Y1, . . . , Yd)> ; Nd(0, C), 0 is
the (d 3 1) vector of zeros, and C is a correlation matrix. The
Gaussian copula represents the dependence structure of the
multivariate normal distribution. In contrast, the Clayton cop-
ula given by

Cuðu1; . . . ; udÞ ¼
Xd

j¼1

u$u
j

 !

$ d þ 1

( )$u$1

ð2:3Þ

for u > 0, expresses asymmetric dependence structures.
The dependence at upper and lower orthants of a copula C

may be expressed by the upper and lower tail dependence
coefficients lU ¼ limu!0

bCðu; . . . ; uÞ=u and lL ¼ limu!0

Cðu; . . . ; uÞ=u, where u 2 (0, 1] and bC is the survival copula of
C (see Joe 1997 and Embrechts, Lindskog, and McNeil 2003b).
Although Gaussian copulae are asymptotically independent at
the tails (lL ¼ lU ¼ 0), the d-dimensional Clayton copulae
exhibit lower tail dependence (lL ¼ d$1/u) but are asymptoti-
cally independent at the upper tail (lU ¼ 0). Joe (1997) pro-
vides a summary of diverse copula families and detailed
description of their properties.

For estimating the copula parameter, consider a sample
fxtgT

t¼1 of realizations from X where the copula of X belongs to
a parametric family C ¼ fCu; u 2 Qg: Using Equation (2.1),
the log-likelihood reads as Lðu; x1; . . . ; xTÞ ¼

PT
t¼1½log c

F1ðxt;1Þ; . . . ;Fdðxt;dÞ; ugþ
Pd

j¼1 logf jðxt;jÞ'; where c(u1, . . . ,
ud) ¼ @dC(u1, . . . , ud)/@u1. . . @ud is the density of the copula C
and fj is the probability density function of Fj. The canonical
maximum likelihood estimator û maximizes the pseudo log-
likelihood with empirical marginal cdf’s ~LðuÞ ¼

PT
t¼1 log c

f bF1ðxt;1Þ; . . . ; bFdðxt;dÞ; u; where

Figure 1. Time-varying dependence. Time-varying dependence parameter and global parameter (horizontal line) estimated with Clayton
copula, stock returns from Allianz, Münchener Rückversicherung, BASF, Bayer, DaimlerChrysler, and Volkswagen.
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bFjðsÞ ¼
1

T þ 1

XT

k¼1

1fxk j#sg ð2:4Þ

for j ¼ 1, . . . , d. Note that bFj differs from the usual empirical
cdf by the denominator T þ 1. This ensures that f bF1ðxt;1Þ; . . . ;
bFdðxt;dÞg> 2 ð0; 1Þd and avoids infinite values the copula
density may take on the boundary of the unit cube (see McNeil,
Frey, and Embrechts 2005). Joe (1997); Cherubini, Luciano,
and Vecchiato (2004); and Chen and Fan (2006) provide a
detailed exposition of inference methods for copulae.

3. VALUE-AT-RISK AND COPULAE

The dependence (over time) between asset returns is espe-
cially important in risk management, because the profit and
loss (P&L) function determines the var. More precisely, the var
of a portfolio is determined by the multivariate distribution of
risk factor increments. If w ¼ ðw1; . . . ;wdÞ> 2 Rd denotes a
portfolio of positions on d assets and St ¼ ðSt;1; . . . ; St;dÞ> a
nonnegative random vector representing the prices of the assets
at time t, the value Vt of the portfolio w is given by
Vt ¼

Pd
j¼1 wjSt;j. The random variable

Lt ¼ Vt $ Vt$1ð Þ; ð3:1Þ

called the profit and loss (P&L) function, expresses the change
in the portfolio value between two subsequent time points.
Defining the log-returns Xt ¼ ðXt;1; . . . ;Xt;dÞ>; where Xt, j ¼
log St,j$ log St$1, j and log S0, j¼ 0, j¼ 1, . . . , d, Equation (3.1)
can be written as

Lt ¼
Xd

j¼1

wjSt$1; j expðXt;jÞ $ 1
! "

: ð3:2Þ

The cdf of Lt is given by Ft;LtðxÞ ¼ PtðLt # xÞ. The var at level
a from a portfolio w is defined as the a quantile from Ft;Lt :

vartðaÞ ¼ F$1
t;Lt
ðaÞ: ð3:3Þ

It follows from Equation (3.2) that Ft;Lt depends on the spec-
ification of the d-dimensional distribution of the risk factors Xt.
Thus, modeling their distribution over time is essential for
obtaining the quantiles (Eq. 3.3).

The RiskMetrics technique, a widely used methodology for
var estimation, assumes that risk factors Xt follow a conditional
multivariate normal distribution LðXtjF t$1Þ¼ Nð0;StÞ; where
F t$1 ¼ sðX1; . . . ;Xt$1Þ is the s field generated by the first t$
1 observations, and estimates the covariance matrix St for one
period return as

bSt ¼ lbSt$1 þ ð1$ lÞXt$1X>t$1; ð3:4Þ

where the parameter l is the so-called decay factor. l ¼ 0.94
provides the best backtesting results for daily returns according
to Morgan (1996). Using the copulae-based approach, one first
corrects the contemporaneous mean and volatility in the log-
returns process:

Xt; j ¼ mt; j þ st; jet; j; ð3:5Þ

where mt; j ¼ E½Xt; jjF t$1' is the conditional mean and s2
t; j ¼

E½ðXt; j $ mt; jÞ
2jF t$1' is the conditional variance of Xt, j. The

standardized innovations et ¼ ðet;1; . . . ; et;dÞ> have joint cdf Fet

given by

Fetðx1; . . . ; xdÞ ¼ CufFt;1ðx1Þ; . . . ;Ft;dðxdÞg; ð3:6Þ

where Ft, j is the cdf of et, j and Cu is a copula belonging to a
parametric family C ¼ Cu; u 2 Qg: For details on the previous
model specification, see Chen and Fan (2006) and Chen, Fan,
and Tsyrennikov (2006). For the Gaussian copula with Gaussian
marginals, we recover the conditional Gaussian RiskMetrics
framework.

To obtain the var in this setup, the dependence parameter and
cdf’s from residuals are estimated from a sample of log-returns
and are used to generate P&L Monte Carlo samples. Their
quantiles at different levels are the estimators for the var (see
Embrechts, McNeil, and Straumann 2002).

The whole procedure can be summarized as follows (see
Härdle, Kleinow, and Stahl 2002; and Giacomini and Härdle
2005): For a portfolio w 2 Rd and a sample fxt; jgT

t¼1; j ¼
1; . . . ; d of log-returns, the var at level a is estimated according
to the following steps:

1. Determination of innovations fêtgT
t¼1 by, for example,

‘‘deGARCHing’’
2. Specification and estimation of marginal cdf’s FjðêjÞ
3. Specification of a parametric copula family C and esti-

mation of the dependence parameter u
4. Generation of Monte Carlo sample of innovations e and

losses L
5. Estimation of cvarðaÞ, the empirical a quantile of FL

4. MODELING WITH TIME-VARYING COPULAE

Similar to the RiskMetrics procedure, one can perform a
moving (fixed-length) window estimation of the copula
parameter. This procedure, though, does not fine-tune local
changes in dependences. In fact, the cdf Fet from Equation (3.6)
is modeled as Ft;et ¼ CutfFt;1ð(Þ; . . . ;Ft;dð(Þg with probability
measure Put . The moving window of fixed width will estimate a
ut for each t, but it has clear limitations. The choice of a small
window results in a high pass filtering and, hence, in a very
unstable estimate with huge variability. The choice of a large
window leads to a poor sensitivity of the estimation procedure

Figure 2. Local change point procedure. Choice of intervals Ik and Ik:

Giacomini, Härdle, and Spokoiny: Inhomogeneous Dependence Modeling 3

JOBNAME: jbes 00#0 2009 PAGE: 3 OUTPUT: Wednesday October 22 04:22:55 2008

asa/jbes/164302/06-114



Proof Only

Proof Only

and to a high delay in the reaction to changes in dependence
measured by the parameter ut.

To choose an interval of homogeneity, we use a local para-
metric fitting approach as introduced by Polzehl and Spokoiny
(2006), Belomestny and Spokoiny (2007) and Spokoiny
(2008). The basic idea is to select for each time point t0 an
interval It0 ¼ ½t0 $ mt0 ; t0' of length mt0 in such a way that the
time-varying copula parameter ut can be well approximated
by a constant value u. The question is, of course, how to select
mt0 in an online situation from historical data. The aim should be
to select It0 as close as possible to the so-called ‘‘oracle’’ choice
interval. The oracle choice is defined as the largest interval
I ¼ ½t0 $ m)t0

; t0', for which the small modeling bias condition

DIðuÞ ¼
X

t2I

KðPut ;PuÞ# D ð4:1Þ

for some D $ 0 holds. Here, u is constant and KðPq;Pq9Þ ¼
Eq logfpðy;qÞ=pðy;q9Þg denotes the Kullback-Leibler diver-
gence. In such an oracle choice interval, the parameter ut0 ¼
utjt¼t0

can be ‘‘optimally’’ estimated from I ¼ ½t0 $ m)t0
; t0'.

The error and risk bounds are calculated in Spokoiny (2008). It
is important to mention that the concept of local parametric
approximation allows one to treat in a unified way the case
of ‘‘switching regime’’ models with spontaneous changes
of parameters and the ‘‘smooth transition’’ case when the
parameter varies smoothly in time.

The oracle choice of the interval of homogeneity depends on
the unknown time-varying copula parameter ut. The next sec-
tion presents an adaptive (data-driven) procedure that mimics
the oracle in the sense that it delivers the same accuracy of
estimation as the oracle one. The trick is to find the largest
interval in which the hypothesis of a local constant copula

parameter is supported. The local change point (LCP) detection
procedure originates from Mercurio and Spokoiny (2004) and
sequentially tests the hypothesis: ut is constant (i.e., ut ¼ u)
within some interval I (local parametric assumption).

The LCP procedure for a given point t0 starts with a family of
nested intervals I0* I1* I2* . . . * IK¼ IKþ1 of the form Ik¼
[t0 $ mk, t0]. The sequence mk determines the length of these
interval ‘‘candidates’’ (see Section 4.2). Every interval Ik leads
to an estimate ~uk of the copula parameter ut0. The procedure
selects one interval Î out of the given family and, therefore, the
corresponding estimate û ¼ ~uÎ .

The idea of the procedure is to screen each interval Ik ¼
½t0 $ mk; t0 $ mk$1' sequentially and check each point t 2 Ik

as a possible change point location (see Section 4.1 for more
details). The family of intervals Ik and Ik are illustrated in
Figure 2. The interval Ik is accepted if F2no change point is
detected within I1; . . . ; Ik. If the hypothesis of homogeneity is
rejected for an interval candidate Ik, the procedure stops and
selects the latest accepted interval. The formal description
reads as follows:

Start the AU5procedure with k ¼ 1 and test the hypothesis H0,k

of no structural changes within Ik using the larger testing
interval Ikþ1. If no change points were found in Ik, then Ik is
accepted. Take the next interval Ikþ1 and repeat the previous
step until homogeneity is rejected or the largest possible
interval IK¼ [t0$mK, t0] is accepted. If H0,k is rejected for Ik,
the estimated interval of homogeneity is the last accepted
interval Î ¼ Ik$1. If the largest possible interval IK is accepted,
we take Î ¼ IK . We estimate the copula dependence parameter
u at time instant t0 from observations in Î, assuming the
homogeneous model within Î (i.e., we define ût0 ¼ ~uÎ). We
also denote by Îk the largest accepted interval after k steps of

Figure 3. Homogeneity test. Testing interval I, tested interval I, and subintervals J and Jc for a point t 2 I:

Table 1. Critical values zk (r; u*)

k

u* ¼ 0.5 u* ¼ 1.0 u* ¼ 1.5

r ¼ 0.2 r ¼ 0.5 r ¼ 1.0 r ¼0.2 r ¼ 0.5 r ¼ 1.0 r ¼ 0.2 r ¼ 0.5 r ¼ 1.0

1 3.64 3.29 2.88 3.69 3.29 2.84 3.95 3.49 2.96
2 3.61 3.14 2.56 3.43 2.91 2.35 3.69 3.02 2.78
3 3.31 2.86 2.29 3.32 2.76 2.21 3.34 2.80 2.09
4 3.19 2.69 2.07 3.04 2.57 1.80 3.14 2.55 1.86
5 3.05 2.53 1.89 2.92 2.22 1.53 2.95 2.65 1.49
6 2.87 2.26 1.48 2.92 2.17 1.19 2.83 2.04 0.94
7 2.51 1.88 1.02 2.64 1.82 0.56 2.62 1.79 0.31
8 2.49 1.72 0.35 2.33 1.39 0.00 2.35 1.33 0.00
9 2.18 1.23 0.00 2.03 0.81 0.00 2.10 0.60 0.00

10 0.92 0.00 0.00 0.82 0.00 0.00 0.79 0.00 0.00

NOTE: Critical values are obtained according to Equation (4.2), based on 5,000 simulations. Clayton copula, m0 ¼ 20 and
c ¼ 1.25.
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the algorithm and, by ûk the corresponding estimate of the
copula parameter.

It is worth mentioning that the objective of the described
estimation algorithm is not to detect the points of change for
the copula parameter, but rather to determine the current
dependence structure from historical data by selecting an
interval of time homogeneity. This distinguishes our approach
from other procedures for estimating a time-varying parameter
by change point detection. A visible advantage of our approach
is that it equally applies to the case of spontaneous changes in
the dependence structure and in the case of smooth transition in
the copula parameter. The obtained dependence structure can
be used for different purposes in financial engineering, the
most prominent being the calculation of the var (see also
Section 6).

The theoretical results from Spokoiny and Chen (2007) and
Spokoiny (2008) indicate that the proposed procedure provides
the rate optimal estimation of the underlying parameter when
this varies smoothly with time. It has also been shown that the
procedure is very sensitive to structural breaks and provides the
minimal possible delay in detection of changes, where the
delay depends on the size of change in terms of Kullback-
Leibler divergence.

4.1 Test of Homogeneity Against a Change
Point Alternative

In the homogeneity test against a change point alternative we
want to check every point of an interval I (recall Fig. 2), here
called the ‘‘tested interval,’’ on a possible change in the
dependence structure at this moment. To perform this check,
we assume a larger testing interval I of form I ¼ [t0$m, t0], so
that I is an internal subset within I. The null hypothesis H0

means that "t 2 I, ut ¼ u (i.e., the observations in I follow the

model with dependence parameter u). The alternative hypoth-
esis H1 claims that 9 t 2 I such that ut ¼ u1 for t 2 J ¼ [t, t0]
and ut ¼ u2 6¼ u1 for t 2 Jc ¼ [t0 $ m, t) (i.e., the parameter
u changes spontaneously in some point t 2 I). F3Figure 3 depicts
I, I, and the subintervals J and Jc determined by the point t 2 I.

Let LI(u) be the log-likelihood and ~uI the maximum like-
lihood estimate for the interval I. The log-likelihood functions
corresponding to H0 and H1 are LI(u) and LJðu1Þ þ LJcðu2Þ;
respectively. The likelihood ratio test for the single change
point with known fixed location t can be written as

Figure 4. LCP and sudden jump in copula parameter. Pointwise median (full), and 0.25 and 0.75 quantiles (dotted) from ût. True parameter ut

(dashed) with qa¼ 0.10, qb¼ 0.50, 0.75, and 1.00 (left, top to bottom); and qb¼ 0.10, qa¼ 0.50, 0.75, and 1.00 (right, top to bottom). Based on
100 simulations from Clayton copula, estimated with LCP, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.

Table 2. Detection delay statistics

(qa, qb) r Mean SD Max Min

0.25 9.06 7.28 56 0
(0.50, 0.10) 0.50 13.64 9.80 60 0

0.75 21.87 14.52 89 3
0.25 5.16 4.24 21 0

(0.75, 0.10) 0.50 8.85 5.55 25 0
0.75 16.72 10.37 64 3
0.25 4.47 2.94 12 0

(1.00, 0.10) 0.50 7.94 4.28 22 0
0.75 14.79 7.38 62 5
0.25 8.94 6.65 36 0

(0.10, 0.50) 0.50 14.21 9.06 53 0
0.75 21.43 12.15 68 0
0.25 9.00 4.80 25 0

(0.10, 0.75) 0.50 14.30 5.96 40 3
0.75 21.00 10.97 75 6
0.25 7.39 3.67 19 0

(0.10, 1.00) 0.50 13.10 4.13 22 2
0.75 20.13 7.34 55 10

NOTE: The detection delays d are calculated as in Equation (5.1), with the statistics
based on 100 simulations. Clayton copula, m0 ¼ 20, c ¼ 1.25, and r ¼ .5. SD, standard
deviation.
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TI;t ¼ max
u1;u2

LJðu1Þ þ LJcðu2Þf g$max
u

LIðuÞ

¼ LJð~uJÞ þ LJcð~uJcÞ $ LIð~uIÞ:

The test statistic for an unknown change point location is
defined as TI ¼ maxt2I TI;t. The change point test compares
this test statistic with a critical value I ; which may depend on
the interval I. One rejects the hypothesis of homogeneity if
TI > zI .

4.2 Parameters of the LCP Procedure

To apply the LCP testing procedure for local homogeneity,
we have to specify some parameters. This includes selecting
interval candidates Ik or, equivalently, of the tested intervals
Ik and choosing respective critical values zk: One possible
parameter set that has been used successfully in simulations is
presented in the following section.

4.2.1 Selection of interval candidates Ik and internal points
Ik. It is useful to take the set of numbers mk defining the
length of Ik and Ik in the form of a geometric grid. We fix the

value m0 and define mk ¼ [m0ck] for k ¼ 1, 2, . . . , K and c > 1
where [x] means the integer part of x. We set Ik ¼ [t0 $ mk, t0]
and Ik ¼ ½t0 $ mk; t0 $ mk$1' for k ¼ 1, 2, . . . , K (see Fig. 2).

4.2.2 Choice of the critical values zk: The algorithm is in
fact a multiple testing procedure. Mercurio and Spokoiny
(2004) suggested selecting the critical value zk to provide the
overall first type error probability of rejecting the hypothesis
of homogeneity in the homogeneous situation. Here we follow
another proposal from Spokoiny and Chen (2007), which
focuses on estimation losses caused by the ‘‘false alarm’’—in
our case obtaining a homogeneity interval that is too
small—rather than on its probability.

In the homogeneous situation with ut [ u* for all t 2 Ikþ1,
the desirable behavior of the procedure is that after the first k
steps the selected interval Îk coincides with Ik and the corre-
sponding estimate ûk coincides with ~uk, which means there is
no false alarm. On the contrary, in the case of a false alarm, the
selected interval Îk is smaller than Ik and, hence, the corre-
sponding estimate ûk has larger variability than ~uk. This means
that the false alarm during the early steps of the procedure is
more critical than during the final steps, because it may lead to
selecting an estimate with very high variance. The difference
between ûk and ~uk can naturally be measured by the value
LIkð~uk; ûkÞ ¼ LIkð~ukÞ $ LIkðûkÞ normalized by the risk of the
nonadaptive estimate ~uk, Rðu)Þ ¼ maxk$1 Eu) LIkð~uk; u

)Þ
## ##1=2

.
The conditions we impose read as

Eu) LIkð~uk; ûkÞ
## ##1=2

# rRðu)Þ; k ¼ 1; . . . ;K; u) 2 Q:

ð4:2Þ

The critical values zk are selected as minimal values providing
these constraints. In total we have K conditions to select K
critical values z1; . . . ; zK : The values zk can be selected
sequentially by Monte Carlo simulation, where one simulates
under H0 : ut ¼ u*, "t 2 IK. The parameter r defines how
conservative the procedure is. A small r value leads to larger
critical values and hence to a conservative and nonsensitive
procedure, whereas an increase in r results in more sensitive-
ness at cost of stability. For details, see Spokoiny and Chen
(2007) or Spokoiny (2008).

Figure 5. Divergences for upward and downward jumps. Kullback-
Leibler divergences Kð0:10;qÞ (full) and Kðq; 0:10Þ (dashed) for
Clayton copula.

Figure 6. Mean detection delay and parameter jumps. Mean detection delays (dots) at rule r ¼ 0.75, 0.50, and 0.25 from top to bottom. Left:
qb ¼ 0.10 (upward jump). Right: qa ¼ 0.10 (downward jump), based on 100 simulations from Clayton copula, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.
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5. SIMULATED EXAMPLES

In this section we apply the LCP procedure on simulated
data with a dependence structure given by the Clayton copula.
We generate sets of six-dimensional data with a sudden jump in
the dependence parameter given by

ut ¼
qa if $ 390 # t # 10

qb if 10 < t # 210

$

for different values of (qa, qb): One of them is fixed at .1 (close
to independence) and the other is set to larger values.

The LCP procedure is implemented with the family of
interval candidates in form of a geometric grid defined by m0¼
20 and c ¼ 1.25. The critical values, selected according to
Equation (4.2) for different r and u*, are displayed inT1 Table 1.
The choice of u* has negligible influence in the critical values
for fixed r, therefore we use z1; . . . ; zK obtained with u* ¼ 1.0.
Based on our experience, see Spokoiny and Chen (2007) and
Spokoiny (2008), the default choice for r is 0.5.

Figure 4F4 shows the pointwise median and quantiles of the
estimated parameter ût for distinct values of (qa,qb) based on
100 simulations. The detection delay d at rule r 2 [0, 1] to jump
of size g ¼ ut $ ut$1 at t is expressed by

dðt; g; rÞ ¼ minfu $ t : ûu ¼ ut$1 þ rgg$ t ð5:1Þ

and represents the number of steps necessary for the estimated
parameter to reach the r fraction of a jump in the true
parameter.

Detection delays are proportional to the probability of error
of type II (i.e., the probability of accepting homogeneity in case
of a jump). Thus, tests with higher power correspond to lower
delays d. Moreover, because the Kullback-Leibler divergences
for upward and downward jumps are proportional to the power
of the respective homogeneity tests, larger divergences result in
faster jump detections.

The descriptive statistics for detection delays to jumps at t ¼
11 for different values of (qa,qb) are inT2 Table 2. The mean
detection delay decreases with g ¼ qb $ qa and are higher for
downward jumps than for upward jumps.F5 Figure 5 shows that
for Clayton copulae the Kullback-Leibler divergence is higher
for upward jumps than for downward jumps.F6 Figure 6 displays
the mean detection delays against jump size for upward and
downward jumps.

The LCP procedure is also applied on simulated data with
smooth transition in the dependence parameter given by

ut ¼
qa if $ 350 # t # 50

qa þ
t $ 50
100 ðqb $ qaÞ if 50 < t # 150

qb if 150 < t # 350:

8
><

>:

Figure 7 F7depicts the pointwise median and quantiles of the
estimated parameter ût and the true parameter ut for (qa, qb) set
to (0.10, 1.00) and (1.00, 0.10).

6. EMPIRICAL RESULTS

In this section the var from German stock portfolios is
estimated based on time-varying copulae and RiskMetrics
approaches. The time-varying copula parameters are selected
by local change point (LCP) and moving window procedures.
Backtesting is used to evaluate the performances of the three
methods in var estimation.

Two groups of six stocks listed on DAX are used to compose
the portfolios. Stocks from group 1 belong to three different
industries: automotive (Volkswagen and DaimlerChrysler),
insurance (Allianz and Münchener Rückversicherung), and
chemical (Bayer and BASF). Group 2 is composed of stocks
from six industries: electrical (Siemens), energy (E.ON), metal-
lurgical (ThyssenKrupp), airlines (Lufthansa), pharmaceutical
(Schering), and chemical (Henkel). The portfolio values are
calculated using 1,270 observations, from January 1, 2000 to
December 31, 2004, of the daily stock prices (data available at
http://sfb649.wiwi.hu-berlin.de/fedc).

The selected copula belongs to the Clayton family (Eq. 2.3).
Clayton copulae have a natural interpretation and are well
advocated in risk management applications. In line with the
stylized facts for financial returns, Clayton copulae are asym-
metric and present lower tail dependence, modeling joint

Figure 7. LCP and smooth change in copula parameter. Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from ût and true parameter ut

(dashed) with qa ¼ 0.10 and qb ¼ 1.00 (left), and qa ¼ 1.00 and qb ¼ 0.10 (right). Based on 100 simulations from Clayton copula, estimated
with LCP, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.

Table 3. p Values from tests on residuals êt; j

j

Ljung-Box ARCH

Group 1 Group 2 Group 1 Group 2

1 0.33 0.52 0.15 0.04
2 0.13 0.35 0.15 0.98
3 0.21 0.08 0.34 0.72
4 0.99 0.05 0.10 0.18
5 0.90 0.07 0.91 0.77
6 0.28 0.81 0.28 0.94
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extreme events at lower orthants with higher probability than
Gaussian copulae for the same correlation, see McNeil, Frey,
and Embrechts (2005). This fact is essential for var calculations
and is illustrated by the ratio between Equations (2.2) and (2.3)
for off-diagonal elements of C set to 0.25 and u ¼ 0.5. For the
quantiles ui ¼ 0.05, i ¼ 1, . . . , 6 the ratio
CGa

C ðu1; . . .; u6Þ=Cuðu1; . . .; u6Þ equals 2.3 3 10$2, whereas for
the 0.01 quantiles it equals 1.3 3 10$3.

The var estimation follows the steps described in Section 3.
Using the RiskMetrics approach, the log-returns Xt are assumed
conditionally normal distributed with zero mean and covari-
ance matrix following a GARCH specification with fixed decay
factor l ¼ 0.94 as in Equation (3.4).

In the time-varying copulae estimation, the log-returns are
modeled as in Equation (3.5), where the innovations et have
cdf Ft;etðx1; . . .; xdÞ ¼ CutfFt;1ðx1Þ; . . .;Ft;dðxdÞg and Cu is the
Clayton copula. The univariate log-returns Xt, j corresponding
to stock j are devolatized according to RiskMetrics (i.e., with
zero conditional means and conditional variances s2

t;j estimated
by the univariate version of Equation (3.4) with a decay factor
equal to 0.94). We note that this choice sets the same specifi-
cation for the dynamics of the univariate returns across all
methods (RiskMetrics, moving windows, and LCP), making
their performances in var estimation comparable. Moreover, as
the means from daily returns are clearly dominated by the
variances and are approximately independent on the available
information sets (see Jorion 1995; Fleming, Kirby, and Ostdiek
2001; and Christoffersen and Diebold 2006), their specification
is very unlikely to cause a perceptible bias in the estimated
variances and dependence parameters. Therefore, the zero
mean assumption is, as pointed out by Kim, Malz, and Mina
(1999), as good as any other choice. Daily returns are also
modeled with zero conditional means in Fan and Gu (2003) and
Härdle, Herwartz, and Spokoiny (2003) among others.

The GARCH specification (Eq. 3.4) with l ¼ .94 optimizes
variance forecasts across a large number of assets (Morgan
1996), and is widely used in the financial industry. Different
choices for the decay factor (like 0.85 or 0.98) result in negligible
changes (about 3%) in the estimated dependence parameter.

The p values from the Ljung-Box test for serial correlation
and from ARCH test for heteroscedasticity effects in the
obtained residuals êt; j are in T3Table 3. Normality is rejected by
Jarque-Bera test, with p values approximately 0.00 for all
residuals in both groups. The empirical cdf’s of residuals as
defined in Equation (2.4) are used for the copula estimation.

With the moving windows approach, the size of the esti-
mating window is fixed as 250 days corresponding to 1 busi-
ness year (the same size is used in, for example, Fan and Gu
(2003)). For the LCP procedure, following Section 4.2, we set
the family of interval candidates as a geometric grid with m0 ¼
20, c ¼ 1.25, and r ¼ 0.5. We have chosen these parameters
from our experience in simulations (for details on robustness of
the reported results with respect to the choice of m0 and c, refer
to Spokoiny (2008)).

The performance of the var estimation is evaluated based on
backtesting. At each time t, the estimated var at level a for a
portfolio w is compared with the realization lt of the corre-
sponding P&L function (see Eq. 3.2), with an exceedance
occurring for each lt less than cvartðaÞ: The ratio of the number
of exceedances to the number of observations gives the
exceedance ratio

âwðaÞ ¼
1

T

XT

t¼1

1flt <cvartðaÞg
:

Because the first 250 observations are used for estimation, T ¼
1,020. The difference between â and the desired level a is
expressed by the relative exceedance error

Figure 8. Time-varying dependence, group 1. Copula parameter ût estimated with LCP method, Clayton copula, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.

Figure 9. Time-varying dependence, group 2. Copula parameter ût estimated with LCP method, Clayton copula, m0 ¼ 20, c ¼ 1.25, and r ¼ 0.5.
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ew ¼ ðâ$ aÞ=a:

We compute exceedance ratios and relative exceedance errors
to levels a ¼ 0.05 and 0.01 for a set W ¼ {w*,wn; n ¼ 1, . . . ,
100} of portfolios, where each wn ¼ ðwn;1; . . . ;wn;6Þ> is a rea-
lization of a random vector uniformly distributed on S ¼
fðx1; . . . ; x6Þ 2 R6 :

P6
i¼1 xi ¼ 1; xi $ :1g; and w) ¼ 1=6 I6,

with Id denoting the (d 3 1) vector of ones, is the equally
weighted portfolio. The degree of diversification of a portfolio
can be measured based on the majorization preordering on S
(see Marshall and Olkin 1979). In other words, a portfolio wa is
more diversified than portfolio wb if wa + wb: Under the
majorization preordering the vector w* satisfies w) , w for all
w 2 S; therefore, the equally weighted portfolio is the most
diversified portfolio from W, see Ibragimov and Walden (2007).

The average relative exceedance error over portfolios and
the corresponding standard deviation

AW ¼
1

jWj
X

w2W
ew

DW ¼
1

jWj
X

w2W
ðew $ AWÞ2

( )1
2

are used to evaluate the performances of the time-varying
copulae and RiskMetrics methods in var estimation.

The dependence parameter estimated with LCP for stocks
from groups 1 and 2 are shown in F8Figures 8 and F99. The different
industry concentrations in each group are reflected in the
higher parameter values obtained for group 1. The P&L and the
var at level 0.05 estimated with LCP, moving windows, and

Figure 10. Estimated var across methods, group 1. P&L realizations lt (dots), cvartðaÞ (line), and exceedance times (crosses). Estimated with
LCP (top), moving windows (middle), and RiskMetrics (bottom) for equally weighted portfolio w* at level a ¼ 0.05.

Figure 11. Estimated var across methods, group 2. P&L realizations lt (dots), cvartðaÞ (line), and exceedance times (crosses). Estimated with
LCP (top), moving windows (middle), and RiskMetrics (bottom) for equally weighted portfolio w* at level a ¼ 0.05.
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RiskMetrics methods for the equally weighted portfolio w* are
in Figures 10 (group 1) andF10; 11 11 (group 2). Exceedance ratios for
portfolios w*, w1, and w2; average relative exceedance errors;
and corresponding standard deviations across methods and
levels are shown inT4;T5 Tables 4 (group 1) and 5 (group 2).

Based on the exceedance errors, the LCP procedure out-
performs the moving windows (second best) and RiskMetrics
methods in var estimation in group 1. At level 0.05, the
average error associated with copula methods is about half
the error from RiskMetrics estimation for nearly the same
standard deviation. At level 0.01, the LCP average error is the
smallest in absolute value, and copula methods present less
standard deviations. At this level, copula methods over-
estimate var, and RiskMetrics underestimates it. Although
overestimation of var means that a financial institution would
be requested to keep more capital aside than necessary to
guarantee the desired confidence level, underestimation
means that less capital is reserved and the desired level is not
guaranteed. Therefore, from the regulatory point of view,
overestimation is preferred to underestimation. In the less con-
centrated group 2, LCP outperforms moving windows and
RiskMetrics at the level 0.05, presenting the smallest average
error in magnitude for nearly the same value of DW. At level
0.01, copula methods overestimate and RiskMetrics under-
estimates the var by about 60%.

It is interesting to note the effect of portfolio diversification
on the exceedance errors for group 1 and level 0.01. The errors
decrease with increasing portfolio diversification for copulae
methods but become larger under the RiskMetrics estimation.
For other groups and levels, the diversification effects are not
clear. Refer to Ibragimov (2007) and Ibragimov and Walden

(2007) for details on the effects of portfolio diversification
under heavy-tailed distributions in risk management.

7. CONCLUSION

In this article we modeled the dependence structure from
German equity returns using time-varying copulae with adap-
tively estimated parameters. In contrast to Patton (2006) and
Rodriguez (2007), we neither specified the dynamics nor
assumed regime switching models for the copula parameter.
The parameter choice was performed under the local homo-
geneity assumption with homogeneity intervals recovered from
the data through local change point analysis.

We used time-varying Clayton copulae, which are asym-
metric and present lower tail dependence, to estimate the var
from portfolios of two groups of German securities, presenting
different levels of industry concentration. RiskMetrics, a widely
used methodology based on multivariate normal distributions,
was chosen as a benchmark for comparison. Based on back-
testing, the adaptive copula achieved the best var estimation
performance in both groups, with average exceedance errors
mostly small in magnitude and corresponding to sufficient
capital reserve for covering losses at the desired levels.

The better var estimates provided by Clayton copulae indi-
cate that the dependence structure from German equities may
contain nonlinearities and asymmetries, such as stronger
dependence at lower tails than at upper tails, that cannot be
captured by the multivariate normal distribution. This asym-
metry translates into extremely negative returns being more
correlated than extremely positive returns. Thus, our results for
the German equities resemble those from Longin and Solnik
(2001), Ang and Chen (2002) and Patton (2006) for interna-
tional markets, U.S. equities, and Deutsch mark/Japanese yen
exchange rates, where empirical evidence for asymmetric
dependences with increasing correlations in market downturns
were found.

Furthermore, in the non-Gaussian framework, with non-
linearities and asymmetries taken into consideration through
the use of Clayton copulae, the adaptive estimation produces
better var fits than the moving window estimation. The high
sensitive adaptive procedure can capture local changes in the
dependence parameter that are not detected by the estimation
with a scrolling window of fixed size.

The main advantage of using time-varying copulae to model
dependence dynamics is that the normality assumption is not
needed. With the proposed adaptively estimated time-varying
copulae, neither normality assumption nor specification for the
dependence dynamics are necessary. Hence, the method pro-
vides more flexibility in modeling dependences between
markets and economies over time.
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via SFB 649 ‘‘Ökonomisches Risiko,’’ Humboldt-Universität zu
Berlin is gratefully acknowledged. The authors also thank the
editor, an associate editor, and two referees for their helpful
comments.

[Received October 2006. Revised November 2007.]

Table 4. Exceedance ratios and errors, group 1AU8

RiskMetrics Moving windows LCP

a ¼ 5.00 a ¼ 1.00 a ¼ 5.00 a ¼ 1.00 a ¼ 5.00 a ¼ 1.00

âw) 6.11 1.48 5.62 0.59 5.52 0.69
âw1 5.91 1.38 5.42 0.49 5.42 0.69
âw2 6.40 1.28 5.91 0.49 5.71 0.59
AW 0.23 0.45 0.11 $0.49 0.11 $0.36
DW 0.04 0.14 0.06 0.08 0.06 0.10

NOTE: Exceedance ratios for portfolios w*, w1, and w2, and average and standard
deviation from relative exceedance errors. Across levels and methods, ratios and levels are
expressed as a percentage.

Table 5. Exceedance ratios and errors, group 2AU9

RiskMetrics Moving windows LCP

a ¼ 5.00 a ¼ 1.00 a ¼ 5.00 a ¼ 1.00 a ¼ 5.00 a ¼ 1.00

âw) 5.42 1.58 4.53 0.39 4.53 0.30
âw1 5.81 1.77 5.02 0.39 5.02 0.39
âw2 5.62 1.58 5.12 0.39 5.22 0.30
AW 0.16 0.57 $0.10 $0.65 $0.09 $0.65
DW 0.04 0.16 0.06 0.09 0.06 0.08

NOTE: Exceedance ratios for portfolios w*, w1, and w2, and average and standard
deviation from relative exceedance errors. Across levels and methods, ratios and levels are
expressed as a percentage.

10 Journal of Business & Economic Statistics, January 2009

JOBNAME: jbes 00#0 2009 PAGE: 10 OUTPUT: Wednesday October 22 04:23:18 2008

asa/jbes/164302/06-114



Proof Only

Proof Only

REFERENCES

Andrews, D. W. K. (1993), ‘‘Tests for Parameter Instability and Structural
Change With Unknown Change Point,’’ Econometrica, 61, 821–856.

Andrews, D. W. K., and Ploberger, W. (1994), ‘‘Optimal Tests When a Nui-
sance Parameter Is Present Only Under the Alternative,’’ Econometrica, 62,
1383–1414.

Ang, A., and Chen, J. (2002), ‘‘Asymmetric Correlations of Equity Portfolios,’’
Journal of Financial Economics, 63, 443–494.

Belomestny, D., and Spokoiny, V. (2007), ‘‘Spatial Aggregation of Local
Likelihood Estimates With Applications to Classification,’’ The Annals of
Statistics, 35, 2287–2311.

Chen, X., and Fan, Y. (2006), ‘‘Estimation and Model Selection of Semi-
parametric Copula-Based Multivariate Dynamic Models Under Copula
Misspecification,’’ Journal of Econometrics, 135, 125–154.

Chen, X., Fan, Y., and Tsyrennikov, V. (2006), ‘‘Efficient Estimation of Semi-
parametric Multivariate Copula Models,’’ Journal of the American Statistical
Association, 101, 1228–1240.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004), Copula Methods in
Finance, Chichester: Wiley.

Christoffersen, P., and Diebold, F. (2006), ‘‘Financial Asset Returns, Direction-
of-Change Forecasting, and Volatility Dynamics,’’ Management Science, 52,
1273–1287.

Cont, R. (2001), ‘‘Empirical Properties of Asset Returns: Stylized Facts and
Statistical Issues,’’ Quantitative Finance, 1, 223–236.

Embrechts, P., Hoeing, A., and Juri, A. (2003a), ‘‘Using Copulae to Bound the
Value-at-Risk for Functions of Dependent Risks,’’ Finance and Stochastics,
7, 145–167.

Embrechts, P., Lindskog, F., and McNeil, A. (2003b), ‘‘Modelling Dependence
with Copulas and Applications to Risk Management,’’ in Handbook of Heavy
Tailed Distributions in Finance, ed. S. Rachev, Amsterdam: North-Holland,
pp. 329–384.

Embrechts, P., McNeil, A., and Straumann, D. (2002), ‘‘Correlation and
Dependence in Risk Management: Properties and Pitfalls,’’ in Risk Man-
agement: Value at Risk and Beyond, ed. M. Dempster, Cambridge, UK:
Cambridge University Press.

Fan, J., and Gu, J. (2003), ‘‘Semiparametric Estimation of Value-at-Risk,’’ The
Econometrics Journal, 6, 261–290.

Fleming, J., Kirby, C., and Ostdiek, B. (2001), ‘‘The Economic Value of Vol-
atility Timing,’’ The Journal of Finance, 56, 239–354.
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State price densities (SPDs) are an important element in applied quantitative finance. In a Black–Scholes
world they are lognormal distributions, but in practice volatility changes and the distribution deviates
from log-normality. In order to study the degree of this deviation, we estimate SPDs using EUREX option
data on the DAX index via a nonparametric estimator of the second derivative of the (European) call
pricing function. The estimator is constrained so as to satisfy no-arbitrage constraints and corrects for
the intraday covariance structure in option prices. In contrast to existing methods, we do not use any
parametric or smoothness assumptions.
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1. Introduction

The dynamics of option prices carries information on changes
in state price densities (SPDs). The SPD contains important
information on the behavior and expectations of the market and
is used for pricing and hedging. The most important application
of an SPD is that it allows one to price options with complicated
payoff functions simply by (numerical) integration of the payoff
with respect to this density.

Prices Ct(K , T ) of European optionswith strike priceK observed
at time t and expiring at time T allow one to deduce the state
price density f (.)using the relationship (Breeden and Litzenberger,
1978)

f (K) = exp{r(T � t)}@
2Ct(K , T )

@K 2 . (1)

Eq. (1) can be used to estimate the SPD f (K) from the observed
option prices. An extensive overview of parametric and other
estimation techniques can be found, for example, in Jackwerth
(1999). An application to option pricing is given in Buehler (2006).

Kernel smoothers were in this framework proposed and suc-
cessfully applied by, for example, Aït-Sahalia and Lo (1998), Aït-
Sahalia and Lo (2000), Aït-Sahalia et al. (2000), or Huynh et al.
(2002). Aït-Sahalia and Duarte (2003) proposed a method for

⇤ Corresponding author. Tel.: +420 221 913 284; fax: +420 283 073 341.
E-mail addresses: haerdle@wiwi.hu-berlin.de (W. Härdle),

hlavka@karlin.mff.cuni.cz (Z. Hlávka).

nonparametric estimation of the SPD under constraints like pos-
itivity, convexity, and boundedness of the first derivative. Bon-
darenko (2003) calculates arbitrage-free SPD estimates using posi-
tive convolution approximation (PCA) methodology and demon-
strates its properties in a Monte Carlo studied based on closing
prices of the S&P 500 options. Another sophisticated approach
based on smoothing splines allowing one to include these con-
straints is described and applied on simulated data in Yatchew
and Härdle (2006). In the majority of these papers, the focus was
more on the smoothing techniques rather than on a no-arbitrage
argument, although a crucial element of local volatility models is
the absence of arbitrage (Dupire, 1994). Highly numerically effi-
cient pricing algorithms, for example, byAndersen andBrotherton-
Ratcliffe (1997), rely heavily on no-arbitrage properties. Kahalé
(2004) proposed a procedure that requires solving a set of nonlin-
ear equationswith no guarantee of a unique solution.Moreover, for
that algorithm the data feed is already (unrealistically) expected
to be arbitrage free (Fengler, 2005; Fengler et al., 2007). In addi-
tion, the covariance structure of the quoted option prices (Renault,
1997) is rarely incorporated into the estimation procedure.

In Table 1, we give an overview of selected properties of
different estimation techniques. The parametric approach may
be used to estimate parameters of a probability density lying in
some preselected family. The parametric models may be further
extended by considering more flexible probability densities or
mixtures of distributions. Approaches based on nonparametric
smoothing techniques are more flexible since the shape of a
nonparametric SPD estimate is not fixed in advance and the
method controls only the smoothness of the estimate. For example,

0304-4076/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2009.01.005
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Table 1

Summary of properties of parametric and nonparametric estimators.

Methods
Parametric Standard smoothing method Nonparametric under constraints This paper

Shape Fixed Flexible Flexible Flexible
Control Choice of family Smoothness Smoothness None
SPD support Infinite Restricted Restricted Restricted
Constraints By design Local Yes Yes

the smoothness of a kernel regression estimator depends mostly
on the choice of the bandwidth parameter, the smoothness of the
PCA estimator (Bondarenko, 2003) depends on the choice of the
kernel, and the smoothness of the NNLS estimator (Yatchew and
Härdle, 2006) is controlled by constraining the Sobolev norm of
the SPD; using these nonparametric estimators, systematic bias
may typically occur in the case of oversmoothing. Constraints
on estimators are more easily implemented for globally valid
parametric models than for local (nonparametric) models. The use
of a standard smoothing technique which does not account for
the constraints is not advisable. The value of the nonparametric
estimate cannot be calculated in regions without any data and,
therefore, the support of nonparametrically estimated SPDs is
limited by the range of the observed strike prices even for
nonparametric-under-constraints techniques.

Most of the commonly used estimation techniques do not
specify explicitly the source of randomerror in the observed option
prices; see Renault (1997) for an extensive review of this subject.
A common approach in SPD estimation is to use either the closing
option prices or to correct the intraday option prices by the current
value of the underlying asset. Both approaches lack interpretation
if the shape of the SPD changes rapidly. This can bemade clear by a
gedankenexperiment: if the shape of the SPD changes dramatically
during the day, correcting the observed option prices by the value
of the underlying asset and then estimating the SPD would lead to
an estimate of some (nonexisting) daily average of the true SPDs.
We try to circumvent this problem by introducing a simple model
for the intraday covariance structure of option prices which allows
us to estimate the value of the true SPD at an arbitrarily chosen
fixed time; see also Hlávka and Svojík (2008). Most often, we are
interested in the estimation of the current SPD.

We develop a simple estimation technique in order to construct
constrained SPD estimates from the observed intraday option
prices which are treated as repeated observations collected
during a certain time period. The proposed technique involves
constrained LS-estimation, it enables us to construct confidence
intervals for the current value of the SPD and prediction intervals
for its future development, and it does not depend on any
tuning (smoothness) parameter. The construction of a simple
approximation of the covariance structure of the observed option
prices follows naturally from the derivation of our nonparametric
constrained estimator. This covariance structure is interesting in
itself; it separates two sources of randomerrors, and it is applicable
to other SPD estimators.

We study the development of the estimated SPDs in Germany
over 8 years. A no-arbitrage argument is imposed at each
time point, leading (mathematically) to the above-mentioned
no-arbitrage constraints. This, of course, is a vital feature for
trading purposeswhere the derived (implied) volatility surfaces for
different strikes and maturities are needed for proper judgment of
risk and return.

The resulting SPDs and implied volatility surfaces are not
smooth per se. In most applications, this is not a disadvantage
though, since, first, we may smooth the resulting SPD estimates
(Hlávka and Svojík, 2008) and, second, we are mostly interested
in functionals of the estimated SPD like, for example, the expected
payoff or the forward price. Another important feature that can be

easily estimated from the nonsmooth SPDs are the quantiles; see
Section 6.2 for an application.

In Section 2, we introduce the notation, discuss constraints that
are necessary for estimating SPDs, and we construct a very simple
unconstrained SPD estimator using simple linear regression. In
Section 3, this estimator is modified so that it satisfies the
shape constraints given in Section 2.1. We demonstrate that the
covariance structure of the option prices exhibits correlations
depending both on the strike price and time of the trade in
Section 4. In Section 5, we apply our estimation technique on
option prices observed in the year 1995, and we show that the
proposed approximation of the covariance structure removes the
dependency and heteroscedasticity of the residuals. The dynamics
of the estimated SPDs in years 1995–2003 is studied in Section 6.

2. Construction of the estimate

The fair price of a European call option with payoff (ST �K)+ =
max(ST � K , 0), with ST denoting the price of the stock at time T , t
the current time, K the strike price, and r the risk-free interest rate,
can be written as

Ct(K , T ) = exp{�r(T � t)}
Z 1

0
(ST � K)+f (ST )dST , (2)

i.e., as the discounted expected value of the payoff with respect
to the SPD f (.). For the sake of simplicity of the following
presentation, we assume in the rest of the paper that the discount
factor exp{�r(T � t)} = 1. In applications, this is achieved
by correcting the observed option prices by the known risk-free
interest rate r and the time to maturity (T � t) in (2). At the time
of the trade, the current index price and volatility are common to
all options and, hence, do not appear explicitly in Eq. (2).

Let us denote the i-th observation of the strike price by Ki
and the corresponding option price, divided by the discount factor
exp{�r(T � t)} from (2), by Ci = Ct,i(Ki, T ). In practice, on any
given day t , one observes option prices repeatedly for a small
number of distinct strike prices. Therefore, it is useful to adopt the
following notation. Let C = (C1, . . . , Cn)

> be the vector of the
observed option prices on day t sorted by strike price. Then, the
vector of strike prices has the following structure:

K =

0

BB@

K1
K2
...
Kn

1

CCA =

0

BB@

k11n1
k21n2

...
kp1np

1

CCA ,

where k1 < k2 < · · · < kp, nj = Pn
i=1 I(Ki = kj), with I(.)

denoting the indicator function and 1n a vector of ones of length n.

2.1. Assumptions and constraints

Let us now concentrate on options corresponding to a single
maturity T observed at fixed time t . Let us assume that the i-th
observed option price (corresponding to strike price Ki) follows the
model
Ct,i(Ki, T ) = µ(Ki) + "i, (3)
where "i are iid random variables with zeromean and variance � 2.
In practice, one might expect that the errors exhibit correlations
depending on the strike price and time. Heteroscedasticity can
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be incorporated in model (3) if we assume that the random
errors "i have variance Var "i = � 2

Ki
, leading to weighted least

squares. The assumptions on the distribution of random errors will
be investigated in more detail in Section 5.3. Following Renault
(1997), we interpret the observed option price as the price given by
a pricing formula plus an error term, and in Section 4 we suggest
a covariance structure for the observed option prices taking into
account the dependencies across strike prices and times of trade.

Harrison and Pliska (1981) characterized the absence of
arbitrage by the existence of a unique risk neutral SPD f (.). From
formula (2) and the properties of a probability density it follows
that, in a continuous setting, the function µ(.), defined on R+, has
to satisfy the following no-arbitrage constraints:
1’: it is positive,
2’: it is decreasing in K ,
3’: it is convex,
4’: its second derivative exists and it is a density (i.e., nonnegative

and it integrates to one).
Let us now have a look at functions satisfying Constraints 1’–4’.

Lemma 1. Suppose that µ : R+ ! R+ satisfies Constraints 1’–4’.
Then the first derivative, µ(1)(.), is nondecreasing and such that
limx!0 µ(1)(x) = �1 and limx!+1 µ(1)(x) = 0.
Proof. Constraint 4’ implies that the first derivative, µ(1), exists
and that it is differentiable. limx!+1 µ(1)(x) exists since the
function µ(1) is nondecreasing (Constraint 3’) and bounded
(Constraint 2’). Next, limx!1 µ(1)(x) = 0 since a negative
limit would violate Constraint 1’ for large x (µ(1)(x) cannot be
positive since µ(x) is decreasing). Finally, Constraint 4’, 1 =R 1
0 µ(2)(x)dx = limx!+1 µ(1)(x) � limx!0 µ(1)(x), implies that

limx!0 µ(1)(x) = �1. ⇤

Remark 1. Lemma 1 allows us to restate Constraints 3’ and 4’
in terms of µ(1)(.) by assuming that µ(1)(.) is differentiable,
nondecreasing, and such that limx!0 µ(1)(x) = �1 and
limx!+1 µ(1)(x) = 0.

In this section, we stated only constrains guaranteeing that
the SPD estimate will be a probability density. Constraints for the
expected value of the SPD estimate are discussed in Section 3.6.

2.2. Existence and uniqueness

In this subsection we address the issue of existence and
uniqueness of a regression function, Ĉ(.), satisfying the required
assumptions and constraints. In practice, we do not deal with
a continuous function. Hence, we restate Constraints 1’–4’ for
discrete functions, defined only on a finite set of distinct points,
say k1 < · · · < kp, in terms of their function values, C(ki), and
their scaled first differences, C (1)

ki,kj
= {C(ki) � C(kj)}/{ki � kj}.

1: C(ki) � 0, i = 1, . . . , p,
2: ki < kj implies that C(ki) � C(kj),
3: ki < kj < kl implies that �1  C (1)

ki,kj
 C (1)

kj,kl
 0.

It is easy to see that Constraints 1–2 are discrete versions
of Constraints 1’ and 2’. Constraint 3 is a discrete version of
Constraints 3’ and 4’; see Remark 1.

From now on, similarly as in Robertson et al. (1988), we think
of the collection, C, of functions satisfying Constraints 1–3 as a
subset of a p-dimensional Euclidean space, where p is the number
of distinct ki’s. The constrained regression, Ĉ , is in this setting the
closest point ofC to the vector C of the observed option priceswith
distances measured by the usual Euclidean distance

d(f , C) = (f � C)>(f � C) =
nX

i=1

{f (Ki) � C(Ki)}2. (4)

From this point of view, the regression function, Ĉ , consists only
of the values of the function in the points k1, . . . , kp. The first and
seconddifferences are used to approximate the first and the second
derivatives, respectively.

We claim that the set, C, of functions satisfying Constraints 1–3
is closed in the topology induced by the metric given by Euclidean
distance and it is convex, i.e., if f , g 2 C and 0  a  1, then
af + (1 � a)g 2 C.

Lemma 2. If Ĉ 2 C is the regression of C(Ki), i = 1, . . . , n, on
k1 < · · · < kp under Constraints 1–3 and if a and b are constants
such that a  C(Ki)  b, 8i, then a  Ĉ(ki)  b + (kp � k1).

Proof. It is not possible that Ĉ(ki) lies above b for all ki’s (otherwise
we would get a better fit only by shifting Ĉ(ki)). The upper bound
now follows from Constraint 3.

The validity of the lower boundmay be demonstrated similarly.
Clearly, it is not possible that Ĉ(ki) lie below a for all ki’s. Moreover,
it is not possible that Ĉ(k1) � · · · � Ĉ(ki) � a > Ĉ(ki+1) �
· · · � Ĉ(kp) for any i, since in such a situation the fit could be
trivially improved by increasing Ĉ(ki+1), . . . , Ĉ(kp) by some small
amount, for example, by a � Ĉ(ki+1), without violating any of the
Constraints 1–3. ⇤

Theorem 1. A regression, Ĉ = argminf2C d(f , C), satisfying
Constraints 1–3, exists and it is unique.

Proof. Lemma2 implies that Ĉ belongs to a subset,S, ofC bounded
below by a and above by b+ (kp � k1). Thinking of the functions as
points in Euclidean space, it is clear that the continuous function
d(f , C) attains its minimum on the closed and bounded set S. The
uniqueness of Ĉ follows from the convexity of S using, for example,
Robertson et al. (1988, Theorem 1.3.1). ⇤

2.3. Linear model

With the given option data, Constraints 1–3 of Section 2.2 can
be reformulated using linear regression models with constraints.

In the following, we fix the time t and the expiry date T and we
omit these symbols from the notation. In Section 2.2we have noted
that the option prices are repeatedly observed for a small number p
of distinct strike prices. Defining the expected values of the option
prices for a given strike price,µj = µ(kj) = E{C(kj)}, we can write
µp = �0,

µp�1 = �0 + �1,

µp�2 = �0 + 2�1 + �2,

µp�3 = �0 + 3�1 + 2�2 + �3,

...

µ1 = �0 + (p � 1)�1 + (p � 2)�2 + · · · + �p�1.

Thus, we fit our data using coefficients �j, j = 1, . . . , p. The
conditional means µi, i = 1, . . . , p are replaced by the same
number of parameters �j, j = 0, . . . , p � 1, which allow us to
impose the shape constraints in a more natural way.

The interpretation of the coefficients �j can be seen in Fig. 1,
which shows a simple situation with only four distinct strike
prices (p = 4). �0 is the mean option price at point 4.
Constraint 1’, Section 2.1, implies that it has to be positive. �1 is the
difference between the mean option prices at point 4 and point 3;
Constraint 2’ implies that it has to be positive. The next coefficient,
�2, approximates the change in first derivative in point 3 and it
can be interpreted as an approximation of the second derivative in
point 3. Constraint 3’ implies that �2 has to be positive. Similarly,
�3 is an estimate of the (positive) second derivative in point 2.
Constraint 4’ can be rewritten as �2 + �3  1.
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Fig. 1. Illustration of the dummy variables for call options.

In practice, we start with the construction of a design matrix
which allows us to write the above model in the following linear
form. For simplicity of presentation, we again set p = 4:
0

B@

µ1
µ2
µ3
µ4

1

CA =
0

B@

1 3 2 1
1 2 1 0
1 1 0 0
1 0 0 0

1

CA

0

B@

�0
�1
�2
�3

1

CA . (5)

Ignoring the constraints on the coefficients would lead to a simple
linear regression problem. Unfortunately, this approach does not
have to lead, and usually does not, to interpretable and stable
results.

Model (5) in the above form can be reasonably interpreted only
if the observed strike prices are equidistant and if the distances
between the neighboring observed strike prices are equal to one.
If we want to keep the interpretation of the parameters �j as the
derivatives of the estimated function, we should use the design
matrix

� =

0

BBBBBBB@

1 �1
p �1

p�1 �1
p�2 · · · �1

3 �1
2

1 �2
p �2

p�1 �2
p�2 · · · �2

3 0
...

...

1 �p�2
p �

p�2
p�1 0 · · · 0 0

1 �p�1
p 0 0 · · · 0 0

1 0 0 0 · · · 0 0

1

CCCCCCCA

, (6)

where �i
j = max(kj � ki, 0) denotes the positive part of the

distance between ki and kj, the i-th and the j-th (1  i  j  p)
sorted distinct observed values of the strike price.

The vector of conditional means µ can be written in terms of
the parameters � as follows:
0

BB@

µ1
µ2
...

µp

1

CCA = µ = �� = �

0

BB@

�0
�1
...

�p�1

1

CCA . (7)

The constraints on the conditional meansµj can now be expressed
as conditions on the parameters of the model (7). Namely, it
suffices to request that �i > 0, i = 0, . . . , p � 1 and thatPp�1

j=2 �j  1.
The model for the option prices can now be written as

C(K) = X�� + ", (8)

where X� is the design matrix obtained by repeating each row of
matrix� ni times, i = 1, . . . , p.

3. Implementing the constraints

In order to impose Constraints 1–3 on parameters �i, i =
0, . . . , p � 1, we propose the following reparameterization of the

model in terms of parameters ✓ = (✓0, . . . , ✓p�1)
>:

�0(✓) = exp(✓0),
�1(✓) = exp(✓1),
...

�p�1(✓) = exp(✓p�1),

under the constraint that
Pp�1

j=2 exp(✓j) < 1. Clearly, the
parameters �i(✓) satisfy the constraints

�i(✓) > 0, i = 0, . . . , p � 1,
p�1X

j=2

�j(✓) < 1.

This means that the parameters �2(✓), . . . ,�p�1(✓) can be
considered as point estimates of the state price density (the
estimates have to be positive and integrate to less than one).
Furthermore, in view of Lemma 1, it is worthwhile to note that the
parameters also satisfy

�
kX

j=1

�j 2 (�1, 0), for k = 1, . . . , p � 1.

Themodel (8) rewritten in terms of parameters ✓i, i = 0, . . . , p,
is a nonlinear regression model which can be estimated using
standard nonlinear least squares or maximum likelihood methods
(Seber and Wild, 2003). The main advantage of these methods
is that the asymptotic distribution is well known and that the
asymptotic variance of the estimator can be approximated using
numerical methods implemented in many statistical packages.

3.1. Reparameterization

The following reparameterization of the model in terms of
parameters ⇠ = (⇠0, . . . , ⇠p)

> simplifies the calculation of
the estimates because it guarantees that all constraints are
automatically satisfied:

�0(⇠) = exp(⇠0),

�1(⇠) = exp(⇠1)
pP

j=1
exp(⇠j)

,

...

�p�1(⇠) = exp(⇠p�1)
pP

j=1
exp(⇠j)

.

This property simplifies the numerical minimization algorithm
needed for the calculation of the estimates.

The equality

1
p�1P
j=1
�j(⇠)

= 1 + exp(⇠p)
p�1P
j=1

exp(⇠j)

shows the meaning of the additional parameter ⇠p. Setting
this parameter to �1 would be the same as requiring thatPp�1

j=1 �j(⇠) = 1. Large values of the parameter ⇠p indicate that the
estimated coefficients sum to less than one or, in other words, the
observed strike prices do not cover the support of the estimated
SPD. Notice that, by setting ⇠p = �1, we could easily modify our
procedure and impose the equality constraint

Pp�1
j=1 �j(⇠) = 1.
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3.2. Inverse transformation of model parameters

For the numerical algorithm, it is useful to know how to
calculate ⇠ ’s from given � ’s. This is needed, for example, to obtain
reasonable starting points for the iterative procedure maximizing
the likelihood.

Lemma 3. Given � = (�1, . . . ,�p)
>, where �p = 1 �Pp�1

i=1 �i, the
parameters ⇠ = (⇠1, . . . , ⇠p)

> satisfy the system of equations
�
�1>

p � Ip
�
exp ⇠> = A exp ⇠> = 0, (9)

where Ip is the (p ⇥ p) identity matrix. Furthermore,

rankA = p � 1. (10)

The system of Eq. (9) has infinitely many solutions, which can be
expressed as

exp(⇠) = �
A�A � Ip

�
z, (11)

where A� denotes a generalized inverse of A and where z is an
arbitrary vector in Rp such that the right-hand side of (11) is positive.

Proof. Parts (9) and (10) follow from the definition of �(⇠)
and from simple algebra (notice that the sum of rows of A is
equal to zero). Part (11) follows, for example, from And•l (1985,
Theorem IV.18). ⇤

It remains to choose the vector z in (11) so that the solution of
the system of Eq. (9) is positive.

Proposition 1. The rank of the matrix A�A � Ip is 1. Hence, any
solution of the system of Eq. (9) is a multiple of the first column of the
matrix A�A � Ip. The vector z in (11) can be chosen, for example,
as z = ±1p, where the sign is chosen so that the resulting solution is
positive.

Proof. The definition of a generalized inverse is

AA�A � A = A(A�A � Ip) = 0. (12)

Lemma 3 says that rankA = p � 1 and, hence, Eq. (12) implies
that rank(A�A � Ip)  1. Noticing that A�A 6= Ip means that
rank(A�A � Ip) > 0, and concludes the proof. ⇤

3.3. The algorithm

The proposed algorithm consists of the following steps:

1: obtain a reasonable initial estimate �̂ , for example, by
running the Pool-Adjacent-Violators algorithm (Robertson
et al., 1988, Chapter 1) on the unconstrained least squares
estimates of the first derivative of the curve,

2: transform the initial estimate �̂ into the estimate ⇠̂ using the
method described in Section 3.2,

3: estimate the parameters of the model (8) by minimizing the
sum of squares {C(K)�X��(⇠)}>{C(K)�X��(⇠)} in terms
of ⇠ (see Section 3.1) using numerical methods.

An application of this simple algorithm on real data is given in
Section 5.1.

3.4. Asymptotic confidence intervals

We construct confidence intervals based on the parameteriza-
tion �(✓) introduced at the beginning of this section. The confi-
dence limits for parameters ✓i are exponentiated in order to obtain
valid pointwise confidence bounds for the true SPD. The main ad-
vantage of this approach is that such confidence bounds are always
positive.

An alternative approachwould be to construct confidence inter-
vals based on the parameterizations in terms of�i (Section 2.3) or ⇠i
(Section 3.1). However, the limits of confidence intervals for�i may
be negative and confidence intervals for the SPD based on param-
eters ⇠i would have very complicated shapes in high-dimensional
space and could not be easily calculated and interpreted.

Another approach to the construction of the asymptotic
confidence intervals can be based on the maximum likelihood
theory. Assuming normality, the log-likelihood for the model (8)
can be written as

l(C, X�, ✓ , � ) = �n log � � 1
2� 2 {C � X��(✓)}>

⇥ {C � X��(✓)}, (13)
where X� is the design matrix given in (8). This normality
assumption is justified later by a residual analysis. The maximum
likelihood estimator is defined as

✓̂ = argmax
✓

l(C, X�, ✓ , � ), (14)

and it has asymptotically a p-dimensional normal distribution
with mean ✓ and the variance given by the inverse of the Fisher
information matrix:

F �1
n =

⇢
�E

✓
@2

@✓@✓> l(C, X�, ✓ , � )

◆��1

. (15)

More precisely,n1/2(✓̂�✓) L�! Np(0, F �1
n ). In this framework, the

Fisher information matrix can be estimated by using the numeri-
cally differentiated Hessianmatrix of the log-likelihood. For details
we refer, for example, to Serfling (1980, Chapter 4). The confidence
intervals calculated for parameters ✓ may be transformed (expo-
nentiated) to a confidence intervals for the SPD (�). We have not
pursued the maximum likelihood approach since it was numeri-
cally less stable in this situation.

Note that, under the assumptions of normality, the maximum
likelihood estimate is equal to the nonlinear least squares es-
timate (Seber and Wild, 2003, Section 2.2), and the asymptotic
variance of ✓̂ = exp(�) may be approximated by Varb✓ =
{diag(expb✓)X>

�X�diag(expb✓)}�1b� 2. Hence, asymptotic confi-
dence intervals for ✓i may be calculated as (b✓i ± u1�↵/2bsii), where
u1�↵/2 is the 1 � ↵/2 quantile of the standard Normal distribution
andbsii denotes the i-th diagonal element of Var ✓̂ . By exponentiat-
ing both limits of this confidence interval, we immediately obtain
the 1 � ↵ confidence interval for �i = exp ✓i.

The construction of the estimator guarantees that the matrix
X� has full rank—this implies that X>

�X� is invertible and the
asymptotic variance matrix Varb✓ always exists. If the number of
observations is equal to thenumber of distinct strike prices (if there
is only one option price for each strike price), it may happen that
b� 2 = 0 and the confidence intervals degenerate to a single point.

3.5. Put–Call parity

The prices of put options can be easily included in our
estimation technique by applying the Put–Call parity of the option
prices. Assuming that there are no dividends or costs connected
with the ownership of the stock, each put option with price
Pt(K , T ) corresponds to a call option with price
Ct(K , T ) = Pt(K , T ) + St � Ke�r(T�t).

In this way, the prices of the put options can be converted into
the prices of call options and used in our model (Stoll, 1969).
Statistically speaking, these additional observations will increase
the precision of the SPD and will lead to more stable results.

In Germany, the Put–Call parity might be biased by an effect of
the DAX index calculation which is based on the assumption that
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Fig. 2. Illustration of the dummy variables for both call (�) and put (↵) options.

the dividends are reinvested after deduction of corporate income
tax. As the income tax of some investors might be different, the
value of the DAX has to be corrected before using Put–Call parity
in subsequent analysis. For the exact description of this correction
we refer to Hafner and Wallmeier (2000) who were analyzing the
same data set.

The construction of our estimates allows us to include the
put option prices in a more direct way by fitting the two curves
separately using two sets of parameters. The situation is displayed
in Fig. 2. Our assumption that the same SPD drives both the put and
call option prices is naturally translated in terms of the coefficients
↵i and �i:

↵i = �p�i+1, for i = 2, . . . , p � 1

↵1 = 1 �
p�1X

i=1

�i.

The problem of estimating regression functions under such linear
equality constraints is solved, for example, in Rao (1973). In
Section 4.3, we will also investigate the covariance of the observed
call and put option prices, and the suggested model will be
presented in detail.

3.6. Expected value constraints

In Section 2.3, we have explained that the parameters
�2, . . . ,�p�1 can be interpreted as estimates of the state price
density in points k2, . . . , kp�1. From the construction of the
estimator, see also Fig. 1, it follows that parameter �1 can be
interpreted as the mass of the SPD lying to the right of kp�1.
Assuming that the observed strike prices entirely cover the support
of the SPD, the mass �1 could be attributed to the point kp. Notice
that the reparameterization introduced in Section 3 guarantees
that

Pp�1
i=1 �i(⇠) < 1, and it immediately follows that interpreting

�1 as the estimate of the SPD in point kp does not violate any
constraints described in Section 2.2.

Referring to Section 3.5, it is clear that the parameter �p ⌘
↵1 = 1 � Pp�1

i=1 �i can be interpreted as the estimator of the SPD
in k1. The parameterization of the problem now guarantees thatPp

i=1 �i = 1.
The expected value of the underlying stock under the risk-

neutral measure can now be estimated as dESPD = Pp
i=1 ki�p�i+1.

From economic theory it follows that dESPD has to be equal to
the forward price of the stock. This constraint can be easily
implemented by using the fact that �1 and �p estimate the mass
of the SPD respectively to the right of kp�1 and to the left of k2.

If dESPD is smaller than the forward price exp{r(T � t)}St of the
stock, it suffices to move the mass �1 further to the right. If dESPD is
too large, we move the mass �p to the left. More precisely, setting

ek1 = k1 � I(dESPD > exp{r(T � t)}St)(dESPD � exp{r(T � t)}St)/�p,

ekp = kp + I(dESPD < exp{r(T � t)}St)(exp{r(T � t)}St � dESPD)/�1,

we get

exp{r(T � t)}St =ek1�p +
p�1X

i=2

ki�p�i+1 +ekp�1.

This choice of ek1 and ekp guarantees that the expected value
corresponding to the estimator �1, . . . ,�p is equal to the forward
price St of the stock; see the beginning of Section 6 for an
application of this technique.

In Sections 4 and 5, we will concentrate on the properties
of �2, . . . ,�p�1 and further improvements in the estimation
procedure.

4. Covariance structure

In this section, we use a model for the SPD development
throughout the day to derive the covariance structure of the
observed option prices depending on the strike prices and time of
the trade. Considering the covariance structure in the estimation
procedure solves the problems with heteroscedasticity and
correlation of residuals that will be demonstrated in Section 5.3.

In this model, most recent option prices have the smallest
variance and thus the largest weight in the estimation procedure.
Similarly, the covariance of two option prices with the same strike
price at approximately the same time is larger than the covariances
of prices of some more dissimilar options.

We start by rewriting the model with iid error terms so that it
can be more easily generalized. In Section 4.1, we present a model
that accounts for heteroscedasticity and which is further devel-
oped in Sections 4.2 and 4.3,where an approximation of the covari-
ance is calculated for any two options prices using only their strike
prices and time of the trade. In Section 4.4, we suggest decompos-
ing the error term into two parts, and we show how to estimate
these additional parameters by the maximum likelihood method.
The analysis of the resulting standardized residuals in Section 5.4
suggests that this covariance structure is applicable to our dataset.

Until now, we have assumed that the i-th option price (on a
fixed day t) satisfies

Ci(kj) = �je� + "i (16)
or
Ci(kj) = �je�i + "i,

e�i = e�i�1, (17)
where "i are iid random errors with zero mean and constant
variance � 2,e� = e�1 = · · · = e�i denotes the column vector of the
unknown parameters, and�j denotes the j-th row of the matrix�
defined in (6), i.e.,

�j = (1,�j
p,�

j
p�1, . . . ,�

j
j+1, 0, . . . , 0| {z }

(j�1)

).

The residual analysis in Section 5.3 clearly demonstrates that the
random errors "i are not independent and homoscedastic, and we
have to consider some generalizations that lead to a better fit of the
data set.

4.1. Heteroscedasticity

Assume that the i-th observation, corresponding to the j-th
smallest exercise price kj, can be written as

Ci(kj) = �je�i, (18)

e�i = e� + "i, (19)
i.e., there are iid random vectors "i having iid components with
zero mean and variances � 2 in the state price densitye�i. Clearly,
the variance matrix of the vector of the observed option prices C is
then
Var C = � 2diag(X�X>

�), (20)
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where X� is the design matrix in which each row of the matrix�
is repeated nj times, j = 1, . . . , p.

Remark 2. Assuming that the observed option prices have the
covariance structure (20), the least squares estimates do not
change, and

Var �̂ = � 2{X>
�diag(X�X>

�)�1X�}.
Another possible model for the heteroscedasticity would

assume that the changes are multiplicative rather than additive.
Ci(kj) = �je�i

loge�i = loge� + "i.

This model leads to a variance of Ci(kj) that depends on the value
of the SPD:
Var Ci(kj) = � 2{�2

0 + (�j
p)

2�2
1 + (�

j
p�1)

2�2
2 + (�

j
p�2)

2�2
3

+ · · · + (�
j
j+1)

2�2
j }.

It is straightforward that Remark 2 also applies in this situation.

4.2. Covariance

Let us now assume that there are random changes in the state
price density coefficientse�i over time so that we have
Ci(kj) = �je�i,

e�i = e�i�1 + "i, (21)
where, for fixed i,e�i is the parameter vector and "k, k = i, i�1, . . .,
are iid random vectors having iid components with zero mean and
variances � 2. For nonequidistant time points, let �i denote the time
between the i-th and (i � 1)-th observation. The model is
Ci(kj) = �je�i,

e�i = e�i�1 + �
1/2
i "i, (22)

and it leads to the covariance matrix with elements
Cov{Ci�u(kj), Ci�v(ki)} = Cov(�je�i�u,�ie�i�v)

= � 2�j�
>
i

min(u,v)X

l=1

�i+1�l. (23)

Whenwe observe the i-th observation, we are usually interested in
the estimation of the current value of the vector of parameterse�i.

4.3. Including put options

Similarly, we obtain the covariance for the price of the
put options, Pi(kj). Using the relations between the ↵ and �
parameters, ↵k = �p�k+1, for k = 2, . . . , p � 1, and after some
simplifications, we can write the model for the price of the put
options, Pi(kj), as
Pi(kj) = �je↵i,

e↵i = e↵i�1 + �
1/2
i "i, (24)

where e↵ = (↵0,↵1,�p�1,�p�2, . . . ,�2)
> and �P

j denotes the
corresponding row of the design matrix, i.e.,

�P
j = (1,�1

j ,�
2
j , . . . ,�

j�1
j , 0, . . . , 0| {z }

(p�j)

).

In this way, we obtain a joint estimation strategy for both the call
and put option prices:
Ci(kj) = �je�i,

Pi(kj) = �P
j e↵i,

✓e�i
e↵i

◆
=

✓e�i�1
e↵i�1

◆
+ �

1/2
i "i, (25)

which directly leads to covariances

Cov{Pi�u(kj), Pi�v(ki)} = Cov(�P
j e↵i�u,�

P
i e↵i�v)

= � 2�P
j (�

P
i )

>
min(u,v)X

l=1

�i+1�l (26)

and

Cov{Ci�u(kj), Pi�v(ki)} = Cov(�je�i�u,�
P
i e↵i�v)

= � 2
min(u,v)X

l=1

�i+1�l

p�1X

k=2

�
j
p+1�k�

p+1�k
i . (27)

Together with (23), Eq. (26) and (27) allow us to calculate the
covariance matrix of all observed option prices using only their
strike prices and the times between the transactions.

4.4. Error term for option prices

Using the model (25) would mean that all changes observed
in the option prices are due only to changes in the SPD. It seems
natural to add another error term, ⌘i, as a description of the error
in the option price:

Ci(kj) = �je�i + ⌘i,

Pi(kj) = �P
j e↵i + ⌘i,

✓e�i
e↵i

◆
=

✓e�i�1
e↵i�1

◆
+ �

1/2
i "i, (28)

where ⌘i ⇠ N(0, ⌫2) are iid random variables independent of the
random vectors "i. Here, normality assumptions are added both for
⌘i and "i so that the variance components parameters ⌫2 and � 2

may be estimated by the maximum likelihood method.
Next, in order to simplify the notation, let us fix the index

i, and let Y denote the vector of observed call and put option
prices, X� the corresponding design matrix consisting of the
corresponding rows �j and �P

j , and e� the combined vector
of unknown parameters. Denoting by ⌃i the matrix containing
the covariances defined in (23), (26) and (27), we can rewrite
model (25) as

Y = X�e� + ⇠ , (29)

where Var ⇠ = Var Y = � 2⌃i + ⌫2In = � 2(⌃i +  2In) = � 2V ,
where  2 = ⌫2/� 2. Differentiating the log-likelihood

l(�, � 2, 2) = �n
2
log(2⇡) � 1

2
log |� 2V |

� 1
2� 2 (Y � X�e� )>V�1(Y � X�e� ),

we obtain

@ l(�, � 2, 2)

@ 2

= �1
2
tr(V�1) + 1

2� 2 (Y � X�e� )>V�2(Y � X�e� ). (30)

For any fixed value of the parameter  2, it is straightforward
to calculate the optimal � 2 and e� . Hence, the numerical
maximization of the log-likelihood can be based on a search for
a root (zero) of the one-dimensional function (30).

Moreover, the variance components parameters � 2 and ⌫2 =
 2� 2 have a very natural econometric interpretation:� 2 describes
the speed of change of the SPD and ⌫2 the error in observed option
prices.
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Fig. 3. Option prices plotted against strike price and time to maturity with a two-dimensional kernel regression surface (left) in January 1995 and the ensemble of the call
option prices with shortest time to expiry against strike price (right) on 16 January 1995. SFB and CASE data base: sfb649.wiwi.hu-berlin.de.

Fig. 4. On 16 January 1995, the unconstrained estimate satisfies the constraints.
Hence, it is equal to the constrained estimate. The top panel shows the original
data with the fitted call pricing functions. The second and the third panels show
the estimates of the first and second derivatives, respectively.

5. Application to DAX data

We analyze a data set containing observed option prices for
various strike prices andmaturities. Other variables are the interest
rate, date, and time. In 1995, one observed every day about 500
trades; in today’s more liquid option markets this number has
increased approximately 10 times. In our empirical study we will
consider the time period from 1995 to 2003, thus also covering
more recent liquid option market.

Fig. 3 displays the observed prices of European call options
written on the DAX for the 16 January 1995. The left panel
shows the ensemble of call option prices for different strikes and
maturities as a free structure together with a smooth surface. The
typical shape of dependency of the option price on the strike price
can be observed in the right panel, containing the option prices
only for the shortest time to expiry, ⌧ = T � t = 4 days.

In order to illustrate the method, we apply it to DAX option
prices on two consecutive days. These days (16 and 17 January

1995) were selected since they provide a nice insight into the
behavior of the presented methods.

5.1. Estimator with iid random errors

We start by a comparison of the unconstrained and constrained
estimator described respectively in Sections 2.3 and 3.1.

For the European call option prices displayed in the right-hand
plot in Fig. 3, we obtain the estimates plotted in Fig. 4. The top
plot displays the original data, the second plot shows the estimate
of the first derivative, and the third plot shows the estimate of
the second derivative, i.e., the state price density. Actually, all
plots contain two curves, both obtained using model (8). The thick
line is calculated using the parameters �i without constraints,
whereas the thin line uses the reparameterization �i(⇠) given in
Section 3.1. In Fig. 4, these two estimates coincide since the model
maximizing the likelihood without constraints, by chance, fulfills
the constraints (9⇠ : �i = �i(⇠), i = 0, . . . , p � 1), and hence it
is clear that the same parameters also maximize the constrained
likelihood.

The situation, in which the call pricing functions fitted with and
without constraints differ, is displayed in Fig. 5. Notice that the
difference between the two regression curves is small, whereas
the difference between the estimates of the state price density
(i.e., the second derivative of the curve) is surprisingly large.
The unconstrained estimate shows very unstable behavior on the
left-hand side of the plot. The constrained version behaves more
reasonably. Very small differences between the fitted call pricing
functions in the top plot in Fig. 5 lead to huge differences in the
estimates of the second derivative.

We therefore conclude that a small error in the estimate of the
call pricing function may lead to large scale error in the estimates
of the first and second derivatives. The scale of this type of error
seems to be limited by imposing the shape constraints given in
Section 2.2.

5.2. Confidence intervals

In Figs. 6 and 7, we plot both estimates together with the 95%
confidence intervals. Notice that, in the unconstrained model, the
estimates of the values of the SPD are just the parameters of the
linear regression model. Hence, the confidence intervals for the
parameters are, at the same time, also confidence intervals for the
SPD. These confidence intervals for 16 and 17 January 1995 are
displayed in the upper plots in Figs. 6 and 7. The drawbacks of
this method are clearly visible. In Fig. 6, the lower bounds of the
confidence intervals only asymptotically satisfy the condition of
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Fig. 5. On 17 January 1995, the unconstrained estimate, displayed using the thin
line, does not satisfy the constraints. The top panel shows the original data with the
two fitted call pricing functions. The estimates of the first derivative in the second
panel look rather different. The constrained estimate of the second derivative in the
bottom panel is clearly much more stable than the unconstrained estimate.

Fig. 6. The unconstrained and constrained confidence intervals for the SPD on 16
January 1995. The description on the x-axis shows the number of observations in
each point.

positivity. In Fig. 7, we observe large variability on the left-hand
side of the plot (the region with low number of observations).
Again, some of the lower bounds are not positive. Clearly, the
confidence intervals based on the unconstrained model make
sense only if the constraints are, by chance, satisfied. Even if
this is the case, there is no guarantee that the lower bounds
will be positive. The lower panels in Figs. 6 and 7 display the
nonnegative asymptotic confidence intervals calculated according
to Section 3.4.

In Fig. 6, both types of confidence interval provide very similar
results. The only difference is at theminimumandmaximumvalue

Fig. 7. Confidence intervals for SPD on 17 January 1995. The description on the
x-axis shows the number of observations in each point.

Fig. 8. The time dependency and the heteroscedasticity of the residuals during
one day. The circle, square, and star denote the trades carried out in the morning,
midday, and afternoon, respectively. The size of the symbols denotes the number
of residuals.

of the independent variable (strike price),where the unconstrained
method provides negative lower bounds and the conditional
method leads to very large upper bounds of the confidence
intervals.

In Fig. 7, we plot the confidence intervals for 17 January 1995.
In the central region of the graphics, both types of confidence
interval are quite similar. On the left-hand and right-hand sides,
both methods tend to provide confidence intervals that seem to
be overly wide. For the constrained method, we observe that the
length of the confidence intervals explodes when the estimated
value of the SPD is very close to zero and, at the same time, the
number of observation in that region (see the description of the
horizontal axis) is small.

5.3. Residual analysis

The residuals on 17 January 1995 are plotted in Fig. 8. The time
of trade (in hours) is denoted by the plotting symbol. The circle,
square, and star denote the trades carried out in the morning,
midday, and afternoon, respectively. The size of the symbols
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Fig. 9. Estimate using the covariance structure (28) on 17 January 1995. The upper
plot shows the observed option prices and the constrained estimate. The size of
the plotting symbols corresponds to the weight of the observations. The lower plot
shows the estimated SPD with confidence intervals.

corresponds to the number of residuals lying in the respective
areas.

The majority of the residuals correspond to the strike prices of
2075DEM and 2100DEM. The variance of the residuals is very low
on the right-hand side of the plot and it rapidly increases when
moving towards smaller strike prices. On the left-hand side of the
plot, for strike prices smaller than 2000, we have only very few
observations, and cannot judge the residual variability reliably.

Apart from the obvious heteroscedasticity we also observe a
very strong systematic movement in the SPD throughout the day:
the circles, corresponding to the first third of the day, are positive,
and all stars, denoting the afternoon residuals, are negative. Similar
patterns can be observed every day—residuals corresponding to
the same time have the same sign.

We conclude that the assumption of iid random errors is
obviously not fulfilled as the option prices tend to follow the
changes of the market during the day.

5.4. Application of the covariance structure

In Fig. 9, we present the estimator combining both put and
call option prices and using the covariance structure proposed in
Section 4.4. In comparison with the results plotted in Fig. 7, we
observe shorter length of the confidence intervals.

The estimates of the variance components parameters are  ̂2 =
17.77, �̂ 2 = 0.0041, and ⌫̂2 = 0.0722. For interpretation, it ismore
natural to consider ⌫̂ = 0.2687, suggesting that 95% of the option
prices were on 17 January 1995 not further than 0.5DEM from the
correct option price implied by the current (unobserved) SPD.

Fig. 10. The development of the standardized residuals resulting from the model
with the covariance structure (28) on 17 January 1995 during the day, where circles,
squares, and stars denote the residuals from morning, midday, and afternoon, and
a histogram of the standardized residuals.

Fig. 11. SPD estimate on 17 January 1995 with prediction intervals for the next 5 h
calculated for every 30 min.

The standardized residuals in the top panel of Fig. 10 were
plotted using the same technique as the residuals in Fig. 8.Whereas
the residuals for the iid model showed strong correlations and
heteroscedasticity, the structure of the standardized residuals
looks much better. It is natural that the residuals are larger in the
central part since more than 90% of observations have strike price
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Fig. 12. Daily development of the expected value of the uncorrected SPD from
January to March 1995. The circles denote the corresponding closing value of the
DAX.

Fig. 13. Daily development of the SPD variance from January to March 1995.

between 2050 and 2100. The largest residuals were omitted in
the residual plot so that the structure in the central part is more
visible, but the lower panel of Fig. 10 displays the histogram of all
residuals. The distribution of the residuals seems to be symmetric,
and its shape is not too far from Normal distribution. However,
the kurtosis of this distribution is too large, and formal tests reject
normality.

In Fig. 11, we plot prediction intervals for the SPD obtained only
by recalculating the covariance structure (28)with respect to some
future time. More precisely, the prediction intervals are obtained
from option prices observed until i. Then, using the notation of
Section 4.4, we have, for the futuree�i+1 ande↵i+1,

Ci(kj) = �je�i + ⌘i,

Pi(kj) = �P
j e↵i + ⌘i,

✓e�i+1
e↵i+1

◆
=

✓e�i
e↵i

◆
+ �

1/2
i+1"i+1. (31)

It is now easy to see that the only modification that has to be
done for estimating e�i+1 is to add the length of the forecasting
horizon �i+1 to the sum in (23), (26) and (27), and to recalculate
the confidence regions using this variance matrix with the same
estimates of the variance parameters � 2 and ⌫2. In Fig. 11, the
95% confidence intervals for the true SPD are denoted by the black

dashed line. The grey dashed lines denote the prediction intervals
calculated for each 30 min for the next 5 h. In this way, we can
obtain a simple approximation for future short-term fluctuations
of the SPD. In the long run, the prediction intervals become too
wide to be informative.

6. Dynamics of the SPD

In order to study the dynamics of SPDs, we calculated the
basic moment characteristics of the estimated SPDs. Note that the
estimator does not allow one to estimate the SPD in the tails of the
distribution. We can only estimate the probability mass lying to
the left (1 � Pp�1

i=1 �i) and to the right (�1) of the available strike
price range. Hence, the moments calculated in this section are
only approximations which cannot be calculated more precisely
without additional assumptions, for example, on the tail behavior
or parametric shape of the SPD.

The estimated mean and variance in the first quarter of 1995
are plotted as lines in Figs. 12–13. Note that the SPDs in this
periodwere always estimated using the optionswith shortest time
to maturity. This means that the time to maturity is decreasing
linearly in both plots, but it jumps upwhenever the optionwith the
shortest time tomaturity expires. These jumps occurred at days 16,
36, and 56.

From no-arbitrage considerations, it follows that the mean of
the SPD should correspond to the value of the DAX,

dESPD =
Z

ST f (ST )dST = exp{r(T � t)}St .
See also the discussion in Section 3.6. In Fig. 12, the observed values
of the DAX multiplied by the factor exp{r(T � t)} are plotted as
circles for the first 65 trading days in 1995, andwe observe that the
estimatedmeans of the SPD estimates, displayed as the line, follow
the theoretical value very closely. A small difference is mainly due
to the fact that, in 1995, the observed strike prices do not entirely
cover the support of the SPD. For example, on day 16, the difference
between the SPD mean (2018.7) and the DAX multiplied by the
discount factor (2012.1) is equal to 6.6. The fact that there are not
any trades for strike prices smaller than 1925 means that we only
know that the probability mass lying to the left from 1950 is equal
to 0.25. In the calculation of the estimate of the SPD mean plotted
in Fig. 12, this probability mass is assigned to the value 1925, as
this is the leftmost observed strike price. Obviously, assigning this
probability mass rather to the value 1925 � (6.6/0.25) = 1898.6
leads amore realistic estimate of the SPD and to the equality of the
SPD mean and the discounted DAX.

In Fig. 13, we see that the variance of the SPD decreases
linearly as the optionmoves closer to itsmaturity. This observation
suggests that SPD estimates calculated for neighboring maturities
can be linearly interpolated in order to obtain an SPD estimate
with arbitrary time to maturity. Such an estimate is important
for making the SPD estimates comparable and for studying the
development of the market expectations.

6.1. Estimate with the fixed time to expiry

The variances displayed in Fig. 13 suggest that the variance of
the SPD estimates changes approximately linearly in time when
moving closer to the date of expiry.

Hence, from the estimates f⌧1(.) and f⌧2(.) of centered SPDs
corresponding to the times of expiry ⌧1 < ⌧2, we construct an
estimate f⌧ (.) for any time of expiry ⌧ 2 (⌧1, ⌧2) as

f⌧ (.) = (⌧2 � ⌧ )f⌧1(.) + (⌧ � ⌧1)f⌧2(.)
⌧2 � ⌧1

. (32)
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Fig. 14. Prediction intervals for the DAX based on SPDs and historical simulation from January 1995 to March 2003.

Fig. 15. Histograms for the SPDs (full line) and historical simulation (dashed line).
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Fig. 16. Integral transformation for estimated SPDs.

In this way, the variance, V⌧ , of the centered SPD with time to
expiry equal to ⌧ can be expressed as

V⌧ =
Z

x2f⌧ (x)dx

=
Z

x2
(⌧2 � ⌧ )f⌧1(x) + (⌧ � ⌧1)f⌧2(x)

⌧2 � ⌧1
dx

= (⌧2 � ⌧ )V⌧1 + (⌧ � ⌧1)V⌧2
⌧2 � ⌧1

.

We argue that such an estimate is reasonable since we observed in
Fig. 13 that the SPD variances change linearly in time.

6.2. Verification of the market’s expectations

Under the risk neutral (equivalent martingale) measure, the
SPD reflects the market’s expectation of the behavior of the value
of the DAX in 45 days. Hence, it is interesting to use our data set
to verify how these expectations compare with reality. In the left
plot in Fig. 14, we plot intervals based on the SPD together with the
true future value of the DAX: the black lines display the 2.5% and

97.5% quantiles of the estimated SPD; the future value of the DAX is
displayed as a grey line. In the right plot, we show in the sameway
the 45-day ahead predictions based on the historical distribution
of the 45-day absolute returns in the last 100 trading days; the 2.5%
and 97.5% quantiles of this distribution are plotted as black lines.

Fig. 14 suggests that the method works well and that the
DAX mostly stays well within the quantiles calculated from the
estimated SPDs. The DAX was sometimes rising faster than the
market expected from 1995 to mid-1998. After a fast decrease
in the second half of 1998, the market increased again till the
beginning of year 2000. Since then, the market has decreased.
However, the changes stay mostly within or very close to the
bounds predicted by our SPD estimates. The only exception is the
large shock observed in September 2001, caused by the terrorist
attack on the World Trade Center.

The upper quantiles, 97.5%, of the historical distribution
of the 45-day absolute returns mostly agree with the upper
quantiles of the SPD. The lower quantiles, 2.5%, of the SPDs
seem to be much more variable than the same quantiles of the
historical distribution. Both the lower and the upper quantiles
of the historical distribution lie mostly above the corresponding
quantiles of the estimated SPD, respectively in 69.44% and 81.75%.
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Fig. 17. Integral transformation for historical simulation.

Table 2

Fraction of the year that the DAX stays in the prediction corridor.

Year 1996 1997 1998 1999 2000 2001 2002

SPD (%) 84.40 66.13 75.30 74.60 97.22 85.66 94.84
Historical (%) 82.00 79.44 76.89 77.38 93.25 86.06 80.56

This observation just confirms the fact that the observed SPD
includes effects of risk aversion.

In Table 2, we show the fraction of the year that the DAX stays in
the prediction corridor. This suggests that the coverage is slightly
better for the historical simulation if the DAX is increasing and
better for the SPD based prediction if the DAX is decreasing (years
2000 and 2002).

6.3. Evaluation of the quality of the forecasts

The quality of the forecasts can be evaluated by comparing
the true future observation with its predicted distribution (the
SPD). Diebold et al. (1998) propose to evaluate density forecasts
using the probability integral transformed observations zh,t , where
t denotes the time and h the forecasting horizon. More precisely,

we define

zh,t =
Z Xt+h

�1
bfh,t(u)du,

where bfh,t(.) denotes our estimate of the SPD h days ahead at
time t and Xt+h is the future observation. In other words, zh,t
is the probability value of Xt+h with respect to bfh,t(.). Clearly,
the zh,t should be uniformly U(0, 1) distributed if the estimated
SPD bfh,t(.) is equal to the true density of Xt+h. In Fig. 15, we
display the histograms of zh,t ’s for each year for the estimated
SPDs and historical simulation using full and dashed histograms,
respectively. Clearly, in the ideal case, the histograms should not
be too far from a Uniform U(0, 1) distribution. In our data, for the
prediction horizon h = 45 days, we observe that the histograms
look quite different from what we would expect. Especially in
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years 1995–1999, the DAX was moving mainly in the upper
quantiles of the predicted SPD. The forecasts based on the historical
distribution of the 45-day returns behave similarly.

In order to account for the overlapping forecasting periods,
we calculate the confidence limits for the empirical distribution
function

bF(u) = 1
T

TX

t=1

I(zh,t  u)

of zh,t ’s that take into account the autocorrelation structure.

cVar{bF(u)} = 1
T

(

b�u(0) + 2
hX

j=1

✓
1 � j

T

◆
b�u(j)

)

, (33)

where �u(j) is the sample autocovariance of order j:

�u(j) = 1
T

TX

t=j+1

�
I(zh,t  u) �bF(u)

 �
I(zh,t�j  u) �bF(u)

 
.

The empirical distribution functionsbF(.) are plotted separately
for years 1995–2002 in Fig. 16. The distribution function of U(0, 1)
and the limits following from (33) are displayed as dotted lines. The
year 2003 was not included since our dataset contains only two
months of the year 2003, which did not leave enough observations
to confirm the forecasts.

In 1996 and 1997, the market was growing much faster than
the SPDs were indicating. In 1996, it never happened that the DAX
fell below the 10% quantile of the SPD, and there were only a few
days when this value was below 20%. The situation in 1998 and
1999 was less extreme even though the fast growth of the DAX
continued. The distribution given by the SPD estimatebft,h(.) for the
horizon h = 45 days does not differ significantly from the true
distribution of Xt+h in 2000–2001, but in 2002 we again observe
significant differences. Thus, the DAX was growing faster than the
option market expected in 1996, 1997, and 1999 and it was falling
faster in 2002.

Fig. 17 shows the same graphics for the forecast based on
the historical distribution of the returns. The deviations are more
clearly visible but the overall picture is very similar; the only
difference arises in 2001 when the predictions did not stay
between the limits.

7. Conclusion

Wehave proposed a simple nonparametricmodel for arbitrage-
free estimation of the SPD. Our procedure takes care of the daily
changing covariance structure and involves both types of European
option. Moreover, the covariance structure allows us to calculate
prediction intervals capturing future behavior of the SPD. We
analyze the moment dynamics of the SPD from 1995–2003. An
application to DAX EUREX data for the years 1995–2003 produces
a corridor that is compared to the future DAX index value. The
proposed technique enables us not only to price exotic options but
also to measure the risk and volatility ahead of us.
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ABSTRACT
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. 
The tool must be precise but also easily adaptable to the bank’s objectives 
regarding the relation of false acceptances (Type I error) and false rejections 
(Type II error). We explore the suitability of smooth support vector machines 
(SSVM), and investigate how important factors such as the selection of appro-
priate accounting ratios (predictors), length of training period and structure of 
the training sample infl uence the precision of prediction. Moreover, we show 
that oversampling can be employed to control the trade-off between error types, 
and we compare SSVM with both logistic and discriminant analysis. Finally, 
we illustrate graphically how different models can be used jointly to support 
the decision-making process of loan offi cers. Copyright © 2008 John Wiley 
& Sons, Ltd.

key words  insolvency prognosis; support vector machines; statistical learning 
theory; non-parametric classifi cation

INTRODUCTION

Default prediction is at the core of credit risk management and has therefore always attracted special 
attention. It has become even more important since the Basel Committee on Banking Supervision 
(Basel II) established borrowers’ rating as the crucial criterion for minimum capital requirements of 
banks. The methods for generating rating fi gures have developed signifi cantly over the last 10 years 
(Krahnen and Weber, 2001). The rationale behind the increased sophistication in predicting borrow-
ers’ default risk is the aim of banks to minimize their cost of capital and to mitigate their own 
bankruptcy risks.
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In this paper we intend to contribute to the increasing sophistication by exploring the predicting 
power of smooth support vector machines (SSVM). SSVM are a variant of the conventional support 
vector machines (SVM). The working principle of SVM in general can be described very easily. 
Imagine a group of observations in distinct classes such as balance sheet data from solvent and 
insolvent companies. Assume that the observations are such that they cannot be separated by a linear 
function. Rather than fi tting nonlinear curves to the data, SVM handle this problem by using a spe-
cifi c transformation function—the kernel function—that maps the data from the original space into 
a higher-dimensional space where a hyperplane can do the separation linearly. The constrained 
optimization calculus of SVM gives a unique optimal separating hyperplane and adjusts it in such 
a way that the elements of distinct classes possess the largest distance to the hyperplane. By re-
transforming the separating hyperplane into the original space of variables, the typical nonlinear 
separating function emerges (Vapnik, 1995). The main difference between SSVM and SVM is the 
following: the SSVM technique formulates the problem as an unconstrained minimization problem. 
This formulation has mathematical properties such as strong convexity and desirable infi nite 
differentiability.

Our aim is threefold when using SSVM. Firstly, we examine the power of the SSVM in predict-
ing company defaults; secondly, we investigate how important factors that are exogenous to the 
model, such as selecting the appropriate set of accounting ratios, length of training period and struc-
ture of the training sample, infl uence the precision; and thirdly, we explore how oversampling and 
downsampling affect the trade-off between Type I and Type II errors. In addition, we illustrate 
graphically how loan offi cers can benefi t from jointly considering the prediction results of different 
SSVM variants and different models.

There are basically three distinct approaches in predicting the risk of default: option theory-based 
approaches, parametric models and non-parametric methods. While the fi rst class relies on the rule 
of no arbitrage, the latter two are based purely on statistic principles. The popular (Merton, 1974) 
model treats the company’s equity as the underlying asset of a call option held by shareholders. In 
case of insolvency shareholders deny exercising. The probability of default is derived from an 
adapted Black–Scholes formula. Later, several authors (e.g., Longstaff and Schwartz, 1995; Mella-
Barral and Perraudin, 1997; Leland and Toft, 1996; Zhou, 2001; to name only a few) proposed 
variations to ease the strict assumptions on the structure of the data imposed by the Merton model. 
These approaches are frequently denoted as structural models. However, the most challenging 
requirement is the knowledge of market values of debt and equity. This precondition is a severe 
obstacle to using the Merton model adequately as it is only satisfi ed in a minority of cases.

Parametric statistical models can be applied to any type of data, whether they are market based 
or book based. The fi rst model introduced was discriminant analysis (DA) for univariate (Beaver, 
1966) and multivariate models (Altman, 1968). After DA usage of the logit and probit approach for 
predicting default was proposed in Martin (1977) and Ohlson (1980). These approaches rely on the 
a priori assumed functional dependence between risk of default and predictor. DA requires a linear 
functional dependence, or a pre-shaped polynomial functional dependence in advanced versions. 
Logit and probit tools work with monotonic relationships between default event and predictors such 
as accounting ratios. However, such restrictions often fail to meet the reality of observed data. This 
fact makes it clear that there is a need for an approach that, in contrast to conventional methods, 
relaxes the requirements on data and/or lowers the dependence on heuristics. Semi-parametric 
models as in Hwang et al. (2007) are between conventional linear models and non-parametric 
approaches. Nonlinear classifi cation methods such as support vector machines (SVM) or neural 
networks are even stronger candidates to meet these demands as they go beyond conventional 
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discrimination methods. Tam and Kiang (1992) and Altman et al. (1994) focus on neural networks. 
In contrast, we concentrate on SVM exclusively.

The SVM method is a relatively new technique and builds on the principles of statistical learning 
theory. It is easier to handle compared to neural networks. Furthermore, SVM have a wider scope 
of application as the class of SVM models includes neural networks (Schölkopf and Smola, 2002). 
The power of SVM technology becomes evident in a situation as depicted in Figure 1 where operat-
ing profi t margin and equity ratio are used as explanatory variables. A separating function similar 
to a parabola (in black) appears in the two-dimensional space. The accompanying light-grey lines 
represent the margin boundaries whose shape and location determine the distance of elements from 
the separating function. In contrast, the logit approach and discriminant DA yield the (white) linear 
separating function (Härdle et al., 2007a).

Selecting the best accounting ratios for executing the task of predicting is an important issue in 
practice but has not received appropriate attention in research. We address this issue of how impor-
tant the chosen set of predictors is for the outcome. For this purpose we explore the prediction 
potential of SSVM within a two-step approach. First, we derive alternative sets of accounting ratios 
that are used as predictors. The benchmark set comes from Chen et al. (2006). A second set is defi ned 
by a 1-norm SVM, and the third set is based on the principle of adding only those variables that 
contain the most contrary information with respect to an initial set that is a priori chosen. We call 
the latter procedure the incremental forward selection of variables. As a result we are working with 
three variants of SSVM. In the second step, these variants are compared with respect to their predic-
tion power. We also compare SSVM with two traditional methods: the logit model and linear dis-
criminant analysis.

The analysis is built on 28 accounting ratios of 20,000 solvent and 1000 insolvent German com-
panies. Our fi ndings show that the different SSVM types have an overall good performance with the 
means of correct predictions ranging from 70% to 78%. The SSVM on the basis of incremental 

Figure 1. SVM-separating function (black) with margin in a two-dimensional space
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forward selection clearly outperform the SSVM based on predictors selected by the 1-norm SVM. 
It is also found that oversampling infl uences the trade-off between Type I and Type II errors. Thus, 
oversampling can be used to make the relation of the two error types an issue of bank policy.

The rest of the paper is organized as follows. The following two sections describe the data, per-
formance measures and SVM methodology. In the fourth section the variable selection technique 
and outcome are explained. The fi fth section presents the experimental settings, estimation procedure 
and fi ndings, and illustrates selected results. The sixth section concludes.

DATA AND MEASURES OF ACCURACY

In this study of the potential virtues of SVM in insolvency prognosis the CreditReform database is 
employed. The database consists of 20,000 fi nancially and economically solvent and 1000 insolvent 
German companies observed once in the period from 1997 to 2002. Although the companies were 
randomly selected, accounting information dates most frequently in 2001 and 2002. Approximately 
50% of the observations come from this period. The industry distribution of the insolvent companies 
is as follows: manufacturing 25.7%, wholesale and retail trade 20.1%, real estate 9.4%, construction 
39.7% and others 5.1%. The latter includes businesses in agriculture, mining, electricity, gas and 
water supply, transport and communication, fi nancial intermediation social service activities and 
hotels and restaurants. The 20,000 solvent companies belong to manufacturing (27.4%), wholesale 
and retail trade (24.8%), real estate (16.9%), construction (13.9%) and others (17.1%). There is only 
low coincidence between the industries represented in the insolvent and the solvent group of ‘others’. 
The latter comprises many companies in industries such as publication administration and defense, 
education and health. Figure 2 shows the distribution of solvent and insolvent companies across 
industries. A set of balance sheet and income statement items describes each company. The ones we 
use for further analysis are described below:

• AD (amortization and depreciation)
• AP (accounts payable)
• AR (account receivable)
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Figure 2. The distribution of solvent and insolvent companies across industries
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• CA (current assets)
• CASH (cash and cash equivalents)
• CL (current liabilities)
• DEBT (debt)
• EBIT (earnings before interest and tax)
• EQUITY (equity)
• IDINV (growth of inventories)
• IDL (growth of liabilities)
• INTE (interest expense)
• INV (inventories)
• ITGA (intangible assets)
• LB (lands and buildings)
• NI (net income)
• OI (operating income)
• QA (quick assets)
• SALE (sales)
• TA (total assets)
• TL (total liabilities)
• WC (working capital (= CA − CL))

The companies appear in the database several times in different years; however, each year of 
balance sheet information is treated as a single observation. The data of the insolvent companies 
were collected 2 years prior to insolvency. The company sizes are measured by total assets. We 
construct 28 ratios to condense the balance sheet information (see Table I). However, before dealing 
with the CreditReform dataset, some companies whose behavior is very different from other ones 
are fi ltered out in order to make the dataset more compact. The data pre-processing procedure is 
described as follows:

1. We excluded companies whose total assets were not in the range of 105–107 EUR (remaining 
insolvent: 967; solvent: 15,834).

2. In order to compute the accounting ratios AP/SALE, OI/TA, TL/TA, CASH/TA, IDINV/INV, 
INV/SALE, EBIT/TA and NI/SALE, we have removed companies with zero denominators 
(remaining insolvent: 816; solvent 11,005).

3. We dropped outliers, that is, in the insolvent class companies with extreme values of fi nancial 
indices have been removed (remaining insolvent: 811; solvent: 10,468).

After pre-processing, the dataset consists of 11,279 companies (811 insolvent and 10,468 solvent). 
In the following analysis, we focus on the revised dataset.

The performance of the SSVM is evaluated on the basis of three measures of accuracy: Type I 
error rate (%), Type II error rate (%) and total error rate (%). The Type I error is the ratio of the 
number of insolvent companies predicted as solvent ones to the number of insolvent companies. The 
Type II error is the ratio of the number of solvent companies predicted as insolvent ones to the 
number of solvent companies. Accordingly, the error-type rates (in percentage) are defi ned as 
follows

• Type I error rate = FN/(FN + TP) × 100 (%);
• Type II error rate = FP/(FP+ TN) × 100 (%);
• Total error rate = (FN + FP)/(TP + TN + FP + FN) × 100 (%);
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where

True positive (TP): Predict insolvent companies as insolvent ones
False positive (FP): Predict solvent companies as insolvent ones
True negative (TN): Predict solvent companies as solvent ones
False negative (FN): Predict insolvent companies as solvent ones

The following matrix explains the terms used in the defi nition of error rates:

Table I. Defi nitions of accounting ratios used in the analysis

Variable Ratio Indicator for

X1 NI/TA Profi tability
X2 NI/SALE Profi tability
X3 OI/TA Profi tability
X4 OI/SALE Profi tability
X5 EBIT/TA Profi tability
X6 (EBIT + AD)/TA Profi tability
X7 EBIT/SALE Profi tability
X8 EQUITY/TA Leverage
X9 (EQUITY-ITGA)/ Leverage

(TA-ITGA-CASH-LB) Leverage
X10 CL/TA Leverage
X11 (CL-CASH)/TA Leverage
X12 TL/TA Leverage
X13 DEBT/TA Leverage
X14 EBIT/INTE Leverage
X15 CASH/TA Liquidity
X16 CASH/CL Liquidity
X17 QA/CL Liquidity
X18 CA/CL Liquidity
X19 WC/TA Liquidity
X20 CL/TL Liquidity
X21 TA/SALE Activity
X22 INV/SALE Activity
X23 AR/SALE Activity
X24 AP/SALE Activity
X25 Log(TA) Size
X26 IDINV/INV Growth
X27 IDL/TL Growth
X28 IDCASH/CASH Growth

Predicted class

Positive Negative 

Actual Positive True positive (TP) False negative (FN) 
Class Negative False positive (FP) True negative (TN)

SVM METHODOLOGY

In recent years, the so-called support vector machines (SVM), which have their roots in the theory 
of statistical learning (Burges, 1998; Christianini and Shawe-Taylor, 2000; Vapnik, 1995) have 
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become one of the most successful learning algorithms for classifi cation as well as for regression 
(Drucker et al., 1997; Mangasarian and Musicant, 2000; Smola and Schölkopf, 2004). Some features 
of SVM make them particularly attractive for predicting the default risk of companies. SVM are a 
non-parametric technique that learn the separating function from the data; they are based on a sound 
theoretical concept, do not require a particular distribution of the data, and deliver an optimal solu-
tion for the expected loss from misclassifi cation. SVM estimate the separating hyperplane between 
defaulting and non-defaulting companies under the constraint of a maximal margin between the two 
classes (Vapnik, 1995; Schölkopf and Smola, 2002).

SVM can be formulated differently. However, in all variants either a constrained minimization 
problem or an unconstrained minimization problem is solved. The objective function in these opti-
mization problems basically consists of two parts: a misclassifi cation penalty part which stands for 
model bias and a regularization part which controls the model variance. We briefl y introduce three 
different models: the smooth support vector machines (SSVM) (Lee and Mangasarian, 2001), the 
smooth support vector machines with reduced kernel technique (RSVM) and the 1-norm SVM. The 
SSVM will be used for classifi cation and the 1-norm SVM will be employed for variable selection. 
The RSVM are applied for oversampling in order to mitigate the computational burden due to 
increasing the number of instances in the training sample.

Smooth support vector machines
The aim of the SVM technique is to fi nd the separating hyperplane with the largest margin from the 
training data. This hyperplane is ‘optimal’ in the sense of statistical learning: it strikes a balance 
between overfi tting and underfi tting. Overfi tting means that the classifi cation boundary is too curved 
and therefore has less ability to classify unseen data correctly. Underfi tting, on the other hand, gives 
a too simple classifi cation boundary and leaves too many misclassifi ed observations (Vapnik, 1995). 
We begin with linear support vector machines. Given a training dataset S = {(x1, y1),  .  .  .  , (xn, yn)} 
! !d × !, where xi ∈ !d is the input data and yi ∈ {−1, 1} is the corresponding class label, a con-
ventional SVM separating hyperplane is generated by solving a convex optimization problem given 
as follows:
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where C is a positive parameter controlling the trade-off between the training error (model bias) and 
the part of maximizing the margin (model variance) that is achieved by minimizing ⎪⎪w⎪⎪2
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In a solution of (2), x is given by xi = {1 − yi(w"xi + b)}+ for all i where the plus function x+ is 
defi ned as x+ = max{0, x}. Thus, we can replace xi in (2) by {1 − yi(w"xi + b)}+. This will convert 
the problem (2) into an unconstrained minimization problem as follows:

 min
w b
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y w b w b
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This formulation reduces the number of variables from d + 1 + n to d + 1. However, the 
objective function to be minimized is not twice differentiable, which precludes the use of a fast 
Newton method. In the SSVM, the plus function x+ is approximated by a smooth p-function, 

 p x x e x, log ,α
α

αα( ) = + +( ) >−1
1 0. Replacing the plus function with a very accurate smooth approx-

imation p-function gives the smooth support vector machine formulation:
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where a > 0 is the smooth parameter. The objective function in problem (4) is strongly convex and 
infi nitely differentiable. Hence, it has a unique solution and can be solved by using a fast Newton–
Armijo algorithm. For the nonlinear case, this formulation can be extended to the nonlinear SVM 
by using the kernel trick as follows:
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where K(xi, xj) is a kernel function. This kernel function represents the inner product of f(xi) and 
f(xj), where f is a certain mapping from input space !d to a feature space F. We do not need to 
know the mapping of f explicitly. This is the so-called kernel trick. The nonlinear SSVM classifi er 
can be expressed in matrix form as follows:

 u K A b K A u bj j
uj

" ", ,x x( ) + = ( ) +
≠

∑
0

 (6)

where A = [x"
1;  .  .  .  ; x"

n] and Aj = x"
j.

Reduced support vector machine
In large-scale problems, the full kernel matrix will be very large so it may not be appropriate to use 
the full kernel matrix when dealing with (5). In order to avoid facing such a big full kernel matrix, 
we brought in the reduced kernel technique (Lee and Huang, 2007). The key idea of the reduced 
kernel technique is to randomly select a portion of data and to generate a thin rectangular kernel 
matrix, then to use this much smaller rectangular kernel matrix to replace the full kernel matrix. In 
the process of replacing the full kernel matrix by a reduced kernel, we use the Nyström approxima-
tion (Smola and Schölkopf, 2000) for the full kernel matrix:

 K A A K A A K A A K A A, , , ," " " "( ) ≈ ( ) ( ) ( )−" " " "1
 (7)
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where K(A, A") = Kn×n, Ãñ×d is a subset of A and K(A, Ã) = K̃n×ñ is a reduced kernel. Thus, we have

 K A A u K A A K A A K A A u K A A u, , , , ," " " " "( ) ≈ ( ) ( ) ( ) = ( )−" " " " " "1
 (8)

where ũ ∈ !ñ is an approximated solution of u via the reduced kernel technique. The reduced kernel 
method constructs a compressed model and cuts down the computational cost from O(n3) to O(ñ3). 
It has been shown that the solution of reduced kernel matrix approximates the solution of full kernel 
matrix well. The SSVM with the reduced kernel are called RSVM.

1-Norm support vector machine
The 1-norm support vector machine replaces the regularization term ⎪⎪w⎪⎪2

2
 in (1) with the !1-norm 

of w. The !1-norm regularization term is also called the LASSO penalty (Tibshirani, 1996). It tends 
to shrink the coeffi cients w’s towards zeros in particular for those coeffi cients corresponding to 
redundant noise features (Zhu et al., 2003; Williams and Seeger, 2001). This nice feature will lead 
to a way of selecting the important ratios in our prediction model. The formulation of 1-norm SVM 
is described as follows:
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The objective function of (9) is a piecewise linear convex function. We can reformulate it as the 
following linear programming problem:
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where sj is the upper bound of the absolute value of wj. In the optimal solution of (10) the sum of 
sj is equal to ⎪⎪w⎪⎪1.

The 1-norm SVM can generate a very sparse solution w and lead to a parsimonious model. In a 
linear SVM classifi er, solution sparsity means that the separating function f(x) = w"x + b depends 
on very few input attributes. This characteristic can signifi cantly suppress the number of nonzero 
coeffi cient w’s, especially when there are many redundant noise features (Fung and Mangasarian, 
2004; Zhu et al., 2003). Therefore the 1-norm SVM can be a very promising tool for the variable 
selection tasks. We will use it to choose the important fi nancial indices for our bankruptcy progno-
sis model.

SELECTION OF ACCOUNTING RATIOS

In principle any possible combination of accounting ratios could be used as explanatory variables 
in a bankruptcy prognosis model. Therefore, appropriate performance measures are needed to gear 
the process of variable selection towards picking the ratios with the highest separating power. In 
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Chen et al. (2006) accuracy ratio (AR) and conditional information entropy ratio (CIER) determine 
the selection procedure’s outcome. It turned out that the ratio ‘accounts payable divided by sales’, 
X24 (AP/SALE), has the best performance values for a univariate SVM model. The second selected 
variable was the one combined with X24 that had the best performance in a bivariate SVM model. 
This is the analogue of forward selection in linear regression modeling. Typically, improvement 
declines if new variables are added consecutively. In Chen et al. (2006) the performance indicators 
started to decrease after the model included eight variables. The described selection procedure is 
quite lengthy, since there are at least 216 accounting ratio combinations to be considered. We will 
not employ the procedure here but use the chosen set of eight variables as the benchmark set V1. 
Table II presents V1 in the fi rst column.

We propose two different approaches for variable selection that will simplify the selection pro-
cedure. The fi rst one is based on 1-norm SVM introduced above. The SVM were applied to the 
period from 1997 to 1999. We selected the variables according to the size of the absolute values of 
the coeffi cients w from the solution of the 1-norm SVM. Table II displays the eight selected variables 
as V2. We obtain eight variables out of 28. Note that fi ve variables, X2, X3, X5, X15 and X24, are 
also in the benchmark set V1.

The second variable selection scheme is incremental forward variable selection. The intuition 
behind this scheme is that a new variable will be added into the already selected set, if it brings in 
the most extra information. We measure the extra information for an accounting ratio using the 
distance between this new ratio vector and the space spanned by the current selected ratio subset. 
This distance can be computed by solving a least-squares problem (Lee et al., 2008). The ratio with 
the farthest distance will be added into the selected accounting ratio set. We repeat this procedure 
until a certain stopping criterion is satisfi ed. The accounting ratio X24 (AP/SALE) is used as the 
initial selected accounting ratio. Then we follow the procedure seven times to select seven more 
extra accounting ratios. The variable set generated is called V3. We will use these three variable 
sets, V1, V2 and V3, for further data analysis in the next section. The symbol + denotes the variables 
that are common to all sets: X2, X3, X5 and X24.

Table II. Selected variables

Variable Defi nition V1 V2 V3

X2+ NI/SALE x x x
X3+ OI/TA x x x
X4 OI/SALE x
X5+ EBIT/TA x x x
X6 (EBIT + AD)/TA x
X7 EBIT/SALE x
X8 EQUITY/TA x
X12 TL/TA x
X13 DEBT/TA x
X15 CASH/TA x x
X21 TA/SALE x
X22 INV/SALE x
X23 AR/SALE x
X24+ AP/SALE x x x
X26 IDINV/INV x
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EXPERIMENTAL SETTING AND RESULTS

In this section we present our experimental setting and results. We compare the performance of three 
sets of accounting ratios, V1, V2 and V3, in our SSVM-based insolvency prognosis model. The 
performance is measured by Type I error rate, Type II error rate and total error rate. Fortunately, in 
reality, there is only a small number of insolvent companies compared to the number of solvent 
companies. Due to the small share in a sample that refl ects reality, a simple classifi cation such as 
naive Bayesian or a decision tree tends to classify every company as solvent. Such a classifi cation 
would imply accepting all companies’ loan applications and would thus lead to a very high Type I 
error rate while the total error rate and the Type II error rate are very small. Such models are useless 
in practice.

Our cleaned dataset consists of around 10% of insolvent companies. Thus, the sample is fairly 
unbalanced although the share of insolvent companies is higher than in reality. In order to deal with 
this problem, insolvency prognosis models usually start off with more balanced training and testing 
samples than reality can provide. For example, Härdle et al. (2007b) employ a downsampling strat-
egy and work with balanced (50%/50%) samples. The chosen bootstrap procedure repeatedly ran-
domly selects a fi xed number of insolvent companies from the training set and adds the same number 
of randomly selected solvent companies. However, in this paper we adopt an oversampling strategy, 
to balance the size between the solvent and the insolvent companies, and refer to the downsampling 
procedure primarily for reasons of reference.

Oversampling duplicates the number of insolvent companies a certain number of times. In this 
experiment, we duplicate in each scenario the number of insolvent companies as many times as 
necessary to reach a balanced sample. Note that in our oversampling scheme every solvent and 
insolvent company’s information is utilized. This increases the computational burden due to increas-
ing the number of training instances. We employ the reduced kernel technique introduced above to 
mediate this problem.

All classifi ers we need in these experiments are reduced SSVM with the Gaussian kernel, which 
is defi ned as

 K ex z x z,( ) = − −γ 2
2

where g is the width parameter. In nonlinear SSVM, we need to determine two parameters: the 
penalty term C and g . The 2D grid search will consume a lot of time. In order to cut down the search 
time, we adopt the uniform design model selection method (Huang et al., 2007) to search an appro-
priate pair of parameters.

Performance of SSVM
We conduct the experiments in a scenario in which we always train the SSVM bankruptcy progno-
sis model from the data at hand and then use the trained SSVM to predict the following year’s cases. 
This strategy simulates the real task of prediction which binds the analyst to use past data for fore-
casting future outcomes. The experimental setting is described in Table III. The number of periods 
which enter the training set changes from 1 year (S1) to 5 years (S5).

In Tables IV and V we report the results for the oversampling and downsampling strategy respec-
tively. Mean and standard deviation of Type I, Type II and total error rates (misclassifi cation rates) 
are shown. We perform these experiments for the three variable sets, V1 to V3, and compare the 
oversampling and downsampling scheme in each experiment. All experiments are repeated 30 times 
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Table III. The scenario of our experiments

Scenario Observation period of training set Observation period of testing set

S1 1997 1998
S2 1997–1998 1999
S3 1997–1999 2000
S4 1997–2000 2001
S5 1997–2001 2002

Table IV. Results of oversampling for three variable sets (RSVM)

Set of accounting 
ratios

Scenario Type I error rate Type II error rate Total error rate

Mean SD Mean SD Mean SD

V1 S1 33.16 0.55 26.15 0.13 26.75 0.12
S2 31.58 0.01 29.10 0.07 29.35 0.07
S3 28.11 0.73 26.73 0.16 26.83 0.16
S4 30.14 0.62 25.66 0.17 25.93 0.15
S5 24.24 0.56 23.44 0.13 23.48 0.13

V2 S1 29.28 0.92 27.20 0.24 27.38 0.23
S2 28.20 0.29 30.18 0.18 29.98 0.16
S3 27.41 0.61 29.67 0.19 29.50 0.17
S4 28.12 0.74 28.32 0.19 28.31 0.15
S5 23.91 0.62 24.99 0.10 24.94 0.10

V3 S1 29.28 0.83 25.11 0.25 25.46 0.21
S2 31.27 0.62 29.79 0.34 29.94 0.35
S3 30.91 0.13 27.21 0.19 27.48 0.18
S4 32.00 0.54 25.19 0.17 25.61 0.14
S5 26.98 0.42 22.90 0.11 23.08 0.11

Table V. Results of downsampling for three variable sets (SSVM with Gaussian kernel) 

Set of accounting 
ratios

Scenario Type I error rate Type II error rate Total error rate

Mean SD Mean SD Mean SD

V1 S1 32.20 3.12 28.98 1.70 29.26 1.46
S2 29.74 2.29 28.77 1.97 28.87 1.57
S3 30.46 1.88 26.23 1.33 26.54 1.17
S4 31.55 1.52 23.89 0.97 24.37 0.87
S5 28.81 1.53 23.09 0.73 23.34 0.69

V2 S1 29.94 2.91 28.07 2.15 28.23 1.79
S2 28.77 2.58 29.80 1.89 29.70 1.52
S3 29.88 1.88 27.19 1.32 27.39 1.19
S4 29.06 1.68 26.26 1.00 26.43 0.86
S5 26.92 1.94 25.30 1.17 25.37 1.06

V3 S1 30.87 3.25 26.61 2.45 26.98 2.11
S2 33.31 2.16 28.60 2.01 29.08 1.65
S3 31.82 1.52 26.41 1.45 26.80 1.31
S4 35.0 2.13 24.29 0.77 24.96 0.68
S5 30.66 1.60 21.92 0.96 22.30 0.92
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because of the randomness in the experiments. The randomness is very obvious in the downsampling 
scheme (see Table V). Each time we only choose negative instances with the same size of the whole 
positive instances. The observed randomness in our oversampling scheme (Table IV) is due to apply-
ing the reduced kernel technique to solving the problem. We use the training set in the downsampling 
scheme as the reduced set. That is, we use all the insolvent instances and the equal number of solvent 
instances as our reduced set in generating the reduced kernel. Then we duplicate the insolvent part 
of the kernel matrix to balance the size of insolvent and solvent companies.

Both tables reveal that different variable selection schemes produce dissimilar results with respect 
to both precision and deviation of predicting. The oversampling scheme shows better results in the 
Type I error rate but has slightly bigger total error rates. It is also obvious that in almost all models 
a longer training period works in favor of accuracy of prediction. Clearly, the oversampling schemes 
have much smaller standard deviations in the Type I error rate, Type II error rate, and total error 
rate than the downsampling one. According to this observation, we conclude that the oversampling 
scheme will generate a more robust model than the downsampling scheme.

Figure 3 illustrates the development (learning curve) of the Type I error rate and total error rate 
with regard to variable set V3 for both oversampling and downsampling. The bullets on the lines 
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mark the different training scenarios. For example, the fi rst bullets from the left represent S1 (train-
ing set from 1997, testing set from 1998), the second bullets illustrate S2 (training set from 1997 to 
1998, testing set from 1999) etc. For the purpose of better visibility, the Type I error rate is only 
indirectly displayed as 100 − Type I error rate. The upper solid line in gray represents the oversam-
pling scheme and the black solid line the downsampling one. Note that the performance in terms of 
the Type I error rate is worse the higher the distance between the upper end of the diagram and the 
solid lines. The learning curve over the time frame the training sample covers shows an upward 
tendency between S1 and S5 for the number 100 − Type 1 error rate. However, the curves are non-
monotonic. There is a disturbance for the forecast of year 1999 that is based on training samples 
that cover 1997 to 1998, and also one for the forecast of year 2001 based on training samples cov-
ering 1997 to 2000. Both disturbances may have been caused by the reform of the German insolvency 
code that came into force in 1999. The most important objective of the reform was to allow for more 
company restructuring and less liquidation than before. This reform considerably changed the behav-
ior of German companies towards declaring insolvency, and thus most likely the nature of balance 
sheets that are associated with insolvent companies.

The disturbances are less visible with respect to the overall performance. The dashed lines near 
the lower edge of the diagram box show total error rates, gray for the oversampling and black for 
the downsampling scheme. There is a clear tendency towards a lower total error rate from S2 to S5 
for both schemes. The downsampling line is slightly below the oversampling one, representing a 
slightly better performance in terms of the mean of the total error rate. However, this result has to 
be seen in the light of the trade-off between magnitude and stability of results, as oversampling 
yields much more stable results. The standard deviations for V3 are only a small portion of the 
numbers generated by the downsampling procedure across all training scenarios (Tables IV and 
V).

Table VI presents the comparison between the sets by focusing on the total error rate. It indicates 
by an asterisk whether the differences in means are signifi cant at the 10% level via t-test and, in 
addition, gives the set which is superior in the dual comparison. Variable set V2 is nearly absent in 
Table VI. Thus V2 is clearly outperformed by both sets V1 and V3. There is no clear distinction 
between V1 and V3 except for Scenario S5. Given the long training period V3 is superior in both 
the downsampling and oversampling scenarios and generates the lowest total error rate in absolute 
terms.

In order to investigate the effect of the oversampling versus the downsampling scheme we follow 
the setting as above, but we use the V3 variable set. For each training–test pair, we carry out over-
sampling for positive instances from 6 to 15 times. We show the trend and effect in Figure 4. It is 

Table VI. Statistical signifi cance in differences in means (10% level) 
between the three variable sets: total error 

Sets S1 S2 S3 S4 S5

Oversampling
V1 vs. V2 V1* V1* V1* V1* V1*
V1 vs. V3 V3* V1* V1* V3* V3*
V2 vs. V3 V3* V3* V3* V3*
Downsampling
V1 vs. V2 V2* V1* V1* V1* V1*
V1 vs. V3 V3* V1* V3*
V2 vs. V3 V3* V3* V3* V3*
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easy to see that the Type I (II) error rate decreases (increases) as the oversampling times increase. 
This feature implies that the machine would have a tendency of classifying all companies as solvent 
if the training sample had realistic shares of insolvent and solvent companies. Such behavior would 
produce a Type I error rate of 100%. The more balanced the sample is, the higher the penalty for 
classifying insolvent companies as solvent. This fact is illustrated in Figure 4 by the decreasing curve 
with respect to the number of duplications of insolvent companies.

Often banks favor a strategy that allows them to minimize the Type II errors for a given number 
of Type I errors. The impact of oversampling on the trade-off between the two types of errors—
shown in Figure 4—implies that the number of oversampling times is a strategic variable in training 
the machine. This number can be determined by the bank’s aim regarding the relation of Type I and 
Type II errors.
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Figure 4. The effect of oversampling on Type I and Type II error rates for scenario S5 and variables set V3
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Comparison with logit and linear discriminant analysis
The examination of SSVM is incomplete without comparing it to highly used traditional methods 
such as the logistic model (LM) and linear discriminant analysis (DA). Therefore, we replicate the 
research design of the previous section with both traditional models. In addition, we test whether 
the difference in means in the total error rate is statistically signifi cant. The comparison of means 
with regard to the total error rate is presented in Tables VII and VIII for the oversampling and 
downsampling strategy respectively. Table IX summarizes the comparison of the approaches and 
displays the statistical signifi cance of their mean differences. Asterisks indicate the out-performance 

Table VII. Comparison of the total error rate (%) as generated by SSVM 
with LM and DA: oversampling for three variable sets

Set of accounting 
ratios

Scenario SSVM LM DA

Mean Mean Mean

V1 S1 26.75 26.50 25.60
S2 29.35 28.96 27.22
S3 26.83 28.94 27.42
S4 25.93 26.20 25.55
S5 23.48 26.95 28.23

V2 S1 27.38 26.80 26.20
S2 29.98 28.63 28.70
S3 29.50 29.52 29.46
S4 28.31 28.43 28.08
S5 24.94 29.22 31.42

V3 S1 25.46 25.07 23.65
S2 29.94 28.29 27.02
S3 27.48 27.89 25.84
S4 25.61 26.60 24.85
S5 23.08 25.32 26.15

Table VIII. Comparison of the total error rate (%) as generated by SSVM 
with LM and DA: downsampling for three variable sets 

Set of accounting 
ratios

Scenario SSVM LM DA

Mean Mean Mean

V1 S1 29.26 26.86 27.34
S2 28.87 28.62 28.26
S3 26.54 27.54 28.22
S4 24.37 24.80 25.47
S5 23.34 24.81 25.86

V2 S1 28.23 27.28 28.62
S2 29.70 29.29 29.65
S3 27.39 28.56 29.58
S4 26.43 26.41 27.96
S5 25.37 26.52 29.69

V3 S1 26.98 26.03 25.47
S2 29.08 28.04 27.22
S3 26.80 26.60 26.51
S4 24.96 25.25 25.44
S5 22.30 23.96 24.31



528  W. Härdle et al.

Copyright © 2008 John Wiley & Sons, Ltd. J. Forecast. 28, 512–534 (2009)
 DOI: 10.1002/for

of the logistic model or discriminant analysis by SSVMs at the 10% level via t-test. It is obvious 
that the SSVM technique yields the better results, the longer the period is from which the training 
observations are taken. In fact, the results show that the SSVM works signifi cantly better than LM 
and DA in most cases in S3 to S5, with the clearest advantage for testing sets S4 and S5, where the 
accounting information of the predicted companies dates most frequently in 2001 and 2002.

We also investigate the effect of oversampling on LM and DA. We follow the same setting in the 
previous section, doing oversampling for positive instances from 6 to 15 times. Unlike the SSVM-
based insolvency prognosis model, the DA approach is insensitive in both Type I and Type II error 
rates to the replication of positive instances. The result for DA is illustrated in Figure 5. The LM 
approach has very similar results to the SSVM model. We will not show the result here.

More data visualization
Each SSVM model has its own output value. We use this output to construct 2D coordinate systems. 
Figure 6 shows an example for scenario S5 where the scores of the SSVMV3 model (SSVMV1 model) 
are represented by the horizontal (vertical) line. A positive (negative) value indicates predicted 
insolvency (solvency). We then map all insolvent companies in the testing set onto the coordinate 
systems. There are 132 insolvent companies and 2866 solvent companies in this testing set. We also 
randomly choose the same amount of solvent companies from the testing set.

The plus points in the lower left quadrant and the circle points in the upper right quadrant show 
the number of Type I errors and Type II errors, respectively, in both models. Plus points in the upper 
right quadrant and circle points in the lower left quadrant refl ect those companies that are predicted 

Table IX. Statistical signifi cance in differences of means (10% level) 
between SSVM and LM and SSVM and DA, respectively, for the sets V1 
to V3: total error rate

V1 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * * *
SSVM vs. DA * *
Downsampling
SSVM vs. LM * * *
SSVM vs. DA * * *

V2 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * *
SSVM vs. DA *
Downsampling
SSVM vs. LM * *
SSVM vs. DA * * *

V3 S1 S2 S3 S4 S5

Oversampling
SSVM vs. LM * * *
SSVM vs. DA *
Downsampling
SSVM vs. LM *
SSVM vs. DA * *
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correctly by both models. Circles and plus points in the lower right quadrant (upper left quadrant) 
represent confl icting prognoses. We also report the number of insolvent companies and the number 
of solvent companies in each quadrant of Figure 6. The two different insolvency prognosis models 
based on V1 and V3, respectively, can be considered as alternative experts. The two forecasts for 
each instance in the testing set is plotted in the diagram. The proposed visualization scheme could 
be used to support loan offi cers in their fi nal decision on accepting or rejecting a client’s application. 
Furthermore, this data visualization scheme can also be applied to two different learning algorithms, 
such as SSVMV3 vs. LMV3 and SSVMV3 vs. DAV3. We show these data visualization plots in Figures 
7 and 8. If the loan application has been classifi ed as solvent or insolvent by alternative machines, 
it is most likely that the prognosis meets reality (the plus points in the upper right quadrant and the 
circle points in the lower left quadrant). Opposing forecasts, however, should be taken as a hint to 
evaluate the particular company more thoroughly, for example by employing an expert team, or even 
by using a third model.
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Figure 5. The effect of oversampling on Type I and Type II error rates for scenario S5 and variables set V3 
in DA
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CONCLUSION

In this paper we apply different variants of support vector machines to a unique dataset of German 
solvent and insolvent companies. We use a priori a given set of predictors as a benchmark, and 
suggest two further variable selection procedures; the fi rst procedure uses the 1-norm SVM and the 
second, incremental way consecutively selects the variable that is the farthest one from the column 
space of the current variable set. Given the three SSVM based on distinct variable sets, the relative 
performance of the types of smooth support vector machines is tested. The performance is measured 
by error rates. The two sets of variables newly created here lead to a dissimilar performance of 
SSVM. The selection of variables by the 1-norm SVM clearly underperforms compared to the 
incremental selection scheme. This difference in accuracy hints at the need for further research with 
respect to the variable selection. The training period makes a clear difference, though. Results 
improve considerably if more years of observation are used in training the machine. The SSVM 
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with V1) in scenario S5
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model benefi ts more from longer training periods than traditional methods do. As a consequence the 
logit model and discriminant analysis are both outperformed by the SSVM in long-term training 
scenarios. Moreover, the oversampling scheme works very well in dealing with unbalanced datasets. 
It provides fl exibility to control the trade-off between Type I and Type II errors, and is therefore a 
strategic instrument in a bank’s hand. The results generated are very stable in terms of small devia-
tions of Type I, Type II and total error rates.

Finally, we want to stress that SSVM should be considered not as a substitute for traditional 
methods but rather as a complement which, when employed side by side with either the logit model 
or discriminant analysis, can generate new information that helps practitioners select those compa-
nies that are diffi cult to predict and, therefore, need more attention and further treatment.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Model one ( SSVM with V3 )

M
od

el
 tw

o 
( 

LM
 w

ith
 V

3 
)

 

 
insolvent
solvent

insolvent : 4
solvent : 3

insolvent : 31
solvent : 97

insolvent : 90
solvent : 28

insolvent : 7
solvent : 4

Figure 7. Data visualization via model one (generated by SSVM with V3) and model two (generated by LM 
with V3) in scenario S5



532  W. Härdle et al.

Copyright © 2008 John Wiley & Sons, Ltd. J. Forecast. 28, 512–534 (2009)
 DOI: 10.1002/for

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Model one ( SSVM with V3 )

M
od

el
 tw

o 
( 

D
A

 w
ith

 V
3 

)

 

 
insolvent
solvent

insolvent : 5
solvent : 8

insolvent : 30
solvent : 92

insolvent : 85
solvent : 27

insolvent : 12
solvent : 5

ACKNOWLEDGEMENTS

This research was supported by the ‘Stiftung Geld und Währung’ and by the Deutsche Forschun-
gsgemeinschaft through the SFB 649 ‘Economic Risk’.

REFERENCES

Altman E. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of 
Finance 23(4): 589–609.

Altman E, Marco G, Varetto F. 1994. Corporate distress diagnosis: comparisons using linear discriminant analy-
sis and neural networks (the italian experience). Journal of Banking and Finance 18: 505–529.

Figure 8, Data visualization via model one (generated by SSVM with V3) and model two (generated by DA 
with V3) in scenario S5



Variable Selection and Oversampling in the Use of SSVM  533

Copyright © 2008 John Wiley & Sons, Ltd. J. Forecast. 28, 512–534 (2009)
 DOI: 10.1002/for

Beaver W. 1966. Financial ratios as predictors of failures: empirical research in accounting: selected studies. 
Journal of Accounting Research 4: 71–111.

Burges CJC. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge 
Discovery 2(2): 121–167.

Chen S, Härdle W, Moro RA. 2006. Estimation of default probabilities with support vector machines. SFB 649 
Discussion Paper 2006-077.

Cristianini N, Shawe-Taylor J. 2000. An Introduction to Support Vector Machines. Cambridge University Press: 
Cambridge, UK.

Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V. 1997. Support vector regression machines. In Advances 
in Neural Information Processing Systems 9, Mozer MC, Jordan MI, Petsche T (eds). MIT Press: Cambridge, 
MA; 155–161.

Fung G, Mangasarian OL. 2004. A feature selection Newton method for support vector machine classifi cation. 
Computational Optimization and Applications 28(2): 185–202.

Härdle W, Moro R, Schäfer D. 2007a. Graphical data representation in bankruptcy analysis based on support 
vector machines. In Handbook of Data Visualization, Chen C, Härdle W, Unwin A (eds). Springer: Heidelberg; 
853–872.

Härdle W, Moro RA, Schäfer D. 2007b. Estimating probabilities of default with support vector machines. SFB 
649 Discussion Paper 2007-035.

Huang CM, Lee YJ, Lin DKJ, Huang SY. 2007. Model selection for support vector machines via uniform design. 
Computational Statistics and Data Analysis 52: 335–346. Special Issue on Machine Learning and Robust Data 
Mining (to appear).

Hwang RC, Cheng KF, Lee JC. 2007. A semiparametric method for predicting bankruptcy. Journal of Forecast-
ing 26(5): 317–342.

Krahnen JP, Weber M. 2001. Generally accepted rating principles: a primer. Journal of Banking and Finance 
25(1): 3–23.

Lee YJ, Huang SY. 2007. Reduced support vector machines: a statistical theory. IEEE Transactions on Neural 
Networks 18: 1–13.

Lee YJ, Mangasarian OL. 2001. SSVM: a smooth support vector machine. Computational Optimization and 
Applications 20: 5–22.

Lee YJ, Chang CC, Chao CH. 2008. Incremental forward feature selection with application to microarray gene 
expression. Journal of Biopharmaceutical Statistics 18(5): 824–840.

Leland H, Toft K. 1996. Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. 
Journal of Finance 51: 987–1019.

Longstaff FA, Schwartz ES. 1995. A simple approach to valuating risky fi xed and floating rate debt. Journal of 
Finance 50: 789–819.

Mangasarian OL, Musicant DR. 2000. Robust linear and support vector regression. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 22(9): 950–955.

Martin D. 1977. Early warning of bank failure: a logit regression approach. Journal of Banking and Finance 1: 
249–276.

Mella-Barral P, Perraudin W. 1997. Strategic debt service. Journal of Finance 52: 531–556.
Merton R. 1974. On the pricing of corporate debt: the risk structure of interest rates. Journal of Finance 29(2): 

449–470.
Ohlson J. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 

18(1): 109–131.
Schölkopf B, Smola AJ. 2002. Learning with Kernels. MIT Press: Cambridge, MA.
Smola A, Schölkopf B. 2000. Sparse greedy matrix approximation for machine learning. In Proceedings of the 

17th International Conference on Machine Learning, San Francisco, CA.
Smola A, Schölkopf B. 2004. A tutorial on support vector regression. Statistics and Computing 14: 199–222.
Tam K, Kiang M. 1992. Managerial application of neural networks: the case of bank failure prediction. Manage-

ment Science 38(7): 926–947.
Tibshirani R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society 58(1): 

267–288.
Vapnik VN. 1995. The Nature of Statistical Learning Theory. Springer: New York.
Williams CKI, Seeger M. 2001. Using the Nyström method to speed up kernel machines. Advances in Neural 

Information Processing Systems 13: 682–688.



534  W. Härdle et al.

Copyright © 2008 John Wiley & Sons, Ltd. J. Forecast. 28, 512–534 (2009)
 DOI: 10.1002/for

Zhou C. 2001. The term structure of credit spreads with jump risk. Journal of Banking and Finance 25: 2015–
2040.

Zhu J, Rosset S, Hastie T, Tibshirani R. 2003. 1-Norm support vector machines. In Advances in Neural Informa-
tion Processing Systems 16: 49–56.

Authors’ biographies:
Wolfgang Härdle did in 1982 his Dr. rer. nat. in Mathematics at Universität Heidelberg and in 1988 his Habili-
tation at Universität Bonn. He is currently chair professor of statistics at the Dept. of Economics and Business 
Administration, Humboldt-Universität zu Berlin. He is also director of CASE—Center for Applied Statistics & 
Economics and of the Collaborative Research Center ‘Economic Risk’. His research focuses on dimension reduc-
tion techniques, computational statistics and quantitative fi nance. He has published 34 books and more than 200 
papers in top statistical, econometrics and fi nance journals. He is one of the ‘Highly cited Scientist’ according to 
the Institute of Scientifi c Information.

Yuh-Jye Lee received his Master degree in Applied Mathematics from the National Tsing Hua University, Taiwan 
in 1992 and PhD degree in computer sciences from the University of Wisconsin-Madison in 2001. In 2002, Dr. 
Lee joined the Computer Science and Information Engineering Department, National Taiwan University of Science 
and Technology. He is an associate professor now. His research interests are in machine learning, data mining, 
optimization, information security and operations research. He developed new algorithms for large data mining 
problems such as classifi cation problem, clustering, feature selection and dimension reduction. These algorithms 
have been used in intrusion detection systems (IDS), face detection, micro array gene expression analysis and 
breast cancer diagnosis and prognosis.

Dorothea Schäfer did in 1992 her Dr. rer. pol. in Economics and in the year 2000 her Habilitation at Freie Uni-
versität Berlin. She is currently coordinator of the research group Financial Markets and Financial Institutions and 
senior researcher at the German Institute for Economic Research (DIW) Berlin which she joined in 2002. She is 
managing editor of the Quarterly Journal of Economic Research (Vierteljahreshefte zur Wirtschaftsforschung) and 
adjunct lecturer at Freie Universität Berlin. Her research focuses on insolvency risk, fi nancial management of fi rms 
and banks, and on behavioural fi nance.

Yi-Ren Yeh received the M.S. degree from the Department of Computer Science and Information Engineering, 
National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C., in 2006. He is currently working 
toward the PhD degree in the Department of Computer Science and Information Engineering, National Taiwan 
University of Science and Technology. His research interests include machine learning, data mining, and informa-
tion security.

Authors’ addresses:
Wolfgang Härdle, Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin, Spandauer 
Straße 1, 10178 Berlin, Germany.

Yuh-Jye Lee and Yi-Ren Yeh, Department of Computer Science Information Engineering, National Taiwan 
University of Science and Technology, Taipei 106, Taiwan.

Dorothea Schäfer, German Institute for Economic Research (DIW) Berlin, Mohrenstrasse 58, 10117 Berlin, 
Germany.



Time Series Modelling With Semiparametric
Factor Dynamics

Byeong U. PARK, Enno MAMMEN, Wolfgang HÄRDLE, and Szymon BORAK

High-dimensional regression problems, which reveal dynamic behavior, are typically analyzed by time propagation of a few number of
factors. The inference on the whole system is then based on the low-dimensional time series analysis. Such high-dimensional problems
occur frequently in many different fields of science. In this article we address the problem of inference when the factors and factor loadings
are estimated by semiparametric methods. This more flexible modeling approach poses an important question: Is it justified, from an
inferential point of view, to base statistical inference on the estimated times series factors? We show that the difference of the inference
based on the estimated time series and ‘‘true’’ unobserved time series is asymptotically negligible. Our results justify fitting vector
autoregressive processes to the estimated factors, which allows one to study the dynamics of the whole high-dimensional system with a low-
dimensional representation. We illustrate the theory with a simulation study. Also, we apply the method to a study of the dynamic behavior
of implied volatilities and to the analysis of functional magnetic resonance imaging (fMRI) data.

KEY WORDS: Asymptotic inference; Factor models; Implied volatility surface; Semiparametric models; Vector autoregressive process.

1 INTRODUCTION

Modeling for high-dimensional data is a challenging task in
statistics especially when the data comes in a dynamic context
and is observed at changing locations with different sample
sizes. Such modeling challenges appear in many different
fields. Examples are Stock and Watson (2005) in empirical
macroeconomics, Lee and Carter (1992) in mortality analysis,
Nelson and Siegel (1987) and Diebold and Li (2006) in bond
portfolio risk management or derivative pricing, Martinussen
and Scheike (2000) in biomedical research. Other examples
include the studies of radiation treatment of prostate cancer
by Kauermann (2000) and evoked potentials in Electroence-
phalogram (EEG) analysis by Gasser, Möcks, and Verleger
(1983). In financial engineering, it is common to analyze the
dynamics of implied volatility surface for risk management.
For functional magnetic resonance imaging data (fMRI), one
may be interested in analyzing the brain’s response over time as
well as identifying its activation area, see Worsley et al. (2002).

A successful modeling approach utilizes factor type models,
which allow low-dimensional representation of the data. In an
orthogonal L-factor model an observable J-dimensional ran-
dom vector Yt ¼ (Yt,1, . . ., Yt,J)

T can be represented as

Yt; j ¼ m0; j þ Zt;1m1; j þ # # # þ Zt;LmL; j þ et; j; ð1Þ
where Zt,l are common factors, !t,j are errors or specific factors,
and the coefficients ml,j are factor loadings. In most applica-
tions, the index t ¼ 1, . . ., T reflects the time evolution of the
whole system, and Yt can be considered as a multidimensional
time series. For a method to identify common factors in this
model we refer to Peña and Box (1987). The study of high-
dimensional Yt is then simplified to the modeling of Zt ¼ (Zt,1,

. . ., Zt,L)
T, which is a more feasible task when L & J. The

model (1) reduces to a special case of the generalized dynamic
factor model considered by Forni, Hallin, Lippi, and Reichlin
(2000), Forni and Lippi (2001) and Hallin and Liska (2007),
when Zt,l¼ al,1(B)Ut,1þ ### þ al,q(B)Ut,qwhere the q-dimensional
vector process Ut ¼ (Ut,1, . . ., Ut,q)

T is an orthonormal white
noise and B stands for the lag operator. In this case, the model
(1) is expressed as Yt; j ¼ m0; j þ

Pq
k¼1 bk; jðBÞUt;k þ et; j; where

bk; jðBÞ ¼
PL

l¼1 al;kðBÞml; j:
In a variety of applications, one has explanatory variables

Xt, j 2 Rd at hand that may influence the factor loadings ml. An
important refinement of the model (1) is to incorporate the
existence of observable covariates Xt, j. The factor loadings are
now generalized to functions of Xt, j, so that the model (1) is
generalized to

Yt; j ¼ m0ðXt; jÞ þ
XL

l¼1

Zt;lmlðXt;jÞ þ et; j; 1 # j # Jt: ð2Þ

In this model, Zt,l for each l: 1 # l # L enters into all Yt, j for j
such that ml(Xt, j) 6¼ 0. Note that the probability of the event that
ml(Xt, j) ¼ 0 for some 1 # j # J equals zero if m1(x) ¼ 0 at
countably many points of x and the density ft of Xt, j is supported
on an interval with nonempty interior, as we assume at (A2) in
Section 5.

The model (2) can be interpreted as a discrete version of the
following functional extension of the model (1):

YtðxÞ ¼ m0ðxÞ þ
XL

l¼1

Zt; lmlðxÞ þ etðxÞ; ð3Þ

where et(#) is a mean zero stochastic process, and also regarded
as a regression model with embedded time evolution. It is
different from varying-coefficient models, such as in Fan, Yao,
and Cai (2003) and Yang, Park, Xue, and Härdle (2006),
because Zt is unobservable. Our model also has some sim-
ilarities to the one considered in Connor and Linton (2007) and
Connor, Hagmann, and Linton (2007), which generalized the
study of Fama and French (1992) on the common movements
of stock price returns. There, the covariates, denoted by Xl,j, are
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time-invariant and are different for different ml, which allows a
direct application of backfitting procedures and makes the
problem quite different from our setting. Some linear models,
which allow time-varying coefficients, as considered in Hansen,
Nielsen, and Nielsen (2004) and Brumback and Rice (1998),
may be recognized as a special case of (2).

In this article we consider the model (2) with unknown
nonparametric functions ml. We call this model a dynamic
semiparametric factor model (DSFM). The evolution of com-
plex high-dimensional objects may be described by (2), so that
their analysis can be reduced to the study of a low-dimensional
vector of factors Zt. In the present article, we consider an
efficient nonparametric method of fitting the model. We pro-
vide relevant theory for the method as well as illustrate its
empirical aspects through a simulation and a real data appli-
cation. Fengler, Härdle, and Mammen (2007) used a kernel
smoothing approach for the same model, but it was focused on
a particular data application without offering any discussion of
numerical issues, statistical theory, and simulation analysis.

One of the main motivations for the model (2) comes from a
special structure of the implied volatility (IV) data, as is
observed in Figure 1. The IV is a volatility parameter that
matches the observed plain vanilla option prices with the theo-
retical ones given by the formula of Black and Scholes (1973).
Figure 1 shows the special ‘‘string’’ structure of the IV data
obtained from the European option prices on the German stock
index DAX (ODAX) for two different days. The volatility strings
shift toward expiry, which is indicated by the bottom line in the
figure. Moreover the shape of the IV strings is subject to sto-
chastic deformation. Fengler et al. (2007) proposed to use the
model (2) to describe the dynamics of the IV data, where Yt, j are
the values of IVor those of its transformation on the day t, and
Xt, j are the two-dimensional vectors of the moneyness and time-
to-maturity. For more details on the data design and econometric
motivation, we refer to Fengler et al. (2007).

One may find another application of the model (2) in the
analysis of functional magnetic resonance imaging (fMRI)
data. The fMRI is a noninvasive technique of recording brain’s
signals on spatial area in every particular time period (usually
1–4 sec). One obtains a series of three-dimensional images of
the blood-oxygen-level-dependent (BOLD) fMRI signals,
whereas an exercised person is subject to certain stimuli. An
example of the images in 15 different slices at one particular
time point is presented in Figure 2. For the more detailed

description on the fMRI methodology we refer to Logothetis
and Wandell (2004). The main aims of the statistical methods
in this field are identification of the brain’s activation areas and
analysis of its response over time. For this purpose the model
(2) can be applied. DSFM may be applied to many other
problems, such as modeling of yield curve evolution where the
standard approach is to use the parametric factor model pro-
posed by Nelson and Siegel (1987).

Our methods produce estimates of the true unobservable Zt,
say Ẑt; as well as estimates of the unknown functions ml. In
practice, one operates on these estimated values of Zt for fur-
ther statistical analysis of the data. In particular, for the IV
application, one needs to fit an econometric model to the
estimated factors Ẑt: For example, Hafner (2004) and Cont and
da Fonseca (2002) fitted an AR(1) process to each factor, and
Fengler et al. (2007) considered a multivariate VAR(2) model.
The main question that arises from these applications is
whether the inference based on Ẑt is equivalent to the one based
on Zt. Attempting to give an answer to this question forms the
core of this article.

It is worthwhile to note here that Zt is not identifiable in the
model (2). There are many versions of (Zt, m), where m ¼ (m0,
. . ., mL)

T, that give the same distribution of Yt. This means that
estimates of Zt and ml are not uniquely defined. We show that
for any version of {Zt} there exists a version of fẐtg whose
lagged covariances are asymptotically the same as those of
{Zt}. This justifies the inference based on fẐtg when {Zt} is a
VAR process, in particular. We confirm this theoretical result
by a Monte Carlo simulation study. We also discuss fitting the
model to the real ODAX IV and fMRI data.

The article is organized as follows. In the next section we
propose a new method of fitting DSFM and an iterative algo-
rithm that converges at a geometric rate. In Section 3 we
present the results of a simulation study that illustrate the
theoretical findings given in Section 5. In Section 4 we apply
the model to the ODAX IVand fMRI data. Section 5 is devoted
to the asymptotic analysis of the method. Technical details are
provided in the Appendix.

2. METHODOLOGY

We observe (Xt, j, Yt, j) for j ¼ 1, . . ., Jt and t ¼ 1, . . ., T such
that

Yt; j ¼ Z>
t mðXt; jÞ þ et; j: ð4Þ

Figure 1. The typical IV data design on two different days. In the maturity direction observations appear in the discrete points for each
particular day. Bottom solid lines indicate the observed maturities. Left panel: observations on 2004.07.08, Jt ¼ 5,606. Right panel: observations
on 2004.08.19, Jt ¼ 8,152.
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HereZ>
t ¼ ð1; Z>

t Þ and Zt¼ (Zt,1, . . ., Zt,L)> is an unobservable
L-dimensional process. The function m is an (L þ 1)-tuple (m0,
. . .,mL) of unknown real-valued functionsml defined on a subset
of Rd. The variables X1;1; . . . ; XT ;JT ; e1;1; . . . ; eT ; JT are inde-
pendent. The errors !t,j have zero means and finite second
moments. For simplicity of notation, we will assume that the
covariates Xt,j have support [0, 1]d, and also that Jt [ J do not
depend on t.

For the estimation of m, we use a series estimator. For an
integer K $ 1, we choose functions c1, . . ., cK: [0, 1]

d ! R,
which are normalized so that

R
½0;1(d c

2
kðxÞdx ¼ 1: For example,

one may take {ck: 1 # k # K} to be a tensor B-spline basis
(e.g., see de Boor 2001). Then, an (L þ 1)-tuple of functions
m¼ (m0, . . .,mL)

> may be approximated byAc, whereA¼ (al,k)
is an (L þ 1) 3 K matrix and c ¼ (c1, . . ., cK)

>. We define
the least squares estimators bZt ¼ ðbZt;1; . . . ; bZt;LÞ> and bA ¼ âl;k

! "
:

SðA; zÞ[
XT

t¼1

XJ

j¼1

Yt; j ) ð1; z>t ÞAcðXt; jÞ
# $2 ¼ min

A;z
! ð5Þ

where z ¼ z>1 ; . . . ;z
>
T

! ">
for L-dimensional vectors zt. With bA

at hand, we estimate m by m̂ ¼ bAc:
We note that, given z or A, the function S in (5) is quadratic

with respect to the other variables, and thus has an explicit
unique minimizer. However, minimization of S with respect to
A and z simultaneously is a fourth-order problem. The solution
is neither unique nor explicit. It is unique only up to the values
of bZ >

1
bA; . . . ; bZ >

T
bA; where bZ >

t ¼ ð1; bZ >
t Þ:We will come back

to this identifiability issue later in this section.
To find a solution ð bA; bZÞ of the minimization problem (5),

one might adopt the following iterative algorithm: (i) Given an
initial choice Z (0), minimize S(A, Z (0)) with respect toA, which
is an ordinary least squares problem and thus has an explicit
unique solution. Call it A(1). (ii) Minimize S(A(1), z) with
respect to z now, which is also an ordinary least squares

problem. (iii) Iterate (i) and (ii) until convergence. This is the
approach taken by Fengler et al. (2007). However, the proce-
dure is not guaranteed to converge to a solution of the original
problem.

We propose to use a Newton-Raphson algorithm. Let a [
a(A) denote the stack form of A ¼ (al,k) [i.e., a ¼ (a0,1, . . .,
aL,1, a0,2, . . ., aL,2, . . ., a0,K, . . ., aL,K)

>]. In a slight abuse of
notation we write S(a, z) for S(A, z). Define

F10ða; zÞ ¼ @

@a
Sða; zÞ; F01ða; zÞ ¼ @

@z
Sða; zÞ;

F20ða; zÞ ¼ @2

@a2
Sða; zÞ; F11ða; zÞ ¼ @2

@a@z
Sða; zÞ;

F02ða; zÞ ¼ @2

@z2
Sða; zÞ:

LetCt¼ [c(Xt,1), . . ., c(Xt,J)] be a K3 Jmatrix. Define A to be
the L 3 K matrix obtained by deleting the first row of A.
Writing z>t ¼ ð1; z>t Þ; it can be shown that

F10ða; zÞ ¼ 2
XT

t¼1

ðCtC
>
t Þ * ðztz>t Þ

% &
a) 2

XT

t¼1

ðCtYtÞ * zt;

F20ða; zÞ ¼ 2
XT

t¼1

ðCtC
>
t Þ * ðztz>t Þ

% &
;

F01ða; zÞ>¼2 z>1 AC1C
>
1 A

>) Y>
1 C

>
1 A

>; . . . ; z>TACTC
>
T A

>)
!

Y>
TC

>
T A

>Þ; and F02(a, z) equals a (TL) 3 (TL) matrix that
consists of T diagonal blocks ACtC

>
t A

> for t ¼ 1, . . ., T. Here
and later, 5 denotes the Kronecker product operator. Also, by
some algebraic manipulations it can be shown that

ðCtC
>
t Þ * ðztz>t Þ

% &
a ¼ ðCtC

>
t A

>ztÞ * zt: ð6Þ

Let I be an (L þ 1)3 L matrix such that IT ¼ (0, IL) and IL
denote the identity matrix of dimension L. Define
F11;tða; zÞ ¼ ðCtC

>
t A

>Þ * zt þ ðCtC
>
t A

>ztÞ * I)ðCtYtÞ*

Figure 2. Typical fMRI data in one particular time point. The figure presents 15 parallel horizontal images. The brightness corresponds to the
strength of the observed signals.
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I : Then, we get F11(a, z) ¼ 2 (F11,1(a, z), F11,2(a, z), . . .,
F11,T(a, z)). Let

Fða; zÞ ¼ F10ða; zÞ
F01ða; zÞ

' (
; F0ða; zÞ ¼ F20ða; zÞ F11ða; zÞ

F11ða; zÞ> F02ða; zÞ

' (
:

We need to solve the equation F(a, z) ¼ 0 simultaneously for
a and z. We note that the matrices ðCtC

>
t Þ * ðztz>t Þ ¼

ðCt * ztÞðCt * ztÞ
> and ACtC

>
t A

> are nonnegative defi-
nite. Thus, by Miranda’s existence theorem (for example, see
Vrahatis 1989) the nonlinear system of equations F(a, z) ¼ 0
has a solution.

Given (aOLD, ZOLD), the Newton-Raphson algorithm gives
the updating equation for (aNEW, ZNEW):

aNEW

ZNEW

' (
¼

aOLD

ZOLD

' (
) F0+ðaOLD; ZOLDÞ)1FðaOLD; ZOLDÞ;

ð7Þ

where F0+ða; zÞ for each given (a, z) is the restriction to F+ of
the linear map defined by the matrix F9(a, z) and F+ is
the linear space of values of (a, z) with

PT
t¼1 zt ¼ 0 andPT

t¼1 Z
ð0Þ
t ðzt ) Zð0Þ

t Þ> ¼ 0: We denote the initial value of the
algorithm by (a(0), Z(0)). We will argue later that under mild
conditions, ðâ; bZÞ can be chosen as an element of F+.

The algorithm (7) is shown to converge to a solution of (5) at
a geometric rate under some weak conditions on the initial
choice (a(0), Z(0)), as is demonstrated by Theorem 1 later. We
collect the conditions for the theorem.

(C1) It holds that
PT

t¼1 Z
ð0Þ
t ¼ 0: The matrix

PT
t¼1 Z

ð0Þ
t Zð0Þ>

t

and the map F+9(a
(0), Z(0)) are invertible.

(C2) There exists a version ðâ; bZÞ with
PT

t¼1
bZt ¼ 0 such

that
PT

t¼1
bZtZ

ð0Þ>
t is invertible. Also, âl ¼ ðâl1; . . .; âlKÞ>

for l ¼ 0, . . ., L are linearly independent.

Let a(k) and Z(k) denote the kth updated vectors in the iter-
ation with the algorithm (7). Also, we write AðkÞ for the matrix
that corresponds to a(k), and ZðkÞ>

t ¼ ð1; ZðkÞ>
t Þ.

Theorem 1. Let T, J and K be held fixed. Suppose that the
initial choice (a(0), Z (0)) satisfies (C1) and (C2). Then, for any
constant 0 < g < 1 there exist r > 0 and C > 0, which are random

variables depending on {(Xt,j, Yt,j)}, such that, if
PT

t¼1 kZ
ð0Þ>
t

Að0Þ ) bZ >
t
bA k2 # r, then

XT

t¼1

k ZðkÞ>
t AðkÞ ) bZ>

t
bA k2 # C2)2ðk)1Þg2ð2k)1Þ:

We now argue that under (C1) and (C2), ðâ; bZÞ can be
chosen as an element of F+. Note first that one can always
take Zt

(0) and bZt so that
PT

t¼1 Z
ð0Þ
t ¼ 0 and

PT
t¼1
bZt ¼ 0: This

is because, for any version ðâ; bZÞ, one has

bZ >
t
bA ¼ â>

0 þ
XL

l¼1

bZt;lâ>
l ¼ â>

0 þ
XL

l¼1

bZlâ>
l

 !

þ
XL

l¼1

ðbZt;l ) bZlÞâ>
l ¼let â+>

0 þ
XL

l¼1

bZ+
t;lâ

>
l ¼ bZt

+> bA
+
;

where bZl ¼ T)1
PT

t¼1
bZt;l; bZ+>

t ¼ ð1; bZ+>
t Þ and bA+ is the ma-

trix obtained from bA by replacing its first row by â+>
0 . Fur-

thermore, the minimization problem (5) has no unique solution.
If ðbZt; bAÞ or ðbZt; m̂ ¼ bAcÞ is a minimizer, then also ðB> bZt;
eB)1m̂Þ is a minimizer. Here

eB ¼ 1 0
0 B

' (
ð8Þ

and B is an arbitrary invertible matrix. The special structure of
eB assures that the first component of eB> bZt equals 1. In par-
ticular, with the choice B ¼ ð

PT
t¼1 Z

ð0Þ
t
bZ >
t Þ)1PT

t¼1 Z
ð0Þ
t Z ð0Þ>

t

we get for bZ+
t ¼ B> bZt that

PT
t¼1 Z

0ð Þ
t ðbZ+

t ) Z 0ð Þ
t Þ> ¼ 0:

In Section 5, we will show that, for any solution bZt and for
any version of true Zt, there exists a random matrix B such that
eZt ¼ B> bZt has asymptotically the same covariance structure as
Zt. This means that the difference of the inferences based on eZt
and Zt is asymptotically negligible.

We also note that one can always choose m̂ ¼ bAc such that
the components m̂1; . . . ; m̂L are orthonormal in L2([0, 1]

d) or in
other L2 [e.g., in L2ðT)1

PT
t¼1
bftÞ where bft is a kernel estimate

of the density of Xt, j]. If one selects m̂ in this way, then the
matrix B should be an orthogonal matrix and the underlying
time series Zt is estimated up to such transformations.

In practice one needs to choose an initial estimate (a(0), Z(0))
to run the algorithm. One may generate normal random variates
for Zð0Þ

t;l ; and then find the initial a(0) by solving the equation
F10(a, Z

(0)). This initial choice was found to work well in our
numerical study presented in Sections 3 and 4.

As an alternative way of fitting the model (2), one may
extend the idea of the principal component method that is used
to fit the orthogonal factor model (1). In this way, the data {Yt,j:
1 # j # J} are viewed as the values of a functional datum Yt(#)
observed at x ¼ Xt, j, 1# j# J, and the functional factor model
given at (3) may be fitted with smooth approximations of Yt
obtained from the original dataset. If one assumes EZt ¼ 0,
var(Zt) ¼ IL, as is typically the case with the orthogonal factor
model (1), then one can estimate ml and Zt by performing
functional principal component analysis with the sample
covariance function

bKðx; x0Þ ¼ T)1
XT

t¼1

fYtðxÞ ) YðxÞgfYtðx0Þ ) Yðx0Þg;

where YðxÞ ¼ T)1
PT

t¼1 YtðxÞ: There are some limitations for
this approach. First, it requires initial fits to get smooth
approximations of Yt(#), which may be difficult when the de-
sign points Xt, j are sparse as is the case with the IVapplication.
Our method avoids the preliminary estimation and shifts the
discrete representation directly to the functions ml. Second, for
the method to work one needs at least stationarity of Zt and et,
whereas our theory does not rely on these assumptions.

3. SIMULATION STUDY

In Theorem 3 we will argue that the inference based on the
covariances of the unobserved factors Zt is asymptotically
equivalent to the one based on B> bZt for some invertible B. In
this section we illustrate the equivalence by a simulation study.
We compare the covariances of Zt and eZt [B> bZt, where
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B ¼ T)1
XT

t¼1

Zc;t bZ >
c;t

 !)1

T)1
XT

t¼1

Zc;tZ
>
c;t; ð9Þ

Zc;t ¼ Zt ) T)1
PT

s¼1 Zs and bZc;t ¼ bZt ) T)1
PT

s¼1
bZs: Note

that B at (9) minimizes
PT

t¼1 k bZc;t ) ðB>Þ)1Zc;t k2 : In the
Appendix we will prove that Theorem 3 holds with the choice
at (9).

We took T¼ 500, 1,000, 2,000, J¼ 100, 250, 1,000 and K¼
36, 49, 64. We considered d ¼ 2, L ¼ 3 and the following tuple
of 2-dimensional functions:

m0ðx1; x2Þ ¼ 1; m1ðx1; x2Þ ¼ 3:46ðx1 ) :5Þ;

m2ðx1; x2Þ ¼ 9:45 ðx1 ) :5Þ2 þ ðx2 ) :5Þ2
n o

) 1:6;

m3ðx1; x2Þ ¼ 1:41 sinð2px2Þ:

The coefficients in these functions were chosen so that m1,
m2,m3 are close to orthogonal. We generated Zt from a centered
VAR(1) process Zt ¼ RZt)1 þ Ut, where Ut is N3(0, SU)
random vector, the rows ofR from the top equal (0.95,) 0.2, 0),
(0, 0.8, 0.1), (0.1, 0, 0.6), and SU ¼ 10)4I3. The design points
Xt,j were independently generated from a uniform distribution
on the unit square, et, j were iid N(0, s

2) with s ¼ 0.05, and Yt, j

were obtained according to the model (4). The simulation
experiment was repeated 250 times for each combination of (T,
J, K). For the estimation we employed, for cj, the tensor
products of linear B-splines. The one-dimensional linear B-
splines eck are defined on a consecutive equidistant knots xk,
xkþ1, xkþ2 by eckðxÞ¼ðx)xkÞ=ðxkþ1)xkÞ for
x2 ðxk; xkþ1(; eckðxÞ¼ðxkþ2)xÞ= ðxkþ2 ) xkþ1Þ for x 2 (xkþ1,
xkþ2], and eckðxÞ ¼ 0 otherwise. We chose K ¼ 8 3 8 ¼ 64.

We plotted in Figure 3 the entries of the scaled difference of
the covariance matrices

eD¼ 1ffiffiffiffi
T

p
XT

t¼1

eZt ) eZ
* +

eZt ) eZ
* +>

)
XT

t¼1

Zt ) Z
! "

Zt ) Z
! ">

( )

:

ð10Þ
Each panel of Figure 3 corresponds to one entry of the matrix
eD, and the three boxplots in each panel represent the dis-
tributions of the 250 values of the corresponding entry for T ¼
500, 1,000, 2,000. In the figure we also depicted, by thick lines,
the upper and lower quartiles of

D ¼ 1ffiffiffiffi
T

p
XT

t¼1

Zt ) Z
! "

Zt ) Z
! ">)TG

( )

; ð11Þ

Figure 3. The boxplots based on 250 values of the entries of the scaled difference of the covariance matrices given at (10). The lengths of the
series Zt and ~Zt were 500, 1,000, 2,000. The thick lines represent the upper and lower quartiles of (11).
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where G is the true covariance matrix of the simulated VAR
process. We refer to Lütkepohl (1993) for a representation of G.

Our theory in Section 5 tells that the size of eD is of smaller
order than the normalized error D of the covariance estimator
based on Zt. It is known that the latter converges to a non-
degenerate law as T! ‘. This is well supported by the plots in
Figure 3 showing that the distance between the two thick lines
in each panel is almost invariant as T increases. The fact that
the additional error incurred by using eZt instead of Zt is neg-
ligible for large T is also confirmed. In particular, the long
stretches at tails of the distributions of eD get shorter as T
increases. Also, the upper and lower quartiles of each entry of
eD, represented by the boxes, lie within those of the corre-
sponding entry of D, represented by the thick lines, when T ¼
1,000 and 2,000.

4. APPLICATIONS

This section presents an application of DSFM. We fit the
model to the intraday IV based on ODAX prices and to fMRI
data.

For our analysis we chose the data observed from July 1,
2004 to June 29, 2005. The one year period corresponds to the
financial regulatory requirements. The data were taken from
Financial and Economic Data Center of Humboldt-Universität
zu Berlin. The IV data were regressed on the two-dimensional
space of future moneyness and time-to-maturity, denoted by
ðkt; ttÞ>. The future moneyness kt is a monotone function of
the strike price K: kt ¼ K=ðSte)rtttÞ, where St is the spot price
at time t and rt is the interest rate. We chose rt as a daily Euro
Interbank Offered Rate (EURIBOR) taken from the Ecowin
Reuters database. The time-to-maturity of the options were
measured in years. We took all trades with 10/365 < t < 0.5. We
limit also the moneyness range to k 2 [0.7, 1.2].

The structure of the IV data, described already in Section 1,
requires a careful treatment. Apart from the dynamic degen-
eration, one may also observe nonuniform frequency of the
trades with significantly greater market activities for the
options closer to expiry or at-the-money. Here, ‘‘at-the-money’’
means a condition in which the strike price of an option equals
the spot price of the underlying security (i.e., K ¼ St). To avoid
the computational problems with the highly skewed empirical
distribution of Xt ¼ (kt, tt), we transformed the initial space
[0.7, 1.2] 3 [0.03, 0.5] to [0, 1]2 by using the marginal em-
pirical distribution functions. We applied the estimation algo-
rithm to the transformed space, and then transformed back the
results to the original space.

Because the model is not nested, the number of the dynamic
functions needs to be determined in advance. For this, we used

RVðLÞ ¼

PT
t

PJt
j Yt; j ) m̂0 Xt; j

! "
)
PL

l¼1
bZt;lm̂l Xt; j

! "n o2

PT
t

PJt
j Yt; j ) Y
! "2 ;

ð12Þ
although one may construct an Akaike information (AIC) or
Bayesian information (BIC) type of criterion, where one
penalizes the number of the dynamic functions in the model, or
performs some type of cross-validation. The quantity 1) RV(L)
can be interpreted as a proportion of the variation explained by

the model among the total variation. The computed values of
RV(L) are given in Table 1 for various L. Because the third,
fourth, and fifth factor made only a small improvement in the
fit, we chose L ¼ 2.

For the series estimators of m̂l we used tensor B-splines that
are cubic in the moneyness and quadratic in the maturity
direction. In the transformed space we placed 103 5 knots, 10
in the moneyness and 5 in the maturity direction. We found that
the results were not sensitive to the choice of the number
of knots and the orders of splines. For several choices of knots
in the range 5 3 5–15 3 10 and for the spline orders (2, 1), (2,
2), (3, 2), the values of 1 ) RV(2) were between 0.949 and
0.974. Because the model is identifiable only up to the trans-
formation (8), one has a freedom for the choice of factors.
Here, we chose the approach taken by Fengler et al. (2007) with
L2[0,1]

2 norm. Specifically, we orthonormalized m̂l and
transformed bZt according to their Equation (19) with G ¼R
m̂ðxÞm̂ðxÞ> dx; where m̂ ¼ ðm̂1; . . .; m̂LÞ>. Call them m̂+

l and
bZ+
t ; respectively. Then, we transformed them further by m̂++

l ¼
p>l m̂

+ and bZ++
t;l ¼ p>l bZ+

t ; where pl were the orthonormal eigen-

vectors of the matrix
PT

t¼1
bZ+
t
bZ+>
t that correspond to the

eigenvalues l1 > l2. Note that bZ+>
t m̂+ ¼ bZ++>

t m̂++: In this way,
fbZ++

t;1m̂
++
1 gmakes a larger contribution than fbZ++

t;2m̂
++
2 g to the total

variation
PT

t¼1

R
ðbZ++>

t m̂++Þ2 because
PT

t¼1

R
ðbZ++

t;1m̂
++
1 Þ2 ¼ l1

and
PT

t¼1

R
ðbZ++>

t m̂++Þ2 ¼ l1 þ l2: Later, we continue to write
bZt and m̂ for such bZ++

t and m̂++, respectively.
The estimated functions m̂1 and m̂2 are plotted in Figure 4 in

the transformed estimation space. The intercept function m̂0

was almost flat around zero, thus is not given. By construction,
m̂0 þ bZt;1m̂1 explain the principal movements of the surface. It
was observed by Cont and da Fonseca (2002) and Fengler et al.
(2007) that most dominant innovations of the entire surface are
parallel level shifts. Note that VDAX is an estimated at-the-
money IV for an option with 45 days to maturity, and thus
indicates up-and-down shifts. The left panel of Figure 5 shows
the values of VDAX together with m̂0ðXt;0Þ þ bZt;1m̂1ðXt;0Þ,
where Xt,0 is the moneyness and maturity corresponding to an
option at-the-money with 45 days to maturity. The right panel
of Figure 5 depicts the factor bZt, where one can find that bZt
shows almost the same dynamic behavior as the index VDAX.
This similarity supports that DSFM catches leading dynamic
effects successfully. Obviously the model in its full setting
explains other effects, such as skew or term structure changes,
which are not explicitly stated here.

Statistical analysis on the evolution of a high-dimensional
system ruling the option prices can be simplified to a low-
dimensional analysis of the bZt. In particular, as our theory in
Section 5 and the simulation results in Section 3 assert, the
inference based on the bZt is well justified in the VAR context.
To select a VAR model we computed the Schwarz (SC), the
Hannan-Quinn (HQ), and the Akaike criterion, as given in

Table 1. Proportion of the explained variation by the models with
L ¼ 1, . . ., 5 dynamic factors

No. factors L ¼ 1 L ¼ 2 L ¼ 3 L ¼ 4 L ¼ 5

1 – RV(L) 0.848 0.969 0.976 0.978 0.980
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Table 2. One can find that SC and HQ suggest a VAR(1)
process, whereas AIC selects VAR(2). The parameter estimates
for each selected model are given in Table 3. The roots of the
characteristic polynomial lie inside the unit circle, so the
specified models satisfy the stationarity condition. For each of
VAR(1) and VAR(2) models, we conducted a portmanteau test
for the hypothesis that the autocorrelations of the error term at
lags up to 12 are all zero, and also a series of LM tests, each of
which tests whether the autocorrelation at a particular lag up
to 5 equals zero. Some details on selection of lags for these
tests can be found in Hosking (1980, 1981) and Brüggemann,
Lütkepohl, and Saikkonen (2006). We found that in any test the
null hypothesis was not rejected at 5% level. A closer inspec-
tion on the autocorrelations of the residuals, however, revealed
that the autocorrelation of bZt;2 residuals at lag one is slightly
significant in the VAR(1) model, see Figure 6. But, this effect
disappears in the VAR(2) case, see Figure 7. Similar analyses
of characteristic polynomials, portmanteau and Lagrange
multiplier (LM) tests supported VAR(2) as a successful model
for bZt.

As a second application of the model, we considered fitting
an fMRI dataset. The data were obtained at Max-Planck Institut
für Kognitions-und-Neurowissenschaften Leipzig by scanning
a subject’s brain using a standard head coil. The scanning was
done every two seconds on the resolution of 3 3 3 3 2 mm3

with 1 mm gap between the slices. During the experiment, the

subject was exposed to three types of objects (bench, phone and
motorbike) and rotated around randomly changing axes for
four seconds, followed by relaxation phase of six to ten sec-
onds. Each stimulus was shown 16 times in pseudo-randomized
order. As a result, a series of 290 images with 64 3 64 3 30
voxels was obtained.

To apply the model (2) to the fMRI data, we took the voxel’s
index (i1, i2, i3) as covariate Xt, j, and the BOLD signal as Yt, j.
For numerical tractability we reduced the original data to a
series of 32 3 32 3 15 voxels by taking every second slice in
each direction. Thus, Jt [ 32 3 32 3 15 and T ¼ 290. The
voxels’ indices (i1, i2, i3) for 1 # i1, i2 # 32 ;1 # i3 # 15 are
associated with 32 3 32 3 15 equidistant points in R3. The
functionm0 represents the ‘‘average’’ signal as a function of the
three-dimensional location, and ml for each l $ 1 determines
the effect of the lth common factor Zt,l on the brain’s signal. In
Figure 8, each estimated function m̂l is represented by its
sections on the 15 slices in the direction of i3 [i.e., by those
m̂lð#; #; x3Þ for which x3 are fixed at the equidistant points cor-
responding to i3 ¼ 1, . . ., 15]. We used quadratic tensor B-
splines on equidistant knots. The number of knots in each
direction was 8, 8, 4, respectively, so that K¼ 93 93 5¼ 405.
For the model identification we used the same method as in the
IV application, but normalized bZ to have mean zero.

In contrast to the IV application, there was no significant
difference between the values of 1) RV(L) for different L$ 1.

Figure 4. The estimated factor functions for the ODAX IV data in the period 20040701–20050629.

Figure 5. Left panel: VDAX in the period 20040701–20050629 (solid) and the dynamics of the corresponding IV given by the submodel
m̂0 þ bZt;1m̂1 (dashed). Right panel: The obtained time series bZt on the ODAX IV data in the period 20040701–20050629. The solid line
represents bZt;1, the dashed line bZt; 2.
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All the values for L $ 1 were around 0.871. The fMRI signals
Yt,j were explained mostly by m̂0ðXt; jÞ þ Zt;1m̂1ðXt; jÞ, and the
effects of the common factors Zt,l for l $ 2 were relatively
small. The slow increase in the value of 1 ) RV(L) as L $ 1
grows in the fMRI application, contrary to the case of the IV
application, can be explained partly by the high complexity of
human brain. Because the values of 1 ) RV(L) were similar for
L $ 1, one might choose L ¼ 1. However, we chose L ¼ 4,
which we think still allows relatively low complexity, to
demonstrate some further analysis that might be possible with
similar datasets. The estimated functions m̂l for 0 # l # 4 and
the time series bZt;l for 1 # l # 4 are plotted in Figures 8 and 9,
respectively. The function m̂0 can be recognized as a smoothed
version of the original signal. By construction the first factor
and loadings incorporate the largest variation. One may see the
strong positive trend in bZt;1 and relatively flat patterns of
bZt;2; bZt;3; bZt;4. These effects could be typically explained by the
mixture of several components, such as physiological pulsa-
tion, subtle head movement, machine noise, and so on. For a
description of different artifacts, which significantly influence
the fMRI signals, we refer to Biswal, Yetkin, Haughton, and
Hyde (1995). The function estimates m̂l for 1# l# 4 appear to
have a clear peak, and bZt;l for 2# l# 4 show rather mild mean
reverting behavior.

To see how the recovered signals interact with the given
stimuli, we plotted bZtþs;l ) bZs;l against t in Figure 10, where s is
the time when a stimulus appears. The mean changes of bZt;1 and
bZt;3 show mild similarity, up to sign change, to the hemody-
namic response (see Worsley et al. 2002). The case of bZt;4 has a
similar pattern as those of bZt;1 and bZt;3 but with larger ampli-
tude, whereas the changes in bZt;2 seem to be independent of the
stimuli. In fitting the fMRI data, we did not use any external
information on the signal. From the biological perspective it
could be hardly expected that a pure statistical procedure gives
full insight into understanding of the complex dynamics of MR
images. For the latter one needs to incorporate into the pro-
cedure the shape of hemodynamic response, for example, or
consider physiologically motivated identification of the fac-

tors. It goes however beyond the scope of this illustrative
example.

5. ASYMPTOTIC ANALYSIS

In the simulation study and the real data application in
Sections 3 and 4, we considered the case where Zt is a VAR-
process. Here, we only make some weak assumptions on the
average behavior of the process. In our first theorem we allow
that it is a deterministic sequence. In our second result we
assume that it is a mixing sequence. For the asymptotic anal-
ysis, we let K, J, T! ‘. This is a very natural assumption often
also made in cross-sectional or panel data analysis. It is
appropriate for data with many observations per data point that
are available for many dates. It allows us to study how J and T
have to grow with respect to each other for a good performance
of a procedure. The distance between m and its best approx-
imation Ac does not tend to zero unless K ! ‘, see
Assumption (A5) later. One needs to let J ! ‘ to get con-

sistency of bZ >
t
bA and m̂ ¼ bAc as estimates of Z>

t A
+ and m,

respectively, whereA+ is defined at (A5). One should let T! ‘
to describe the asymptotic equivalence between the lagged
covariances of Zt and those of eZt, see Theorem 3 below. In our
analysis the dimension L is fixed. Clearly, one could also study
our model with L growing to infinity. We treat the case where
Xit are random. However, a theory for deterministic designs can
be developed along the lines of our theory.

Our first result relies on the following assumptions.

(A1) The variables X1,1, . . ., XT,J, e1,1, . . ., eT,J, and Z1, . . ., ZT
are independent. The process Zt is allowed to be nonrandom.
(A2) For t ¼ 1, . . ., T the variables Xt,1, . . ., Xt,J are identi-
cally distributed, have support [0, 1]d and a density ft that
is bounded from below and above on [0, 1]d, uniformly over
t ¼ 1, . . ., T.
(A3) We assume that Eet, j ¼ 0 for 1 # t # T, 1 # j # J, and
for c > 0 small enough sup1#t#T, 1#j#JE expðce2t; jÞ < ‘:
(A4) The functions ck may depend on the increasing indices
T and J, but are normed so that

R
½0;1(d c

2
kðxÞdx ¼ 1 for k ¼ 1,

. . ., K. Furthermore, it holds that supx2½0;1( k cðxÞ k¼
OðK1=2Þ:
(A5) The vector of functions m ¼ ðm0; . . . ;mLÞ> can be
approximated by ck, i.e.,

dK[ sup
x2½0;1(d

inf
A2RðLþ1Þ3K

mðxÞ )AcðxÞk k ! 0

as K ! ‘. We denote A that fulfills supx2½0;1(d mðxÞ)k
AcðxÞk # 2dK by A+.
(A6) There exist constants 0 < CL < CU < ‘ such that all
eigenvalues of the matrix T)1

PT
t¼1 ZtZ>

t lie in the interval
[CL, CU] with probability tending to one.

Table 2. The VARmodel selection criteria. The smallest value for each
criterion is marked by an asterisk

Order AIC SC HQ

1 )14.06 )13.98* )14.03*
2 )14.07* )13.93 )14.02
3 )14.06 )13.86 )13.98
4 )14.06 )13.81 )13.96
5 )14.07 )13.76 )13.95

Table 3. The estimated parameters for VAR(1) and VAR(2) models. Those that are not significant at 5% level are marked by asterisk

VAR(1) VAR(2)

bZt)1;1 bZt)1;2 Const. bZt)1;1 bZt)1;2 bZt)2;1 bZt)2;2 Const.

bZt;1 0.984 )0.029* )0.001 0.913 )0.025 0.071 )0.004 )0.001
bZt;2 0.055 0.739 0.005 0.124 0.880 )0.065 )0.187* 0.006
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(A7) The minimization (5) runs over all values of ðA; zÞ with

sup
x2½0;1(

max
1# t# T

k ð1; z>t ÞAcðxÞ k # MT ;

where the constant MT fulfils max 1 #t#T ||Zt|| # MT/Cm

(with probability tending to one) for a constant Cm such
that sup x2[0, 1]||m(x)|| < Cm.

Figure 6. Cross-autocorrelogram for the VAR(1) residuals. The dashed line-bounds indicate623 (standard deviations), which correspond to
an approximate 95% confidence bound.

Figure 7. Cross-autocorrelogram for the VAR(2) residuals. The dashed line-bounds indicate623 (standard deviations), which correspond to
an approximate 95% confidence bound.
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(A8) It holds that r2 ¼ ðK þ TÞM2
T logðJTMTÞ=ðJTÞ ! 0:

The dimension L is fixed.

Assumption (A7) and the additional bound MT in the mini-
mization is introduced for purely technical reasons. We con-
jecture that to some extent the asymptoic theory of this article
could be developed under weaker conditions. The independence
assumptions in (A1) and Assumption (A3) could be relaxed to
assuming that the errors !t, j have a conditional mean zero and
have a conditional distribution with subgaussian tails, given the
past values Xs,i, Zs (1# i # J, 1 # s # t). Such a theory would

require an empirical process theory that is more explicitly
designed for our model and it would also require a lot of more
technical assumptions. We also expect that one could proceed
with the assumption of subexponential instead of subgaussian
tails, again at the cost of some additional conditions. Recall that
the number of parameters to be estimated equals TLþ K(Lþ 1).
Because L is fixed, Assumption (A8) requires basically that,
neglecting the factorMT

2 log(JTMT), the number of parameters
grows slower than the number of observations, JT.

Our first result gives rates of convergence for the least
squares estimators bZt and bA.

Figure 8. The estimated functions m̂l for the fMRI signals.

Figure 9. The estimated time series bZt;l for the fMRI signals.
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Theorem 2. Suppose that model (4) holds and that ð bZt; bAÞ
is defined by the minimization problem (5). Make the
Assumptions (A1)–(A8). Then it holds that

1

T

X

1# t#T

bZt
> bA)Z >

t A
+

,,,
,,,
2
¼ OPðr2 þ d2KÞ: ð13Þ

At this point we have made no assumptions on the sequence
Zt: 1# t# T, besides the bound in (A7). Up to now it is allowed
to be a deterministic or a random sequence. We now assume
that it is a random process. We discuss how a statistical analysis
differs if inference on Zt is based on bZt instead of using (the
unobserved) process Zt. We will show that the differences
are asymptotically negligible (except an orthogonal trans-
formation). This is the content of the following theorem, where
we consider estimators of autocovariances and show that these
estimators differ only by second order terms. This asymptotic
equivalence carries over to classical estimation and testing
procedures in the framework of fitting a vector autoregresssive
model. For the statement of the theorem we need the following
assumptions:

(A9) Zt is a strictly stationary sequence with E(Zt) ¼ 0,
E(||Zt||

g) < ‘ for some g > 2. It is strongly mixing withP‘
i¼1 aðiÞ

ðg)2Þ=g <‘. The matrix EZtZt
T has full rank. The

process Zt is independent of X11, . . ., XTJ, !11, . . ., !TJ.
(A10) The functions m0, . . ., mL are linearly independent. In
particular, no function is equal to 0.
(A11) It holds that ½logðKTÞ2fðK MT=JÞ1=2 þ T1=2M4

TJ
)2

þK3=2J)1 þ K4=3J)2=3T)1=6gþ 1(T1=2ðr2 þ d2KÞ ¼ Oð1Þ.

Assumption (A11) poses very weak conditions on the growth
of J, K, and T. Suppose, for example, that MT is of logarithmic

order and that K is of order (TJ)1/5 so that the variance and the
bias are balanced for twice differentiable functions. In this
setting, (A11) only requires that T/J2 times a logarithmic factor
converges to zero. Define eZt ¼ B> bZt;

eZc;t ¼ eZt ) T)1
XT

s¼1
eZs;

Zc;t ¼ Zt ) T)1
XT

s¼1
Zs;

eZn;t ¼ ðT)1
XT

s¼1
eZc;s eZ >

c;sÞ
)1=2 eZc;t;

and Zn;t ¼ ðT)1
XT

s¼1
Zc;sZ

>
c;sÞ

)1=2Zc;t:

Theorem 3. Suppose that model (4) holds and that ðbZt; bAÞ
is defined by the minimization problem (5). Make the
Assumptions (A1)–(A11). Then there exists a random matrix B
such that for h 6¼ 0

1

T

Xmin½T ;T)h(

t¼max½1;)hþ1(

eZc;t eZc;tþh ) eZc;t
! ">) 1

T

Xmin½T ;T)h(

t¼max½1;)hþ1(
Zc;t

Zc;tþh ) Zc;t

! ">¼ OPðT)1=2Þ;

1

T

Xmin½T ;T)h(

t¼max½1;)hþ1(

eZn;t eZ >
n;tþh )

1

T

Xmin½T ;T)h(

t¼max½1;)hþ1(
Zn;tZ

>
n;tþh

¼ OPðT)1=2Þ:

To illustrate an implication of Theorem 3, suppose that the
factor process Zt in (4) is a stationary VAR(p) process in a mean
adjusted form:

Figure 10. The responses of bZt;l to the stimuli.
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Zt ) m ¼ Q1ðZt)1 ) mÞ þ . . .þQpðZt)p ) mÞ þ Ut; ð14Þ
where m¼ E(Zt),Qj is a L3 Lmatrix of coefficients andUt is a
white noise with a nonsingular covariance matrix. Let Gh be the
autocovariance matrix of the process Zt with the lag h $ 0,
which is estimated by bGh ¼ T)1

PT
t¼hþ1ðZt ) ZÞðZt)h ) ZÞ>.

Let Y ¼ (Zpþ1 ) m, . . ., ZT ) m), Q ¼ (Q1, . . ., Qp), and U ¼

(Upþ1, . . .,UT). DefineWt ¼ ðZt ) mÞ>; . . . ; ðZt)pþ1 ) mÞ>
* +>

andW¼ (Wp, . . .,WT)1). Then, the model (14) can be rewritten
as Y¼QWþU and the least squares estimator ofQ is given by
bQ ¼ bY bW>ð bW bW>Þ)1, where bY and bW are the same as Y and W,
respectively, except that m is replaced by Z. Likewise, fitting a
VAR(p) model with the estimated factor process eZt yields
eQ ¼ eY eW>ð eW eW>Þ)1, where eY and eW are defined as bY and bW
with Zt being replaced by eZt. Both bY and bW are matrices
composed of bGh for various h. The matrices eY and eW have the
same forms as bY and bW , respectively, but with bGh being
replaced by eGh ¼ T)1

PT
t¼hþ1ðeZt ) eZÞðeZt)h ) eZÞ>. It is well

known that
ffiffiffiffi
T

p
ðbQ)QÞ ¼ OPð1Þ, see Lütkepohl (1993). By

Theorem 3, we have
ffiffiffiffi
T

p
ðeQ) bQÞ ¼ OPð1Þ.

APPENDIX: PROOFS OF THEOREMS

A.1 Proof of Theorem 1

We use the Newton-Kantorovich theorem to prove the the-
orem. The statement of the theorem may be found in Kant-
orovich and Akilov (1982), for example.

Suppose that
PT

t¼1 k Zð0Þ>
t Að0Þ ) bZ >

t
bA k2 # r for some r >

0, which will be chosen later. With the Frobenius norm ||M||
for a matrix M, we get

k Að0Þ ) bA k2 #

,,,,,

 
XT

t¼1

Zð0Þ
t Zð0Þ>

t

!)1,,,,,

2

#

,,,,,
XT

t¼1

Zð0Þ
t Zð0Þ>

t ðAð0Þ ) bAÞ

,,,,,

2

¼

,,,,,

 
XT

t¼1

Zð0Þ
t Zð0Þ>

t

!)1,,,,,

2

#

,,,,,
XT

t¼1

Zð0Þ
t Zð0Þ>

t Að0Þ

)
XT

t¼1

Zð0Þ
t
bZ>
t
bA

,,,,,

2

#

,,,,,

 
XT

t¼1

Zð0Þ
t Zð0Þ>

t

!)1,,,,,

2

3

 
XT

t¼1

,,,,,Z
ð0Þ
t Zð0Þ>

t Að0Þ ) Zð0Þ
t
bZ >
t
bA

,,,,,

!2

#

r

,,,,,

 
XT

t¼1

Zð0Þ
t Zð0Þ>

t

!)1,,,,,

2 XT

t¼1

k Zð0Þ
t k2

!

[ rc21:

ðA:1Þ
For a matrix M, define Mk k2¼ sup

xk k¼1
Mxk k. It is known that

||M||2 # ||M||. We get

k bA >ðZð0Þ
t ) bZtÞk $ k bAk)1

2

# kð bA bA >Þ)1 k)1 # kZ ð0Þ
t ) bZt k;

ðA:2Þ

k ðZð0Þ
t ) bZtÞ> bA k # k Zð0Þ>

t ð bA)Að0ÞÞ kþkZ ð0Þ>
t Að0Þ)

bZ >
t
bA k # k Zð0Þ

t k # k bA)A ð0Þ k þ k Zð0Þ >
t Að0Þ ) bZ >

t
bA k :

ðA:3Þ
The two inequalities (A.2) and (A.3) together with (A.1) give

k Zð0Þ ) bZ k2 # 2 r k bA k22 # k ð bA bA >Þ)1 k2

3

 

1þ c1
XT

t¼1

k Zð0Þ
t k2

!

[ r c22:
ðA:4Þ

Because F9(a, z) is quadratic in (a, z), there exists 0 < c3 < ‘
for any compact set D in RK(L þ 1)þTL such that ||F9(a9, z9) )
F9(a, z)||2 # c3||(a9>, z9>)> ) (a>, z>)>|| for all (a>, z>)>,
(a9>, z9>)> 2 D. Let c4 ¼ jjF0

+ðað0Þ; Zð0ÞÞ)1jj2<‘. Because F
is continuous and Fðâ; bZÞ ¼ 0, there exists r9 > 0 such that, if
k að0Þ ) ba k þ k Zð0Þ ) bZ k # r0, then

k F0
+ðað0Þ; Zð0ÞÞ)1Fðað0Þ; Zð0ÞÞ k #

g

2c3c4
:

By the Newton-Kantorovich theorem,

k aðkÞ ) ba k þk ZðkÞ ) bZ k # C12
)ðk)1Þg2k)1 ðA:5Þ

for some C1 > 0. This gives that if k að0Þ ) ba k þk Zð0Þ)
bZ k # r0, then

XT

t¼1

k ZðkÞ>
t AðkÞ ) bZ >

t
bA k2 #C2ðk aðkÞ ) ba k2þ

k ZðkÞ ) bZ k2Þ# C2)2ðk)1Þg2ð2k)1Þ

for some C, C2 > 0. We take r ¼ (c1 þ c2)
)2r92. Then, by

(A.1) and (A.4), k að0Þ ) ba k þk Zð0Þ ) bZ k # r0 if
PT

t¼1 k
Zð0Þ>

t Að0Þ ) bZ >
t
bA k2 # r. This completes the proof of the

theorem.

A.2 Proof of Theorem 2

For functions g(t, x) we define the norms k g k21 ¼
ð1=TJÞ

PT
t¼1

PJ
j¼1 gðt;Xt; jÞ2; kgk22¼ð1=TÞ

PT
t¼1
R
gðt; xÞ2f tðxÞ

dx, and k g k23¼ ð1=TÞ
PT

t¼1

R
gðt; xÞ2 dx. Note that because of

Assumption (A2) the last two norms are equivalent. Thus, for
the statement of the theorem we have to show for Dðt; xÞ ¼
ð bZ >

t
bA)Z >

t A
+ÞcðxÞ that

k D k22 ¼ OPðr2 þ d2KÞ: ðA:6Þ
We start by showing that

k D k21¼ OPð½ðK þ TÞ logðJTMTÞ(=ðJTÞ þ d2KÞ: ðA:7Þ
For this aim we apply Theorem 10.11 in Van de Geer

(2000) that treats rates of convergence for least squares
estimators on sieves. In our case we have the following sieve:
G+
T ¼fg: f1; . . . ; Tg3½0; 1(d/R; gðt; xÞ¼ ð1; z>t ÞAcðxÞ for an

ðLþ 1Þ3KmatrixA and zt 2 RL with the following properties:
jð1; z>t ÞAcðxÞj # MT for 1 # t # T and x 2 ½0; 1(dg. With a
constant C the d-entropy HTðd;G+

TÞ of G
+
T with respect to the

empirical norm ||g||1 is bounded by

HTðd;G+
TÞ # CT logðMT=dÞ þ CK logðKMT=dÞ: ðA:8Þ
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For the proof of (A.8) note first that each element gðt; xÞ ¼
ð1; z>t ÞAcðxÞ of G+

T can be chosen such that T)1
PT

t¼1 ztz
>
t is

equal to the L 3 L identity matrix IL. Then the bound
jð1; z>t ÞAcðxÞj # MT implies that k AcðxÞ k # MT . For the
proof of (A.8) we use that the (d/MT)-entropy of a unit ball in
RT is of order OðT logðMT=dÞÞ and that the d-entropy with
respect to the sup-norm for functionsAcðxÞ with k AcðxÞ k #
MT is of orderOðK logðKMT=dÞÞ. In the last entropy bound we
used that for each x it holds that jjc xð Þjj # K1/2. These two
entropy bounds imply (A.8). Application of Theorem 10.11 in
Van de Geer (2000) gives (A.7).

We now show that (A.7) implies (A.6). For this aim note first
that by Bernstein’s inequality for a, d > 0, g 2 G+

T with
jjgjj22 # d

Pðjk g k21 ) k g k22 j $ aÞ # 2 exp ) a2JT

2ðaþ dÞM2
T

' (
:

ðA:9Þ
Furthermore, for g; h 2 G+

T it holds with constants C, C9 that

jk g k21 ) k h k21 j#CK

 

T)1
XT

t¼1

k et ) f t k2
!1=2

 

T)1
XT

t¼1

k et þ f t k2
!1=2

#C0K k g) h k2 ðk g k2 þ k h k2Þ;

ðA:10Þ
where et and ft are chosen such that gðx; tÞ ¼ e>t cðxÞ and
hðx; tÞ ¼ f>t cðxÞ. From (A.9) and (A.10) we get with a constant
C > 0 that for d ¼ 1, 2, . . .

Pð sup
g2G+

T ;dr
2# kgk22#ðdþ1Þr2

jk g k21 ) k g k22 j $ dr2=2Þ

# C expððC þ K þ TÞ logðdKMTÞ ) dr2JT=½20M2
T (Þ:

By summing these inequalities over d$ 1 we get jjDjj22 # r2 or

jjDjj22 # jjjDjj21 ) jjDjj22jþ jjDjj21 # jjDjj22=2 þ jjDjj21
with probability tending to one. This shows Equation (A.6) and
concludes the proof of Theorem 2.

A.3 Proof of Theorem 3

Wewill prove the first equation of the theorem for h 6¼ 0. The
second equation follows from the first equation. We first prove

that the matrix T)1
PT

t¼1 Zc;t
bZ >
c;t is invertible, where Z>

c;t ¼
ð1; Z>

c;tÞ; bZ
>
c;t ¼ ð1; bZ >

c;t Þ, and bZc;t ¼ bZt ) T)1
PT

s¼1
bZs. This

implies that T)1
PT

t¼1 Zc;t bZ >
c;t is invertible. Suppose that the

assertion is not true. We can choose a random vector e such that
||e|| ¼ 1 and e>

PT
t¼1 Zc;t

bZ >
c;t ¼ 0. Let bA and A* be the L 3 K

matrices that are obtained by deleting the first rows of
bA andA+, respectively. Let bAc andA+

c be the matrices obtained
from bA and A+ by replacing their first rows by ba>

0 þ
ðT)1

PT
t¼1
bZtÞ> bA and a+>

0 þ ðT)1
PT

t¼1 ZtÞ>A+, respectively.
By definition, it follows that

bZ >
t
bA ¼ bZ >

c;t
bAc; Z>

t A
+ ¼ Z>

c;tA
+
c : ðA:11Þ

Note that
,,,,,T

)1
XT

t¼1

Zc;t
bZ >
c;t
bAc ) T)1

XT

t¼1

Zc;tZ>
c;tA

+
c

,,,,,

# T)1
XT

t¼1

,,,,,Zc;t

 
bZ >
c;t
bAc ) Z>

c;tA
+
c

!,,,,,

#

 

T)1
XT

t¼1

,,,,,Zc;t

,,,,,

2!1=2 

T)1
XT

t¼1

,,,,,
bZ >
t
bA)Z >

t A
+

,,,,,

2!1=2

¼ OPðr þ dKÞ; ðA:12Þ
because of Assumption (A6) and Theorem 2. Thus with
f ¼ T)1

PT
t¼1 Zc;tZ>

c;te, we obtain

k f>m k¼k f>ðA+
ccÞ k þOPðT)1=2 þ dKÞ

¼

,,,,,e
>T)1

XT

t¼1

Zc;t
bZ >
c;t
bAc c

,,,,,þOPðT)1=2 þ r þ dKÞ

¼ OPðT)1=2 þ r þ dKÞ:
This implies that m0, . . ., md are linearly dependent, contra-
dicting to Assumption (A10).

Let eB be the matrix given at (8) withB defined as in (9). Define
eZc;t ¼ eB > bZc;t and eAc ¼ eB)1 bAc. Then eZ >

c;t
eAc ¼ bZ >

c;t
bAc and

T)1
PT

t¼1 Zc;t
eZ >
c;t ¼ T)1

PT
t¼1 Zc;tZ>

c;t. This gives with (A.12)

eAc )A+
c

,,,
,,, ¼ T)1

XT

t¼1

Zc;tZ>
c;tð eAc )A+

cÞ

,,,,,

,,,,,OPð1Þ

¼ T)1
XT

t¼1

Zc;t
eZ >
c;t
eAc ) T)1

XT

t¼1

Zc;tZ>
c;tA

+
c

,,,,,

,,,,,OPð1Þ

¼ OPðr þ dKÞ: ðA:13Þ
Because of Theorem 2 this implies

eA)A+
,,,

,,, ¼ OPðr þ dKÞ: ðA:14Þ

Define eZc;t by eZ >
c;t ¼ ð1; eZ >

c;t Þ. Note that eZc;t ¼ B> bZc;t . Also,
define eA ¼ B)1 bA, which equals eAc without the first row. From
(A10), (A5), (A.14), and Theorem 2, we get

T)1
XT

t¼1

,,,eZt ) Zt

,,,
2
¼ T)1

XT

t¼1

,,, eZt ) Zt

,,,
2

¼ T)1
XT

t¼1

,,, eZ >
t ðm0; . . . ;mLÞ> ) Z>

t ðm0; . . . ;mLÞ>
,,,
2
OPð1Þ

¼ T)1
XT

t¼1

,,,eZ >
t A+) eZ>

t
eA
,,,
2
OPð1Þþ T)1

XT

t¼1

,,,eZ >
t
eA) Z>

t A
+
,,,
2

3OPð1Þ þOPðd2KÞ

# T)1
XT

t¼1

k eZt ) Zt

,,,2 k eA) A+,,2OPð1Þ þ T)1
XT

t¼1

k Zt

,,2

3 k eA) A+ k2 OPð1Þ

þ T)1
XT

t¼1

k eZ >
t
eA) Z>

t A
+ k2 OPð1Þ þOPðr2 þ d2KÞ

¼ OPðr2 þ d2KÞ:
ðA:15Þ
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From Equation (A.15) one gets

T)1
XT

t¼1

eZc;t ) Zc;t

,, ,,2 ¼ OPðr2 þ d2KÞ: ðA:16Þ

We will show that for h 6¼ 0

T)1
XT

t¼hþ1

fðeZc;tþh ) Zc;tþhÞ ) ðeZc;t ) Zc;tÞgZ>
c;t ¼ OPðT)1=2Þ:

ðA:17Þ
This implies the first statement of Theorem 3, because by
(A.16)

T)1
XT

t¼)hþ1

ðeZc;t ) Zc;tÞðeZ >
c;tþh ) Z>

c;tþhÞ ¼ OPðr2 þ d2KÞ

¼ OPðT)1=2Þ:

For the proof of (A.17), let eac be the stack form of eAc and
ea>
c;0 be its first row. Using the representation (6) and the first

identity of (A.11), it can be verified that

eZc;t ¼ eS)1
t;Z J

)1
XJ

j¼1

fYt; j
eAcðXt; jÞ ) eAcðXt; jÞcðXt; jÞ>eac;0g;

ðA:18Þ

eac ¼ eS)1
a T)1J)1

XT

t¼1

XJ

j¼1

fcðXt; jÞ * eZc;tgYt; j; ðA:19Þ

where eSt;Z ¼ J)1
PJ

j¼1
eAcðXt; jÞcðXt; jÞ> eA > and eSa ¼ T)1J)1

PT
t¼1

PJ
j¼1 fcðXt; jÞ * eZc;tgfcðXt; jÞ * eZc;tg>: Define eSt;Z as

eSt;Z with eAc replacing eA. Also, define St;Z ¼ A+
cE cðXt; jÞ

#

cðXt; jÞ>gA+>
c ; St;Z ¼ A+E cðXt; jÞcðXt; jÞ>

n o
A+> and

Sa ¼ T )1
XT

t¼1

E½fcðXt; jÞ * Zc;tgfcðXt; jÞ * Zc;tg>jZt(:

Let g ¼ T)1/2(r þ dK)
)1. We argue that

sup
1 # t # T

k eSt;Z ) St;Z k¼ OPðgÞ; k eSa ) Sa k ¼ OPðgÞ:

ðA:20Þ
We show the first part of (A.20). The second part can be

shown similarly. To prove the first part it suffices to show that,
uniformly for 1 # t # T,

J)1
XJ

j¼1

A+
c ½cðXt; jÞcðXt; jÞ> ) EfcðXt; jÞcðXt; jÞ>g(ð eAc )A+

cÞ
>

¼ OPðgÞ;
ðA:21Þ

J)1
XJ

j¼1

ð eAc )A+
cÞ½cðXt; jÞcðXt; jÞ> ) EfcðXt; jÞcðXt; jÞ>g(

ð eAc )A+
cÞ

> ¼ OPðgÞ;
ðA:22Þ

J)1
XJ

j¼1

A+
c ½cðXt; jÞcðXt; jÞ>) EfcðXt; jÞcðXt; jÞ>g(A+>

c

¼ OPðgÞ;
ðA:23Þ

J)1
XJ

j¼1

A+
cEfcðXt; jÞcðXt; jÞ>gð eAc )A+

cÞ
> ¼ OPðgÞ; ðA:24Þ

J)1
XJ

j¼1

ð eAc )A+
cÞEfcðXt; jÞcðXt; jÞTgð eAc )A+

cÞ
> ¼ OPðgÞ:

ðA:25Þ
The proof of (A.23)–(A.25) follows by simple arguments.

We now show (A.21). Claim (A.22) can be shown similarly. For
the proof of (A.21) we use Bernstein’s inequality for the fol-
lowing sum:

P j
XJ

j¼1

Wjj > x

 !

# 2 exp ) 1

2

x2

V þMx=3

' (
: ðA:26Þ

Here for a value of t with 1 # t # T, the random variable Wj is
an element of the (L þ 1) 3 1-matrix S ¼ J)1A+

c ½cðXt; jÞ
cðXt; jÞ>e) EfcðXtjÞcðXtjÞ>eg( where e 2 RK with ||e||¼ 1. In
(A.26), V is an upper bound for the variance of

PJ
j¼1 Wj andM

is a bound for the absolute values of Wj (i.e. |Wj|# M for 1# j
# J, a.s.). With some constants C1 and C2 that do not depend on
t and the row number we get V # C1J

)1 and M # C2K
1/2J)1.

Application of Bernstein’s inequality gives that, uniformly for
1# t# T and e 2RKwith ||e||¼ 1, all (Lþ 1) elements of S are
of order OPðgÞ. This shows claim (A.21).

From (A.13), (A.15), (A.18), (A.19), and (A.20) it follows
that uniformly for 1 # t # T,

eZc;t ) Zc;t ¼ S)1
t;Z J

)1
XJ

j¼1

et; jA+cðXt; jÞ þ S)1
t;Z J

)1
XJ

j¼1

et; j

3 ðeA) A+ÞcðXt; jÞ
ðA:27Þ

þS)1
t;Z J

)1
XJ

j¼1

ðeA) A+ÞcðXt; jÞcðXt; jÞ>A+>
c Zc;t þ OPðT)1=2Þ

[Dt;1;Z þ Dt;2;Z þ Dt;3;Z þ OPðT)1=2Þ:
For the proof of the theorem it remains to show that for 1 # j
# 3

T)1
XT

t¼)hþ1

ðDtþh; j; Z ) Dt;j;ZÞZ>
c;t ¼ OPðT)1=2Þ: ðA:28Þ

This can be easily checked for j ¼ 1. For j ¼ 2 it follows from
k eA) A+ k¼ Oðr þ dkÞ and

E k T)1J)1
XT

t¼1

XJ

j¼1

et; jS)1
t;ZMcðXt; jÞ k2

( )

¼ OðKJ)1T)1Þ

for any L 3 K matrix M with k M k ¼ 1. For the proof of
(A.28) for j ¼ 3, it suffices to show that

T)1
XTþh

t¼1

Dt; j; ZðZc;t)h ) Zc;tÞ> ¼ OPðT)1=2Þ: ðA:29Þ

We note first that for 1 # l # L

T)1
XTþh

t¼1

Dt;3;ZðZc;t)h;l ) Zc;t;lÞ

¼ T)1J)1
XTþh

t¼1

XJ

j¼1

n*
V>
h;tA

+
ccðXt; jÞcðXt; jÞ>

+
* S)1

t;Z

o
ðea)a+Þ;
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where Vh;t ¼ ðZc;t)h;l ) Zc;t;lÞZc;t, and ea and a* denote the
stack forms of eA and A*, respectively. For the proof of (A.29) it
suffices to show

T)1J)1
XTþh

t¼1

XJ

j¼1

fðE½Vh;t(>A+
ccðXt; jÞcðXt; jÞ>Þ * S)1

t;Z g

3 ðea) a+Þ ¼ OPðT)1=2Þ;
ðA:30Þ,,,,,T

)1J)1
XTþh

t¼1

XJ

j¼1

fðfVh;t ) E½Vh;t(g>A+
ccðXt; jÞcðXt; jÞ>Þ

* S)1
t;Z g

,,,,,

2

¼ OPðKJ)1T)1Þ:

ðA:31Þ
Claim (A.31) can be easily shown by calculating the

expectation of the left hand side of (A.31) and by using the
mixing condition at Assumption (A9). For a proof of (A.30) we
remark first that by construction

0 ¼ T)1
XT

t¼1

ðeZc;t ) Zc;tÞZT
c;t:

Using (A.27) and similar arguments as in the proof of (A.28)
for j ¼ 1, 2 we get that

T)1
XT

t¼1

Dt;3;ZZ
T
c;t ¼ T)1J)1

XT

t¼1

XJ

j¼1

n
ðZc;tZ>

c;tA
+
ccðXt; jÞcðXt; jÞ>Þ

* S)1
t;Z

o
ðea) a+Þ ¼ OPðT)1=2Þ:

As in the proof of (A.31) one can show that
,,,,,T

)1J)1
XTþh

t¼1

XJ

j¼1

fðfZc;tZ>
c;t ) E½Zc;tZ>

c;t(gA
+
ccðXt; jÞcðXt; jÞ>

* S)1
t;Z g

,,,,,

2

¼ OPðK J)1T)1Þ:

The last two equalities imply that

T)1J)1
XT

t¼1

XJ

j¼1

fðE½Zc;tZ>
c;t(A

+
ccðXt; jÞcðXt; jÞ>Þ * S)1

t;Z g

3 ðea) a+Þ ¼ OPðT)1=2Þ:
Because of Assumption (A9) this implies claim (A.29) and
concludes the proof of Theorem 3.

[Received June 2007. Revised August 2008.]
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COMMON FUNCTIONAL PRINCIPAL COMPONENTS1

By Michal Benko, Wolfgang Härdle and Alois Kneip

Humboldt-Universität, Humboldt-Universität and Bonn Universität

Functional principal component analysis (FPCA) based on the
Karhunen–Loève decomposition has been successfully applied in many
applications, mainly for one sample problems. In this paper we con-
sider common functional principal components for two sample prob-
lems. Our research is motivated not only by the theoretical challenge
of this data situation, but also by the actual question of dynamics
of implied volatility (IV) functions. For different maturities the log-
returns of IVs are samples of (smooth) random functions and the
methods proposed here study the similarities of their stochastic be-
havior. First we present a new method for estimation of functional
principal components from discrete noisy data. Next we present the
two sample inference for FPCA and develop the two sample theory.
We propose bootstrap tests for testing the equality of eigenvalues,
eigenfunctions, and mean functions of two functional samples, illus-
trate the test-properties by simulation study and apply the method
to the IV analysis.

1. Introduction. In many applications in biometrics, chemometrics, econo-
metrics, etc., the data come from the observation of continuous phenomenons
of time or space and can be assumed to represent a sample of i.i.d. smooth
random functions X1(t), . . . , Xn(t) ∈ L2[0,1]. Functional data analysis has
received considerable attention in the statistical literature during the last
decade. In this context functional principal component analysis (FPCA)
has proved to be a key technique. An early reference is Rao (1958), and im-
portant methodological contributions have been given by various authors.
Case studies and references, as well as methodological and algorithmical de-
tails, can be found in the books by Ramsay and Silverman (2002, 2005) or
Ferraty and Vieu (2006).
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2 M. BENKO, W. HÄRDLE AND A. KNEIP

The well-known Karhunen–Loève (KL) expansion provides a basic tool to
describe the distribution of the random functions Xi and can be seen as the
theoretical basis of FPCA. For v,w ∈ L2[0,1], let ⟨v,w⟩ =

∫ 1
0 v(t)w(t)dt, and

let ∥ · ∥= ⟨·, ·⟩1/2 denote the usual L2-norm. With λ1 ≥ λ2 ≥ · · · and γ1,γ2, . . .
denoting eigenvalues and corresponding orthonormal eigenfunctions of the
covariance operator Γ of Xi, we obtain Xi = µ +

∑∞
r=1 βriγr, i = 1, . . . , n,

where µ = E(Xi) is the mean function and βri = ⟨Xi − µ,γr⟩ are (scalar)
factor loadings with E(β2

ri) = λr. Structure and dynamics of the random
functions can be assessed by analyzing the “functional principal compo-
nents” γr, as well as the distribution of the factor loadings. For a given
functional sample, the unknown characteristics λr,γr are estimated by the
eigenvalues and eigenfunctions of the empirical covariance operator Γ̂n of
X1, . . . ,Xn. Note that an eigenfunction γr is identified (up to sign) only if the
corresponding eigenvalue λr has multiplicity one. This therefore establishes
a necessary regularity condition for any inference based on an estimated
functional principal component γ̂r in FPCA. Signs are arbitrary (γr and βri

can be replaced by −γr and −βri) and may be fixed by a suitable standard-
ization. More detailed discussion on this topic and precise assumptions can
be found in Section 2.

In many important applications a small number of functional principal
components will suffice to approximate the functions Xi with a high degree
of accuracy. Indeed, FPCA plays a much more central role in functional data
analysis than its well-known analogue in multivariate analysis. There are two
major reasons. First, distributions on function spaces are complex objects,
and the Karhunen–Loève expansion seems to be the only practically feasible
way to access their structure. Second, in multivariate analysis a substantial
interpretation of principal components is often difficult and has to be based
on vague arguments concerning the correlation of principal components with
original variables. Such a problem does not at all exists in the functional
context, where γ1(t),γ2(t), . . . are functions representing the major modes
of variation of Xi(t) over t.

In this paper we consider inference and tests of hypotheses on the struc-
ture of functional principal components. Motivated by an application to
implied volatility analysis, we will concentrate on the two sample case. A
central point is the use of bootstrap procedures. We will show that the
bootstrap methodology can also be applied to functional data.

In Section 2 we start by discussing one-sample inference for FPCA. Basic
results on asymptotic distributions have already been derived by
Dauxois, Pousse and Romain (1982) in situations where the functions are di-
rectly observable. Hall and Hosseini-Nasab (2006) develop asymptotic Tay-
lor expansions of estimated eigenfunctions in terms of the difference Γ̂n −Γ.
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Without deriving rigorous theoretical results, they also provide some qualita-
tive arguments as well as simulation results motivating the use of bootstrap
in order to construct confidence regions for principal components.

In practice, the functions of interest are often not directly observed, but
are regression curves which have to be reconstructed from discrete, noisy
data. In this context the standard approach is to first estimate individual
functions nonparametrically (e.g., by B-splines) and then to determine prin-
cipal components of the resulting estimated empirical covariance operator—
see Besse and Ramsay (1986), Ramsay and Dalzell (1991), among others.
Approaches incorporating a smoothing step into the eigenanalysis have been
proposed by Rice and Silverman (1991), Pezzulli and Silverman (1993) or
Silverman (1996). Robust estimation of principal components has been con-
sidered by Lacontore et al. (1999). Yao, Müller and Wang (2005) and
Hall, Müller and Wang (2006) propose techniques based on nonparametric
estimation of the covariance function E[{Xi(t)−µ(t)}{Xi(s)−µ(s)}] which
can also be applied if there are only a few scattered observations per curve.

Section 2.1 presents a new method for estimation of functional princi-
pal components. It consists in an adaptation of a technique introduced by
Kneip and Utikal (2001) for the case of density functions. The key-idea is
to represent the components of the Karhunen–Loève expansion in terms of
an (L2) scalar-product matrix of the sample. We investigate the asymptotic
properties of the proposed method. It is shown that under mild conditions
the additional error caused by estimation from discrete, noisy data is first-
order asymptotically negligible, and inference may proceed “as if” the func-
tions were directly observed. Generalizing the results of
Dauxois, Pousse and Romain (1982), we then present a theorem on the
asymptotic distributions of the empirical eigenvalues and eigenfunctions.
The structure of the asymptotic expansion derived in the theorem provides
a basis to show consistency of bootstrap procedures.

Section 3 deals with two-sample inference. We consider two independent

samples of functions {X(1)
i }n1

i=1 and {X(2)
i }n2

i=1. The problem of interest is
to test in how far the distributions of these random functions coincide. The
structure of the different distributions in function space can be accessed by
means of the respective Karhunen–Loève expansions

X(p)
i = µ(p) +

∞∑

r=1

β(p)
ri γ(p)

r , p = 1,2.

Differences in the distribution of these random functions will correspond to
differences in the components of the respective KL expansions above. With-

out restriction, one may require that signs are such that ⟨γ(1)
r ,γ(2)

r ⟩ ≥ 0.
Two sample inference for FPCA in general has not been considered in the
literature so far. In Section 3 we define bootstrap procedures for testing
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the equality of mean functions, eigenvalues, eigenfunctions and eigenspaces.
Consistency of the bootstrap is derived in Section 3.1, while Section 3.2 con-
tains a simulation study providing insight into the finite sample performance
of our tests.

It is of particular interest to compare the functional components charac-
terizing the two samples. If these factors are “common,” this means γr :=

γ(1)
r = γ(2)

r , then only the factor loadings β(p)
ri may vary across samples. This

situation may be seen as a functional generalization of the concept of “com-
mon principal components” as introduced by Flury (1988) in multivariate
analysis. A weaker hypothesis may only require equality of the eigenspaces
spanned by the first L ∈ N functional principal components. [N denotes the
set of all natural numbers 1,2, . . . (0 /∈ N)]. If for both samples the common
L-dimensional eigenspaces suffice to approximate the functions with high
accuracy, then the distributions in function space are well represented by a
low-dimensional factor model, and subsequent analysis may rely on compar-

ing the multivariate distributions of the random vectors (β(p)
r1 , . . . ,β(p)

rL )⊤.
The idea of “common functional principal components” is of considerable

importance in implied volatility (IV) dynamics. This application is discussed
in detail in Section 4. Implied volatility is obtained from the pricing model
proposed by Black and Scholes (1973) and is a key parameter for quoting
options prices. Our aim is to construct low-dimensional factor models for
the log-returns of the IV functions of options with different maturities. In

our application the first group of functional observations—{X(1)
i }n1

i=1, are
log-returns on the maturity “1 month” (1M group) and second group—

{X(2)
i }n2

i=1, are log-returns on the maturity “3 months” (3M group).
The first three eigenfunctions (ordered with respect to the correspond-

ing eigenvalues), estimated by the method described in Section 2.1, are
plotted in Figure 1. The estimated eigenfunctions for both groups are of
similar structure, which motivates a common FPCA approach. Based on
discretized vectors of functional values, a (multivariate) common principal
components analysis of implied volatilities has already been considered by
Fengler, Härdle and Villa (2003). They rely on the methodology introduced
by Flury (1988) which is based on maximum likelihood estimation under
the assumption of multivariate normality. Our analysis overcomes the lim-
itations of this approach by providing specific hypothesis tests in a fully
functional setup. It will be shown in Section 4 that for both groups L = 3
components suffice to explain 98.2% of the variability of the sample func-
tions. An application of the tests developed in Section 3 does not reject the
equality of the corresponding eigenspaces.

2. Functional principal components and one sample inference. In this
section we will focus on one sample of i.i.d. smooth random functions X1, . . . ,
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Xn ∈ L2[0,1]. We will assume a well-defined mean function µ = E(Xi), as
well as the existence of a continuous covariance function σ(t, s) = E[{Xi(t)−
µ(t)}{Xi(s)− µ(s)}]. Then E(∥Xi − µ∥2) =

∫
σ(t, t)dt < ∞, and the covari-

ance operator Γ of Xi is given by

(Γv)(t) =
∫

σ(t, s)v(s)ds, v ∈L2[0,1].

The Karhunen–Loève decomposition provides a basic tool to describe the
distribution of the random functions Xi. With λ1 ≥ λ2 ≥ · · · and γ1,γ2, . . .
denoting eigenvalues and a corresponding complete orthonormal basis of
eigenfunctions of Γ, we obtain

Xi = µ +
∞∑

r=1

βriγr, i = 1, . . . , n,(1)

where βri = ⟨Xi−µ,γr⟩ are uncorrelated (scalar) factor loadings with E(βri) =
0, E(β2

ri) = λr and E(βriβki) = 0 for r ̸= k. Structure and dynamics of the
random functions can be assessed by analyzing the “functional principal
components” γr, as well as the distribution of the factor loadings.

A discussion of basic properties of (1) can, for example, be found in
Gihman and Skorohod (1973). Under our assumptions, the infinite sums in
(1) converge with probability 1, and

∑∞
r=1 λr = E(∥Xi −µ∥2) < ∞. Smooth-

ness of Xi carries over to a corresponding degree of smoothness of σ(t, s)
and γr. If, with probability 1, Xi(t) is twice continuously differentiable, then
σ as well as γr are also twice continuously differentiable. The particular case
of a Gaussian random function Xi implies that the βri are independent
N(0,λr)-distributed random variables.

Fig. 1. Estimated eigenfunctions for 1M group in the left plot and 3M group in the right
plot: solid—first function, dashed—second function, finely dashed—third function.
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An important property of (1) consists in the known fact that the first L
principal components provide a “best basis” for approximating the sample
functions in terms of the integrated square error; see Ramsay and Silverman
(2005), Section 6.2.3, among others. For any choice of L orthonormal basis
functions v1, . . . , vL, the mean integrated square error

ρ(v1, . . . , vL) = E

(∥∥∥∥∥Xi − µ−
L∑

r=1

⟨Xi − µ, vr⟩vr

∥∥∥∥∥

2)

(2)

is minimized by vr = γr.

2.1. Estimation of functional principal components. For a given sample
an empirical analog of (1) can be constructed by using eigenvalues λ̂1 ≥ λ̂2 ≥
· · · and orthonormal eigenfunctions γ̂1, γ̂2, . . . of the empirical covariance
operator Γ̂n, where

(Γ̂nv)(t) =
∫

σ̂(t, s)v(s)ds,

with X̄ = n−1∑n
i=1 Xi and σ̂(t, s) = n−1∑n

i=1{Xi(t)− X̄(t)}{Xi(s)− X̄(s)}
denoting sample mean and covariance function. Then

Xi = X̄ +
n∑

r=1

β̂riγ̂r, i = 1, . . . , n,(3)

where β̂ri = ⟨γ̂r,Xi−X̄⟩. We necessarily obtain n−1∑
i β̂ri = 0, n−1∑

i β̂riβ̂si =
0 for r ̸= s, and n−1∑

i β̂
2
ri = λ̂r.

Analysis will have to concentrate on the leading principal components
explaining the major part of the variance. In the following we will assume
that λ1 > λ2 > · · · > λr0 > λr0+1, where r0 denotes the maximal number of
components to be considered. For all r = 1, . . . , r0, the corresponding eigen-
function γr is then uniquely defined up to sign. Signs are arbitrary, decom-
positions (1) or (3) may just as well be written in terms of −γr,−βri or
−γ̂r,−β̂ri, and any suitable standardization may be applied by the statisti-
cian. In order to ensure that γ̂r may be viewed as an estimator of γr rather
than of −γr, we will in the following only assume that signs are such that
⟨γr, γ̂r⟩ ≥ 0. More generally, any subsequent statement concerning differences
of two eigenfunctions will be based on the condition of a nonnegative inner
product. This does not impose any restriction and will go without saying.

The results of Dauxois, Pousse and Romain (1982) imply that, under reg-
ularity conditions, ∥γ̂r − γr∥ = Op(n−1/2), |λ̂r − λr| = Op(n−1/2), as well as

|β̂ri − βri| =Op(n−1/2) for all r ≤ r0.
However, in practice, the sample functions Xi are often not directly ob-

served, but have to be reconstructed from noisy observations Yij at discrete



COMMON FUNCTIONAL PC 7

design points tik:

Yik = Xi(tik) + εik, k = 1, . . . , Ti,(4)

where εik are independent noise terms with E(εik) = 0, Var(εik) = σ2
i .

Our approach for estimating principal components is motivated by the
well-known duality relation between row and column spaces of a data matrix;
see Härdle and Simar (2003), Chapter 8, among others. In a first step this
approach relies on estimating the elements of the matrix:

Mlk = ⟨Xl − X̄,Xk − X̄⟩, l, k = 1, . . . , n.(5)

Some simple linear algebra shows that all nonzero eigenvalues λ̂1 ≥ λ̂2 · · · of
Γ̂n and l1 ≥ l2 · · · of M are related by λ̂r = lr/n, r = 1,2, . . . . When using the
corresponding orthonormal eigenvectors p1, p2, . . . of M , the empirical scores
β̂ri, as well as the empirical eigenfunctions γ̂r, are obtained by β̂ri =

√
lrpir

and

γ̂r =
1√
lr

n∑

i=1

pir(Xi − X̄) =
1√
lr

n∑

i=1

pirXi.(6)

The elements of M are functionals which can be estimated with asym-

potically negligible bias and a parametric rate of convergence T−1/2
i . If the

data in (4) is generated from a balanced, equidistant design, then it is easily
seen that for i ̸= j this rate of convergence is achieved by the estimator

M̂ij = T−1
T∑

k=1

(Yik − Ȳ
·k)(Yjk − Ȳ

·k), i ̸= j,

and

M̂ii = T−1
T∑

k=1

(Yik − Ȳ
·k)

2 − σ̂2
i ,

where σ̂2
i denotes some nonparametric estimator of variance and Ȳ

·k = n−1×∑n
j=1 Yjk.
In the case of a random design some adjustment is necessary: Define the

ordered sample ti(1) ≤ ti(2) ≤ · · ·≤ ti(Ti) of design points, and for j = 1, . . . , Ti,
let Yi(j) denote the observation belonging to ti(j). With ti(0) = −ti(1) and
ti(Ti+1) = 2− ti(Ti), set

χi(t) =
Ti∑

j=1

Yi(j)I
(

t ∈
[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))
, t ∈ [0,1],

where I(·) denotes the indicator function, and for i ̸= j, define the estimate
of Mij by

M̂ij =
∫ 1

0
{χi(t)− χ̄(t)}{χj(t)− χ̄(t)}dt,
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where χ̄(t) = n−1∑n
i=1 χi(t). Finally, by redefining ti(1) = −ti(2) and ti(Ti+1) =

2 − ti(Ti), set χ∗
i (t) =

∑Ti
j=2 Yi(j−1)I(t ∈ [

ti(j−1)+ti(j)
2 ,

ti(j)+ti(j+1)

2 )), t ∈ [0,1].
Then construct estimators of the diagonal terms Mii by

M̂ii =
∫ 1

0
{χi(t)− χ̄(t)}{χ∗

i (t)− χ̄(t)}dt.(7)

The aim of using the estimator (7) for the diagonal terms is to avoid the
additional bias implied by Eε(Y 2

ik) = Xi(tij)2 + σ2
i . Here Eε denotes con-

ditional expectation given tij , Xi. Alternatively, we can construct a bias
corrected estimator using some nonparametric estimation of variance σ2

i ,
for example, the difference based model-free variance estimators studied in
Hall, Kay and Titterington (1990) can be employed.

The eigenvalues l̂1 ≥ l̂2 · · · and eigenvectors p̂1, p̂2, . . . of the resulting ma-

trix M̂ then provide estimates λ̂r;T = l̂r/n and β̂ri;T =
√

l̂rp̂ir of λ̂r and β̂ri.
Estimates γ̂r;T of the empirical functional principal component γ̂r can be
determined from (6) when replacing the unknown true functions Xi by non-
parametric estimates X̂i (as, for example, local polynomial estimates) with
smoothing parameter (bandwidth) b:

γ̂r;T =
1
√

l̂r

n∑

i=1

p̂irX̂i.(8)

When considering (8), it is important to note that γ̂r;T is defined as a
weighted average of all estimated sample functions. Averaging reduces vari-
ance, and efficient estimation of γ̂r therefore requires undersmoothing of
individual function estimates X̂i. Theoretical results are given in Theorem
1 below. Indeed, if, for example, n and T = mini Ti are of the same order
of magnitude, then under suitable additional regularity conditions it will be
shown that for an optimal choice of a smoothing parameter b ∼ (nT )−1/5

and twice continuously differentiable Xi, we obtain the rate of convergence
∥γ̂r − γ̂r;T∥ = Op{(nT )−2/5}. Note, however, that the bias corrected esti-
mator (7) may yield negative eigenvalues. In practice, these values will be
small and will have to be interpreted as zero. Furthermore, the eigenfunc-
tions determined by (8) may not be exactly orthogonal. Again, when using
reasonable bandwidths, this effect will be small, but of course (8) may by
followed by a suitable orthogonalization procedure.

It is of interest to compare our procedure to more standard methods
for estimating λ̂r and γ̂r as mentioned above. When evaluating eigenvalues
and eigenfunctions of the empirical covariance operator of nonparametrically
estimated curves X̂i, then for fixed r ≤ r0 the above rate of convergence for
the estimated eigenfunctions may well be achieved for a suitable choice of
smoothing parameters (e.g., number of basis functions). But as will be seen
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from Theorem 1, our approach also implies that |λ̂r − l̂r
n |= Op(T−1 + n−1).

When using standard methods it does not seem to be possible to obtain
a corresponding rate of convergence, since any smoothing bias |E[X̂i(t)] −
Xi(t)| will invariably affect the quality of the corresponding estimate of λ̂r.

We want to emphasize that any finite sample interpretation will require
that T is sufficiently large such that our nonparametric reconstructions of
individual curves can be assumed to possess a fairly small bias. The above ar-
guments do not apply to extremely sparse designs with very few observations
per curve [see Hall, Müller and Wang (2006) for an FPCA methodology fo-
cusing on sparse data].

Note that, in addition to (8), our final estimate of the empirical mean
function µ̂ = X̄ will be given by µ̂T = n−1∑

i X̂i. A straightforward approach
to determine a suitable bandwidth b consists in a “leave-one-individual-out”
cross-validation. For the maximal number r0 of components to be considered,
let µ̂T,−i and γ̂r;T,−i, r = 1, . . . , r0, denote the estimates of µ̂ and γ̂r obtained
from the data (Ylj, tlj), l = 1, . . . , i−1, i+1, . . . , n, j = 1, . . . , Tk. By (8), these
estimates depend on b, and one may approximate an optimal smoothing
parameter by minimizing

∑

i

∑

j

{

Yij − µ̂T,−i(tij)−
r0∑

r=1

ϑ̂riγ̂r;T,−i(tij)

}2

over b, where ϑ̂ri denote ordinary least squares estimates of β̂ri. A more
sophisticated version of this method may even allow to select different band-
widths br when estimating different functional principal components by (8).
Although, under certain regularity conditions, the same qualitative rates
of convergence hold for any arbitrary fixed r ≤ r0, the quality of estimates
decreases when r becomes large. Due to ⟨γs,γr⟩ = 0 for s < r, the number
of zero crossings, peaks and valleys of γr has to increase with r. Hence, in
tendency γr will be less and less smooth as r increases. At the same time,
λr → 0, which means that for large r the rth eigenfunctions will only possess
a very small influence on the structure of Xi. This in turn means that the
relative importance of the error terms εik in (4) on the structure of γ̂r;T will
increase with r.

2.2. One sample inference. Clearly, in the framework described by (1)–
(4) we are faced with two sources of variability of estimated functional prin-
cipal components. Due to sampling variation, γ̂r will differ from the true
component γr, and due to (4), there will exist an additional estimation er-
ror when approximating γ̂r by γ̂r;T .

The following theorems quantify the order of magnitude of these different
types of error. Our theoretical results are based on the following assumptions
on the structure of the random functions Xi.
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Assumption 1. X1, . . . ,Xn ∈ L2[0,1] is an i.i.d. sample of random func-
tions with mean µ and continuous covariance function σ(t, s), and (1) holds
for a system of eigenfunctions satisfying sups∈N supt∈[0,1] |γs(t)| < ∞. Fur-

thermore,
∑∞

r=1
∑∞

s=1 E[β2
riβ

2
si] < ∞ and

∑∞
q=1

∑∞
s=1 E[β2

riβqiβsi] < ∞ for all
r ∈ N.

Recall that E[βri] = 0 and E[βriβsi] = 0 for r ̸= s. Note that the assump-
tion on the factor loadings is necessarily fulfilled if Xi are Gaussian random
functions. Then βri and βsi are independent for r ̸= s, all moments of βri

are finite, and hence E[β2
riβqiβsi] = 0 for q ̸= s, as well as E[β2

riβ
2
si] = λrλs

for r ̸= s; see Gihman and Skorohod (1973).

We need some further assumptions concerning smoothness of Xi and the
structure of the discrete model (4).

Assumption 2. (a) Xi is a.s. twice continuously differentiable. There
exists a constant D1 < ∞ such that the derivatives are bounded by
supt E[Xi

′(t)4]≤ D1, as well as supt E[Xi
′′(t)4]≤ D1.

(b) The design points tik, i = 1, . . . , n, k = 1, . . . , Ti, are i.i.d. random
variables which are independent of Xi and εik. The corresponding design
density f is continuous on [0,1] and satisfies inft∈[0,1] f(t) > 0.

(c) For any i, the error terms εik are i.i.d. zero mean random variables
with Var(εik) = σ2

i . Furthermore, εik is independent of Xi, and there exists
a constant D2 such that E(ε8

ik) < D2 for all i, k.

(d) The estimates X̂i used in (8) are determined by either a local linear or
a Nadaraya–Watson kernel estimator with smoothing parameter b and kernel
function K. K is a continuous probability density which is symmetric at 0.

The following theorems provide asymptotic results as n,T → ∞, where
T = minn

i=1{Ti}.

Theorem 1. In addition to Assumptions 1 and 2, assume that infs ̸=r |λr−
λs|> 0 holds for some r = 1,2, . . . . Then we have the following:

(i) n−1∑n
i=1(β̂ri − β̂ri;T )2 = Op(T−1) and

∣∣∣∣λ̂r −
l̂r
n

∣∣∣∣=Op(T
−1 + n−1).(9)

(ii) If additionally b → 0 and (Tb)−1 → 0 as n,T →∞, then for all t ∈
[0,1],

|γ̂r(t)− γ̂r;T (t)| = Op{b2 + (nTb)−1/2 + (Tb1/2)−1 + n−1}.(10)

A proof is given in the Appendix.
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Theorem 2. Under Assumption 1 we obtain the following:

(i) For all t ∈ [0,1],

√
n{X̄(t)− µ(t)} =

∑

r

{
1√
n

n∑

i=1

βri

}

γr(t)
L→N

(

0,
∑

r

λrγr(t)
2

)

.

If, furthermore, λr−1 > λr > λr+1 holds for some fixed r ∈ {1,2, . . .}, then
(ii)

√
n(λ̂r − λr) =

1√
n

n∑

i=1

(β2
ri − λr) +Op(n

−1/2)
L→ N(0,Λr),(11)

where Λr = E[(β2
ri − λr)2],

(iii) and for all t ∈ [0,1]

γ̂r(t)− γr(t) =
∑

s ̸=r

{
1

n(λr − λs)

n∑

i=1

βsiβri

}

γs(t) + Rr(t),

(12)
where ∥Rr∥ =Op(n−1).

Moreover,

√
n
∑

s ̸=r

{
1

n(λr − λs)

n∑

i=1

βsiβri

}

γs(t)

L→ N

(

0,
∑

q ̸=r

∑

s ̸=r

E[β2
riβqiβsi]

(λq − λr)(λs − λr)
γq(t)γs(t)

)

.

A proof can be found in the Appendix. The theorem provides a general-
ization of the results of Dauxois, Pousse and Romain (1982) who derive ex-
plicit asymptotic distributions by assuming Gaussian random functions Xi.

Note that in this case Λr = 2λ2
r and

∑
q ̸=r

∑
s ̸=r

E[β2
riβqiβsi]

(λq−λr)(λs−λr)γq(t)γs(t) =
∑

s ̸=r
λrλs

(λs−λr)2 γs(t)2.

When evaluating the bandwidth-dependent terms in (10), best rates of
convergence |γ̂r(t) − γ̂r;T (t)| = Op{(nT )−2/5 + T−4/5 + n−1} are achieved
when choosing an undersmoothing bandwidth b ∼ max{(nT )−1/5, T−2/5}.
Theoretical work in functional data analysis is usually based on the implicit
assumption that the additional error due to (4) is negligible, and that one
can proceed “as if” the functions Xi were directly observed. In view of
Theorems 1 and 2, this approach is justified in the following situations:

(1) T is much larger than n, that is, n/T 4/5 → 0, and the smoothing
parameter b in (8) is of order T−1/5 (optimal smoothing of individual func-
tions).
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(2) An undersmoothing bandwidth b ∼ max{(nT )−1/5, T−2/5} is used and
n/T 8/5 → 0. This means that T may be smaller than n, but T must be at
least of order of magnitude larger than n5/8.

In both cases (1) and (2) the above theorems imply that |λ̂r − l̂r
n |= Op(|λ̂r −

λr|), as well as ∥γ̂r − γ̂r;T∥= Op(∥γ̂r − γr∥). Inference about functional prin-
cipal components will then be first-order equivalent to an inference based
on known functions Xi.

In such situations Theorem 2 suggests bootstrap procedures as tools for
one sample inference. For example, the distribution of ∥γ̂r − γr∥ may by
approximated by the bootstrap distribution of ∥γ̂∗

r − γ̂r∥, where γ̂∗
r are es-

timates to be obtained from i.i.d. bootstrap resamples X∗
1 ,X∗

2 , . . . ,X∗
n of

{X1,X2, . . . ,Xn}. This means that X∗
1 = Xi1 , . . . ,X

∗
n = Xin for some indices

i1, . . . , in drawn independently and with replacement from {1, . . . , n} and,
in practice, γ̂∗

r may thus be approximated from corresponding discrete data
(Yi1j , ti1j)j=1,...,Ti1

, . . . , (Yinj , tinj)j=1,...,Tin
. The additional error is negligible

if either (1) or (2) is satisfied.
One may wonder about the validity of such a bootstrap. Functions are

complex objects and there is no established result in bootstrap theory which
readily generalizes to samples of random functions. But by (1), i.i.d. boot-
strap resamples {X∗

i }i=1,...,n may be equivalently represented by correspond-
ing, i.i.d. resamples {β∗

1i,β
∗
2i, . . .}i=1,...,n of factor loadings. Standard multi-

variate bootstrap theorems imply that for any q ∈ N the distribution of mo-
ments of the random vectors (β1i, . . . ,βqi) may be consistently approximated
by the bootstrap distribution of corresponding moments of (β∗

1i, . . . ,β
∗
qi). To-

gether with some straightforward limit arguments as q →∞, the structure of
the first-order terms in the asymptotic expansions (11) and (12) then allows
to establish consistency of the functional bootstrap. These arguments will
be made precise in the proof of Theorem 3 below, which concerns related
bootstrap statistics in two sample problems.

Remark. Theorem 2(iii) implies that the variance of γ̂r is large if one of
the differences λr−1 − λr or λr − λr+1 is small. In the limit case of eigenval-
ues of multiplicity m > 1 our theory does not apply. Note that then only the
m-dimensional eigenspace is identified, but not a particular basis (eigenfunc-
tions). In multivariate PCA Tyler (1981) provides some inference results on
corresponding projection matrices assuming that λr > λr+1 ≥ · · ·≥ λr+m >
λr+m+1 for known values of r and m.

Although the existence of eigenvalues λr, r ≤ r0, with multiplicity m > 1
may be considered as a degenerate case, it is immediately seen that λr → 0
and, hence, λr − λr+1 → 0 as r increases. Even in the case of fully observed
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functions Xi, estimates of eigenfunctions corresponding to very small eigen-
values will thus be poor. The problem of determining a sensible upper limit
of the number r0 of principal components to be analyzed is addressed in
Hall and Hosseini-Nasab (2006).

3. Two sample inference. The comparison of functional components across
groups leads naturally to two sample problems. Thus, let

X(1)
1 ,X(1)

2 , . . . ,X(1)
n1

and X(2)
1 ,X(2)

2 , . . . ,X(2)
n2

denote two independent samples of smooth functions. The problem of inter-
est is to test in how far the distributions of these random functions coincide.
The structure of the different distributions in function space can be accessed
by means of the respective Karhunen–Loève decompositions. The problem
to be considered then translates into testing equality of the different com-
ponents of these decompositions given by

X(p)
i = µ(p) +

∞∑

r=1

β(p)
ri γ(p)

r , p = 1,2,(13)

where again γ(p)
r are the eigenfunctions of the respective covariance operator

Γ(p) corresponding to the eigenvalues λ(p)
1 = E{(β(p)

1i )2}≥ λ(p)
2 = E{(β(p)

2i )2}≥
· · ·. We will again suppose that λ(p)

r−1 > λ(p)
r > λ(p)

r+1, p = 1,2, for all r ≤ r0

components to be considered. Without restriction, we will additionally as-

sume that signs are such that ⟨γ(1)
r ,γ(2)

r ⟩ ≥ 0, as well as ⟨γ̂(1)
r , γ̂(2)

r ⟩ ≥ 0.
It is of great interest to detect possible variations in the functional compo-

nents characterizing the two samples in (13). Significant difference may give
rise to substantial interpretation. Important hypotheses to be considered
thus are as follows:

H01 :µ(1) = µ(2) and H02,r :γ(1)
r = γ(2)

r , r ≤ r0.

Hypothesis H02,r is of particular importance. Then γ(1)
r = γ(2)

r and only the
factor loadings βri may vary across samples. If, for example, H02,r is ac-
cepted, one may additionally want to test hypotheses about the distribu-

tions of β(p)
ri , p = 1,2. Recall that necessarily E{β(p)

ri } = 0, E{β(p)
ri }2 = λ(p)

r ,

and β(p)
si is uncorrelated with β(p)

ri if r ̸= s. If the X(p)
i are Gaussian random

variables, the β(p)
ri are independent N(0,λr) random variables. A natural

hypothesis to be tested then refers to the equality of variances:

H03,r :λ(1)
r = λ(2)

r , r = 1,2, . . . .

Let µ̂(p)(t) = 1
np

∑
i X

(p)
i (t), and let λ̂(p)

1 ≥ λ̂(p)
2 ≥ · · · and γ̂(p)

1 , γ̂(p)
2 , . . . de-

note eigenvalues and corresponding eigenfunctions of the empirical covari-

ance operator Γ̂(p)
np of X(p)

1 ,X(p)
2 (t), . . . ,X(p)

np . The following test statistics are
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defined in terms of µ̂(p), λ̂(p)
r and γ̂(p)

r . As discussed in the proceeding section,
all curves in both samples are usually not directly observed, but have to be
reconstructed from noisy observations according to (4). In this situation, the
“true” empirical eigenvalues and eigenfunctions have to be replaced by their
discrete sample estimates. Bootstrap estimates are obtained by resampling

the observations corresponding to the unknown curves X(p)
i . As discussed in

Section 2.2, the validity of our test procedures is then based on the assump-
tion that T is sufficiently large such that the additional estimation error is
asymptotically negligible.

Our tests of the hypotheses H01 ,H02,r and H03,r rely on the statistics

D1
def
= ∥µ̂(1) − µ̂(2)∥2,

D2,r
def
= ∥γ̂(1)

r − γ̂(2)
r ∥2,

D3,r
def
= |λ̂(1)

r − λ̂(2)
r |2.

The respective null-hypothesis has to be rejected if D1 ≥ ∆1;1−α, D2,r ≥
∆2,r;1−α or D3,r ≥ ∆3,r;1−α, where ∆1;1−α, ∆2,r;1−α and ∆3,r;1−α denote the
critical values of the distributions of

∆1
def
= ∥µ̂(1) − µ(1) − (µ̂(2) − µ(2))∥2,

∆2,r
def
= ∥γ̂(1)

r − γ(1)
r − (γ̂(2)

r − γ(2)
r )∥2,

∆3,r
def
= |λ̂(1)

r − λ(1)
r − (λ̂(2)

r − λ(2)
r )|2.

Of course, the distributions of the different ∆’s cannot be accessed directly,
since they depend on the unknown true population mean, eigenvalues and
eigenfunctions. However, it will be shown below that these distributions and,
hence, their critical values are approximated by the bootstrap distribution
of

∆∗
1

def
= ∥µ̂(1)∗ − µ̂(1) − (µ̂(2)∗ − µ̂(2))∥2,

∆∗
2,r

def
= ∥γ̂(1)∗

r − γ̂(1)
r − (γ̂(2)∗

r − γ̂(2)
r )∥2,

∆∗
3,r

def
= |λ̂(1)∗

r − λ̂(1)
r − (λ̂(2)∗

r − λ̂(2)
r )|2,

where µ̂(1)∗, γ̂(1)∗
r , λ̂(1)∗

r , as well as µ̂(2)∗, γ̂(2)∗
r , λ̂(2)∗

r , are estimates to be
obtained from independent bootstrap samples X1∗

1 (t),X1∗
2 (t), . . . ,X1∗

n1
(t), as

well as X2∗
1 (t),X2∗

2 (t), . . . ,X2∗
n2

(t).
This test procedure is motivated by the following insights:

(1) Under each of our null-hypotheses the respective test statistics D is
equal to the corresponding ∆. The test will thus asymptotically possess the
correct level: P (D > ∆1−α)≈ α.
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(2) If the null hypothesis is false, then D ̸= ∆. Compared to the distribu-
tion of ∆, the distribution of D is shifted by the difference in the true means,
eigenfunctions or eigenvalues. In tendency D will be larger than ∆1−α.

Let 1 < L ≤ r0. Even if for r ≤ L the equality of eigenfunctions is rejected,
we may be interested in the question of whether at least the L-dimensional
eigenspaces generated by the first L eigenfunctions are identical. Therefore,

let E(1)
L , as well as E(2)

L , denote the L-dimensional linear function spaces

generated by the eigenfunctions γ(1)
1 , . . . ,γ(1)

L and γ(2)
1 , . . . ,γ(2)

L , respectively.
We then aim to test the null hypothesis:

H04,L
:E(1)

L = E(2)
L .

Of course, H04,L
corresponds to the hypothesis that the operators projecting

into E(1)
L and E(2)

L are identical. This in turn translates into the condition
that

L∑

r=1

γ(1)
r (t)γ(1)

r (s) =
L∑

r=1

γ(2)
r (t)γ(2)

r (s) for all t, s ∈ [0,1].

Similar to above, a suitable test statistic is given by

D4,L
def
=
∫ ∫ { L∑

r=1

γ̂(1)
r (t)γ̂(1)

r (s)−
L∑

r=1

γ̂(2)
r (t)γ̂(2)

r (s)

}2

dt ds

and the null hypothesis is rejected if D4,L ≥ ∆4,L;1−α, where ∆4,L;1−α de-
notes the critical value of the distribution of

∆4,L
def
=
∫ ∫ [ L∑

r=1

{γ̂(1)
r (t)γ̂(1)

r (s)− γ(1)
r (t)γ(1)

r (s)}

−
L∑

r=1

{γ̂(2)
r (t)γ̂(2)

r (s)− γ(2)
r (t)γ(2)

r (s)}
]2

dt ds.

The distribution of ∆4,L and, hence, its critical values are approximated
by the bootstrap distribution of

∆∗
4,L

def
=
∫ ∫ [ L∑

r=1

{γ̂(1)∗
r (t)γ̂(1)∗

r (s)− γ̂(1)
r (t)γ̂(1)

r (s)}

−
L∑

r=1

{γ̂(2)∗
r (t)γ̂(2)∗

r (s)− γ̂(2)
r (t)γ̂(2)

r (s)}
]2

dt ds.

It will be shown in Theorem 3 below that under the null hypothesis, as well as
under the alternative, the distributions of n∆1, n∆2,r, n∆3,r, n∆4,L converge
to continuous limit distributions which can be consistently approximated by
the bootstrap distributions of n∆∗

1, n∆∗
2,r, n∆∗

3,r, n∆∗
4,L.
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3.1. Theoretical results. Let n = (n1+n2)/2. We will assume that asymp-
totically n1 = n · q1 and n2 = n · q2 for some fixed proportions q1 and q2. We
will then study the asymptotic behavior of our statistics as n →∞.

We will use X1 = {X(1)
1 , . . . ,X(1)

n1 } and X2 = {X(2)
1 , . . . ,X(2)

n2 } to denote
the observed samples of random functions.

Theorem 3. Assume that {X(1)
1 , . . . ,X(1)

n1 } and {X(2)
1 , . . . ,X(2)

n2 } are two
independent samples of random functions, each of which satisfies Assump-
tion 1. As n →∞ we then obtain the following:

(i) There exists a nondegenerated, continuous probability distribution F1

such that n∆1
L→ F1, and for any δ > 0,

|P (n∆1 ≥ δ)−P (n∆∗
1 ≥ δ|X1,X2)| = Op(1).

(ii) If, furthermore, λ(1)
r−1 > λ(1)

r > λ(1)
r+1 and λ(2)

r−1 > λ(2)
r > λ(2)

r+1 hold for
some fixed r = 1,2, . . . , there exist a nondegenerated, continuous probability

distributions Fk,r such that n∆k,r
L→ Fk,r, k = 2,3, and for any δ > 0,

|P (n∆k,r ≥ δ)−P (n∆∗
k,r ≥ δ|X1,X2)| = Op(1), k = 2,3.

(iii) If λ(1)
r > λ(1)

r+1 > 0 and λ(2)
r > λ(2)

r+1 > 0 hold for all r = 1, . . . ,L, there
exists a nondegenerated, continuous probability distribution F4,L such that

n∆4,L
L→ F4,L, and for any δ > 0,

|P (n∆4,L ≥ δ)−P (n∆∗
4,L ≥ δ|X1,X2)| = Op(1).

The structures of the distributions F1, F2,r, F3,r, F4,L are derived in the
proof of the theorem which can be found in the Appendix. They are obtained
as limits of distributions of quadratic forms.

3.2. Simulation study. In this paragraph we illustrate the finite behavior
of the proposed test. The basic simulation-setup (setup “a”) is established
as follows: the first sample is generated by the random combination of or-
thonormalized sine and cosine functions (Fourier functions) and the second
sample is generated by the random combination of the same but shifted
factor functions:

X(1)
i (tik) = β(1)

1i

√
2 sin(2πtik) + β(1)

2i

√
2cos(2πtik),

X(2)
i (tik) = β(2)

1i

√
2 sin{2π(tik + δ)}+ β(2)

2i

√
2cos{2π(tik + δ)}.

The factor loadings are i.i.d. random variables with β(p)
1i ∼ N(0,λ(p)

1 ) and

β(p)
2i ∼ N(0,λ(p)

2 ). The functions are generated on the equidistant grid tik =
tk = k/T, k = 1, . . . T = 100, i = 1, . . . , n = 70. The simulation setup is based
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Table 1

The results of the simulations for α = 0.1, n = 70, T = 100, number of simulations 250

Setup/shift 0 0.05 0.1 0.15 0.2 0.25

(a) 10, 5, 8, 4 0.13 0.41 0.85 0.96 1 1
(a) 4, 2, 2, 1 0.12 0.48 0.87 0.96 1 1
(a) 2, 1, 1.5, 2 0.14 0.372 0.704 0.872 0.92 0.9
(b) 10, 5, 8, 4 D1 0.10 0.44 0.86 0.95 1 1
(b) 10, 5, 8, 4 D2 1 1 1 1 1 1

on the fact that the error of the estimation of the eigenfunctions simulated
by sine and cosine functions is, in particular, manifested by some shift of
the estimated eigenfunctions. The focus of this simulation study is the test
of common eigenfunctions.

For the presentation of results in Table 1, we use the following notation:

“(a) λ(1)
1 ,λ(1)

2 ,λ(2)
2 ,λ(2)

2 .” The shift parameter δ is changing from 0 to 0.25
with the step 0.05. It should be mentioned that the shift δ = 0 yields the
simulation of level and setup with shift δ = 0.25 yields the simulation of the
alternative, where the two factor functions are exchanged.

In the second setup (setup “b”) the first factor functions are the same
and the second factor functions differ:

X(1)
i (tik) = β(1)

1i

√
2 sin(2πtik) + β(1)

2i

√
2cos(2πtik),

X(2)
i (tik) = β(2)

1i

√
2 sin{2π(tik + δ)} + β(2)

2i

√
2 sin{4π(tik + δ)}.

In Table 1 we use the notation “(b) λ(1)
1 ,λ(1)

2 ,λ(2)
2 ,λ(2)

2 ,Dr.” Dr means the
test for the equality of the rth eigenfunction. In the bootstrap tests we used
500 bootstrap replications. The critical level in this simulation is α = 0.1.
The number of simulations is 250.

We can interpret Table 1 in the following way: In power simulations (δ ̸= 0)
test behaves as expected: less powerful if the functions are “hardly distin-
guishable” (small shift, small difference in eigenvalues). The level approxima-

tion seems to be less precise if the difference in the eingenvalues (λ(p)
1 −λ(p)

2 )
becomes smaller. This can be explained by relative small sample-size n, small
number of bootstrap-replications and increasing estimation-error as argued
in Theorem 2, assertion (iii).

In comparison to our general setup (4), we used an equidistant and
common design for all functions. This simplification is necessary, it sim-
plifies and speeds-up the simulations, in particular, using general random
and observation-specific design makes the simulation computationally un-
tractable.

Second, we omitted the additional observation error, this corresponds to
the standard assumptions in the functional principal components theory. As
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Table 2

The results of the simulation for α = 0.1, n = 70, T = 100 with additional error in
observation

Setup/shift 0 0.05 0.1 0.15 0.2 0.25

(a) 10, 5, 8, 4 0.09 0.35 0.64 0.92 0.94 0.97

argued in Section 2.2, the inference based on the directly observed functions
and estimated functions Xi is first-order equivalent under mild conditions
implied by Theorems 1 and 2. In order to illustrate this theoretical result in
the simulation, we used the following setup:

X(1)
i (tik) = β(1)

1i

√
2 sin(2πtik) + β(1)

2i

√
2cos(2πtik) + ε(1)

ik ,

X(2)
i (tik) = β(2)

1i

√
2 sin{2π(tik + δ)}+ β(2)

2i

√
2cos{2π(tik + δ)} + ε(2)

ik ,

where ε(p)
ik ∼ N(0,0.25), p = 1,2, all other parameters remain the same as

in the simulation setup “a.” Using this setup, we recalculate the simulation
presented in the second “row” of Table 1, for estimation of the functions

X(p)
i , p = 1,2, we used the Nadaraya–Watson estimation with Epanechnikov

kernel and bandwidth b = 0.05. We run the simulations with various band-
widths, the choice of the bandwidth does not have a strong influence on
results except by oversmoothing (large bandwidths). The results are printed
in Table 2. As we can see, the difference of the simulation results using es-
timated functions is not significant in comparison to the results printed in
the second line of Table 1—directly observed functional values.

The last limitation of this simulation study is the choice of a partic-
ular alternative. A more general setup of this simulation study might be

based on the following model: X(1)
i (t) = β(1)

1i γ(1)
1 (t) + β(1)

2i γ(1)
2 (t), X(2)

i (t) =

β(2)
1i γ(2)

1 (t) + β(2)
2i γ(2)

2 (t), where γ(1)
1 ,γ(2)

1 ,γ(1)
2 and g are mutually orthogonal

functions on L2[0,1] and γ(2)
2 = (1 + υ2)−1/2{γ(1)

2 + υg}. Basically we create
the alternative by the contamination of one of the “eigenfunctions” (in our

case the second one) in the direction g and ensure ∥γ(2)
2 ∥ = 1. The amount

of the contamination is controlled by the parameter υ. Note that the exact

squared integral difference ∥γ(1)
2 − γ(2)

2 ∥2 does not depend on function g.
Thus, in the “functional sense” particular “direction of the alternative hy-
pothesis” represented by the function g has no impact on the power of the
test. However, since we are using a nonparametric estimation technique, we
might expect that rough (highly fluctuating) functions g will yield higher er-
ror of estimation and, hence, decrease the precision (and power) of the test.
Finally, a higher number of factor functions (L) in simulation may cause less
precise approximation of critical values and more bootstrap replications and
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larger sample-size may be needed. This can also be expected from Theorem
2 in Section 2.2—the variance of the estimated eigenfunctions depends on
all eigenfunctions corresponding to nonzero eingenvalues.

4. Implied volatility analysis. In this section we present an application
of the method discussed in previous sections to the implied volatilities of Eu-
ropean options on the German stock index (ODAX). Implied volatilities are
derived from the Black–Scholes (BS) pricing formula for European options;
see Black and Scholes (1973). European call and put options are derivatives
written on an underlying asset with price process Si, which yield the pay-off
max(SI −K,0) and max(K −SI ,0), respectively. Here i denotes the current
day, I the expiration day and K the strike price. Time to maturity is defined
as τ = I − i. The BS pricing formula for a Call option is

Ci(Si,K, τ, r,σ) = SiΦ(d1)−Ke−rτΦ(d2),(14)

where d1 = ln(Si/K)+(r+σ2/2)τ
σ
√

τ
, d2 = d1 − σ

√
τ , r is the risk-free interest rate,

σ is the (unknown and constant) volatility parameter, and Φ denotes the
c.d.f. of a standard normal distributed random variable. In (14) we assume
the zero-dividend case. The Put option price Pi can be obtained from the
put–call parity Pi = Ci − Si + e−τrK.

The implied volatility σ̃ is defined as the volatility σ, for which the BS
price Ci in (14) equals the price C̃i observed on the market. For a single
asset, we obtain at each time point (day i) and for each maturity τ a IV
function σ̃τ

i (K). Practitioners often rescale the strike dimension by plotting
this surface in terms of (futures) moneyness κ = K/Fi(τ), where Fi(τ) =
Sierτ .

Clearly, for given parameters Si, r,K, τ the mapping from prices to IVs is
a one-to-one mapping. The IV is often used for quoting the European options
in financial practice, since it reflects the “uncertainty” of the financial market
better than the option prices. It is also known that if the stock price drops,
the IV raises (so-called leverage effect), motivates hedging strategies based
on IVs. Consequently, for the purpose of this application, we will regard the
BS–IV as an individual financial variable. The practical relevance of such
an approach is justified by the volatility based financial products such as
VDAX, which are commonly traded on the option markets.

The goal of this analysis is to study the dynamics of the IV functions for
different maturities. More specifically, our aim is to construct low dimen-
sional factor models based on the truncated Karhunen–Loève expansions
(1) for the log-returns of the IV functions of options with different maturi-
ties and compare these factor models using the methodology presented in
the previous sections. Analysis of IVs based on a low-dimensional factor
model gives directly a descriptive insight into the structure of distribution
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of the log-IV-returns—structure of the factors and empirical distribution of
the factor loadings may be a good starting point for further pricing models.
In practice, such a factor model can also be used in Monte Carlo based pric-
ing methods and for risk-management (hedging) purposes. For comprehen-
sive monographs on IV and IV-factor models, see Hafner (2004) or Fengler
(2005b).

The idea of constructing and analyzing the factor models for log-IV-
returns for different maturities was originally proposed by
Fengler, Härdle and Villa (2003), who studied the dynamics of the IV via
PCA on discretized IV functions for different maturity groups and tested the
Common Principal Components (CPC) hypotheses (equality of eigenvectors
and eigenspaces for different groups). Fengler, Härdle and Villa (2003) pro-
posed a PCA-based factor model for log-IV-returns on (short) maturities
1, 2 and 3 months and grid of moneyness [0.85,0.9,0.95,1,1.05,1.1]. They
showed that the factor functions do not significantly differ and only the
factor loadings differ across maturity groups. Their method relies on the
CPC methodology introduced by Flury (1988) which is based on maximum
likelihood estimation under the assumption of multivariate normality. The
log-IV-returns are extracted by the two-dimensional Nadaraya–Watson es-
timate.

The main aim of this application is to reconsider their results in a func-
tional sense. Doing so, we overcome two basic weaknesses of their approach.
First, the factor model proposed by Fengler, Härdle and Villa (2003) is per-
formed only on a sparse design of moneyness. However, in practice (e.g.,
in Monte Carlo pricing methods), evaluation of the model on a fine grid is
needed. Using the functional PCA approach, we may overcome this difficulty
and evaluate the factor model on an arbitrary fine grid. The second difficulty
of the procedure proposed by Fengler, Härdle and Villa (2003) stems from
the data design—on the exchange we cannot observe options with desired
maturity on each day and we need to estimate them from the IV-functions
with maturities observed on the particular day. Consequently, the two-
dimensional Nadaraya–Watson estimator proposed by Fengler, Härdle and Villa
(2003) results essentially in the (weighted) average of the IVs (with clos-
est maturities) observed on a particular day, which may affect the test
of the common eigenfunction hypothesis. We use the linear interpolation

scheme in the total variance σ2
TOT,i(κ, τ)

def
= (στ

i (κ))2τ, in order to recover
the IV functions with fixed maturity (on day i). This interpolation scheme is
based on the arbitrage arguments originally proposed by Kahalé (2004) for
zero-dividend and zero-interest rate case and generalized for deterministic
interest rate by Fengler (2005a). More precisely, having IVs with matu-
rities observed on a particular day i: σ̃

τji
i (κ), ji = 1, . . . , pτi

, we calculate
the corresponding total variance σ̃TOT,i(κ, τji

). From these total variances
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we linearly interpolate the total variance with the desired maturity from
the nearest maturities observed on day i. The total variance can be easily
transformed to corresponding IV σ̃τ

i (κ). As the last step, we calculate the

log-returns ∆ log σ̃τ
i (κ)

def
= log σ̃τ

i+1(κ)− log σ̃τ
i (κ). The log-IV-returns are ob-

served for each maturity τ on a discrete grid κτ
ik. We assume that observed

log-IV-return ∆ log σ̃τ
i (κτ

ik) consists of true log-return of the IV function
denoted by ∆ logστ

i (κτ
ik) and possibly of some additional error ετ

ik. By set-
ting Y τ

ik := ∆ log σ̃τ
i (κτ

ik), Xτ
i (κ) := ∆ logστ

i (κ), we obtain an analogue of the
model (4) with the argument κ:

Y τ
ik = Xτ

i (κik) + ετ
ik, i = 1, . . . , nτ .(15)

In order to simplify the notation and make the connection with the theoret-
ical part clear, we will use the notation of (15).

For our analysis we use a recent data set containing daily data from
January 2004 to June 2004 from the German–Swiss exchange (EUREX).
Violations of the arbitrage-free assumptions (“obvious” errors in data) were
corrected using the procedure proposed by Fengler (2005a). Similarly to
Fengler, Härdle and Villa (2003), we excluded options with maturity smaller
then 10 days, since these option-prices are known to be very noisy, par-
tially because of a special and arbitrary setup in the pricing systems of the
dealers. Using the interpolation scheme described above, we calculate the
log-IV-returns for two maturity groups: “1M” group with maturity τ = 0.12
(measured in years) and “3M” group with maturity τ = 0.36. The observed
log-IV-returns are denoted by Y 1M

ik , k = 1, . . . ,K1M
i , Y 3M

ik , k = 1, . . . ,K3M
i .

Since we ensured that for no i, the interpolation procedure uses data with
the same maturity for both groups, this procedure has no impact on the
independence of both samples.

The underlying models based on the truncated version of (3) are as fol-
lows:

X1M
i (κ) = X̄1M (κ) +

L1M∑

r=1

β̂1M
ri γ̂r

1M (κ), i = 1, . . . , n1M ,(16)

X3M
i (κ) = X̄3M (κ) +

L3M∑

r=1

β̂3M
ri γ̂r

3M (κ), i = 1, . . . , n3M .(17)

Models (16) and (17) can serve, for example, in a Monte Carlo pricing tool
in the risk management for pricing exotic options where the whole path of
implied volatilities is needed to determine the price. Estimating the factor
functions in (16) and (17) by eigenfunctions displayed in Figure 1, we only

need to fit the (estimated) factor loadings β̂1M
ji and β̂3M

ji . The pillar of the
model is the dimension reduction. Keeping the factor function fixed for a
certain time period, we need to analyze (two) multivariate random processes
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of the factor loadings. For the purposes of this paper we will focus on the
comparison of factors from models (16) and (17) and the technical details of
the factor loading analysis will not be discussed here, since in this respect
we refer to Fengler, Härdle and Villa (2003), who proposed to fit the factor
loadings by centered normal distributions with diagonal variance matrix
containing the corresponding eigenvalues. For a deeper discussion of the
fitting of factor loadings using a more sophisticated approach, basically based
on (possibly multivariate) GARCH models; see Fengler (2005b).

From our data set we obtained 88 functional observations for the 1M group
(n1M ) and 125 observations for the 3M group (n3M ). We will estimate the
model on the interval for futures moneyness κ ∈ [0.8,1.1]. In comparison
to Fengler, Härdle and Villa (2003), we may estimate models (16) and (17)
on an arbitrary fine grid (we used an equidistant grid of 500 points on the
interval [0.8,1.1]). For illustration, the Nadaraya–Watson (NW) estimator
of resulting log-returns is plotted in Figure 2. The smoothing parameters
have been chosen in accordance with the requirements in Section 2.2. As
argued in Section 2.2, we should use small smoothing parameters in order
to avoid a possible bias in the estimated eigenfunctions. Thus, we use for
each i essentially the smallest bandwidth bi that guarantees that estimator
X̂i is defined on the entire support [0.8,1.1].

Using the procedures described in Section 2.1, we first estimate the eigen-
functions of both maturity groups. The estimated eigenfunctions are plot-
ted in Figure 1. The structure of the eigenfunctions is in accordance with
other empirical studies on IV-surfaces. For a deeper discussion and econom-
ical interpretation, see, for example, Fengler, Härdle and Mammen (2007)
or Fengler, Härdle and Villa (2003).

Clearly, the ratio of the variance explained by the kth factor function is
given by the quantity ν̂1M

k = λ̂1M
k /

∑n1M
j=1 λ̂1M

j for the 1M group and, corre-

spondingly, by ν̂3M
k for the 3M group. In Table 3 we list the contributions of

the factor functions. Looking at Table 3, we can see that 4th factor functions
explain less than 1% of the variation. This number was the “threshold” for
the choice of L1M and L2M .

We can observe (see Figure 1) that the factor functions for both groups
are similar. Thus, in the next step we use the bootstrap test for testing the

Table 3

Variance explained by the eigenfunctions

Var. explained 1M Var. explained 3M

ν̂
τ
1 89.9% 93.0%

ν̂
τ
2 7.7% 4.2%

ν̂
τ
3 1.7% 1.0%

ν̂
τ
4 0.6% 0.4%
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Fig. 2. Nadaraya–Watson estimate of the log-IV-returns for maturity 1M (left figure)
and 3M (right figure). The bold line is the sample mean of the corresponding group.

equality of the factor functions. We use 2000 bootstrap replications. The test
of equality of the eigenfunctions was rejected for the first eigenfunction for
the analyzed time period (January 2004–June 2004) at a significance level
α = 0.05 (P-value 0.01). We may conclude that the (first) factor functions are
not identical in the factor model for both maturity groups. However, from
a practical point of view, we are more interested in checking the appropri-
ateness of the entire models for a fixed number of factors: L = 2 or L = 3 in
(16) and (17). This requirement translates into the testing of the equality of
eigenspaces. Thus, in the next step we use the same setup (2000 bootstrap
replications) to test the hypotheses that the first two and first three eigen-
functions span the same eigenspaces E1M

L and E3M
L . None of the hypotheses

for L = 2 and L = 3 is rejected at significance level α = 0.05 (P-value is 0.61
for L = 2 and 0.09 for L = 3). Summarizing, even in the functional sense we
have no significant reason to reject the hypothesis of common eigenspaces
for these two maturity groups. Using this hypothesis, the factors governing
the movement of the returns of IV surface are invariant to time to ma-
turity, only their relative importance can vary. This leads to the common
factor model: Xτ

i (κ) = X̄τ (κ) +
∑Lτ

r=1 β̂τ
riγ̂r(κ), i = 1, . . . , nτ , τ = 1M,3M,

where γr := γ1M
r = γ3M

r . Beside contributing to the understanding of the
structure of the IV function dynamics, the common factor model helps
us to reduce the number of functional factors by half compared to mod-
els (16) and (17). Furthermore, from the technical point of view, we also
obtain an additional dimension reduction and higher estimation precision,
since under this hypothesis we may estimate the eigenfunctions from the
(individually centered) pooled sample Xi(κ)1M , i = 1, . . . , n1M , X3M

i (κ), i =
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1, . . . , n3M . The main improvement compared to the multivariate study by
Fengler, Härdle and Villa (2003) is that our test is performed in the func-
tional sense – it does not depend on particular discretization and our factor
model can be evaluated on an arbitrary fine grid.

APPENDIX: MATHEMATICAL PROOFS

In the following, ∥v∥ = (
∫ 1
0 v(t)2 dt)1/2 will denote the L2-norm for any

square integrable function v. At the same time, ∥a∥ = ( 1
k

∑k
i=1 a2

i )
1/2 will

indicate the Euclidean norm, whenever a ∈ Rk is a k-vector for some k ∈ N.
In the proof of Theorem 1, Eε and Varε denote expectation and variance

with respect to ε only (i.e., conditional on tij and Xi).

Proof of Theorem 1. Recall the definition of the χi(t) and note that
χi(t) = χX

i (t) + χε
i (t), where

χε
i (t) =

Ti∑

j=1

εi(j)I
(

t ∈
[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))
,

as well as

χX
i (t) =

Ti∑

j=1

Xi(ti(j))I
(

t∈
[
ti(j−1) + ti(j)

2
,
ti(j) + ti(j+1)

2

))

for t ∈ [0,1], ti(0) =−ti(1) and ti(Ti+1) = 2− ti(Ti). Similarly, χ∗
i (t) = χX∗

i (t)+
χε∗

i (t).
By Assumption 2, E(|ti(j) − ti(j−1)|s) = O(T−s) for s = 1, . . . ,4, and the

convergence is uniform in j < n. Our assumptions on the structure of Xi

together with some straightforward Taylor expansions then lead to

⟨χi,χj⟩= ⟨Xi,Xj⟩+Op(1/T )

and

⟨χi,χ
∗
i ⟩= ∥Xi∥2 +Op(1/T ).

Moreover,

Eε(⟨χε
i ,χ

X
j ⟩) = 0, Eε(∥χε

i∥2) = σ2
i ,

Eε(⟨χε
i ,χ

ε∗
i ⟩) = 0, Eε(⟨χε

i ,χ
ε∗
i ⟩2) = Op(1/T ),

Eε(⟨χε
i ,χ

X
j ⟩2) = Op(1/T ), Eε(⟨χε

i ,χ
X
j ⟩⟨χε

k,χX
l ⟩) = 0 for i ̸= k,

Eε(⟨χε
i ,χ

ε
j⟩⟨χε

i ,χ
ε
k⟩) = 0 for j ̸= k and Eε(∥χε

i∥4) = Op(1)

hold (uniformly) for all i, j = 1, . . . , n.
Consequently, Eε(∥χ̄∥2 −∥X̄∥2) = Op(T−1 + n−1).
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When using these relations, it is easily seen that for all i, j = 1, . . . , n

M̂ij −Mij = Op(T
−1/2 + n−1) and

(18)
tr{(M̂ −M)2}1/2 = Op(1 + nT−1/2).

Since the orthonormal eigenvectors pq of M satisfy ∥pq∥ = 1, we furthermore
obtain for any i = 1, . . . , n and all q = 1,2, . . .

n∑

j=1

pjq

{
M̂ij −Mij −

∫ 1

0
χε

i (t)χ
X
j (t)dt

}
= Op(T

−1/2 + n−1/2),(19)

as well as
n∑

j=1

pjq

∫ 1

0
χε

i (t)χ
X
j (t)dt = Op

(
n1/2

T 1/2

)
(20)

and
n∑

i=1

ai

n∑

j=1

pjq

∫ 1

0
χε

i (t)χ
X
j (t)dt =Op

(
n1/2

T 1/2

)
(21)

for any further vector a with ∥a∥ = 1.
Recall that the jth largest eigenvalue lj satisfies nλ̂j = lj . Since by as-

sumption infs ̸=r |λr − λs| > 0, the results of Dauxois, Pousse and Romain

(1982) imply that λ̂r converges to λr as n →∞, and sups ̸=r
1

|λ̂r−λ̂s|
= Op(1),

which leads to sups ̸=r
1

|lr−ls| = Op(1/n). Assertion (a) of Lemma A of

Kneip and Utikal (2001) together with (18)–(21) then implies that
∣∣∣∣λ̂r −

l̂r
n

∣∣∣∣= n−1|lr − l̂r|= n−1|p⊤r (M̂ −M)pr|+Op(T
−1 + n−1)

(22)
= Op{(nT )−1/2 + T−1 + n−1}.

When analyzing the difference between the estimated and true eigenvec-
tors p̂r and pr, assertion (b) of Lemma A of Kneip and Utikal (2001) together
with (18) lead to

p̂r − pr = −Sr(M̂ −M)pr +Rr, with ∥Rr∥= Op(T
−1 + n−1)(23)

and Sr =
∑

s ̸=r
1

ls−lr
psp⊤s . Since sup∥a∥=1 a⊤Sra ≤ sups ̸=r

1
|lr−ls| = Op(1/n),

we can conclude that

∥p̂r − pr∥= Op(T
−1/2 + n−1),(24)

and our assertion on the sequence n−1∑
i(β̂ri − β̂ri;T )2 is an immediate con-

sequence.
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Let us now consider assertion (ii). The well-known properties of local lin-
ear estimators imply that |Eε{X̂i(t)−Xi(t)}| = Op(b2), as well as Varε{X̂i(t)} =
Op{Tb}, and the convergence is uniform for all i, n. Furthermore, due to the

independence of the error term εij , Covε{X̂i(t), X̂j(t)} = 0 for i ̸= j. There-
fore,

∣∣∣∣∣γ̂r(t)−
1√
lr

n∑

i=1

pirX̂i(t)

∣∣∣∣∣= Op

(
b2 +

1√
nTb

)
.

On the other hand, (18)–(24) imply that with X̂(t) = (X̂1(t), . . . , X̂n(t))⊤

∣∣∣∣∣γ̂r;T (t)−
1√
lr

n∑

i=1

pirX̂i(t)

∣∣∣∣∣

=

∣∣∣∣∣
1√
lr

n∑

i=1

(p̂ir − pir)Xi(t) +
1√
lr

n∑

i=1

(p̂ir − pir){X̂i(t)−Xi(t)}
∣∣∣∣∣

+Op(T
−1 + n−1)

=
∥SrX(t)∥√

lr

∣∣∣∣p
⊤
r (M̂ −M)Sr

X(t)

∥SrX(t)∥

∣∣∣∣

+Op(b
2T−1/2 + T−1b−1/2 + n−1)

= Op(n
−1/2T−1/2 + b2T−1/2 + T−1b−1/2 + n−1).

This proves the theorem. !

Proof of Theorem 2. First consider assertion (i). By definition,

X̄(t)− µ(t) = n−1
n∑

i=1

{Xi(t)− µ(t)}=
∑

r

(

n−1
n∑

i=1

βri

)

γr(t).

Recall that, by assumption, βri are independent, zero mean random variables
with variance λr, and that the above series converges with probability 1.
When defining the truncated series

V (q) =
q∑

r=1

(

n−1
n∑

i=1

βri

)

γr(t),

standard central limit theorems therefore imply that
√

nV (q) is asymptoti-
cally N(0,

∑q
r=1 λrγr(t)2) distributed for any possible q ∈ N.

The assertion of a N(0,
∑∞

r=1 λrγr(t)2) limiting distribution now is a
consequence of the fact that for all δ1, δ2 > 0 there exists a qδ such that
P{|

√
nV (q) −

√
n
∑

r(n
−1∑n

i=1 βri)γr(t)| > δ1} < δ2 for all q ≥ qδ and all n
sufficiently large.



COMMON FUNCTIONAL PC 27

In order to prove assertions (i) and (ii), consider some fixed r ∈ {1,2, . . .}
with λr−1 > λr > λr+1. Note that Γ as well as Γ̂n are nuclear, self-adjoint and
non-negative linear operators with Γv =

∫
σ(t, s)v(s)ds and Γ̂nv =∫

σ̂(t, s)v(s)ds, v ∈ L2[0,1]. For m ∈ N, let Πm denote the orthogonal projec-
tor from L2[0,1] into the m-dimensional linear space spanned by {γ1, . . . ,γm},
that is, Πmv =

∑m
j=1⟨v,γj⟩γj , v ∈ L2[0,1]. Now consider the operator ΠmΓ̂nΠm,

as well as its eigenvalues and corresponding eigenfunctions denoted by λ̂1,m ≥
λ̂2,m ≥ · · · and γ̂1,m, γ̂2,m, . . . , respectively. It follows from well-known re-

sults in the Hilbert space theory that ΠmΓ̂nΠm converges strongly to Γ̂n as
m →∞. Furthermore, we obtain (Rayleigh–Ritz theorem)

lim
m→∞

λ̂r,m = λr and lim
m→∞

∥γ̂r − γ̂r,m∥= 0 if λ̂r−1 > λ̂r > λ̂r+1.(25)

Note that under the above condition γ̂r is uniquely determined up to sign,
and recall that we always assume that the right “versions” (with respect
to sign) are used so that ⟨γ̂r, γ̂r,m⟩ ≥ 0. By definition, βji =

∫
γj(t){Xi(t)−

µ(t)}dt, and therefore,
∫

γj(t){Xi(t) − X̄(t)}dt = βji − β̄j , as well as Xi −
X̄ =

∑
j(βji − β̄j)γj , where β̄j = 1

n

∑n
i=1 βji. When analyzing the structure

of ΠmΓ̂nΠm more deeply, we can verify that ΠmΓ̂nΠmv =
∫

σ̂m(t, s)v(s)ds,
v ∈L2[0,1], with

σ̂m(t, s) = gm(t)⊤Σ̂mgm(s),

where gm(t) = (γ1(t), . . . ,γm(t))⊤, and where Σ̂m is the m×m matrix with
elements { 1

n

∑n
i=1(βji− β̄j)(βki− β̄k)}j,k=1,...,m. Let λ1(Σ̂m)≥ λ2(Σ̂m)≥ · · ·≥

λm(Σ̂m) and ζ̂1,m, . . . , ζ̂m,m denote eigenvalues and corresponding eigenvec-

tors of Σ̂m. Some straightforward algebra then shows that

λ̂r,m = λr(Σ̂m), γ̂r,m = gm(t)⊤ζ̂r,m.(26)

We will use Σm to represent the m × m diagonal matrix with diagonal
entries λ1 ≥ · · · ≥ λm. Obviously, the corresponding eigenvectors are given
by the m-dimensional unit vectors denoted by e1,m, . . . , em,m. Lemma A of
Kneip and Utikal (2001) now implies that the differences between eigenval-
ues and eigenvectors of Σm and Σ̂m can be bounded by

λ̂r,m − λr = tr{er,me⊤r,m(Σ̂m −Σm)}+ R̃r,m,
(27)

with R̃r,m ≤
6 sup∥a∥=1 a⊤(Σ̂m −Σm)2a

mins |λs − λr|
,

ζ̂r,m − er,m =−Sr,m(Σ̂m −Σm)er,m + R∗
r,m,

(28)

with ∥R∗
r,m∥ ≤

6 sup∥a∥=1 a⊤(Σ̂m −Σm)2a

mins |λs − λr|2
,
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where Sr,m =
∑

s ̸=r
1

λs−λr
es,me⊤s,m.

Assumption 1 implies E(β̄r) = 0, Var(β̄r) = λr
n , and with δii = 1, as well

as δij = 0 for i ̸= j, we obtain

E
{

sup
∥a∥=1

a⊤(Σ̂m −Σm)2a
}

≤E{tr[(Σ̂m −Σm)2]}

= E

{
m∑

j,k=1

[
1

n

n∑

i=1

(βji − β̄j)(βki − β̄k)− δjkλj

]2}

(29)

≤E

{ ∞∑

j,k=1

[
1

n

n∑

i=1

(βji − β̄j)(βki − β̄k)− δjkλj

]2}

=
1

n

(
∑

j

∑

k

E{β2
jiβ

2
ki}
)

+ O(n−1) =O(n−1),

for all m. Since tr{er,me⊤r,m(Σ̂m −Σm)} = 1
n

∑n
i=1(βri − β̄r)2 −λr, (25), (26),

(27) and (29) together with standard central limit theorems imply that

√
n(λ̂r − λr) =

1√
n

n∑

i=1

(βri − β̄r)
2 − λr +Op(n

−1/2)

=
1√
n

n∑

i=1

[(βri)
2 −E{(βri)

2}] +Op(n
−1/2)(30)

L→ N(0,Λr).

It remains to prove assertion (iii). Relations (26) and (28) lead to

γ̂r,m(t)− γr(t) = gm(t)⊤(ζ̂r,m − er,m)

= −
m∑

s ̸=r

{
1

n(λs − λr)

n∑

i=1

(βsi − β̄s)(βri − β̄r)

}

γs(t)(31)

+ gm(t)⊤R∗
r,m,

where due to (29) the function gm(t)⊤R∗
r,m satisfies

E(∥g⊤mR∗
r,m∥) = E(∥R∗

r,m∥)

≤
6

nmins |λs − λr|2

(
∑

j

∑

k

E{β2
jiβ

2
ki}
)

+ O(n−1),
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for all m. By Assumption 1, the series in (31) converge with probability 1
as m →∞.

Obviously, the event λ̂r−1 > λ̂r > λ̂r+1 occurs with probability 1. Since m
is arbitrary, we can therefore conclude from (25) and (31) that

γ̂r(t)− γr(t)

= −
∑

s ̸=r

{
1

n(λs − λr)

n∑

i=1

(βsi − β̄s)(βri − β̄r)

}

γs(t) + R∗
r(t)(32)

= −
∑

s ̸=r

{
1

n(λs − λr)

n∑

i=1

βsiβri

}

γs(t) + Rr(t),

where ∥R∗
r∥ = Op(n−1), as well as ∥Rr∥ = Op(n−1). Moreover,

√
n ×∑

s ̸=r{ 1
n(λs−λr)

∑n
i=1 βsiβri}γs(t) is a zero mean random variable with vari-

ance
∑

q ̸=r
∑

s ̸=r
E[β2

riβqiβsi]
(λq−λr)(λs−λr)γq(t)γs(t) < ∞. By Assumption 1, it follows

from standard central limit arguments that for any q ∈ N the truncated series
√

nW (q)
def
=

√
n
∑q

s=1,s ̸=r[
1

n(λs−λr)

∑n
i=1 βsiβri]γs(t) is asymptotically normal

distributed. The asserted asymptotic normality of the complete series then
follows from an argument similar to the one used in the proof of assertion
(i). !

Proof of Theorem 3. The results of Theorem 2 imply that

n∆1 =
∫ (∑

r

1
√

q1n1

n1∑

i=1

β(1)
ri γ(1)

r (t)

(33)

−
∑

r

1
√

q2n2

n2∑

i=1

β(2)
ri γ(2)

r (t)

)2

dt.

Furthermore, independence of X(1)
i and X(2)

i together with (30) imply that

√
n[λ̂(1)

r − λ(1)
r − {λ̂(2)

r − λ(2)
r }] L→ N

(
0,

Λ(1)
r

q1
+

Λ(2)
r

q2

)
and

(34)
n

Λ(1)
r /q1 + Λ(2)

r /q2

∆3,r
L→ χ2

1.

Furthermore, (32) leads to

n∆2,r =

∥∥∥∥∥

∑

s ̸=r

{
1

√
q1n1(λ

(1)
s − λ(1)

r )

n1∑

i=1

β(1)
si β(1)

ri

}

γ(1)
s

(35)

−
∑

s ̸=r

{
1

√
q2n2(λ

(2)
s − λ(2)

r )

n2∑

i=1

β(2)
si β(2)

ri

}

γ(2)
s

∥∥∥∥∥

2

+Op(n
−1/2)
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and

n∆4,L = n
∫ ∫ [ L∑

r=1

γ(1)
r (t){γ̂(1)

r (u)− γ(1)
r (u)}

+ γ(1)
r (u){γ̂(1)

r (t)− γ(1)
r (t)}

−
L∑

r=1

γ(2)
r (t){γ̂(2)

r (u)− γ(2)
r (u)}

+ γ(2)
r (u){γ̂(2)

r (t)− γ(2)
r (t)}

]2

dt du +Op(n
−1/2)

=
∫ ∫ [ L∑

r=1

∑

s>L

{
1

√
q1n1(λ

(1)
s − λ(1)

r )

n1∑

i=1

β(1)
si β(1)

ri

}

(36)

× {γ(1)
r (t)γ(1)

s (u) + γ(1)
r (u)γ(1)

s (t)}

−
L∑

r=1

∑

s>L

{
1

√
q2n2(λ

(2)
s − λ(2)

r )

n2∑

i=1

β(2)
si β(2)

ri

}

× {γ(2)
r (t)γ(2)

s (u) + γ(2)
r (u)γ(2)

s (t)}
]2

dt du

+Op(n
−1/2).

In order to verify (36), note that
∑L

r=1
∑L

s=1,s ̸=r
1

(λ(p)
s −λ(p)

r )
aras = 0 for

p = 1,2 and all possible sequences a1, . . . , aL. It is clear from our assumptions

that all sums involved converge with probability 1. Recall that E(β(p)
ri β(p)

si ) =
0, p = 1,2 for r ̸= s.

It follows that X̃(p)
r := 1√

qpnp

∑
s ̸=r

∑np

i=1
β

(p)
si β

(p)
ri

λ
(p)
s −λ

(p)
r

γ(p)
s , p = 1,2, is a continu-

ous, zero mean random function on L2[0,1], and, by assumption, E(∥X̃(p)
r ∥2) <

∞. By Hilbert space central limit theorems [see, e.g., Araujo and Giné (1980)],

X̃(p)
r thus converges in distribution to a Gaussian random function ξ(p)

r as

n →∞. Obviously, ξ(1)
r is independent of ξ(2)

r . We can conclude that n∆4,L

possesses a continuous limit distribution F4,L defined by the distribution

of
∫∫

[
∑L

r=1{ξ
(1)
r (t)γ(1)

r (u) + ξ(1)
r (u)γ(1)

r (t)}−
∑L

r=1{ξ
(2)
r (t)γ(2)

r (u) + ξ(2)
r (u)×

γ(2)
r (t)}]2 dt du. Similar arguments show the existence of continuous limit

distributions F1 and F2,r of n∆1 and n∆2,r.

For given q ∈ N, define vectors b(p)
i1 = (β(p)

1i , . . . ,β(p)
qi , )⊤ ∈ Rq, b(p)

i2 =

(β(p)
1i β(p)

ri , . . . ,β(p)
r−1,iβ

(p)
ri ,β(p)

r+1,iβ
(p)
ri , . . . ,β(p)

qi β(p)
ri )⊤ ∈ Rq−1 and bi3 = (β(p)

1i β(p)
2i ,
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. . . ,β(p)
qi β(p)

Li )⊤ ∈ R(q−1)L. When the infinite sums over r in (33), respectively
s ̸= r in (35) and (36), are restricted to q ∈ N components (i.e.,

∑
r and

∑
s>L

are replaced by
∑

r≤q and
∑

L<s≤q), then the above relations can generally
be presented as limits n∆ = limq→∞ n∆(q) of quadratic forms

n∆1(q) =

⎛

⎜⎜⎜⎜
⎝

1
√

n1

n1∑

i=1

b(1)
i1

1
√

n2

n2∑

i=1

b(2)
i1

⎞

⎟⎟⎟⎟
⎠

⊤

Qq
1

⎛

⎜⎜⎜⎜
⎝

1
√

n1

n1∑

i=1

b(1)
i1

1
√

n2

n2∑

i=1

b(2)
i1

⎞

⎟⎟⎟⎟
⎠

,

n∆2,r(q) =

⎛

⎜⎜⎜⎜
⎝

1
√

n1

n1∑

i=1

b(1)
i2

1
√

n2

n2∑

i=1

b(2)
i2

⎞

⎟⎟⎟⎟
⎠

⊤

Qq
2

⎛

⎜⎜⎜⎜
⎝

1
√

n1

n1∑

i=1

b(1)
i2

1
√

n2

n2∑

i=1

b(2)
i2

⎞

⎟⎟⎟⎟
⎠

,(37)

n∆4,L(q) =

⎛

⎜⎜⎜⎜
⎝

1
√

n1

n1∑

i=1

b(1)
i3

1
√

n2

n2∑

i=1

b(2)
i3

⎞

⎟⎟⎟⎟
⎠

⊤

Qq
3

⎛

⎜⎜⎜⎜
⎝

1
√

n1

n1∑

i=1

b(1)
i3

1
√

n2

n2∑

i=1

b(2)
i3

⎞

⎟⎟⎟⎟
⎠

,

where the elements of the 2q×2q, 2(q−1)×2(q−1) and 2L(q−1)×2L(q−1)
matrices Qq

1, Qq
2 and Qq

3 can be computed from the respective (q-element)
version of (33)–(36). Assumption 1 implies that all series converge with
probability 1 as q →∞, and by (33)–(36), it is easily seen that for all ϵ, δ > 0
there exist some q(ϵ, δ), n(ϵ, δ) ∈ N such that

P (|n∆1 − n∆1(q)| > ϵ) < δ, P (|n∆2,r − n∆2,r(q)|> ϵ) < δ,
(38)

P (|n∆4,L − n∆4,L(q)| > ϵ) < δ

hold for all q ≥ q(ϵ, δ) and all n ≥ n(ϵ, δ). For any given q, we have E(bi1) =
E(bi2) = E(bi3) = 0, and it follows from Assumption 1 that the respective
covariance structures can be represented by finite covariance matrices Ω1,q,
Ω2,q and Ω3,q. It therefore follows from our assumptions together with stan-

dard multivariate central limit theorems that the vectors { 1√
n1

∑n1
i=1(b

(1)
ik )⊤,

1√
n2

∑n2
i=1(b

(2)
ik )⊤}⊤, k = 1,2,3, are asymptotically normal with zero means

and covariance matrices Ω1,q, Ω2,q and Ω3,q. One can thus conclude that, as
n →∞,

n∆1(q)
L→ F1,q, n∆2,r(q)

L→ F2,r,q, n∆4,L(q)
L→ F4,L,q,(39)

where F1,q, F2,r,q, F4,L,q denote the continuous distributions of the quadratic

forms z⊤1 Qq
1z1, z⊤2 Qq

2z2, z⊤3 Qq
3z3 with z1 ∼ N(0,Ω1,q), z2 ∼ N(0,Ω2,q), z3 ∼
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N(0,Ω3,q). Since ϵ, δ are arbitrary, (38) implies

lim
q→∞

F1,q = F1, lim
q→∞

F2,r,q = F2,r, lim
q→∞

F4,L,q = F4,L.(40)

We now have to consider the asymptotic properties of bootstrapped eigen-

values and eigenfunctions. Let X̄(p)∗ = 1
np

∑np

i=1 X(p)∗
i , β(p)∗

ri =
∫

γ(p)
r (t){X(p)∗

i (t)−

µ(t)}, β̄(p)∗
r = 1

np

∑np

i=1 β(p)∗
ri , and note that

∫
γ(p)

r (t){X(p)∗
i (t) − X̄(p)∗(t)} =

β(p)∗
ri − β̄(p)∗

r . When considering unconditional expectations, our assumptions
imply that for p = 1,2

E[β(p)∗
ri ] = 0, E[(β(p)∗

ri )2] = λ(p)
r ,

E[(β̄(p)∗
r )2] =

λ(p)
r

np
, E{[(β(p)∗

ri )2 − λ(p)
r ]2}= Λ(p)

r ,

E

{ ∞∑

l,k=1

[
1

np

np∑

i=1

(β(p)∗
li − β̄(p)∗

l )(β(p)∗
ki − β̄(p)∗

k )− δlkλ
(p)
l

]2}

(41)

=
1

np

(
∑

l

Λ(p)
l +

∑

l ̸=k

λ(p)
l λ(p)

k

)

+ O(n−1
p ).

One can infer from (41) that the arguments used to prove Theorem 1
can be generalized to approximate the difference between the bootstrap

eigenvalues and eigenfunctions λ̂(p)∗
r , γ̂(p)∗

r and the true eigenvalues λ(p)
r ,

γ(p)
r . All infinite sums involved converge with probability 1. Relation (30)

then generalizes to
√

np(λ̂
(p)∗
r − λ̂(p)

r )

=
√

np(λ̂
(p)∗
r − λ(p)

r )−√
np(λ̂

(p)
r − λ(p)

r )

=
1

√
np

np∑

i=1

(β(p)∗
ri − β̄(p)∗

r )2(42)

−
1

√
np

np∑

i=1

(β(p)
ri − β̄(p)

r )2 +Op(n
−1/2
p )

=
1

√
np

np∑

i=1

{

(β(p)∗
ri )2 −

1

np

np∑

k=1

(β(p)
rk )2

}

+Op(n
−1/2
p ).

Similarly, (32) becomes

γ̂(p)∗
r − γ̂(p)

r

= γ̂(p)∗
r − γ(p)

r − (γ̂(p)
r − γ(p)

r )(43)
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= −
∑

s ̸=r

{
1

λ(p)
s − λ(p)

r

1

np

np∑

i=1

(β(p)∗
si − β̄(p)∗

s )(β(p)∗
ri − β̄(p)∗

r )

−
1

λ(p)
s − λ(p)

r

1

np

np∑

i=1

(β(p)
si − β̄(p)

s )(β(p)
ri − β̄(p)

r )

}

γ(p)
s (t)

+ R(p)∗
r (t)

= −
∑

s ̸=r

{
1

λ(p)
s − λ(p)

r

1

np

np∑

i=1

(

β(p)∗
si β(p)∗

ri −
1

np

np∑

k=1

β(p)
sk β(p)

rk

)}

γ(p)
s (t)

+ R̃(p)∗
r (t),

where due to (28), (29) and (41), the remainder term satisfies ∥R(p)∗
r ∥ =

Op(n−1
p ).

We are now ready to analyze the bootstrap versions ∆∗ of the different

∆. First consider ∆∗
3,r and note that {(β(p)∗

ri )2} are i.i.d. bootstrap resam-

ples from {(β(p)
ri )2}. It therefore follows from basic bootstrap results that

the conditional distribution of 1√
np

∑np

i=1[(β
(p)∗
ri )2 − 1

np

∑np

k=1(β
(p)
rk )2] given Xp

converges to the same N(0,Λ(p)
r ) limit distribution as 1√

np

∑np

i=1[(β
(p)
ri )2 −

E{(β(p)
ri )2}]. Together with the independence of (β(1)∗

ri )2 and (β(2)∗
ri )2, the

assertion of the theorem is an immediate consequence.
Let us turn to ∆∗

1, ∆∗
2,r and ∆∗

4,L. Using (41)–(43), it is then easily seen
that n∆∗

1, n∆∗
2,r and n∆∗

4,L admit expansions similar to (33), (35) and (36),

when replacing there 1√
np

∑np

i=1 β(p)
ri by 1√

np

∑np

i=1(β
(p)∗
ri − 1

np

∑np

k=1 β(p)
rk ), as

well as 1√
np

∑np

i=1 β(p)
si β(p)

ri by 1√
np

∑np

i=1(β
(p)∗
si β(p)∗

ri − 1
np

∑np

k=1 β(p)
sk β(p)

rk ).

Replacing β(p)
ri , β(p)

si by β(p)∗
ri , β(p)∗

si leads to bootstrap analogs b(p)∗
ik of

the vectors b(p)
ik , k = 1,2,3. For any q ∈ N, define bootstrap versions n∆∗

1(q),
n∆∗

2,r(q) and n∆∗
4,L(q) of n∆1(q), n∆2,r(q) and n∆4,L(q) by using

( 1√
n1

∑n1
i=1(b

(1)∗
ik − 1

n1

∑n1
k=1 b(1)

ik )⊤, 1√
n2

∑n2
i=1(b

(2)∗
ik − 1

n2

∑n2
k=1 b(2)

ik )⊤) instead of

( 1√
n1

∑n1
i=1(b

(1)
ik )⊤, 1√

n2

∑n2
i=1(b

(2)
ik )⊤), k = 1,2,3, in (37). Applying again (41)–

(43), one can conclude that for any ϵ > 0 there exists some q(ϵ) such that,
as n→∞,

P (|n∆∗
1 − n∆∗

1(q)|< ϵ) → 1,

P (|n∆∗
2,r − n∆∗

2,r(q)|< ϵ) → 1,(44)

P (|n∆∗
4,L − n∆∗

4,L(q)|< ϵ) → 1
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hold for all q ≥ q(ϵ). Of course, (44) generalizes to the conditional probabil-
ities given X1, X2.

In order to prove the theorem, it thus only remains to show that for any
given q and all δ

|P(n∆(q)≥ δ)−P(n∆∗(q)≥ δ| X1,X2)|= Op(1)(45)

hold for either ∆(q) = ∆1(q) and ∆∗(q) = ∆∗
1(q), ∆(q) = ∆2,r(q) and ∆∗(q) =

∆∗
2,r(q), or ∆(q) = ∆4,L(q) and ∆∗(q) = ∆∗

4,L(q). But note that for k =

1,2,3,E(bik) = 0, {b(j)∗
ik } are i.i.d. bootstrap resamples from {b(p)

ik }, and

E(b(p)∗
ik |X1,X2) = 1

np

∑np

k=1 b(p)
ik are the corresponding conditional means. It

therefore follows from basic bootstrap results that as n→∞ the conditional

distribution of ( 1√
n1

∑n1
i=1(b

(1)∗
ik − 1

n1

∑n1
k=1 b(1)

ik )⊤, 1√
n2

∑n2
i=1(b

(2)∗
ik − 1

n2

∑n2
k=1 b(2)

ik )⊤)

given X1, X2 converges to the same N(0,Ωk,q) limit distribution as

( 1√
n1

∑n1
i=1(b

(1)
ik )⊤, 1√

n2

∑n2
i=1, (b

(2)
ik )⊤). This obviously holds for all q ∈ N, and

(45) is an immediate consequence. The theorem then follows from (38), (39),
(40), (44) and (45). !
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Abstract

This paper analyzes empirical market utility functions and pricing kernels
derived from the DAX and DAX option data for three market regimes. A
consistent parametric framework of stochastic volatility is used. All empirical
market utility functions show a region of risk proclivity that is reproduced by
adopting the hypothesis of heterogeneous individual investors whose utility
functions have a switching point between bullish and bearish attitudes. The
inverse problem of finding the distribution of individual switching points is
formulated in the space of stock returns by discretization as a quadratic opti-
mization problem. The resulting distributions vary over time and correspond
to di↵erent market regimes.

JEL classification: G12, G13, C50

Keywords: Utility function, pricing kernel, behavioral finance, risk aversion,
risk proclivity, Heston model



1 Introduction

Numerous attempts have been undertaken to describe basic principles on
which the behaviour of individuals are based. Expected utility theory was
originally proposed by J. Bernoulli in 1738. In his work J. Bernoulli used such
terms as risk aversion and risk premium and proposed a concave (logarithmic)
utility function, see Bernoulli (1956). The utilitarianism theory that emerged
in the 18th century considered utility maximization as a principle for the
organisation of society. Later the expected utility idea was applied to game
theory and formalized by von Neumann and Morgenstern (1944). A utility
function relates some observable variable, in most cases consumption, and an
unobservable utility level that this consumption delivers. It was suggested
that individuals’ preferences are based on this unobservable utility: such
bundles of goods are preferred that are associated with higher utility levels.
It was claimed that three types of utility functions – concave, convex and
linear – correspond to three types of individuals – risk averse, risk neutral
and risk seeking. A typical economic agent was considered to be risk averse
and this was quantified by coe�cients of relative or absolute risk aversion.
Another important step in the development of utility theory was the prospect
theory of Kahneman and Tversky (1979). By behavioural experiments they
found that people act risk averse above a certain reference point and risk
seeking below it. This implies a concave form of the utility function above
the reference point and a convex form below it.

Besides these individual utility functions, market utility functions have
recently been analyzed in empirical studies by Jackwerth (2000), Rosenberg
and Engle (2002) and others. Across di↵erent markets, the authors observed
a common pattern in market utility functions: There is a reference point
near the initial wealth and in a region around this reference point the market
utility functions are convex. But for big losses or gains they show a concave
form – risk aversion. Such utility functions disagree with the classical utility
functions of von Neumann and Morgenstern (1944) and also with the findings
of Kahneman and Tversky (1979). They are however in concordance with
the utility function form proposed by Friedman and Savage (1948).

In this paper, we analyze how these market utility functions can be ex-
plained by aggregating individual investors’ attitudes. To this end, we first
determine empirical pricing kernels from DAX data. Our estimation proce-
dure is based on historical and risk neutral densities and these distributions
are derived with stochastic volatility models that are widely used in indus-
try. From these pricing kernels we construct the corresponding market util-
ity functions. Then we describe our method of aggregating individual utility
functions to a market utility function. This leads to an inverse problem for
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the density function that describes how many investors have the utility func-
tion of each type. We solve this problem by discrete approximation. In this
way, we derive utility functions and their distribution among investors that
allow to recover the market utility function. Hence, we explain how (and
what) individual utility functions can be used to form the behaviour of the
whole market.

The paper is organized as follows: In section 2, we describe the theoretical
connection between utility functions and pricing kernels. In section 3, we
present a consistent stochastic volatility framework for the estimation of both
the historical and the risk neutral density. Moreover, we discuss the empirical
pricing kernel implied by the DAX in 2000, 2002 and 2004. In section 4, we
explain the utility aggregation method that relates the market utility function
and the utility functions of individual investors. This aggregation mechanism
leads to an inverse problem that is analyzed and solved in this section. In
section 5, we conclude and discuss related approaches.

2 Pricing kernels and utility functions

In this section, we derive the fundamental relationship between utility func-
tions and pricing kernels. It describes how a representative utility function
can be derived from historical and risk-neutral distributions of assets. In the
following sections, we estimate the empirical pricing kernel and observe in
this way the market utility function.

First, we derive the price of a security in an equilibrium model: we con-
sider an investor with a utility function U who has as initial endowment
one share of stock. He can invest into the stock and a bond up to a final
time when he can consume. His problem is to choose a strategy that maxi-
mizes the expected utility of his initial and terminal wealth. In continuous
time, this leads to a well known optimization problem introduced by Merton
(1973) for stock prices modelled by di↵usions. In discrete time, it is a basic
optimization problem, see Cochrane (2001).

From this result, we can derive the asset pricing equation

P0 = EP [ (S
T

)M
T

]

for a security on the stock (S
t

) with payo↵ function  at maturity T . Here,
P0 denotes the price of the security at time 0 and EP is the expectation with
respect to the real/historical measure P . The stochastic discount factor M

T

is given by

M

T

= �U

0(S
T

)/U 0(S0) (1)
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where � is a fixed discount factor. This stochastic discount factor is actually
the projection of the general stochastic discount factor on the traded asset
(S

t

). The stochastic discount factor can depend on more variables in general.
But as discussed in Cochrane (2001) this projection has the same interpre-
tation for pricing as the general stochastic discount factor.

Besides this equilibrium based approach, Black and Scholes (1973) de-
rived the price of a security relative to the underlying by constructing a
perfect hedge. The resulting continuous delta hedging strategy is equivalent
to pricing under a risk neutral measure Q under which the discounted price
process of the underlying becomes a martingale. Hence, the price of a se-
curity is given by an expected value with respect to a risk neutral measure
Q:

P0 = EQ [exp(�rT ) (S
T

)]

If p denotes the historical density of S

T

(i.e. P (S
T

 s) =
R

s

�1 p(x) dx) and

q the risk neutral density of S

T

(i.e. Q(S
T

 s) =
R

s

�1 q(x) dx) then we get

P0 = exp(�rT )

Z
 (x)q(x)dx

= exp(�rT )

Z
 (x)

q(x)

p(x)
p(x)dx

= EP


exp(�rT ) (S

T

)
q(S

T

)

p(S
T

)

�
(2)

Combining equations (1) and (2) we see

�

U

0(s)

U

0(S0)
= exp(�rT )

q(s)

p(s)
.

Defining the pricing kernel by K = q/p we conclude that the form of the
market utility function can be derived from the empirical pricing kernel by
integration:

U(s) = U(S0) +

Z
s

S0

U

0(S0)
exp(�rT )

�

q(x)

p(x)
dx

= U(S0) +

Z
s

S0

U

0(S0)
exp(�rT )

�

K(x)dx

because S0 is known.
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As an example, we consider the model of Black and Scholes (1973) where
the stock follows a geometric Brownian motion

dS

t

/S

t

= µdt + �dW

t

(3)

Here the historical density p of S

t

is log-normal, i.e.

p(x) =
1

x

1p
2⇡�̃2

exp

(
�1

2

✓
log x� µ̃

�̃

◆2
)

, x > 0

where µ̃ = (µ��2
/2)t+log S0 and �̃ = �

p
t. Under the risk neutral measure

Q the drift µ is replaced by the riskless interest rate r, see e.g. Harrison and
Pliska (1981). Thus, also the risk neutral density q is log-normal. In this
way, we can derive the pricing kernel

K(x) =

✓
x

S0

◆�µ�r
�2

exp{(µ� r)(µ + r � �

2)T/(2�2)}.

This pricing kernel has the form of a derivative of a power utility

K(x) = �

✓
x

S0

◆��

where the constants are given by � = e

(µ�r)(µ+r��2)T

2�2 and � = µ�r

�

2 . This gives
a utility function corresponding to the underlying (3)

U(S
T

) = (1� µ� r

�

2
)�1

S

(1�µ�r
�2 )

T

where we ignored additive and multiplicative constants. In this power utility
function the risk aversion is not given by the market price of risk (µ� r)/�.
Instead investors take the volatility more into account. The expected return
µ� r that is adjusted by the riskfree return is related to the variance. This
results in a higher relative risk aversion than the market price of risk.

A utility function corresponding to the Black-Scholes model is shown in
the upper panel of figure 1 as a function of returns. In order to make di↵erent
market situations comparable we consider utility functions as functions of
(half year) returns R = S0.5/S0. We chose the time horizon of half a year
ahead for our analysis. Shorter time horizons are interesting economically
and moreover the historical density converges to the Dirac measure so that
results become trivial (in the end). Longer time horizons are economically
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Figure 1: up: Utility function in the Black Scholes model for T = 0.5 years
ahead and drift µ = 0.1, volatility � = 0.2 and interest rate r = 0.03. down:
Market utility function on 06/30/2000 for T = 0.5 years ahead.
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more interesting but it is hardly possible to estimate the historical density
for a long time ahead. It neither seems realistic to assume that investors have
clear ideas where the DAX will be in e.g. 10 years. For these reasons we use
half a year as future horizon. Utility functions Ũ of returns are defined by:

Ũ(R) := U(RS0), R > 0

where S0 denotes the value of the DAX on the day of estimation. Because of
U

0 = cK for a constant c we have Ũ

0(R) = cK(RS0)S0 and we see that also
utility functions of returns are given as integrals of the pricing kernel. The
change to returns allows us to compare di↵erent market regimes indepen-
dently of the initial wealth. In the following we denote the utility functions
of returns by the original notation U . Hence, we suppress in the notation
the dependence of the utility function U on the day of estimation t.

The utility function corresponding to the model of Black and Scholes
(1973) is a power utility, monotonically increasing and concave. But such
classical utility functions are not observed on the market. Parametric and
nonparametric models that replicate the option prices all lead to utility func-
tions with a hump around the initial wealth level. This is described in detail
later but is shown already in figure 1. The upper panel presents the utility
function corresponding to Black-Scholes model with a volatility of 20% and
an expected return of 10%. The function is concave and implies a constant
relative risk aversion. The utility function estimated on the bullish market
in summer 2000 is presented in the lower panel. Here, the hump around the
money is clearly visible. The function is no more concave but has a region
where investors are risk seeking. This risk proclivity around the money is
reflected in a negative relative risk aversion.

3 Estimation

In this section, we start by reviewing some recent approaches for estimating
the pricing kernel. Then we describe our method that is based on estimates
of the risk neutral and the historical density. The risk neutral density is
derived from option prices that are given by an implied volatility surface and
the historical density is estimated from the independent data set of historical
returns. Finally, we present the empirical pricing kernels and the inferred
utility and relative risk aversion functions.
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3.1 Estimation approaches for the pricing kernel

There exist several ways and methods to estimate the pricing kernel. Some
of these methods assume parametric models while others use nonparametric
techniques. Moreover, some methods estimate first the risk neutral and sub-
jective density to infer the pricing kernel. Other approaches estimate directly
the pricing kernel.

Ait-Sahalia and Lo (1998) derive a nonparametric estimator of the risk
neutral density based on option prices. In Ait-Sahalia and Lo (2000), they
consider the empirical pricing kernel and the corresponding risk aversion
using this estimator. Moreover, they derive asymptotic properties of the es-
timator that allow e.g. the construction of confidence bands. The estimation
procedure consists of two steps: First, the option price function is deter-
mined by nonparametric kernel regression and then the risk neutral density
is computed by the formula of Breeden and Litzenberger (1978). Advantages
of this approach are the known asymptotic properties of the estimator and
the few assumptions necessary.

Jackwerth (2000) analyses risk aversion by computing the risk neutral
density from option prices and the subjective density from historical data
of the underlying. For the risk neutral distribution, he applies a variation
of the estimation procedure described in Jackwerth and Rubinstein (1996):
A smooth volatility function derived from observed option prices gives the
risk neutral density by di↵erentiating it twice. The subjective density is
approximated by a kernel density computed from historical data. In this
method bandwidths have to be chosen as in the method of Ait-Sahalia and
Lo (1998).

Rosenberg and Engle (2002) use a di↵erent approach and estimate the
subjective density and directly (the projection of) the pricing kernel. This
gives the same information as the estimation of the two densities because the
risk neutral density is the product of the pricing kernel and the subjective
density. For the pricing kernel, they consider two parametric specifications
as power functions and as exponentials of polynomials. The evolution of
the underlying is modelled by GARCH processes. As the parametric pricing
kernels lead to di↵erent results according to the parametric form used this
parametric approach appears a bit problematic.

Chernov (2003) also estimates the pricing kernel without computing the
risk neutral and subjective density explicitly. Instead of assuming directly a
parametric form of the kernel he starts with a (multi dimensional) modified
model of Heston (1993) and derives an analytic expression for the pricing
kernel by the Girsanov theorem, see Chernov (2000) for details. The ker-
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nel is estimated by a simulated method of moments technique from equity,
fixed income and commodities data and by reprojection. An advantage of
this approach is that the pricing kernel is estimated without assuming an
equity index to approximate the whole market portfolio. But the estimation
procedure is rather complex and model dependent.

In a recent paper, Barone-Adesi et al. (2004) price options in a GARCH
framework allowing the volatility to di↵er between historical and risk neutral
distribution. This approach leads to acceptable calibration errors between
the observed option prices and the model prices. They estimate the histori-
cal density as a GARCH process and consider the pricing kernel only on one
day. This kernel is decreasing which coincides with standard economic the-
ory. But the general approach of changing explicitly the volatility between
the historical and risk neutral distribution is not supported by the standard
economic theory.

We estimate the pricing kernel in this paper by estimating the risk neu-
tral and the subjective density and then deriving the pricing kernel. This
approach does not impose a strict structure on the kernel. Moreover, we
use accepted parametric models because nonparametric techniques for the
estimation of second derivatives depend a lot on the bandwidth selection al-
though they yield the same pricing kernel behaviour over a wide range of
bandwidths. For the risk neutral density we use a stochastic volatility model
that is popular both in academia and in industry. The historical density is
more di�cult to estimate because the drift is not fixed. Hence, the estima-
tion depends more on the model and the length of the historical time series.
In order to get robust results we consider di↵erent (discrete) models and dif-
ferent lengths. In particular, we use a GARCH model that is the discrete
version of the continuous model for the risk neutral density. In the following,
we describe these models, their estimation and the empirical results.

3.2 Estimation of the risk neutral density

Stochastic volatility models are popular in industry because they replicate
the observed smile in the implied volatility surfaces (IVS) rather well and
moreover imply rather realistic dynamics of the surfaces. Nonparametric
approaches like the local volatility model of Dupire (1994) allow a perfect fit
to observed price surfaces but their dynamics are in general contrary to the
market. As Bergomi (2005) points out the dynamics are more important for
modern products than a perfect fit. Hence, stochastic volatility models are
popular.

We consider the model of Heston (1993) for the risk neutral density be-
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cause it can be interpreted as the limit of GARCH models. The Heston
model has been refined further in order to improve the fit, e.g. by jumps in
the stock price or by a time varying mean variance level. We use the original
Heston model in order to maintain a direct connection to GARCH processes.
Although it is possible to estimate the historical density also with the Heston
model e.g. by Kalman filter methods we prefer more direct approaches in or-
der to reduce the dependence of the results on the model and the estimation
technique.

The stochastic volatility model of Heston (1993) is given by the two
stochastic di↵erential equations:

dS

t

S

t

= rdt +
p

V

t

dW

1
t

where the variance process is modelled by a square-root process:

dV

t

= ⇠(⌘ � V

t

)dt + ✓

p
V

t

dW

2
t

and W

1 and W

2 are Wiener processes with correlation ⇢ and r is the risk free
interest rate. The first equation models the stock returns by normal inno-
vations with stochastic variance. The second equation models the stochastic
variance process as a square-root di↵usion.

The parameters of the model all have economic interpretations: ⌘ is called
the long variance because the process always returns to this level. If the
variance V

t

is e.g. below the long variance then ⌘ � V

t

is positive and the
drift drives the variance in the direction of the long variance. ⇠ controls the
speed at which the variance is driven to the long variance. In calibrations,
this parameter changes a lot and makes also the other parameters instable.
To avoid this problem, the reversion speed is kept fixed in general. We follow
this approach and choose ⇠ = 2 as Bergomi (2005) does. The volatility of
variance ✓ controls mainly the kurtosis of the distribution of the variance.
Moreover, there are the initial variance V0 of the variance process and the
correlation ⇢ between the Brownian motions. This correlation models the
leverage e↵ect: When the stock goes down then the variance goes up and vice
versa. The parameters also control di↵erent aspects of the implied volatility
surface. The short (long) variance determines the level of implied volatility
for short (long) maturities. The correlation creates the skew e↵ect and the
volatility of variance controls the smile.

The variance process remains positive if the volatility of variance ✓ is
small enough with respect to the product of the mean reversion speed ⇠ and
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the long variance level ⌘ (i.e. 2⇠⌘ > ✓

2). As this constraint leads often to
significantly worse fits to implied volatility surfaces it is in general not taken
into account and we follow this approach.

The popularity of this model can probably be attributed to the semiclosed
form of the prices of plain vanilla options. Carr and Madan (1999) showed
that the price C(K, T ) of a European call option with strike K and maturity
T is given by

C(K, T ) =
exp{�↵ ln(K)}

⇡

Z +1

0

exp{�iv ln(K)} 
T

(v)dv

for a (suitable) damping factor ↵ > 0. The function  
T

is given by

 

T

(v) =
exp(�rT )�

T

{v � (↵+ 1)i}
↵

2 + ↵� v

2 + i(2↵+ 1)v

where �
T

is the characteristic function of log(S
T

). This characteristic func-
tion is given by

�

T

(z) = exp{ �(z2 + iz)V0

�(z) coth �(z)T
2 + ⇠ � i⇢✓z

}

⇥
exp{ ⇠⌘T (⇠�i⇢✓z)

✓

2 + izTr + iz log(S0)}

(cosh �(z)T
2 + ⇠�i⇢✓z

�(z) sinh �(z)T
2 )

2⇠⌘
✓2

(4)

where �(z)
def
=
p
✓

2(z2 + iz) + (⇠ � i⇢✓z)2, see e.g. Cizek et al. (2005).

For the calibration we minimize the absolute error of implied volatilities
based on the root mean square error:

ASE
t

def
=

vuut
nX

i=1

n

�1{IV

mod

i

(t)� IV

mar

i

(t)}2

where mod refers to a model quantity, mar to a quantity observed on the
market and IV (t) to an implied volatility on day t. The index i runs over
all n observations of the surface on day t.

It is essential for the error functional ASE
t

which observed prices are used
for the calibration. As we investigate the pricing kernel for half a year to
maturity we use only the prices of options that expire in less than 1.5 years.
In order to exclude liquidity problems occurring at expiry we consider for the
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calibration only options with more than 1 month time to maturity. In the
moneyness direction we restrict ourselves to strikes 50% above or below the
spot for liquidity reasons.

The risk neutral density is derived by estimation of the model parameters
by a least squares approach. This amounts to the minimization of the error
functional ASE

t

. Cont and Tankov (2004) provided evidence that such error
functionals may have local minima. In order to circumvent this problem we
apply a stochastic optimization routine that does not get trapped in a local
minimum. To this end, we use the method of di↵erential evolution developed
by Storn and Price (1997).

Having estimated the model parameters we know the distribution of
X

T

= log S

T

in form of the characteristic function �

T

, see (4). Then the
corresponding density f of X

T

can be recovered by Fourier inversion:

f(x) =
1

2⇡

Z 1

�1
e

itx
�

T

(t)dt,

see e.g. Billingsley (1995). This integral can be computed numerically.
Finally, the risk neutral density q of S

T

= exp(X
T

) is given as a trans-
formed density:

q(x) =
1

x

f{log(x)}.

This density q is risk neutral because it is derived from option prices and
options are priced under the risk neutral measure. This measure is applied
because banks replicate the payo↵ of options so that no arbitrage conditions
determine the option price, see e.g. Rubinstein (1994). An estimated risk
neutral density is presented in figure 2. It is estimated from the implied
volatility shown in figure 3 for the day 24/03/2000. The distribution is right
skewed and its mean is fixed by the martingale property. This implies that
the density is low for high profits and high for high losses. Moreover, the dis-
tribution is not symmetrical around the neutral point where there are neither
profits nor losses. For this and all the following estimations we approximate
the risk free interest rates by the EURIBOR. On each trading day we use the
yields corresponding to the maturities of the implied volatility surface. As
the DAX is a performance index it is adjusted to dividend payments. Thus,
we do not have to consider dividend payments explicitly.

3.3 Estimation of the historical density

While the risk neutral density is derived from option prices observed on the
day of estimation we derive the subjective density from the historical time
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Figure 2: Risk neutral density on 24/03/2000 half a year ahead.

0.5
1

1.5
20.5

0.75
1

1.25

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

time to maturityreturn

im
p

lie
d

 v
o

la
ti
lit

y

Figure 3: Implied volatility surface on 24/03/00.
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model time period
GARCH in mean 2.0y
discrete Heston 2.0y
observed returns 1.0y

Table 1: Models and the time periods used for their estimation.

series of the index. Hence, the two data sets are independent in the sense
that the option prices reflect the future movements and the historical time
series the past.

The estimation of the historical density seems more di�cult than the
estimation of the risk neutral density because the drift is not fixed and it de-
pends in general on the length of the time series. Because of these di�culties
we use di↵erent models and time horizons for the historical density: First,
we estimate a GARCH in mean model for the returns. Returns are generally
assumed to be stationary and we confirmed this at least in the time intervals
we consider. The mean component in the GARCH model is important to
reflect di↵erent market regimes. We estimate the GARCH model from the
time series of the returns of the last two year because GARCH models require
quite long time series for the estimation in order to make the standard error
reasonably small. We do not choose longer time period for the estimation
because we want to consider special market regimes. Besides this popular
model choice we apply a GARCH model that converges in the limit to the
Heston model that we used for the risk neutral density. As this model is also
hard to estimate we use again the returns of the last 2 years for this model.
Moreover, we consider directly the observed returns of the last year. The
models and their time period for the estimation are presented in table 1. All
these models give by simulation and smoothing the historical density for half
a year ahead.

The GARCH estimations are based on the daily log-returns

R

i

= log(S
ti)� log(S

ti�1)

where (S
t

) denotes the price process of the underlying and t

i

, i = 1, 2, . . .
denote the settlement times of the trading days. Returns of financial assets
have been analyzed in numerous studies, see e.g. Cont (2001). A model that
has often been successfully applied to financial returns and their stylized facts
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is the GARCH(1,1) model. This model with a mean is given by

R

i

= µ + �

i

Z

i

�

2
i

= ! + ↵R

2
i�1 + ��

2
i�1

where (Z
i

) are independent identically distributed innovations with a stan-
dard normal distribution, see e.g. Franke et al. (2004). On day t

j

the model
parameters µ,!,↵ and � are estimated by quasi maximum likelihood from
the observations of the last two years, i.e. R

j�504, . . . , Rj

assuming 252 trad-
ing days per year.

After the model parameters have been estimated on day t

j

from historical
data the process of logarithmic returns (R

i

) is simulated half a year ahead,
i.e. until time t

j

+ 0.5. In such a simulation µ,!,↵ and � are given and the
time series (�

i

) and (R
i

) are unknown. The values of the DAX corresponding
to the simulated returns are then given by inverting the definition of the log
returns:

S

ti = S

ti�1 exp(R
i

)

where we start with the observed DAX value on day t

j

. Repeating the
simulation N times we obtain N samples of the distribution of S

tj+0.5. We
use N = 2000 simulations because tests have shown that the results become
robust around this number of simulations.

From these samples we estimate the probability density function of S

tj+0.5

(given (S
tj�126 , . . . , Stj)) by kernel density estimation. We apply the Gaus-

sian kernel and choose the bandwidth by Silverman’s rule of thumb, see e.g.
Silverman (1986). This rule provides a trade-o↵ between oversmoothing – re-
sulting in a high bias – and undersmoothing – leading to big variations of the
density. We have moreover checked the robustness of the estimate relative
to this bandwidth choice. The estimation results of a historical density are
presented in figure 4 for the day 24/03/2000. This density that represents a
bullish market is has most of its weight in the profit region and its tail for
the losses is relatively light.

As we use the Heston model for the estimation of the risk neutral density
we consider in addition to the described GARCH model a GARCH model
that is a discrete version of the Heston model. Heston and Nandi (2000)
show that the discrete version of the square-root process is given by

V

i

= ! + �V

i�1 + ↵(Z
i�1 � �

p
V

i�1)

and the returns are modelled by

R

i

= µ� 1

2
V

i

+
p

V

i

Z

i
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Figure 4: Historical density on 24/03/2000 half a year ahead.

where (Z
i

) are independent identically distributed innovations with a stan-
dard normal distribution. Having estimated this model by maximum likeli-
hood on day t

j

we simulate it half a year ahead and then smooth the samples
of S

tj+0.5 in the same way as in the other GARCH model.

In addition to these parametric models, we consider directly the observed
returns over half a year

R̃

i

= S

ti/Sti�126 .

In this way, we interpret these half year returns as samples from the distribu-
tion of the returns for half a year ahead. Smoothing these historical samples
of returns gives an estimate of the density of returns and in this way also an
estimate of the historical density of S

tj+0.5.

3.4 Empirical pricing kernels

In contrast to many other studies that concentrate on the S&P500 index we
analyze the German economy by focusing on the DAX, the German stock
index. This broad index serves as an approximation to the German economy.
We use two data sets: A daily time series of the DAX for the estimation of
the subjective density and prices of European options on the DAX for the
estimation of the risk neutral density.
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Figure 5: DAX, 1998 - 2004.

1.0y 2.0y
03/2000 1.63 1.57
07/2002 0.66 0.54
06/2004 1.11 0.98

Table 2: Market regimes in 2000, 2002 and 2004 described by the return
S0/S0�� for periods � = 1.0y, 2.0y.

In figure 5, we present the DAX in the years 1998 to 2004. This figure
shows that the index reached its peak in 2000 when all the internet firms
were making huge profits. But in the same year this bubble burst and the
index fell afterwards for a long time. The historical density is estimated from
the returns of this time series. We analyze the market utility functions in
March 2000, July 2002 and June 2004 in order to consider di↵erent market
regimes. We interpret 2000 as a bullish, 2002 as a bearish and 2004 as a
unsettled market. These interpretations are based on table 2 that describes
the changes of the DAX over the preceding 1 or 2 years. (In June 2004 the
market went up by 11% in the last 10 months.)

A utility function derived from the market data is a market utility func-
tion. It is estimated as an aggregate for all investors as if the representative
investor existed. A representative investor is however just a convenient con-

16



struction because the existence of the market itself implies that the asset
is bought and sold, i.e. at least two counterparties are required for each
transaction.

In section 2 we identified the market utility function (up to linear trans-
formations) as

U(R) =

Z
R

R0

K(x)dx

where K is the pricing kernel for returns. It is defined by

K(x) = q(x)/p(x)

in terms of the historical and risk neutral densities p and q of returns. Any
utility function (both cardinal and ordinal) can be defined up to a linear
transformation, therefore we have identified the utility functions su�ciently.
In section 3.3 we proposed di↵erent models for estimating the historical den-
sity. In figure 6 we show the pricing kernels resulting from the di↵erent
estimation approaches for the historical density. The figure shows that all
three kernels are quite similar: They have the same form, the same charac-
teristic features like e.g. the hump and di↵er in absolute terms only a little.
This demonstrates the economic equivalence of the three estimation methods
on this day and this equivalence holds also for the other days. In the fol-
lowing we work with historical densities that are estimated by the observed
returns.

Besides the pricing kernel and the utility function we consider also the
risk attitudes in the markets. Such risk attitudes are often described in terms
of relative risk aversion that is defined by

RRA(R) = �R

U

00(R)

U

0(R)
.

Because of U

0 = cK = cq/p for a constant c the relative risk aversion is also
given by

RRA(R) = �R

q

0(R)p(R)� q(R)p0(R)

p

2(R)
/

q(R)

p(R)
= R

✓
p

0(R)

p(R)
� q

0(R)

q(R)

◆
.

Hence, we can estimate the relative risk aversion from the estimated histori-
cal and risk neutral densities.

In figure 7 we present the empirical pricing kernels in March 2000, July
2002 and June 2004. The dates represent a bullish, a bearish and an unsettled
markets, see table 2. All pricing kernels have a proclaimed hump located
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Figure 6: Empirical pricing kernel on 24/03/2000 (bullish market).

at small profits. Hence, the market utility functions do not correspond to
standard specification of utility functions. We present the pricing kernels
only in regions around the initial DAX (corresponding to a return of 1) value
because the kernels explode outside these regions. This explosive behaviour
reflects the typical pricing kernel form for losses. The explosion of the kernel
for large profits is due to numerical problems in the estimation of the very
low densities in this region. But we can see that in the unsettled market the
kernel is concentrated on a small region while the bullish and bearish markets
have wider pricing kernels. The hump of the unsettled market is also narrower
than in the other two regimes. The bullish and bearish regimes have kernels
of similar width but the bearish kernel is shifted to the loss region and the
bullish kernel is located mainly in the profit area. Moreover, the figures show
that the kernel is steeper in the unsettled markets than in the other markets.
But this steepness cannot be interpreted clearly because pricing kernels are
only defined up to a multiplicative constant.

The pricing kernels are the link between the relative risk aversion and
the utility functions that are presented in figure 8. These utility functions
are only defined up to linear transformations, see section 2. All the utility
functions are increasing but only the utility function of the bullish market is
concave. This concavity can be seen from the monotonicity of the kernel, see
figure 7. Actually, this non convexity can be attributed to the quite special
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Figure 7: Empirical pricing kernel on 24/03/2000 (bullish), 30/07/2002
(bearish) and 30/06/2004 (unsettled or sidewards market).

form of the historical density which has two modes on this date, see figure
4. Hence, we presume that also this utility function has in general a region
of convexity. The other two utility functions are convex in a region of small
profits where the bullish utility is almost convex. The derivatives of the
utility functions cannot be compared directly because utility functions are
identified only up to multiplicative constants. But we can compare the ratio
of the derivatives in the loss and profit regions for the three dates because the
constants cancel in these ratios. We see that the derivatives in the loss region
are highest in the bullish and lowest in the bearish market and vice versa in
the profit region. Economically these observations can be interpreted in such
a way that in the bullish market a loss (of 1 unit) reduces the utility stronger
than in the bearish market. On the other hand, a gain (of 1 unit) increases
the utility less than in the bearish market. The unsettled market shows a
behaviour between these extreme markets. Hence, investors fear in a good
market situation losses more than in a bad situation and they appreciate
profits in a good situation less than in a bad situation.

Finally, we consider the relative risk aversions in the three market regimes.
These risk aversions are presented in figure 9, they do not depend on any
constants but are completely identified. We see that the risk aversion is
smallest in all markets for a small profit that roughly corresponds to the
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Figure 8: Market utility functions on 24/03/2000 (bullish), 30/07/2002
(bearish) and 30/06/2004 (unsettled or sidewards market).

initial value plus a riskless interest on it. In the unsettled regime the market
is risk seeking in a small region around this minimal risk aversion. But then
the risk aversion increases quite fast. Hence, the representative agent in this
market is willing to take small risks but is sensitive to large losses or profits.
In the bullish and bearish regimes the representative agent is less sensitive to
large losses or profits than in the unsettled market. In the bearish situation
the representative agent is willing to take more risks than in the bullish
regime. In the bearish regime the investors are risk seeking in a wider region
than in the unsettled regime. In this sense they are more risk seeking in the
bearish market. In the bullish market – on the other hand – the investors
are never risk seeking so that they are less risk seeking than in the unsettled
market.

The estimated utility functions most closely follow the specification pro-
posed by Friedman & Savage (1948). The utility function proposed by Kah-
neman & Tversky (1979) consists of one concave and one convex segment and
is less suitable for describing the observed behaviour, see figure 10. Both util-
ity functions were proposed to account for two opposite types of behaviour
with respect to risk attitudes: buying insurance and gambling. Any utility
function that is strictly concave fails to describe both risk attitudes. Most
notable examples are the quadratic utility function with the linear pricing
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Figure 9: Relative risk aversions on 24/03/2000 (bullish), 30/07/2002 (bear-
ish) and 30/06/2004 (unsettled or sidewards market).

kernel as in the CAPM model and the CRRA utility function. These func-
tions are presented in figure 10. Comparing this theoretical figure with the
empirical results in figure 7 we see clearly the shortcoming of the standard
specifications of utility functions to capture the characteristic hump of the
pricing kernels.

4 Individual investors and their utility func-

tions

In this section, we introduce a type of utility function that has two regions
of di↵erent risk aversion. Then we describe how individual investors can be
aggregated to a representative agent that has the market utility function.
Finally, we solve the resulting estimation problem by discretization and es-
timate the distribution of individual investors.

4.1 Individual Utility Function

We learn from figures 10 and 7 that the market utility di↵ers significantly
from the standard specification of utility functions. Moreover, we can observe
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(upper: quadratic, middle: power, lower panel: Kahneman and Tversky
utility function).
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from the estimated utility functions 8 that the loss part and the profit part of
the utility functions can be quite well approximated with hyperbolic absolute
risk aversion (HARA) functions, k = 1, 2:

U

(k)(R) = a

k

(R� c

k

)�k + b

k

,

where the shift parameter is c

k

. These power utility functions become in-
finitely negative for R = c

k

and can be extended by U

(k)(R) = �1 for
R  c

k

, i.e. investors will avoid by all means the situation when R  c

k

.
The CRRA utility function has c

k

= 0.
We try to reconstruct the market utility of the representative investor by

individual utility functions and hence assume that there are many investors
on the market. Investor i will be attributed with a utility function that
consists of two HARA functions:

U

i

(R) =

(
max {U(R, ✓1, c1); U(R, ✓2, c2,i

)} , if R > c1

�1, if R  c1

where U(R, ✓, c) = a(R � c)� + b, ✓ = (a, b, �)>, c2,i

> c1. If a1 = a2 = 1,
b1 = b2 = 0 and c1 = c2 = 0, we get the standard CRRA utility function.

The parameters ✓1 and ✓2 and c1 are the same for all investors who di↵er
only with the shift parameter c2. ✓1 and c1 are estimated from the lower
part of the utility market function, where all investors probably agree that
the market is “bad”. ✓2 is estimated from the upper part of the utility
function where all investors agree that the state of the world is “good”. The
distribution of c2 uniquely defines the distribution of switching points and is
computed in section 4.3. In this way a bear part U

bear

(R) = U(R, ✓1, c1) and
a bull part U

bull

(R) = U(R, ✓1, c2) can be estimated by least squares.
The individual utility function can then be denoted conveniently as:

U

i

(R) =

(
max {U

bear

(R); U
bull

(R, c

i

)} , if R > c1;

�1, if R  c1.
(5)

Switching between U

bear

and U

bull

happens at the switching point z, whereas
U

bear

(z) = U

bull

(z, c
i

). The switching point is uniquely determined by c

i

⌘
c2,i

. The notations bear and bull have been chosen because U

bear

is activated
when returns are low and U

bull

when returns are high.
Each investor is characterised by a switching point z. The smoothness

of the market utility function is the result of the aggregation of di↵erent
attitudes. U

bear

characterizes more cautious attitudes when returns are low
and U

bull

describes the attitudes when the market is booming. Both U

bear
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(dotted) part of an individual utility function 5 estimated in the unsettled
market of 30/06/2004.

and U

bull

are concave. However, due to switching the total utility function
can be locally convex.

These utility functions are illustrated in figure 11 that shows the results
for the unsettled market. We observe/estimate the market utility function
that does not correspond to standard utility approaches because of the convex
region. We propose to reconstruct this phenomenon by individual utility
functions that consist of a bearish part and a bullish part. While the bearish
part is fixed for all investors the bullish part starts at the switching point that
characterizes an individual investor. By aggregating investors with di↵erent
switching points we reconstruct the market utility function. We describe the
aggregation in section 4.2 and estimate the distribution of switching points
in section 4.3. In this way we explain the special form of the observed market
utility functions.

4.2 Market Aggregation Mechanism

We consider the problem of aggregating individual utility functions to a rep-
resentative market utility function. A simple approach to this problem is to
identify the market utility function with an average of the individual utility
functions. To this end one needs to specify the observable states of the world
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in the future by returns R and then find a weighted average of the utility
functions for each state. If the importance of the investors is the same, then
the weights are equal:

U(R) =
1

N

NX

i=1

U

i

(R),

where N is the number of investors. The problem that arises in this case is
that utility functions of di↵erent investors can not be summed up since they
are incomparable.

Therefore, we propose an alternative aggregation technique. First we
specify the subjective states of the world given by utility levels u and then
aggregate the outlooks concerning the returns in the future R for each per-
ceived state. For a subjective state described with the utility level U , such
that

u = U1(R1) = U2(R2) = . . . = U

N

(R
N

)

the aggregate estimate of the resulting returns is

R

A

(u) =
1

N

NX

i=1

U

�1
i

(u) (6)

if all investors have the same market power. The market utility function U

M

resulting from this aggregation is given by the inverse R

�1
A

.
In contrast to the naive approach described at the beginning of this sec-

tion, this aggregation mechanism is consistent under transformations: if all
individual utility functions are changed by the same transformation then the
resulting market utility is also given by the transformation of the original
aggregated utility. We consider the individual utility functions U

i

and the
resulting aggregate U

M

. In addition, we consider the transformed individ-
ual utility functions U

�

i

(x) = �{U
i

(x)} and the corresponding aggregate U

�

M

where � is a transformation. Then the aggregation is consistent in the sense
that U

�

M

= �(U
M

). This property can be seen from

(U�

M

)�1(u) =
1

N

NX

i=1

(U�

i

)�1(u)

=
1

N

NX

i=1

U

�1
i

{��1(u)}

= U

�1
M

{��1(u)}

The naive aggregation is not consistent in the above sense as the following
example shows: We consider the two individual utility functions U1(x) =

p
x
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and U2(x) =
p

x/2 under the logarithmic transformation � = log. Then the
naively aggregated utility is given by U

M

(x) = 3
p

x/4. Hence, the trans-
formed aggregated utility is �{U

M

(x)} = log(3/4) + log(x)/2. But the ag-
gregate of the transformed individual utility functions is

U

�

M

(x) =
1

2

�
log(

p
x) + log(

p
x/2)

 

=
1

2
log

✓
1

2

◆
+ log(x)/2.

This implies that U

�

M

6= �(U
M

) in general.

This described aggregation approach can be generalized in two ways: If
the individual investors have di↵erent market power then we use the corre-
sponding weights w

i

in the aggregation (6) instead of the uniform weights.
As the number of market participants is in general big and unknown it is bet-
ter to use a continuous density f instead of the discrete distributions given
by the weights w

i

. These generalizations lead to the following aggregation

R

A

(u) =

Z
U

�1(·, z)(u)f(z)dz

where U(·, z) is the utility function of investor z. We assume in the follow-
ing that the investors have utility function of the form described in section
4.1. In the next section we estimate the distribution of the investors who are
parametrized by z.

4.3 The Estimation of the Distribution of Switching

Points

Using the described aggregation procedure, we consider now the problem of
replicating the market utility by aggregating individual utility functions. To
this end, we choose the parametric utility functions U(·, z) described in 4.1
and try to recover with them the market utility U

M

. We do not consider
directly the utility functions but minimize instead the distance between the
inverse functions:

min
f

k
Z

U

�1(·, z)f(z)dz � U

�1
M

k
L

2(P̃ ) (7)

where P̃ is image measure of the historical measure P on the returns under
the transformation U

M

. As the historical measure has the density p the
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transformation theorem for densities implies that P̃ has the density

p̃(u) = p{U�1
M

(u)}/U 0
M

{U�1
M

(u)}.

With this density the functional to be minimized in problem (7) can be stated
as

Z ✓Z
U

�1(u, z)f(z)dz � U

�1
M

(u)

◆2

p̃(u) du

=

Z ✓Z
U

�1(u, z)f(z)dz � U

�1
M

(u)

◆2

p{U�1
M

(u)}/U 0
M

{U�1
M

(u)} du

=

Z ✓Z
U

�1(u, z)f(z)dz � U

�1
M

(u)

◆2

p{U�1
M

(u)}(U�1
M

)0(u) du

because the derivative of the inverse is given by (g�1)0(y) = 1/g0{g�1(y)}.
Moreover, we can apply integration by substitution to simplify this expression
further

Z ✓Z
U

�1(u, z)f(z)dz � U

�1
M

(u)

◆2

p{U�1
M

(u)}(U�1
M

)0(u) du

=

Z ✓Z
U

�1{U
M

(x), z}f(z)dz � x

◆2

p(x) dx.

For replicating the market utility by minimizing (7) we observe first that
we have samples of the historical distribution with density p. Hence, we can
replace the outer integral by the empirical expectation and the minimization
problem can be restated as

min
f

1

n

nX

i=1

✓Z
g{U

M

(x
i

), z}f(z)dz � x

i

◆2

where x1 . . . , x

n

are the samples from the historical distribution and g = U

�1.
Replacing the density f by a histogram f(z) =

P
J

j=1 ✓j

I

Bj(z) with bins
B

j

, h

j

= |B
j

|, the problem is transformed into

min
✓j

1

n

nX

i=1

(
JX

j=1

g̃(i, j)✓
j

� x

i

)2

where g̃(i, j) =
R

Bj
g{U

M

(x
i

), z}dz.
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Hence, the distribution of switching points can be estimated by solving
the quadratic optimization problem

min
✓j

1

n

nX

i=1

(
JX

j=1

g̃(i, j)✓
j

� x

i

)2

,

s.t. ✓

j

� 0,
JX

j=1

✓

j

h

j

= 1.

Such quadratic optimization problems are well known and their solutions
can be obtained using standard techniques, see e.g. Mehrotra (1992) or
Wright (1998).

We present in figures 12–14 the estimated distribution of switching points
in the bullish (24/03/2000), bearish (30/07/2002) and unsettled (30/06/2004)
markets. The distribution density f was computed for 100 bins but we
checked the broad range of binwidths. The width of the distribution varies
greatly depending on the regularisation scheme, for example as represented
by the number of bins. The location of the distribution maximum, however,
remains constant and independent from the computational method.

The maximum and the median of the distribution, i.e. the returns at
which half of investors have bearish and bullish attitudes, depend on the year.
For example, in the bullish market (Figure 12) the peak of the switching
point distribution is located in the area of high returns around R = 1.07
for half a year. On the contrary, in the bearish market (Figure 13) the
peak of switching points is around R = 0.93. This means that when the
market is booming, such as in year 1999–2000 prior to the dot-com crash,
investors get used to high returns and switch to the bullish attitude only
for comparatively high R’s. An overall high level of returns serves in this
respect as a reference level and investors form their judgements about the
market relative to it. Since di↵erent investors have di↵erent initial wealth,
personal habits, attitudes and other factors that our model does not take into
account, we have a distribution of switching points. In the bearish market
the average level of returns is low and investors switch to bullish attitudes
already at much lower R’s.
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Figure 12: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 24
March 2000, a bullish market.
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Figure 13: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 30
July 2002, a bearish market.
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Figure 14: Left panel: the market utility function (red) and the fitted utility
function (blue). Right panel: the distribution of the reference points. 30
June 2004, an unsettled market.

5 Conclusion

We have analyzed in this paper empirical pricing kernels in three market
regimes using data on the German stock index and options on this index.
In the bullish, bearish and unsettled market regime we estimate the pric-
ing kernel and derive the corresponding utility functions and relative risk
aversions.

In the unsettled market of June 2004, the market investor is risk seeking
in a small region around the riskless return but risk aversion increases fast for
high absolute returns. In the bullish market of March 2000, the investor is on
the other hand never risk seeking while he becomes more risk seeking in the
bearish market of July 2002. Before the stock market crash in 1987 European
options did not show the smile and the Black-Scholes model captured the data
quite well. Hence, utility functions could be estimated at that times by power
utility functions with a constant positive risk aversion. Our analysis shows
that this simple structure does not hold anymore and discusses di↵erent
structures corresponding to di↵erent market regimes.

The empirical pricing kernels of all market regimes demonstrate that the
corresponding utility functions do not correspond to standard specifications
of utility functions including Kahneman and Tversky (1979). The observed
utility functions are closest to the general utility functions of Friedman and
Savage (1948). We propose a parametric specification of these functions,
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estimate it and explain the observed market utility function by aggregating
individual utility functions. In this way, we can estimate a distribution of
individual investors.

The proposed aggregation mechanism is based on homogeneous investors
in the sense that they di↵er only with switching points. Future research can
reveal how nonlinear aggregation procedures could be applied to heteroge-
neous investors.

6 Acknowledgements

The research work of R. A. Moro was supported by the German Academic
Exchange Service (DAAD). K. Detlefsen was supported by Bankhaus Sal.
Oppenheim. This research was supported by Deutsche Forschungsgemein-
schaft through the SFB 649 “Economic Risk”.

References

Ait-Sahalia, Y. and A. Lo, 1998: Nonparametric estimation of state-price
densitites implicit in financial asset prices. Journal of Finance, 53(2).

Ait-Sahalia, Y. and A. Lo, 2000: Nonparametric risk-management and im-
plied risk aversion. Journal of Econometrics, 94(9).

Barone-Adesi, G., R. Engle, and L. Mancini, 2004: Garch options in incom-
plete markets. working paper, University of Lugano.

Bergomi, L., 2005: Smile dynamics 2. Risk, 18(10).

Bernoulli, D., 1956: Exposition of a new theory on the measurement of risk.
Econometrica, 22, 23–36.

Billingsley, P., 1995: Probability and Measure. Wiley-Interscience.

Black, F. and M. Scholes, 1973: The pricing of options and corporate liabil-
ities. Journal of Political Economy, 81, 637–659.

Breeden, D. and R. Litzenberger, 1978: Prices of state-contingent claims
implicit in option prices. Journal of business, 51, 621–651.

Carr, P. and D. Madan, 1999: Option valuation using the fast fourier trans-
form. Journal of Computational Finance, 2, 61–73.

31



Chernov, M., 2000: Essays in financial econometrics. Phd thesis, Pennsyl-
vania State University.

Chernov, M., 2003: Empirical reverse engineering of the pricing kernel.
Journal of Econometrics, 116, 329–364.
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CONFIDENCE BANDS IN
QUANTILE REGRESSION

WOLFGANG K. HÄRDLE AND SONG SONG
Humboldt-Universität zu Berlin

Let (X1,Y1), . . . , (Xn,Yn) be independent and identically distributed random vari-
ables and let l(x) be the unknown p-quantile regression curve of Y conditional on X .
A quantile smoother ln(x) is a localized, nonlinear estimator of l(x). The strong uni-
form consistency rate is established under general conditions. In many applications
it is necessary to know the stochastic fluctuation of the process {ln(x)− l(x)}. Using
strong approximations of the empirical process and extreme value theory, we con-
sider the asymptotic maximal deviation sup0!x!1 |ln(x)− l(x)|. The derived result
helps in the construction of a uniform confidence band for the quantile curve l(x).
This confidence band can be applied as a econometric model check. An economic
application considers the relation between age and earnings in the labor market by
means of parametric model specification tests, which presents a new framework to
describe trends in the entire wage distribution in a parsimonious way.

1. INTRODUCTION

In standard regression function estimation, most investigations are concerned with
the conditional mean regression. However, new insights about the underlying
structures can be gained by considering other aspects of the conditional distribu-
tion. The quantile curves are key aspects of inference in various economic prob-
lems and are of great interest in practice. These describe the conditional behavior
of a response variable (e.g., wage of workers) given the value of an explanatory
variable (e.g., education level, experience, occupation of workers) and investigate
changes in both tails of the distribution, other than just the mean.

When examining labor markets, economists are concerned with whether dis-
crimination exists, e.g., for different genders, nationalities, union status, etc. To
study this question, we need to separate out other effects first, e.g., age, educa-
tion, etc. The crucial relation between age and earnings or salaries belongs to
the most carefully studied subjects in labor economics. The fundamental work
in mean regression can be found in Murphy and Welch (1990). Quantile
regression estimates could provide more accurate measures. Koenker and Hallock
(2001) present a group of important economic applications, including quantile
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Engel curves, and claim that “quantile regression is gradually developing into a
comprehensive strategy for completing the regression prediction.” Besides this,
it is also well known that a quantile regression model (e.g., the conditional me-
dian curve) is more robust to outliers, especially for fat-tailed distributions. For
symmetric conditional distributions the quantile regression generates the nonpara-
metric mean regression analysis because the p = 0.5 (median) quantile curve co-
incides with the mean regression.

As first introduced by Koenker and Bassett (1978), one may assume a para-
metric model for the p-quantile curve and estimate parameters by the interior
point method discussed by Koenker and Park (1996) and Portnoy and Koenker
(1997). Similarly, we can also adopt nonparametric methods to estimate condi-
tional quantiles. The first one, a more direct approach using a check function such
as a robustified local linear smoother, is provided by Fan, Hu, and Troung (1994)
and further extended by Yu and Jones (1997, 1998). An alternative procedure
is first to estimate the conditional distribution function using the double-kernel
local linear technique of Fan, Yao, and Tong (1996) and then to invert the con-
ditional distribution estimator to produce an estimator of a conditional quantile
by Yu and Jones (1997, 1998). Beside these, Hall, Wolff, and Yao (1999) pro-
posed a weighted version of the Nadaraya–Watson estimator, which was further
studied by Cai (2002). Recently Jeong and Härdle (2008) have developed the
conditional quantile causality test. More generally, for an M-regression function
that involves quantile regression as a special case, the uniform Bahadur repre-
sentation and application to the additive model are studied by Kong, Linton, and
Xia (2010). An interesting question for parametric fitting, especially from labor
economists, would be how well these models fit the data, when compared with
the nonparametric estimation method.

Let (X1,Y1), (X2,Y2), . . . , (Xn,Yn) be a sequence of independent and iden-
tically distributed (i.i.d.) bivariate random variables with joint probability den-
sity function (pdf) f (x, y), joint cumulative distribution function (cdf) F(x, y),
conditional pdf f (y|x), f (x |y), conditional cdf F(y|x), F(x |y) for Y given X
and X given Y , respectively, and marginal pdf fX (x) for X , fY (y) for Y where
x ∈ J and J is a possibly infinite interval in Rd and y ∈ R. In general, X may
be a multivariate covariate, although here we restrict attention to the univariate
case and J = [0,1] for convenience. Let l(x) denote the p-quantile curve, i.e.,
l(x) = F−1

Y |x (p).
Under a “check function,” the quantile regression curve l(x) can be viewed as

the minimizer of L(θ)
def= E{ρp(y − θ)|X = x} (with respect to θ ) with ρp(u) =

pu1{u ∈ (0,∞)}− (1 − p)u1{u ∈ (−∞,0)}, which was originally motivated by
an exercise in Ferguson (1967, p. 51) in the literature.

A kernel-based p-quantile curve estimator ln(x) can naturally be constructed
by minimizing:

Ln(θ) = n−1
n

∑
i=1

ρp(Yi − θ)Kh(x − Xi ) (1)
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with respect to θ ∈ I where I is a possibly infinite, or possibly degenerate, inter-
val in R and Kh(u) = h−1 K (u/h) is a kernel with bandwidth h. The numerical
solution of (1) may be found iteratively as in Lejeune and Sarda (1988) and Yu,
Lu, and Stander (2003).

In light of the concepts of M-estimation as in Huber (1981), if we define
ψ(u) as

ψp(u) = p1{u ∈ (0,∞)}− (1− p)1{u ∈ (−∞,0)}

= p −1{u ∈ (−∞,0)},
ln(x) and l(x) can be treated as a zero (with respect to θ ) of the function

H̃n(θ, x)
def= n−1

n

∑
i=1

Kh(x − Xi )ψ(Yi − θ), (2)

H̃(θ, x)
def=
∫

R
f (x, y)ψ(y − θ)dy, (3)

correspondingly.
To show the uniform consistency of the quantile smoother, we shall reduce the

problem of strong convergence of ln(x)− l(x), uniformly in x , to an application
of the strong convergence of H̃n(θ, x) to H̃(θ, x), uniformly in x and θ , as given
by Theorem 2.2 in Härdle, Janssen, and Serfling (1988). It is shown that under
general conditions almost surely (a.s.)

sup
x∈J

|ln(x)− l(x)|! B∗ max
{

(nh/(logn))−1/2,hα̃
}

, as n → ∞,

where B∗ and α̃ are parameters defined more precisely in Section 2.
Note that without assuming K has compact support (as we do here) under sim-

ilar assumptions Franke and Mwita (2003) obtain

ln(x) = F̂−1
Y |x (p),

F̂(y|x) = ∑n
i=1 Kh(x − Xi )1(Yi < y)

∑n
i=1 Kh(x − Xi )

,

sup
x∈J

|ln(x)− l(x)|! B∗∗
{

(nh/(sn logn))−1/2 +h2
}

, as n → ∞

for α-mixing data where B∗∗ is some constant and sn,n " 1 is an increasing
sequence of positive integers satisfying 1 ! sn ! n/2 and some other criteria.
Thus {nh/(logn)}−1/2 ! {nh/(sn logn)}−1/2.

By employing similar methods to those developed in Härdle (1989) it is shown
in this paper that

P
(

(2δ logn)1/2
[

sup
x∈J

r(x)|{ln(x)− l(x)}|/λ(K )1/2 −dn

]
< z
)

→ exp{−2exp(−z)}, as n → ∞ (4)
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from the asymptotic Gumbel distribution where r(x), δ, λ(K ), dn are suitable
scaling parameters. The asymptotic result (4) therefore allows the construction
of (asymptotic) uniform confidence bands for l(x) based on specifications of the
stochastic fluctuation of ln(x). The strong approximation with Brownian bridge
techniques that we use in this paper is available only for the approximation of the
two-dimensional empirical process. The extension to the multivariate covariable
can be done by partial linear modeling, which deserves further research.

The plan of the paper is as follows. In Section 2, the stochastic fluctuation of the
process {ln(x)− l(x)} and the uniform confidence band are presented through the
equivalence of several stochastic processes, with a strong uniform consistency rate
of {ln(x)− l(x)} also shown. In Section 3, in a small Monte Carlo study we inves-
tigate the behavior of ln(x) when the data are generated by fat-tailed conditional
distributions of (Y |X = x). In Section 4, an application considers a wage-earning
relation in the labor market. All proofs are sketched in the Appendix.

2. RESULTS

The following assumptions will be convenient. To make x and X clearly distin-
guishable, we replace x by t sometimes, but they are essentially the same.

(A1) The kernel K (·) is positive and symmetric, has compact support [−A, A],
and is Lipschitz continuously differentiable with bounded derivatives.

(A2) (nh)−1/2(logn)3/2 → 0, (n logn)1/2h5/2 → 0, (nh3)−1(logn)2 ! M ,
where M is a constant.

(A3) h−3(logn)
∫
|y|>an

fY (y)dy =O(1), where fY (y) is the marginal density
of Y and {an}∞n=1 is a sequence of constants tending to infinity as n → ∞.

(A4) inft∈J |q(t)|" q0 > 0, where q(t) = ∂ E{ψ(Y − θ)|t}/∂θ |θ=l(t) · fX (t) =
f {l(t)|t} fX (t).

(A5) The quantile function l(t) is Lipschitz twice continuously differentiable
for all t ∈ J .

(A6) 0 < m1 ! fX (t)! M1 < ∞, t ∈ J ; the conditional densities f (·|y), y ∈
R, are uniform local Lipschitz continuous of order α̃ (ulL-α̃) on J , uniformly in
y ∈ R, with 0 < α̃ ! 1.

Define also

σ 2(t) = E[ψ2{Y − l(t)}|t] = p(1− p),

Hn(t) = (nh)−1
n

∑
i=1

K{(t − Xi )/h}ψ{Yi − l(t)},

Dn(t) = ∂(nh)−1
n

∑
i=1

K{(t − Xi )/h}ψ{Yi − θ}/∂θ |θ=l(t)

and assume that σ 2(t) and fX (t) are differentiable.
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Assumption (A1) on the compact support of the kernel could possibly be re-
laxed by introducing a cutoff technique as in Csörgö and Hall (1982) for den-
sity estimators. Assumption (A2) has purely technical reasons: to keep the bias
at a lower rate than the variance and to ensure the vanishing of some nonlinear
remainder terms. Assumption (A3) appears in a somewhat modified form also
in Johnston (1982). Assumptions (A5) and (A6) are common assumptions in ro-
bust estimation as in Huber (1981) and Härdle et al. (1988) that are satisfied by
exponential and generalized hyperbolic distributions.

For the uniform strong consistency rate of ln(x) − l(x), we apply the result
of Härdle et al. (1988) by taking β(y) = ψ(y − θ), y ∈ R, for θ ∈ I = R, q1 =
q2 = −1, γ1(y) = max{0,−ψ(y − θ)}, γ2(y) = min{0,−ψ(y − θ)}, and λ = ∞
to satisfy the representations for the parameters there. Thus from Härdle et al.’s
Theorem 2.2 and Remark 2.3(v), we immediately have the following lemma.

LEMMA 2.1. Let H̃n(θ, x) and H̃(θ, x) be given by (2) and (3). Under
Assumption (A6) and (nh/ logn)−1/2 → ∞ through Assumption (A2), for some
constant A∗ not depending on n, we have a.s. as n → ∞

sup
θ∈I

sup
x∈J

∣∣H̃n(θ, x)− H̃(θ, x)
∣∣≤ A∗ max

{
(nh/ logn)−1/2,hα̃

}
. (5)

For our result on ln(·), we shall also require

inf
x∈J

∣∣∣∣
∫

ψ{y − l(x)+ ε}dF(y|x)

∣∣∣∣" q̃|ε|, for |ε|! δ1, (6)

where δ1 and q̃ are some positive constants; see also Härdle and Luckhaus (1984).
This assumption is satisfied if there exists a constant q̃ such that f (l(x)|x) > q̃/p,
x ∈ J .

THEOREM 2.1. Under the conditions of Lemma 2.1 and also assuming (6),
we have a.s. as n → ∞

sup
x∈J

∣∣ln(x)− l(x)
∣∣≤ B∗ max

{
(nh/ logn)−1/2,hα̃

}
(7)

with B∗ = A∗/m1q̃ not depending on n and m1 a lower bound of fX (t). If addi-
tionally α̃ " {log(

√
logn)− log(

√
nh)}/logh, it can be further simplified to

sup
x∈J

|ln(x)− l(x)| ≤ B∗{(nh/ logn)−1/2}.

THEOREM 2.2. Let h = n−δ , 1
5 < δ < 1

3 , λ(K ) = ∫ A
−A K 2(u)du, and

dn = (2δ logn)1/2 + (2δ logn)−1/2
[

log
{

c1(K )/π1/2
}

+ 1
2

{
logδ + log logn

}]
,

if c1(K ) = {K 2(A)+ K 2(−A)}/{2λ(K )} > 0;
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dn = (2δ logn)1/2 + (2δ logn)−1/2 log{c2(K )/2π}

otherwise with c2(K ) = ∫ A
−A{K ′(u)}2 du/{2λ(K )}. Then (4) holds with

r(x) = (nh)1/2 f {l(x)|x}{ fX (x)/p(1− p)}1/2.

This theorem can be used to construct uniform confidence intervals for the
regression function as stated in the following corollary.

COROLLARY 2.1. Under the assumptions of Theorem 2.2, an approximate
(1−α)×100% confidence band over [0,1] is

ln(t)±(nh)−1/2
{

p(1− p)λ(K )/ f̂ X (t)
}1/2

f̂ −1{l(t)|t}
{

dn +c(α)(2δ logn)−1/2
}

,

where c(α) = log2− log | log(1−α)| and f̂X (t), f̂ {l(t)|t} are consistent estimates
for fX (t), f {l(t)|t}.

In the literature, according to Fan et al. (1994, 1996), Yu and Jones (1997,
1998), Hall et al. (1999), Cai (2002), and others, asymptotic normality at inte-
rior points for various nonparametric smoothers, e.g., local constant, local linear,
reweighted Nadaraya–Watson methods, etc., has been shown:
√

nh{ln(t)− l(t)} ∼ N
(
0,τ 2(t)

)

with τ 2(t) = λ(K )p(1 − p)/[ fX (t) f 2{l(t)|t}]. Note that the bias term vanishes
here as we adjust h. With τ (t) introduced, we can further write Corollary 2.1 as

ln(t)± (nh)−1/2
{

dn + c(α)(2δ logn)−1/2
}

τ̂ (t).

Through minimizing the approximation of asymptotic mean square error, the
optimal bandwidth hp can be computed. In practice, the rule of thumb for hp is
given by Yu and Jones (1998):

1. Use ready-made and sophisticated methods to select optimal bandwidth
hmean from conditional mean regression, e.g., Ruppert, Sheather, and Wand
(1995);

2. hp = [p(1 − p)/ϕ2{/−1(p)}]1/5 · hmean with ϕ, / as the pdf and cdf of a
standard normal distribution

Obviously the further p lies from 0.5, the more smoothing is necessary.
The proof is essentially based on a linearization argument after a Taylor series

expansion. The leading linear term will then be approximated in a similar way
as in Johnston (1982) and Bickel and Rosenblatt (1973). The main idea behind
the proof is a strong approximation of the empirical process of {(Xi ,Yi )

n
i=1} by a

sequence of Brownian bridges as proved by Tusnady (1977).
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As ln(t) is the zero (with respect to θ ) of H̃n(θ, t), it follows by applying
second-order Taylor expansions to H̃n(θ, t) around l(t) that

ln(t)− l(t) = {Hn(t)−EHn(t)}/q(t)+ Rn(t), (8)

where {Hn(t)−EHn(t)}/q(t) is the leading linear term and

Rn(t) = Hn(t){q(t)− Dn(t)}/{Dn(t) ·q(t)}+EHn(t)/q(t)

+ 1
2
{ln(t)− l(t)}2 · {Dn(t)}−1 (9)

· (nh)−1
n

∑
i=1

K{(x − Xi )/h}ψ ′′{Yi − l(t)+ rn(t)}, (10)

|rn(t)| < |ln(t)− l(t)|
is the remainder term. In the Appendix it is shown (Lemma A.1) that ∥Rn∥ =
supt∈J |Rn(t)| = Op

{
(nh logn)−1/2}.

Furthermore, the rescaled linear part

Yn(t) = (nh)1/2{σ 2(t) fX (t)
}−1/2{Hn(t)−EHn(t)}

is approximated by a sequence of Gaussian processes, leading finally to the
Gaussian process

Y5,n(t) = h−1/2
∫

K{(t − x)/h}dW(x). (11)

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain asymp-
totically the Gumbel distribution.

We also need the Rosenblatt (1952) transformation,

T (x, y) = {FX |y(x |y), FY (y)},
which transforms (Xi ,Yi ) into T (Xi ,Yi ) = (X ′

i ,Y ′
i ) mutually independent uni-

form random variables. In the event that x is a d-dimensional covariate, the trans-
formation becomes

T (x1, x2, . . . , xd , y) = {FX1|y(x1|y), FX2|y(x2|x1, y), . . . , FXk |xd−1,...,x1,y

(xk |xd−1, . . . , x1, y), FY (y)}. (12)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be applied
to obtain the following lemma.

LEMMA 2.2. On a suitable probability space a sequence of Brownian bridges
Bn exists such that

sup
x∈J,y∈R

|Zn(x, y)− Bn{T (x, y)}| =O
{

n−1/2(logn)2
}

a.s.,
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where Zn(x, y) = n1/2{Fn(x, y) − F(x, y)} denotes the empirical process of
{(Xi ,Yi )}n

i=1.

For d > 2, it is still an open problem that deserves further research.
Before we define the different approximating processes, let us first rewrite (11)

as a stochastic integral with respect to the empirical process Zn(x, y):

Yn(t) = {hg′(t)}−1/2
∫∫

K{(t − x)/h}ψ{y − l(t)}dZn(x, y),

g′(t) = σ 2(t) fX (t).

The approximating processes are now

Y0,n(t) = {hg(t)}−1/2
∫∫

0n

K{(t − x)/h}ψ{y − l(t)}dZn(x, y), (13)

where 0n = {|y|! an},g(t) = E[ψ2{y − l(t)} ·1(|y|! an)|X = t] · fX (t)

Y1,n(t) = {hg(t)}−1/2
∫∫

0n

K{(t − x)/h}ψ{y − l(t)}dBn{T (x, y)}, (14)

{Bn} being the sequence of Brownian bridges from Lemma 2.2.

Y2,n(t) = {hg(t)}−1/2
∫∫

0n

K{(t − x)/h}ψ{y − l(t)}dWn{T (x, y)}, (15)

{Wn} being the sequence of Wiener processes satisfying

Bn(x ′, y′) = Wn(x ′, y′)− x ′y′Wn(1,1),

Y3,n(t) = {hg(t)}−1/2
∫∫

0n

K{(t − x)/h}ψ{y − l(x)}dWn{T (x, y)}, (16)

Y4,n(t) = {hg(t)}−1/2
∫

g(x)1/2 K{(t − x)/h}dW(x), (17)

Y5,n(t) = h−1/2
∫

K{(t − x)/h}dW(x), (18)

{W (·)} being the Wiener process.
Lemmas A.2–A.7 in the Appendix ensure that all these processes have the same

limit distributions. The result then follows from the next lemma.

LEMMA 2.3 (Theorem 3.1 in Bickel and Rosenblatt, 1973). Let dn, λ(K ), δ as
in Theorem 2.2. Let

Y5,n(t) = h−1/2
∫

K{(t − x)/h}dW(x).
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Then, as n → ∞, the supremum of Y5,n(t) has a Gumbel distribution:

P
{

(2δ logn)1/2
[

sup
t∈J

|Y5,n(t)|/{λ(K )}1/2 −dn

]
< z
}

→ exp{−2exp(−z)}.

3. A MONTE CARLO STUDY

We generate bivariate data {(Xi ,Yi )}n
i=1,n = 500 with joint pdf:

f (x, y) = g
(

y −
√

x +2.5
)
1(x ∈ [−2.5,2.5]), (19)

g(u) = 9
10

ϕ(u)+ 1
90

ϕ(u/9).

The p-quantile curve l(x) can be obtained from a zero (with respect to θ ) of

9/(θ)+/(θ/9) = 10p,

with / as the cdf of a standard normal distribution. Solving it numerically gives
the 0.5-quantile curve l(x) =

√
x +2.5 and the 0.9-quantile curve l(x) = 1.5296+√

x +2.5. We use the quartic kernel:

K (u) = 15
16

(1−u2)2, |u|! 1,

= 0, |u| > 1.

In Figure 1 the raw data, together with the 0.5-quantile curve, are displayed.
The random variables generated with probability 1

10 from the fat-tailed pdf
1
9ϕ(u/9) (see eqn. (19)) are marked as squares whereas the standard normal ran-
dom variables are shown as stars. We then compute both the Nadaraya–Watson
estimator m∗

n(x) and the 0.5-quantile smoother ln(x). The bandwidth is set to
1.25, which is equivalent to 0.25 after rescaling x to [0,1] and fulfills the require-
ments of Theorem 2.2.

In Figure 1 l(x), m∗
n(x), and ln(x) are shown as a dotted line, dashed-dot line,

and solid line, respectively. At first sight m∗
n(x) has clearly more variation and has

the expected sensitivity to the fat tails of f (x, y). A closer look reveals that m∗
n(x)

for x ≈ 0 apparently even leaves the 0.5-quantile curve. It may be surprising that
this happens at x ≈ 0 where no outlier is placed, but a closer look at Figure 1
shows that the large negative data values at both x ≈ −0.1 and x ≈ 0.25 cause the
problem. This data value is inside the window (h = 1.10) and therefore distorts
m∗

n(x) for x ≈ 0. The quantile smoother ln(x) (solid line) is unaffected and stays
fairly close to the 0.5-quantile curve. Similar results can be obtained in Figure 2
corresponding to the 0.9 quantile (h = 1.25) with the 95% confidence band.
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FIGURE 1. The 0.5-quantile curve, the Nadaraya–Watson estimator m∗
n(x), and the 0.5-quantile smoother ln(x).
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FIGURE 2. The 0.9-quantile curve, the 0.9-quantile smoother, and 95% confidence band.
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FIGURE 3. The original observations, local quantiles, 0.5- and 0.9-quantile smoothers, and corresponding 95% confidence bands.
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FIGURE 4. Quadratic, quartic, set of dummies (for age groups) estimates, 0.5- and 0.9-quantile
smoothers, and their corresponding 95% confidence bands.
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4. APPLICATION

Recently there has been great interest in finding out how the financial returns of
a job depend on the age of the employee. We use the Current Population Survey
(CPS) data from 2005 for the following group: male aged 25–59, full-time em-
ployed, and college graduate containing 16,731 observations, for the age-earning
estimation. As is usual for wage data, a log transformation to hourly real wages
(unit: U.S. dollar) is carried out first. In the CPS all ages (25–59) are reported
as integers. We rescaled them into [0,1] by dividing 40 by bandwidth 0.059 for
nonparametric quantile smoothers. This is equivalent to setting bandwidth 2 for
the original age data.

In Figure 3 the original observations are displayed as small stars. The local
0.5 and 0.9 quantiles at the integer points of age are shown as dashed lines,
whereas the corresponding nonparametric quantile smoothers are displayed as
solid lines with corresponding 95% uniform confidence bands shown as dashed-
dot lines. A closer look reveals a quadratic relation between age and logged
hourly real wages. We use several popular parametric methods to estimate the
0.5 and 0.9 conditional quantiles, e.g., quadratic, quartic, and set of dummies
(a dummy variable for each 5-year age group) models; the results are displayed
in Figure 4. With the help of the 95% uniform confidence bands, we can con-
duct the parametric model specification test. At the 5% significance level, we
could not reject any model. However, when the confidence level further decreases
and the uniform confidence bands get narrower, the “set of dummies” paramet-
ric model will be the first one to be rejected. At the 10% significance level,
the set of dummies (for age groups) model is rejected whereas the other two
are not. As the quadratic model performs quite similarly to the quartic one, for
simplicity it is suggested in practice to measure the log(wage)-earning relation
in mean regression, which coincides with the approach of Murphy and Welch
(1990).
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APPENDIX

Proof of Theorem 2.1 . By the definition of ln(x) as a zero of (2), we have, for ε > 0,

if ln(x) > l(x)+ ε, then H̃n{l(x)+ ε, x} > 0. (A.1)

Now

H̃n{l(x)+ ε, x}! H̃{l(x)+ ε, x}+ sup
θ∈I

∣∣H̃n(θ, x)− H̃(θ, x)
∣∣. (A.2)
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Also, by the identity H̃{l(x), x} = 0, the function H̃{l(x)+ ε, x} is not positive and has
a magnitude " m1q̃ε by Assumption (A6) and (6), for 0 < ε < δ1. That is, for 0 < ε < δ1,

H̃{l(x)+ ε, x}!−m1q̃ε. (A.3)

Combining (A.1)–(A.3), we have, for 0 < ε < δ1,

if ln(x) > l(x)+ ε, then sup
θ∈I

sup
x∈J

∣∣H̃n(θ, x)− H̃(θ, x)
∣∣> m1q̃ε.

With a similar inequality proved for the case ln(x) < l(x)+ε, we obtain, for 0 < ε < δ1,

if sup
x∈J

|ln(x)− l(x)| > ε, then sup
θ∈I

sup
x∈J

∣∣H̃n(θ, x)− H̃(θ, x)
∣∣> m1q̃ε. (A.4)

It readily follows that (A.4) and (5) imply (7). n

Subsequently we first show that ∥Rn∥∞ = supt∈J |Rn(t)| vanishes asymptotically faster
than the rate (nh logn)−1/2; for simplicity we will just use ∥ ·∥ to indicate the sup-norm.

LEMMA A.1. For the remainder term Rn(t) defined in (9) we have

∥Rn∥ =Op
{
(nh logn)−1/2}. (A.5)

Proof. First we have by the positivity of the kernel K ,

∥Rn∥!
[

inf
0!t!1

{|Dn(t)| ·q(t)}
]−1

{∥Hn∥ ·∥q − Dn∥+∥Dn∥ ·∥EHn∥}

+C1 ·∥ln − l∥2 ·
{

inf
0!t!1

|Dn(t)|
}−1

·∥ fn∥∞,

where fn(x) = (nh)−1 ∑n
i=1 K{(x − Xi )/h}.

The desired result, Lemma A.1, will then follow if we prove

∥Hn∥ =Op

{
(nh)−1/2(logn)1/2

}
, (A.6)

∥q − Dn∥ =Op

{
(nh)−1/4(logn)−1/2

}
, (A.7)

∥EHn∥ =O
(
h2), (A.8)

∥ln − l∥2 =Op

{
(nh)−1/2(logn)−1/2

}
. (A.9)

Because (A.8) follows from the well-known bias calculation

EHn(t) = h−1
∫

K{(t −u)/h}E[ψ{y − l(t)}|X = u] fX (u)du =O(h2),

where O(h2) is independent of t in Parzen (1962), we have from Assumption (A2) that
∥EHn∥ =Op{(nh)−1/2(logn)−1/2}.

According to Lemma A.3 in Franke and Mwita (2003),

sup
t∈J

|Hn(t)−EHn(t)| =O
{
(nh)−1/2(logn)1/2

}
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and the following inequality

∥Hn∥! ∥Hn −EHn∥+∥EHn∥

=O
{
(nh)−1/2(logn)1/2

}
+Op

{
(nh)−1/2(logn)−1/2

}

=O
{
(nh)−1/2(logn)1/2

}
,

statement (A.6) thus is obtained.
Statement (A.7) follows in the same way as (A.6) using Assumption (A2) and the

Lipschitz continuity properties of K , ψ ′, l.
According to the uniform consistency of ln(t)− l(t) shown before, we have

∥ln − l∥ =Op{(nh)−1/2(logn)1/2},

which implies (A.9).
Now the assertion of the lemma follows, because by tightness of Dn(t), inf0!t!1

|Dn(t)|" q0 a.s. and thus

∥Rn∥ =Op{(nh logn)−1/2}(1+∥ fn∥).

Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), ∥ fn∥ =Op(1); thus the desired
result ∥Rn∥ =Op{(nh logn)−1/2} follows. n

We now begin with the subsequent approximations of the processes Y0,n–Y5,n .

LEMMA A.2.

∥Y0,n −Y1,n∥ =O
{

(nh)−1/2(logn)2
}

a.s.

Proof. Let t be fixed and put L(y) = ψ{y − l(t)} still depending on t . Using integration
by parts, we obtain
∫∫

0n
L(y)K{(t − x)/h}dZn(x, y)

=
∫ A

u=−A

∫ an

y=−an
L(y)K (u)dZn(t −h ·u, y)

= −
∫ A

−A

∫ an

−an
Zn(t −h ·u, y)d{L(y)K (u)}

+ L(an)(an)
∫ A

−A
Zn(t −h ·u,an)dK(u)

− L(−an)(−an)
∫ A

−A
Zn(t −h ·u,−an)dK(u)

+ K (A)

{∫ an

−an
Zn(t −h · A, y)dL(y)

+ L(an)(an)Zna (t −h · A,an)− L(−an)(−an)Zn(t −h · A,−an)

}
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− K (−A)

{∫ an

−an
Zn(t +h · A, y)dL( y)+ L(an)(an)Zn(t +h · A,an)

− L(−an)(−an)Zn(t +h · A,−an)

}
.

If we apply the same operation to Y1,n with Bn{T (x, y)} instead of Zn(x, y) and use
Lemma 2.2, we finally obtain

sup
0!t!1

h1/2g(t)1/2|Y0,n(t)−Y1,n(t)| =O
{

n−1/2(logn)2
}

a.s. #

LEMMA A.3. ∥Y1,n −Y2,n∥ =Op(h1/2).

Proof. Note that the Jacobian of T (x, y) is f (x, y). Hence

Y1,n(t)−Y2,n(t) =
∣∣∣∣{g(t)h}−1/2

∫∫

0n
ψ{y − l(t)}K{(t − x)/h} f (x, y)dx dy

∣∣∣∣ · |Wn(1,1)|.

It follows that

h−1/2∥Y1,n −Y2,n∥! |Wn(1,1)| ·
∥∥∥g−1/2

∥∥∥

· sup
0!t!1

h−1
∫∫

0n
|ψ{y − l(t)}K{(t − x)/h}| f (x, y)dx dy.

Because ∥g−1/2∥ is bounded by assumption, we have

h−1/2∥Y1,n −Y2,n∥! |Wn(1,1)| ·C4 ·h−1
∫

K{(t − x)/h}dx =Op(1). #

LEMMA A.4. ∥Y2,n −Y3,n∥ =Op(h1/2).

Proof. The difference |Y2,n(t)−Y3,n(t)| may be written as
∣∣∣∣{g(t)h}−1/2

∫∫

0n
[ψ{y − l(t)}−ψ{y − l(x)}]K{(t − x)/h}dWn{T (x, y)}

∣∣∣∣ .

If we use the fact that l is uniformly continuous, this is smaller than

h−1/2|g(t)|−1/2 ·Op(h),

and the lemma thus follows. n

LEMMA A.5. ∥Y4,n −Y5,n∥ =Op(h1/2).

Proof.

|Y4,n(t)−Y5,n(t)| = h−1/2

∣∣∣∣∣

∫ [{ g(x)

g(t)

}1/2
−1

]

K{(t − x)/h}dW(x)

∣∣∣∣∣

! h−1/2

∣∣∣∣∣

∫ A

−A
W (t −hu)

∂

∂u

[{
g(t −hu)

g(t)

}1/2
−1

]

K (u)du

∣∣∣∣∣
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+h−1/2

∣∣∣∣∣K (A)W (t −h A)

[{
g(t − Ah)

g(t)

}1/2
−1

]∣∣∣∣∣

+h−1/2

∣∣∣∣∣K (−A)W (t +h A)

[{
g(t + Ah)

g(t)

}1/2
−1

]∣∣∣∣∣

S1,n(t)+ S2,n(t)+ S3,n(t), say.

The second term can be estimated by

h−1/2∥S2,n∥! K (A) · sup
0!t!1

|W (t − Ah)| · sup
0!t!1

h−1

∣∣∣∣∣

[{
g(t − Ah)

g(t)

}1/2
−1

]∣∣∣∣∣ .

By the mean value theorem it follows that

h−1/2∥S2,n∥ =Op(1).

The first term S1,n is estimated as

h−1/2S1,n(t) =
∣∣∣∣∣h

−1
∫ A

−A
W (t −uh)K ′(u)

[{
g(t −uh)

g(t)

}1/2
−1

]

du

· 1
2

∫ A

−A
W (t −uh)K (u)

{
g(t −uh)

g(t)

}1/2{ g′(t −uh)

g(t)

}
du

∣∣∣∣∣

= |T1,n(t)− T2,n(t)|, say;

∥T2,n∥ ! C5 · ∫ A
−A |W (t − hu)|du = Op(1) by assumption on g(t) = σ 2(t) · fX (t). To

estimate T1,n we again use the mean value theorem to conclude that

sup
0!t!1

h−1

∣∣∣∣∣

{
g(t −uh)

g(t)

}1/2
−1

∣∣∣∣∣< C6 · |u|;

hence

∥T1,n∥! C6 · sup
0!t!1

∫ A

−A
|W (t −hu)|K ′(u)u/du =Op(1).

Because S3,n(t) is estimated as S2,n(t), we finally obtain the desired result. n

The next lemma shows that the truncation introduced through {an} does not affect the
limiting distribution.

LEMMA A.6. ∥Yn −Y0,n∥ =Op{(logn)−1/2}.
Proof. We shall only show that g′(t)−1/2h−1/2 ∫∫

R−0n
ψ{y − l(t)}K{(t − x)/h}d Zn

(x, y) fulfills the lemma. The replacement of g′(t) by g(t) may be proved as in Lemma A.4
of Johnston (1982). The preceding quantity is less than h−1/2∥g−1/2∥ ·∥∫∫{|y|>an} ψ{y −
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l(·)}K{(·− x)/h}d Z(x, y)∥. It remains to be shown that the last factor tends to zero at a
rate Op{(logn)−1/2}. We show first that

Vn(t) = (logn)1/2h−1/2
∫∫

{|y|>an}
ψ{y − l(t)}K{(t − x)/h}dZn(x, y)

p→ 0 for all t,

and then we show tightness of Vn(t). The result then follows:

Vn(t) = (logn)1/2(nh)−1/2
n

∑
i=1

[ψ{Yi − l(t)}1(|Yi | > an)K{(t − Xi )/h}

−Eψ{Yi − l(t)}1(|Yi | > an)K{(t − Xi )/h}]

=
n

∑
i=1

Xn,t (t),

where {Xn,t (t)}n
i=1 are i.i.d. for each n with E Xn,t (t) = 0 for all t ∈ [0,1]. We then have

E X2
n,t (t)! (logn)(nh)−1Eψ2{Yi − l(t)}1(|Yi | > an)K 2{(t − Xi )/h}

! sup
−A!u!A

K 2(u) · (logn)(nh)−1Eψ2{Yi − l(t)}1(|Yi | > an).

Hence

Var{Vn(t)} = E
{

n

∑
i=1

Xn,t (t)

}2

= n ·E X2
n,t (t)

! sup
−A!u!A

K 2(u)h−1(logn)
∫

{|y|>an}
fy( y)dy · Mψ ,

where Mψ denotes an upper bound for ψ2. This term tends to zero by Assumption (A3).
Thus by Markov’s inequality we conclude that

Vn(t)
p→ 0 for all t ∈ [0,1].

To prove tightness of {Vn(t)} we refer again to the following moment condition as stated
in Lemma A.1:

E{|Vn(t)− Vn(t1)| · |Vn(t2)− Vn(t)|}! C ′ · (t2 − t1)2

C ′ denoting a constant, t ∈ [t1, t2].

We again estimate the left-hand side by Schwarz’s inequality and estimate each factor
separately:

E{Vn(t)− Vn(t1)}2 = (logn)(nh)−1E

[
n

∑
i=1

1n(t, t1, Xi ,Yi ) ·1(|Yi | > an)

−E{1n(t, t1, Xi ,Yi ) ·1(|Yi | > an)}
]2

,
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where 1n(t, t1, Xi ,Yi ) = ψ{Yi − l(t)}K{(t − Xi )/h} − ψ{Yi − l(t1)}K{(t1 − X1)/h}.
Because ψ , K are Lipschitz continuous except at one point and the expectation is taken
afterward, it follows that

[E{Vn(t)− Vn(t1)}2]1/2

! C7 · (logn)1/2h−3/2|t − t1| ·
{∫

{|y|>an}
fy(y)dy

}1/2
.

If we apply the same estimation to Vn(t2)− Vn(t1) we finally have

E{|Vn(t)− Vn(t1)| · |Vn(t2)− Vn(t)|}

! C2
7 (logn)h−3|t − t1||t2 − t |×

∫

{|y|>an}
fy(y)dy

! C ′ · |t2 − t1|2 because t ∈ [t1, t2] by Assumption (A3). #

LEMMA A.7. Let λ(K ) = ∫ K 2(u)du and let {dn} be as in Theorem 2.2. Then

(2δ logn)1/2[∥Y3,n∥/{λ(K )}1/2 −dn]

has the same asymptotic distribution as

(2δ logn)1/2[∥Y4,n∥/{λ(K )}1/2 −dn].

Proof. Y3,n(t) is a Gaussian process with

EY3,n(t) = 0

and covariance function

r3(t1, t2) = EY3,n(t1)Y3,n(t2)

= {g(t1)g(t2)}−1/2h−1
∫∫

0n
ψ2{y − l(x)}K{(t1 − x)/h}

× K{(t2 − x)/h} f (x, y)dx dy

= {g(t1)g(t2)}−1/2h−1
∫∫

0n
ψ2{y − l(x)} f (y|x)dyK{(t1 − x)/h}

× K{(t2 − x)/h} fX (x)dx

= {g(t1)g(t2)}−1/2h−1
∫

g(x)K{(t1 − x)/h}K{(t2 − x)/h}dx

= r4(t1, t2),

where r4(t1, t2) is the covariance function of the Gaussian process Y4,n(t), which proves
the lemma. n













































































Copyright © 2009 John Wiley & Sons, Ltd. 

Forecasting Volatility with Support 
Vector Machine-Based GARCH Model

SHIYI CHEN,1* WOLFGANG K. HÄRDLE2 AND 
KIHO JEONG3

1 China Center for Economic Studies, School of Economics, 
Fudan University, Shanghai, China
2 Center for Applied Statistics and Economics, Humboldt 
University, Berlin, Germany
3 School of Economics and Trade, Kyungpook National 
University, Daegu, Republic of Korea

ABSTRACT
Recently, support vector machine (SVM), a novel artifi cial neural network 
(ANN), has been successfully used for fi nancial forecasting. This paper deals 
with the application of SVM in volatility forecasting under the GARCH frame-
work, the performance of which is compared with simple moving average, 
standard GARCH, nonlinear EGARCH and traditional ANN-GARCH models 
by using two evaluation measures and robust Diebold–Mariano tests. The real 
data used in this study are daily GBP exchange rates and NYSE composite 
index. Empirical results from both simulation and real data reveal that, under 
a recursive forecasting scheme, SVM-GARCH models signifi cantly outper-
form the competing models in most situations of one-period-ahead volatility 
forecasting, which confi rms the theoretical advantage of SVM. The standard 
GARCH model also performs well in the case of normality and large sample 
size, while EGARCH model is good at forecasting volatility under the high 
skewed distribution. The sensitivity analysis to choose SVM parameters 
and cross-validation to determine the stopping point of the recurrent SVM 
procedure are also examined in this study. Copyright © 2009 John Wiley & 
Sons, Ltd.

key words  (recurrent) support vector machine; GARCH model; volatility 
forecasting; Diebold–Mariano test

INTRODUCTION

Volatility is important in fi nancial markets since it is a key variable in portfolio optimization, securi-
ties valuation and risk management. Much attention of academics and practitioners has been focused 
on modeling and forecasting volatility in the last few decades (see Franses and McAleer, 2002, and 
Poon and Granger, 2003, for a comprehensive review). So far in the literature, the predominant 
model of the past is the GARCH model by Bollerslev (1986), who generalizes the seminal idea on 
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ARCH by Engle (1982), and its various extensions; see Li et al. (2002) for recent surveys of the 
models. The GARCH family models, together with the simplest historical price model prevalent in 
the pre-GARCH era1 and stochastic volatility model studied a decade later than GARCH develop-
ment,2 comprise one of the two broad categories of methods widely used in volatility forecasting, 
the so-called time series volatility model; another is the market determined option implied volatility 
model.3 This paper limits itself mainly to the analysis within the GARCH framework.

The popularity of the GARCH model is due to its ability to capture volatility persistence or clus-
tering, supported by many studies (Akgiray, 1989; Bollerslev et al., 1992; West and Cho, 1995; 
Andersen and Bollerslev, 1998; Marcucci, 2005). However, some empirical studies report that the 
GARCH model provides poor forecasting performance (Jorion, 1995, 1996; Brailsford and Faff, 
1996; Figlewski, 1997; McMillan et al., 2000; Choudhry and Wu, 2008). To improve the forecasting 
ability of the GARCH model, some alternative approaches have been advocated by innovating the 
model specifi cation and estimation,4 by using different evaluation metrics and defi nitions of realized 
volatility,5 or by enriching the informational content of the model.6

As for GARCH model specifi cation and estimation, for example, many fi nancial returns are 
skewed distributed and nonlinearly dependent such that the linear GARCH model cannot cope with 
them and therefore forecast of symmetric GARCH model would be biased (Pagan and Schwert, 
1990; Bollerslev et al., 1992). To deal with this problem the regime-switching (RS) volatility model 
is proposed to detect nonlinear behavior in the variance by various tests for asymmetry or threshold 

1 This includes simple moving average method, exponential smoothing method, random walk model, ARMA model, 
exponentially weighted moving average (EWMA) method and its current extension of RiskmetricsTM model, etc.
2 The stochastic volatility (SV) model has an additional innovative term in the volatility dynamics (Taylor, 1986). For a 
detailed discussion on the SV model and its relation to the GARCH class models, see the survey articles by Ghysels et al. 
(1996) and Chib et al. (2002), among others.
3 The time series volatility model is based on historical price information only, while the option implied volatility (IV) model 
uses market traded option information alone or in addition to historical price sets to forecast volatility. Many studies examine 
the relative performance of the IV model to forecasting volatility (Day and Lewis, 1992; Lamoureux and Lastrapes, 1993; 
Pong et al., 2004; Dotsis et al., 2007; Becker et al., 2009; Neely, 2009). This paper limits itself mainly to analysis within 
the GARCH framework.
4 Except for the introduction below, other relatively sophisticated GARCH models and estimations include the multivariate 
GARCH model (Bauwens et al., 2006; Rosenow, 2008), outlier-corrected GARCH model (Park, 2002; Zhang and King, 
2005; Ané et al., 2008), Markov chain Monte Carlo (MCMC) sampling techniques to estimate the GARCH model (Gerlach 
and Tuyl, 2006), other semiparametric or nonparametric specifi cation and estimation such as genetic algorithm, wavelet 
smoother, kernel density etc. (Franke et al., 2004; Lux and Schornstein, 2005; Renò, 2006; Chen et al., 2008; Feng and 
McNeil, 2008; Corradi et al., 2009) and combination forecasts from competing approaches (Hu and Tsoukalas, 1999; Dunis 
and Huang, 2002).
5 Many studies fi nd that the relative accuracy of various models is also highly sensitive to the measures used to evaluate 
them (Taylor, 1999; Brooks and Persand, 2003). Most comparisons are based on the average fi gure of mean absolute error 
(MAE) and mean square error (MSE) etc. Diebold and Mariano (1995) and West (1996) show how standard errors for MAE 
and MSE are derived taking into account serial correlation in the forecast errors for statistical inference. Lehar et al. (2002) 
applies value-at-risk (VaR)-oriented evaluation measures to compare the out-of-sample performance. In addition to the sym-
metric measures of MAE and MSE, Balaban (2004) also uses asymmetric evaluation criteria such as mean mixed error sta-
tistics to compare the forecasting performance, penalizing under/over-predictions of volatility more heavily. Recent research 
has also suggested that this relative failure of GARCH models arises not from a failure of the model but a failure to specify 
correctly the true volatility measure against which forecasting performance is measured. It is argued that the standard 
approach of using ex post daily squared returns as the measure of true volatility includes a large noisy component. An alter-
native measure for true volatility has therefore been suggested based on the cumulative squared returns from intra-day data, 
also referred to as realized, or integrated volatility (Andersen and Bollerslev, 1998; Andersen et al., 2003; Meddahi, 2003; 
McMillan and Speight, 2004; Galbraith and Kisinbay, 2005; Ghysels et al., 2006).
6 In many instances, the researchers fi nd the inclusion of implied volatility or trade volume as an exogenous variable in the 
framework of the GARCH model to be benefi cial (Brooks, 1998; Fleming, 1998; Blair et al., 2001; Koopman et al., 2005; 
Gospodinov et al., 2006; Becker et al., 2007).
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nonlinearity (Franses and Dijk, 2000). The fi rst class of RS volatility model assumes that the regime 
can be determined by an observable variable, including the nonlinear exponential GARCH (EGARCH) 
model of Nelson (1991), threshold GJR-GARCH model of Glosten et al. (1992) and quadratic 
GARCH model of Engle et al. (1993) and Sentana (1995). The second class of RS model for volatil-
ity implements GARCH with a Hamilton (1989) type framework that assumes the regime is the 
realization of a hidden Markov chain, such as (double) Markov switching GARCH model of Gray 
(1996), Klaassen (2002) and Chen et al. (2008).

Both the linear and nonlinear GARCH model described above are parametric and normally esti-
mated jointly by maximum likelihood estimation (MLE). That is, they make specifi c assumptions 
about the functional form of the data generation process and the distribution of error terms that is 
necessary for MLE. Such parametric models are easy to estimate and readily interpretable, but these 
advantages may come at a cost. Perhaps nonparametric models are better representations of the 
underlying data generation process. Instead of specifying a particular functional form and making a 
priori distributional assumption, the nonparametric model will search for the best fi t over a large set 
of alternative functional forms. Thus, in the literature, many nonlinear nonparametric GARCH 
models are developed and still developing fast, among which the artifi cial neural network (ANN) is 
extensively used. This paper focuses on one of the neural network algorithms, the support vector 
machine (SVM), and investigates its forecasting ability of volatility as compared with the simplest 
moving average method, standard linear GARCH model, nonlinear EGARCH model and traditional 
recurrent ANN-based nonlinear GARCH model. The moving average method is chosen as the 
benchmark because some studies fi nd that it provides more accurate forecasts than GARCH models 
(Dimson and Marsh, 1990; Tse and Tung, 1992; Figlewski, 1997). Among the number of nonlinear 
parametric GARCH models the EGARCH model is also the most commonly used (Cao and Tsay, 
1992; Cumby et al., 1993; Heynen and Kat, 1994; Chong et al., 1999; Hu and Tsoukalas, 1999; 
Gokcan, 2000; Balaban, 2004).

In recent years, ANN has been successfully used for forecasting fi nancial time series; for 
recent work, see Fernandez-Rodriguez et al. (2000), Qi and Wu (2003), and Pantelidaki and 
Bunn (2005). The studies in favor of ANN-based GARCH model as opposed to parametric 
GARCH model in forecasting conditional volatility include Donaldson and Kamstra (1997), 
Schittenkopf et al. (2000), Taylor (2000), Dunis and Huang (2002), Hamid and Iqbal (2004), Ferland 
and Lalancette (2006), Tseng et al. (2008). However, the traditional ANN algorithm also suffers 
from its own weaknesses such as the need for many controlling parameters, diffi culty in obtaining 
a global solution and the danger of over-fi tting (Tay and Cao, 2001). Thus, SVM that can obtain a 
unique global solution by solving a quadratic programming is developed by Vapnik and his co-
workers (1995, 1997). Naturally, SVM also keeps the advantages of conventional ANN such as the 
fl exibility in approximating any nonlinear function arbitrarily well, without a priori assumptions 
about the properties of the data and without the requirement of large sample size that MLE-based 
parametric GARCH models have. Unlike traditional ANN implementing the empirical risk minimi-
zation (ERM) principle, the most particular principle of SVM is to implement the structural risk 
minimization (SRM), which seeks to achieve a balance between the training error and generalization 
error, leading, theoretically, to better forecasting performance than traditional ANN (Gunn, 1998; 
Haykin, 1999). Recently, SVM has gained popularity in predicting fi nancial variables owing to such 
attractive features (Cao and Tay, 2001; Härdle et al., 2005, 2007; Chen et al., 2009). Pérez-Cruz 
et al. (2003) also propose an SVM-based GARCH (1, 1) model and shows that it provides better 
volatility forecasts than the standard GARCH model. However, they use the feedforward SVM 
procedure, which has the same structure as the autoregressive (AR) process and has poor ability 
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to model a long-time memory. Inspired by the merit of recurrent ANN (Kuan and Liu, 1995; Dunis 
and Huang, 2002; Bekiros and Georgoutsos, 2008), in this paper we propose a recurrent SVM pro-
cedure which can model the ARMA process and apply it to forecast the conditional variance equation 
of the GARCH model in real data analysis.

The forecasting accuracy of the recurrent SVM-based GARCH model in one-period-ahead volatil-
ity forecasting is compared with the competing models in terms of two evaluation metrics of mean 
absolute error (MAE) and directional accuracy (DA). The statistical hypothesis of equal forecasting 
accuracy between pairwise models is also investigated by using the Diebold and Mariano (1995) 
test, calculated according to the Newey–West procedure (Newey and West, 1987). The Diebold and 
Mariano (DM) test is one of the most important contributions to the study of out-of-sample forecast-
ing accuracy evaluation over the past two decades, and has been further generalized and extensively 
used in many studies since then (Corradi and Swanson, 2004; Awartani and Corradi, 2005; Preminger 
and Franck, 2007; Taylor, 2008; Groen et al., 2009; Wong and Tu, 2009).

This paper is organized as follows. The next section briefl y introduces the theory of SVM. The 
third section specifi es the empirical model and forecasting scheme. The fourth section uses the Monte 
Carlo simulation to evaluate how the models perform under controlled conditions. The fi fth section 
describes the GBP exchange rates and NYSE composite index data and discusses the volatility 
forecasting performance of all models for the real data. The paper concludes with the sixth 
section.

SUPPORT VECTOR MACHINE

The support vector machine (SVM) originates from Vapnik’s statistical learning theory (Vapnik, 
1995, 1997), which has the design of a feedforward network with an input layer, a single hidden 
layer of nonlinear units and an output layer, and formulates the regression problem as a quadratic 
programming (QP) problem. SVM estimates a function by nonlinearly mapping the input space into 
a high-dimensional hidden space and then running the linear regression in the output space. Thus, 
the linear regression in the output space corresponds to a nonlinear regression in the low-dimensional 
input space. The theory denotes that if the dimensions of feature space (or hidden space) are high 
enough, SVM may approximate any nonlinear mapping relations. As the name implies, the design 
of the SVM hinges upon the extraction of a subset of the training data that serves as support vectors, 
which represent a stable characteristic of the data.

Given a training dataset (xt, yt), where input vector xt ∈! p and output scalar yt ∈!1. Indeed, the 
desired response y, known as a ‘teacher’, represents the optimum action to be performed by the 
SVM. We aim at fi nding a sample regression function f(x), or denoted by ŷ, as below to approximate 
the latent, unknown decision function g(x):

 f bTx w x( ) = ( ) +φ  (1)

where the superscript T is a transposing operator that should be differentiated from the sample size 
T of the time series used later in this paper. In equation (1), f(x) = [f1(x),  .  .  .  , fl(x)]T, w = [w1,  .  .  .  , 
wl]T. The f(x) is known as the nonlinear transfer function which represents the features of the input 
space and projects the inputs into the feature space. The dimension of the feature space is l, which 
is directly related to the capacity of the SVM to approximate a smooth input–output mapping; the 
higher the dimension of the feature space, the more accurate the approximation will be. Parameter 
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w denotes a set of linear weights connecting the feature space to the output space, and b is the 
threshold.

To get the function f(x), the optimal w* and b* have to be estimated from the data. First, we defi ne 
a linear e-insensitive loss function, Le, originally proposed by Vapnik (1995):

 L y f
y f y f

ε
ε ε

x x
x x

, , ( )( ) =
− ( ) − − ( ){ for

otherwise

!

0
 (2)

This function indicates the fact that it does not penalize errors below e. The training points within 
the e-tube have no loss and do not provide any information for decision. Therefore, these points do 
not appear in the decision function f(x). Only those data points located on or outside the e-tube will 
serve as the support vectors and are fi nally used to construct the f(x). This property of sparseness 
algorithm results only from the e-insensitive loss function and greatly simplifi es the computation of 
SVM. The non-negative slack variables, x and x ′ (below or above the e-tube, or denoted together 
by x(′); see Figure 1) are employed to describe this kind of e-insensitive loss.

The derivation of SVM follows the principle of structural risk minimization (SRM) that is rooted 
in the Vapnik–Chervonenkis (VC) dimension theory (Haykin, 1999). Structural risk is the upper 
boundary of empirical loss, denoted by e-insensitive loss function, plus the confi dence interval (or 
called margin), which is constructed in equation (3). The primal constrained optimization problem 
of SVM is obtained below:

 min , , ,
, ,w

C w w
∈ ( )∈ ∈ =

′( ) = + + ′( )∑
! ! !t T b

t t t t
t

T

b C
ξ

ξ ξ ξ ξ
′ 2

1
2

2

1

 (3)

Figure 1. Principle of structural risk minimization (SRM) of SVM
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such that

 w xt
T

t tb yφ ε ξ( ) + − +"  (4)

 y bt
T

t− ( ) − + ′w xtφ ε ξ"  (5)

 ξ ξt t t T! !0 0 1 2, , , , . . . ,′ =  (6)

The formulation of the cost function C(·) in equation (3) is in perfect accord with the SRM principle, 
which is illustrated in Figure 1 (in which the dark circles are data points extracted as support vectors). 
In equation (3), the fi rst term indicates the Euclidean norm of the weight vector w(⎪⎪w⎪⎪2 = wTw) and 
measures the function fl atness; to minimize it is equivalent to maximizing the separation margin 
(2/⎪⎪w⎪⎪), that is, maximizing the generalization ability. The second term represents the empirical risk 
loss determined by the e-insensitive loss function and is similar to the sum of residual squares in the 
objective function of ANN. Finally, SVM obtains the tradeoff between the two terms; as a result, it 
not only fi ts the historical data well but also forecasts the future data excellently. As shown in Figure 
1, both regression lines 1 and 2 can classify the data points correctly and then minimize the empirical 
loss; however, the separation margin of the two lines are different, in which the  regression line 1 has 
the larger margin. It is the special design of minimizing the structural risk that endows SVM with the 
excellent forecasting ability among all candidates. In addition, the convex quadratic programming and 
linear restrictions in the above primal problem ensure that SVM can always obtain the global unique 
optimal solution, which is different from the usual networks that easily get trapped in local minima. 
The penalty parameter C > 0 controls the penalizing extent on the sample points which lie outside e-
tube. Both e and C, the free parameter of SVM, must be selected by the user.

The corresponding dual problem of the SVM can be derived from the primal problem by using 
the Karush–Kuhn–Tucker conditions as follows:

 min
α

α α α α ε α α
t

T
s s t t s t

t

T

s

T

t tK x x
′( )∈ ==

′ −( ) ′ −( ) ⋅( ) + ′ +( )∑∑
!2

1
2 11 tt

T

t t t
t

T

y
= =
∑ ∑− ′ −( )

1 1

α α  (7)

such that

 α αt t
t

T

− ′( ) =
=
∑

1

0  (8)

 0 1 2" "α αt t Cs t T, , , , . . . ,′ =  (9)

where at and a′t (or at
(′)) are the Lagrange multipliers. The dual problem can be solved more easily 

than the primal problem (Scholkopf and Smola, 2001; Deng and Tian, 2004). Making use of any 
solution of at and a′t, the optimal solutions of the primal problem can be calculated in which w* is 
unique and expressed as follows:

 w xt* = ′ −( ) ( )
=
∑ α α φt t
t

T

1

 (10)
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However, b* is not unique and formulated in terms of different cases. If i ∈{t⎪a t ∈(0, C)}, then

 b y Kt t t
t

T

* = − ′ −( ) ⋅( ) +
=
∑ α α εx xt i

1

 (11)

If j ∈{t⎪a ′t ∈(0, C)}, then

 b y Kj t t
t

T

* = − ′ −( ) ⋅( ) −
=
∑ α α εx xt j

1

 (12)

The cases of both i, j ∈{t⎪a t
(′) = 0} and i, j ∈{t⎪a t(′) = C} rarely occur in reality.

Thus the regression decision function f(x) will be computed by using w* and b* in the following 
forms:
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 (13)

where K(xt, x) = fT(xt)f(x) is the inner-product kernel function. In fact, the SVM theory considers 
only the form of K(xt, x) in the feature space without specifying explicitly f(x) and without computing 
all corresponding inner products. Therefore, the kernel function greatly reduces the computational 
complexity of high-dimensional hidden space and becomes the crucial part of SVM. The func-
tion which satisfi es the Mercer theorem can be chosen as the SVM kernel. No analytical method 
is currently available to determine the most suitable kernel for a particular dataset. This paper 
experiments with three different kernels to investigate the effect of a kernel type in Monte 
Carlo simulation:

 Linear: K t
Tx x x xt,( ) =  (14)

 Polynomial: K T dx x x xt,( ) = +( )t 1  (15)

 Gaussian: K x x
x x

t
t, exp( ) = − −⎛

⎝⎜
⎞
⎠⎟

2

22σ  (16)

where d and s 2 are the parameters for the polynomial and Gaussian kernel. Before implementation 
of the SVM, the appropriate values of the coeffi cients e, C, d and s 2 must be determined in advance 
through cross-validation. The sensitivity analysis of the parameters and the kernel type will be illus-
trated by using the simulated data below (‘Monte Carlo Simulation’).
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EMPIRICAL MODELING

In this study, the forecasts are obtained fi rst by applying the Monte Carlo Simulation, following the 
suggestions in Andersen and Bollerslev (1998) and Clements and Smith (1999, 2001). The main 
motivation for conducting a simulation experiment is that, since the true volatility is known, the 
candidate volatility measures can be compared with certainty. We then fi t each of the models to the 
daily returns on the GBP exchange rate and NYSE stock indexes and forecast their respective 
volatility. The empirical modeling and forecasting scheme described below are employed for both 
simulation and real data.

Model specifi cation
In this paper the real data we analyze are the daily fi nancial returns, yt, converted from the 
corresponding price or index, It, using continuous compounding transformation as

 y I It t t= × −( )+100 1log log  (17)

Empirical fi ndings suggest that GARCH is a more parsimonious model than ARCH, and GARCH 
(1, 1) specifi cation is suffi cient to model the variance changing over long sample periods and has 
become the most popular structure when capturing fi nancial volatility (Akgiray, 1989; Franses and 
Dijk, 1996; Brooks, 1998; Gokcan, 2000; Andersson, 2001; Brooks and Persand, 2003; Poon and 
Granger, 2003; Gerlach and Tuyl, 2006). As such, throughout the paper, the analysis is restricted to 
the case of the GARCH (1, 1) process for the second conditional variance function and the AR(1)7 
process for the conditional mean equation, for the sake of candidate comparison under the same 
conditions.

Thus the linear standard GARCH (1, 1) model is specifi ed as follows:

 y c y u u N ht t t t t= + + ( )−φ1 1 0~ ,  (18a)

 h h ut t t= + +− −κ δ α1 1 1 1
2  (18b)

where c, f1, k, d1 and a1 are constant parameters. Such restrictions on the parameters that k, d1 and 
a1 are non-negative and d1 + a1 < 1 prevent negative variances (Bollerslev, 1986).

All odd moments of ut in the standard GARCH model equal zero, and hence ut and yt are sym-
metric time series. The nonlinear EGARCH (1, 1) model that is able to capture the asymmetry is 
similar to the linear GARCH model but the ht process is given by

 log logh h
u

h

u

h
t t

t

t

t

t

( ) = + ( ) + −⎛
⎝⎜

⎞
⎠⎟ +−

−

−

−

−
κ δ α π β1 1 1

1

1
1

1

1

2  (19)

where k, d1, a1 and b1 are the constant parameters. The EGARCH model is fundamentally different 
from the standard GARCH model in that the standardized innovation serves as the forcing variable 
for the conditional variance. Also, there are no restrictions on the parameters to ensure non-negativity 

7 Franses and Dijk (1996) also denote that the order of autoregression in the fi rst conditional mean equation of the GARCH 
framework is usually 0 or small. Thus, the order 1 is specifi ed for this study.
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of the variances. The coeffi cient b1 is introduced to capture the asymmetry. If b1 = 0, a positive return 
shock has the same effect on ht as the negative return shock of the same amount; if b1 < 0, a positive 
return shock actually reduces ht; if b1 > 0, then a positive return shock increases ht. Previous studies 
have viewed this coeffi cient as typically negative, indicating that negative return shocks normally 
generate more volatility than positive return shocks, so generating the so-called leverage effect.

The conditional variance of ut is given by ht = Et−1u2
t  = û2

t⎪t−1. Roughly speaking, in a GARCH 
process the conditional variances can be modeled by an ARMA type process (Franses and Dijk, 
1996). For instance, the ARMA process of the conditional variance of ut in a linear GARCH model 
can be expressed as below (Hamilton, 1997; Enders, 2004):

 u u w wt t t t
2

1 1 1
2

1 1= + +( ) + −− −κ δ α δ  (20)

where wt ≡ u2
t  − û2

t⎪t−1 = u2
t  − ht, which is white noisy error. Inspired by this, the nonparametric recur-

rent ANN and SVM based nonlinear GARCH (1, 1) model is specifi ed as the following form:

 y f y ut t t= ( ) +−1  (21a)

 u g u w wt t t t
2

1
2

1= ( ) +− −,  (21b)

where f(·) and g(·) are nonlinear nonparametric function forms for conditional mean and variance 
equations, respectively. Note that equation (21b) is adopted for the analysis of real data because the 
actual volatility ht is unobservable, while in the case of simulation the conditional variance equation 
is just specifi ed as ht = f (ht−1, u2

t−1) due to ht being known. Because of the way GARCH (1, 1) class 
models are constructed, the volatility is known at time t − 1. Thus the one-step-ahead forecast of 
volatility is readily available.

The moving average method uses weighted moving averages of past squared innovations to fore-
cast volatility (Niemira and Klein, 1994). For simulated data, the moving average forecast for the 
next-day volatility, using the fi ve most recent observations, is expressed as

 û ut j
j t

t

+
= −

= ∑1
2 2

4

1
5  (22)

For real data, the moving average forecast for the next-day volatility is expressed as (Engle et al., 
1993)

 ˆ ,u y yt j t
j t

t

+
= −

= −( )∑1
2

5
2

4

1
5  (23)

where

 
y yt j

j t

t

5
4

1
5

, =
= −
∑

The recurrent ANN used in this study is the feedback multilayer perceptrons (MLP) network with 
the addition of a global feedback connection from the output layer to its input space. We specify 
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this kind of recurrent back-propagation network with the following architecture: one nonlinear 
hidden layer with four neurons, each using a tan-sigmoid differentiable transfer function to generate 
the output, and one linear output layer with one neuron. As a training algorithm, the fast training 
Levenberg–Marquardt algorithm is chosen. The value of the learning rate parameter used in the 
training process is set to be 0.05. These specifi cations and choices are standard in the neural network 
literature.

Recurrent SVM procedure
As Haykin (1999) said, the standard SVM described above usually appears in the design of a simple 
network in which an input layer of source nodes projects onto an output layer of computation 
node, but not vice versa (see Figure 2(a)). This process is known as feedforward SVM and could be 
easily employed to estimate such AR process as the fi rst conditional mean function (21a), 
yt = f(yt−1) + ut, and the second conditional variance function in the situation of simulation, ht = 
f (ht−1, u2

t−1). However, because the unobservable error term wt is introduced into the GARCH 
model which indeed exhibits the nonlinear ARMA process, how to estimate the conditional volatility 
model (21b) for real data?

To estimate the nonlinear ARMA model, a feedback process of SVM with unobservable moving 
average part as inputs, not addressed before our application8, has to be described, which distinguishes 
itself from feedforward SVM in that it has at least one feedback loop (see Figure 2(b)). In this paper, 
we abuse terminology and refer to this process as ‘recurrent SVM’. The feedback loops involve the 
use of particular branches composed of one-delay operator, z−1, which result in nonlinear dynamical 
behavior and have a profound impact on the learning capability of SVM. Thus the recurrent SVM 
will capture more dynamic characteristics of yt than does feedforward SVM.

To overcome the problem that the series of error term wt is unavailable, we employ the model 
residuals as estimates of the errors in an iterative way, which is similar to the way that the linear 
ARMA model is iteratively estimated by MLE (Box et al., 1994; Hamilton, 1997). Likewise, the 

Figure 2. Signal-fl ow graphs of feedforward and recurrent SVM. (a) Signal-fl ow graph of a feedforward SVW. 
(b) Signal-fl ow graph of a single-loop recurrent SVW

8 Suykens and Vandewalle (2000) proposed the algorithm of recurrent least squares SVM. The difference between the two 
recurrent SVM algorithms is their sparseness solutions.
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error term is initially set to be its expectation: zero. The empirical procedure of the recurrent SVM 
executed during the training phase is described as follows. The letter i indicates the iterative epoch 
and t denotes the period:

• Step 1: Set i = 1 and star with all residuals at zero: wt
(1) = 0.

• Step 2: Run an SVM procedure to get the decision function f (i) to the points {xt, yt} = {u2
t−1, u2

t} 
with all inputs xt = {u2

t−1, w(i)
t−1}.

• Step 3: Compute the new residuals wt
(i+1) = u2

t  − f (i).
• Step 4: Terminate the computational process when the stopping criterion is satisfi ed; otherwise, 

set i = i + 1 and go back to Step 2.

Note that the fi rst iterative epoch is in fact a feedforward SVM process and results in an AR (1) 
model and that the following epochs provide results of the ARMA (1, 1) model, being estimated by 
the recurrent SVM.

In general, the procedure cannot be shown to converge, and there are no well-defi ned criteria for 
stopping its operation. Rather, some reasonable criteria can be found, although with its own practical 
drawback, which may be used to terminate the computational process.

To formulate such a criterion, it is logical to think in terms of the properties of the estimated 
residual series. After suffi ciently long iterative steps, the autocorrelation displayed behind the residu-
als during the fi rst AR epoch should disappear, and the information in the residual behavior has been 
completely adopted and the fi nal residual series should be white noisy. Accordingly, we may suggest 
a sensible convergence criterion for the recurrent SVM procedure as follows:

The recurrent SVM procedure is considered to have converged when the corresponding residuals 
become white noisy, or has no autocorrelation.

To quantify the measurement of white noise, we use the formal hypothesis test, the Ljung–Box–
Pierce Q-test, to investigate a departure from randomness based on the ACF of the residuals. Under 
the null hypothesis of no autocorrelation in residuals, the Q-test statistic is asymptotically distributed 
as chi-square. In fact, we just check the actual p-values (exact level of signifi cance) of the Q-test of 
lag 1. It is reasonable to think there is no higher-order autocorrelation if there is no one-order auto-
correlation in residuals. Only if the p-values of the Q-test for fi ve consecutive epochs are simultane-
ously higher than 0.1 is the iterative computational process stopped. To overcome the drawback of 
this convergence criterion, we use cross-validation to avoid the possible over-fi tting problem; see 
‘Real data analysis’ below for the iterative process in detail.

Forecasting scheme
To illustrate the forecasting scheme, the SVM-GARCH model is also exemplifi ed. First, estimate 
the conditional mean equation (21a) by using the feedforward SVM in the full sample period 
T(1, 2,  .  .  .  , T) to obtain residuals, u1, u2,  .  .  .  , uT. Then, recursively run the SVM-GARCH (1, 1) 
model for squared residuals thus obtained to forecast the one-period-ahead volatility. The 
recursive forecasting scheme is employed with an updating sample window; the estimating and 
forecasting process is carried out recursively by updating the sample with one observation each 
time, rerunning the SVM approach and recalculating the model parameters and corresponding 
forecasts. Here, the SVM approach to estimate the conditional volatility is feedforward for simula-
tion and recurrent, as described in the above subsection, for real data. The fi rst training sample is 
u2

1, u2
2,  .  .  .  , u2

T1
 (T1 < T). The observations of T − T1 are retained as a forecasting or test sample. 
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Therefore, we can estimate and forecast the SVM-based conditional volatility equation for n = T − T1 
times. We set n = 60 for both simulation and real data in this study. Thus, 60 one-period-ahead 
forecast volatilities, û2

T−59, û2
T−58,  .  .  .  , û2

T−1, û2
T, will be acquired for out-of-sample forecasting 

evaluation.

Evaluation measures and pairwise comparison of competing models
We evaluate the forecasting performance using two standard statistical criteria: mean absolute fore-
cast error (MAE) and directional accuracy (DA), expressed as follows (Brooks, 1998; Moosa, 
2000):

 MAE = −+ +
=
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MAE measures the average magnitude of forecasting error which disproportionately weights 
large forecast errors more gently relative to MSE; and DA measures the correctness of the 
turning point forecasts, which gives a rough indication of the average direction of the forecast 
volatility.

The fundamental problem with the evaluation of volatility forecasts of real data is that volatility 
is unobservable and so actual values with which to compare the forecasts do not exist. Therefore, 
researchers are necessarily required to make an auxiliary assumption about how the actual ex post 
volatility is calculated. In this paper, we use the square of the return minus its mean value as the 
surrogate of actual volatility against which MAE and DA can be calculated. This approach is similar 
to the standard one, squared returns, because the mean of returns is usually close to zero. The proxy 
of actual volatility in real data is expressed as

 u y yt t
2 2= −( )  (26)

where yt is returns and ȳ is mean of returns. This proxy has been used in many recent papers, such 
as Pagan and Schwert (1990), Day and Lewis (1992), Chan et al. (1995), West and Cho (1995), 
Chong et al. (1999), Brooks (2001) and Brooks and Persand (2003).

To test for equal forecasting accuracy of two competing models, we use the two-sided DM test 
statistic proposed by Diebold and Mariano (1995) for the difference of MAE loss function. The null 
and alternative hypotheses in this case are

 H versus H0 1 0 1 1 00 0: MAE MAE MAE MAE− = − ≠:
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where the subscript 0 denotes the benchmark model and 1 the competing model. The DM statistic 
in a robust form is then based on the following large sample statistic:

 DM = − − −( ) ( )+ + + +
=
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∑1 1
0 1
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1

2
1 1
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where Ŝ 2 denotes a heteroscedasticity and autocorrelation consistent (HAC) robust (co)variance 
matrix which is estimated according to the Newey–West procedure (Newey and West, 1987). We 
use Andrews’ (1991) approximation rule to automatically select the number of lags for the HAC 
matrix. If n grows at a rate such that as T → ∞, n → ∞ and n/T1 → 0, then the DM statistic converges 
in distribution to a standard normal.

MONTE CARLO SIMULATION

Data-generating process
In this section we investigate the forecasting performance of all candidates using artifi cial simulated 
data under controlled conditions. To generate the data, we fi rst need to parameterize the GARCH 
(1, 1) model in equation (18) with the following settings (c, f1, k, d1, a1) = (0, 0.5, 0.0005, 0.8, 0.1) 
for medium persistence and a disturbance term ut distributed fi rst as Gaussian and then as a Student’s 
t with fi ve degrees of freedom (kurtosis = 5). The second distribution tries to model the skewness 
and excess of kurtosis that usually appears in real fi nancial series. Using the same specifi ed models, 
two artifi cial samples of size 500 and 1000 are created under a two-distributions assumption, giving 
a total of four situations. To limit the computational burden, each situation is replicated only 50 
times. Then the multiple simulated yt and ht are 500 × 50 and 1000 × 50 element matrices for 
different distribution.

Parameter selection
The use of cross-validation is appealing particularly when we have to design a somewhat complex 
approach with good generalization as the goal. For example, here we may use cross-validation to 
determine the values of free parameters of SVM with the best performance. One series of 50 simu-
lated returns and volatility of 1000 size and Student’s t distribution, one of the four situations, is 
exemplifi ed as below. The fi rst training data, that is, the former 940 observations, are used to deter-
mine the appropriate values taken by the free parameters. The training data are further randomly 
partitioned into two disjoint subsets: estimating sample and validating sample (700 and 240 observa-
tions, respectively).

As shown above, two free parameters (e and C) and two kernel coeffi cients (d and s 2) have to be 
selected by users before running the SVM procedure. The motivation for using cross-validation here 
is to validate the model on a dataset different from the one used for parameter estimation. In this 
way we may use the training set to assess the performance of various values of parameters, and 
thereby choose the best one. The sensitivity investigation of SVM (represented by the generalization 
error, MAE) with respect to four parameters is illustrated in Figures 3 and 4 for conditional mean 
and variance estimation, respectively.

Figure 3 describes the sensitivity analysis for the conditional mean equation. Parameter C varies 
from a very small value of 0.0001 to infi nity, with e being fi xed at 0.0001 and s 2 0.4. Clearly, when 
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C = 0.05, MAE of the validation sample obtains the lowest value, 0.046. Parameter e takes values 
in the range [0.00001, 0.00005, 0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001, 0.005, 0.01, 0.05, 
0.1], with C = 0.05 and s 2 = 0.4. The values of e to the left of the point = 0.0001 have no infl uence 
on the performance of SVM. Coeffi cient s 2 varies from values of 0.001 to 1000, with C being 0.05 
and 0.0001. Obviously, the value of s 2 = 0.4 leads to the best validation performance. If we set C 
= 0.05 and 0.0001 and the polynomial kernel parameter d = [0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 100], 
the validating MAE attains the minima when d = 8; after that, over-fi tting the training set occurs. 
Note that the polynomial kernel with d = 1 is similar to the linear kernel. Thus, the appropriate 
parameters of SVM for the conditional mean returns are: C = 0.05, e = 0.0001, s 2 = 0.4 and 
d = 8.

Figure 4 describes the parameter selection process for conditional variance series. Similar to the 
return series, the MAE of both estimating and validating sample decreases as the values of C increase 
and become stable when C takes a value greater than 10; in contrast to C, as the values of e increase, 
both MAE of SVM are considerably more stable before the point of e = 0.0001 and increase slowly, 
and sharply after e = 0.001. The value of s 2 = 0.01 results in the best validation performance; namely, 
its MAE reaches the minimum value, about 0.000065. The values of d taken between 100 and 1000 
have not much effect on the performance of SVM but after that range the over-fi tting phenomenon 
becomes serious. Likewise, when one parameter is analyzed, the others are set to be fi xed. Therefore, 
the correct parameters chosen for the conditional variance series are C = 10, e = 0.00005, s 2 = 0.01 
and d = 250, respectively.
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Figure 3. Sensitivity analysis of SVM in conditional mean estimation
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Thus far we discuss the sensitivity investigation of parameters by using the simulated data with 
1000 observations and t distribution. The parameter selection for the other three random samples is 
similar to this and not reported here to save space.

EFFECT OF KERNEL TYPE AND FORECASTING EVALUATION

There is still the possibility of over-fi tting after training. Therefore, the generalization performance 
of the competing models is further measured and evaluated on the test set, which is different from 
the validation subset. For the simulated data, the forecasting sample is the last 60 observations. For 
each replication, the SVM-based GARCH (1, 1) model and the others are estimated, and the fore-
casting errors are calculated using the forecasting schemes described above. The results of out-of-
sample one-period-ahead volatility forecasting measures for four situations are shown in Table I. 
The reported results are the mean values of 50 independent replications. Table II presents the p-
values of Diebold-Mariano (DM) test for the MAE difference, which are defi ned as the signifi cance 
levels at which the null hypothesis under investigation can be rejected. In calculating the DM sta-
tistic, the null hypothesis of equal forecasting ability is related to the four benchmark models: moving 
average, standard GARCH, EGARCH and traditional ANN models. We report the results of the DM 
test, say DM1, in the third and seventh columns for two simulated series, respectively, under the 
null hypothesis that the absolute forecast error produced by the moving average method is equal to 
those obtained using the other models. DM2, DM3 and DM4 are organized in the same manner and 
show the test results when the benchmark models are respectively the standard GARCH, EGARCH 
and recurrent ANN models. The DM tests in this study are investigated in a robust form, by simply 
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scaling the numerator by a heteroscedasticity and autocorrelation consistent (HAC) (co)variance 
matrix calculated according to Newey-West procedures (Newey and West, 1987).

Table I fi rstly shows the effect of kernel functions on out-of-sample forecasting performance of 
SVM. The linear kernel behaves better in the sample with 500 sizes and t distribution based on DA 
measure. The polynomial kernel is the most suitable for forecasting the t-distributed 1000 sample 
size also based on DA. For all the other six cases, the Gaussian kernel looks promising, however, 
which is not a general conclusion but only true for the case we are studying. As a whole, three types 
of kernel-based SVM have a similar volatility forecasting performance and almost behave better 
than the benchmarks. Since no single kernel function dominates all volatility predictions, practitio-
ners could try any kernel function. In the real data analysis later, for example, we only investigate 
the performance of the Gaussian kernel-based SVM-GARCH model.

Now, based on Table I, we revert to comparing the volatility forecasting ability among all com-
peting models. In terms of the average ranking of MAE measures, the order of the forecasting ability 
of the different methods from highest to lowest is displayed in turn as follows: SVMp-GARCH, 
SVMg-GARCH, SVMl-GARCH9, standard GARCH, EGARCH, moving average and ANN-GARCH 
model. Concretely, in the situation of normal distribution, the standard GARCH model behaves not 
badly, which is ranked fourth (only inferior to three SVM models) in the 500 sizes and even ranked 
third (only defeated by Gaussian and polynomial SVM models) in the series of 1000 sizes. Even 
though the data satisfy the normality assumption that is required for MLE in the standard GARCH 
model, the SVM-GARCH models still outperform it in forecasting the magnitude of the volatility 
error. Nonlinear EGARCH and ANN-GARCH models perform worse than the linear GARCH 
model. In the situation of t distribution, the forecasting performance of the linear GARCH model 
grows poorer and the difference of MAE values between SVM-GARCH and standard MLE-GARCH 
models becomes larger than that under normality. Possibly this results from the fact that the normal-
ity assumption required for MLE is violated but it is not necessary for the SVM method. Not as 
expected, the asymmetric EGARCH model is weak in reducing the forecasting error even in the case 
of skewed distribution.

Based on the DA measures in Table I, on average, the Gaussian SVM-GARCH model ranks 
highest (for all four situations) in forecasting volatility directions, followed by polynomial and linear 

Table I. Diebold–Mariano test for the MAE difference on real data

Models Sample Size = 500 Sample Size = 1000

Normality Student’s t Normality Student’s t

MAE DA MAE DA MAE DA MAE DA

Moving Average 0.0001276 44.07 0.0001747 59.32 0.0001198 54.24 0.0002130 40.68
Standard GARCH 0.0000972 76.27 0.0001765 55.93 0.0000488 79.66 0.0001083 59.32
EGARCH 0.0001312 67.80 0.0002075 64.41 0.0000730 57.63 0.0001864 74.58
ANN-GARCH 0.0001517 72.88 0.0002481 57.63 0.0000904 62.71 0.0001442 67.80
SVMl-GARCH 0.0000960 76.27 0.0001369 71.19 0.0000501 74.58 0.0000715 72.88
SVMp-GARCH 0.0000924 76.27 0.0001371 71.19 0.0000479 71.19 0.0000714 77.97
SVMg-GARCH 0.0000796 86.44 0.0001397 81.36 0.0000456 83.05 0.0000769 98.31

Note: SVMl, SVMp and SVMg represent the SVM with linear, polynomial and Gaussian kernel, respectively, for short.

9 That is, corresponding to SVM-based GARCH models with polynomial, Gaussian and linear kernel function, 
respectively.
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SVM-GARCH models, linear GARCH model, EGARCH model, ANN-GARCH model and moving 
average, in turn. In the situation of the normal distribution, the standard GARCH model behaves 
even better than forecasting error magnitude—ranked second for both the series of 500 sizes (only 
inferior to Gaussian but equal to linear and polynomial SVM models) and 1000 sizes (worse than 
Gaussian but better than the other two SVM type models). In the case of normality and large sample 
sizes, particularly favorable for MLE, the standard GARCH model still cannot defeat the Gaussian-
based SVM-GARCH model. It is not surprising for EGARCH to behave badly in this case. As for 
the situation of t distribution, the linear GARCH model is ranked last for the 500 sizes (55.93%) 
and second last for the 1000 sizes (59.32%); while the asymmetric EGARCH model is good at 
forecasts of volatility turning points—ranked fourth for short series (only behind the three SVM 
models) and even third for long series (inferior to Gaussian and polynomial but better than the linear 
SVM-GARHC model). This time the ANN-GARCH model defeats the linear GARCH model. As 
for the linear GARCH model and moving average method, in the situation of 500 sizes and t distri-
bution the standard GARCH model performs worse than the moving average, the simplest time series 
method, in terms of both MAE and DA measures. The conclusions described above are obtained on 
average based on 50 replications.

Table II displays the p-values of the DM test when the moving average method, standard GARCH, 
EGARCH and ANN models are compared with each of the other models considered in the study. 
We denote these tests DM1, DM2, DM3 and DM4, respectively. For instance, DM1 presents the 
test results for the simple moving average, where a p-value no greater than 0.05 indicates that the 
moving average method yields a higher forecast error (in terms of absolute error) relative to 
the competing model at 5% signifi cance level, a p-value no smaller than 0.95 means that the moving 
average produces a lower forecast error at the 5% level, while a p-value between 0.05 and 0.95 
implies that the benchmark and competing model have equivalent forecasting accuracy from the 
viewpoint of statistics. The same interpretation applies to the p-values reported for DM2-DM4.

Table II. Diebold–Mariano test for the MAE difference on Monte Carlo simulation

Distribution Models Sample size = 500 Sample size = 1000

DM1 DM2 DM3 DM4 DM1 DM2 DM3 DM4

Normality Moving average 0.976 0.401 0.070 1.000 0.999 0.875
Standard GARCH 0.024 0.001 0.000 0.000 0.001 0.000
EGARCH 0.600 0.999 0.005 0.001 0.999 0.033
ANN-GARCH 0.930 1.000 0.995 0.125 1.000 0.967
SVMl-GARCH 0.018 0.460 0.002 0.000 0.000 0.574 0.002 0.000
SVMp-GARCH 0.023 0.413 0.004 0.000 0.000 0.420 0.003 0.000
SVMg-GARCH 0.002 0.097 0.000 0.000 0.000 0.354 0.000 0.000

Student’s t Moving average 0.480 0.036 0.000 1.000 0.822 0.984
Standard GARCH 0.520 0.054 0.003 0.000 0.000 0.001
EGARCH 0.964 0.946 0.021 0.178 1.000 0.966
ANN-GARCH 1.000 0.997 0.979 0.016 0.999 0.034
SVMl-GARCH 0.043 0.037 0.002 0.000 0.000 0.019 0.000 0.000
SVMp-GARCH 0.056 0.043 0.001 0.000 0.000 0.025 0.000 0.000
SVMg-GARCH 0.070 0.050 0.000 0.000 0.000 0.033 0.000 0.000

Note: DM1, DM2, DM3 and DM4 are the robust Diebold and Mariano (1995) test by using the Newey–West procedures 
(Newey and West, 1987) when the benchmark models are the moving average, linear GARCH model, EGARCH model and 
traditional ANN-GARCH model, respectively. For each test we consider the MAE loss functions.
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Under the normal distribution, DM1 tests indicate that there is equivalent forecasting ability 
between moving average and EGARCH for short series, and between moving average and ANN-
GARCH for long series. Such models as standard GARCH and the three SVM-GARCH all have 
higher volatility forecasting accuracy than moving average for both series at least at the 5% signifi -
cance level. Moving average outperforms the ANN-GARCH model at the 10% level for a series of 
500 size and EGARCH outperforms moving average at the 0.1% signifi cance level for long series. 
According to DM2, three SVM type models have statistically equivalent forecasting ability to stan-
dard GARCH model for both series, with only one exception that the Gaussian SVM-GARCH model 
behaves better than the standard GARCH model at 10% signifi cance level for short series. For both 
series, the standard GARCH model outperforms EGARCH and ANN-GARCH models at extremely 
low signifi cance level. The DM3 statistic reveals that, for two series, three SVM-GARCH models 
perform better than the EGARCH model and EGARCH better than the ANN-GARCH model all at 
extremely signifi cant levels. Finally, the ANN-GARCH model is found statistically and consistently 
inferior to the three SVM models for any series based on DM4 tests.

In the case of Student’s t distribution, the out-of-sample performance of the standard GARCH 
model deteriorates. Now, according to DM2, the three SVM-GARCH models forecast volatility 
signifi cantly better than the standard GARCH model at the 5% level for both series. The standard 
GARCH model cannot statistically defeat the moving average, either, for short series. However, both 
EGARCH and ANN-GARCH models are still statistically inferior to the standard GARCH model. 
In fact, according to DM1, DM3 and DM4, the three SVM-GARCH models all consistently outper-
form such benchmarks as moving average, EGARCH and ANN-GARCH models in forecasting 
volatility for any series. In terms of DM1, furthermore, the null hypothesis of equal forecasting 
accuracy between moving average and EGARCH cannot be rejected for a series of 1000 size rather 
500 size. Moving average is signifi cantly better than the ANN-GARCH model for short series, but 
the case is reversed for long series. In a series of 500 sizes, the ANN-GARCH model is signifi cantly 
outperformed by the EGARCH model, while for the series of 1000 size the ANN type model statisti-
cally defeats the EGARCH model.

In summary, it appears that the three SVM-GARCH models do a better job of forecasting volatility 
than the moving average, standard GARCH, EGARCH and ANN-GARCH models in terms of MAE 
measures, which is statistically supported by the DM1, DM3, DM4 tests and DM2 in the case of t 
distribution. The DM2 test reveals that under the normal distribution the three SVM-GARCH models 
and standard GARCH model have similar volatility forecasting ability. Based on DA measures, the 
standard GARCH model too has a better ability in forecasting volatility turning points under normal-
ity and large sample sizes, while the asymmetric EGARCH model behaves better under the skewed 
t distribution. But both linear GARCH and nonlinear EGARCH cannot defeat all SVM-type models, 
at least the Gaussian-based SVM-GARCH model, in forecasting volatility directions.

REAL DATA ANALYSIS

In this section, we investigate the volatility forecasting performance of all candidates by using real 
data for two kinds of fi nancial variables: GBP/USD exchange rates and NYSE average index.

Data description
The fi rst dataset consists of the daily nominal bilateral exchange rates of British pounds (GBP) 
against the US dollar for the period January 5, 2004 to December 31, 2007. The data are obtained 
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from a database provided by Policy Analysis Computing and Information Facility in Commerce 
(PACIFIC) at the University of British Columbia, which contains the closing rates for a total of 81 
currencies and commodities. The second dataset consists of the daily closing price of the New York 
Stock Exchange (NYSE) composite stock index for the period January 8, 2004 to December 31, 
2007. The data are downloaded directly from the Market Information section of the NYSE web 
page.

It has been widely accepted that a variety of fi nancial variables including foreign exchange rates 
and stock prices are integrated of order one. To avoid the issue of possible nonstationarity, both sets 
of raw real data are transformed into daily returns via equation (17), giving a returns series of 1001 
observations and then a residual series is obtained from a fi tted conditional mean equation of the 
GARCH class models. For the squared residuals of 1000 observations, the recursive estimating 
samples for the conditional volatility function are updated from the former 940 observations through 
the former 999 and then 60 numbers of one-period-ahead volatility forecasts are obtained, corre-
sponding to an evaluation sample spanned from the 941st through the 1000th data points, that is, 
out-of-sample period of October 3, 2007 to December 31, 2007 for GBP and October 5, 2007 to 
December 31, 2007 for NYSE data.

The daily series for the log-levels and the returns of the GBP and NYSE are depicted in Figure 
5. This fi gure shows that the returns series are mean-stationary, and exhibit the typical volatility 
clustering phenomenon with periods of unusually large volatility followed by periods of relative 
tranquility. Table III reports the summary of the descriptive statistics for the GBP and NYSE returns. 
Both series are typically characterized by excessive kurtosis and asymmetry. The Bera and Jarque 
(1981) tests all strongly reject the normality hypothesis. For GBP series, the Ljung–Box Q(6) statistic 
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Figure 5. Log levels and returns of GBP exchange rates and NYSE stock index
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of raw returns indicates no signifi cant correlation, but the Q(6) value of the squared returns reveals 
that there is signifi cant autocorrelation in the squared returns. The Q(6) tests of both raw and squared 
returns of NYSE are all signifi cant. Engle’s (1982) LM tests for ARCH effect show signifi cant evi-
dence in support of GARCH effects (i.e., heteroscedasticity) for both series. Note that the number 
in parentheses indicates testing at 6 lag order. This examination of daily returns on the GBP and 
NYSE data reveals that returns can be characterized by heteroscedasticity and time-varying autocor-
relation; therefore, we expect the GARCH class models to capture it adequately. Furthermore, as 
seen from Figure 5 and Table III, it seems that NYSE returns exhibit more variability, skewness, 
kurtosis and volatility clustering than GBP series such that nonlinear asymmetric EGARCH model 
should fi t it more accurately.

Iterative epochs of recurrent SVM
Because the actual volatility ht is unobservable for real data analysis, the second conditional variance 
equation (21b) of the GARCH (1, 1) model should be estimated by using the recurrent SVM procedure, 
as proposed above. Again, we use cross-validation to determine when the procedure is stopped.

With good forecasting performance as the goal, it is very diffi cult to fi gure out when it is best 
to stop training only in terms of fi tting performance. It is possible for the procedure to end up 

Table III. Descriptive statistics for daily fi nancial returns

Returns GBP NYSE

Statistics p-value Statistics p-value

Mean −0.0092 0.0393
Variance 0.2827 0.6197
Skewness 0.1206 −0.3489
Kurtosis 3.7130 4.9343
Normality 23.1860 0.00001 174.7200 0.00000
Q(6) 3.0313 0.80490 12.7100 0.04788
Q(6)* 31.6390 0.00002 150.2400 0.00000
ARCH(6) 28.9280 0.00006 101.8400 0.00000

Notes: Normality is the Bera-Jarque (1981) normality test; Q(6) is the Ljung-Box 
Q test at 6 order for raw returns; Q(6)* is LB Q test for squared returns; ARCH(6) 
is Engle’s (1982) LM test for ARCH effect.

Figure 6. Iterative epochs of recurrent SVR procedure for real data
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over-fi tting the training data if the training session is not stopped at the right point. We can identify 
the onset of over-fi tting and the stopping point through the use of cross-validation. Figure 6(a) and 
(b) describes the iterative epochs for volatility prediction of the fi rst training sample of GBP and 
NYSE, respectively. For the GBP series, the iterative process of recurrent SVM procedure is stopped 
at the 51st epoch; while, for NYSE, the iterative process is longer and stopped after 121 iterative 
steps, possibly due to higher kurtosis and more variability and noise behind the NYSE series. Now, 
we could say, at about the 10% level of signifi cance, the fi nal residuals of equation (21b) obtained 
from the recurrent SVM procedure have no autocorrelation. In addition, the p-value curves of both 
estimating and validating samples exhibit a similar pattern (namely, increase with an increasing 
number of epochs) and point to almost the same stopping point. That is to say, there is no over-fi tting 
phenomenon for the examples illustrated here; the recurrent SVM model does as well on the validat-
ing subset as it does on the estimating subset, on which its design is based.

The values taken by the free parameter of SVM and kernel coeffi cients are also selected according 
to the sensitivity investigation, similar to that done in Monte Carlo simulation. We do not report the 
parameter selection process here but present the formal results throughout the real data analysis. For 
both conditional mean and variance estimation of GBP and NYSE series, fortunately, similar param-
eter values of feedforward and recurrent SVM procedure could be found as follows: C = 0.005, 
e = 0.05 and s 2 = 0.2. Note that in the analysis of fi nancial returns only the Gaussian kernel is 
employed for the sake of simplicity due to its best performance among linear, polynomial and 
Gaussian kernels, as described in Monte Carlo simulation.

Comparing the forecasting ability
The results of out-of-sample volatility forecasting accuracy for each model by using real data are 
presented in Table IV. Table V reports the p-values of the Diebold– Mariano (DM) test for the dif-
ference of MAE loss function in a robust HAC form from Newey–West procedures. In calculating 
the DM statistic, the null hypothesis of equal forecasting accuracy is related to the four benchmark 

Table IV. Measure of volatility forecasting performance for real data

Models Measures Moving average Standard GARCH EGARCH ANN-GARCH SVM-GARCH

GBP MAE 0.28895 0.24713 0.25719 0.24691 0.23257
DA 37.29 38.98 49.15 38.98 45.76

NYSE MAE 1.69610 1.51000 1.44880 1.62980 1.50410
DA 32.20 42.37 55.93 32.20 57.63

Table V. Diebold–Mariano test for the MAE difference on real data

Models GBP NYSE

DM1 DM2 DM3 DM4 DM1 DM2 DM3 DM4

Moving average 0.990 0.970 0.981 0.935 0.970 0.813
Standard GARCH 0.010 0.017 0.583 0.065 0.902 0.061
EGARCH 0.030 0.983 0.980 0.030 0.098 0.044
ANN-GARCH 0.019 0.417 0.020 0.187 0.939 0.956
SVM-GARCH 0.001 0.076 0.000 0.067 0.047 0.054 0.885 0.042

Note: DM1, DM2, DM3 and DM4 are the robust Diebold and Mariano (1995) test by using the Newey–West procedures 
(Newey and West, 1987) when the benchmark models are the moving average, linear GARCH model, EGARCH model and 
traditional ANN-GARCH model, respectively. For each test we consider the MAE loss functions.
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models: moving average, standard GARCH, EGARCH and ANN models. We specify them as DM1, 
DM2, DM3 and DM4, respectively. A p-value no greater than 0.05 indicates that the benchmark 
model yields a higher forecast error (in terms of absolute error) relative to the competing model at 
the 5% signifi cance level, a p-value no smaller than 0.95 means that benchmark model produces a 
lower forecast error at 5% level, while a p-value between 0.10 and 0.90 implies that the benchmark 
and competing models have the equal forecasting accuracy at 10% signifi cance level.

According to MAE measures in Table IV, the SVM-GARCH model is the best one for the GBP 
series and second for the NYSE series in forecasting the magnitude of volatility error. DM tests in 
Table V almost statistically favor the SVM-GARCH model as the best model, too, at least at 10% 
signifi cance level. Even though the MAE metric reveals that the EGARCH model outperforms the 
SVM-GARCH model for the NYSE series, it is not supported by the DM3 test, which means both 
models have equal forecasting ability. The better performance of the EGARCH model for NYSE is 
perhaps due to its ability to capture higher skewness and asymmetry occurring in the SYSE series 
than in GBP. The standard GARCH model performs modestly in terms of MAE measures, statisti-
cally inferior to EGARCH and superior to the ANN-GARCH model for NYSE and signifi cantly 
better than EGARCH and similar to the ANN-GARCH model for GBP according to DM2 tests. The 
moving average method is always ranked last in forecasting the magnitude of volatility error, the 
evidence being signifi cantly supported at least at the 10% level by the DM1 tests in Table V with 
just one exception, that for NYSE series moving average and ANN-GARCH model have equal 
forecasting ability. MAE measures and DM3 and DM4 tests denote that the EGARCH model also 
signifi cantly outperforms the ANN-GARCH model for highly skewed NYSE series but the case is 
totally reverse for the GBP sample.

Based on DA measures in Table IV, on average, the moving average method is still ranked last, 
the ANN-GARCH model is ranked second last and the standard GARCH model is ranked at the 
middle position in forecasting volatility directions. For the GBP series, EGARCH performs best with 
DA value to be highest 49.15%, followed closely by the SVM-GARCH model; while, for the NYSE 
model, the best model to forecast volatility turning points is the SVM-GARCH model, with the 
asymmetric EGARCH model is ranked second, their DA values being 57.63% and 55.93%, 
respectively.

The empirical evidence of real data also confi rms the conclusion obtained in Monte Carlo simula-
tion and favors the theoretical advantage of the SVM-GARCH model. Due to high skewness in 
fi nancial returns, the asymmetric EGARCH model normally behaves better than the standard GARCH 
model, particularly in the case of higher skewness or in forecasting volatility turning points. The 
moving average method always behaves worst and the ANN-GARCH model sometimes good in 
forecasting one-period-ahead fi nancial volatilities among all candidates.

CONCLUSIONS

In many applications, SVM has shown excellent forecasting performance due to its particular struc-
tural design of SRM principle rather than ERM employed by conventional ANN and MLE methods. 
This inspires us to use it to improve the volatility forecasting ability of the parametric GARCH 
models. Empirical applications are made for forecasting the simulated data and the real data of daily 
GBP exchange rates and NYSE stock index.

To avoid the problem that the actual volatility for real data is unobservable, we propose a recur-
rent SVM procedure with a global feedback loop from the output layer to the input, as opposed to 
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the feedforward one for simulation, to estimate the conditional volatility equation, that is the ARMA 
process in nature, of the nonlinear GARCH model. The forecasting performance of the SVM-
GARCH model is compared with the moving average, standard GARCH, asymmetric EGARCH 
and traditional ANN-GARCH models based on two quantitative evaluation measures and robust 
Diebold–Mariano tests following the Newey–West procedure.

The real data results, together with the simulation evidence, consistently and signifi cantly support 
the use of the feedforward and recurrent SVM-based GARCH (1, 1) models in forecasting the one-
period-ahead volatility error magnitude and direction. The standard GARCH model also performs 
well in the case of normality and large sample size, while the asymmetric EGARCH model is good 
at forecasting volatility under the high skewed distribution; but they rarely exceed SVM-GARCH 
models, at least the Gaussian-type SVM. The recurrent ANN-GARCH model and moving average 
method behave well only in a few cases. Overall, empirical analysis is in favor of the theoretical 
advantage of the SVM.

How to choose the appropriate values of free parameters and kernel coeffi cients and what effect 
of kernel type in the SVM procedure are investigated by using the sensitivity analysis in Monte 
Carlo simulation. The iterative process of the proposed recurrent SVM procedure in real data analysis 
is also examined in detail by the cross-validation method, which is shown to be implemented very 
easily and could be adopted as another standard SVM construction procedure in other 
applications.
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Localized Realized Volatility Modeling
Ying CHEN, Wolfgang Karl HÄRDLE, and Uta PIGORSCH

With the recent availability of high-frequency financial data the long-range dependence of volatility regained researchers’ interest and has led
to the consideration of long-memory models for volatility. The long-range diagnosis of volatility, however, is usually stated for long sample
periods, while for small sample sizes, such as one year, the volatility dynamics appears to be better described by short-memory processes.
The ensemble of these seemingly contradictory phenomena point towards short-memory models of volatility with nonstationarities, such as
structural breaks or regime switches, that spuriously generate a long memory pattern. In this paper we adopt this view on the dependence
structure of volatility and propose a localized procedure for modeling realized volatility. That is at each point in time we determine a past
interval over which volatility is approximated by a local linear process. A simulation study shows that long memory processes as well as
short memory processes with structural breaks can be well approximated by this local approach. Furthermore, using S&P500 data we find
that our local modeling approach outperforms long-memory type models and models with structural breaks in terms of predictability.

KEY WORDS: Adaptive procedure; Localized autoregressive modeling.

1. INTRODUCTION

Volatility is one of the key elements in modeling the stochas-
tic dynamic behavior of financial assets. It is not only a mea-
sure of uncertainty about returns but also an important input pa-
rameter in derivative pricing, hedging, and portfolio selection.
Accurate volatility modeling is therefore in the focus of finan-
cial econometrics and quantitative finance research. With the
availability of high-frequency data, so-called realized volatility
estimators (sums of squared high-frequency returns) have been
proposed and have been shown to provide better volatility fore-
casts than the concurrent volatility estimators based on a coarser
(e.g., daily) sampling frequency; see, for example, Andersen et
al. (2001b).

Realized volatility together with other volatility measures ex-
hibit significant autocorrelation which is the basis for the sta-
tistical predictability of volatility. In fact, the sample autocor-
relation function has typically a hyperbolically-like decaying
shape, also known as “long memory.” A strand of literature fo-
cused on this kind of correlation phenomenon. The long mem-
ory “diagnosis,” however, is usually stated for long sample pe-
riods such as three to 10 years. Over shorter sample periods,
however, the autocorrelation function usually exhibits less per-
sistence. This is also illustrated in Figure 1, which depicts the
daily sample autocorrelation functions of daily logarithmic re-
alized volatility of the S&P500 index futures for a long sample
period (1985–2005) and for a short sample period (1995). The
different degrees of persistence suggest that the diagnosis can
also be generated by a simple model with structural change in-
side such a rather long interval; the possibility of such interme-
diate changes provides an alternative view on the described phe-
nomenon. Like in the physical sciences, where one uses wave

Ying Chen is Assistant Professor, Department of Statistics & Applied
Probability, National University of Singapore, 6 Science Drive 2, Singapore
117546 (E-mail: stacheny@nus.edu.sg). Wolfgang Karl Härdle is Ladislaus
von Bortkiewicz Chair of Statistics, C.A.S.E.—Center for Applied Statistics
and Economics, School of Business and Economics, Humboldt-Universität
zu Berlin, Spandauerstr. 1, 10178 Berlin, Germany. Uta Pigorsch is Junior
Professor, Department of Economics, Universität Mannheim, L7, 3-5, 68131
Mannheim, Germany. We are grateful to two editors, the associate editor, and
three anonymous referees for their valuable comments. This research was sup-
ported by the Deutsche Forschungsgemeinschaft through the SFB 649 “Eco-
nomic Risk” and the SFB 884 “Political Economy of Reforms,” and by the
Berkeley–NUS Risk Management Institute at the National University of Singa-
pore.

and particle theory to explain the emission of light, we have
here a duality of theories for the emission of volatility. It is the
objective of our study to investigate this dual view on volatility
phenomenon.

In the literature of the long memory view of volatility, frac-
tionally integrated [I(d)] processes have frequently been under
consideration due to their hyperbolically decaying shock prop-
agation for 0 < d < 1. These processes have been proposed
by, for example, Granger (1980), Granger and Joyeux (1980),
and Hosking (1981). When applied to volatility they seem
to provide a better description and predictability than short-
memory models estimated over (the same) long sample peri-
ods. A typical example is the empirically better performance
of the fractional integrated generalized autoregressive condi-
tional heteroscedaticity (FIGARCH) model of Baillie, Boller-
slev, and Mikkelsen (1996) as opposed to a standard GARCH
model. For realized volatility, the autoregressive fractional inte-
grated moving average (ARFIMA) process emerged as a stan-
dard model; see, for example, Andersen et al. (2003) and Pong
et al. (2004). An alternative and quite popular model that does
not belong to the class of fractionally integrated processes but
approximates the long-range dependence by a sum of several
multiperiod volatility components is the heterogenous autore-
gressive (HAR) model proposed by Corsi (2009).

The question on the true source of the long-memory diagno-
sis, however, still remains. Long memory in realized volatility
may in fact be due to its construction, that is, by the aggre-
gation over squared intraday returns, which are well known to
exhibit also long-range dependence. Liebermann and Phillips
(2008) therefore develop refined methods for conducting infer-
ence on long memory. Their empirical results, however, support
the general finding on long memory in realized volatility.

Moreover, the presence of structural breaks may result in
misleading inference on the long memory diagnosis, as has al-
ready been noted in Diebold (1986) and Lamoureux and Las-
trapes (1990). In fact, the theoretical results provided in Diebold
and Inoue (2001) and Granger and Hyung (2004) show that
this phenomenon can also be spuriously generated by a short-
memory model with structural breaks or regime shifts. More
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Figure 1. Sample ACF plots of daily logarithmic realized volatility
of the S&P500 index futures for the sample from 1985–2005 (upper
panel) and for the year 1995 (lower panel).

generally, Mikosch and Stărică (2004b) even argue indepen-
dently of any particular model assumptions that nonstationar-
ities in the data, such as changes in the unconditional mean
or variance, can lead to the diagnosis of long-range depen-
dencies. Such findings have led to the development of struc-
tural break detection methods and their application to financial
volatility, where breaks are found in volatility processes using
real data; see, for example, Chen and Gupta (1997), Mikosch
and Stărică (2004a), Liu and Maheu (2008), and Čížek, Härdle,
and Spokoiny (2009). Similarly, volatility models with time-
varying coefficients have been proposed, which allow some
or all of the model parameters to vary over time either in an
abrupt fashion—for example, via Markov-Switching (see, e.g.,
Hamilton and Susmel 1994 and So, Lam, and Li 1998) and
mixture multiplicative error specifications (see Lanne 2006)—
or via a smooth function of time or other transition variables;
see, for example, Baillie and Morana (2009b) and Scharth and
Medeiros (2009), who show that nonlinearities, such as struc-
tural breaks and regimes induced by asymmetries like the lever-
age effect, may generate the observed long-range dependence.
Such methods are also applied to long-memory models, ad-
dressing the possibility of the coexistence of long memory and
structural breaks; see, for example, Baillie and Morana (2009a),
Hillebrand and Medeiros (2008), and McAleer and Medeiros
(2008b). The number of breaks in long memory realized volatil-
ity models is usually found to be one or two. Most of these stud-
ies, however, focus on sample periods covering at least 10 years.
Given such a long time span of data, the presence of breaks
even in long-memory models may be expected. Noteworthy,
when it comes to forecasting, the more complicated models
with breaks are often unable to significantly outperform the no-
break long memory alternatives; see Hillebrand and Medeiros
(2008), McAleer and Medeiros (2008b), and Martens, Dijk, and
de Pooter (2009). Moreover, in some cases short memory mod-
els with breaks have been found to provide superior realized
volatility forecasts than alternative long-memory models and
regime switching ARFIMA models; see, for example, Lanne
(2006) and Morana and Beltratti (2004).

In this paper we introduce the localized realized volatility
modeling approach to describe realized volatility. In this ap-
proach the time-varying (local) structure of volatility is conve-
niently determined via adaptive statistical techniques, that allow

us to find for each time point a past time interval, over which a
local volatility model is a good approximator. Thus, in contrast
to the previously cited literature our approach is local rather
than global. The parameters of the local model as well as the
length of the past time interval are determined at each point
in time and may, therefore, differ from period to period. The
method basically tries to adapt to local volatility. In doing so,
it does not require any prior information or modeling assump-
tions on the number of break points, the potential (economic)
sources of the break, its magnitude nor on its type (e.g., abrupt
or smooth). This makes it very appealing. Moreover, it also al-
lows to straightforwardly account for time-varying volatility of
volatility, a feature that currently attracts researcher’s interest,
like Barndorff-Nielsen and Veraart (2009), and has been recog-
nized to be important also for realized volatility; see Corsi et al.
(2008) and Allen, McAleer, and Scharth (2010).

Although localized realized volatility modeling is a quite
general concept that can be applied to various types of local
parametric volatility models, we investigate it here based on au-
toregressive processes. In particular, we push here the alterna-
tive view on long memory to its limit by assuming a local linear
short-memory model. Estimation and forecasting based on our
approach is thus computationally straightforward.

The flexibility of our procedure is demonstrated within a sim-
ulation study, which shows that both, short-memory processes
with breaks as well as long-memory processes, can be well de-
scribed by the local approach. We additionally apply localized
realized volatility modeling to S&P500 data and compare it to
(approximate) long-memory techniques, such as the ARFIMA
and HAR models, and to models with breaks. We find that our
technique provides improved volatility forecasts.

The remainder of the paper is structured as follows. The next
section reviews the concept of realized volatility, its construc-
tion, and the empirical properties of realized volatility of the
S&P500 index futures. Section 3 presents in detail the localized
realized volatility modeling approach along with a simulation
study. Section 4 briefly reviews the alternative models consid-
ered in this paper, and Section 5 empirically compares the vari-
ous models within a forecasting exercise. Section 6 concludes.

2. REALIZED VOLATILITY

Measuring the volatility of a financial asset based on high-
frequency data has been one of the major focuses in the recent
financial econometrics literature. The idea is to measure ex post
the variation of asset prices over a lower frequency, commonly
a day, by summing over products of high frequency, that is, in-
tradaily returns. The approach is motivated by the theory of
quadratic variation of semimartingales. For the ease of expo-
sition, consider the case where the log price of a financial asset,
p, follows a Brownian semimartingale—an assumption that is
very popular in the asset pricing literature, that is,

pt =
∫ t

0
µ(s)ds +

∫ t

0
σ (s)dW(s) ∀t ≥ 0, (1)

where the instantaneous mean process {µ(t)}t≥0 is continu-
ous and of finite variation, {σ (t)}t≥0 with σ (t) > 0 ∀t denotes
the càdlàg instantaneous volatility, and {W(t)}t≥0 is a standard
Brownian Motion. Then the quadratic variation process of (1),

[p]t = plim
l−1∑

j=0

(
pτj+1 − pτj

)2
, (2)
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where τ0 = 0 ≤ τ1 ≤ · · · ≤ τl = t denotes a sequence of parti-
tions with supj{τj+1 − τj} → 0 for l → ∞, is given by

[p]t =
∫ t

0
σ 2(s)ds, (3)

that is, as the integrated variance
∫ t

0 σ 2(s)ds of the price
process.

The theory of quadratic variation, thus, suggests that the sum
over squared high-frequency returns may provide an ex post
measure of the integrated variance and this is what is, often-
times interchangeably, referred to as realized variance or real-
ized volatility. Suppose we are interested in measuring volatility
over a day t using M +1 intraday prices observed at time points
n0, . . . ,nM . Furthermore, let pt,nj denote the logarithmic price
observed at time point nj of trading day t. The continuously
compounded jth within-day return of day t is therefore given
by

rt,j = pt,nj − pt,nj−1 , j = 1, . . . ,M. (4)

Then daily realized volatility is defined as

R̃Vt =
M∑

j=1

r2
t,j. (5)

Now, if M → ∞, that is, the intraday sampling frequency goes
to infinity, realized volatility converges to the quadratic varia-
tion of the price process; see, for example, Andersen and Boller-
slev (1998) and Barndorff-Nielsen and Shephard (2002b). This
implies that if the price follows a pure diffusion process as given
in (1), realized volatility converges to the daily integrated vari-
ance, that is, R̃Vt → IVt for M → ∞ with IVt =

∫ t
t−1 σ 2(s)ds,

which is oftentimes the main object of interest. Consistency
and asymptotic distribution of realized volatility as an estimator
of the integrated variance are derived in Barndorff-Nielsen and
Shephard (2002a).

The theoretical results on realized volatility obviously build
on the notion of an infinite sampling frequency. In practice,
however, the sampling frequency is invariably limited by the ac-
tual quotation, or transaction frequency. Moreover, the observed
high-frequency prices are further contaminated by market mi-
crostructure effects, such as the bid-and-ask bounce effect
and price discreteness, which are due to the particular design
and trading mechanism of financial markets; see, for exam-
ple, Hasbrouck (2007). These effects introduce biases into re-
alized volatility; see, for example, Andersen et al. (2001a) and
Barndorff-Nielsen and Shephard (2002a). A common approach
to reduce their impact is to simply construct realized volatility
based on lower frequency returns (e.g., 10 to 30 minutes), at
which market microstructure effects are negligible. However,
such a procedure comes at the cost of a less precise volatility
estimate, as it makes no use of all available data. Various alter-
native methods have therefore been proposed to solve this bias-
variance trade-off. For a review, see McAleer and Medeiros
(2008a) and Pigorsch, Pigorsch, and Popov (2010).

In this paper we compute a market microstructure noise ro-
bust version of realized volatility based on the approach of
Barndorff-Nielsen et al. (2008). The reason for our choice
is that their class of so-called realized kernel estimators of
quadratic variation have very attractive properties. In particular,
they are consistent and efficient and they are robust to a host of
different market microstructure effects.

2.1 Noise-Corrected Realized Volatility

The idea of the realized kernel estimators is similar to that
of autocorrelation and heteroscedasticity robust variance and
covariance estimators, like the Newey–West estimator, that is,
the correction is based on the sum of weighted autocovari-
ances. Define the hth realized autocovariance for day t by
γt,h = ∑M

j=1 rt,jrt,j−h. In the realized kernel estimators, realized
volatility is then corrected by the weighted sum of those re-
alized autocovariances. In particular, the flat-top realized ker-
nel estimator, that we employ in this paper, provides a noise-
corrected realized volatility RVt by

RVt = R̃Vt +
H∗

t∑

h=1

k
(

h − 1
H∗

t

)
(γt,h + γt,−h), (6)

where the weights are given by the kernel function k being twice
continuously differentiable on [0,1] and satisfying k(0) = 1,
and k(1) = k′(0) = k′(1) = 0. The bandwith parameter H∗

t de-
notes the optimal number of lags to be considered for day t. It is
optimal in the sense that it minimizes the asymptotic variance of
the noise-corrected realized volatility. Barndorff-Nielsen et al.
(2008) show that H∗

t depends on the chosen kernel weight func-
tion and on the noise-to-signal ratio ξt = ω2

t /IVt, that relates the
(daily) variance of the market microstructure noise, ω2

t , to the
(daily) integrated variance. In particular, H∗

t = c∗ξt
√

M, where
c∗ is a constant that depends, inter alia, on the specific kernel
weight function. Its value is chosen such that it minimizes the
asymptotic variance. The bandwith selection H∗

t and the com-
putation of the noise-corrected realized volatility, thus, involve
the precise specification of the kernel weight function and the
estimation of the noise-to-signal ratio. We now turn to these is-
sues.

For our empirical application we consider the modified
Tukey–Hanning kernel with weight function k(x) = sin2{π

2 (1−
x)a}, as it is most efficient among the finite lag kernels analyzed
in Barndorff-Nielsen et al. (2008). Moreover, for increasing
a the noise-corrected realized volatility approaches the (para-
metric) efficiency bound. As such, a large value of a might
be preferable. However, an increasing number of a also leads
to an increase in the number of autocovariances H∗

t consid-
ered in the noise correction (6), as c∗ is increasing with a; see
Barndorff-Nielsen et al. (2008). In practice, this imposes some
limitations as the computation of the autocovariances γt,h then
involves an increasing number of returns outside the daily time
interval. Note that in our application we make exclusive use of
price observations within a day, such that fewer observations
are available for the estimation of γt,h as h increases. An in-
crease in a therefore implies the use of less precisely estimated
autocovariance terms. We therefore follow Barndorff-Nielsen
et al. (2008) and choose a = 2 for our empirical application.
For this kernel specification c∗ = 5.74, see Barndorff-Nielsen
et al. (2008). Noteworthy, the chosen realized kernel estimator
is still close to efficient.

To finally determine H∗
t we estimate the noise-to-signal ratio

ξt in the following way: we employ the estimator of the noise
variance suggested by Bandi and Russell (2005) and compute
the (scaled) conventional realized volatility estimator based on
one minute returns, that is, ω̂2

t = R̃V1 min/2M1 min, where the
superscripts indicate the used sampling interval. An estimate
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Figure 2. Time evolvement of logarithmic realized volatility of the
S&P500 index futures.

of the variance of the “signal” (the integrated variance) is ob-
tained by the realized volatility computed at a low, that is,
15 minutes, sampling interval, at which market microstructure
effects should be negligible, thus ÎVt = R̃V15 min. The optimal
bandwidth is thus based on the estimate

Ĥ∗
t = 5.74

ω̂2
t

ÎVt

√
M1 min. (7)

Rounding Ĥ∗
t to the nearest integer gives the final value of

the bandwith. Given this bandwith, the noise-corrected realized
volatility RVt is then finally computed according to (6). Note
that we estimate the realized autocovariances γt,h and the mar-
ket microstructure noise uncorrected realized volatility, R̃Vt,
based on one minute returns. Moreover, all intraday returns are
constructed using the previous-tick method and by excluding
overnight returns.

2.2 Data Description

Our empirical analysis focuses on the noise-corrected real-
ized volatility of the S&P500 index futures ranging from Jan-
uary 2, 1985 to February 4, 2005; see Figure 2. From the vari-
ous S&P500 Index futures with maturity dates in March, June,
September, and December, we consider only the most liquid
contracts. In addition, we have removed one day, February 18,
1990, from our dataset as there are only two transactions re-
ported.

The descriptive statistics of the resulting realized volatility
series are presented in Table 1. In summary, the empirical char-
acteristics of the series are in line with the findings reported in
the earlier literature on realized volatility. In particular, realized
volatility is strongly skewed and fat-tailed, while its logarith-
mic version is much closer to Gaussianity. This is also con-
firmed by the kernel density estimate of logarithmic realized
volatility, which is presented in Figure 3 along with the kernel
density estimate of iid random variables simulated from the fit-
ted normal distribution (with a sample size corresponding to the
empirical one). Moreover, the sample autocorrelation function

Table 1. Descriptive statistics of realized volatility

Series Mean Std.Dev. Skewness Kurtosis Ljung–Box(21)(1)

RVt 1.0880 8.6961 55.5857 3412 1204
log(RVt)−0.5314 0.8875 0.5343 4.9912 4.6861

(1)The critical value of the Ljung–Box test statistic of no autocorrelation up to approx-
imately 1 month is 32.671.

Figure 3. Kernel density estimate of logarithmic realized volatility
of the S&P500 index futures (solid line). The shaded area corresponds
to the pointwise 95% confidence intervals and the dashed line rep-
resents the kernel density estimate of iid random variables simulated
from the fitted normal distribution.

of (logarithmic) realized volatility, Figure 1, exhibits the afore-
mentioned hyperbolic decay. We evaluate this long-memory di-
agnosis in more detail in the empirical application. In the fol-
lowing, however, we first introduce our localized approach to
realized volatility modeling.

3. THE LOCALIZED REALIZED
VOLATILITY APPROACH

In this paper we adopt a local view on realized volatility mod-
eling. The idea is simple. It is assumed that at each point in time
there exists a past-time interval over which volatility can be well
approximated by a local autoregressive (LAR) model. In con-
trast to fitting a global volatility model, we obtain at each point
in time a potentially new set of parameters, which is estimated
based on the so-called interval of homogeneity. For each point
in time, the interval of homogeneity is selected in a sequential
testing procedure, which starts from a small interval, where the
local approximation holds and the AR parameters are approxi-
mately constant. The procedure then iteratively extends this in-
terval and tests for time homogeneity until a structural break is
found or data is exhausted. The local model is then fitted and
can be used for volatility predictions.

The local (time-varying) autoregressive scheme is defined
through a time-varying parameter set θt = (θ0t, θ1t, . . . , θpt,

σt)
⊤:

log RVt = θ0t +
p∑

i=1

θit log RVt−i + εt, εt ∼ N(0,σ 2
t ), (8)

where the Gaussian distributed innovations εt have mean zero
and variance σ 2

t . Note that the specification also allows for
time-varying volatility of volatility by letting σt rely on time.

Time-varying parameters at any point in time t are of course
too flexible to really constitute a practical dynamic model.
We therefore need to strike a balance between model flexi-
bility and dimensionality. Traditional ways either estimate the
time-varying parameters nonparametrically by assuming that
the parameters are smooth functions of time (see, e.g., Cai,
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Fan, and Li 2000) or assume that the time-varying parame-
ters are piecewise constant functions provided that the num-
ber of changes are given (see, e.g., Bai and Perron 1998 and
Mikosch and Stărică 2004a). Here we follow a different strat-
egy by localizing (in time) a low-dimensional time series dy-
namics in the high-dimensional model (8). The basic idea is
to approximate (8) at a fixed time point τ by a constant para-
meter vector θτ = (θ0τ , θ1τ , . . . , θpτ ,στ )

⊤ over Iτ = [τ − lτ , τ )

with p + 2 ≤ lτ < τ . The interval Iτ is called the interval of
homogeneity, whose length depends on time point τ . In the es-
timation of (8) at a particular time point τ , we only assume
that an Iτ exists over which the local parametric model (ap-
proximately) holds for the process. This assumption nests the
abovementioned “smooth transition” and “regime switching”
assumptions as special cases: parameters can either smoothly
vary over time or change abruptly. The question now is how to
find Iτ or the value of lτ over which the model parameters can
be estimated.

The next section discusses the estimation and the test statis-
tics employed to determine the interval of homogeneity. The
sequential testing procedure is described in Section 3.2, while
Section 3.3 discusses the choice of parameters involved in the
procedure. The performance and sensitivity of the procedure are
demonstrated in a set of simulations in Section 3.4.

3.1 Estimation and Test of Homogeneity

The estimation of the local parametric model is carried out
via maximum likelihood. In particular, given an interval of ho-
mogeneity Iτ for time point τ , over which the process can be
safely described by an AR model with constant parameters, the
maximum likelihood (ML) estimator θ̃τ is defined as

θ̃τ = argmax
θ∈$

L(log RV; Iτ , θ)

= argmax
θ∈$

{

− lτ − p
2

log 2π − (lτ − p) logσ

− 1
2σ 2

τ−1∑

t=τ−lτ +p

(

log RVt − θ0 −
p∑

i=1

θi log RVt−i

)2}

,

where $ denotes the parameter space and L(log RV; Iτ , θ) the
local conditional log-likelihood function, for which we also use
the short notation L(Iτ , θ). We refer to the estimator θ̃τ as the
local ML estimator.

The question now is how the interval of homogeneity Iτ can
be determined. To this end likelihood ratio testing ideas are em-
ployed. Suppose that (log) RV is driven by an AR(p) process
with a constant set of true parameters θ∗

τ at time point τ . The
accuracy of estimation can be measured by the log-likelihood
ratio (LR) (under homogeneity)

LR(Iτ , θ̃τ , θ
∗
τ ) = L(Iτ , θ̃τ ) − L(Iτ , θ∗

τ ). (9)

Polzehl and Spokoiny (2006) derived a bound for LR and its
power transformation |LR(Iτ , θ̃τ , θ

∗
τ )|r with r > 0 for an iid se-

quence of Gaussian innovations [in our case this refers to the
innovations of the LAR(p) process]:

Eθ∗
τ
|LR(Iτ , θ̃τ , θ

∗
τ )|r ≤ ξr. (10)

This bound is nonasymptotic and can be applied to any inter-
val Iτ . It allows to construct a confidence interval that can be
used for testing homogeneity. The null hypothesis of time ho-
mogeneity means that the process follows the model (8) with a
constant parameter, which implies that the ML estimator θ̃τ and
the corresponding LR fulfill the risk bound (10). Therefore, the
test of homogeneity can be performed, for example, by using
the LR test statistic

|LR(Iτ , θ̃τ , θ
∗
τ )|r.

In practice, the hypothetical AR(p) parameters θ∗
τ and also the

risk bound ξr are unknown but can be computed empirically.
Details on the feasible test procedure are given in the next sec-
tion. In the estimation we are searching for an interval of ho-
mogeneity over which the process is well approximated by a
parametric model. In other words, we mimic the unknown data-
generating process by a local parametric model and simulta-
neously require that the modeling bias under this local para-
metric assumption is small. There exists a well-established the-
ory addressing this local parametric assumption under a small
modeling bias condition; see, e.g., Chen and Spokoiny (2010).
Belomestny and Spokoiny (2007) shows that an optimal choice
of an interval of local homogeneity can be obtained via an adap-
tive procedure. In the following, we concentrate on the con-
struction details and its application to the dual view on the de-
pendence structure of volatility. However, details of the results
can be found in the cited literature and a comprehensive sim-
ulation study in Section 3.4 illustrates the performance of the
adaptively selected estimators.

3.2 Adaptive Identification of the Interval of Homogeneity

This section presents a feasible adaptive selection algorithm
of the interval of homogeneity for a particular point in time.
Nevertheless, the procedure is general and is applied at every
time point. The aim of the algorithm is to select the longest
interval of homogeneity over which the parametric model is a
good approximator for the process. The number of possible in-
terval candidates is large, for example, the first interval may
include just a few past observations and the intervals consid-
ered thereafter may be increased by just one observation in each
step up to including all past observations. As this results in a
large number of candidate intervals, it is practical to consider
only a finite set of intervals Iτ = {I1

τ , . . . , IK
τ } with K candidates

as suggested in Chen and Spokoiny (2010). For computational
tractability, the intervals are increasingly ordered according to
their length, that is, I1

τ ⊂ · · · ⊂ IK
τ . To each interval there corre-

sponds a local ML estimator, denoted by θ̃k
τ with k = 1, . . . ,K.

In statistical learning theory those are called weak learners.
Note that we are using the parametric assumption where the
LAR model is only a good approximator of the process. Refer-
ring to the nonparametric smoothing literature, an increase in
the length of intervals in (8) leads to an increase in modeling
bias while the variance of the estimators is decreasing; see, for
example, Härdle et al. (2004). In accordance with the chosen
Iτ , the K weak learners therefore exhibit an increasing mod-
eling bias and decreasing variance. Under the assumption that
the interval of local homogeneity exists, the first interval I1

τ is
required to be short such that the modeling bias is small. Our in-
terest here is to select an optimal estimator that has the smallest
variance without violating the small modeling bias condition.
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Figure 4. Sequential test of homogeneity: the longer interval Ik
τ is tested after the hypothesis of homogeneity over the shorter interval Ik−1

τ
has been accepted.

The selection algorithm is based on a sequential testing
procedure. The procedure starts from the shortest interval I1

τ ,
over which local homogeneity holds by assumption. The weak
learner θ̃1

τ is automatically accepted as an eligible local homo-
geneous estimator: θ̂1

τ = θ̃1
τ . Sequentially, at each step k with

2 ≤ k ≤ K, we test the hypothesis of local homogeneity given
that at the former step k − 1 the null hypothesis has not been
rejected; see Figure 4. The selected interval Îτ corresponds to
the largest accepted interval Ik

τ such that

|LR(Ik
τ , θ̃

k
τ , θ̂k−1

τ )|r ≤ ζk, (11)

where ζk is the critical value at step k and is described in more
detail below. Note that this test (11) measures the difference of
an estimator θ̃k

τ over a “possible” interval of local homogene-
ity Ik

τ to the most recently available optimal estimator θ̂k−1
τ . It

differs from the LR test statistic implicitly linked to (10). Here
the unknown hypothetical parameter θ∗

τ is replaced by the ten-
tatively optimal estimator θ̂k−1

τ since the latter is the possibly
best estimator at the current step k. If there is no significant
difference between the two estimators, it means that there is
no significant change in the dynamics and the small modeling
bias condition is not violated. We thus accept the null hypoth-
esis of homogeneity and adopt the new estimator θ̂k

τ = θ̃k
τ as

it has a smaller variance. On the other hand, if the test statis-
tic is significant, it indicates that at least one structural change
of the process exists and the LAR model is no longer a good
approximator of the process. The sequential testing procedure
terminates. This procedure then leads to the optimal estimator
θ̂τ that corresponds to the selected interval Îτ .

The formal definition of the procedure for a particular point
in time τ is as follows:

1. Initialization: θ̂1
τ = θ̃1

τ .
2. k = 2: while |LR(Iτ , θ̃k

τ , θ̂k−1
τ )|r ≤ ζk and k ≤ K,

k = k + 1,

θ̂k
τ = θ̃k

τ .

3. Final estimate: θ̂τ = θ̂k
τ .

3.3 Choice of Parameters and Implementation Details

Clearly, the proposed procedure depends on a set of parame-
ters, such as the lag order p in the LAR setup, the set of inter-
vals, the power parameter r, and the critical values {ζk}K

k=1. In
the following we address the choice of these parameters, and
also discuss the computation of the critical values via Monte
Carlo simulations.

3.3.1 Set of Intervals. We consider a finite set with K = 13
intervals in our study. This set is composed of the following
interval lengths:

{1w,1m,3m,6m,1y,1.5y,2y,2.5y,3y,3.5y,4y,4.5y,5y},
where w denotes a week (5 days), m refers to one month
(21 days), and y to one year (252 days). In other words,
I1
τ = [τ − 1w, τ ), I2

τ = [τ − 1m, τ ), . . . , I13
τ = [τ − 5y, τ ). This

choice is motivated by the practical reason that investors are
often concerned about special investment horizons. As the set
Iτ = {Ik

τ }13
k=1 is used for each time point τ , we drop the sub-

script in the following for notational convenience. Other sets of
intervals may be considered (see also Section 3.4). However, it
is important to assure homogeneity over the shortest interval.

3.3.2 Selection of the Lag Order. While the lag selection
in the (global) AR models is straightforward, it is more com-
plicated in the LAR approach as the identification of the lo-
cal intervals of homogeneity depends on the assumed lag order.
The selection of the lag order p can be based, for example, on
the minimum average value of the information criteria obtained
from the log-likelihood values of the selected optimal estima-
tors or on the minimum root mean square forecast errors. De-
pending on the number of lags, such a procedure may of course
be computationally demanding (but still feasible).

Alternatively, we can exploit the flexibility of the LAR pro-
cedure, where the local parametric model, that is, the LAR(p)

model, is only required to provide a good approximation of the
true latent DGP over the interval of local homogeneity. The
small modeling bias guarantees that the confidence set, built
on the basis of the upper risk bound given in Equation (10),
continues to hold with a slightly smaller coverage probability;
see also Čížek, Härdle, and Spokoiny (2009). In other words,
even if the assumed lag order of the LAR model is not the true
one, but close to it, the procedure is appropriate. Section 3.4.3
addresses the issue of a wrong lag selection within a simulation
study, which supports our expectation. To investigate the dual
view on long memory, we therefore adopt in the empirical ap-
plication the most extreme case of a short-memory model, that
is, an AR(1) specification.

3.3.3 Parameter r. Belomestny and Spokoiny (2007) sug-
gest to choose r = 1/2 in order to provide a stable performance
and to minimize the computation error in the Monte Carlo simu-
lation. We follow their recommendation in our empirical appli-
cation. The sensitivity of the LAR procedure to different values
of r is also assessed within a simulation study.

3.3.4 Critical Values. In the testing procedure, critical val-
ues measure the significance of ML estimators under the hy-
pothesis of local homogeneity. The critical values are selected
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using the general approach of testing theory: to provide a pre-
scribed performance of the procedure under the null hypothesis.
In particular, we generate global homogeneous processes, that
is, AR(p) models with constant parameters in (8), ensuring ho-
mogeneity for every past interval. The critical values are then
selected so that the ML estimators under homogeneity fulfill
the risk bound (10) over each interval.

As an illustration, we calculate critical values for LAR(1)
based on 100,000 generated AR(1) processes with θt = θ∗ =
(θ∗

0 , θ∗
1 ,σ ∗)⊤ for all t:

yt = θ∗
0 + θ∗

1 yt−1 + εt, εt ∼ N(0,σ ∗2).

The starting value is set to y0 = θ∗
0 /(1 − θ∗

1 ). The sample size
of each process is 1261 in correspondence to the largest interval
of IK = I13 = 5y. Under homogeneity, the ML estimator with
respect to the largest interval is the optimal estimator (with the
smallest variance among others), that is, θ̂t = θ̂K

t = θ̃K
t . Given a

reasonable set of critical values, the risk bound (10) holds over
the longest interval of homogeneity

Eθ∗
∣∣LR

(
IK, θ̃K

t , θ̂K
t(ζ1,...,ζK)

)∣∣r ≤ ξr. (12)

We mimic here the environment of the sequential testing by re-
placing the unknown hypothetical AR(p) parameter θ∗ with the
most recently available optimal estimator θ̂k

t . In addition, we
use the notation θ̂k

t(ζ1,...,ζk)
to emphasize that the adaptively se-

lected estimator depends on the critical values {ζ1, . . . , ζk}. The
bound ξr = Eθ∗ |LR(IK, θ̃K

t , θ∗)|r is empirically calculated. We
also notice that the sequential testing procedure accumulates
uncertainty in estimation due to the increase in the degrees of
freedom. To take this into account, a condition similar to (12)
is imposed at each step:

Eθ∗
∣∣LR

(
Ik, θ̃k

t , θ̂k
t(ζ1,...,ζk)

)∣∣r ≤ k − 1
K − 1

ξr, k = 1, . . . ,K.

(13)

The sequential testing procedure is adopted to compute the
critical values. At step k = 1, we set ζ1 = ∞ in agreement with
the local homogeneity in the shortest interval I1 leading to θ̂1

t =
θ̃1

t . In the computation of ζ2 we set all the remaining ζk = ∞ for
k ≥ 3 to specify the contribution of ζ2 and choose the minimal
value of ζ2 that delivers the estimator satisfying the following
risk function:

Eθ∗
∣∣LR

(
Ik, θ̃k

t , θ̂k
t(ζ1,ζ2)

)∣∣r ≤ 1
K − 1

ξr, k = 2, . . . ,K.

Consequently with ζ1, ζ2, . . . , ζk−1 fixed, we select the minimal
value of ζk for k = 3, . . . ,K which fulfills

Eθ∗
∣∣LR

(
Iq, θ̃

q
t , θ̂

q
t(ζ1,ζ2,...,ζk)

)∣∣r ≤ k − 1
K − 1

ξr, q = k, . . . ,K.

3.3.5 Hypothetical Parameters. Clearly, critical values also
depend on the hypothetical parameters θ∗ used for generating
the homogeneous processes. In our study, we consider two ways
for selecting θ∗: a global selection where θ∗ is estimated over
the full sample period or an adaptive selection where θ∗ is rees-
timated at each time point using a rolling window with a fixed
length. For the adaptive selection, a large rolling window size
means that we put more attention to a time homogeneous sit-
uation. Such a choice leads to a rather conservative procedure

Figure 5. The set of critical values for LAR(1) model. They are
based on r = 1/2 and on θ∗ = (−0.1156,0.7827,0.5525)⊤, which are
calculated for the log realized volatility of the S&P500 index futures
under the hypothesis of constant parameters in (8). The set of interval
lengths is given on the x-axis.

with possibly low accuracy of estimation. On the contrary, a
rolling window including fewer observations is more sensitive
to structural shifts. Alternatively, the size of rolling window
can be selected in a data driven way by minimizing some ob-
jective function, for example, by minimizing the forecast error,
which is however computationally more intensive. In our em-
pirical analysis we consider the predictive performance of the
LAR procedure using both the global selection scheme as well
as the adaptive selection based on rolling windows of 1 month,
6 months, 1 year, and 2.5 years. As expected, using the time
dependent critical values (slightly) increases the accuracy of
prediction.

Figure 5 depicts the global critical values calculated for a
LAR(1) model with r = 1/2, the interval candidates given
in Section 3.3.1 and the hypothetical AR(p) parameter θ∗ =
(−0.1156,0.7827,0.5525)⊤, the estimates of an AR(1) model
fitted to our real dataset—the logarithm of realized volatility of
the S&P500 index data.

3.4 Simulation Experiments and Sensitivity Analysis

This section investigates the performance of the localized RV
approach in a number of simulation studies focusing on the
LAR(1) model. In particular, we assess its performance under
different types of structural breaks, we analyze the impact of
the parameters involved in the adaptive technique, and we as-
sess the issue of model misspecification, such as a wrong lag
selection.

3.4.1 Parameter Changes. In the following we consider
the performance of the LAR(1) approach under various sce-
narios. Specifically, we simulate from an AR(1) with suddenly
and gradually changing parameters in order to investigate the
appropriateness of the LAR approach under different types of
changes. The actual values of the parameters are again based on
the estimates of an AR(1) model fitted to the full S&P500 real-
ized volatility data. In each scenario, only one parameter varies
over time while the other two remain constant. The processes
of the changing parameters are displayed in Figures 6 to 8. The
character S denotes a scenario with sudden changes of para-
meters, where big changes occur at time points t = 1501 and
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Chen, Härdle, and Pigorsch: Localized Realized Volatility Modeling 1383

Figure 6. Simulation results for scenarios S1 and G1 (changing parameter: θ0t). The red dashed line represents the process of the true
time-varying parameter (S1: θ∗

0t = 1.1557 for t ∈ [1501,2000],0.3467 for t ∈ [2401,2800],−0.1156 otherwise) and the bold solid line gives
the average value of the estimated parameter over 500 simulations. The shaded area corresponds to the pointwise 95% confidence intervals. The
average values of the selected homogeneous intervals for each time point are presented in the bottom panel of each scenario. The online version
of this figure is in color.

t = 2000 and small ones at t = 2401 and t = 2800, respectively.
The G scenarios, on the contrary, denote gradual changes where
the parameter gradually reaches to a new level within 100 steps
after the change point. For example, in scenario G2 the au-
toregressive parameter θ1t gradually changes from 0.7827 to
−0.7827 over the period from 1501 to 1600, stays at the new
level until it drops gradually back to 0.7827 over the period
from 2001 to 2100. Similarly the small gradual changes occur
over the periods [2401,2500] and [2801,2900]. For each sce-

nario, we generate 500 LAR(1) processes with 3261 observa-
tions. The first 1261 observations, corresponding to the largest
interval I13 = 5 years, are used as training set.

The average value of the estimated parameters (solid line)
and the pointwise 95% confidence intervals (shaded areas) are
displayed in Figures 6 to 8 along with the true values of θ∗

(dashed line). For each point in time the average value of the se-
lected homogeneous intervals is also presented. Obviously, the
selected homogeneous intervals are long when the parameters
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Figure 7. Simulation results for scenarios S2 and G2 (changing parameter: θ1t). The red dashed line represents the process of the true
time-varying parameter (S2: θ∗

1t = −0.7827 for t ∈ [1501,2000],0.6261 for t ∈ [2401,2800],0.7827 otherwise) and the bold solid line gives the
average values of the estimated parameter over 500 simulations. The shaded area corresponds to the pointwise 95% confidence intervals. The
average value of the selected homogeneous intervals for each time point are presented in the bottom panel of each scenario. The online version
of this figure is in color.

are constant over a long past time interval, but decline sharply
when shifts occur. It indicates that the LAR procedure selects
reasonable intervals of homogeneity.

In order to assess the performance of the local procedure
in more detail, we additionally compute the detection speed,
that is, the number of periods required for reaching 50% and
75% of the new level of the parameter. In the G scenarios the
counting starts once the parameter has reached its new level,
that is, after the gradual changes have finished. In the S sce-

narios the counting starts immediately from the change point.
Table 2 reports the results. In general, the adaptive procedure
works well. It shows that the procedure reacts quickly to a big
shift, but slowly to a small shift. For example in the scenario
S2, where the AR coefficient θ1t jumps at t = 1501, the tech-
nique only needs 12 periods to catch up 50% of the big shift,
while for the small shift at t = 2401 it takes 213 periods. This
finding, however, is quite reasonable. After a small change of
the parameters of the DGP the simulated observations may still
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Chen, Härdle, and Pigorsch: Localized Realized Volatility Modeling 1385

Figure 8. Simulation results for scenarios S3 and G3 (changing parameter: σt). The red dashed line represents the process of the true
time-varying parameter (S3: σ∗

t = 0.1000 for t ∈ [1501,2000],0.4000 for t ∈ [2401,2800],0.5525 otherwise) and the bold solid line gives
the average values of the estimated parameter over 500 simulations. The shaded area corresponds to the pointwise 95% confidence intervals. The
average value of the selected homogeneous intervals for each time point are presented in the bottom panel of each scenario. The online version
of this figure is in color.

be very close to those of the previous DGP and it is there-
fore hard for the procedure to differentiate between the two
processes. In this case, more observations from the new DGP
are needed for the identification of the parameter change. Nev-
ertheless, the technique is able to detect the changes as more
and more small shifts accumulate over time. Similar patterns
are observed in the G scenarios which correspond to many small
subsequent shifts. The results for the scenarios of σt further
show that positive shifts, corresponding to an increase in the

signal-to-noise ratio, can be only slowly detected; see also Fig-
ure 8.

3.4.2 Impact of Parameters. In the following we investi-
gate the effect of the choice of parameters on the performance
of the LAR procedure. Here we compute the detection speed of
the LAR approach based on different sets of intervals {Ik}K

k=1,
different values of the power transformation parameter r and
of the hypothetical AR(p) parameters θ∗ used in the compu-
tation of the critical values. Moreover, we compute the root
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Table 2. Detection speeds for the different scenarios

S1 S2 S3 G1 G2 G3

t 50% 75% 50% 75% 50% 75% t 50% 75% 50% 75% 50% 75%

1501 21 23 12 18 18 20 1601 207 232 1 4 12 56
2001 9 19 13 19 169 >400 2101 1 1 1 6 88 >400
2401 66 374 213 >400 1 1 2501 169 >400 183 >400 1 1
2801 20 243 56 >400 293 >400 2901 1 166 1 346 176 >400

NOTE: Reported are the number of steps required for reaching 50% and 75% of the parameter change.

mean square forecast errors (RMSFEs) of LAR forecasts based
on different choices of these parameters. The results are com-
pared to our “default” case, where the parameters are set to
the suggested values in Section 3.3, that is, the interval set is
given by Iτ = {Ik

τ }13
k=1 = {1w, 1m, 3m, 6m, 1y, 1.5y, 2y, 2.5y,

3y, 3.5y, 4y, 4.5y, 5y}, r = 1/2 and the vector of hypothetical
AR(1) parameters θ∗ = (−0.1156,0.7827,0.5525)⊤. For the
ease of exposition we only report the results for the scenarios
with changes in the autoregressive parameter, that is, S2 and
G2, as those are also particularly interesting in the model mis-
specification analysis discussed later. In particular, we consider
two alternative sets of intervals. In order to assess the impact
of the maximum length of the intervals, we truncate the default
set of intervals at K = 9 (corresponding to 3 years), while the
second scenario aims at investigating the sensitivity of the pro-
cedure towards a finer grid of intervals by including more in-
termediate subintervals, that is, introducing a three-months grid
such that K = 22. We further evaluate the impact of a smaller
value and a larger value of the power transformation parame-
ter setting r = 1/3 and r = 1. As the critical values rely on the
choice of the hypothetical parameters, we check the predictive
performance using 80%θ∗ and 120%θ∗ to generate the homo-
geneous processes in the computation of critical values, which

can be interpreted as an underestimation and overestimation of
the actual parameter values, respectively.

Table 3 presents the results. In order to facilitate the compar-
ison, we report here the relative average RSMFE of one-step
ahead predictions, that is,

R-RMSFE =
500∑

j=1

R-RMSFEnondefault
j

/ 500∑

j=1

R-RMSFEdefault
j ,

where the average value of the RMSFEs with default choice
is 0.5411 for S2 and 0.5374 for G2. We also define the rela-
tive detection speed as the difference of the average detection
speed of the LAR procedure based on nondefault parameters to
the average detection speed using the default choice. Thus, a
positive/negative value indicates a slower/faster reaction of the
technique with nondefault choices. The results illustrate well,
that the LAR procedure is quite robust to the choice of the pa-
rameters. The “worst” cases appear when CVs are calculated
based on imprecise hypothetical AR(p) parameters: a 2.74%
improved predictability for 0.8θ∗ and a 3.95% worse perfor-
mance for 1.2θ∗. It suggests that using alternative choices of
the parameters delivers only small deviations from the default
choices. Moreover, there are no crucial changes in the detec-
tion speed in the presence of large parameter changes, although

Table 3. Sensitivity analysis: impact of parameters

Choice of parameters

K = 9 K = 22 r = 1/3 r = 1 0.8θ∗ 1.2θ∗

Scenario S2
R-RMSFE: 0.9956 1.0128 1.0102 0.9974 0.9726 1.0395

R-DS: 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%
t = 1501 −1 −1 2 2 0 0 2 2 −1 −4 6 5
t = 2001 0 0 3 0 1 0 2 0 −3 0 5 1
t = 2401 0 – 5 – 5 – 0 – 0 – 47 –
t = 2801 >344 – >344 – >344 – >344 – >344 – >344 –

Scenario G2
R-RMSFE: 0.9946 1.0132 1.0143 0.9922 0.9728 1.0506

R-DS: 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%
t = 1601 0 0 0 0 0 0 0 0 0 0 0 4
t = 2001 0 0 0 0 0 0 0 0 0 0 0 6
t = 2501 0 – 0 – 0 – 0 – 0 – 184 –
t = 2801 >399 >54 >399 >54 >399 >54 >399 >54 >399 >54 >399 >54

NOTE: Reported are the relative one-step-ahead RMSFEs and the relative detections speeds (R-DS) in the scenarios S2 and G2 for different choices of the parameters. The default
choice (i.e., the benchmark) is given by K = 13, r = 1/2, and θ∗ = (−0.1156,0.7827,0.5525)⊤. In the alternative choices only one parameter is changed fixing the other ones to the
default values. K = 9 corresponds to a scenario with reduced maximum interval length while K = 22 is characterized by a finer grid of intervals. More details are given in the text.
Scenarios S2 and G2 are displayed in Figure 7. “–” indicates that the detection speeds in both scenarios are greater than 400.
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for small parameter changes the detection speed slows down.
In general, the sensitivity analysis supports our default choice
of parameters and the results suggest that for an adaptive, data-
driven computation of the critical values the selection of the pa-
rameters may become even less important with respect to pre-
dictability.

3.4.3 Model Misspecification. In this section we investi-
gate the robustness of the LAR procedure towards model mis-
specification, that is, if the true DGP has a different lag structure
than the assumed one or, even worse, if the true DGP follows
a different dynamic structure. The analysis is twofold: we first
focus on short-memory models, which allow us to evaluate the
impact of the lag order, and then consider the performance of
the LAR procedure if the true DGP is a long-memory process.

For the short-memory scenarios we consider the local con-
stant model, that is, yt = θ0t + εt, εt ∼ N(0,σ 2

t ) and the LAR
model with lag order p = 2, 5, and 10, yt = θ0t +

∑p
j=1 θjtyt−j +

εt, εt ∼ N(0,σ 2
t ), in order to account for the situations where

the true DGPs either have less or more lags than is assumed in
the LAR(1). The actual parameter values are again set to the
ML estimates obtained by fitting the globally constant version
of these models to the full S&P500 data sample. The design of
the time variation in the parameters is similar to the scenarios in
Figures 6 to 8, where the big and small changes are determined
by a new level of the parameters (e.g., −1θp and 0.8θp respec-
tively). As the focus is on the impact of a misspecification in the
lag order, we consider here only cases with changes in θ0t in the
local constant model and changes in θpt, the pth autoregressive
part of the LAR(p) model. In the long-memory scenario we
simulate from an ARFIMA(2,0.47,0) with constant parame-
ters. The specification of the ARFIMA model is also guided by
the empirical results obtained for the full S&P500 sample; see
Section 4. For each DGP, 500 series are simulated, each with a
length of 3261 observations.

The sensitivity of the LAR procedure towards model mis-
specification is assessed in terms of predictability. In particu-
lar, we compute for each simulated series 2000 one-step-ahead
forecasts based on: (i) the “wrong” but flexible LAR(1) ap-
proach, where the intervals of local homogeneity are selected
by using the adaptive technique; (ii) the true data-generating
model using optimally time-varying window size. More pre-
cisely, for a particular time point the optimal window is either
identified using the LAR(p) procedure (for LAR scenarios) or
assumed to be the interval used for generating the process (oth-
erwise). In addition, the shortest/longest length of the intervals
is set to include 15/1250 observations, which is in line with the
assumption of homogeneity in the LAR procedure and assures
the feasibility of estimation. The average value of the RMSFEs
for different scenarios are reported in Table 4. In most cases, the

Table 4. Sensitivity analysis: model misspecification

DGP: Local const. LAR(2) LAR(5) LAR(10) ARFIMA
θ0t θ2t θ5t θ10t

D̂GP 1.0225 0.6247 0.5664 0.5568 0.5105
LAR(1) 0.9339 0.6293 0.5848 0.5724 0.5619

NOTE: Reported are the average RMSFEs based on the LAR(1) procedure and the esti-
mated data-generating processes, D̂GP.

forecasts based on the LAR(1) specification yield only slightly
bigger RSMFEs than the true DGPs. It supports that the LAR
procedure with the lag order p = 1 can provide a quite accurate
approximation. In other words, the LAR procedure is quite ro-
bust to the selection of the lag order p. Moreover, the LAR(1)
performs also well if the true source of the long-range depen-
dence is a long-memory process, confirming that long mem-
ory can well be approximated by a short-memory model with
breaks. In summary, the simulation shows that the local adap-
tive procedure with lag order p = 1 is a reasonable approxima-
tion, even if the underlying process deviates from the LAR(1)
setup.

4. ALTERNATIVE MODELS

As we aim at a comparison of the LAR procedure to the
long memory view of volatility, we primarily consider alterna-
tive models that emanate from this view. Nevertheless, we also
compare our procedure to the smooth transition regression tree
(STR-Tree) model, that is, a model with breaks.

The ARFIMA model is one of the standard models used in
the realized volatility literature; see, for example, Andersen et
al. (2003). Under the ARFIMA(p,d,q) model, the dynamics of
logarithmic realized volatility is given by

φ(L)(1 − L)d(log RVt − µ) = ψ(L)ut, (14)

with φ(L) = 1 − φ1L − · · · − φpLp, ψ(L) = 1 + ψ1L + · · · +
ψqLq, L denoting the lag operator, and d ∈ (0,0.5) is the frac-
tional difference parameter. Given the empirical distributional
properties of logarithmic realized volatility, ut is usually as-
sumed to be a Gaussian white noise process, which facilitates
the exact maximum-likelihood estimation of the model.

The HAR model aims at reproducing the observed volatil-
ity phenomenon. However, in contrast to the ARFIMA model,
the HAR model is formally not a long-memory model. Instead,
the correlation structure is approximated by the sum of a few
multiperiod volatility components. The use of such compo-
nents is motivated by the existence of heterogenous agents hav-
ing different investment horizons; see Corsi (2009) and Müller
et al. (1997). In particular, the HAR model put forward by
Corsi (2009) builds on a daily, weekly, and monthly compo-
nent, which are defined by

RVt+1−k:t = 1
k

k∑

j=1

RVt−j

with k = 1,5,21, respectively. The HAR model is then given
by

log RVt = α0 + αd log RVt−1

+ αw log RVt−5:t−1 + αm log RVt−21:t−1 + ut (15)

with ut typically being also Gaussian white noise. Maximum-
likelihood estimation is straightforward. Interestingly, the HAR
and ARFIMA models have been found to obtain a similar fore-
casting performance with both models outperforming the tradi-
tional volatility models based on daily returns; see, for example,
Andersen, Bollerslev, and Diebold (2007) and Koopman, Jung-
backer, and Hol (2005).

It is sometimes argued that volatility exhibits both long mem-
ory and structural breaks. We therefore compare our procedure
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also to the adaptive ARFIMA model, that has recently been
developed in Baillie and Morana (2009a) for modeling infla-
tion dynamics. The model is based on a time-dependent inter-
cept that is given by a Flexible Fourier Form representation,
and an innovation term that follows a stationary long-memory
process. The flexible functional form of the intercept allows for
smooth as well as sharp nonlinearities without the need to iden-
tify break points and the magnitude of the breaks. Baillie and
Morana (2009b) have shown that a FIGARCH model with such
a time dependent intercept provides superior volatility forecasts
in comparison to alternative GARCH and adaptive GARCH
specifications. We therefore adopt the adaptive ARFIMA model
for modeling logarithmic realized volatility, which is given by

log RVt = µ +
k∑

j=1

(sin(2π jt/T) + δj cos(2π jt/T)) + ut, (16)

where

φ(L)(1 − L)dut = ψ(L)ϵt.

It is characterized as A-ARFIMA(p,d,q, k).
The STR-Tree model proposed in da Rosa, Veiga, and

Medeiros (2008) provides an interesting alternative to the LAR
procedure. It builds on the methodology of classification and
regression tress, where it is assumed that the dependent vari-
able is given by the sum of regression models, each of which is
determined by recursive partitions of the covariate space. The
structure of a regression tree model is usually represented in
the format of a binary choice decision tree with a set of parent
and terminal nodes, denoted here by J and K, respectively. The
splits at the parent nodes are sharp. The STR-Tree model in-
stead smoothes the splits by replacing the indicator function by
a logistic function

G(x;γ , c) = 1
1 + e−γ (x−c) .

Scharth and Medeiros (2009) advocate the use of the STR-
Tree approach for modeling logarithmic realized volatility, that
is,

log RVt = α⊤wt +
∑

k∈K
θ⊤

k ztBJk(xt,βk) + ut, (17)

where xt = (x1,t, . . . , xm,t)
⊤ denotes the vector of explanatory

variables, or in terms of the smooth transition literature the so-
called transition variables, zt = (log RVt−1, . . . , log RVt−p)

⊤,
and wt is a vector of linear regressors that are unaffected by
the tree, wt ! xt. Moreover,

BJk(xt,βk) =
∏

j∈J
G

(
xsj,t;γj, cj

)nk,j(1+nk,j)/2

×
[
1 − G

(
xsj,t;γj, cj

)](1−nk,j)(1+nk,j), (18)

where sj ∈ {1, . . . ,m} gives the transition variable being rele-
vant at node j and

nk,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 if parent node j is not included
in the path to terminal node k

0 if the right-child node of parent node j
is included in the path to terminal node k

1 if the left-child node of parent node j
is included in the path to terminal node k.

The spirit of the STR-Tree model is similar to the LAR pro-
cedure in the sense that realized volatility is approximated
by local AR(p) models. However, in the STR-Tree model the
regimes are due to partitions of the transition variables, such
as lagged returns (capturing the well-known leverage effect),
which are determined globally, that is, over the full sample pe-
riod. The LAR instead is more flexible, as the interval of ho-
mogeneity is determined locally. Moreover, it does not require
the specification of a set of variables that may lead to parameter
changes. In fact, any event or changes in variables that affect the
parameters of the AR(p) model such that local homogeneity is
rejected are automatically encountered in the procedure.

5. EMPIRICAL ANALYSIS

We now turn to the empirical investigation of the dual views
on the dynamics of volatility. We focus our analysis on realized
volatility of the S&P500 index futures from January 2, 1985 to
February 4, 2005 (see Section 2). Like in the simulation exer-
cise we use the first 5 years of our sample as a training set. For
the local autoregressive procedure this means that January 2,
1990 is the first time point for which we estimate the LAR
model and that we allow the longest interval of homogeneity
(K = 13) to be 5 years with the remaining set of subintervals
given as in the Section 3.3, that is, 1 week (k = 1), 1 month
(k = 2), . . ., 4.5 years (k = 12).

The estimation of the LAR model is conducted for different
sets of critical values, in order to assess also the empirical sen-
sitivity of the approach with respect to the choice of the critical
values. We therefore consider critical values obtained from a
Monte Carlo simulation based on the parameter values of the
AR model being estimated over the full sample period. We re-
fer to this as the global LAR model. The other sets of criti-
cal values are obtained adaptively using a 1 month, 6 months,
1 year, and 2.5 years sample period. Figure 9 shows the dis-
tribution of the lengths of the selected homogenous intervals
of the LAR(1) model over the evaluation period (January 2,
1990 to February 4, 2005) based on the global and the adaptive

Figure 9. Boxplot of the homogenous intervals selected by the
LAR(1) procedure with 1 month, 6 months, 1 year, 2.5 years adaptive
critical values and the global LAR(1) procedure.

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] a

t 0
7:

00
 2

5 
A

pr
il 

20
12

 



Chen, Härdle, and Pigorsch: Localized Realized Volatility Modeling 1389

critical values. Obviously, the global LAR(1) model exhibits a
slightly higher variation in the length of the selected intervals.
Interestingly, with the exception of the adaptive 1 month and 6
months LAR(1) models for which the median interval length is
at k = 3, we find that the median is k = 4, which corresponds
to 6 months of homogeneity. Furthermore, note that the average
interval length is for nearly all LAR(1) models about 6 months,
which indicates only a weak sensitivity of the interval selec-
tion procedure to the sample size used in the computation of
the critical values.

In our analysis we assess the forecasting performance for
several periods into the future. Such multiperiod predictions
may seem to be at odds with the idea of the LAR procedure,
which builds on local homogeneity. Local homogeneity has the
advantage that forecasts are based only on the most recent in-
formation being relevant at the particular forecast origins. But
for iterative long-term predictions it also implies that the pro-
cedure may perform poor as for increasing forecast horizons it
becomes more likely that the assumption of local homogeneity
is violated. Nevertheless, the advantage of local homogeneity
can also be transferred to the case of multiperiod predictions by
incorporating the forecast horizon into the adaptive selection
via a restricted LAR(h) specification:

log RVt+h = θ0t + θht log RVt + εt, εt ∼ N(0,σ 2
t ), (19)

which leads to a direct forecasting approach. We adopt this
specification in the empirical analysis.

Table 5 presents the RMSFEs of the LAR model for the 1-
day, 5-days, and 10-days ahead forecasts using the different sets
of critical values. The empirical results reveal that an adaptive
approach and a reduction of the sample period underlying the
computation of the critical values introduces more flexibility
into the procedure, which seems to result in an increase in fore-
cast accuracy.

We investigate the dual views by comparing the forecasting
performance of the LAR procedure to the alternative models. To
this end, we recursively compute (logarithmic) realized volatil-
ity forecasts from all model types over the evaluation period.
Moreover, as we have observed different degrees of persistence
in log realized volatility for different lengths of the sample pe-
riod (see Figure 1), we consider for each of the alternative mod-
els forecasts conditional on different information sets, that is,
different sample sizes.

Table 5. Root mean square forecast errors of the LAR model based
on different sets of critical values

Sample size used in
the critical values h = 1 h = 5 h = 10

1m 0.4823 0.4619 0.4615
6m 0.4791 0.4791 0.4873
1y 0.4842 0.4881 0.4945
2.5y 0.4898 0.5027 0.5056

Global 0.4986 0.5660 0.5884

NOTE: The table reports the root mean square forecast errors (RMSFE) of the h-day
ahead logarithmic realized volatility forecasts of the S&P500 index futures based on the
LAR(h) models. The first column refers to the information set that is used in the compu-
tation of the critical values. For example, the number reported in the first upper-left cell
gives the RMSFE of forecasts based on the LAR(1) approach with critical values being
computed adaptively over the previous month. Global indicates that the critical values have
been computed based on the full sample. Bold numbers indicate the minimum RMSFE for
each forecast horizon.

More precisely, forecasts of the ARFIMA, adaptive ARFI-
MA, and HAR models are based on a rolling window scheme,
with rolling window sizes ranging from 3 months to 5 years,
which is broadly consistent with our choice of subintervals in
the LAR procedure. The conditioning on the different sample
sizes is also an attempt to account for the possibility that both
long memory and structural breaks are driving volatility. For
the STR-Tree model we follow Scharth and Medeiros (2009),
and form forecasts based on the recursive scheme. We addition-
ally compute forecasts from constant AR models conditional on
the set of rolling windows used also in the HAR and ARFIMA
models, as this allows for a direct evaluation of the relevance of
the local selection of the interval length employed in the LAR
procedure. Such an evaluation requires that forecasts from AR
models are also based on the direct forecasting approach.

The forecasts of the other models are computed iteratively,
such that their specifications remain the same for all forecast
horizons. In particular, the ARFIMA forecasts are based on an
ARFIMA(2,d,0) specification, which was selected according
to the Akaike as well as the Bayesian information criteria using
the full sample period. For the adaptive ARFIMA model we
obtain an A-ARFIMA(1,d,1,2) specification with γ2 = 0. Es-
timation and forecasting is carried out using the Ox ARFIMA
1.04 package; see Doornik and Ooms (2004, 2006). For the
STR-Tree model we consider the daily lagged return as the tran-
sition variable in order to account for the most popular leverage
specification. Moreover, for consistency with the short-memory
models considered in this paper, we set p = 1, and let only the
AR(1) coefficient be affected by the tree as indicated by statis-
tical tests on the relevance of explanatory variables in the tree
based on the full sample period. Over this period the model
is characterized by two splits. In computing the forecasts we
respecify the tree structure and reestimate the model every pe-
riod. We are grateful to Marcel Scharth for providing us with his
code. Multistep forecasts are based on conditional simulations
as explained in the appendix of Scharth and Medeiros (2009).

For the ease of exposition we do not report all forecasting
results but instead focus only on those models that yielded the
minimal RMSFE within each model class. Table 6 thus reports
the RMSFE of the “best” models along with the correspond-
ing conditioning information set for which the forecasts have

Table 6. Root mean square forecast errors and information sets
of the best models

h = 1 h = 5 h = 10

Model RMSFE Info set RMSFE Info set RMSFE Info set

LAR 0.4791 6m 0.4619 1m 0.4615 1m
AR 0.5047 3m 0.5712 3m 0.5873 3m
STR-Tree 0.5547 Rec. 0.7746 Rec. 0.8738 rec.
ARFIMA 0.4991 3y 0.5827 3y 0.6207 3y
A-ARFIMA 0.5020 4.5y 0.5904 4.5y 0.6312 4y
HAR 0.5014 3y 0.5848 2.5y 0.6232 2.5y

NOTE: The table reports the root mean square forecast errors (RMSFE) of the h-day
ahead logarithmic realized volatility forecasts of the S&P500 index futures based on the
various models. Reported are the results for the models yielding minimal RMSFE within
each model class. “Info set” refers to the corresponding sample size used in the computa-
tion of the critical values (for the LAR procedure) or to the size of the rolling window used
in model estimation and prediction (for the AR, ARFIMA, and HAR models). “Rec.” refers
to forecasts based on the STR-Tree model, for which the recursive forecasting scheme is
employed.
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Figure 10. Time-evolvement of the actual log realized volatility (grey line in the background) and the one-step ahead forecasts of (i) the
LAR(1) model with critical values being computed over 6 months and (ii) the ARFIMA model based on a 3-year rolling window. These model
specifications yield the minimum RMSFE within each model class (see Table 6).

been found to minimize the RMSFE. That is the information
set reports either the rolling window size or the sample size
used in the computation of the critical values. An illustration of
the time-evolvement of the forecasts is presented in Figure 10
which depicts the one-day ahead forecasts of the LAR(1) and
ARFIMA models having minimal RMSFEs.

Interestingly, according to the RMSFEs our LAR procedure
provides the most accurate forecasts at all forecast horizons.
Note that this already holds for the forecasts based on the LAR
model with globally computed critical values, which can be
readily inferred by comparing the results reported in Tables 5
and 6.

The direct comparison of the LAR forecasts with those based
on the constant AR models also reveals, that the selection of the
locally homogenous intervals is indeed important. The adaptive
procedure, which determines at each time point the adequate
length of the time interval over which the AR model is appro-
priate, is superior. Note that for increasing window sizes, that
is, larger information sets, the predictability of the constant AR
model worsens (results are not reported gere, but are available
from the authors upon request). This might be expected as for
larger sample sizes, for example, more than 2 years, the au-
tocorrelation function of realized volatility exhibits more per-
sistence and, thus, an AR model tends to be misspecified. The
STR-Tree model, instead, is better suited to generate long-range
dependence as it picks local AR(1) specifications that depend
on the state of the lagged daily return. It is therefore surpris-
ing that the model performs worse than those without lever-
age effect. However, this may be due to our model specifica-
tion that makes only use of past daily returns. For a different

dataset, Scharth and Medeiros (2009), for example, find a su-
perior performance of the STR-Tree model where the splits are
determined by returns accumulated over the past 90, 39, 5, and
2 days, indicating that long-term returns are important when
modeling and forecasting realized volatility. A more thorough
treatment of the leverage effect is the subject of future research.

In accordance to the empirical results reported in the real-
ized volatility literature so far, the HAR and ARFIMA models
exhibit similar forecast accuracy with a slight tendency of the
ARFIMA model to outperform the HAR model. Interestingly,
the results indicate that the inclusion of structural changes in
the form of the adaptive ARFIMA model does not lead to im-
provements in the predictability of the S&P500 realized volatil-
ity. Moreover, all long-memory models are outperformed by the
LAR method. This becomes even more pronounced for larger
forecast horizons. In order to get a feeling of whether this is due
to a comparison of direct with iterated forecasts we have addi-
tionally computed direct forecasts for the HAR model. We find
that the iterated method provides better forecasts than the di-
rect one (e.g., the RSMFE of the direct HAR forecasts based
on a 2.5 year rolling window size is 0.5857 for h = 5 and
0.6240 for h = 10), which is consistent with the recent empir-
ical findings reported in Ghysels, Rubia, and Valkanov (2009)
and Marcellino, Stock, and Watson (2005).

We further evaluate the predictive performance of the differ-
ent realized volatility models on the grounds of the so-called
Mincer–Zarnowitz regressions, that is, by regressing the ob-
served log realized volatility on the corresponding forecasts of
model i:

log RVt = α + β log R̂Vt,i + νt. (20)
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Table 7. Results of the Mincer–Zarnowitz regressions and
Diebold–Mariano tests for the volatility models

with minimal RMSFEs

DM (best LAR)
Model p-value R2 t-stat.

h = 1
LAR, 6m 0.7242 0.7180
3m AR(1) 0.6203 0.6872 −9.5125
STR-Tree 0.0014 0.6242 −14.8673
3y ARFIMA 0.6375 0.6942 −6.2782
4.5y A-ARFIMA 0.0388 0.6909 −6.8551
3y HAR 0.8842 0.6910 −6.9275

h = 5
LAR, 1m 0.1265 0.7377
3m AR(5) 0.2326 0.6004 −14.4786
STR-Tree 0.0000 0.4860 −15.3163
3y ARFIMA 0.5656 0.5835 −14.2157
4.5y A-ARFIMA 0.0233 0.5745 −14.1834
2.5y HAR 0.7427 0.5803 −14.7150

h = 10
LAR, 1m 0.0705 0.7392
3m AR(10) 0.0897 0.5789 −13.8568
STR-Tree 0.0000 0.1911 −14.7564
3y ARFIMA 0.7593 0.5273 −12.8450
4y A-ARFIMA 0.2201 0.5123 −12.4366
2.5y HAR 0.6611 0.5236 −13.0511

NOTE: Reported are results of the Mincer–Zarnowitz regressions and of the modified
Diebold–Mariano tests for the models yielding the minimum RMSFE within each model
class (see Tables 5 to 6). The results are reported for different forecast horizons h (in
days). The second column reports the p-value of a F-test for H0 :α = 0 and β = 1, and
the third column reports the coefficient of determination (R2) of the Mincer–Zarnowitz
regression given in Equation (20). The last column gives the modified t-statistics of the
Diebold–Mariano test on equal forecast performance, that is, H0 :µ = 0 in the regression
e2

t,LAR − e2
t,i = µ + vt with et,i denoting the forecast error of model i. Results are based

on heteroscedasticity and autocorrelation robust Newey–West (co)variances.

This allows to test for the unbiasedness of the different fore-
casts. Table 7 reports the coefficients of determination (R2s) of
this regression along with the p-value of the F-test on unbiased
forecasts, i.e., H0 :α = 0 and β = 1. Note that for the ease of
exposition we again solely present here the comparison of the
models performing best in terms of the RMSFE.

The results indicate that, with the exception of the forecasts
of the STR-Tree model, none of the forecasts is significantly
biased at the 5% significance level. The coefficients of determi-
nation reported in Table 7 indicate a superior forecasting per-
formance of the adaptive LAR models. We investigate this re-
sult further and test for the significance of the observed dif-
ferences in the forecast accuracies. In particular, we conduct
a pairwise test on the equality of the mean square forecast er-
rors (MSFE) of the LAR procedure and the other models; see
Diebold and Mariano (1995). To this end, we regress the differ-
ence between the squared forecast errors of the LAR model and
those of the competing model i, that is, e2

t,LAR − e2
t,i, on a con-

stant µ. The null hypothesis of equal MSFEs is equivalent to
H0 :µ = 0. Table 7 reports the modified Diebold–Mariano test
statistics proposed in Harvey, Leybourne, and Newbold (1997).
Obviously, the null hypothesis is always strongly rejected in fa-
vor of a significant better forecasting performance of the adap-
tive LAR model, as indicated by the significant negative sign of
the t-statistic. Overall, the LAR approach seems to be superior.

However, it should be noted that this conclusion is based on
a pairwise comparison of the best models and there may be
LAR models for which this is not the case. A simultaneous
comparison of the predictive ability of all competing models
would be desirable at this stage. However, the corresponding
existing tests, like the test for superior predictive ability (SPA)
of Hansen (2005) and the model confidence set approach of
Hansen, Lunde, and Nason (2010) are not applicable here, as
the forecasts are based on time varying window sizes (given by
the locally selected interval of homogeneity and the recursive
forecasting scheme employed in the STR-Tree model), which
violates the assumption of strict stationarity of the loss differen-
tial. The Diebold–Mariano test, in contrast, can still be applied;
see Giacomini and White (2006). To obtain a broader picture on
the performance of the LAR procedure, we therefore extend the
pairwise comparisons. In particular, we additionally conduct a
pairwise comparison of forecasts of the alternative models con-
ditional on a moderately small sample (1 year) and on a large
sample (5 years) with forecasts from the LAR models based
on 1 year adaptively and on globally computed critical values.
Note that for the ease of exposition we do not report the cor-
responding results here, however, they are available from the
authors upon request. Overall, the results are similar to the ones
reported in Table 7. Only for the global LAR model, we fail to
reject the null in the comparison with the one-step-ahead fore-
casts of the long-memory models. But also in those cases the
t-statistics are negative.

6. CONCLUSION

This paper investigates a dual view on the long-range depen-
dence of realized volatility. While the current realized volatility
literature primarily advocates the use of long-memory models
to explain this phenomenon, we argue that volatility can alter-
natively be described by short-memory models with structural
breaks. To this end we propose localized realized volatility
modeling where we consider the case of a dynamic short-
memory model. In particular, at each point in time we deter-
mine an interval of homogeneity over which the volatility is
approximated by an AR process. Our approach is based on lo-
cal adaptive techniques developed in Belomestny and Spokoiny
(2007), which make it flexible and allow for time-varying co-
efficients. It does neither require the specification of the type,
magnitude or reasons of breaks. This contrasts to smooth tran-
sition or regime switching models.

Our procedure relies on parameters, that have to be prede-
termined. A simulation study, however, shows that the proce-
dure is quite robust to the choice of parameters and to model
misspecification. Interestingly, the method performs also well,
even if the true source of the long-range dependence is a long-
memory process. Moreover, we show, that an adaptive view on
intervals of local homogeneity (and a decrease in the respective
underlying sample size) is increasing the procedure’s flexibility,
yielding higher accuracy in estimation and a better forecasting
performance. Furthermore, the choice of the underlying para-
meters can also be based upon criteria reflecting the user’s ob-
jective, such as in sample fit or forecasting criteria. Although
we have refrained from doing so in our empirical application,
we find that our adaptive localized realized volatility procedure
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provides accurate volatility forecasts and significantly outper-
forms the standard long-memory realized volatility models and
two alternative models with breaks. It seems that our view on
volatility is practical and realistic.

Extensions of the local parametric model to explicitly ac-
count for other important data characteristics, such as the lever-
age effect, are left for future research.

[Received January 2009. Revised June 2010.]
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Predicting default risk is important for firms and banks to operate successfully. There are
many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios.
Here we propose the so-called Support Vector Machine (SVM) to predict the default risk of
German firms. Our analysis is based on the Creditreform database. In all tests performed in
this paper the nonlinear model classified by SVM exceeds the benchmark logit model, based
on the same predictors, in terms of the performance metric, AR. The empirical evidence is in
favor of the SVM for classification, especially in the linear non-separable case. The sensitivity
investigation and a corresponding visualization tool reveal that the classifying ability of SVM
appears to be superior over a wide range of SVM parameters. In terms of the empirical results
obtained by SVM, the eight most important predictors related to bankruptcy for these
German firms belong to the ratios of activity, profitability, liquidity, leverage and the
percentage of incremental inventories. Some of the financial ratios selected by the SVM model
are new because they have a strong nonlinear dependence on the default risk but a weak linear
dependence that therefore cannot be captured by the usual linear models such as the DA and
logit models.

Keywords: Statistical learning theory; Applications to default risk; Capital asset pricing;
Economics of risk

1. Introduction

Predicting default probabilities and deducing the corre-
sponding risk classification is becoming more and more
important in order for firms to operate successfully and
for banks to clearly grasp their clients’ specific risk class.
In particular, the implementation of the Basel II capital
accord will further exert pressure on firms and banks. As
both the risk premium and the credit costs are determined
by the default risk, the firms’ ratings will have a deeper
economic impact on banks as well as on the firms
themselves than ever before. Thus, from a risk manage-
ment perspective, the choice of a correct rating model that
can capture consistent predictive information concerning
the probabilities of default over some successive time
periods is of crucial importance.

There are strands of the literature that deal with the
statistical and stochastic analysis of default risk
(Burnham and Anderson 1998, Caouette et al. 1998,

Shumway 1998, Sobehart et al. 2000, Saunders and Allen
2002, Gaeta 2003, Chakrabarti and Varadachari 2004,
Giesecke 2004, Zagst and Hocht 2006). One models
default events using accounting data, whereas other
models recommend using market information.
Market-based models can be further classified into
structural models and reduced form models. There is
also a hybrid approach that uses accounting data as well
as market information to predict the probability of
default. The market-based approach relies on the time
series of company market data. Unfortunately, time series
long enough to reliably estimate the risk is not available
for most companies. Moreover, the majority of German
firms are not listed and, therefore, their market price is
unknown. This justifies the choice of a model for which
only cross-sectional or pooled accounting data would be
required. For this study, accounting data for bankrupt
and operating German companies was provided by
Creditreform.

Among the accounting-based models, the first attempts
to identify the difference between the financial ratios of*Corresponding author. Email: shiyichen@fudan.edu.cn
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solvent and insolvent firms were the studies of Ramser
and Foster (1931), Fitzpatrick (1932), Winakor and Smith
(1935) and Merwin (1942). These studies settled the
fundamentals for bankruptcy prediction research. It was
not until the 1960s that the traditional research was
changed. Beaver (1966) pioneeringly presented the uni-
variate approach to discriminant analysis (DA) for
bankruptcy prediction. Altman (1968) expanded this
analysis to multivariate analysis. Up to the 1980s, DA
was the dominant method in bankruptcy prediction.
However, there are obvious modeling restrictions of this
approach, some of which are the assumptions of normal-
ity, homoscedasticity of the disturbances, fulfillment of
conditional expectation of the dependent variable
between 0 and 1, and no adjustment for multicollinearity.
During the 1980s the DA method was replaced by logistic
analysis, which fits the logistic regression model for
binary or ordinal response data by the method of
maximum likelihood estimation (MLE). In fact, the
logit model uses the logistic cumulative distribution
function in modeling the default probability. Among the
first users of logit analysis in the context of bankruptcy
were Ohlson (1980), Collins and Green (1982), Lo (1986)
and Platt et al. (1994). The advantage of the logit model is
that it does not assume multivariate normality and equal
variance disturbance, and its probability lies between 0
and 1 (Härdle and Simar 2003). However, the logit model
is also sensitive to the collinearity among the variables. In
addition, the key assumption behind the logit model is
that the logarithm of odds is linear in the underlying
random variable; therefore, common to DA and logit
modeling is a linear classifying hyperplane that separates
insolvent and solvent firms. This works well if the data are
linearly separable. A linear separating hyperplane is,
however, not suitable if there is doubt that the separation
mechanism is of a nonlinear kind. There are good reasons
to take the linear non-separability case seriously
(Falkenstein et al. 2000).

Many nonlinear numerical methodologies have been
developed to solve the linear non-separability problem:
Maximum Expected Utility (MEU), Artificial Neural
Networks (ANN) and Support Vector Machines (SVM).
The MEU model was proposed at Standard & Poor’s
Risk Solutions Group, which allows models to incorpo-
rate the nonlinearity, non-monotonicity, and interactions
present in the data, reducing the risk of overfitting.
Friedman and Sandow (2003a, b) and Friedman and
Huang (2003) demonstrated how the MEU method
outperforms the Logit model. ANN was introduced to
analyse bankrupt firms in the 1990s (see Hertz et al.
(1991), Refenes (1995) and Härdle et al. (2004) for more
details). This method also discards the assumption of
linearity and mutual independence of explanatory vari-
ables for the default prediction function (Serrano et al.
1993, Back et al. 1994, 1996, Wilson and Sharda 1994).
ANN models built using K-fold cross-validation techni-
ques can be very robust and reduce over-fitting. Although
the nonlinear ANN can classify a dataset much better
than the linear models, it has often been criticized to be
vulnerable to the multiple minima problem. Common to

the OLS and MLE for linear models, ANN also makes
use of the principle of minimizing empirical risk, which
usually leads to a poor level of classification for
out-of-sample data (Haykin 1999).

Based on statistical learning theory, an alternative
nonlinear separation method, the Support Vector
Machine (SVM), was recently introduced in default risk
analysis. The SVM yields a single minimum without
undesirable local fits as often produced by ANN. This
property results from the minimized target function that
is convex quadratic and linearly restricted. In addition,
the SVM is also able to handle the interactions between
the ratios and does not need any parameter restrictions
and prior assumptions such as that concerning the
distribution for latent errors. Furthermore, the biggest
advantage of SVM among all the alternatives is its ability
to minimize the risk associated with model misspecifica-
tion, which endows SVM with an excellent separating
ability. The current literature in statistical learning theory
has produced strong evidence that SVM systematically
outperforms standard pattern recognition/classification,
function regression and data analysis techniques (Vapnik
1995, Haykin 1999). The application of SVM to company
default analysis is less reported in the management science
and finance literature. Härdle et al. (2005, 2007) report
that, compared with the traditional DA and logit models
in predicting the probabilities of default and rating firms,
the SVM has a superior performance. Gestel et al. (2005)
combined SVM and the logistic regression model to
capture the multivariate nonlinear relations. This combi-
nation technique balances the interpretability and pre-
dictability required to rating banks.

In this study, we investigate the applicability of this new
technique to predicting the risk scores and the probabil-
ities of defaults (PDs) of German firms from the
Creditreform database spanning from 1996 through
2002. The aim is to investigate (1) which of the accounting
ratios are meaningful and have predictive character for
bankruptcy, and (2) does a well-specified SVM-based
nonlinear model consistently outperform the benchmark
logit model in predicting PDs as predicted by theory?

The rest of the paper is organized as follows. In the next
section we give a theoretical introduction to the Support
Vector Machine (SVM) for classification. Section 3
describes the Creditreform database and the variables
and ratios used in this study. In section 4, we present the
validation procedures, re-sampling technique, perfor-
mance measures and the ratios selection methods.
Section 5 analyses the empirical results, including the
predictors related to bankruptcy, the sensitivity analysis
of SVM parameters, and a comparison of the predictive
performance between SVM and the logit model. Section 7
offers conclusions.

2. The Support Vector Machine

The term Support Vector Machine (SVM) originates from
Vapnik’s statistical learning theory (Vapnik 1995, 1997),
which formulates the classification problem as a quadratic
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programming (QP) problem. The principles on which the
SVM is based, especially the regularization principle for
solving ill-posed problems, are also described by
Tikhonov (1963), Tikhonov and Arsenin (1977) and
Vapnik (1979). The SVM transforms by nonlinear map-
ping the input space (of covariates) into a
high-dimensional feature space and then solves a linear
separable classification problem in this feature space.
Thus, linear separable classification in the feature space
corresponds to linearly non-separable classification in the
lower-dimensional input space. As the name implies, the
design of the SVM hinges on the extraction of a subset of
the training data that serves as support vectors and that
represents a stable characteristic of the data.

Given a training data set fxi, yigni¼1fðxi, yiÞg
n
i¼1, with

input vector xi 2 Rd (company financial ratios in this
study) xi 2 Rd and output scalar yi 2 þ1, %1f g
yi ¼ fþ1, %1g 2 R1 (%1¼ ‘successful’, þ1¼ ‘bankrupt’),
we aim to find a classifying (score) function f (x) to
approximate the latent, unknown decision function g(x).
In the logistic and the DA case, this is simply a linear
function. In the SVM case, the classifying function is

f ðxÞ ¼
Xl

l¼1
wl!l ðxÞ þ b ¼ wT!ðxÞ þ b, ð1Þ

where !ðxÞ ¼ ½!1ðxÞ, . . . ,!l ðxÞ'T and w ¼ ½w1, . . . ,wl 'T.
The nonlinear functions !ðxÞ are the transformation

functions from the input space to the feature space that
represent the features of the input space. A simple
example of features for a quadratic function in a
two-dimensional space is !1 ¼ x21, !2 ¼

ffiffiffi
2
p

x1x2 and
!3 ¼ x22. The dimension of the feature space is l, which
is directly related to the capacity of the SVM to
approximate a smooth input–output mapping; the
higher the dimension of the feature space, the more
accurate, at the cost of variability, the approximation will
be. Parameter w denotes a set of linear weights connecting
the feature space to the output space, and b is the bias or
threshold. The optimal solution w( and b( can be used to
construct the optimal hyperplane w(T!ðxÞ þ b( ¼ 0 and
the classification function f ðxÞ ¼ w(T!ðxÞ þ b(. We can
predict solvent and insolvent companies using the
estimated function f (x).

2.1. Advantage of SVM for classification in theory

The main superiority of nonlinear non-parametric SVM
over the benchmarking methods in predicting company
credit risk results from its special theoretical device in two
ways: (1) it takes linearly non-separable situations into
account, whereas the DA and logit models only work well
if the data are linear separable; and (2) it adopts the
principle of structural risk minimization rather than
empirical risk minimization employed by the OLS,
MLE, ANN (and other) models. We illustrate the
principle in figure 1 using the simplest classifying function
f ðxÞ ¼ %x1 % 2x2 þ 2, where x ¼ ðx1, x2ÞT, w ¼ ð%1, %2Þ
and b¼ 2.

The statistical problem is how to construct a classifying
hyperplane (hypersurface) and obtain the classifying
function f (x). If the data set is linearly separable, the
perfect classification hyperplane does exist. The function
f (x) gives an algebraic measure of the distance from x to
the optimal hyperplane. Perhaps the easiest way to see
this is to express x as x ¼ x0 þ rðw=jjwjjÞ, where x0 is the
normal projection of x onto the optimal hyperplane, r is
the desired algebra distance from any point x to the
optimal hyperplane (positive if x is on the positive side of
the optimal hyperplane and negative otherwise), and jjwjj
is the Euclidean norm of the weight vector w. Since, by
definition, f ðx0Þ ¼ 0, it follows that

f ðxÞ ¼ wTx0 þ wTr
w

jjwjjþ b ¼ f ðx0Þ þ rjjwjj ¼ rjjwjj

or

r ¼ f ðxÞ
jjwjj :

Because of the values of yi being )1, the parameters
ðw, bÞ for the optimal hyperplane must satisfy the
constraints f ðxÞ * 1 for yi ¼ þ1 (insolvent) or f ðxÞ + %1
for yi ¼ %1 (solvent), that is yi , f ðxÞ * 1. The particular
data points for which the constraint is satisfied with the
equality sign are called support vectors, hence the name
‘Support Vector Machine’. In conceptual terms, the
support vectors are those data points that lie closest to
the decision surface and are therefore the most difficult
to classify. As such, they have a direct bearing on the
optimum location of the classification hyperplane and
play a prominent role in the operation of SVM. Now
consider the support vectors; they are located on the
upper and lower separation band for which f ðxÞ ¼ )1.
Therefore, the algebraic distance from the support vectors
to the optimal hyperplane is

r ¼ f ðxÞ
jjwjj
¼ )1
jjwjj

:

Let " denote the optimum value of the margin of
separation between solvent and insolvent companies.

Figure 1. Separation margin, misclassification error and struc-
tural risk minimization for the SVM in two-dimensional input
space.
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Then it follows that ! ¼ 2r ¼ 2=jjwjj, which states that
maximizing the margin of separation between classes is
equivalent to minimizing the Euclidean norm of w, wk k.
Thus, the classifying function in the linear separable case
can be derived from maximizing the separation margin
directly. Likewise, the distance from the origin to the
optimal hyperplane is given by "b=jjwjj, as shown in
figure 1.

If the training set is linearly non-separable, the hyper-
plane that can correctly classify the training set no longer
exists and, naturally, we need to find a hypersurface
instead. For the hypersurface, however, we know less
about the concept of the geometrical margin that is
particular for the hyperplane; therefore, it is more difficult
to find a hypersurface than a hyperplane. The transfor-
mation from the input space into higher-dimensional
feature space, i.e. x!"ðxÞ, is then introduced in
the SVM. It is possible that the new training set in the
feature space f"ðxiÞ, yigni¼1 becomes linearly separable.
Accordingly, the problem of finding a hypersurface in the
input space is transformed into finding a hyperplane in
the feature space and letting its margin or the ‘safe’
distance between classes, where in the perfectly separable
case no observation can lie, be maximized.

It is not possible to construct a separating hyperplane
without encountering classification errors. The margin of
separation between classes is said to be soft if a data point
violates the condition yi % f ðxÞ & 1. This violation can
arise in one of two ways: (1) the data point falls inside the
region of separation but on the right side of the decision
surface; and (2) the data points falls on the wrong side of
the decision surface. Note that we have correct classifi-
cation in case (1), but misclassification in case (2).
Therefore, a new set of non-negative slack variables
f#igni¼1 are introduced and the condition is softened to
yi % f ðxÞ & 1" #i. Note 05 #i ' 1 for case (1), #i & 1 for
case (2), and #i ¼ 0 for the linearly separable case. The
support vectors are those particular data points that
satisfy the soft condition precisely even if #i 4 0. The
support vectors are thus defined in exactly the same way
for both linearly separable and non-separable cases. In
fact, using the soft constraints and the condition #i & 0,
the slack variables #i can be represented as a hinge loss
function which is the tightest convex upper bound of the
misclassification loss and special and preferred to the loss
function of the logit model because it allows a sparse
solution, in the sense that some observations of the
training set, if they are classified correctly, may not be
necessary to construct the separating boundary.
Sparseness of the solution also greatly simplifies the
computation of SVM because then usually only few
observations, so-called support vectors, are required to
restore the solution, while for the logit regression, all
observations are necessary.

The algebraic distance from the misclassification point
to the optimal hyperplane is r ¼ ½ð1" #iÞ=kwk), which can
be derived making use of the same algebraic manipulation
as in the linear separable case. Thus, the distance between
the misclassification point and the upper band, the case in
figure 1, is #i=kwk and the tolerance to misclassification

errors on the training set can be measured byPn
i¼1 #i=jjwjj. Our goal is to find a separating hyperplane

for which the misclassification error, averaged on the
training set, is minimized, which is similar to minimize the
sum of residual squares, the empirical risk in OLS and
MLE estimation.

Thus, two targets exist for SVM in the linear
non-separable case: still maximize the separation margin
2=jjwjj and simultaneously minimize the misclassification
distance

Pn
i¼1 #i=jjwjj. The most intuitive form of the

objective function to be minimized is

min
w, b, #

1

2
jjwjjþ C

Xn

i¼1

#i
jjwjj

: ð2Þ

As shown above, the second term is the margin-based loss
function, which is the sum of errors measured as the
distance from a misclassified observation to the hyper-
plane boundary, its class weighted with the parameter C.
Equation (2) exhibits the so-called structural risk mini-
mizing principle held by the SVM method. The bench-
mark models such as the DA and logit estimated by OLS
and MLE, and simple ANN-based nonlinear models with
no constraints usually employ the principle of minimizing
error functions calculated on the training sample.
Therefore, SVM not only minimizes the traditional
empirical risk, but also maximizes the separating
margin, and finally obtains a trade-off between two
targets. It is this kind of special design of minimizing the
structural risk that endows SVM with stronger classifying
ability than the benchmark methods.

2.2. SVM algorithm

To minimize the cost function (2), an equivalent quadratic
cost function, ð1=2Þjjwjj2 þ C

Pn
i¼1 #i, can be obtained

from equation (2) multiplied by jjwjj (jjwjj4 0). Thus, the
primary problem of the SVM for the non-separable case is
expressed as

min
w, b, #

1

2
jjwjj2 þ C

Xn

i¼1
#i, ð3Þ

s.t.

yi + fwT"ðxiÞ þ bgþ #i & 1, ð4Þ

#i & 0, i ¼ 1, 2, . . . , n: ð5Þ

As before, minimizing the first term of equation (3) is
equivalent to maximizing the separation margin. The
scaling factor 1/2 is included here for convenience of
presentation. As for the second term, it is an upper bound
on the number of misclassification errors. The formula-
tion of the cost function in equation (3) is also therefore
in perfect accord with the principle of structural risk
minimization. The penalty parameter C40 is introduced
to integrate the weights of two targets. It controls the
trade-off between the complexity of the machine and the
number of non-separable points; that is, the penalty
parameter C controls the extent of penalization
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(or the tolerance) to misclassification errors on the
training set. Partially the optimization function is derived
from the problem of separating the population of
defaulters from non-defaulters. However, it contains a
second part responsible for margin maximization that is
introduced artificially. Although it introduces a bias to
the original optimization problem, it reduces the com-
plexity of the SVM and increases its accuracy on
out-of-sample data. The value of parameter C has to be
selected by the user (Haykin 1999). The optimization
problem for non-separable patterns stated above includes
the optimization problem for linearly separable patterns
as a special case. Specifically, setting !i ¼ 0 for all i in
both equations (3) and (4) reduces them to the corre-
sponding forms for the linearly separable case.

The corresponding dual problem of SVM for
non-separable patterns can be derived using the
Karush–Kuhn–Tucker conditions (Fletcher 1987,
Bertsekas 1995) as follows:

min
"

1

2

Xn

i¼1

Xn

j¼1
yiyj"i"jKðxi, xj Þ $

Xn

i¼1
"j, ð6Þ

s.t

Xn

i¼1
yi"i ¼ 0, ð7Þ

0 % "i % C, i ¼ 1, 2, . . . , n, ð8Þ

where "i and "j are Lagrange multipliers. Note that
neither the slack variables !i nor their Lagrange multi-
pliers appear in the dual problem. Thus, the objective
function (6) to be minimized is the same in both the linear
separable and non-separable cases. Deng and Tian (2004)
demonstrate that the dual problem is easier to solve than
the primal problem. We can then use the optimal solution
"&i to obtain the solution of the primal problem:

w& ¼
Xn

i¼1
yi"
&
i #ðxiÞ, ð9Þ

b& ¼ yj $
Xn

i¼1
yi"
&
i Kðxi, xj Þ, 8j 2 f j j05"&j 5Cg: ð10Þ

By substitution, the nonlinear classifying (score) func-
tion can be obtained:

f ðxj Þ ¼ w&T#ðxj Þ þ b& ¼
Xn

i¼1
yi"
&
i #

TðxiÞ#ðxj Þ þ b&

¼
Xn

i¼1
yi"
&
i Kðxi, xj Þ þ b&, ð11Þ

where Kðxi, xj Þ ¼ #TðxiÞ#ðxj Þ is the inner product kernel
function in which xi belongs to the training set and xj is
the new company financial ratio, either in the training set
or validating and forecasting set. For the classification
problem, the decision function (11) is constructed to help
us deduce in what kind of category, say þ1 or $1, the new
output f (xj) corresponding to xj is located. To the end,

the intuitive way is to compare xj with xi pairwise; if xj is
closer to xi on the positive side, then the new output f (xj)
nears þ1, if xj is closer to xi on the negative side f (xj) falls
into the category $1. This is reasonable because a similar
input should lead to the same output. Therefore, the
decision function only depends on the proximity between
two observations and the classification is in fact a
proximity problem. In SVM, the inner product kernel
function K(xi, xj) is the key tool to measure this kind of
proximity. In addition, the SVM theory considers the
form of K(xi, xj) in the Hilbert space without specifying
#ð(Þ explicitly and without computing all corresponding
inner products, which provides the flexibility of the
high-dimensional Hilbert space for low computational
costs and greatly reduces the computational complexity.
Thus, the kernel becomes the crucial part of SVM.

It is necessary to find an appropriate kernel in order to
solve the optimization problem of SVM. The requirement
on the kernel function is to satisfy Mercer’s theorem
(Mercer 1908, Courant and Hilbert 1970), such that the
Kernel matrix, fKðxi, xj Þgni,j¼1, is symmetric and
semi-positive definite. Mercer’s theorem tells us whether
or not a candidate kernel is actually an inner-product
kernel in some space and therefore admissible for use in a
support vector machine. Within this requirement there is
some freedom in how it is chosen. The usual chosen
kernels are linear, polynomial and Gaussian kernel
functions. A different kernel requires estimating the
extent of proximity based on a different metric criterion.
In this study, we choose an anisotropic Gaussian kernel
for the SVM:

Kðxi, xj Þ ¼ expð$ðxi $ xj ÞTr$2!$1ðxi $ xj Þ=2Þ, ð12Þ

where ! is the variance–covariance matrix of the data and
r is the Gaussian, also known as the radial basis kernel
coefficient which implicitly controls the complexity of the
feature space and the solution—the larger r, the less the
complexity. Therefore, based on expression (11), for any
new company xj, those companies from the training
sample xi will have a greater impact on f (xj) if xj are
closer to xi. The anisotropic Gaussian kernel offers a way
of measuring the proximity between two companies; it is
higher when the companies are close and smaller when
they are far from each other.

3. Data and financial ratios

3.1. Data description

The data used in this study is the Creditreform database.
It contains a random sample of 20,000 solvent and 1000
insolvent firms in Germany and spans the period
from 1996 to 2002, although the data are concentrated
in 2001 and 2002 with approximately 50% of the
observations coming from this period. Most firms
appear in the database several times in different years.
Each firm is described by a set of financial statement
variables such as those in balance sheets and
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income statements. The data for the insolvent firms were
collected two years prior to insolvency.

Figure 2 shows the industry composition and size
distribution of the database. The industries to which each
firm belongs can be systematically classified according to
an internationally recognized system—Classification of
Economic Activities, Edition 1993 (WZ 93)—published
by the German Federal Statistical Office. WZ 93 uses a
hierarchy of five different levels. The higher the level, the
more precise the description of the main activity. In terms
of the classification industry codes of WZ 93, as shown in
figures 2(a) and (b), the 1000 insolvent firms consist of
about 39.7% construction, 25.7% manufacturing, 20.1%
the wholesale and retail trade, 9.4% real estate and 5.1%
others. The others among the 1000 insolvent firms include
agriculture, mining, electricity, gas and water supply,
hotels and restaurants, transport and communication,
financial intermediation and social service activities.
The industries of the 20,000 solvent firms are manufac-
turing (27.4%), wholesale and retail trade (24.8%), real
estate (16.9%), construction (13.9%) and others (17.1%).
Different from the ‘others’ of insolvent firms, the others in
solvency contain additional industries such as publishing,
administration and defense, education and health.

The distribution of total assets can be regarded as being
representative of the distribution of the firm size. In
figures 2(c) and (d), the 1000 insolvent sample comprises
12 firms located in the size category 104 EUR, 216

in 105 EUR, 587 in 106 EUR, 164 in 107 EUR and 21 in
108 EUR. (Here, 104 EUR represents one category of
asset size in which the firms have total assets of between
10,000 and 99,999 EUR. The definition of the other size
categories is similar to that for 104 EUR.) The number of
firms corresponding to each asset size category of the
20,000 solvent firms is 13 (103 EUR and below), 353 (104

EUR), 3153 (105 EUR), 7633 (106 EUR), 6373 (107

EUR), 2126 (108 EUR), 295 (109 EUR) and 54 (1010 EUR
and above).

In an attempt to obtain a more homogeneous company
sample, we cleaned the database of companies whose
characteristics are very different from the others. That is
to say, we do not attempt to cover all firms in the
database for our study because of the very different
nature of some firms. Thus, in focusing on predicting the
PDs of German firms we eliminated the following types of
firms from the whole sample.

. Firms with a small percentage composition of
industry—that is, we eliminate the firms that
belong to the ‘other’ industries in the insolvent
and solvent databases, for example financial
intermediation and public institutions. Thus
only four main types of industry (Construction,
Manufacturing, Wholesale & Retail Trade and
Real Estate) remain in the study.

. Smallest and largest firms—that is, we exclude
those firms that, because of their asset size,

Real estate (9.4%)

Wholesale retail (20.1%)

Construction (39.7%)

Manufacturing (25.7%)

Others (5.1%)

(a) Industry composition of insolvency

Real estate (16.9%)

Wholesale retail (24.8%)

Construction (13.9%)

Manufacturing (27.4%)

Others (17.1%)

(b) Industry composition of solvency
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Figure 2. Industry composition and size distribution of the companies in the Creditreform database.
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are not located in the categories 105, 106 and
107 EUR. As Khandani et al. (2001) noted, the
credit quality of the smallest firms is often as
dependent on the finances of a key individual as
on the firm itself; the number of largest firms
that go bankrupt is usually very small in
Germany.

We further clean the database to ensure that the value
of some variables, such as the denominator when calcu-
lating the ratios, should not be zero. We also exclude the
firms solvent in 1996 because of missing insolvency values
for this year.

Thus, 783 insolvent firms and 9583 solvent firms were
chosen and analysed. The bankrupt firms are paired with
non-bankrupt firms with a similar industry and total asset
size. Correspondingly, the predicted default probabilities
and rating results in this study are only suitable for
German firms from four main industry sectors
(Construction, Manufacturing, Wholesale & Retail
Trade and Real Estate) and with medium asset size
(lying within the categories 105, 106, and 107 EUR).

3.2. Ratio definitions

The Creditreform database provides many financial
statement variables for each firm. In accordance with
the existing literature, 28 ratios were selected for the
bankruptcy analysis. In summary, there are 28 financial
ratios (including one size variable) and a binary response,
which records whether the firm went bankrupt within two
years of the financial statements or not. There is also
information on the industry distribution and on the year
of the accounts. There are no missing values. These ratios
can be grouped into the following six broad categories
(factors): profitability, leverage, liquidity, activity, firm
size and the percentage change for some variables. The
variables applied to calculate these ratios are shown in
table 1. Table 2 describes these ratios and how they were
calculated. For simplicity, we provide short names for
some ratios that capture the essence of what they
measure. Table 3 summarizes the descriptive statistics of
the 28 ratios for both the insolvency and solvency sample.

In previous studies, profitability ratios have appeared
to be strong predictors related to bankruptcy. In addition,

among all the potential risk factors, there are more
profitability ratios than any other factor. The profitability
ratios employed in our study are return on assets (ROA,
NI/TA), net profit margin (NI/SALE), OI/TA, operating
profit margin (OI/SALE), EBIT/TA, EBITDA and
EBIT/SALE, denoted respectively as x1, x2, x3, x4, x5,
x6 and x7.

The ROA figure gives investors an idea of how
effectively the firm is deploying its assets to generate
income. The higher the ROA number, the better, because
the firm is earning more money on less investment. Net
profit margin measures how much of every dollar of sales
a firm actually keeps in earnings. A higher profit margin
indicates a more profitable firm that has better control
over its costs compared with its competitors. Some
investors add extraordinary items back into net income
when performing this calculation because they would like
to use operating returns on assets, which represent a
firm’s true operating performance. Operating income is
also required to calculate operating profit margin, which
describes a firm’s operating efficiency and pricing strat-
egy. EBIT is all profits before taking into account interest
payments and income taxes. An important factor
contributing to the widespread use of EBIT is the way
in which it nullifies the effects of different capital
structures and tax rates used by different firms. By
excluding both taxes and interest expenses the figure
homes in on the firm’s ability to profit and thus makes for
easier cross-firm comparisons. EBIT is the precursor to
EBITDA, which takes the process further by removing
two non-cash items from the equation (depreciation and
amortization). Thus, defaulting firms usually have lower
profitability values; however, firms with extremely large
and volatile profitability may also be likely to translate
into higher default probabilities. We will try to capture
this kind of complex nonlinear dependence in our
database.

Leverage is also a key measure of firm risk. In this
study, seven leverage ratios are analysed. They are simple
and adjusted own funds ratio, CL/TA, net indebtedness,
TL/TA, debt ratio (DEBT/TA) and interest coverage
ratio (EBIT/INTE), represented by x8 through x14.

The own funds ratio measures the ratio of a firm’s
internal capital to its assets. The simple version is widely
used in credit models, which is basically the mirror image

Table 1. Variables used in the study.

Abbreviation Variable Abbreviation Variable

CASH Cash and cash equivalents DEBT Debt
INV Inventories AP Accounts payable
CA Current assets SALE Sales
ITGA Intangible assets AD Amortization and depreciation
TA Total assets INTE Interest expense
QA Quick assets (¼CA-INV) EBIT Earnings before interest and tax
AR Accounts receivable OI Operating income
LB Lands and buildings NI Net income
OF Own funds IDINV Increase (decrease) inventories
CL Current liabilities IDL Increase (decrease) liabilities
TL Total liabilities IDCASH Increase (decrease) cash
WC Working capital (¼CA-CL)
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Table 2. Definitions of accounting ratios.

Ratio No. Definition Ratio Category

x1 NI/TA Return on assets (ROA) Profitability
x2 NI/SALE Net profit margin Profitability
x3 OI/TA Profitability
x4 OI/SALE Operating profit margin Profitability
x5 EBIT/TA Profitability
x6 (EBITþAD)/TA EBITDA Profitability
x7 EBIT/SALE Profitability
x8 OF/TA Own funds ratio (simple) Leverage
x9 (OF-ITGA)/(TA-ITGA-CASH-LB) Own funds ratio (adjusted) Leverage
x10 CL/TA Leverage
x11 (CL-CASH)/TA Net indebtedness Leverage
x12 TL/TA Leverage
x13 DEBT/TA Debt ratio Leverage
x14 EBIT/INTE Interest coverage ratio Leverage
x15 CASH/TA Liquidity
x16 CASH/CL Cash ratio Liquidity
x17 QA/CL Quick ratio Liquidity
x18 CA/CL Current ratio Liquidity
x19 WC/TA Liquidity
x20 CL/TL Liquidity
x21 TA/SALE Asset turnover Activity
x22 INV/SALE Inventory turnover Activity
x23 AR/SALE Account receivable turnover Activity
x24 AP/SALE Account payable turnover Activity
x25 Log(TA) Size
x26 IDINV/INV Percentage of incremental inventories Percentage
x27 IDL/TL Percentage of incremental Liabilities Percentage
x28 IDCASH/CASH Percentage of incremental cash flow Percentage

Table 3. Descriptive statistics of the 28 accounting ratios. IQR is the interquartile range.

Ratio

Insolvent Solvent

q0.05 Med. q0.95 IQR q0.05 Med. q0.95 IQR

NI/TA "0.19 0.00 0.09 0.04 "0.09 0.02 0.19 0.06
NI/SALE "0.15 0.00 0.06 0.03 "0.07 0.01 0.10 0.03
OI/TA "0.22 0.00 0.10 0.06 "0.11 0.03 0.27 0.09
OI/SALE "0.16 0.00 0.07 0.04 "0.08 0.02 0.13 0.04
EBIT/TA "0.19 0.02 0.13 0.07 "0.09 0.05 0.27 0.09
EBITDA "0.13 0.07 0.21 0.08 "0.04 0.11 0.35 0.12
EBIT/SALE "0.14 0.01 0.10 0.04 "0.07 0.02 0.14 0.05
OF/TA 0.00 0.05 0.40 0.13 0.00 0.14 0.60 0.23
(OF-ITGA) / (TA-ITGA-CASH-LB) "0.01 0.05 0.56 0.17 0.00 0.16 0.95 0.32
CL/TA 0.18 0.52 0.91 0.36 0.09 0.42 0.88 0.39
(CL-CASH)/TA 0.12 0.49 0.89 0.36 "0.05 0.36 0.83 0.41
TL/TA 0.29 0.76 0.98 0.35 0.16 0.65 0.96 0.40
DEBT/TA 0.00 0.21 0.61 0.29 0.00 0.15 0.59 0.31
EBIT/INTE "7.90 1.05 7.20 2.47 "6.78 2.16 73.95 5.69
CASH/TA 0.00 0.02 0.16 0.05 0.00 0.03 0.32 0.10
CASH/CL 0.00 0.03 0.43 0.11 0.00 0.08 1.40 0.29
QA/CL 0.18 0.68 1.90 0.54 0.25 0.94 4.55 1.00
CA/CL 0.56 1.26 3.73 0.84 0.64 1.58 7.15 1.56
WC/TA "0.32 0.15 0.63 0.36 "0.22 0.25 0.73 0.41
CL/TL 0.34 0.84 1.00 0.37 0.22 0.85 1.00 0.44
SALE/TA 0.43 1.63 4.15 1.41 0.50 2.08 6.19 1.76
INV/SALE 0.02 0.16 0.89 0.26 0.01 0.11 0.56 0.16
AR/SALE 0.02 0.12 0.33 0.11 0.00 0.09 0.25 0.09
AP/SALE 0.03 0.14 0.36 0.10 0.01 0.07 0.24 0.08
Log(TA) 13.01 14.87 17.16 1.69 12.82 15.41 17.95 2.37
IDINV/INV "1.20 0.00 0.75 0.34 "0.81 0.00 0.56 0.07
IDL/TL "0.44 0.00 0.48 0.15 "0.53 0.00 0.94 0.14
IDCASH/CASH "12.71 0.00 0.94 0.79 "7.13 0.00 0.91 0.52
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of TL/TA, as expected: they are mathematical comple-
ments. We have made some adjustments to the simple
own funds ratio to counter creative accounting practices,
and to try to generate a better measure of firm credit
strength. The adjustments are also used by Khandani
et al. (2001). Net indebtedness measures the level of
short-term liabilities not covered by the firm’s most liquid
assets as a proportion of its total assets. Thus, in addition
to measuring the short-term leverage of a firm, it also
provides a measure of the liquidity of a firm. While the
debt ratio performs about as well as TL/TA for public
firms, it does considerably worse for private firms, which
makes TL/TA preferred. The difference between debt and
liabilities is that liabilities is a more inclusive term that
includes debt, deferred taxes, minority interest, accounts
payable, and other liabilities. The interest coverage ratio
is highly predictive. Falkenstein et al. (2000) argue that
the interest coverage ratio turns out to be one of the most
valuable explanatory variables in the public firm dataset
in a multivariate context, although in the private firm
database its relative power decreases significantly.

Six liquidity ratios, CASH/TA, cash ratio, quick ratio,
current ratio, WC/TA and CL/TA (x15 through x20), are
analysed in this paper. Liquidity is a common variable in
most credit decisions and represents the ability to convert
an asset into cash quickly. In the private dataset, CASH/
TA is the most important single variable relative to
default. Quick ratio is an indicator of a firm’s short-term
liquidity and measures a firm’s ability to meet its
short-term obligations with its most liquid assets. The
larger the quick ratio, the better the position of the firm.
The quick ratio is more conservative than the current
ratio because it excludes inventory from current assets.
Current ratio is mainly used to give an idea of the firm’s
ability to pay back its short-term liabilities (debt and
payables) with its short-term assets (cash, inventory,
receivables). If a firm is in default, its current ratio must
be low. Yet, just as the cash in your wallet does not
necessarily imply wealth, a high current ratio does not
necessarily imply health. Working capital measures both a
firm’s efficiency and its short-term financial health.
Altman (1968) reported that the WC/TA ratio is a
measure of the net liquid assets of the firm relative to
the total capitalization and proved to be more valuable
than the current ratio and the quick ratio. Falkenstein
et al. (2000) showed that, firstly, the CL/TL ratio appears
of little use in forecasting, second that the quick ratio
appears slightly more powerful than the WC/TA ratio,
and third, the quick ratio and current ratio carry roughly
similar information.

Activity ratios also capture important bankruptcy
information and are frequently used when performing
fundamental analysis for different firms. We analyse four
different activity ratios: the asset turnover (TA/SALE,
x21), the inventory turnover (INV/SALE, x22), the
account receivable and payable turnover (AR/SALE,
x23; AP/SALE, x24).

The asset turnover ratio is a standard financial ratio
illustrating the sales-generating ability of the firm’s assets.
Usually, the asset turnover is non-monotonic and

very flat. Note that some studies report that the asset
turnover degrades model predictability, for example the
Z-score that reduces the asset turnover performs better
than the one that keeps it. The reciprocal of the inventory
turnover shows how many times a firm’s inventory is sold
and replaced over a period. A high turnover implies poor
sales and, therefore, excess inventory. High inventory
levels are unhealthy because they represent an investment
with a rate of return of zero. Accounts payable and
receivable turnover ratios are more powerful predictors,
the reciprocals of which also display how many times
the firm’s accounts are converted into sales over a period.
The former is a short-term liquidity measure used to
quantify the rate at which a firm pays off its suppliers.
The latter is a measure used to quantify a firm’s
effectiveness in extending credit as well as collecting
debts. By maintaining accounts receivable, firms are
indirectly extending interest-free loans to their clients.
The above description of the activity ratios is usually true
in the manufacturing industry but is not the case for other
industries. For instance, service firms may have no
inventory to turn over.

Sales or total assets are almost indistinguishable as
indicators of size risk, which makes the choice between
the two measures arbitrary. In this study, we use the
natural logarithm of total assets (log(TA), x25) to
represent the firm size to investigate the default risk of
small, medium (SMEs) and large firms. For example,
access to capital for these firms is very different and may
affect the prediction ability of some financial ratios and,
consequently, the performance of the SVM model. Due to
the available variables provided by the Creditreform
database, we also compute three ratios of the percentage
of incremental inventories, liabilities and cash flow (x26,
x27, x28), respectively. For example, the increased
(decreased) cash flow is the additional operating cash
flow that an organization receives from taking on a new
project. A positive incremental cash flow means that the
firm’s cash flow will increase with the acceptance of the
project, the ratio of which is a good indication that an
organization should spend some time and money invest-
ing in the project.

Previous empirical research has found that a firm is
more likely to go bankrupt if it is unprofitable, highly
leveraged, and suffers cashflow difficulties (Myers 1977,
Aghion and Bolton 1992, Lennox 1999). Moreover, large
firms are less likely to encounter credit constraints
because of reputation effects. This is clearly demonstrated
by the statistical description of financial ratios in table 3,
which shows that insolvent firms are typically small, have
poor profitability and liquidity, and are highly leveraged,
compared with solvent firms, with only a few exceptions
such as EBIT/SALE, OF/TA and EBIT/INTE. In addi-
tion, the firms that go on to default have higher values for
the activity ratio. Except for the last three, all ratios for
insolvent firms vary less than for solvent firms because of
the smaller number of observations.

The statistics described in table 3 reveal that several of
the ratios are highly skewed and there are many outliers;
this may affect whether they can be of much help in
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identifying insolvent and solvent firms. It is also possible
that many of these outliers are errors of some kind.
Therefore, the ratios used in the following analysis are
processed as follows: if xi 5 q0:05ðxiÞ, then xi ¼ q0:05ðxiÞ,
and if xi 4 q0:95ðxiÞ, then xi ¼ q0:95ðxiÞ, i ¼ 1, 2, . . . , 28.
q!ðxiÞ is an ! quantile of xi. Thus, the discriminating
results obtained from both the SVM and the logit model
are robust and not sensitive to outliers.

4. Prediction framework

4.1. The validation procedure

To compare the SVM and the logit models in a setting
most close to the real situation in which these models are
used in practice, the holdout method is chosen in this
study for cross validation, namely training of the model
on all available data up to the present period and the
forecasting of default events for the next period. In this
study, the training data are chosen from 1997 through
1999, and the validating set are selected from 2000
through 2002. Then the model is first estimated using the
training data; once the model form and parameters are
established, the model is used to identify insolvencies
among all the firms available during the holdout period
(2000–2002). Note that the predicted outputs for 2000
through 2002 are out of time for firms existing in the
previous three years, and out of sample for all the firms
whose data become available only after 2000. Such
out-of-sample and out-of-time tests are the most appro-
priate way to compare model performance. The valida-
tion result set is the collection of all the out-of-sample and
out-of-time model predictions that can then be used to
analyse the performance of the model in more detail. For
an introduction to the validation framework, see
Sobehart et al. (2001).

Following the holdout validation procedure, we con-
struct a training set containing 387 insolvent and 3534
solvent companies and a validation set containing 396
default events and 6049 non-defaulters. Note that the
training and validation sets are themselves a subsample of
the population and, therefore, may yield spurious model
performance differences based only on data anomalies.
A common approach to overcome this problem is to use
the re-sampling techniques to leverage the available data
and reduce the dependency on the particular sample at
hand (Efron and Tibshirani 1993, Herrity et al. 1999,
Horowitz 2001). Re-sampling approaches provide two
related benefits (Sobehart et al. 2001). First, they give an
estimate of the variability around the actual reported
model performance. This variability can be used to
determine whether differences in model performance are
statistically significant, using familiar statistical tests.
Second, because of the low numbers of defaults,
re-sampling approaches decrease the likelihood that
individual defaults (or non-defaults) will overly influence
the chances of a particular model being ranked higher or
lower than another model. Similar to previous bank-
ruptcy studies, this paper also adopts a matched pairs

approach for drawing subsamples for both the training
and validation set. The advantage of the matching
procedure is that it helps to cut the cost of data collection,
as the proportion of insolvent firms in the population is
very small. The problem that the use of relatively small
samples could lead to over-fitting can be avoided by the
re-sample techniques.

The re-sampling technique employed in this analysis is
the bootstrap, which proceeds as follows. We use all
insolvent firms, 387 in the training set and 396 in the
validation set, and randomly select a subsample with
the same number of solvencies from the 3534 solvencies in
the training set and the 6049 solvencies in the validation
set, respectively.

For the selected validation subset the performance
measure is calculated and recorded. Then we perform a
Monte Carlo experiment: another subsample is drawn,
and the process is repeated. This continues for many
repetitions until a distribution for each performance
measure is established. In this paper the process will be
repeated 30 times.

4.2. Performance measures

We now introduce two metrics for measuring and
comparing the performance of credit risk models: the
Accuracy Ratio (AR) and the misclassification error.
These two measures aim to determine the power of
discrimination that a model exhibits in warning of default
risk. These techniques are quite general and can be used
to compare different types of models even when the model
outputs differ and are difficult to compare directly.

AR is a valuable and simple tool to determine the
discriminative power of risk models. AR can be derived
from the Cumulative Accuracy Profile (CAP) curve,
which is particularly useful in that it simultaneously
measures Type I and Type II errors (Herrity et al. 1999,
Engelmann et al. 2003, Basle Committee on Banking
Supervision 2005). In statistical terms, the CAP curve
represents the cumulative probability distribution of
default events for different percentiles of the risk score
scale. To obtain CAP curves, firms are first ordered by
their risk scores. For a given fraction x% of the total
number of firms, a CAP curve is constructed by calcu-
lating the percentage y(x) of the defaulters whose risk
score is equal to or smaller than that for fraction x. In
other words, for a given x, y(x) measures the fraction of
defaulters (of the total defaulters) whose risk scores are
equal to or smaller than those of fraction x (of the total
firms). One would expect a concentration of
non-defaulters at the highest scores and defaulters at the
lowest scores.

Figure 3 shows a CAP plot. The random CAP
represents the case of zero information (which is equiv-
alent to a random assignment of scores). The ideal CAP
represents the case in which the model is able to
discriminate perfectly, and all defaults are caught at the
lowest model output. The actual CAP shows the perfor-
mance of the model being evaluated. It depicts the
percentage of defaults captured by the model.
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Therefore, AR is defined as the ratio of the area
between a model’s CAP curve and the random CAP curve
to the area between the perfect CAP curve and the
random CAP curve (see figure 3). The AR value is a
fraction between zero and one. Risk measures with AR
that approach zero have little advantage over a random
assignment of risk scores, whereas those close to one
display good predictive power. Mathematically, the AR
value is defined as

AR ¼
R 1
0 yðxÞ dx$ ð1=2Þ

R 1
0 yidealðxÞdx$ ð1=2Þ

: ð13Þ

If the number of bankruptcies equals the number of
operating companies in the sample, then the AR becomes

AR % 2

Z 1

0
yðxÞ dx$ 1: ð14Þ

In addition, when evaluating the explanatory power of
the bankruptcy models, it is helpful to define two types of
prediction error: a type I error, which indicates low
default risk when in fact the risk is high, and a type II
error, which conversely indicates a high default risk when
in fact the risk is low. Usually, minimizing one type of
error comes at the expense of increasing the other type of
error. Clearly, the type I and type II error rates depend on
the number of firms predicted to fail. The higher (lower)
the number of firms predicted to go bankrupt, the smaller
(larger) is the type I error rate and the larger (smaller) is
the type II error rate. The number of predicted bank-
ruptcies depends on the cut-off probability, which is equal
to 0.5 in our study. From a supervisory viewpoint, type I
errors are more problematic as they produce higher costs.
Usually, the cost of a default is higher than the loss of
prospective profits. Altman et al. (1977) estimated the
relative costs of type I and type II errors for commercial
bank loans as being 7:1. Sobehart et al. (2001) also
described the cost scenarios schematically.

For more details on the performance measures, we refer
to DeLong et al. (1988), Swets (1998), Keenan and

Sobehart (1999), Swets et al. (2000), Sobehart et al. (2001)
and Sobehart and Keenan (2004).

4.3. Predictor selection

In this study, the benchmark linear parametric probability
model is the conditional logit model estimated by MLE,
which is described as follows:

Prð yi ¼ 1jxi1, . . . ,xidÞ ¼
1

1þ e$ð!0þ!1xi1þ'''þ!dxidþ"iÞ
: ð15Þ

Based on equation (1) or (11), the target nonlinear
non-parametric probability model estimated by the SVM
can also be expressed in the following form:

Prð yi ¼ 1jxi1, . . . , xidÞ ¼ f ðxi1, . . . , xidÞ þ "i, ð16Þ

where yi¼ 1 indicates the bankrupt company, and yi¼ 0
for the logit case and yi¼$1 for SVM represent the
successful firm; the input vectors xi are the relevant
company financial ratios explaining the probability of
bankrupcy. Before we begin to estimate the models, the
process of predictor selection is illustrated.

For a parametric model we can estimate the distribu-
tion of the coefficients of the predictors and their
confidence intervals. However, we cannot do so for
non-parametric models. Instead, we can use the bootstrap
technique, as described in the subsection on the validation
procedure, to empirically estimate the distribution of the
AR on many subsamples. In this study we randomly
select 30 subsamples and compute the corresponding ARs
30 times. The median AR provides a robust measure to
compare different ratios as predictors.

There are so many possible financial ratios that can be
used as explanatory variables in credit scoring models
that selection criteria are needed to obtain a parsimonious
model. There are two main methods for selecting the
appropriate ratios (Falkenstein et al. 2000). The first is
forward stepwise selection. Start with the predictor that
has the highest performance accuracy and then sequen-
tially add the next predictor that also has the highest
accuracy in the group and higher than the former until
additional predictors have no additional improvement.

Figure 3. Cumulative accuracy profile (CAP) curve.

Modeling default risk with support vector machines 145

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f E

di
nb

ur
gh

] a
t 0

2:
32

 2
0 

A
ug

us
t 2

01
2 



The second is backward elimination in which one starts
with all predictors, then reduces all of the poor variables.
In this study, forward selection is preferred for the SVM
method due to its relatively lower computational cost.
The logit model, with forward selection, together with the
investigation of the statistical significance and correct sign
of the individual parameters of the predictors, is likely to
choose different explanatory variables than the SVM.
To compute and compare each method more conveni-
ently, we will only report the results of the logit model
with the same predictors as the SVM-based model. The
discriminating power of each ratio is assessed using the
median of the AR performance measures.

5. Empirical results

This section discusses the empirical results for each stage
of the analysis of the German bankruptcy data using an
SVM model. The prediction horizon in each case is two
years, i.e. the data were recorded two years prior to
bankruptcy for the companies that would become bank-
rupt. The balance sheet and income statement data for
20,000 solvent and 1000 insolvent firms in Germany were
selected randomly by Creditreform. These data are
represented as the financial ratios listed in table 4. They
cover the period from 1996 to 2002. Each company may
appear several times in different years.

5.1. Selection of the first predictor and the sensitivity of
the SVM parameters

The first stage of analysing default risk is the selection of
the first best predictor related to bankruptcy among the
28 ratios using the median of the AR metric in which
the SVM model has one input. It is often argued that the
SVM lacks interpretability of the results as is the case for
the logit model. Most importantly, since there are no
distributional assumptions underlying the SVM model-
ing, it is impossible to test the significance of variables
within the SVM framework. Therefore, we will identify

the most significant variable in an additional procedure
before analysing the SVM model.

Based on table 4 we can see that Accounts Payable
Turnover (AP/SALE, x24) provides the highest median
AR of 49.17%. We can also see that CL/TL (x20), IDL/
TL (x27) and IDCASH/CASH (x28) have a very low
accuracy: their median AR values are below zero. For the
next step we will select Accounts Payable Turnover (x24)
as the first best single predictor related to German default
firms, which is somewhat different from previous studies
in which it was usually argued that the most significant
predictors were profitability or leverage ratios. In fact, the
SVM-based nonlinear model is able to search the
nonlinear dependence of the data automatically as
opposed to the logit model and it is Accounts Payable
Turnover selected by SVM as the first predictor that
greatly improves the classifying performance of SVM by
more than 10%. Using most of the other ratios as the first
predictor, the SVM-based model does not exceed the logit
model by much in modeling the default risk.

The accounts payable turnover ratio is calculated by
taking the average accounts payable and dividing it by the
total sales during the same period. Its reciprocal shows
investors how many times per period the firm pays its
average payable amount. If the turnover ratio increases
from one period to another, this is a sign that it takes the
firm longer to pay off its suppliers than before. The
opposite is true when the turnover ratio is falling, which
means that the firm is paying off suppliers at a faster rate.
Therefore, the firms with higher accounts payable turn-
over values will have less ability to convert their accounts
into sales, have lower revenues, and go bankrupt more
readily.

The SVM model has two control parameters, the
influence of which was investigated in this study: the
penalty parameter C and the Gaussian kernel coefficient
r. C controls the tolerance to misclassification errors on
the training set, while r represents the complexity of
classifying functions. The possibility of fine-tuning SVM
using these parameters, besides the flexibility of its
classification function, further contributed to the higher
performance of the SVM compared with the logit model,

Table 4. Median of the AR measure for a univariate SVM model. Accounts payable turnover (AP/SALE, x24) produces the
highest AR median.

No. Ratio AR median No. Ratio AR median

x1 NI/TA 28.428 x15 CASH/TA 22.140
x2 NI/SALE 22.985 x16 CASH/CL 25.821
x3 OI/TA 36.358 x17 QA/CL 28.746
x4 OI/SALE 31.413 x18 CA/CL 16.983
x5 EBIT/TA 29.941 x19 WC/TA 14.264
x6 EBITDA 29.155 x20 CL/TL !7.608
x7 EBIT/SALE 19.447 x21 SALE/TA 17.414
x8 OF/TA 32.941 x22 INV/SALE 24.764
x9 (OF-ITGA) / (TA-ITGA-CASH-LB) 31.938 x23 AR/SALE 17.468
x10 CL/TA 18.020 x24 AP/SALE 49.174
x11 (CL-CASH)/TA 23.319 x25 Log(TA) 23.816
x12 TL/TA 22.477 x26 IDINV/INV 15.493
x13 DEBT/TA 16.528 x27 IDL/TL !9.528
x14 EBIT/INTE 28.270 x28 IDCASH/CASH !6.562
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which has no similar adjustment parameters. Moreover, a
grater SVM performance is a consequence of the SVM
loss function, which is a tighter upper bound on the {0,1}
step loss function. For univariate models, as figure 4
illustrates, the gain in performance of the SVM over the
logit model is substantial and greater than for multi-
variate models since the former intrinsically has a larger
number of degrees of freedom than the latter, which is
limited by the number of variables.

The results in table 4 were obtained from the SVM with
parameters C¼ 10 and r¼ 0.6, which were chosen
according to the following sensitivity investigation of
the SVM parameters (see box plot in figure 4 and table 5).
That is to say, the values of parameters C and r could be
determined experimentally via the standard use of a
re-sampling training data set. Obviously, the SVM differs

in different values of the penalty parameter C and the
Gaussian kernel coefficient r. The ratio AP/SALE (x24) is
exemplified here and the result for the benchmark logit
model is also reported.

Here the median ARs are also estimated on 30
bootstrapped subsamples. On the whole, the discriminat-
ing ability of the SVM seems to be more sensitive to the
value of r rather than to that of C. In figure 4(top), with
fixed r¼ 0.6, the median of the AR starts from 47.4% for
C¼ 0.001 and reaches the highest value 49.2% for C¼ 10
and slightly decreases to 48.7% when C¼ 1000. The
varying range of AR is very small. Figure 4(bottom)
illustrates the AR of the SVM versus r with fixed C¼ 10.
Within the interval, r is found to have a strong impact on
the AR value, which starts at 34.4% when r¼ 0.002 and
drastically increases to the highest value 49.2%
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Figure 4. Sensitivity of the SVM to different parameters.

Table 5. Misclassification error (30 randomly selected samples; one predictor AP/SALE, x24).

Model

Parameter Type I error Type II error Total error

C r Mean Std Mean Std Mean Std

SVM 0.001 0.6 40.57 0.1167 23.43 0.9812 32.01 0.5723
0.1 0.6 38.42 0.5125 24.45 1.1938 31.44 0.7014
10 0.6 34.43 1.2126 27.86 1.637 31.15 0.9433
100 0.6 25.22 0.6176 34.66 1.3541 29.94 0.8086
1000 0.6 25.76 0.7705 34.26 1.3805 30.01 0.8712
10 0.002 37.2 2.4512 32.79 2.5753 34.99 1.7611
10 0.06 31.86 3.1527 29.25 2.2887 30.56 1.1405
10 0.6 34.43 1.2126 27.86 1.637 31.15 0.9433
10 60 37.27 0.5112 25.87 1.2134 31.57 0.7798
10 2000 41.09 0.0791 24.85 0.3265 32.97 0.1123

Logit 38.15 0.5625 32.77 1.1888 35.46 0.7151
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when r¼ 0.6 and then decreases to 37.7% when r¼ 2000.
In both parts of the figure the discriminating performance
of the logit model is inferior to that of the SVM-based
model with different parameter values.

As we have seen, C¼ 10 and r¼ 0.6 seem to be the best
choice of parameter combination for the study in this
paper. Thus, if we do not mention it particularly, the
results of the SVM in the remaining part of this paper are
all obtained using these parameter values. Note that this
is not the case for the other data sample. The appropriate
values of the C and r parameters will vary from sample to
sample, therefore the sensitivity investigation of the SVM
parameters should be carried out before classifying
different data samples.

Table 5 shows the percentage of misclassified
out-of-sample observations for the logit model and the
SVM-based model with different parameters using a
single predictor, the Account Payable Turnover. These
errors are also obtained by bootstrap, and are all
significant according to the standard deviations listed in
table 5. Smaller values indicate better model accuracy.
As shown in the table, the logit model has higher type I,
type II and total error rates than the SVM-based model
with only a few exceptions, suggesting that a
well-specified SVM-based nonlinear model is superior to
a logit model. For the SVM, with an increase of C from
0.001 to 1000, type II errors also increase, but type I
errors decrease, and the total errors first decrease and
then increase slightly. With increasing r values, type I and
total errors also follow a U-shaped trend and type II
errors have a monotonic negative relation with the r
value. Therefore, C¼ 10 and r¼ 0.6 also appear to be the
appropriate trade-off choice for our study in the following
part of this paper. They produce only 34.43% type I
errors, 27.86% type II errors and 31.15% total errors,
whereas logit analysis produces 38.15% type I errors,
32.77% type II errors and 35.46% total errors.

As is evident from figure 5, which shows a univariate
dependence of PD on AP/SALE, this dependence is not
monotonously increasing or following any distinctive
pattern, e.g. a logistic function. The SVM, being a more
flexible non-parametric approach, is better suited for
describing a broader class of dependence, such as this one,
than the logit model. Another advantage of the SVM is its
smaller bias in the estimation of the boundary between
the solvent and insolvent companies in a situation when
the number of the former is much larger than the number
of the latter, as is almost always the case. The score of the
logit model, which is interpreted as a PD, can be
significantly biased for score values much lower or
higher than 0.5. Subsequently, the threshold score for
the boundary between solvent and insolvent companies is
also biased. This is one reason for the substantial
improvement in accuracy of the SVM compared with
the logit model, as illustrated in figure 4. Because of this
feature the SVM gains an additional improvement over
the logit model if instead of subsamples with a 50/50 ratio
of insolvent versus solvent companies we use subsamples
where solvent companies prevail.

5.2. Comparison of models with two predictors and PD
visualization

Table 6 shows the identifying performance of bivariate
SVM-based models using the best predictor from the
univariate model (AP/SALE) and one other. The values
of the median of the AR direct us to the profitability ratio
OI/TA (x3), the value of which increases to the highest of
56.46%, which indicates that OI/TA (x3) is the best choice
for the second predictor.

Therefore, different from the usual result that NI/TA
dominates other profitability ratios related to default risk,
our study reveals that OI/TA performs better than the
others in identifying bankrupt German firms. As the
operating income does not include items such as invest-
ments in other firms, taxes, interest expenses and depre-
ciation, the ratio represents a firm’s true operating
performance.

For two dimensions (i.e. two predictors), graphs are
obviously an extremely useful tool for studying the data
and assessing the quality of different default risk models.
In addition, because of its nonlinearity it is more
necessary for the SVM-based model to use visual tools
than for the logit model to represent classification results.
We demonstrate an application of visualization techni-
ques for default analysis and parameter sensitivity inves-
tigation based on the SVM in figure 6. In the case of the
logit model, the scores can be directly explained as the
default probabilities, whereas for the SVM-based model
the probabilities of default need to be calculated using the
risk scores predicted by the estimated classifying function.
Making use of the monotonic logistic cumulative distri-
bution function, the default probabilities of German
companies by SVM are calculated from the scores and
then plotted as the background contour in figure 6
(corresponding to the right-hand bar in each sub-figure).
The two predictors are the ratios AP/SALE (x24) and OI/
TA (x3). These graphs are a subset of those used in
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Figure 5. Insolvency rate evaluated for the financial ratio AP/
SALE (x24) from the German Creditreform database. The
k-nearest-neighbors procedure was used with the size of the
window around 1/12 of 18,800 observations (the observations
with zero values of sales used as the denominator to calculate
the ratios were deleted from all 21,000 observations).
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the study. White and black points represent the 396
insolvent and 396 solvent firms from one random
subsample of the validation set. The outliers were
capped at the 5% and 95% quantiles as described in
section 3.2 and kept in the subsample. In most panels of
figure 6 they appear at the border. The classifying
decision function (optimal hyperplane) is represented by
the line denoted 0.5, along which the default probability is
0.5 and the risk scores are zero for SVM. The lines
denoted 0.3 and 0.7 (or, more accurately, 0.27 and 0.73)
are the lower and upper boundaries of the separation
margin corresponding to scores of !1 and þ1 in SVM. As
shown in figure 6, clearly most successful firms lying in
the blue area have positive profitability (OI/TA) and
relatively lower account payable turnover (AP/SALE),
while a majority of bankrupt firms is located in the
opposite area. As known, low profitability usually
indicates a high default risk, but extremely high profit-
ability may also indicate a high cash flow volatility that is
likely to translate into a higher default probability.
Although the SVM-based model is sufficiently flexible
to reveal a nonlinear dependence between profitability
and PD, different from the logit model, for the
Creditreform data in this study, the dependence could
be too weak to be captured by SVM. Also, the sensitivity
investigation results of the free parameters, C and r, of
SVM could easily be determined from the figure.

Figure 6(a) shows the classification results for the logit
model. Because the disadvantage of the logit model is the
linearity of its solution, we see a straight classification line
that is the linear combination of two predictors.
Figure 6(b) shows the discriminating results obtained
with the SVM-based model using a classifying function of
moderate complexity (r¼ 0.6) and C¼ 10. This nonlinear
classifying line (score 0 and PD 0.5) seems to identify the
two types of firms very well with the areas in which
solvent and insolvent firms are localized.

Fix r¼ 0.6. If the penalty is too low (C decreases to 0.01
and 0.1 as in figures 6(c) and (d)), the discriminating curve
becomes flatter than that in figure 6(b). The calculated
default probabilities are too small to display the two
boundaries. That is, most of the firms fall inside the
separation region but the insolvent and solvent firms are

still clustered in their own areas. If the penalty increases,
for example C¼ 500 as in figure 6(e), the identifying
ability of SVM cannot be increased further than shown in
figure 6(b).

Fix C¼ 10. If the complexity of the classifying functions
increases (the r value decreases to 0.06 as illustrated in
figure 6(f)), the SVM will try to capture each observation,
although the majority of the insolvent firms still lie inside
the band (0.5, 0.7) and above, with the solvent firms inside
(0.5, 03) and below. The complexity in this case is too high
for the given sample. If the r value increases to 60
(figure 6(g)), the classifying curve becomes flatter than
that with r¼ 0.6; if r increases further to 2000 (figure 6(h)),
the discriminating curve can be approximated as a linear
combination of two predictors and is similar to the
benchmark logit model, although the coefficients of the
predictors may be different. The calculated default
probabilities are also very small. The complexity here is
too low to obtain a more detailed picture.

Although two cases of high complexity clearly demon-
strate overfitting, (f) when C¼ 10 and r¼ 0.06, and
(e) when C¼ 500 and r¼ 0.6, in all other cases the
separating line is moderately nonlinear and for the case of
a virtually linear SVM (h) with C¼ 10 and r¼ 2000 the
separating line resembles that for the logit regression (a),
with a different slope. Perfect separation for
out-of-sample observations is not possible in any case.
Nevertheless, comparing panel (a) for the logit with panel
(f) for the SVM that achieved the maximum separation
power, we observe that the most important difference
between the two is in the area where the density of
observations is the highest and even a small change in
shape can lead to a substantial change in the classification
ability.

The sensitivity analysis information obtained from this
graphical analysis is similar to Härdle et al. (2005) and
also confirms the choice combination of parameters as
described in the sensitivity investigation of section 5.1.
A set of alternative random subsamples as extracted from
the validation set also display similar findings using the
same visualization technique.

While the analysis here has been restricted to only two
classes, namely bankruptcy and solvency, it can easily be

Table 6. Median of AR measure for a bivariate SVM model. AP/SALE (x24) and OI/TA (x3) produce the highest AR median.

No. Ratio AR median No. Ratio AR median

x1 NI/TA 54.362 x15 CASH/TA 53.011
x2 NI/SALE 53.809 x16 CASH/CL 52.233
x3 OI/TA 56.460 x17 QA/CL 50.553
x4 OI/SALE 55.652 x18 CA/CL 44.678
x5 EBIT/TA 54.409 x19 WC/TA 48.676
x6 EBITDA 53.847 x20 CL/TL 49.725
x7 EBIT/SALE 52.948 x21 SALE/TA 49.624
x8 OF/TA 51.907 x22 INV/SALE 51.305
x9 (OF-ITGA) / (TA-ITGA-CASH-LB) 51.316 x23 AR/SALE 49.604
x10 CL/TA 48.197 x24 AP/SALE
x11 (CL-CASH)/TA 49.680 x25 Log(TA) 51.545
x12 TL/TA 51.080 x26 IDINV/INV 49.904
x13 DEBT/TA 52.231 x27 IDL/TL 49.013
x14 EBIT/INTE 46.517 x28 IDCASH/CASH 46.617
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(c) SVM (C=0.01, r=0.6) 
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(d) SVM (C=0.1, r=0.6) 
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(e) SVM (C=500, r=0.6) 

0.
3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.
3

0.
5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.
7

0.7
0.7

0.7

0.7

0.
7

0.
7

0.7

0.7

0.7

0.
7

0.7

0.05 0.1 0.15 0.2

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accounts payable/total sales

O
pe

ra
tin

g 
in

co
m

e/
to

ta
l a

ss
et

s

(f) SVM (C=10, r=0.06) 
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(g) SVM (C=10, r=60) 
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(h) SVM (C=10, r=2000) 
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Figure 6. Default probabilities predicted for one random subsample and sensitivity analysis for the SVM.
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generalized to multiple classes. In a multiple class case,
financial analysts usually pre-specify rating classes (i.e.
AAA, A, BB, C, etc.). A certain range of scores and
default probabilities is associated with each rating class.
The ranges are computed on the basis of historical data.
According to the similarity of the scores, a new firm is
assigned to one particular class. Therefore, we can draw
more than one classifying function in the figure above to
separate different rating classes.

5.3. Powerful predictors related to insolvent German
firms

The selection procedure will be repeated for each new
ratio added. The values of the AR increase until the
model includes eight ratios, then they slowly decline. The
medians of the AR for the models with eight ratios are
shown in table 7. Most of the models tested here had AR
values in the range 43.50–60.51% for out-of-sample and
out-of-time tests. The results reported here are the
product of the bootstrap approach described in the
previous section. Obviously, the SVM-based model
including ratios AP/SALE (x24), OI/TA (x3), CASH/
TA (x15), TL/TA (x12), IDINV/INV (x26), INV/SALE
(x22), EBIT/TA (x5) and NI/SALE (x2) attains the
highest median AR, 60.51%. For comparison, we also
report the median AR for the benchmark logit model with
the same ratios. We can see that, for models containing
the former seven ratios and one of the remaining, the
medians of the AR are always higher for the SVM. This
clearly reveals that the SVM-based model is always
consistently superior to the benchmark logit model in
identifying bankrupt firms and confirms the theoretical
advantage of SVM for classification in the linear
non-separable case. With respect to the percentage of
correctly classified out-of-sample observations, a similar
result is achieved (71.85% for the SVM-based model vs.
67.24% for the logit model).

It is noteworthy that, because the insolvency data was
collected two years prior to insolvency, the predicted risk

scores and calculated performance metrics in this study
measure the model’s ability to identify the firms that are
going to default within the next two years. For example,
the predicted default probability for 2002 denotes the
probability that a firm defaults in 2003 or 2004.

We could not significantly improve upon our results by
adding more ratios, and no model with fewer ratios
performed as well. The eight selected predictors related to
bankrupt German firms are AP/SALE (account payable
turnover, x24), OI/TA (x3), CASH/TA (x15), TL/TA
(x12), IDINV/INV (percentage of changing inventories,
x26), INV/SALE (inventory turnover, x22), EBIT/TA
(x5) and NI/SALE (net profit margin, x2). The size of the
company was controlled in the analysis by the logarithm
of the total assets (log(TA), x25). This can serve as a
proxy for the cost of capital. In contrast to other studies,
firm size has been shown to have no important effects on
the probability of bankruptcy, which could be the result
of pre-selecting only medium-sized companies.

Among the powerful predictors in identifying bankrupt
German firms, there are two activity ratios (Account
Payable Turnover and Inventory Turnover), three prof-
itability ratios (OI/TA, EBIT/TA and Net Profit Margin),
one liquidity ratio (CASH/TA), one leverage ratio (TL/
TA) and one percentage of change ratio (Percentage of
Incremental Inventories). It seems that activity ratios play
the most important role in predicting the default
probabilities of German firms. The activity ratio measures
a firm’s ability to convert different positions of their
balance sheets into cash or sales. German firms will
typically try to turn their accounts payable and inven-
tories into sales as fast as possible because these will
actually lead to higher revenues. Instead of ROA, EBIT/
TA has a more powerful impact on insolvent German
firms. In essence, it measures the operating performance
and true productivity of firm assets on whose earning
power the existence of the firm is based. Of course, the
earnings of a firm only cannot tell the entire story. High
earnings are good, but an increase in earnings does not
mean that the net profit margin of a firm is improving.

Table 7. Median of AR measure for the best SVM model with eight important financial ratios calculated on 50/50 subsamples.

AR median AR median

No. Ratio Logit SVM Predictors No. Ratio Logit SVM Predictors

x1 NI/TA 35.12 59.93 x15 CASH/TA 3
x2 NI/SALE 35.15 60.51 8 x16 CASH/CL 34.87 59.42
x3 OI/TA 2 x17 QA/CL 34.66 55.62
x4 OI/SALE 35.06 60.44 x18 CA/CL 34.41 54.93
x5 EBIT/TA 7 x19 WC/TA 34.72 59.48
x6 EBITDA 34.93 59.85 x20 CL/TL 33.91 57.45
x7 EBIT/SALE 35.14 60.4 x21 SALE/TA 35.05 56.61
x8 OF/TA 35.04 59.64 x22 INV/SALE 6
x9 (OF-ITGA)/(TA-ITGA-CASH-LB) 34.94 59.42 x23 AR/SALE 35.15 59.81
x10 CL/TA 33.94 58.19 x24 AP/SALE 1
x11 (CL-CASH)/TA 34.01 57.76 x25 Log(TA) 36.14 55.77
x12 TL/TA 4 x26 IDINV/INV 5
x13 DEBT/TA 34.97 59.07 x27 IDL/TL 35.22 58.88
x14 EBIT/INTE 35.03 54.37 x28 IDCASH/CASH 35.06 55.08
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For instance, if a firm has costs that have increased at a
greater rate than sales, it leads to a lower profit margin.
This is an indication that costs need to be under better
control. Therefore, net profit margin is also very useful
when analysing German bankruptcy data. In our study
the liquidity ratio CASH/TA is only inferior to activity
and profitability ratios when explaining German bank-
ruptcies. Its strong explanatory power may result because
the sample used in this study is mainly composed of
private firms and this might not be true for public firms
used in previous studies. The leverage ratio TL/TA also
has a powerful influence on the identification of German
bankruptcies. This metric is used to measure a firm’s
financial risk by determining how much of its assets have
been financed by debt. This is a very broad ratio as it
includes short- and long-term liabilities (debt) as well as
all types of both tangible and intangible assets. The higher
a firm’s degree of leverage, the more the firm is considered
risky. A firm with high leverage is more vulnerable to
downturns in the business cycle because the firm must
continue to service its debt regardless of how bad sales
are. The incremental inventories provided by the
Creditreform database also contain useful information
for studying insolvent German firms.

To summarize our results, a German firm is most likely
to go bankrupt when it has high turnover, low profits, low
cash flows, is highly leveraged and has a high percentage
of changing inventories. Although these results are similar
to those of previous studies, the discovery of significant
effects of the activity ratio and incremental inventories for
predicting defaults in Germany is new.

6. Conclusions

We use a discrimination technique, the Support Vector
Machine for classification, to analyse the German bank-
rupt company database spanning from 1996 through
2002. The identifying ability of an SVM-based nonlinear
and non-parametric model is compared with that of the
benchmark logit model with regard to two performance
metrics (AR and misclassification error) on the basis of
bootstrapped subsamples. The evidence from empirical
results consistently shows that a credit risk model based
on SVM significantly outperforms the benchmark linear
parametric model in modeling the default risk of German
firms out of sample and out of time. The sensitivity of the
SVM to the penalty parameter C and Gaussian kernel
coefficient r is examined according to the median of the
AR using box plots (see figure 4), classification errors (see
table 5) and two-dimensional visualization tools
(figure 6). It is found that the discriminating ability of
the SVM seems to be more sensitive to the values of r
than C. Thus, appropriate trade-off values of parameters
C and r should be chosen for bankruptcy analysis; for
example, C¼ 10 and r¼ 0.6 in this study for the formal
empirical analysis.

In addition to the unique minimum, no prior assump-
tions and it not being necessary to adjust the collinearity
between the ratios, in particular the principle of structural

risk minimization, endows the SVM approach with the
most excellent classifying ability among all alternatives.
Also, the SVM-based model is good at searching the
linear non-separable hypersurface, which the logit model
cannot do. As shown in table 4, the ratio Account Payable
Turnover was selected by SVM among 28 candidates as
the first best predictor to model the risk, which drastically
upgrades the classifying accuracy, AR, of SVM by more
than 10% as opposed to most of the other ratios selected.
Otherwise, the performance gap between the SVM-based
and logit model would not be so great, as shown in
table 7. If the data are nonlinear, e.g. the Creditreform
database, no linear model is able to separate the
populations optimally, regardless of the DA, and the
logit and probit models. The SVM method (as well as
other pattern-recognition techniques) provides a more
consistent way of finding the nonlinearities in the data, as
opposed to performing an ad-hoc search of all possible
combinations of the logit model. The holdout validation
method, the most appropriate for modeling the real risk
in practice, and the bootstrap re-sampling technique,
guarantee the robustness and stability of the SVM
approach. Due to the application of a kernel function
and the sparseness of the algorithm, the achievement of
such an improvement by SVM is not at a cost of much
computational time, just a few seconds. Therefore, the
empirical evidence confirms the theoretical advantage of
SVM for classification and justifies it as applicable in
practice. Of course, the non-parametric nature behind the
SVM will come at the expense of understanding and
insight; that is, the impact (the magnitude and direction
and its significance) of the predictors on the default
probabilities cannot be interpreted explicitly, in contrast
to the parametric logit model. What the SVM is good at is
capturing the nonlinearities better and forecasting the
default probabilities more accurately than the benchmark.

As described in section 5.3, there are eight accounting
ratios that are powerful predictors related to the bank-
ruptcy of German companies. It turns out that activity
ratios such as Account Payable and Inventory Turnover
play the most important role in predicting the default
probabilities. The percentage of incremental inventories
provided by the Creditreform database also contains
useful information for German bankruptcy analysis.
These findings are new and somewhat different from the
other default risk studies. The ability to automatically
find the nonlinear dependence of the SVM model and the
application of a widely accepted forward stepwise selec-
tion procedure in our case provides adequate selection
that cannot be done by the usual linear classifying
techniques such as the DA, logit model. That is to say,
for German companies, Account Payable and Inventory
Turnover, the percentage of incremental inventories
selected have a strong nonlinear dependence on PDs,
but a weak linear dependence that may lead to their
unpopularity. Consistent with previous research, the
profitability ratios, e.g. OI/TA, EBIT/TA and NI/SALE
(net profit margin), are also powerful predictors related to
German insolvency. Other results are similar to published
research, e.g. that liquidity and leverage ratios also have
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important effects on the probability of default for
German companies. But, in contrast to the others, firm
size (log(TA), x25) was not chosen by the forward
selection procedure as a predictor, which could be the
result of pre-selecting only medium-sized companies.
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Härdle, W. and Simar, L., Applied Multivariate Statistical
Analysis, 2003 (Springer: Berlin).

Haykin, S., Neural Networks: A Comprehensive Foundation,
1999 (Prentice-Hall: Engelwood Cliffs, NJ).

Herrity, J.V., Keenan, S.C., Sobehart, J.R., Carty, L.V. and
Falkenstein, E.G., Measuring private firm default risk.
Moody’s Investors Service Special Comment, 1999.

Hertz, J., Krogh, A. and Palmer, R.G., The Theory of Neural
Network Computation, 1991 (Addison Welsey: Redwood,
CA).

Horowitz, J.L., The Bootstrap, Vol. 5, 2001 (Elsevier:
Amsterdam).

Keenan, S.C. and Sobehart, J.R., Performance measures for
credit risk models. Research report #1-10-10-99, Moody’s
Risk Management Services, 1999.

Khandani, B., Lozano, M. and Carty, L., Moody’s riskcalc for
private companies: The German model. Rating Methodology,
Moody’s Investors Service, 2001.

Lennox, C., Identifying failing companies: A re-evaluation of
the logit, probit and DA approaches. J. Econ. Business, 1999,
51, 347–364.

Lo, A.W., Logit versus discriminant analysis: A specification
test and application to corporate bankruptcies. J. Econometr.,
1986, 31(2), 151–178.

Modeling default risk with support vector machines 153

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f E

di
nb

ur
gh

] a
t 0

2:
32

 2
0 

A
ug

us
t 2

01
2 



Mercer, J., Functions of positive and negative type, and their
connection with the theory of integral equations.
Trans. London Philos. Soc. A, 1908, 209, 415–446.

Merwin, C., Financing small corporations in five manufacturing
industries, 1926–36. National Bureau of Economic Research,
1942.

Myers, S., Determinants of corporate borrowing. J. Financial
Econ., 1977, 5(2), 147–175.

Ohlson, J., Financial ratios and the probabilistic prediction of
bankruptcy. J. Account. Res., 1980, 18, 109–131.

Platt, H., Platt, M. and Pedersen, J., Bankruptcy discrimination
with real variables. J. Business, Finance Account., 1994, 21(4),
491–510.

Ramser, J. and Foster, L., A demonstration of ratio analysis.
Bulletin No. 40, Bureau of Business Research, University of
Illinois, 1931.

Refenes, A.P., Neural Networks in the Capital Markets, 1995
(Wiley: Chichester).

Saunders, A. and Allen, L., Credit Risk Measurement, 2nd ed.,
2002 (Wiley: New York).

Serrano, C., Martin, B. and Gallizo, J.L., Artificial neural
networks in financial statement analysis: Ratios versus
accounting data. Technical report, paper presented at the
16th Annual Congress of the European Accounting
Association, Turku, Finland, April 28–30, 1993.

Shumway, T., Forecasting bankruptcy more accurately: a simple
hazard model. Working Paper, University of Michigan
Business School, 1998.

Sobehart, J.R., Stein, R.M., Mikityanskaya, V. and Li, L.,
Moody’s public firm risk model: a hybrid approach to

modeling default risk. Moody’s Investors Service Rating
Methodology, 2000.

Sobehart, J., Keenan, S. and Stein, R., Benchmarking quanti-
tative default risk models: A validation methodology. Algo
Res. Q., 2001, 4(1/2), 57–72.

Sobehart, J.R. and Keenan, S.C., Performance evaluation for
credit spread and default risk models. In Credit Risk: Models
and Management, 2nd ed., edited by D. Shimko, pp. 275–305,
2004 (Risk Books: London).

Swets, J.A., Measuring the accuracy of diagnostic systems.
Science, 1998, 240(4857), 1285–1293.

Swets, J.A., Dawes, R.M. and Monahan, J., Better decisions
through science. Sci. Am., 2000, October, 82–87.

Tikhonov, A.N., On solving ill-posed problem and method
regularization. Dokl. Akad. Nauk USSR, 1963, 153, 501–504.

Tikhonov, A.N. and Arsenin, V.Y., Solution of Ill-posed
Problems, 1977 (W.H. Winston: Washington, DC).

Vapnik, V., Estimation of Dependencies Based on Empirical
Data, 1979 (Nauka: Moscow).

Vapnik, V., The Nature of Statistical Learning Theory, 1995
(Springer: New York).

Vapnik, V., Statistical Learning Theory, 1997 (Wiley: NewYork).
Wilson, R.L. and Sharda, R., Bankruptcy prediction using
neural networks. Decis. Supp. Syst., 1994, 11, 545–557.

Winakor, A. and Smith, R., Changes in the financial structure of
unsuccessful industrial corporations. Bulletin No. 51, Bureau
of Business Research, University of Illinois, 1935.

Zagst, R. and Hocht, S., Comparing default probability
models. Working Paper, Munich University of Technology,
2006.

154 S. Chen et al.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f E

di
nb

ur
gh

] a
t 0

2:
32

 2
0 

A
ug

us
t 2

01
2 



AStA Adv Stat Anal
DOI 10.1007/s10182-011-0182-1

O R I G I NA L PA P E R

Simultaneous confidence bands for expectile functions

Mengmeng Guo · Wolfgang Karl Härdle

Received: 25 February 2011 / Accepted: 9 November 2011
© Springer-Verlag 2011

Abstract Expectile regression, as a general M smoother, is used to capture the tail
behaviour of a distribution. Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. rvs. Denote by v(x)

the unknown τ -expectile regression curve of Y conditional on X, and by vn(x) its
kernel smoothing estimator. In this paper, we prove the strong uniform consistency
rate of vn(x) under general conditions. Moreover, using strong approximations of
the empirical process and extreme value theory, we consider the asymptotic maximal
deviation sup0≤x≤1 |vn(x) − v(x)|. According to the asymptotic theory, we construct
simultaneous confidence bands around the estimated expectile function. Furthermore,
we apply this confidence band to temperature analysis. Taking Berlin and Taipei as
an example, we investigate the temperature risk drivers to these two cities.

Keywords Expectile regression · Consistency rate · Simultaneous confidence
bands · Asymmetric least squares · Kernel smoothing

1 Introduction

In regression function estimation, most investigations are concerned with the condi-
tional mean. Geometrically, the observations {(Xi, Yi), i = 1, . . . , n} form a cloud
of points in a Euclidean space. The mean regression function focuses on the center
of the point-cloud, given the covariate X, see Efron (1991). However, more insights
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about the relation between Y and X can be gained by considering the tails of the
conditional distribution.

Asymmetric least squares estimation provides a convenient and relatively efficient
method of summarizing the conditional distribution of a dependent variable given
the regressors. It turns out that similar to conditional percentiles, the conditional ex-
pectiles also characterize the distribution. Breckling and Chambers (1988) proposed
M-quantiles, which extend this idea by a “quantile-like” generalization of regres-
sion based on asymmetric loss functions. Expectile regression, and more general M-
quantile regression, can be used to characterize the relationship between a response
variable and explanatory variables when the behaviour of “non-average” individuals
is of interest. Jones (1994) described that expectiles and M-quantiles are related to
means and quantiles are related to the median, and moreover expectiles are indeed
quantiles of a transformed distribution. However, Koenker (2005) pointed out that
expectiles have a more global dependence on the form of the distribution.

The expectile curves can be key aspects of inference in various economic problems
and are of great interest in practice. Kuan et al. (2009) considered the conditional au-
toregressive expectile (CARE) model to calculate the VaR. Expectiles are also applied
to calculate the expected shortfall in Taylor (2008). Moreover, Schnabel and Eilers
(2009a) analyzed the relationship between gross domestic product per capita (GDP)
and average life expectancy using expectile curves. Several well-developed methods
already existed to estimate expectile curves. Schnabel and Eilers (2009b) combined
asymmetric least square and P -splines to calculate a smooth expectile curve. In this
paper, we apply the kernel smoothing techniques for the expectile curve, and con-
struct the simultaneous confidence bands for the expectile curve, which describes a
picture about the global variability of the estimator.

Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. rvs. We denote the joint probability density
function (pdf) of the rvs is f (x, y), F(x, y) is the joint cumulative distribution func-
tion (cdf), conditional pdf is f (y|x), f (x|y) and conditional cdf F(y|x), F(x|y).
Further, x ∈ J with J a possibly infinite interval in Rd and y ∈ R. In general, X may
be a multivariate covariate.

From an optimization point of view, both quantile and expectile can be expressed
as minimum contrast parameter estimators. Define ρτ (u) = |I(u ≤ 0) − τ ||u| for 0 <

τ < 1, then the τ th quantile is expressed as arg minθ Eρτ (y − θ), where

Eρτ (y − θ) = (1 − τ )

∫ θ

−∞
|y − θ |dF(y|x) + τ

∫ ∞

θ
|y − θ |dF(y|x)

where θ is the estimator of the τ expectile, and define θ ∈ I , where the compact
set I ⊂ R. With the interpretation of the contrast function ρτ (u) as the negative log
likelihood of asymmetric Laplace distribution, we can see the τ th quantile as a quasi
maximum estimator in the location model. Changing the loss (contrast) function to

ρτ (u) =
∣∣I(u ≤ 0) − τ

∣∣u2, τ ∈ (0,1) (1)

leads to expectile. Note that for τ = 1
2 , we obtain the mean respective to the sample

average. Putting this into a regression framework, we define the conditional expectile
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function (to level τ ) as

v(x) = arg min
θ

E
{
ρτ (y − θ)|X = x

}
(2)

Inserting (1) into (2), we obtain the expected loss function:

E
{
ρτ (y − θ)|X = x

}
= (1 − τ )

∫ θ

−∞
(y − θ)2 dF(y|x) + τ

∫ ∞

θ
(y − θ)2 dF(y|x)

(3)
From now on, we silently assume τ is fixed therefore we suppress the explicit

notion. Recall that the conditional quantile l(x) at level τ can be considered as

l(x) = inf
{
y ∈ R|F(y|x) ≥ τ

}

Therefore, the proposed estimate ln(x) can be expressed:

ln(x) = inf
{
y ∈ R|F̂ (y|x) ≥ τ

}

where F̂ (y|x) is the kernel estimator of F(y|x):

F̂ (y|x) =
∑n

i=1 Kh(x − Xi)I(Yi ≤ y)∑n
i=1 Kh(x − Xi)

In the same spirit, define GY |x(θ) as

GY |x(θ) =
∫ θ
−∞ |y − θ |dF(y|x)

∫ ∞
−∞|y − θ |dF(y|x)

Replacing θ by v(x), we get

GY |x(v) =
∫ v(x)
−∞ |y − v(x)|dF(y|x)

∫ ∞
−∞ |y − v(x)|dF(y|x)

= τ

so v(x) can be equivalently seen as solving: GY |x(θ) − τ = 0 (w.r.t. θ ). Therefore,

v(x) = G−1
Y |x(τ )

with the τ th expectile curve kernel smoothing estimator:

vn(x) = Ĝ−1
Y |x(τ )

where the nonparametric estimate of GY |x(v) is

ĜY |x(θ) =
∑n

i=1 Kh(x − Xi) I(Yi < y)|y − θ |∑n
i=1 Kh(x − Xi)|y − θ |

Quantiles and expectiles both characterize a distribution function although they are
different in nature. As an illustration, Fig. 1 plots curves of quantiles and expectiles
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Fig. 1 (Color online) Quantile
curve (blue) and expectile curve
(green) for standard normal
distribution

of the standard normal N(0,1). Obviously, there is a one-to-one mapping between
quantile and expectile, see Yao and Tong (1996). For fixed x, define w(τ ) such that
vw(τ )(x) = l(x), then w(τ ) is related to the τ th quantile curve l(x) via

w(τ ) =
τ l(x) −

∫ l(x)
−∞ y dF(y|x)

2 E(Y |x) − 2
∫ l(x)
−∞ y dF(y|x) − (1 − 2τ )l(x)

(4)

l(x) is an increasing function of τ , therefore, w(τ ) is also a monotonically increasing
function. Expectiles correspond to quantiles with this transformation w. However, it
is not straightforward to apply (4), since it depends on the conditional distribution of
the regressors. For very simple distributions, it is not hard to calculate the transfor-
mation w(τ ), for example, Y ∼ U(−1,1), then w(τ ) = τ 2/(2τ 2 −2τ +1). However,
if the distribution is more complicated, even worse, the conditional distribution is un-
known, it is hard to apply this transformation, see Jones (1994). Therefore, it is not
feasible to calculate expectiles from the corresponding quantiles.

In the current paper, we apply the methodology to weather studies. Weather risk
is an uncertainty caused by weather volatility. Energy companies take positions in
weather risk if it is a source of financial uncertainty. However, weather is also a
local phenomenon, since the location, the atmosphere, human activities and some
other factors influence the temperature. We investigate whether such local factors
exist. Taking two cities, Berlin and Taipei, as an example, we check whether the
performance of high expectiles and low expectiles of temperature varies over time. To
this end, we calculate the expectiles of trend and seasonality corrected temperature.

The structure of this paper is as follows. In Sect. 2, the stochastic fluctuation
of the process {vn(x) − v(x)} is studied and the simultaneous confidence bands
are presented through the equivalence of several stochastic processes. We calcu-
late the asymptotic distribution of vn(x), and the strong uniform consistency rate
of {vn(x) − v(x)} is discussed in this section. In Sect. 3, a Monte Carlo study is to
investigate the behaviour of vn(x) when the data are generated with the error terms
standard normally distributed. Section 4 considers an application in the temperature
of Berlin and Taipei. All proofs are attached in Appendix.
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2 Results

In light of the concepts of M-estimation as in Huber (1981), if we define ψ(u) as

ψ(u) = ∂ρ(u)

∂u

=
∣∣I(u ≤ 0) − τ

∣∣u

=
{
τ − I(u ≤ 0)

}
|u|

vn(x) and v(x) can be treated as a zero (w.r.t. θ ) of the function:

Hn(θ, x)
def= n−1

n∑

i=1

Kh(x − Xi)ψ(Yi − θ) (5)

H(θ, x)
def=

∫

R
f (x, y)ψ(y − θ) dy (6)

respectively.
Härdle (1989) has constructed the uniform confidence bands for general M-

smoothers. Härdle and Song (2009) studied the uniform confidence bands for quantile
curves. In our paper, we investigate expectile curves, one kind of M-smoother. The
loss function for quantile regression is not differentiable, however it is differentiable
for expectile when it is in the asymmetric quadratic form. Therefore, by employing
similar methods as those developed in Härdle (1989), it is shown in this paper that

P
[
(2δ logn)1/2

{
sup
x∈J

r(x)
∣∣vn(x) − v(x)

∣∣/λ(K)1/2 − dn

}
< z

]

−→ exp
{
−2 exp(−z)

}
, as n → ∞ (7)

with some adjustment of vn(x), we can see that the supreme of vn(x) − v(x) follows
the asymptotic Gumbel distribution, where r(x), δ, λ(K), dn are suitable scaling pa-
rameters. The asymptotic result (7) therefore allows the construction of simultaneous
confidence bands for v(x) based on specifications of the stochastic fluctuation of
vn(x). The strong approximation with Brownian bridge techniques is applied in this
paper to prove the asymptotic distribution of vn(x).

To construct the confidence bands, we make the following necessary assumptions
about the distribution of (X,Y ) and the score function ψ(u) in addition to the exis-
tence of an initial estimator whose error is a.s. uniformly bounded.

(A1) The kernel K(·) is positive, symmetric, has compact support [−A,A] and is
Lipschitz continuously differentiable with bounded derivatives.

(A2) (nh)−1/2(logn)3/2 → 0, (n logn)1/2h5/2 → 0, (nh3)−1(logn)2 ≤ M , M is a
constant.

(A3) h−3(logn)
∫
|y|>an

fY (y) dy = O(1), fY (y) the marginal density of Y , {an}∞n=1
a sequence of constants tending to infinity as n → ∞.

(A4) infx∈J |p(x)| ≥ p0 > 0, where p(x) = ∂ E{ψ(Y − θ)|x}/∂θ |θ=v(x) · fX(x),
where fX(x) is the marginal density of X.
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(A5) The expectile function v(x) is Lipschitz twice continuously differentiable, for
all x ∈ J .

(A6) 0 < m1 ≤ fX(x) ≤ M1 < ∞, x ∈ J , and the conditional density f (·|y), y ∈ R,
is uniform locally Lipschitz continuous of order α̃ (ulL-α̃) on J , uniformly in
y ∈ R, with 0 < α̃ ≤ 1, and ψ(x) is piecewise twice continuously differen-
tiable.

Define also

σ 2(x) = E
[
ψ2{Y − v(x)

}
|x

]

Hn(x) = (nh)−1
n∑

i=1

K
{
(x − Xi)/h

}
ψ

{
Yi − v(x)

}

Dn(x) = (nh)−1 ∂
∑n

i=1 K{(x − Xi)/h}ψ{Yi − θ}
∂θ

∣∣∣∣
θ=v(x)

and assume that σ 2(x) and fX(x) are differentiable.
Assumption (A1) on the compact support of the kernel could possibly be relaxed

by introducing a cutoff technique as in Csörgö and Hall (1982) for density estima-
tors. Assumption (A2) has purely technical reasons: to keep the bias at a lower rate
than the variance and to ensure the vanishing of some non-linear remainder terms.
Assumption (A3) appears in a somewhat modified form also in Johnston (1982). As-
sumption (A4) guarantees that the first derivative of the loss function, i.e. ψ(u) is
differentiable. Assumptions (A5) and (A6) are common assumptions in robust esti-
mation as in Huber (1981), Härdle et al. (1988) that are satisfied by exponential, and
generalized hyperbolic distributions.

Zhang (1994) has proved the asymptotic normality of the nonparametric expectile.
Under the Assumptions (A1) to (A4), we have

√
nh

{
vn(x) − v(x)

} L→ N
{
0,V (x)

}
(8)

with

V (x) = λ(K)fX(x)σ 2(x)/p(x)2

where we can denote

λ(K) =
∫ A

−A
K2(u) du

σ 2(x) = E
[
ψ2{Y − v(x)

}
|x

]

=
∫

ψ2{y − v(x)
}
dF(y|x)

= τ 2
∫ ∞

v(x)

{
y − v(x)

}2
dF(y|x) + (1 − τ )2

∫ v(x)

−∞

{
y − v(x)

}2
dF(y|x) (9)
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p(x) = E
[
ψ ′{Y − v(x)

}
|x

]
· fX(x)

=
{
τ

∫ ∞

v(x)
dF (y|x) + (1 − τ )

∫ v(x)

−∞
dF(y|x)

}
· fX(x) (10)

For the uniform strong consistency rate of vn(x) − v(x), we apply the result of
Härdle et al. (1988) by taking β(y) = ψ(y − θ), y ∈ R, for θ ∈ I , q1 = q2 = −1,
γ1(y) = max{0,−ψ(y − θ)}, γ2(y) = min{0,−ψ(y − θ)} and λ = ∞ to satisfy the
representations for the parameters there. We have the following lemma under some
specified assumptions:

Lemma 1 Let Hn(θ, x) and H(θ, x) be given by (5) and (6). Under Assumption
(A6) and (nh/ logn)1/2 → ∞ through Assumption (A2), for some constant A∗ not
depending on n, we have a.s. as n → ∞

sup
θ∈I

sup
x∈J

∣∣Hn(θ, x) − H(θ, x)
∣∣ ≤ A∗ max

{
(nh/ logn)−1/2, hα̃

}
(11)

For our result on vn(·), we shall also require

inf
x∈J

∣∣∣∣

∫
ψ

{
y − v(x) + ε

}
dF(y|x)

∣∣∣∣ ≥ q̃|ε|, for |ε| ≤ δ1 (12)

where δ1 and q̃ are some positive constants, see also Härdle and Luckhaus (1984).
This assumption is satisfied if there exists a constant q̃ such that f {v(x)|x} > q̃/p,
x ∈ J .

Theorem 1 Under the conditions of Lemma 1 and also assuming (12) holds, we have
a.s. as n → ∞

sup
x∈J

∣∣vn(x) − v(x)
∣∣ ≤ B∗ max

{
(nh/ logn)−1/2, hα̃

}
(13)

with B∗ = A∗/m1q̃ not depending on n and m1 a lower bound of fX(x). If addition-
ally α̃ ≥ {log(

√
logn) − log(

√
nh)}/logh, it can be further simplified to

sup
x∈J

∣∣vn(x) − v(x)
∣∣ ≤ B∗{(nh/ logn)−1/2}

Theorem 2 Let h = n−δ , 1
5 < δ < 1

3 with λ(K) as defined before, and

dn = (2δ logn)1/2 + (2δ logn)−1/2
[

log
{
c1(K)/π1/2} + 1

2
(log δ + log logn)

]

if c1(K) =
{
K2(A) + K2(−A)

}
/
{
2λ(K)

}
> 0

dn = (2δ logn)1/2 + (2δ logn)−1/2 log
{
c2(K)/2π

}

otherwise with c2(K) =
∫ A

−A

{
K ′(u)

}2
du/

{
2λ(K)

}
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Then (7) holds with

r(x) = (nh)−
1
2 p(x)

{
fX(x)

σ 2(x)

} 1
2

This theorem can be used to construct uniform confidence intervals for the regres-
sion function as stated in the following corollary.

Corollary 1 Under the assumptions of the theorem above, an approximate (1−α)×
100% confidence band over [0,1] is

vn(x) ± (nh)−1/2{σ̂ 2(x)λ(K)/f̂X(x)
}1/2

p̂−1(x)
{
dn + c(α)(2δ logn)−1/2}

where c(α) = log 2 − log | log(1 − α)| and f̂X(x), σ̂ 2(x) and p̂(x) are consistent
estimates for fX(x), σ 2(x) and p(x).

With
√

V (x) introduced, we can further write Corollary 1 as

vn(x) ± (nh)−1/2{dn + c(α)(2δ logn)−1/2}
√

V̂ (x)

where V̂ (x) is the nonparametric estimator of V (x). Bandwidth selection is quite
crucial in kernel smoothing. In this paper, we use the optimal bandwidth discussed in
Zhang (1994), which has the following form

h
opt
n =

(
σ 2(x)λ(K)

n[Λ{v(x)|x}]2[
∫
{y − v(x)}2K2{y − v(x)}dF(y|x)]2

)1/5

(14)

where

Λ(θ |x) = ∂2ψ(θ |x − u)

∂u2 |u=0

The proof is essentially based on a linearization argument after a Taylor series
expansion. The leading linear term will then be approximated in a similar way as in
Johnston (1982), Bickel and Rosenblatt (1973). The main idea behind the proof is
a strong approximation of the empirical process of {(Xi, Yi)

n
i=1} by a sequence of

Brownian bridges as proved by Tusnady (1977).
As vn(x) is the zero (w.r.t. θ ) of Hn(θ, x), it follows by applying second-order

Taylor expansions to Hn(θ, x) around v(x) that

vn(x) − v(x) =
{
Hn(x) − EHn(x)

}/
p(x) + Rn(x) (15)

where {Hn(x) − EHn(x)}/p(x) is the leading linear term and the remainder term is
written as

Rn(x) = Hn(x)
{
p(x) − Dn(x)

}/{
Dn(x) · p(x)

}
+ EHn(x)/p(x)

+ 1
2

{
vn(x) − v(x)

}2 ·
{
Dn(x)

}−1 (16)
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· (nh)−1
n∑

i=1

K
{
(x − Xi)/h

}
ψ ′′{Yi − v(x) + rn(x)

}
, (17)

∣∣rn(x)
∣∣ <

∣∣vn(x) − v(x)
∣∣.

We show in Appendix that (Lemma 4) that ∥Rn∥ = supx∈J |Rn(x)| =
Op{(nh logn)−1/2}.

Furthermore, the rescaled linear part

Yn(x) = (nh)1/2{σ 2(x)fX(x)
}−1/2{

Hn(x) − EHn(x)
}

is approximated by a sequence of Gaussian processes, leading finally to the Gaussian
process

Y5,n(x) = h−1/2
∫

K
{
(x − t)/h

}
dW(x) (18)

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain asymp-
totically the Gumbel distribution.

We also need the Rosenblatt (1952) transformation,

T (x, y) =
{
FX|y(x|y),FY (y)

}

which transforms (Xi, Yi) into T (Xi,Yi) = (X′
i , Y

′
i ) mutually independent uniform

rv’s. In the event that x is a d-dimension covariate, the transformation becomes

T (x1, x2, . . . , xd, y) =
{
FX1|y(x1|y),FX2|y(x2|x1, y), . . . ,

FXk |xd−1,...,x1,y(xk|xd−1, . . . , x1, y),FY (y)
}

(19)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be applied to
obtain the following lemma.

Lemma 2 On a suitable probability space a sequence of Brownian bridges Bn exists
that

sup
x∈J,y∈R

∣∣Zn(x, y) − Bn

{
T (x, y)

}∣∣ = O
{
n−1/2(logn)2} a.s.

where Zn(x, y) = n1/2{Fn(x, y) − F(x, y)} denotes the empirical process of
{(Xi, Yi)}ni=1.

For d > 2, it is still an open problem which deserves further research.
Before we define the different approximating processes, let us first rewrite (18) as

a stochastic integral w.r.t. the empirical process Zn(x, y),

Yn(x) =
{
hg′(x)

}−1/2
∫∫

K
{
(x − t)/h

}
ψ

{
y − v(x)

}
dZn(t, y)

g′(x) = σ 2(x)fX(x)
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The approximating processes are now

Y0,n(x) =
{
hg(x)

}−1/2
∫∫

Γn

K
{
(x − t)/h

}
ψ

{
y − v(x)

}
dZn(t, y)

where Γn =
{
|y| ≤ an

}
,

g(t) = E
[
ψ2{y − v(x)

}
· I

(
|y| ≤ an

)∣∣X = x
]
· fX(x) (20)

Y1,n(x) =
{
hg(x)

}−1/2
∫∫

Γn

K
{
(x − t)/h

}
ψ

{
y − v(x)

}
dBn

{
T (t, y)

}

{Bn} being the sequence of Brownian bridges from Lemma 2 (21)

Y2,n(x) =
{
hg(x)

}−1/2
∫∫

Γn

K
{
(x − t)/h

}
ψ

{
y − v(x)

}
dWn

{
T (t, y)

}

{Wn} being the sequence of Wiener processes satisfying

Bn

(
t ′, y′) = Wn

(
t ′, y′) − t ′y′Wn(1,1) (22)

Y3,n(x) =
{
hg(x)

}−1/2
∫∫

Γn

K
{
(x − t)/h

}
ψ

{
y − v(t)

}
dWn

{
T (t, y)

}
(23)

Y4,n(x) =
{
hg(x)

}−1/2
∫

g(t)1/2K
{
(x − t)/h

}
dW(t) (24)

Y5,n(x) = h−1/2
∫

K
{
(x − t)/h

}
dW(t)

{
W(·)

}
being the Wiener process (25)

Lemmas 5 to 10 ensure that all these processes have the same limit distributions. The
result then follows from

Lemma 3 (Theorem 3.1 in Bickel and Rosenblatt 1973) Let dn, λ(K), δ as in Theo-
rem 2. Let

Y5,n(x) = h−1/2
∫

K
{
(x − t)/h

}
dW(t)

Then, as n → ∞, the supremum of Y5,n(x) has a Gumbel distribution.

P
{
(2δ logn)1/2

[
sup
x∈J

∣∣Y5,n(x)
∣∣/{

λ(K)
}1/2 − dn

]
< z

}
→ exp

{
−2 exp(−z)

}

Same as quantile, the supremum of a nonparametric expectile converge to its limit
at a rate (logn)−1. We do not check the bootstrap confidence bands in this paper,
which can be future work. Instead, we point out several well documented litera-
ture about this issue. For example, Claeskens and Keilegom (2003) discussed the
bootstrap confidence bands for regression curves and their derivatives. Partial linear
quantile regression and bootstrap confidence bands are well studied in Härdle et al.
(2010). They proved that the convergence rate by bootstrap approximation to the dis-
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Fig. 2 (Color online) τ = 0.5 (left) and τ = 0.9 (right) estimated quantile and expectile plot. Quantile
curve, theoretical expectile curve, estimated expectile curve

tribution of the supremum of a quantile estimate has been improved from (logn)−1

to n−2/5.

3 A Monte Carlo study

In the design of the simulation, we generate bivariate random variables {(Xi, Yi)}ni=1
with sample size n = 50, n = 100, n = 200, n = 500. The covariate X is uniformly
distributed on [0,2]

Y = 1.5X + 2 sin(πX) + ε (26)

where ε ∼ N(0,1).
Obviously, the theoretical expectiles (fixed τ ) are determined by

v(x) = 1.5x + 2 sin(πx) + vN(τ ) (27)

where vN(τ ) is the τ th expectile of the standard Normal distribution.
Figure 2 (in the left part) describes the simulated data (the grey points), together

with the 0.5 estimated quantile and estimated expectile and theoretical expectile
curves, which represents, respectively, the conditional median and conditional mean.
The conditional mean and conditional median coincide with each other, since the er-
ror term is symmetrically distributed, which is obvious in Fig. 2. In the right part
of the figure, we consider the conditional 0.9 quantile and expectile curves. Via a
transformation (4), there is a gap between the quantile curve and the expectile curve.
By calculating w(τ ) for the standard normal distribution, the 0.9 quantile can be ex-
pressed by the around 0.96 expectile. The estimated expectile curve is close to the
theoretical one.

Figure 3 shows the 95% uniform confidence bands for expectile curve, which are
represented by the two red dashed lines. We calculate both 0.1 (left) and 0.9 (right)
expectile curves. The black lines stand for the corresponding 0.1 and 0.9 theoretical
expectile curves, and the blue lines are the estimated expectile curves. Obviously, the
theoretical expectile curves locate in the confidence bands.
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Fig. 3 Uniform confidence bands for expectile curve for τ = 0.1 (left) and τ = 0.9 (right). Theoretical
expectile curve, estimated expectile curve and 95% uniform confidence bands

Table 1 Simulated coverage
probabilities of 95% confidence
bands for 0.9 expectile with 500
runs of simulation. cp stands for
the coverage probability, and h
is the width of the band

n cp h

50 0.526 1.279

100 0.684 1.093

200 0.742 0.897

500 0.920 0.747

Table 2 Simulated coverage
probabilities of 95% confidence
bands for 0.1 expectile with 500
runs of simulation. cp stands for
the coverage probability, and h
is the width of the band

n cp h

50 0.386 0.859

100 0.548 0.768

200 0.741 0.691

500 0.866 0.599

To check the performance of the calculated confidence bands, we compare the
simulated coverage probability with the nominal values for coverage probability 95%
for different sample sizes. We apply this method to both 0.9 and 0.1 expectile. Table 1
and Table 2 present the corresponding results. We run the simulation 500 times for
each scenario. Obviously, the coverage probabilities improve with the increased the
sample size, and the width of the bands h becomes smaller for both 0.9 and 0.1
expectile. It is noteworthy that when the number of observation is large enough, for
example n = 500, the coverage probability is very close to the nominal probability,
especially for the 0.9 expectile.

4 Application

In this part, we apply the expectile into the temperature study. We consider the daily
temperature both of Berlin and Taipei, ranging from 19480101 to 20071231, together
21900 observations for each city. The statistical properties of the temperature are
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Table 3 Statistical summary of
the temperature in Berlin and
Taipei

Mean SD Skewness Kurtosis Max Min

Berlin 9.66 7.89 −0.315 2.38 30.4 −18.5

Taipei 22.61 5.43 −0.349 2.13 33.0 6.5

Fig. 4 (Color online) The time
series plot of the temperature
in Berlin and Taipei from
2002–2007. The black line
stands for the temperature
in Taipei, and the blue line is
in Berlin

summarized in Table 3. The Berlin temperature data were obtained from Deutscher
Wetterdienst, and the Taipei temperature data were obtained from the center for adap-
tive data analysis in National Central University.

Before proceeding to detailed modeling and forecasting results, it is useful to get
an overall view of the daily average temperature data. Figure 4 displays the average
temperature series of the sample from 2002 to 2007. The black line stands for the
temperature in Taipei, and the blue line describes for the temperature in Berlin. The
time series plots reveal strong and unsurprising seasonality in average temperature:
in each city, the daily average temperature moves repeatedly and regularly through
periods of high temperature (summer) and low temperature (winter). It is well docu-
mented that seasonal volatility in the regression residuals appears highest during the
winter months where the temperature shows high volatility. Importantly, however,
the seasonal fluctuations differ noticeably across cities both in terms of amplitude
and detail of pattern.

Based on the observed pattern, we apply a stochastic model with seasonality and
inter temporal autocorrelation, as in Benth et al. (2007). To understand the model
clearly, let us introduce the time series decomposition of the temperature, with t =
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Fig. 5 0.9 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from 1948–2007
with the 95% uniform confidence bands for the first 20 years expectile

1, . . . ,365 days, and j = 0, . . . , J years:

X365j+t = Tt,j − Λt

X365j+t =
L∑

l=1

βljX365j+t−l + εt,j

Λt = a + bt +
M∑

m=1

cl cos
{

2π(t − dm)

l · 365

}
(28)

where Tt,j is the temperature at day t in year j , and Λt denotes the seasonality
effect. Motivation of this modeling approach can be found in Diebold and Inoue
(2001). Further studies as Campbell and Diebold (2005) has provided evidence that
the parameters βlj are likely to be j independent and hence estimated consistently
from a global autoregressive process AR(Lj ) model with Lj = L. The analysis of
the partial autocorrelations and Akaike’s Information Criterion (AIC) suggests that a
simple AR(3) model fits well the temperature evolution both in Berlin and Taipei.

In this paper, the risk factor of temperature, which is the residual ε̂t,j from (28),
is studied in the expectile regression. We intend to construct the confidence bands for
the 0.01 and 0.9 expectile curves for the volatility of temperature. It is interesting to
check whether the extreme values perform differently in different cities.

The left part of the figures describes the expectile curves for Berlin, and the right
part is for Taipei. In each figure, the thick black line depicts the average expectile
curve with the data from 1948 to 2007. The red line is the expectile for the residuals
from (28) with the data of the first 20 years temperature, i.e. in the period from 1948
to 1967. The 0.9 expectile for the second 20 years (1968–1987) residuals is described
by the green line, and the blue line stands for the expectile curve in the latest 20 years
(1988–2007). The dotted lines are the 95% confidence bands corresponding to the ex-
pectile curve with the same color. Figures 5, 6 and 7 describe the 0.9 expectile curves
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Fig. 6 0.9 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from 1948–2007
with the 95% uniform confidence bands for the second 20 years expectile

Fig. 7 0.9 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from 1948–2007
with the 95% uniform confidence bands for the latest 20 years expectile

for Berlin and Taipei, as well as their corresponding confidence bands. Obviously,
the variance is higher in winter–earlier summer both in Berlin and Taipei.

Note that the behaviour of expectile curves in Berlin and Taipei is quite different.
Firstly, the variation of the expectiles in Berlin is smaller than that of Taipei. All the
expectile curves cross with each other in the last 100 observations of the year for
Berlin, and the variance in this period is smaller. Moreover, all of these curves nearly
locate in the corresponding three confidence bands. However, the performance of
the expectile in Taipei is quite different from that of Berlin. The expectile curves for
Taipei have similar trends for each 20 years. They have highest volatilities in January,
and lowest volatility in July. More interestingly, the expectile curve for the latest 20
years does not locate in the confidence bands constructed using the data from the
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Fig. 8 0.01 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from
1948–2007 with the 95% uniform confidence bands for the first 20 years expectile

Fig. 9 0.01 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from
1948–2007 with the 95% uniform confidence bands for the second 20 years expectile

first 20 years and second 20 years, see Figs. 5 and 7. Similarly, the expectile curve
for the first 20 years does not locate in the confidence bands constructed using the
information from the latest 20 years.

Further, let us study low expectile for the residuals of the temperature in Berlin
and Taipei. It is hard to calculate very small percentage of quantile curves, due to the
sparsity of the data, expectiles though can overcome this drawback. One can calculate
very low or very high expectiles, such as 0.01 and 0.99 expectile curves, even when
there are not so many observations. Display of the 0.01 expectiles for the residuals
and their corresponding confidence bands is given in Figs. 8, 9 and 10. One can
detect that the shapes of the 0.01 expectile for Berlin and Taipei are different. It
does not fluctuate a lot during the whole year in Berlin, while the variation in Taipei
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Fig. 10 0.01 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from
1948–2007 with the 95% uniform confidence bands for the latest 20 years expectile

is much bigger. However, all the curves both for Berlin and Taipei locate in their
corresponding confidence bands.

As depicted in the figures, the performance of the residuals are quite different from
Berlin and Taipei, especially for high expectiles. The variation of the temperature in
Taipei is more volatile. One interpretation is that in the last 60 years, Taiwan has
been experiencing a fast developing period. Industrial expansion, burning of fossil
fuel and deforestation and other sectors, could be an important factor for the bigger
volatility in the temperature of Taipei. However, Germany is well-developed in this
period, especially in Berlin, where there are no intensive industries. Therefore, one
may say the residuals reveals the influence of the human activities, which induce the
different performance of the residuals of temperature.
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Appendix

Proof of Theorem 1 By the definition of vn(x) as a zero of (5), we have, for ε > 0,

if vn(x) > v(x) + ε, and then Hn

{
v(x) + ε, x

}
> 0 (29)

Now

Hn

{
v(x) + ε, x

}
≤ H

{
v(x) + ε, x

}
+ sup

θ∈I

∣∣Hn(θ, x) − H(θ, x)
∣∣ (30)

Also, by the identity H {v(x), x} = 0, the function H {v(x) + ε, x} is not positive and
has a magnitude ≥ m1q̃ε by assumption (A6) and (12), for 0 < ε < δ1. That is, for
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0 < ε < δ1,

H
{
v(x) + ε, x

}
≤ −m1q̃ε (31)

Combining (29), (30) and (31), we have, for 0 < ε < δ1:

if vn(x) > v(x) + ε, and then sup
θ∈I

sup
x∈J

∣∣Hn(θ, x) − H(θ, x)
∣∣ > m1q̃ε

With a similar inequality proved for the case vn(x) < v(x) + ε, we obtain, for
0 < ε < δ1:

if sup
x∈J

∣∣vn(x) − v(x)
∣∣ > ε, and then sup

θ∈I
sup
x∈J

∣∣Hn(θ, x) − H(θ, x)
∣∣ > m1q̃ε (32)

It readily follows that (32) and (11) imply (13). !

Below we first show that ∥Rn∥∞ = supx∈J |Rn(x)| vanishes asymptotically faster
than the rate (nh logn)−1/2; for simplicity we will just use ∥ · ∥ to indicate the sup-
norm.

Lemma 4 For the remainder term Rn(t) defined in (16) we have

∥Rn∥ = Op

{
(nh logn)−1/2} (33)

Proof First we have by the positivity of the kernel K ,

∥Rn∥ ≤
[

inf
0≤x≤1

{∣∣Dn(x)
∣∣ · p(x)

}]−1{
∥Hn∥ · ∥p − Dn∥ + ∥Dn∥ · ∥EHn∥

}

+ C1 · ∥vn − l∥2 ·
{

inf
0≤t≤1

∣∣Dn(x)
∣∣
}−1

· ∥fn∥

where fn(x) = (nh)−1 ∑n
i=1 K{(x − Xi)/h}.

The desired result (4) will then follow if we prove

∥Hn∥ = Op

{
(nh)−1/2(logn)1/2} (34)

∥p − Dn∥ = Op

{
(nh)−1/4(logn)−1/2} (35)

∥EHn∥ = O
(
h2) (36)

∥vn − v∥2 = Op

{
(nh)−1/2(logn)−1/2} (37)

Since (36) follows from the well-known bias calculation

EHn(x) = h−1
∫

K
{
(x − u)/h

}
E
[
ψ

{
y − v(x)

}
|X = u

]
fX(u)du = O

(
h2)

where O(h2) is independent of x in Parzen (1962), we have from assumption (A2)
that ∥EHn∥ = Op{(nh)−1/2(logn)−1/2}.
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According to Lemma A.3 in Franke and Mwita (2003),

sup
x∈J

∣∣Hn(x) − EHn(x)
∣∣ = O

{
(nh)−1/2(logn)1/2}

and the following inequality:

∥Hn∥ ≤ ∥Hn − EHn∥ + ∥EHn∥
= O

{
(nh)−1/2(logn)1/2} + Op

{
(nh)−1/2(logn)−1/2}

= O
{
(nh)−1/2(logn)1/2}

Statement (34) thus is obtained.
Statement (35) follows in the same way as (34) using assumption (A2) and the

Lipschitz continuity properties of K , ψ ′, l.
According to the uniform consistency of vn(x) − v(x) shown before, we have

∥vn − v∥ = Op

{
(nh)−1/2(logn)1/2}

which implies (37).
Now the assertion of the lemma follows, since by tightness of Dn(x),

inf0≤t≤1 |Dn(x)| ≥ q0 a.s. and thus

∥Rn∥ = Op

{
(nh logn)−1/2}(1 + ∥fn∥

)

Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), ∥fn∥ = Op(1); thus the
desired result ∥Rn∥ = Op{(nh logn)−1/2} follows. !

We now begin with the subsequent approximations of the processes Y0,n to Y5,n.

Lemma 5

∥Y0,n − Y1,n∥ = O
{
(nh)−1/2(logn)2} a.s.

Proof Let x be fixed and put L(y) = ψ{y − v(x)} still depending on x. Using inte-
gration by parts, we obtain

∫∫

Γn

L(y)K
{
(x − t)/h

}
dZn(t, y)

=
∫ A

u=−A

∫ an

y=−an

L(y)K(u)dZn(x − h · u,y)

= −
∫ A

−A

∫ an

−an

Zn(x − h · u,y)d
{
L(y)K(u)

}

+ L(an)(an)

∫ A

−A
Zn(x − h · u,an) dK(u)

− L(−an)(−an)

∫ A

−A
Zn(x − h · u,−an) dK(u)
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+ K(A)

{∫ an

−an

Zn(x − h · A,y)dL(y)

+ L(an)(an)Zna (x − h · A,an) − L(−an)(−an)Zn(x − h · A,−an)

}

− K(−A)

{∫ an

−an

Zn(x + h · A,y)dL(y) + L(an)(an)Zn(x + h · A,an)

− L(−an)(−an)Zn(x + h · A,−an)

}

If we apply the same operation to Y1,n with Bn{T (x, y)} instead of Zn(x, y) and use
Lemma 2, we finally obtain

sup
0≤x≤1

h1/2g(x)1/2∣∣Y0,n(x) − Y1,n(x)
∣∣ = O

{
n−1/2(logn)2} a.s. !

Lemma 6 ∥Y1,n − Y2,n∥ = Op(h1/2).

Proof Note that the Jacobian of T (x, y) is f (x, y). Hence

Y1,n(x) − Y2,n(x)

=
∣∣∣∣
{
g(x)h

}−1/2
∫∫

Γn

ψ
{
y − v(x)

}
K

{
(x − t)/h

}
f (t, y) dt dy

∣∣∣∣ ·
∣∣Wn(1,1)

∣∣

It follows that

h−1/2∥Y1,n − Y2,n∥ ≤
∣∣Wn(1,1)

∣∣ ·
∥∥g−1/2∥∥

· sup
0≤t≤1

h−1
∫∫

Γn

∣∣ψ
{
y − v(x)

}
K

{
(x − t)/h

}∣∣f (t, y) dt dy

Since ∥g−1/2∥ is bounded by assumption, we have

h−1/2∥Y1,n − Y2,n∥ ≤
∣∣Wn(1,1)

∣∣ · C4 · h−1
∫

K
{
(x − t)/h

}
dx = Op(1) !

Lemma 7 ∥Y2,n − Y3,n∥ = Op(h1/2).

Proof The difference |Y2,n(x) − Y3,n(x)| may be written as
∣∣∣∣
{
g(x)h

}−1/2
∫∫

Γn

[
ψ

{
y − v(x)

}
− ψ

{
y − v(t)

}]
K

{
(x − t)/h

}
dWn

{
T (t, y)

}∣∣∣∣

If we use the fact that l is uniformly continuous, this is smaller than

h−1/2∣∣g(x)
∣∣−1/2 · Op(h)

and the lemma thus follows. !
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Lemma 8 ∥Y4,n − Y5,n∥ = Op(h1/2).

Proof

∣∣Y4,n(x) − Y5,n(x)
∣∣ = h−1/2

∣∣∣∣

∫ [{
g(t)

g(x)

}1/2

− 1
]
K

{
(x − t)/h

}
dW(x)

∣∣∣∣

≤ h−1/2
∣∣∣∣

∫ A

−A
W(x − hu)

∂

∂u

[{
g(x − hu)

g(x)

}1/2

− 1
]
K(u)du

∣∣∣∣

+ h−1/2
∣∣∣∣K(A)W(t − hA)

[{
g(x − Ah)

g(x)

}1/2

− 1
]∣∣∣∣

+ h−1/2
∣∣∣∣K(−A)W(x + hA)

[{
g(x + Ah)

g(x)

}1/2

− 1
]∣∣∣∣

S1,n(x) + S2,n(x) + S3,n(x), say

The second term can be estimated by

h−1/2∥S2,n∥ ≤ K(A) · sup
0≤x≤1

∣∣W(x − Ah)
∣∣ · sup

0≤x≤1
h−1

∣∣∣∣

[{
g(x − Ah)

g(x)

}1/2

− 1
]∣∣∣∣

by the mean value theorem it follows that

h−1/2∥S2,n∥ = Op(1)

The first term S1,n is estimated as

h−1/2S1,n(x) =
∣∣∣∣h

−1
∫ A

−A
W(x − uh)K ′(u)

[{
g(x − uh)

g(x)

}1/2

− 1
]

du

× 1
2

∫ A

−A
W(x − uh)K(u)

{
g(x − uh)

g(x)

}1/2{g′(x − uh)

g(x)

}
du

∣∣∣∣

=
∣∣T1,n(x) − T2,n(x)

∣∣, say

∥T2,n∥ ≤ C5 ·
∫ A
−A |W(t − hu)|du = Op(1) by assumption on g(x) = σ 2(x) · fX(x).

To estimate T1,n we again use the mean value theorem to conclude that

sup
0≤x≤1

h−1
∣∣∣∣

{
g(x − uh)

g(x)

}1/2

− 1
∣∣∣∣ < C6 · |u|

hence

∥T1,n∥ ≤ C6 · sup
0≤x≤1

∫ A

−A

∣∣W(x − hu)
∣∣K ′(u)u/du = Op(1)

Since S3,n(x) is estimated as S2,n(x), we finally obtain the desired result. !
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The next lemma shows that the truncation introduced through {an} does not affect
the limiting distribution.

Lemma 9 ∥Yn − Y0,n∥ = Op{(logn)−1/2}.

Proof We shall only show that g′(x)−1/2h−1/2 ∫∫
R−Γn

ψ{y − v(x)} ×
K{(x − t)/h}dZn(t, y) fulfills the lemma. The replacement of g′(x) by g(x) may
be proved as in Lemma A.4 of Johnston (1982). The quantity above is less than
h−1/2∥g−1/2∥ · ∥

∫∫
{|y|>an} ψ{y − v(x)}K{(x − t)/h}dZ(t, y)∥. It remains to be

shown that the last factor tends to zero at a rate Op{(logn)−1/2}. We show first
that

Vn(x) = (logn)1/2h−1/2
∫∫

{|y|>an}
ψ

{
y − v(x)

}
K

{
(x − t)/h

}
dZn(t, y)

p→ 0 for all x

and then we show tightness of Vn(x), the result then follows:

Vn(x) = (logn)1/2(nh)−1/2
n∑

i=1

[
ψ

{
Yi − v(x)

}
I
(
|Yi | > an

)
K

{
(x − Xi)/h

}

− Eψ
{
Yi − v(x)

}
I
(
|Yi | > an

)
K

{
(x − Xi)/h

}]

=
n∑

i=1

Xn,x(x)

where {Xn,x(x)}ni=1 are i.i.d. for each n with EXn,x(x) = 0 for all x ∈ [0,1]. We then
have

EX2
n,x(x) ≤ (logn)(nh)−1 Eψ2{Yi − v(x)

}
I
(
|Yi | > an

)
K2{(x − Xi)/h

}

≤ sup
−A≤u≤A

K2(u) · (logn)(nh)−1 Eψ2{Yi − v(x)
}
I
(
|Yi | > an

)

hence

Var
{
Vn(x)

}
= E

{
n∑

i=1

Xn,x(x)

}2

= n · EX2
n,x(x)

≤ sup
−A≤u≤A

K2(u)h−1(logn)

∫

{|y|>an}
fy(y) dy · Mψ

where Mψ denotes an upper bound for ψ2. This term tends to zero by assump-
tion (A3). Thus by Markov’s inequality we conclude that

Vn(x)
p→ 0 for all x ∈ [0,1]
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To prove tightness of {Vn(x)} we refer again to the following moment condition as
stated in Lemma 4:

E
{∣∣Vn(x) − Vn(x1)

∣∣ ·
∣∣Vn(x2) − Vn(x)

∣∣} ≤ C′ · (x2 − x1)
2

C′ denoting a constant, x ∈ [x1, x2]

We again estimate the left-hand side by Schwarz’s inequality and estimate each factor
separately,

E
{
Vn(x) − Vn(x1)

}2 = (logn)(nh)−1 E

[
n∑

i=1

Ψn(x, x1,Xi, Yi) · I
(
|Yi | > an

)

− E
{
Ψn(x, x1,Xi, Yi) · I

(
|Yi | > an

)}
]2

where Ψn(x, x1,Xi, Yi) = ψ{Yi − v(x)}K{(x − Xi)/h} − ψ{Yi − v(x1)}K{(x1 −
X1)/h}. Since ψ , K are Lipschitz continuous except at one point and the expectation
is taken afterwards, it follows that

[
E
{
Vn(x) − Vn(x1)

}2]1/2

≤ C7 · (logn)1/2h−3/2|x − x1| ·
{∫

{|y|>an}
fy(y) dy

}1/2

If we apply the same estimation to Vn(x2) − Vn(x1) we finally have

E
{∣∣Vn(x) − Vn(x1)

∣∣ ·
∣∣Vn(x2) − Vn(x)

∣∣}

≤ C2
7(logn)h−3|x − x1||x2 − x| ×

∫

{|y|>an}
fy(y) dy

≤ C′ · |x2 − x1|2 since x ∈ [x1, x2] by (A3) !

Lemma 10 Let λ(K) =
∫

K2(u) du and let {dn} be as in the theorem. Then

(2δ logn)1/2[∥Y3,n∥/
{
λ(K)

}1/2 − dn

]

has the same asymptotic distribution as

(2δ logn)1/2[∥Y4,n∥/
{
λ(K)

}1/2 − dn

]

Proof Y3,n(x) is a Gaussian process with

EY3,n(x) = 0

and covariance function
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r3(x1, x2) = EY3,n(x1)Y3,n(x2)

=
{
g(x1)g(x2)

}−1/2
h−1

∫∫

Γn

ψ2{y − v(x)
}
K

{
(x1 − x)/h

}

× K
{
(x2 − x)/h

}
f (t, y) dt dy

=
{
g(x1)g(x2)

}−1/2
h−1

∫∫

Γn

ψ2{y − v(x)
}
f (y|x)dyK

{
(x1 − x)/h

}

× K
{
(x2 − x)/h

}
fX(x)dx

=
{
g(x1)g(x2)

}−1/2
h−1

∫
g(x)K

{
(x1 − x)/h

}
K

{
(x2 − x)/h

}
dx

= r4(x1, x2)

where r4(x1, x2) is the covariance function of the Gaussian process Y4,n(x), which
proves the lemma. !
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Single-index models are natural extensions of linear models and circum-
vent the so-called curse of dimensionality. They are becoming increasingly
popular in many scientific fields including biostatistics, medicine, economics
and financial econometrics. Estimating and testing the model index coeffi-
cients β is one of the most important objectives in the statistical analysis.
However, the commonly used assumption on the index coefficients, ∥β∥ = 1,
represents a nonregular problem: the true index is on the boundary of the unit
ball. In this paper we introduce the EFM approach, a method of estimating
functions, to study the single-index model. The procedure is to first relax the
equality constraint to one with (d − 1) components of β lying in an open
unit ball, and then to construct the associated (d − 1) estimating functions
by projecting the score function to the linear space spanned by the residu-
als with the unknown link being estimated by kernel estimating functions.
The root-n consistency and asymptotic normality for the estimator obtained
from solving the resulting estimating equations are achieved, and a Wilks
type theorem for testing the index is demonstrated. A noticeable result we
obtain is that our estimator for β has smaller or equal limiting variance than
the estimator of Carroll et al. [J. Amer. Statist. Assoc. 92 (1997) 447–489].
A fixed-point iterative scheme for computing this estimator is proposed. This
algorithm only involves one-dimensional nonparametric smoothers, thereby
avoiding the data sparsity problem caused by high model dimensionality. Nu-
merical studies based on simulation and on applications suggest that this new
estimating system is quite powerful and easy to implement.

1. Introduction. Single-index models combine flexibility of modeling with
interpretability of (linear) coefficients. They circumvent the curse of dimensional-
ity and are becoming increasingly popular in many scientific fields. The reduction
of dimension is achieved by assuming the link function to be a univariate func-
tion applied to the projection of explanatory covariate vector on to some direction.
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In this paper we consider an extension of single-index models where, instead of
a distributional assumption, assumptions of only the mean function and variance
function of the response are made. Let (Yi,Xi), i = 1, . . . , n, denote the observed
values with Yi being the response variable and Xi as the vector of d explanatory
variables. The relationship of the mean and variance of Yi is specified as follows:

E(Yi |Xi) = µ{g(β⊤Xi )}, Var(Yi |Xi ) = σ 2V {g(β⊤Xi )},(1.1)

where µ is a known monotonic function, V is a known covariance function, g is an
unknown univariate link function and β is an unknown index vector which belongs
to the parameter space " = {β = (β1, . . . ,βd)⊤ :∥β∥ = 1,β1 > 0,β ∈ Rd}. Here
we assume the parameter space is " rather than the entire Rd in order to ensure
that β in the representation (1.1) can be uniquely defined. This is a commonly used
assumption on the index parameter [see Carroll et al. (1997), Zhu and Xue (2006),
Lin and Kulasekera (2007)]. Another reparameterization is to let β1 = 1 for the
sign identifiability and to transform β to (1,β2, . . . ,βd)/(1 + ∑d

r=2 β2
r )1/2 for the

scale identifiability. Clearly (1,β2, . . . ,βd)/(1+∑d
r=2 β2

r )1/2 can also span the pa-
rameter space " by simply checking that ∥(1,β2, . . . ,βd)/(1 + ∑d

r=2 β2
r )1/2∥ = 1

and the first component 1/(1 + ∑d
r=2 β2

r )1/2 > 0. However, the fixed-point al-
gorithm recommended in this paper for normalized vectors may not be suitable
for such a reparameterization. Model (1.1) is flexible enough to cover a vari-
ety of situations. If µ is the identity function and V is equal to constant 1,
(1.1) reduces to a single-index model Härdle, Hall and Ichimura (1993). Model
(1.1) is an extension of the generalized linear model McCullagh and Nelder
(1989) and the single-index model. When the conditional distribution of Y is lo-
gistic, then µ{g(β⊤X)} = exp{g(β⊤X)}/[1 + exp{g(β⊤X)}] and V {g(β⊤X)} =
exp{g(β⊤X)}/[1 + exp{g(β⊤X)}]2.

For single-index models: µ{g(β⊤X)} = g(β⊤X) and V {g(β⊤X)} = 1, var-
ious strategies for estimating β have been proposed in the last decades. Two
most popular methods are the average derivative method (ADE) introduced in
Powell, Stock and Stoker (1989) and Härdle and Stoker (1989), and the simul-
taneous minimization method of Härdle, Hall and Ichimura (1993). Next we
will review these two methods in short. The ADE method is based on that
∂E(Y |X = x)/∂x = g′(β⊤x)β which implies that the gradient of the regres-
sion function is proportional to the index parameter β . Then a natural estima-
tor for β is β̂ = n−1 ∑n

i=1 ∇̂G(Xi )/∥n−1 ∑n
i=1 ∇̂G(Xi )∥ with ∇G(x) denoting

∂E(Y |X = x)/∂x and ∥ · ∥ being the Euclidean norm. An advantage of the ADE
approach is that it allows estimating β directly. However, the high-dimensional
kernel smoothing used for computing ∇̂G(x) suffers from the “curse of dimension-
ality” if the model dimension d is large. Hristache, Juditski and Spokoiny (2001)
improved the ADE approach by lowering the dimension of the kernel gradually.
The method of Härdle, Hall and Ichimura (1993) is carried out by minimizing a
least squares criterion based on nonparametric estimation of the link g with respect
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to β and bandwidth h. However, the minimization is difficult to implement since it
depends on an optimization problem in a high-dimensional space. Xia et al. (2002)
proposed to minimize average conditional variance (MAVE). Because the kernel
used for computing β is a function of ∥Xi −Xj∥, MAVE meets the problem of data
sparseness. All the above estimators are consistent under some regular conditions.
Asymptotic efficiency comparisons of the above methods have been discussed in
Xia (2006) resulting in the MAVE estimator of β having the same limiting vari-
ance as the estimators of Härdle, Hall and Ichimura (1993), and claiming alterna-
tive versions of the ADE method having larger variance. In addition, Yu and Rup-
pert (2002) fitted the partially linear single-index models using a penalized spline
method. Huh and Park (2002) used the local polynomial method to fit the unknown
function in single-index models. Other dimension reduction methods that were re-
cently developed in the literature are sliced inverse regression, partial least squares
and canonical correlation method. These methods handle high-dimensional pre-
dictors; see Zhu and Zhu (2009a, 2009b) and Zhou and He (2008).

The main challenges of estimation in the semiparametric model (1.1) are that
the support of the infinite-dimensional nuisance parameter g(·) depends on the
finite-dimensional parameter β , and the parameter β is on the boundary of a unit
ball. For estimating β the former challenge forces us to deal with the infinite-
dimensional nuisance parameter g. The latter one represents a nonregular problem.
The classic assumptions about asymptotic properties of the estimates for β are not
valid. In addition, as a model proposed for dimension reduction, the dimension
d may be very high and one often meets the problem of computation. To attack
the above problems, in this paper we will develop an estimating function method
(EFM) and then introduce a computational algorithm to solve the equations based
on a fixed-point iterative scheme. We first choose an identifiable parameterization
which transforms the boundary of a unit ball in Rd to the interior of a unit ball in
Rd−1. By eliminating β1, the parameter space " can be rearranged to a form {((1−∑d

r=2 β2
r )1/2,β2, . . . ,βd)⊤ :

∑d
r=2 β2

r < 1}. Then the derivatives of a function with
respect to (β2, . . . ,βd)⊤ are readily obtained by the chain rule and the classical
assumptions on the asymptotic normality hold after transformation. The estimating
functions (equations) for β can be constructed by replacing g(β⊤X) with ĝ(β⊤X).
The estimate ĝ for the nuisance parameter g is obtained using kernel estimating
functions and the smoothing parameter h is selected using K-fold cross-validation.
For the problem of testing the index, we establish a quasi-likelihood ratio based on
the proposed estimating functions and show that the test statistics asymptotically
follow a χ2-distribution whose degree of freedom does not depend on nuisance
parameters, under the null hypothesis. Then a Wilks type theorem for testing the
index is demonstrated.

The proposed EFM technique is essentially a unified method of handling dif-
ferent types of data situations including categorical response variable and discrete
explanatory covariate vector. The main results of this research are as follows:
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(a) Efficiency. A surprising result we obtain is that our EFM estimator for β has
smaller or equal limiting variance than the estimator of Carroll et al. (1997).

(b) Computation. The estimating function system only involves one-dimensional
nonparametric smoothers, thereby avoiding the data sparsity problem caused
by high model dimensionality. Unlike the quasi-likelihood inference [Carroll
et al. (1997)] where the maximization is difficult to implement when d is large,
the reparameterization and the explicit formulation of the estimating functions
facilitate an efficient computation algorithm. Here we use a fixed-point iter-
ative scheme to compute the resultant estimator. The simulation results show
that the algorithm adapts to higher model dimension and richer data situations
than the MAVE method of Xia et al. (2002).

It is noteworthy that the EFM approach proposed in this paper cannot be ob-
tained from the SLS method proposed in Ichimura (1993) and investigated in
Härdle, Hall and Ichimura (1993). SLS minimizes the weighted least squares crite-
rion

∑n
j=1[Yj −µ{ĝ(β⊤Xj )}]2V −1{ĝ(β⊤Xj )}, which leads to a biased estimating

equation when we use its derivative if V (·) does not contain the parameter of inter-
est. It will not in general provide a consistent estimator [see Heyde (1997), page 4].
Chang, Xue and Zhu (2010) and Wang et al. (2010) discussed the efficient estima-
tion of single-index model for the case of additive noise. However, their methods
are based on the estimating equations induced from the least squares rather than
the quasi-likelihood. Thus, their estimation does not have optimal property. Also
their comparison is with the one from Härdle, Hall and Ichimura (1993) and its
later development. It cannot be applied to the setting under study. In this paper,
we investigate the efficiency and computation of the estimates for the single-index
models, and systematically develop and prove the asymptotic properties of EFM.

The paper is organized as follows. In Section 2, we state the single-index model,
discuss estimation of g using kernel estimating functions and of β using profile
estimating functions, and investigate the problem of testing the index using quasi-
likelihood ratio. In Section 3 we provide a computation algorithm for solving the
estimating functions and illustrate the method with simulation and practical stud-
ies. The proofs are deferred to the Appendix.

2. Estimating function method (EFM) and its large sample properties. In
this section, which is concerned with inference based on the estimating function
method, the model of interest is determined through specification of mean and vari-
ance functions, up to an unknown vector β and an unknown function g. Except for
Gaussian data, model (1.1) need not be a full semiparametric likelihood specifi-
cation. Note that the parameter space ! = {β = (β1, . . . ,βd)⊤ :∥β∥ = 1,β1 > 0,
β ∈ Rd} means that β is on the boundary of a unit ball and it represents there-
fore a nonregular problem. So we first choose an identifiable parameterization
which transforms the boundary of a unit ball in Rd to the interior of a unit ball
in Rd−1. By eliminating β1, the parameter space ! can be rearranged to a form
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{((1 − ∑d
r=2 β2

r )1/2,β2, . . . ,βd)⊤ :
∑d

r=2 β2
r < 1}. Then the derivatives of a func-

tion with respect to β(1) = (β2, . . . ,βd)⊤ are readily obtained by chain rule and
the classic assumptions on the asymptotic normality hold after transformation.
This reparameterization is the key to analyzing the asymptotic properties of the
estimates for β and to facilitating an efficient computation algorithm. We will in-
vestigate the estimation for g and β and propose a quasi-likelihood method to test
the statistical significance of certain variables in the parametric component.

2.1. The kernel estimating functions for the nonparametric part g. If β is
known, then we estimate g(·) and g′(·) using the local linear estimating functions.
Let h denote the bandwidth parameter, and let K(·) denote the symmetric kernel
density function satisfying Kh(·) = h−1K(·/h). The estimation method involves
local linear approximation. Denote by α0 and α1 the values of g and g′ evaluating
at t , respectively. The local linear approximation for g(β⊤x) in a neighborhood of
t is g̃(β⊤x) = α0 + α1(β

⊤x − t). The estimators ĝ(t) and ĝ′(t) are obtained by
solving the kernel estimating functions with respect to α0,α1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

j=1

Kh(β
⊤Xj − t)µ′{g̃(β⊤Xj )}V −1{g̃(β⊤Xj )}

× [Yj − µ{g̃(β⊤Xj )}] = 0,
n∑

j=1

(β⊤Xj − t)Kh(β
⊤Xj − t)µ′{g̃(β⊤Xj )}V −1{g̃(β⊤Xj )}

× [Yj − µ{g̃(β⊤Xj )}] = 0.

(2.1)

Having estimated α0,α1 at t as α̂0, α̂1, the local linear estimators of g(t) and g′(t)
are ĝ(t) = α̂0 and ĝ′(t) = α̂1, respectively.

The key to obtain the asymptotic normality of the estimates for β lies in the
asymptotic properties of the estimated nonparametric part. The following theorem
will provide some useful results. The following notation will be used. Let X =
{X1, . . . ,Xn}, ρl(z) = {µ′(z)}lV −1(z) and J = ∂β

∂β(1) the Jacobian matrix of size
d × (d − 1) with

J =
(

−β(1)⊤/
√

1 − ∥∥β(1)
∥∥2

Id−1

)

, β(1) = (β2, . . . ,βd)⊤.

The moments of K and K2 are denoted, respectively, by, j = 0,1, . . . ,

γj =
∫

tjK(t) dt and νj =
∫

tjK2(t) dt.

PROPOSITION 1. Under regularity conditions (a), (b), (d) and (e) given in the
Appendix, we have:
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(i) With h → 0, n → ∞ such that h → 0 and nh → ∞, ∀β ∈ !, the asymp-
totic conditional bias and variance of ĝ are given by

E
{{ĝ(β⊤x) − g(β⊤x)}2|X

}

= {1
2γ2h

2g′′(β⊤x)
}2

(2.2)
+ ν0σ

2/[nhfβ⊤x(β
⊤x)ρ2{g(β⊤x)}]

+ OP (h4 + n−1h−1).

(ii) With h → 0, n → ∞ such that h → 0 and nh3 → ∞, for the estimates of
the derivative g′, it holds that

E
{{ĝ′(β⊤x) − g′(β⊤x)}2|X

}

= {1
6γ4γ

−1
2 h2g′′′(β⊤x)

+ 1
2(γ4γ

−1
2 − γ2)h

2g′′(β⊤x)
(2.3)

× [ρ′
2{g(β⊤x)}/ρ2{g(β⊤x)} + f ′

β⊤x(β
⊤x)/fβ⊤x(β

⊤x)]}2

+ ν2γ
−2
2 σ 2/[nh3fβ⊤x(β

⊤x)ρ2{g(β⊤x)}]

+ OP (h4 + n−1h−3).

(iii) With h → 0, n → ∞ such that h → 0 and nh3 → ∞, we have that

E

{∥∥∥∥
∂ ĝ(β⊤x)

∂β(1)
− g′(β⊤x)J⊤{x − E(x|β⊤x)}

∥∥∥∥
2∣∣∣X

}
= OP (h4 + n−1h−3).(2.4)

The proof of this proposition appears in the Appendix. Results (i) and (ii)
in Proposition 1 are routine and similar to Carroll, Ruppert and Welsh (1998).
In the situation where σ 2V = σ 2 and the function µ is identity, results (i) and
(ii) coincide with those given by Fan and Gijbels (1996). From result (iii), it is
seen that ∂ ĝ(β⊤x)/∂β(1) converges in probability to g′(β⊤x)J⊤{x − E(x|β⊤x)},
rather than g′(β⊤x)J⊤x as if g were known. That is, limn→∞{∂ ĝ(β⊤x)/∂β(1)} ̸=
∂{limn→∞ ĝ(β⊤x)}/∂β(1), which means that the convergence in probability and
the derivation of the sequence ĝn(β

⊤x) (as a function of n) cannot commute. This
is primarily caused by the fact that the support of the infinite-dimensional nuisance
parameter g(·) depends on the finite-dimensional projection parameter β . In con-
trast, a semiparametric model where the support of the nuisance parameter is inde-
pendent of the finite-dimensional parameter is a partially linear regression model
having form Y = X⊤θ +η(T )+ ε. It is easy to check that the limit of ∂η̂(T )/∂θ is
equal to E(X|T ), which is the derivative of limn→∞ η̂(T ) = E(Y |T )−E(X⊤|T )θ
with respect to θ . Result (iii) ensures that the proposed estimator does not require
undersmoothing of g(·) to obtain a root-n consistent estimator for β and it is also
of its own interest in inference theory for semiparametric models.
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2.2. The asymptotic distribution for the estimates of the parametric part β .
We will now proceed to the estimation of β ∈ !. We need to estimate the (d − 1)-
dimensional vector β(1), the estimator of which will be defined via

n∑

i=1

[
∂µ{ĝ(β⊤Xi )}/∂β(1)]V −1{ĝ(β⊤Xi )}[Yi − µ{ĝ(β⊤Xi)}] = 0.(2.5)

This is the direct analogue of the “ideal” estimating equation for known g, in that it
is calculated by replacing g(t) with ĝ(t). An asymptotically equivalent and easily
computed version of this equation is

Ĝ(β)
def=

n∑

i=1

J⊤ĝ′(β⊤Xi ){Xi − ĥ(β⊤Xi )}ρ1{ĝ(β⊤Xi )}[Yi − µ{ĝ(β⊤Xi)}]
(2.6)

= 0

with J = ∂β

∂β(1) the Jacobian mentioned above, ĝ and ĝ′ are defined by (2.1), and
ĥ(t) the local linear estimate for h(t) = E(X|β⊤X = t) = (h1(t), . . . , hd(t))⊤,

ĥ(t) =
n∑

i=1

bi(t)Xi

/ n∑

i=1

bi(t),

where bi(t) = Kh(β
⊤Xi − t){Sn,2(t)− (β⊤Xi − t)Sn,1(t)}, Sn,k = ∑n

i=1 Kh(β
⊤ ×

Xi − t)(β⊤Xi − t)k, k = 1,2. We use (2.6) to estimate β(1) in the single-index

model, and then use the fact that β1 =
√

1 − ∥β(1)∥2 to obtain β̂1. The use of (2.6)
constitutes in our view a new approach to estimating single-index models; since
(2.6) involves smooth pilot estimation of g, g′ and h we call it the Estimation
Function Method (EFM) for β .

REMARK 1. The estimating equations Ĝ(β) can be represented as the gradient
vector of the following objective function:

Q̂(β) =
n∑

i=1

Q[µ{ĝ(β⊤Xi )}, Yi]

with Q[µ,y] = ∫ y
µ

s−y
V {µ−1(s)} ds and µ−1(·) the inverse function of µ(·). The exis-

tence of such a potential function makes Ĝ(β) to inherit properties of the ideal
likelihood score function. Note that {∥β(1)∥ < 1} is an open, connected sub-
set of Rd−1. By the regularity conditions assumed on µ(·), g(·),V (·) (for de-
tails see the Appendix), we know that the quasi-likelihood function Q̂(β) is
twice continuously differentiable on {∥β(1)∥ < 1} such that the global maxi-
mum of Q̂(β) can be achieved at some point. One may ask whether the so-
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lution is unique and also consistent. Some elementary calculations lead to the
Hessian matrix ∂2Q̂(β)/∂β(1)∂β(1)⊤, because the partial derivative ∂µ{ĝ(β⊤Xi )}

∂β(1) =
µ′{ĝ(β⊤Xi )}ĝ′(β⊤Xi ){Xi − ĥ(β⊤Xi )}, then

1
n

∂2Q̂(β)

∂β(1)∂β(1)⊤

= 1
n

∂Ĝ(β)

∂β(1)

= 1
n

n∑

i=1

∂[J⊤ĝ′(β⊤Xi ){Xi − ĥ(β⊤Xi )}ρ1{ĝ(β⊤Xi)}]
∂β(1)

[Yi − µ{ĝ(β⊤Xi)}]

− 1
n

n∑

i=1

J⊤ĝ′(β⊤Xi ){Xi − ĥ(β⊤Xi )}ρ1{ĝ(β⊤Xi)}
∂µ{ĝ(β⊤Xi )}

∂β(1)

= 1
n

n∑

i=1

[
−∂{β(1)/

√
1 − ∥β(1)∥2}

∂β(1)
ĝ′(β⊤Xi ){X1i − ĥ1(β

⊤Xi)}ρ1{ĝ(β⊤Xi )}

+ J⊤{Xi − ĥ(β⊤Xi)}
∂ ĝ′(β⊤Xi)

∂β(1)⊤ ρ1{ĝ(β⊤Xi )}

+ J⊤ĝ′(β⊤Xi ){Xi − ĥ(β⊤Xi )}
∂ρ1{ĝ(β⊤Xi )}

∂β(1)⊤

− J⊤ĝ′(β⊤Xi)
∂ĥ(β⊤Xi )

∂β(1)
ρ1{ĝ(β⊤Xi )}

]

× [Yi − µ{ĝ(β⊤Xi)}]

− 1
n

n∑

i=1

J⊤ĝ′2(β⊤Xi ){Xi − ĥ(β⊤Xi)}{Xi − ĥ(β⊤Xi )}⊤ρ2{ĝ(β⊤Xi )}J.

By the regularity conditions in the Appendix, the multipliers of the residuals
[Yi − µ{ĝ(β⊤Xi)}] in the first sum of (2.7) are bounded. Mimicking the proof
of Proposition 1, the first sum can be shown to converge to 0 in probability as n

goes to infinity. The second sum converges to a negative semidefinite matrix. If

the Hessian matrix 1
n

∂2Q̂(β)

∂β(1)∂β(1)⊤ is negative definite for all values of β(1), Ĝ(β)

has a unique root. At sample level, however, estimating functions may have more
than one root. For the EFM method, the quasi-likelihood Q̂(β) exists, which can
be used to distinguish local maxima from minima. Thus, we suppose (2.6) has a
unique solution in the following context.
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REMARK 2. It can be seen from the proof in the Appendix that the population
version of Ĝ(β) is

G(β) =
n∑

i=1

J⊤g′(β⊤Xi ){Xi − h(β⊤Xi )}ρ1{g(β⊤Xi )}[Yi − µ{g(β⊤Xi)}],(2.7)

which is obtained by replacing ĝ, ĝ′, ĥ with g,g′,h in (2.6). One important prop-
erty of (2.7) is that the second Bartlett identity holds, for any β:

E{G(β)G⊤(β)} = −E

{
∂G(β)

∂β(1)

}
.

This property makes the semiparametric efficiency of the EFM (2.6) possible.

Let β0 = (β0
1 ,β(1)0⊤

)⊤ denote the true parameter and B+ denote the Moore–
Penrose inverse of any given matrix B. We have the following asymptotic result
for the estimator β̂(1).

THEOREM 2.1. Assume the estimating function (2.6) has a unique solution
and denote it by β̂(1). If the regularity conditions (a)–(e) in the Appendix are sat-
isfied, the following results hold:

(i) With h → 0, n → ∞ such that (nh)−1 log(1/h) → 0, β̂(1) converges in
probability to the true parameter β(1)0.

(ii) If nh6 → 0 and nh4 → ∞,
√

n
(
β̂(1) − β(1)0) L−→ Nd−1(0,"β(1)0),(2.8)

where "β(1)0 = {J⊤#J}+|β(1)=β(1)0 , J = ∂β

∂β(1) and

# = E[{XX⊤ − E(X|β⊤X)E(X⊤|β⊤X)}ρ2{g(β⊤X)}{g′(β⊤X)}2/σ 2].

REMARK 3. Note that β⊤#β = 0, so the nonnegative matrix # degener-
ates in the direction of β . If the mean function µ is the identity function and
the variance function is equal to a scale constant, that is, µ{g(β⊤X)} = g(β⊤X),
σ 2V {g(β⊤X)} = σ 2, the matrix # in Theorem 2.1 reduces to be

# = E[{XX⊤ − E(X|β⊤X)E(X⊤|β⊤X)}{g′(β⊤X)}2/σ 2].

Technically speaking, Theorem 2.1 shows that an undersmoothing approach is
unnecessary and that root-n consistency can be achieved. The asymptotic covari-
ance "β(1)0 in general can be estimated by replacing terms in its expression by

estimates of those terms. The asymptotic normality of β̂ = (β̂1, β̂
(1)⊤)⊤ will fol-

low from Theorem 2.1 with a simple application of the multivariate delta-method,
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since β̂1 =
√

1 − ∥β̂(1)∥2. According to the results of Carroll et al. (1997), the
asymptotic variance of their estimator is "+. Define the block partition of matrix
" as follows:

" =
(

"11 "12
"21 "22

)
,(2.9)

where "11 is a positive constant, "12 is a (d − 1)-dimensional row vector, "21 is
a (d − 1)-dimensional column vector and "22 is a (d − 1) × (d − 1) nonnegative
definite matrix.

COROLLARY 1. Under the conditions of Theorem 2.1, we have

√
n(β̂ − β0)

L−→ Np(0,#β0)(2.10)

with #β0 = J{J⊤"J}+J⊤|β=β0 . Further,

#β0 ≤ "+|β=β0

and a strict less-than sign holds when det("22) = 0. That is, in this case EFM is
more efficient than that of Carroll et al. (1997).

The possible smaller limiting variance derived from the EFM approach partly
benefits from the reparameterization so that the quasi-likelihood can be adopted.
As we know, the quasi-likelihood is often of optimal property. In contrast, most
existing methods treat the estimation of β as if it were done in the framework of
linear dimension reduction. The target of linear dimension reduction is to find the
directions that can linearly transform the original variables vector into a vector of
one less dimension. For example, ADE and SIR are two relevant methods. How-
ever, when the link function µ(·) is identity, the limiting variance derived here may
not be smaller or equal to the ones of Wang et al. (2010) and Chang, Xue and Zhu
(2010) when the quasi-likelihood of (2.5) is applied.

2.3. Profile quasi-likelihood ratio test. In applications, it is important to test
the statistical significance of added predictors in a regression model. Here we es-
tablish a quasi-likelihood ratio statistic to test the significance of certain variables
in the linear index. The null hypothesis that the model is correct is tested against
a full model alternative. Fan and Jiang (2007) gave a recent review about gener-
alized likelihood ratio tests. Bootstrap tests for nonparametric regression, general-
ized partially linear models and single-index models have been systematically in-
vestigated [see Härdle and Mammen (1993), Härdle, Mammen and Müller (1998),
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Härdle, Mammen and Proenca (2001)]. Consider the testing problem:

H0 :g(·) = g

(
r∑

k=1

βkXk

)

(2.11)

←→ H1 :g(·) = g

(
r∑

k=1

βkXk +
d∑

k=r+1

βkXk

)

.

We mainly focus on testing βk = 0, k = r + 1, . . . , d , though the following test
procedure can be easily extended to a general linear testing Bβ̃ = 0 where B is
a known matrix with full row rank and β̃ = (βr+1, . . . ,βd)⊤. The profile quasi-
likelihood ratio test is defined by

Tn = 2
{

sup
β∈"

Q̂(β) − sup
β∈",β̃=0

Q̂(β)
}
,(2.12)

where Q̂(β) = ∑n
i=1 Q[µ{ĝ(β⊤Xi )}, Yi],Q[µ,y] = ∫ y

µ
s−y

V {µ−1(s)} ds and µ−1(·)
is the inverse function of µ(·). The following Wilks type theorem shows that the
distribution of Tn is asymptotically chi-squared and independent of nuisance pa-
rameters.

THEOREM 2.2. Under the assumptions of Theorem 2.1, if βk = 0, k = r +
1, . . . , d , then

Tn
L−→ χ2(d − r).(2.13)

3. Numerical studies.

3.1. Computation of the estimates. Solving the joint estimating equations
(2.1) and (2.6) poses some interesting challenges, since the functions ĝ(β⊤X) and
ĝ′(β⊤X) depend on β implicitly. Treating β⊤X as a new predictor (with given β),
(2.1) gives us ĝ, ĝ′ as in Fan, Heckman and Wand (1995). We therefore focus on
(2.6), as estimating equations. It cannot be solved explicitly, and hence one needs
to find solutions using numerical methods. The Newton–Raphson algorithm is one
of the popular and successful methods for finding roots. However, the computa-
tional speed of this algorithm crucially depends on the initial value. We propose
therefore a fixed-point iterative algorithm that is not very sensitive to starting val-
ues and is adaptive to larger dimension. It is worth noting that this algorithm can be
implemented in the case that d is slightly larger than n, because the resultant pro-
cedure only involves one-dimensional nonparametric smoothers, thereby avoiding
the data sparsity problem caused by high dimensionality.

Rewrite the estimating functions as Ĝ(β) = J⊤F̂(β) with

F̂(β) = (F̂1(β), . . . , F̂d(β))⊤
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and

F̂s(β) =
n∑

i=1

{Xsi − ĥs(β
⊤Xi)}µ′{ĝ(β⊤Xi)}ĝ′(β⊤Xi)V

−1{ĝ(β⊤Xi)}

× [Yi − µ{ĝ(β⊤Xi)}].
Setting Ĝ(β) = 0, we have that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−β2F̂1(β)/
√

1 − ∥∥β(1)
∥∥2 + F̂2(β) = 0,

−β3F̂1(β)/
√

1 − ∥∥β(1)
∥∥2 + F̂3(β) = 0,

· · ·
−βdF̂1(β)/

√
1 − ∥∥β(1)

∥∥2 + F̂d(β) = 0.

(3.1)

Note that ∥β(1)∥2 = ∑d
r=2 β2

r , β1 =
√

1 − ∥β(1)∥2 and after some simple calcula-
tions, we can get that

{
β1 = |F̂1(β)|/∥F̂(β)∥, s = 1,
β2

s = F̂ 2
s (β)/∥F̂(β)∥2, s ≥ 2,

and sign{βs F̂1(β)} = sign{F̂s(β)}, s ≥ 2. The above equation can also be rewritten
as

β
F̂1(β)

∥F̂(β)∥
= |F̂1(β)|

∥F̂(β)∥
× F̂(β)

∥F̂(β)∥
.(3.2)

Then solving the equation (2.6) is equivalent to finding a fixed point for (3.2).
Though ∥β(1)∥ < 1 holds almost surely in (3.2) and always ∥β∥ = 1, there will
be some trouble if (3.2) is directly used as iterative equations. Note that the value
of ∥F̂(β)∥ is used as denominator that may sometimes be small, which poten-
tially makes the algorithm unstable. On the other hand, the convergence rate
of the fixed-point iterative algorithm derived from (3.2) depends on L, where

∥ ∂{F̂(β)|/∥F̂(β)∥}
∂β ∥ ≤ L. For a fast convergence rate, it technically needs a shrink-

age value L. An ad hoc fix introduces a constant M , adding Mβ on both sides of
(3.2) and dividing by F̂1(β)/∥F̂(β)∥ + M :

β = M

F̂1(β)/∥F̂(β)∥ + M
β + |F̂1(β)|/∥F̂(β)∥2

F̂1(β)/∥F̂(β)∥ + M
F̂(β),

where M is chosen such that F̂1(β)/∥F̂(β)∥ + M ≠ 0. In addition, to accelerate
the rate of convergence, we reduce the derivative of the term on the right-hand side
of the above equality, which can be achieved by choosing some appropriate M .
This is the iteration formulation in Step 2. Here the norm of βnew is not equal
to 1 and we have to normalize it again. Since the iteration in Step 2 makes βnew
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to violate the identifiability constraint with norm 1, we design (3.2) to include the
whole β vector. The possibility of renormalization for βnew avoids the difficulty of
controlling ∥β(1)

new∥ < 1 in each iteration in Step 2.
Based on these observations, the fixed-point iterative algorithm is summarized

as:

Step 0. Choose initial values for β , denoted by βold.
Step 1. Solve the estimating equation (2.1) with respect to α, which yields

ĝ(β⊤
oldxi ) and ĝ′(β⊤

oldxi ), 1 ≤ i ≤ n.
Step 2. Update βold with βold = βnew/∥βnew∥ by solving the equation (2.6) in

the fixed-point iteration

βnew = M

F̂1(βold)/∥F̂ (βold)∥ + M
βold + |F̂1(βold)|/∥F̂ (βold)∥2

F̂1(βold)/∥F̂ (βold)∥ + M
F̂(βold),

where M is a constant satisfying F̂1(β)/∥F̂ (β)∥ + M ≠ 0 for any β .
Step 3. Repeat Steps 1 and 2 until max1≤s≤d |βnew,s − βold,s | ≤ tol is met with

tol being a prescribed tolerance.

The final vector βnew/∥βnew∥ is the estimator of β0. Similarly to other direct es-
timation methods [Horowitz and Härdle (1996)], the preceding calculation is easy
to implement. Empirically the initial value for β , (1,1, . . . ,1)⊤/

√
d can be used in

the calculations. The Epanechnikov kernel function K(t) = 3/4(1 − t2)I (|t | ≤ 1)

is used. The bandwidth involved in Step 1 can be chosen to be optimal for esti-
mation of ĝ(t) and ĝ′(t) based on the observations {β⊤

oldXi , Yi}. So the standard
bandwidth selection methods, such as K-fold cross-validation, generalized cross-
validation (GCV) and the rule of thumb, can be adopted. In this step, we recom-
mend K-fold cross-validation to determine the optimal bandwidth using the quasi-
likelihood as a criterion function. The K-fold cross-validation is not too compu-
tationally intensive while making K not take too large values (e.g., K = 5). Here
we recommend trying a number of smoothing parameters that smooth the data
and picking the one that seems most reasonable. As an adjustment factor, M will
increase the stability of iteration. Ideally, in each iteration an optimum value for
M should be chosen guaranteeing that the derivative on the right-hand side of the
iteration formulation in Step 2 is close to zero. Following this idea, M will be de-
pending the changes of β and F̂(β)/∥F̂(β)∥. This will be an expensive task due to
the computation for the derivative on the right-hand side of the iteration formula-
tion in Step 2. We therefore consider M as constant nonvarying in each iteration,
and select M by the K-fold cross-validation method, according to minimizing the
model prediction error. When the dimension d gets larger, M will get smaller. In
our simulation runs, we empirically search M in the interval [2/

√
d, d/2]. This

choice gives pretty good practical performance.
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3.2. Simulation results.

EXAMPLE 1 (Continuous response). We report a simulation study to investi-
gate the finite-sample performance of the proposed estimator and compare it with
the rMAVE [refined MAVE; for details see Xia et al. (2002)] estimator and the
EDR estimator [see Hristache et al. (2001), Polzehl and Sperlich (2009)]. We con-
sider the following model similar to that used in Xia (2006):

E(Y |β⊤X) = g(β⊤X), g(β⊤X) = (β⊤X)2 exp(β⊤X);
(3.3)

Var(Y |β⊤X) = σ 2, σ = 0.1.

Let the true parameter β = (2,1,0, . . . ,0)⊤/
√

5. Two sets of designs for X are
considered: Design (A) and Design (B). In Design (A), (Xs + 1)/2 ∼ Beta(τ,1),
1 ≤ s ≤ d and, in Design (B), (X1 + 1)/2 ∼ Beta(τ,1) and P(Xs = ±0.5) = 0.5,
s = 2,3,4, . . . , d . The data generated in Design (A) are not elliptically symmetric.
All the components of Design (B) are discrete except for the first component X1.
Y is generated from a normal distribution. This simulation data set consists of 400
observations with 250 replications. The results are shown in Table 1. All rMAVE,
EDR and EFM estimates are close to the true parameter vector for d = 10. How-
ever, the average estimation errors from rMAVE and EDR estimates for d = 50 are
about 2 and 1.5 times as large as those of the EFM estimates, respectively. This
indicates that the fixed-point algorithm is more adaptive to high dimension.

EXAMPLE 2 (Binary response). This simulation design assumes an underly-
ing single-index model for binary responses with

P(Y = 1|X) = µ{g(β⊤X)} = exp{g(β⊤X)}/[1 + exp{g(β⊤X)}],
(3.4)

g(β⊤X) = exp(5β⊤X − 2)/{1 + exp(5β⊤X − 3)} − 1.5.

The underlying coefficients are assumed to be β = (2,1,0, . . . ,0)⊤/
√

5. We con-
sider two sets of designs: Design (C) and Design (D). In Design (C), X1 and X2

TABLE 1
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.3)

Design (A) Design (B)

d τ rMAVE EDR EFM rMAVE EDR EFM

10 0.75 0.0559∗ 0.0520 0.0792 0.0522∗ 0.0662 0.0690
10 1.5 0.0323∗ 0.0316 0.0298 0.0417∗ 0.0593 0.0457
50 0.75 0.9900 0.7271 0.5425 0.9780 0.7712 0.4515
50 1.5 0.3776 0.3062 0.1796 0.4693 0.4103 0.2211

∗The values are adopted from Xia (2006).
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TABLE 2
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.4)

Design (C) Design (D)

d rMAVE EDR EFM rMAVE EDR EFM

10 0.5017 0.5281 0.4564 0.9614 0.9574 0.7415
50 2.0991 1.2695 1.1744 2.5040 2.4846 1.9908

follow the uniform distribution U(−2,2). In Design (D), X1 is also assumed to
be uniformly distributed in interval (−2,2) and (X2 + 1)/2 ∼ Beta(1,1). Similar
designs for generalized partially linear single-index models are assumed in Kane,
Holt and Allen (2004). Here a sample size of 700 is used for the case d = 10 and
3,000 is used for d = 50. Different sample sizes from Example 1 are used due to
varying complexity of the two examples. For this example, 250 replications are
simulated and the results are displayed in Table 2. In this set of simulations, the
average estimation errors from rMAVE estimates and EDR estimates are about 1.5
and 1.2 times as large as EFM estimates, under both Design (C) and Design (D)
for d = 10 or d = 50. The values in the row marked by d = 50 look a little bigger.
However, it is reasonable because the number of summands in the average estimate
error for d = 50 is five times as large as that for d = 10. Again it appears that the
EFM procedure achieves more precise estimators.

EXAMPLE 3 (A simple model). To illustrate the adaptivity of our algorithm to
high dimension, we consider the following simple single-index model:

Y = (β⊤X)2 + ε.(3.5)

The true parameter is β = (2,1,0, . . . ,0)⊤/
√

5; X is generated from Nd(2, I).
Both homogeneous errors and heterogeneous ones are considered. In the for-
mer case, ε ∼ N(0,0.22) and in the latter case, ε = exp(

√
5β⊤X/14)̃ε with

ε̃ ∼ N(0,1). The latter case is designed to show whether our method can han-
dle heteroscedasticity. A similar modeling setup was also used in Wang and Xia
(2008), Example 5. The simulated results given in Table 3 are based on 250 repli-
cates with a sample of n = 100 observations. An important observation from this
simulation is that the proposed EFM approach still works even when the dimen-
sion of the parameter is equal to or slightly larger than the number of observations.
It can be seen from Table 3 that our approach also performs well under the het-
eroscedasticity setup.

EXAMPLE 4 (An oscillating function model). A single-index model is de-
signed as

Y = sin(aβ⊤X) + ε,(3.6)



THE EFM APPROACH FOR SINGLE-INDEX MODELS 1673

TABLE 3
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.5)

ε d = 10 d = 50 d = 100 d = 120

rMAVE 0.0318 0.3484 — —
ε ∼ N(0,0.22) EDR 0.0363 0.5020 — —

EFM 0.0272 0.2302 2.9409 5.0010

rMAVE 0.3427 4.6190 — —
ε ∼ N(0, exp( 2X1+X2

7 )) EDR 0.2542 2.1112 — —
EFM 0.2201 1.7937 4.1435 6.4973

— means that the values cannot be calculated by rMAVE and EDR because of high dimension.

where β = (2,1,0, . . . ,0)⊤/
√

5, X is generated from Nd(2, I) and ε ∼ N(0,0.22).
The number of replications is 250 and the sample size n = 400. The simulation re-
sults are shown in Table 4. In these chosen values for a, we see that EFM performs
better than rMAVE and EDR. But as is understood, more oscillating functions are
more difficult to handle than those less oscillating functions.

EXAMPLE 5 (Comparison of variance). To make our simulation results com-
parable with those of Carroll et al. (1997), we mimic their simulation setup. Data
of size 200 are generated according to the following model:

Yi = sin{π(β⊤Xi − A)/(B − A)} + αZi + εi ,(3.7)

where Xi are trivariate with independent U(0,1) components, Zi are independent
of Xi and Zi = 0 are for i odd and Zi = 1 for i even, and εi follow a normal
distribution N(0,0.01) independent of both Xi and Zi . The parameters are taken
to be β = (1,1,1)⊤/

√
3, α = 0.3, A =

√
3/2 − 1.645/

√
12 and B =

√
3/2 +

1.645/
√

12. Note that the EFM approach can still be applicable for this model as
the conditionally centered response Y given Z has the model as, because of the
independence between X and Z,

Yi − E(Yi |Zi) = a + sin{π(β⊤Xi − A)/(B − A)} + εi .

TABLE 4
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.6)

a = π/2 a = 3π/4

d rMAVE EDR EFM rMAVE EDR EFM

10 0.0981 0.0918 0.0737 0.0970 0.0745 0.0725
50 0.5247 0.6934 0.4355 0.6350 1.8484 0.5407
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TABLE 5
Estimation for β of model (3.7) based on two randomly chosen samples

One group of sample Another group of sample

X1 X2 X3 X1 X2 X3

GPLSIM est. 0.595∗ 0.568∗ 0.569∗ 0.563∗ 0.574∗ 0.595∗
GPLSIM s.e. 0.013∗ 0.013∗ 0.013∗ 0.010∗ 0.010∗ 0.010∗
EFM est. 0.579 0.575 0.577 0.573 0.577 0.580
EFM s.e. 0.011 0.011 0.011 0.010 0.010 0.010

∗The values are adopted from Carroll et al. (1997). We abbreviate “estimator” to “est.” and “standard
error” to “s.e.,” which are computed from the sample version of "

β̂
defined in (2.10).

As Zi are dummy variables, estimating E(Yi |Zi) is simple. Thus, when we regard
Yi −E(Yi |Zi) as response, the model is still a single-index model. Here the number
of replications is 100. The method derived from Carroll et al. (1997) is referred to
be the GLPSIM approach. The numerical results are reported in Table 5. It shows
that compared with the GPLSIM estimates, the EFM estimates have smaller bias
and smaller (or equal) variance. Also in this example both EFM and GPLSIM can
provide reasonably accurate estimates.

Performance of profile quasi-likelihood ratio test. To illustrate how the profile
quasi-likelihood ratio performs for linear hypothesis problems, we simulate the
same data as above, except that we allow some components of the index to follow
the null hypothesis:

H0 :β4 = β5 = · · · = βd = 0.

We examine the power of the test under a sequence of the alternative hypotheses
indexed by parameter δ as follows:

H1 :β4 = δ, βs = 0 for s ≥ 5.

When δ = 0, the alternative hypothesis becomes the null hypothesis.
We examine the profile quasi-likelihood ratio test under a sequence of alter-

native models, progressively deviating from the null hypothesis, namely, as δ in-
creases. The power functions are calculated at the significance level: 0.05, us-
ing the asymptotic distribution. We calculate test statistics from 250 simulations
by employing the fixed-point algorithm and find the percentage of test statistics
greater than or equal to the associated quantile of the asymptotic distribution. The
pictures in Figures 1, 2 and 3 illustrate the power function curves for two mod-
els under the given significance levels. The power curves increase rapidly with δ,
which shows the profile quasi-likelihood ratio test is powerful. When δ is close
to 0, the test sizes are all approximately the significance levels.
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FIG. 1. Simulation results for Design (A) in Example 1. The left graphs depict the case τ = 1.5
with τ the first parameter in Beta(τ,1). The right graphs are for τ = 0.75.

FIG. 2. Simulation results for Design (B) in Example 1. The left graphs depict the case τ = 1.5
with τ the first parameter in Beta(τ,1). The right graphs are for τ = 0.75.

FIG. 3. Simulation results for Example 2. The left graphs depict the case of Design (C) with pa-
rameter dimension being 10 and 50. The right graphs are for Design (D).
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3.3. A real data example. Income, to some extent, is considered as an index
of a successful life. It is generally believed that demographic information, such as
education level, relationship in the household, marital status, the fertility rate and
gender, among others, has effects on amounts of income. For example, Murray
(1997) illustrated that adults with higher intelligence have higher income. Kohavi
(1996) predicted income using a Bayesian classifier offered by a machine learn-
ing algorithm. Madalozzo (2008) examined income differentials between married
women and those who remain single or cohabit by using multivariate linear regres-
sion. Here we will use the single-index model to explore the relationship between
income and some of its possible determinants.

We use the “Adult” database, which was extracted from the Census Bureau
database and is available on website: http://archive.ics.uci.edu/ml/datasets/Adult.
It was originally used to model income exceeds over USD 50,000/year based on
census data. The purpose of using this example is to understand the personal in-
come patterns and demonstrate the performance of the EFM method in real data
analysis. After excluding a few missing data, the data set in our study includes
30,162 subjects. The selected explanatory variables are:

• sex (categorical): 1 = Male, 0 = Female.
• native-country (categorical): 1 = United-States, 0 = others.
• work-class (categorical): 1 = Federal-gov, 2 = Local-gov, 3 = Private, 4 = Self-

emp-inc (self-employed, incorporated), 5 = Self-emp-not-inc (self-employed,
not incorporated), 6 = State-gov.

• marital-status (categorical): 1 = Divorced, 2 = Married-AF-spouse (married,
armed forces spouse present), 3 = Married-civ-spouse (married, civilian spouse
present), 4 = Married-spouse-absent [married, spouse absent (exc. separated)],
5 = Never-married, 6 = Separated, 7 = Widowed.

• occupation (categorical): 1 = Adm-clerical (administrative support and cler-
ical), 2 = Armed-Forces, 3 = Craft-repair, 4 = Exec-managerial (executive-
managerial), 5 = Farming-fishing, 6 = Handlers-cleaners, 7 = Machine-op-
inspct (machine operator inspection), 8 = Other-service, 9 = Priv-house-serv
(private household services), 10 = Prof-specialty (professional specialty), 11 =
Protective-serv, 12 = Sales, 13 = Tech-support, 14 = Transport-moving.

• relationship (categorical): 1 = Husband, 2 = Not-in-family, 3 = Other-relative,
4 = Own-child, 5 = Unmarried, 6 = Wife.

• race (categorical): 1 = Amer-Indian-Eskimo, 2 = Asian-Pac-Islander, 3 =
Black, 4 = Other, 5 = White.

• age (integer): number of years of age and greater than or equal to 17.
• fnlwgt (continuous): The final sampling weights on the CPS files are controlled

to independent estimates of the civilian noninstitutional population of the United
States.

• education (ordinal): 1 = Preschool (less than 1st Grade), 2 = 1st–4th, 3 = 5th–
6th, 4 = 7th–8th, 5 = 9th, 6 = 10th, 7 = 11th, 8 = 12th (12th Grade no

http://archive.ics.uci.edu/ml/datasets/Adult


THE EFM APPROACH FOR SINGLE-INDEX MODELS 1677

Diploma), 9 = HS-grad (high school Grad-Diploma or Equiv), 10 = Some-
college (some college but no degree), 11 = Assoc-voc (associate degree-
occupational/vocational), 12 = Assoc-acdm (associate degree-academic pro-
gram), 13 = Bachelors, 14 = Masters, 15 = Prof-school (professional school),
16 = Doctorate.

• education-num (continuous): Number of years of education.
• capital-gain (continuous): A profit that results from investments into a capital

asset.
• capital-loss (continuous): A loss that results from investments into a capital as-

set.
• hours-per-week (continuous): Usual number of hours worked per week.

Note that all the explanatory variables up to “age” are categorical with more
than two categories. As such, we use dummy variables to link up the correspond-
ing categories. Specifically, for every original explanatory variable up to “age,” we
use dummy variables to indicate it in which the number of dummy variables is
equal to the number of categories minus one. By doing so, we then have 41 ex-
planatory variables, where the first 35 ones are dummy and the remaining ones are
continuous. After a preliminary data check, we find that the explanatory variables
X37 = “fnlwgt,” X39 = “capital-gain” and X40 = “capital-loss” are very skewed
to the left and the latter two often take zero value. Before fitting (3.8) we first
make a logarithm transformation for these three variables to have log(“fnlwgt”),
log(1 + “capital-gain”) and log(1 + “capital-loss”). To make the explanatory vari-
ables comparable in scale, we standardize each of them individually to obtain mean
0 and variance 1. Since “education” and “education-num” are correlated, “edu-
cation” is dropped from the model and it results in a significantly smaller mean
residual deviance.

The single-index model will be used to model the relationship between income
and the relevant 43 predictors X = (X1, . . . ,X43)

⊤:

P(“income” > 50,000|X) = exp{g(β⊤X)}/[1 + exp{g(β⊤X)}],(3.8)

where Y = I (“income” > 50,000) and β = (β1, . . . ,β43)
⊤ and βs represents the

effect of the sth predictor. Formally, we are testing the effect of gender, that is,

H0 :β1 = 0 ←→ H1 :β1 ≠ 0.(3.9)

The fixed-point iterative algorithm is employed to compute the estimate for β .
To illustrate further the practical implications of this approach, we compare our
results to those obtained by using an ordinary logistic regression (LR). The coef-
ficients of the two models are given in Table 6. To make the analyses presented in
the table comparable, we consider two standardizations. First, we standardize ev-
ery explanatory variable with mean 0 and variance 1 so that the coefficients can be
used to compare the relative influence from different explanatory variables. How-
ever, such a standardization does not allow us to compare between the single-index
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TABLE 6
Fitted coefficients for model (3.8) (estimated standard errors in parentheses)

Variables β̂ of SIM β̂ of LR

Sex 0.1102 (0.0028) 0.1975 (0.0181)

Native-country 0.0412 (0.0027) 0.0354 (0.0116)

Work-class
Federal-gov 0.1237 (0.0059) 0.0739 (0.0108)

Local-gov 0.2044 (0.0065) 0.0155 (0.0135)

Private −0.2603 (0.0075) 0.0775 (0.0200)

Self-em-inc 0.1252 (0.0068) 0.0520 (0.0112)

Self-emp-not-inc 0.1449 (0.0066) −0.0157 (0.0147)

Marital-Status
Divorced −0.0353 (0.0061) −0.0304 (0.0264)

Married-AF-spouse 0.0195 (0.0036) 0.0333 (0.0079)

Married-civ-spouse 0.3257 (0.0150) 0.4545 (0.0754)

Married-spouse-absent −0.0115 (0.0029) −0.0095 (0.0146)

Never-married −0.1876 (0.0085) −0.1452 (0.0370)

Separated −0.0412 (0.0050) −0.0221 (0.0179)

Occupation
Adm-clerical −0.0302 (0.0050) 0.0131 (0.0164)

Armed-Forces −0.0086 (0.0031) −0.0091 (0.0131)

Craft-repair −0.0913 (0.0050) 0.0263 (0.0146)

Exec-managerial 0.1813 (0.0061) 0.1554 (0.0148)

Farming-fishing −0.0370 (0.0036) −0.0772 (0.0125)

Handlers-cleaners −0.0947 (0.0033) −0.0662 (0.0153)

Machine-op-inspct −0.1067 (0.0038) −0.0290 (0.0133)

Other-service −0.1227 (0.0045) −0.1192 (0.0195)

Priv-house-serv −0.0501 (0.0020) −0.0833 (0.0379)

Prof-specialty 0.2502 (0.0065) 0.1153 (0.0160)

Protective-serv 0.1954 (0.0061) 0.0508 (0.0095)

Sales 0.0316 (0.0050) 0.0615 (0.0147)

Tech-support 0.0181 (0.0037) 0.0619 (0.0102)

Relationship
Husband −0.1249 (0.0093) −0.3264 (0.0254)

Not-in-family −0.0932 (0.0093) −0.2074 (0.0612)

Other-relative −0.0958 (0.0038) −0.1498 (0.0219)

Own-child −0.2218 (0.0076) −0.3769 (0.0498)

Unmarried −0.1124 (0.0067) −0.1739 (0.0446)

Race
Amer-Indian-Eskimo −0.0252 (0.0024) −0.0226 (0.0109)

Asian-Pac-Islander 0.0114 (0.0030) 0.0062 (0.0101)

Black −0.0300 (0.0024) −0.0182 (0.0111)

Other −0.0335 (0.0021) −0.0286 (0.0129)
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TABLE 6
(Continued)

Variables β̂ of SIM β̂ of LR

Age 0.2272 (0.0042) 0.1798 (0.0111)

Fnlwgt 0.0099 (0.0028) 0.0414 (0.0092)

Education-num 0.4485 (0.0045) 0.3732 (0.0122)

Capital-gain 0.2859 (0.0055) 0.2582 (0.0084)

Capital-loss 0.1401 (0.0042) 0.1210 (0.0078)

Hours-per-week 0.2097 (0.0035) 0.1823 (0.0101)

model and the ordinary logistic regression model. We then further normalize the
coefficients to be with Euclidean norm 1, and then the estimates of their standard
errors are also adjusted accordingly. The single-index model provides more reason-
able results: X38 = “education-num” has its strongest positive effect on income;
those who got a bachelor’s degree or higher seem to have much higher income
than those with lower education level. In contrast, results derived from a logistic
regression show that “married-civ-spouse” is the largest positive contributor.

Some other interesting conclusions could be obtained by looking at the output.
Both “sex” and “native-country” have a positive effect. Persons who worked with-
out pay in a family business, unpaid childcare and others earn a lower income
than persons who worked for wages or for themselves. The “fnlwgt” attribute
has a positive relation to income. Males are likely to make much more money
than females. The expected sign for marital status except the married (married-
AF-spouse, married-civ-spouse) is negative, given that the household production
theory affirms that division of work is efficient when each member of a family
dedicates his or her time to the more productive job. Men usually receive relatively
better compensation for their time in the labor market than in home production.
Thus, the expectation is that married women dedicate more time to home tasks
and less to the labor market, and this would imply a different probability of work-
ing given the marital status choice.

Also “race” influences the income and Asian or Pacific Islanders seem to make
more money than other races. And also, one’s income significantly increases as
working hours increase. Both “capital-gain” and “capital-loss” have positive ef-
fects, so we think that people make more money who can use more money to in-
vest. The presence of young children has a negative influence on the income. “age”
accounts for the experience effect and has a positive effect. Hence the conclusion
based on the single-index model is consistent with what we expect.

To help with interpretation of the model, plots of β⊤X versus predicted re-
sponse probability and ĝ(β⊤X) are generated, respectively, and can be found on
the right column in Figure 4. When the estimated single-index is greater than 0,
ĝ(β̂X) shows some degree of curvature. An alternative choice is to fit the data
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FIG. 4. Adult data: The left graph is a plot of predicted response probability based on the single-in-
dex model. The right graph is the fitted curve for the unknown link function g(·).

using generalized partially linear additive models (GPLAM) with nonparametric
components of continuous explanatory variables. The relationships among “age,”
“fnlwgt,” “capital-gain,” “capital-loss” and “hours-per-week” all show nonlinear-
ity. The mean residual deviances of SIM, LR and GPLAM are 0.7811, 0.6747 and
0.6240, respectively. SIM under study provides a slightly worse fit than the others.
However, we note that LR is, up to a link function, linear about X, and, according
to the results of GPLAM, which is a more general model than LR, the actual rela-
tionship cannot have such a structure. SIM can reveal nonlinear structure. On the
other hand, although the minimum mean residual deviance can be not surprisingly
attained by GPLAM, this model has, respectively, ≈ 34 and 41 more degrees of
freedom than SIM and LR have.

We now employ the quasi-likelihood ratio test to the test problem (3.9). The
QLR test statistic is 166.52 with one degree of freedom, resulting in a P -value of
< 10−5. Hence this result provides strong evidence that gender has a significant
influence on high income.

The Adult data set used in this paper is a rich data set. Existing work mainly
focused on the prediction accuracy based on machine learning methods. We make
an attempt to explore the semiparametric regression pattern suitable for the data.
Model specification and variable selection merit further study.

APPENDIX: OUTLINE OF PROOFS

We first introduce some regularity conditions.
Regularity Conditions:

(a) µ(·),V (·), g(·),h(·) = E(X|β⊤X = ·) have two bounded and continuous
derivatives. V (·) is uniformly bounded and bounded away from 0.

(b) Let q(z, y) = µ′(z)V −1(z){y −µ(z)}. Assume that ∂q(z, y)/∂z < 0 for z ∈ R
and y in the range of the response variable.
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(c) The largest eigenvalue of !22 is bounded away from infinity.
(d) The density function fβ⊤x(β

⊤x) of random variable β⊤X is bounded away
from 0 on Tβ and satisfies the Lipschitz condition of order 1 on Tβ , where
Tβ = {β⊤x : x ∈ T } and T is a compact support set of X.

(e) Let Q∗[β] = ∫
Q[µ{g(β⊤x)}, y]f (y|β0⊤x)f (β0⊤x) dy d(β0⊤x) with β0 de-

noting the true parameter value and Q[µ,y] = ∫ y
µ

s−y
V {µ−1(s)} ds. Assume that

Q∗[β] has a unique maximum at β = β0, and

E
[
sup
β(1)

sup
β⊤X

|µ′{g(β⊤X)}V −1{g(β⊤X)}[Y − µ{g(β⊤X)}]|2
]
< ∞

and E∥X∥2 < ∞.
(f) The kernel K is a bounded and symmetric density function with a bounded

derivative, and satisfies
∫ ∞

−∞
t2K(t) dt ≠ 0 and

∫ ∞

−∞
|t |jK(t) dt < ∞, j = 1,2, . . . .

Condition (a) is some mild smoothness conditions on the involved functions
of the model. We impose condition (b) to guarantee that the solutions of (2.1),
ĝ(t) and ĝ′(t), lie in a compact set. Condition (c) implies that the second mo-
ment of estimating equation (2.7), tr(J⊤!J), is bounded. Then the CLT can be
applied to G(β). Condition (d) means that X may have discrete components and
the density function of β⊤X is positive, which ensures that the denominators in-
volved in the nonparametric estimators, with high probability, are bounded away
from 0. The uniqueness condition in condition (e) can be checked in the following
case for example. Assume that Y is a Poisson variable with mean µ{g(β⊤x)} =
exp{g(β⊤x)}. The maximizer β0 of Q∗[β] is equal to the solution of the equation
E[E{[exp{g(β0⊤X)} − exp{g(β⊤X)}]g′(β⊤X)}J⊤X|β0⊤X}] = 0. β0 is unique
when g′(·) is not a zero-valued constant function and the matrix J⊤E(XX⊤)J is
not singular. Under the second part of condition (e), it is permissible to interchange
differentiation and integration when differentiating E[Q[µ{g(β⊤X)}, Y ]]. Condi-
tion (f) is a commonly used smoothness condition, including the Gaussian kernel
and the quadratic kernel. All of the conditions can be relaxed at the expense of
longer proofs.

Throughout the Appendix, Zn = OP (an) denotes that a−1
n Zn is bounded in

probability and the derivation for the order of Zn is based on the fact that
Zn = OP {

√
E(Z2

n)}. Therefore, it allows to apply the Cauchy–Schwarz inequal-
ity to the quantity having stochastic order an.

A.1. Proof of Proposition 1. We outline the proof here, while the details are
given in the supplementary materials [Cui, Härdle and Zhu (2010)].
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(i) Conditions (a), (b), (d) and (f) are essentially equivalent conditions given
by Carroll, Ruppert and Welsh (1998), and as a consequence the derivation of bias
and variance for ĝ(β⊤x) and ĝ′(β⊤x) is similar to that of Carroll, Ruppert and
Welsh (1998).

(ii) The first equation of (2.1) is

0 =
n∑

j=1

Kh(β
⊤Xj − β⊤x)µ′{α̂0 + α̂1(β

⊤Xj − β⊤x)}

× V −1{α̂0 + α̂1(β
⊤Xj − β⊤x)}[Yj − µ{α̂0 + α̂1(β

⊤Xj − β⊤x)}].
Taking derivatives with respect to β(1) on both sides, direct observations lead to

∂α̂0

∂β(1)
= {B(β⊤x)}−1{A1(β

⊤x) + A2(β
⊤x) + A3(β

⊤x)},

where

B(β⊤x) = −
n∑

j=1

Kh(β
⊤Xj − β⊤x)q ′

z{α̂0 + α̂1(β
⊤Xj − β⊤x), Yj },

A1(β
⊤x) =

n∑

j=1

Kh(β
⊤Xj − β⊤x)J⊤(Xj − x)q ′

z{α̂0 + α̂1(β
⊤Xj − β⊤x), Yj }α̂1,

A2(β
⊤x) =

n∑

j=1

Kh(β
⊤Xj − β⊤x)q ′

z{α̂0 + α̂1(β
⊤Xj − β⊤x), Yj }

× (β⊤Xj − β⊤x)
∂α̂1

∂β(1)
,

A3(β
⊤x) =

n∑

j=1

h−1K ′
h(β

⊤Xj − β⊤x)J⊤(Xj − x)q{α̂0 + α̂1(β
⊤Xj − β⊤x), Yj }

with K ′
h(·) = h−1K ′(·/h). Note that ∂α̂0/∂β(1) = ∂ ĝ(β⊤x)/∂β(1); then we have

∂ ĝ(β⊤x)

∂β(1)
= {B(β⊤x)}−1A1(β

⊤x)

(A.1)
+ {B(β⊤x)}−1A2(β

⊤x) + {B(β⊤x)}−1A3(β
⊤x).

We will prove that

E∥{B(β⊤x)}−1A1(β
⊤x) − g′(β⊤x)J⊤{x − h(β⊤x)}∥2

(A.2)
= OP (h4 + n−1h−3),

the second term in (A.1) is of order OP (h4 + n−1h), and the third term is of order
OP (h4 + n−1h−3). The combination of (A.1) and these three results can directly
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lead to result (ii) of Proposition 1. The detailed proof is summarized in three steps
and is given in the supplementary materials [Cui, Härdle and Zhu (2010)].

(iii) By mimicking the proof of (ii), we can show that (iii) holds. See supple-
mentary materials for details.

A.2. Proofs of (2.6) and (2.7). It is proved in the supplementary materials
[Cui, Härdle and Zhu (2010)].

A.3. Proof of Theorem 2.1. (i) Note that the estimating equation defined in
(2.6) is just the gradient of the following quasi-likelihood:

Q̂(β) =
n∑

i=1

Q[µ{ĝ(β⊤Xi )}, Yi]

with Q[µ,y] = ∫ µ y−s
V {µ−1(s)} ds and µ−1(·) is the inverse function of µ(·). Then

for β(1) satisfying (
√

1 − ∥β(1)∥2,β(1)⊤)⊤ ∈ !, we have

β̂(1) = arg max
β(1)

Q̂(β).

The proof is based on Theorem 5.1 in Ichimura (1993). In that theorem the consis-
tency of β(1) is proved by means of proving that

sup
β(1)

∣∣∣∣∣
1
n

n∑

i=1

Q[µ{ĝ(β⊤Xi )}, Yi] − 1
n

n∑

i=1

Q[µ{g(β⊤Xi )}, Yi]
∣∣∣∣∣ = OP (1),(A.3)

sup
β(1)

∣∣∣∣∣
1
n

n∑

i=1

Q[µ{g(β⊤Xi )}, Yi] − 1
n

n∑

i=1

E[Q[µ{g(β⊤Xi)}, Yi]]
∣∣∣∣∣ = OP (1)(A.4)

and ∣∣∣∣∣
1
n

n∑

i=1

Q[µ{ĝ(β⊤
0 Xi)}, Yi] − 1

n

n∑

i=1

E[Q[µ{g(β⊤
0 Xi )}, Yi]]

∣∣∣∣∣ = OP (1).(A.5)

Regarding the validity of (A.5), this directly follows from (A.3) and (A.4). The
type of uniform convergence result such as (A.4) has been well established in the
literature; see, for example, Andrews (1987). We now verify the validity of (A.3),
which reduces to showing the uniform convergence of the estimator ĝ(t) under
condition (e) [see Ichimura (1993)]. This can be obtained in a similar way as in
Kong, Linton and Xia (2010), taking into account that the regularity conditions
imposed in Theorem 2.1 are stronger than the corresponding ones in that paper.

(ii) Recall the notation J," and G(β) introduced in Section 2. By (2.7), we
have shown that

√
n
(
β̂(1) − β(1)0) = 1√

n
{J⊤"J}+G(β) + OP (1).(A.6)

Theorem 2.1 follows directly from the above asymptotic expansion and the fact
that E{G(β)G⊤(β)} = nJ⊤"J. !
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A.4. Proof of Corollary 1. The asymptotic covariance of β̂ can be obtained
by adjusting the asymptotic covariance of β̂(1) via the multivariate delta method,
and is of form J(J⊤"J)+J⊤. Next we will compare this asymptotic covariance
with that (denoted by "+) given in Carroll et al. (1997). Write " as

" =
(

"11 "12
"21 "22

)
,

where "22 is a (d −1)×(d −1) matrix. We will next investigate two cases, respec-

tively: det("22) ≠ 0 and det("22) = 0. Let α = −β(1)/
√

1 − ∥β(1)∥2 = −β(1)/β1.
Consider the case that det("22) ≠ 0. Because rank(") = d − 1, det("11"22 −

"21"12) = 0. Note that "22 is nondegenerate; it can be easily shown that "11 =
"12"

−1
22 "21. Combining this with the following fact:

J⊤"J = (α Id−1 )

(
"11 "12
"21 "22

)(
ατ

Id−1

)

= "22 + (
"21/

√
"11 +

√
"11α

)(
"12/

√
"11 +

√
"11α

⊤) − "21"12/"11,

we can get that J⊤"J is nondegenerate. In this situation, its inverse (J⊤"J)+ is
just the ordinary inverse (J⊤"J)−1. Then J(J⊤"J)+J⊤ = {J(J⊤"J)−1/2}{(J⊤ ×
"J)−1/2J⊤}, a full-rank decomposition. Then

{J(J⊤"J)+J⊤}+ = {J(J⊤"J)−1/2}
× {(J⊤"J)−1/2J⊤J(J⊤"J)−1J⊤J(J⊤"J)−1/2}−1

× {(J⊤"J)−1/2J⊤}
= J(J⊤J)−1J⊤"J(J⊤J)−1J⊤

= ".

This means that J(J⊤"J)+J⊤ = "+.
When det("22) = 0, we can obtain that

"+ =
(

1/"11 + "12"
+
22.1"21/"

2
11 −"12"

+
22.1/"11

−"+
22.1"21/"11 "+

22.1

)

with "22.1 = "22 − "21"12/"11. Write J(J⊤"J)+J⊤ as
(

α⊤(J⊤"J)+α α⊤(J⊤"J)+

(J⊤"J)+α (J⊤"J)+

)
.

Note that J⊤"J = "22.1 + ("21/
√

"11 + √
"11α)("12/

√
"11 + √

"11α
⊤), so

J⊤"J ≥ "22.1. Combining this with rank("22) = d − 2, we have that (J⊤"J)+ ≤
"+

22.1. It is easy to check that α⊤"22.1 = 0, so α ⊥ span("22.1) and α⊤"+
22.1α = 0,

and then α⊤(J⊤"J)+ = 0. In this situation, J(J⊤"J)+J⊤ ≤ "+ and the stick less-
than sign holds since J⊤"J ≠ "22.1 and 1/"11 > 0. !
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A.5. Proof of Theorem 2.2. Under H0, we can rewrite the index vector as
β = [e B]⊤(

√
1 − ∥ω(1)∥2,ω(1)τ )⊤ where e = (1,0, . . . ,0)⊤ is an r-dimensional

vector,

B =
(

0⊤ 0
Ir−1 0

)

is an r × (d − 1) matrix and ω(1) = (β2, . . . ,βr )
⊤ is an (r − 1)× 1 vector. Let ω =

(
√

1 − ∥ω(1)∥2,ω(1)⊤)⊤. So under H0 the estimator is also the local maximizer ω̂
of the problem

Q̂([ e B ]⊤ω̂) = sup
∥ω(1)∥<1

Q̂([ e B ]⊤ω).

Expanding Q̂(B⊤ω̂) at β̂(1) by a Taylor’s expansion and noting that ∂Q̂(β)/

∂β(1)|β(1)=β̂(1) = 0, then Q̂(β̂) − Q̂(B⊤ω̂) = T1 + T2 + OP (1), where

T1 = −1
2

(
β̂(1) − B⊤ω̂

)⊤ ∂2Q̂(β)

∂β(1)∂β(1)τ

∣∣∣∣
β(1)=β̂(1)

(
β̂(1) − B⊤ω̂

)
,

T2 = 1
6

(
β̂(1) − B⊤ω̂

)⊤

×
∂{(β̂(1) − B⊤ω̂)⊤∂2Q̂(β)/(∂β(1) ∂β(1)τ )|β(1)=β̂(1) (β̂

(1) − B⊤ω̂)}
∂β(1)

.

Assuming the conditions in Theorem 2.1 and under the null hypothesis H0, it is
easy to show that

√
n(B⊤ω̂ − B⊤ω) = 1√

n
B⊤B(J⊤#J)+G(β) + OP (1).

Combining this with (A.6), under the null hypothesis H0,
√

n
(
β̂(1) − B⊤ω̂(1))

= 1√
n
(J⊤#J)1/2+{Id−1 − (J⊤#J)1/2B⊤B(J⊤#J)1/2+}(A.7)

× (J⊤#J)1/2+G(β) + oP (1).

Since 1√
n

G(β) = OP (1), ∂2Q̂(β)

∂β(1) ∂β(1)τ |β(1) = −nJ⊤#J + OP (n) and matrix J⊤#J
has eigenvalues uniformly bounded away from 0 and infinity, we have ∥β̂(1) −
B⊤ω̂(1)∥ = OP (n−1/2) and then |T2| = OP (1). Combining this and (A.7), we have

Q̂(β̂) − Q̂(B⊤ω̂) = n

2
(
β̂(1) − B⊤ω̂(1))⊤J⊤#J

(
β̂(1) − B⊤ω̂(1))

= n

2
G⊤(β)(J⊤#J)1/2+P(J⊤#J)1/2+G(β)
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with P = Id−1 − (J⊤!J)1/2B⊤B(J⊤!J)1/2+. Here P is idempotent having rank
d − r , so it can be written as P = S⊤S where S ia a (d − r) × (d − 1) matrix
satisfying SS⊤ = Id−r . Consequently,

2{Q̂(β̂) − Q̂(B⊤ω̂)} = (√
nS(J⊤!J)1/2+G(β)

)⊤(√
nS(J⊤!J)1/2+G(β)

)

L−→ χ2(d − r).

Acknowledgments. The authors thank the Associate Editor and two referees
for their constructive comments and suggestions which led to a great improvement
over an early manuscript.

SUPPLEMENTARY MATERIAL

Supplementary materials (DOI: 10.1214/10-AOS871SUPP; .pdf). Complete
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This paper proposes a nonparametric test of Granger causality in quantile. Zheng
(1998, Econometric Theory 14, 123–138) studied the idea to reduce the problem
of testing a quantile restriction to a problem of testing a particular type of mean
restriction in independent data. We extend Zheng’s approach to the case of dependent
data, particularly to the test of Granger causality in quantile. Combining the results
of Zheng (1998) and Fan and Li (1999, Journal of Nonparametric Statistics 10,
245–271), we establish the asymptotic normal distribution of the test statistic under
a β-mixing process. The test is consistent against all fixed alternatives and detects
local alternatives approaching the null at proper rates. Simulations are carried out
to illustrate the behavior of the test under the null and also the power of the test
under plausible alternatives. An economic application considers the causal relations
between the crude oil price, the USD/GBP exchange rate, and the gold price in the
gold market.

1. INTRODUCTION

Whether movements in one economic variable cause reactions in another vari-
able is an important issue in economic policy and also for financial investment
decisions. A framework for investigating causality between economic indicators
has been developed by Granger (1969). Testing for Granger causality between
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economic time series has been since studied intensively in empirical macroeco-
nomics and empirical finance. The majority of research results were obtained in
the context of Granger causality in the conditional mean. The conditional mean,
though, is a questionable element of analysis if the distributions of the variables
involved are nonelliptic or fat tailed as is to be expected with, for example, finan-
cial returns. The focus of a causality analysis on the mean might result in unclear
news. The conditional mean is only one element of an overall summary for the
conditional distribution. A tail area causal relation may be quite different from
a causality based on the center of the distribution. Lee and Yang (2007) explore
money-income Granger causality in the conditional quantile and find that Granger
causality is significant in tail quantiles, whereas it is not significant in the center
of the distribution.

An illustrating motivation for the research presented here is from labor market
analysis where one tries to find out how income depends on the age of the em-
ployee for different education levels, genders, and nationalities, and so on (dis-
crimination effects); see, for example, Buchinsky (1995). In particular, the effect
of education on income is summarized by the basic claim of Day and Newburger
(2007): At most ages, more education equates with higher earnings, and the pay-
off is most notable at the highest educational level, which is actually from the
point of view of mean regression. However, whether this difference is signifi-
cant or not is still questionable, especially for different ends of the (conditional)
income distribution. Härdle, Ritov, and Song (2009) show that for the 0.20 quan-
tile confidence bands for income given “university,” “apprenticeship,” and “low
education” status do not differ significantly from one another although they be-
come progressively lower, which indicates that high education does not equate
to higher earnings significantly for the lower tails of income, whereas increasing
age seems to be the main driving force. For the conditional median, the bands
for “university” and “low education” differ significantly. For the 0.80 quantiles,
all conditional quantiles differ, which indicates that higher education is associ-
ated with higher earnings. However, these findings do not necessarily indicate
causalities. To answer the question “Does education Granger cause income in
various conditional quantiles?” the concept of Granger causality in means can-
not be used to estimate or test for these effects. Hence the need for the concept
of Granger causality in quantiles and the need to develop tests for these effects
emerge.

Another motivation comes from controlling and monitoring downside market
risk and investigating large comovements between financial markets. These are
important for risk management and portfolio/investment diversification (Hong,
Liu, and Wang, 2009). Various other risk management tasks are described in
Bollerslev (2001) and Campbell and Cochrane (1999) indicating the impor-
tance of Granger causality in quantile. Yet another motivation comes from the
well-known robustness properties of the conditional quantile: like the paral-
lel boxplot—calculated across an explanatory variable—the set of conditional
quantiles characterizes the entire distribution in more detail.
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Based on the kernel method, we propose a nonparametric test for Granger
causality in quantile. Testing conditional quantile restrictions by nonparametric
estimation techniques in dependent data situations has not been considered in the
literature before. This paper intends to fill this literature gap. In an unpublished
working paper that has been independently carried out from ours, Lee and Yang
(2007) also propose a test for Granger causality in the conditional quantile. Their
test, however, relies on linear quantile regression and thus is subject to possible
functional misspecification of quantile regression. Recently, Hong et al. (2009) in-
vestigated Granger causality in value at risk (VaR) with a corresponding (kernel-
based) test. Their method, however, offers two possible improvements. The first is
that it needs a parametric specification of VaR, again subject to misspecification
errors. The second is that their test does not directly check causality but rather a
necessary condition for causality.

The problem of testing conditional mean restrictions using nonparametric es-
timation techniques has been actively studied for dependent data. Among the re-
lated work, the testing procedures of Fan and Li (1999) and Li (1999) use the
general hypothesis of the form E(ε|z) = 0, where ε and z are the regression er-
ror term and the vector of regressors, respectively. They consider the distance
measure of J = E[εE(ε|z) f (z)] to construct kernel-based procedures. For the ad-
vantages of using this distance measure in kernel-based testing procedures, see
Li and Wang (1998) and Hsiao and Li (2001). A feasible test statistic based on
J has a second-order degenerate U-statistic as the leading term under the null
hypothesis. Generalizing the result of Hall (1984) for independent data, Fan and
Li (1999) establish the asymptotic normal distribution for a general second-order
degenerate U -statistic with dependent data.

All the results stated previously on testing mean restrictions are however irrel-
evant when testing quantile restrictions. Zheng (1998) proposed an idea to trans-
form quantile restrictions to mean restrictions in independent data. Following his
idea, one can use the existing technical results on testing mean restrictions in test-
ing quantile restrictions. In this paper, by combining Zheng’s idea and the results
of Fan and Li (1999) and Li (1999), we derive a test statistic for Granger causal-
ity in quantile and establish the asymptotic normal distribution of the proposed
test statistic under a β-mixing process. Our testing procedure can be extended to
several hypothesis testing problems with conditional quantile in dependent data;
for example, testing a parametric regression functional form, testing the insignifi-
cance of a subset of regressors, and testing semiparametric versus nonparametric
regression models.

The paper is organized as follows. Section 2 presents the test statistic. Sec-
tion 3 establishes the asymptotic normal distribution under the null hypothesis of
no causality in quantile. Section 4 displays a fairly extensive simulation study to
illustrate the behavior of the test under the null, in addition to the power of the
test under plausible alternatives. Section 5 considers the causal relations between
the crude oil and gold prices as an economic application. Section 6 concludes the
paper. Technical proofs are given in the Appendix.
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2. NONPARAMETRIC TEST FOR GRANGER CAUSALITY
IN QUANTILE

To simplify the exposition, we assume a bivariate case, or that only {yt ,wt } are
observable. Granger causality in mean (Granger, 1988) is defined as follows.

1. wt does not cause yt in mean with respect to {yt−1, . . . , yt−p,wt−1, . . . ,
wt−q} if

E( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) = E( yt |yt−1, . . . , yt−p) and

2. wt is a prima facie cause in mean of yt with respect to {yt−1, . . . , yt−p,
wt−1, . . . ,wt−q} if

E( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) ̸= E( yt |yt−1, . . . , yt−p).

Motivated by the definition of Granger causality in mean, we define Granger
causality in quantile as follows.

1. wt does not cause yt in the θ -quantile with respect to {yt−1, . . . , yt−p,
wt−1, . . . , wt−q} if

Qθ ( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) = Qθ ( yt |yt−1, . . . , yt−p). (1)

2. wt is a prima facie cause in the θ -quantile of yt with respect to {yt−1, . . . ,
yt−p, wt−1, . . . ,wt−q} if

Qθ ( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) ̸= Qθ ( yt |yt−1, . . . , yt−p), (2)

where Qθ (yt |·) is the θ th (0 < θ < 1 ) conditional quantile of yt given ·,
which depends on t .

Denote xt ≡ (yt−1, . . . , yt−p) , zt ≡ (yt−1, . . . , yt−p,wt−1, . . . ,wt−q), and the
conditional distribution function yt given zt (xt ) by Fyt |zt (yt |zt )(Fyt |zt (yt |xt )),
which is abbreviated as Fy|z(y|z) (Fy|x (y|x)) later, and vt = (xt , zt ). In this paper,
Fy|z(y|z) is assumed to be absolutely continuous in y for almost all v = (x, z).
Denote Qθ (zt ) ≡ Qθ (yt |zt ) and Qθ (xt ) ≡ Qθ (yt |xt ). Then we have, with proba-
bility 1,

Fy|z {Qθ (zt )|zt } = θ, v = (x, z) and

from the definitions (1) and (2), the hypotheses to be tested are

H0 : P
{

Fy|z(Qθ (xt )|zt ) = θ
}

= 1 a.s. (3)

H1 : P
{

Fy|z(Qθ (xt )|zt ) = θ
}

< 1 a.s. (4)
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Zheng (1998) proposed an idea to reduce the problem of testing a quantile re-
striction to a problem of testing a particular type of mean restriction. The null hy-
pothesis (3) is true if and only if E[1{yt ! Qθ (xt )|zt }] = θ or 1{yt ! Qθ (xt )} =
θ + εt where E(εt |zt ) = 0 and 1(·) is the indicator function. For a list of related
literature we refer to Li and Wang (1998) and Zheng (1998). Although various
distance measures can be used to consistently test the hypothesis (3), we consider
the following distance measure:

J ≡ E
[{

Fy|z(Qθ (xt )|zt )− θ
}2 fz(zt )

]
, (5)

with fzt (zt ) being the marginal density function of zt , which is sometimes ab-
breviated as fz(zt ). Note that J " 0 and the equality holds if, and only if, H0 is
true, with strict inequality holding under H1. Thus J can be used as a proper
candidate for consistent testing of H0 (Li, 1999, p. 104). Because E(εt |zt ) =
Fy|z {Qθ (xt )|zt }− θ we have

J = E{εt E(εt |zt ) fz(zt )} . (6)

The test is based on a sample analogue of E{ε E(ε|z) fz(z)}. Including the density
function fz(z) avoids the problem of trimming on the boundary of the density
function; see Powell, Stock, and Stoker (1989) for an analogue approach. The
density-weighted conditional expectation E(ε|z) fz(z) can be estimated by kernel
methods

Ê(εt |zt ) f̂z(zt ) = 1
(T −1)hm

T

∑
s ̸=t

Ktsεs, (7)

where m = p + q is the dimension of z, Kts = K {(zt − zs)/h} is the kernel
function, and h is a bandwidth. Then we have a sample analogue of J as

JT ≡ 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Ktsεtεs

= 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Kts [1{yt ! Qθ (xt )}− θ ] [1{ys ! Qθ (xs)}− θ ] . (8)

The θ th conditional quantile of yt given xt , Qθ (xt ), can also be estimated by the
nonparametric kernel method

Q̂θ (xt ) = F̂−1
y|x (θ |xt ), (9)

where

F̂y|x (yt |xt ) =
∑

s ̸=t
Lts1(ys ! yt )

∑
s ̸=t

Lts
(10)

is the Nadaraya–Watson kernel estimator of Fy|x (yt |xt ) with the kernel function
of Lts = L (xt − xs)/a and the bandwidth parameter of α. The unknown error ε
can be estimated as
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ε̂t ≡ I
{

yt ! Q̂θ (xt )
}

− θ . (11)

Replacing ε by ε̂, we have a feasible kernel-based test statistic of J ,

ĴT ≡ 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Kts ε̂t ε̂s

= 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Kts

[
1
{

yt ! Q̂θ (xt )
}

− θ
][

1
{

ys ! Q̂θ (xs)
}

− θ
]
. (12)

3. THE LIMITING DISTRIBUTIONS OF THE TEST STATISTIC

Two existing works are useful in deriving the limiting distribution of the test statis-
tic; one is Theorem 2.3 of Franke and Mwita (2003) on the uniform convergence
rate of a nonparametric quantile estimator; another is Lemma 2.1 of Li (1999)
on the asymptotic distribution of a second-order degenerate U -statistic, which is
derived from Theorem 2.1 of Fan and Li (1999). We restate these results in lem-
mas subsequently for ease of reference. We collect the assumptions needed for
Theorem 3.1.

(A1)

(a) {yt ,wt }T
t=1 is strictly stationary and absolutely regular with mixing coeffi-

cients β(τ ) =O(ρτ ) for some 0 < ρ < 1.
(b) For some integer v " 2, fy, fz, and fx all are bounded and belong to A∞

v
(see (D2) later in this section).

(c) Use µt
s(z) (µt

s(ε)) to denote the σ algebra generated by (zs, ..., zt ) ((εs, ...,

εt )) for s ≤ t . With probability 1, E
[
εt |µt

−∞(z),µt−1
−∞(ε)

]
= 0, that is, the

error εt is a martingale difference process. The terms E
[∣∣∣ε4+η

t

∣∣∣
]

< ∞ and

E
[∣∣∣εi1

t1 ε
i2
t2 . . .εil

tl

∣∣∣
1+ξ
]

< ∞ for some arbitrarily small η > 0 and ξ > 0,

where 2 ! l ! 4 is an integer, 0 ! i j ! 4, and ∑l
j=1 i j ! 8. The terms

σ 2
ε (z) = E(ε2

t |zt = z) and µε4(z) = E
[
ε4

t |zt = z
]

all satisfy some Lipschitz

conditions: |a(u + v)−a(u)| ! D(u)∥v∥ with E
[
|D(z)|2+η′]

< ∞ for

some small η′ > 0, where a (·) = σ 2
ε (·) ,µε4 (·).

(d) Let fτ1,...,τl ( ) be the joint probability density function of
(
zτ1 , . . . , zτl

)

(1! l ! 3). Then fτ1,...,τl ( ) is bounded and satisfies a Lipschitz condition:∣∣ fτ1,...,τl (z1 +u1, z2 +u2, . . . , zl +ul)− fτ1,...,τl (z1, z2, . . . , zl)
∣∣ ! Dτ1,...,τl

(z1, . . . , zl)∥u∥, where u = (u1, ...,ul), z = (z1, ..., zl), and Dτ1,...,τl ( ) is in-
tegrable and satisfies the condition that

∫ ∫ ∫
Dτ1,...,τl (z1, . . . , zl)∥z∥2ξ dz1,

. . . ,dzl < M < ∞ and
∫ ∫ ∫

Dτ1,...,τl (z1, . . . , zl) fτ1,...,τl (z1, . . . , zl)dz1, ...,
dzl < M < ∞ for some ξ > 1.
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(e) For any y and x satisfying 0 < Fy|x (y|x) < 1 and fx (x) > 0, Fy|x and
fx (x) are continuous and bounded in x and y; for fixed y, the conditional
distribution function Fy|x and the conditional density function fy|x belong
to A∞

3 ; fy|x (Qθ (x)|x) > 0 for all x ; fy|x is uniformly bounded in x and y
by, say, cf .

(f) For some compact set G, there are ε > 0 and γ > 0 such that fx ! γ
for all x in the ε-neighborhood {x |∥x −u∥ < ε, u ∈ G } of G. For the
compact set G and some compact neighborhood $0 of 0, the set $ =
{v = Qθ (x)+µ|x ∈ G,µ ∈ $0} is compact, and for some constant c0 > 0,
fy|x (y|x)! c0 for all x ∈ G,v ∈ $.

(g) There is an increasing sequence sT of positive integers such that for some
finite A,
T
sT

β2sT /(3T )(sT )" A, 1" sT " T
2 for all T ! 1.

(A2)

(a) We use product kernels for both L (·) and K (·). Let l and k be their corre-
sponding univariate kernel which is bounded and symmetric. Then l(·) is
nonnegative, l(·) ∈ ϒv , k(·) is nonnegative, and k(·) ∈ ϒ2.

(b) h =O(T −α′
) for some 0 < α′ < (7/8)m.

(c) a =O(1) and S̃T = T a p(sT log T )−1 → ∞ for some sT → ∞.
(d) A positive number δ exists such that for r = 2+δ and a generic number M0

∫ ∫ ∣∣∣∣
1

hm K
(

z1 − z2

h

)∣∣∣∣
r

d Fz(z1)d Fz(z2)" M0 < ∞ and

E
∣∣∣∣

1
hm K

(
z1 − z2

h

)∣∣∣∣
r

" M0 < ∞.

(e) For some δ′ (0 < δ′ < δ), β(T ) =O(T −(2+δ′)/δ′
).

The following definitions are due to Robinson (1988).

DEFINITION (D1). ϒλ, λ ! 1 is the class of even functions k : R → R satis-
fying

∫
R ui k(u)du = δi0 (i = 0,1, . . . ,λ−1),

k(u) =O
(
(1+|u|λ+1+ε)

−1
)
, for some ε > 0,

where δi j is the Kronecker’s delta.

DEFINITION (D2). Aα
µ, α > 0, µ > 0 is the class of functions g : Rm → R

satisfying that g is (d − 1)-times partially differentiable for d − 1 " µ " d;
for some ρ > 0, supy∈φzρ

∣∣g(y)− g(z)− Gg(y, z)
∣∣/|y − z|µ " Dg(z) for all z,

where φzρ = {y| |y − z| < ρ}; Gg = 0 when d = 1; Gg is a (d − 1)th degree



868 KIHO JEONG ET AL.

homogeneous polynomial in y − z with coefficients being the partial derivatives
of g at z of orders 1 through d − 1 when d > 1; and g(z), its partial derivatives
of order d −1 and less, and Dg(z) have finite αth moments.

The functions in Aα
µ are thus expanded in a Taylor series with a local Lipschitz

condition on the remainder, (α,µ) depending simultaneously on smoothness and
moment properties. Bounded functions in Lip(µ) (the Lipschitz class of degree µ)
for 0 < µ ≤ 1 are in Aα

µ; for µ > 1, Aα
µ contains the bounded and (d − 1)-times

boundedly differentiable functions whose (d − 1)th partial derivatives are in Lip
(µ−d +1)). In applying Aα

µ to f and F , we take α = ∞.
Conditions (A1)(a)–(d) and (A2)(a) and (b) are adopted from conditions (D1)

and (D2) of Li (1999), which are used to derive the asymptotic normal distribution
of a second-order degenerate U -statistic. Assumption (A1)(a) requires {yt ,wt }T

t=1
to be a stationary absolutely regular process with geometric decay rate. Assump-
tions (A1)(b)–(d) are mainly some smoothness and moment conditions; these con-
ditions are quite weak in the sense that they are similar to those used in Fan and
Li (1996) for the independent data case. However, for autoregressive condition-
ally skedastic (ARCH) or generalized autoregressive conditionally heteroskedas-
tic (GARCH) type error processes as considered in Engle (1982) and Bollerslev
(1986), the error term εt may not have finite fourth moments in some situations.
For example, let εt |εt−1 ∼ N (0,α0 +α1ε2

t−1). Engle (1982) showed that εt does
not have a finite fourth moment if α1 > 1/

√
3. Thus, Assumption (A1)(c) will be

violated in such a case.
Assumption (A2)(a) requires L(·) to be a vth- (v ! 2 ) order kernel. This con-

dition together with (A1)(b) ensures that the bias in the kernel estimation (of the
null model) is bounded. The requirement that k is a nonnegative second-order
kernel function in (A2)(b) is a quite weak and standard assumption.

Conditions (A1)(e)–(g) and (A2)(c) are technical conditions (A1), (A2), (B1),
(B2), (C1), and (C2) of Theorem 2.3 of Franke and Mwita (2003), which are re-
quired to get the uniform convergence rate of the nonparametric kernel estimator
of the conditional distribution function and corresponding conditional quantile
with mixing data. Because the simple ARCH models (Engle, 1982; Masry and
Tjøstheim, 1995, 1997), their extensions (Diebolt and Guegan, 1993), and the
bilinear Markovian models are geometrically strongly mixing under some general
ergodicity conditions, Assumption (A1)(g) is usually satisfied. There also exist
simple methods to determine the mixing rates for various classes of random pro-
cesses, for example, Gaussian, Markov, autoregressive moving average, ARCH,
and GARCH. Hence the assumption of a known mixing rate is reasonable and
has been adopted in many studies, for example, Györfi, Härdle, Sarda, and Vieu
(1989), Irle (1997), Meir (2000), Modha and Masry (1998), Roussas (1988), and
Yu (1993). Auestad and Tjøstheim (1990) provided excellent discussions on the
role of mixing for model identification in nonlinear time series analysis. But since
the restriction of Assumption (A1)(c) as discussed before, ARCH or GARCH
type processes may not satisfy all assumptions here. Finally conditions (A2)(d)
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and (e) are adopted from conditions of Lemma 3.2 of Yoshihara (1976), which
are required to get the asymptotic equivalence of the nondegenerate U -statistic
and its projection under the β-mixing process. They are technical assumptions
and are quite standard.

LEMMA 3.1 (Franke and Mwita, 2003). Suppose conditions (A1)(e)–(g)
and (A2)(c) hold. The bandwidth sequence is such that a = O(1) and S̃T =
T a p(sT log T )−1 → ∞ for some sT → ∞. Let ST = a2 + S̃−1/2

T . Then for the non-
parametric kernel estimator of the conditional quantile of Q̂θ (xt ), equation (9),
we have

sup
∥x∥∈G

∣∣∣Q̂θ (x)− Qθ (x)
∣∣∣=O (ST )+O

(
1

T a p

)
a.s. (13)

LEMMA 3.2 (Li, 1999). Let Lt = (εt , zt )T be a stochastic process that satisfies
conditions (A1)(a)–(d). εt ∈ R, zt ∈ Rm, and K (·) be the kernel function with h
being the smoothing parameter that satisfies conditions (A2)(a) and (b). Define

σ 2
ε (z) = E[ε2

t | zt = z] and (14)

JT ≡ 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Ktsεtεs . (15)

Then

T hm/2 JT → N(0,σ 2
0 ) in distribution, (16)

where σ 2
0 = 2E

{
σ 4

ε (zt ) fz(zt )
}{∫

K 2(u)du
}

and fz(·) is the marginal density
function of zt .

We consider testing for local departures from the null that converge to the null
at the rate T −1/2h−m/4. More precisely we consider the sequence of local alter-
natives

H1T : Fy|z {Qθ (xt )+dT l(zt )|zt } = θ, (17)

where dT = T −1/2h−m/4 and the function l(·) and its first-order derivatives are
bounded.

THEOREM 3.1. Assume the conditions (A1) and (A2). Then

(i) Under the null hypothesis (3), T hm/2 ĴT
L→ N(0,σ 2

0 ) in distribution, where

σ 2
0 = 2E

{
σ 4

ε (zt ) fz(zt )
}{∫

K 2(u)du
}

and

σ 2
ε (zt ) = E(ε2

t |zt ) = θ(1− θ).

(ii) Under the null hypothesis (3), σ̂ 2
0 ≡ 2θ2(1− θ)21/(T (T −1)hm)∑s ̸=t K 2

ts
is a consistent estimator of σ 2

0 = 2E
{
σ 4

ε (zt ) fz(zt )
}∫

K 2(u)du. Thus
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T hm/2 ĴT /σ̂0

=
√

T
T −1

T
∑

t=1

T
∑

s ̸=t
Kts

[
1
{

yt ! Q̂θ (xt )
}

− θ
][

1
{

ys ! Q̂θ (xs)
}

− θ
]

√
2θ(1− θ)

√
∑

s ̸=t
K 2

ts

.

(iii) Under the alternative hypothesis (4),

ĴT → E{[Fy|z(Qθ (xt )|zt )− θ ]2 fz(zt )} > 0 in probability.

(iv) Under the local alternatives (A.2) in the Appendix, T hm/2 ĴT → N(µ,σ 2
1 )

in distribution, where

µ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
,

σ 2
1 = 2E

{
σ 4

v (zt ) fz(zt )
}∫

K 2(u)du, and

σ 2
v (zt ) = E(v2

t |zt ) with vt ≡ I {yt ! Qθ (xt )}− F(Qθ (xt )|zt ).

Theorem 3.1 generalizes the results of Zheng (1998) for independent data to
the weakly dependent data case. A detailed proof of Theorem 3.1 is given in
the Appendix. The main difficulty in deriving the asymptotic distribution of the
statistic defined in equation (12) is that a nonparametric quantile estimator is
included in the indicator function that is not differentiable with respect to the
quantile argument and thus prevents taking a Taylor expansion around the true
conditional quantile Qθ (xt ). To circumvent the problem, Zheng (1998) made
use of the work of Sherman (1994) on uniform convergence of U -statistics in-
dexed by parameters. In this paper, we bound the test statistic by the statistics
in which the nonparametric quantile estimator in the indicator function is re-
placed with sums of the true conditional quantile and upper and lower bounds
consistent with the uniform convergence rate of the nonparametric quantile esti-
mator, 1(yt ! Qθ (xt )−CT ) and 1(yt ! Qθ (xt )+CT ).

An important further step is to show that the differences of the ideal test statistic
JT given in equation (8) and the statistics having the indicator functions obtained
from the first step stated previously are asymptotically negligible. We may directly
show that the second moments of the differences are asymptotically negligible by
using the result of Yoshihara (1976) on the bound of moments of U -statistics
for absolutely regular processes. However, it is tedious to get bounds on the
second moments with dependent data. In the proof we use instead the fact that
the differences are second-order degenerate U-statistics. Thus by using the result
on the asymptotic normal distribution of the second-order degenerate U -statistic
of Fan and Li (1999), we can derive the asymptotic variance that is based on the
independent and identically distributed (i.i.d.) sequence having the same marginal
distributions as weakly dependent variables in the test statistic. With this little
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trick we only need to show that the asymptotic variance is O(1) in an i.i.d.
situation. For details refer to the Appendix.

4. SIMULATION

We generate bivariate data {yt ,wt }T
t=1 according to the following model:

yt = 1
2

yt−1 + cw2
t−1 + ε1t ,

wt = 1+ 1
2
wt−1 + ε2t ,

where ε1t and ε2t are independent standard normal random variables. Here c = 0
corresponds to the hypothetical model; that is, wt does not cause yt in the θ
quantile with respect to {yt−1,wt−1}. All the coefficients are set such that the
corresponding time series is stationary and β-mixing with corresponding densities
bounded to satisfy the assumptions discussed before. We use different values of
c ∈ [0,1] to investigate the power of the test, such that the higher c is, the stronger
the causality of wt on yt is. Without loss of generality, we choose θ = 0.1,0.5,0.9
and T = 500,1,000,5,000 here with the bandwidth h and a as in (7) and (10)
as for a typical Nadaraya–Watson type estimator. We consider the nominal 0.05
significance level and repeat the test 500 times to generate the power.

Table 1 displays the power performance of the test for different combinations
of T, c, and θ . First, obviously the power is very sensitive to the choice of T ; that
is, the larger T is, for the same c and θ , the larger the power is. From a technical
point of view, this makes sense, because the more data we have, the more evidence
we can draw from to detect the “causality” effect. Our asymptotic result, Theorem
3.1, needs the plug-in estimation of the asymptotic covariance matrix that is used
to normalize the test statistic. Note that such an estimator is model-dependent and
under the alternative is consistent with a different value than the one under the
null. As a result, the power deteriorates for small T . On the other hand, whether
the causality effect exists or not is the nature of the series, which is independent of
the sample size used in this technical test. Enhancing the power performance for
small-sample data using the simulation-based method deserves further research.
Second, as discussed before, the higher c is, the stronger the causality of wt on yt
is, which is confirmed by the larger and larger power values. Third, for different
quantiles θ , we find that the powers with respect to θ = 0.5 are usually larger than
the powers with respect to θ = 0.1 and 0.9.

5. APPLICATION TO COMMODITY PRICES

In financial and commodity markets, it has been argued that the covariation of
the tails may be different from that of the rest of the distribution. The gold mar-
ket is one of the most important markets in the world, where trading takes place
24 hours a day around the globe and transactions involving billions of dollars of
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TABLE 1. Power performance for different combinations of T,c, and θ

c Power (θ 0.1) c Power (θ 0.5) c Power (θ 0.9)
T = 500

0.00 0.024 0.00 0.108 0.00 0.010
0.03 0.030 0.03 0.288 0.03 0.020
0.06 0.058 0.06 0.796 0.06 0.108
0.09 0.190 0.09 0.991 0.09 0.585
0.12 0.414 0.12 1.000 0.12 0.950
0.15 0.696 0.15 1.000 0.15 0.994
0.18 0.888 0.18 1.000 0.18 1.000
0.21 0.962 0.21 1.000 0.21 1.000
0.24 0.988 0.24 1.000 0.24 1.000
0.27 1.000 0.27 1.000 0.27 1.000
0.30 1.000 0.30 1.000 0.30 1.000

T = 1,000
0.00 0.014 0.00 0.130 0.00 0.018
0.01 0.022 0.01 0.144 0.01 0.024
0.02 0.038 0.02 0.296 0.02 0.024
0.03 0.026 0.03 0.564 0.03 0.040
0.04 0.060 0.04 0.788 0.04 0.108
0.05 0.110 0.05 0.946 0.05 0.284
0.06 0.196 0.06 0.990 0.06 0.506
0.07 0.356 0.07 1.000 0.07 0.838
0.08 0.530 0.08 1.000 0.08 0.950
0.09 0.676 0.09 1.000 0.09 0.994
0.10 0.816 0.10 1.000 0.10 0.996
0.11 0.906 0.11 1.000 0.11 1.000
0.12 0.958 0.12 1.000 0.12 1.000
0.13 0.972 0.13 1.000 0.13 1.000
0.14 0.994 0.14 1.000 0.14 1.000
0.15 0.998 0.15 1.000 0.15 1.000
0.16 1.000 0.16 1.000 0.16 1.000

T = 5,000
0.00 0.020 0.00 0.116 0.00 0.026
0.01 0.028 0.01 0.328 0.01 0.046
0.02 0.124 0.02 0.904 0.02 0.142
0.03 0.490 0.03 1.000 0.03 0.728
0.04 0.924 0.04 1.000 0.04 0.988
0.05 1.000 0.05 1.000 0.05 1.000
0.06 1.000 0.06 1.000 0.06 1.000
0.07 1.000 0.07 1.000 0.07 1.000
0.08 1.000 0.08 1.000 0.08 1.000
0.09 1.000 0.09 1.000 0.09 1.000
0.10 1.000 0.10 1.000 0.10 1.000
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TABLE 2. Unit root tests

Time CR Unit root
Test trend Test value Unit after

Variable type term statistics 5% root differencing
LN Oil DF no 0.86955 −1.94160 yes no

ADF no 0.72255 −1.94160 yes no
PP no 0.73107 −1.94160 yes no

KPSS no 2.16221 0.14600 yes no
DF include −0.81819 −2.86386 yes no

ADF include −1.03287 −2.86386 yes no
PP include −0.94355 −2.86386 yes no

KPSS include 2.16221 0.14600 yes no

GBP DF no −0.12461 −1.94160 yes no
ADF no −0.16186 −1.94160 yes no
PP no −0.12506 −1.94160 yes no

KPSS no 5.26720 0.14600 yes no
DF include −1.53295 −2.86386 yes no

ADF include −1.51000 −2.86386 yes no
PP include −1.53853 −2.86386 yes no

KPSS include 5.26720 0.14600 yes no

LN Gold DF no 0.45931 −1.94160 yes no
ADF no 1.03139 −1.94160 yes no
PP no 0.69975 −1.94160 yes no

KPSS no 3.50910 0.14600 yes no
DF include −1.98422 −2.86386 yes no

ADF include −1.36627 −2.86386 yes no
PP include −1.66336 −2.86386 yes no

KPSS include 3.50910 0.14600 yes no

Note: ”LN Oil”, ”GBP”, and ”LN Gold” refer to the logarithmic Brent crude oil price, USD/GBP exchange rate, and
logarithmic NYMEX spot gold price, respectively. The “Test types” DF, ADF, PP, and KPSS refer to unit root tests
of, respectively, Dickey–Fuller (Fuller, 1976), augmented Dickey–Fuller (Fuller, 1976), Phillips–Perron (Phillips &
Perron, 1988), and (Kwaitkowski et al., 1992).

gold are carried out each day. Understanding the mechanism of gold price changes
is important for many outstanding issues in international economics and finance.
Market participants are increasingly concerned with their exposure to large gold
price fluctuations with special interest in which factors drive the changes. In this
section, we apply the quantile causality test to investigate relations between the
Brent crude oil, USD/GBP exchange rate and NYMEX spot gold prices (in USD
per barrel and per ounce, respectively). The data, as seen in Figure 1, obtained
from Datastream, are daily observations from 20 February 1997 to 17 July 2009
(T = 3,237). We use the USD/GBP instead of USD/EUR because the euro was
only introduced as a new currency from 1 January 1999. As indicated by Table 2,
we assume differenced logarithmic data are stationary and β-mixing with corre-
sponding densities bounded. Because a long memory effect is not expected, we
choose p = q = 1 and m = 2.
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FIGURE 1. Plot of the gold prices, oil price, and exchange rate time series from 20
February 1997 to 17 July 2009.

FIGURE 2. Test statistics with respect to different quantiles for the oil-gold prices causality
test.

Figures 2 and 3 present results of testing whether oil prices Granger cause gold
prices and whether the USD/GBP exchange rate Granger causes gold prices at
the various quantiles, respectively, where logarithmic returns instead of the raw
observations are used. The solid line and dotted line represent the standardized
test statistics with respect to different quantiles (x-axis) and the critical value
1.96, respectively. In Figures 2 and 3, because the test statistic exceeds the critical
value when 0.22 ≤ θ ≤ 0.80, we conclude that the oil price and exchange rate
changes do not cause the gold price change in θ < 0.22 or θ > 0.80, whereas it is
a prima facie cause in the 0.22 ≤ θ ≤ 0.80 quantile, respectively. For example, the
oil price and USD/GBP exchange rate increases suggest that investors are wary of
the U.S. dollar’s weakness and inflation. Because gold is typically bought as an
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FIGURE 3. Test statistics with respect to different quantiles for the exchange rate-gold
prices causality test.

alternative to the dollar among safe-haven assets, investors seeking safety from
inflation risk and currency devaluation will cause the gold price to rise. However,
the extreme low and high changes of the gold market may be caused by specula-
tion. This is consistent with most of the empirical findings in the literature that the
codependency may be stronger in the center than in the tails. By combining results
from Figures 2 and 3, we find that the oil price and exchange rate changes have a
significant predictive power for nonextreme gold price changes, which is, however,
not significant for extreme changes. This finding could help to make it possible to
use the gold price and GBP to hedge oil price changes in a more precise way with
more careful investigation of their relations, which deserves further research.

6. CONCLUSION

By extending the Zheng (1998) idea to dependent data, we propose a consistent
test for Granger causality in conditional quantile. The appealing feature of our
proposed test is that it can investigate Granger causality in various conditional
quantiles. The benefit of this is illustrated in the commodity market application
where the causal relationships among the oil price, USD/GBP exchange rate, and
gold price were shown to be different between a tail area and in the center of the
distribution. We also illustrate that oil price and USD/GBP changes have signifi-
cant predictive power on nonextreme gold price changes.

The test can be extended in a number of ways to test conditional quantile re-
strictions with dependent data: First, it can be extended to test functional mis-
specification, or the insignificance of a subset of regressors in quantile regression
function, and second, it can also be used to test some semiparametric versus non-
parametric models in quantile regression models.
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APPENDIX

Proof of Theorem 3.1(i). In the proof, we use several approximations to ĴT . We define
them now and recall a few already defined statistics for convenience of reference.

ĴT ≡ 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Kts ε̂t ε̂s , (A.1)

JT ≡ 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Ktsεtεs , (A.2)

JT U ≡ 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

KtsεtU εsU , (A.3)

JT L ≡ 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Ktsεt LεsL , (A.4)

where ε̂t = I
{

yt ! Q̂θ (xt )
}

− θ,

εt = I {yt ! Qθ (xt )}− θ,

εtU = I {yt +CT ! Qθ (xt )}− θ,

εt L = I {yt −CT ! Qθ (xt )}− θ,

and CT is an upper bound consistent with the uniform convergence rate of the nonparamet-
ric estimator of conditional quantile given in equation (13). The proof of Theorem 3.1(i)
consists of three steps.
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Step 1. Asymptotic normality.

T hm/2 JT → N (0,σ 2
0 ), (A.5)

where σ 2
0 = 2E

{
θ2(1− θ)2 f (zt )

}{∫
K 2(u)du

}
under the null.

Step 2. Conditional asymptotic equivalence. Suppose that both T hm/2(JT − JT U ) =
Op(1) and T hm/2(JT − JT L ) =Op(1).

Then T hm/2( ĴT − JT ) =Op(1). (A.6)

Step 3. Asymptotic equivalence.

T hm/2(JT − JT U ) =Op(1) and T hm/2(JT − JT L ) =Op(1). (A.7)

The combination of steps 1–3 yields Theorem 3.1(i).

Proof of Step 1. Because JT is a degenerate U -statistic of order 2, the result follows
from Lemma 3.2. !

Proof of Step 2. The proof of step 2 is motivated by the technique of Härdle and Stoker
(1989) that was used in treating trimming an indicator function asymptotically. Suppose
that the following two statements hold:

T hm/2(JT − JT U ) =Op(1) and (A.8)

T hm/2(JT − JT L ) =Op(1). (A.9)

Use CT to denote an upper bound consistent with the uniform convergence rate of the
nonparametric estimator of conditional quantile given in equation (13). Suppose that

sup |Q̂θ (x)− Qθ (x)|" CT . (A.10)

If inequality (A.10) holds, then the following statements also hold:

{Qθ (x) > yt +CT } ⊂ {Q̂θ (x) > yt } ⊂ {Qθ (x) > yt −CT }, (A.11)

1(Qθ (x) > yt +CT ) " 1( Q̂θ (x) > yt ) " 1( Qθ (x) > yt −CT ), (A.12)

JT U " ĴT " JT L , (A.13)

|T hm/2(JT − ĴT )|" max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|}. (A.14)
Using (A.10) and (A.14), we have the following inequality:

P
{
|T hm/2(JT − ĴT )| > δ | sup

∣∣∣Q̂θ (x)− Qθ (x)|" CT

}

" P
{

max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|} > δ
∣∣∣ sup |Q̂θ (x)− Qθ (x)|" CT

}

for allδ > 0. (A.15)
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Invoking Lemma 3.1 and condition (A2)(c), we have

P
{

sup |Q̂θ (x)− Qθ (x)|! CT

}
→ 1 as T → ∞. (A.16)

By (A.8) and (A.9), as T → ∞, we have

P
{

max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|} > δ
}

→ 0 for all δ > 0. (A.17)

Therefore, as T → ∞,
the right-hand side of the inequality (A.15) × P

{
sup |Q̂θ (x)− Qθ (x)|! CT

}
→ 0;

the left-hand side of the inequality (A.15) × P
{

sup |Q̂θ (x)− Qθ (x)|! CT

}

= P
{
|T hm/2(JT − ĴT )| > δ

}
→ 0.

In summary, we have that if both T hm/2(JT − JT U ) =Op(1) and T hm/2(JT − JT L ) =
Op(1), then T hm/2( ĴT − JT ) =Op(1). "

Proof of Step 3. In the remaining proof, we focus on showing that T hm/2(JT − JT U ) =
Op(1), with the proof of T hm/2(JT − JT L ) = Op(1) being treated similarly. The proof
of step 3 is close in line with the proof in Zheng (1998). Denote

HT (s, t,g) ≡ Kts{1(yt ! g(xt ))− θ}{1(ys ! g(xs))− θ} and (A.18)

J [g] ≡ 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

HT (s, t,g). (A.19)

Then we have JT ≡ J [Qθ ] and JT U ≡ J [Qθ −CT ]. We decompose HT (s, t,g) into three
parts:

HT (s, t,g) = Kts{1(yt ! g(xt ))− F(g(xt )|zt )}{1(ys ! g(xs))− F(g(xs)|zs)}
+2× Kts{1(yt ! g(xt ))− F(g(xt )|zt )}{F(g(xs)|zs)− θ}
+ Kts{F(g(xt )|zt )− θ}{F(g(xs)|zs)− θ}

= H1T (s, t,g)+2H2T (s, t,g)+ H3T (s, t,g). (A.20)

Then let Jj [g] = 1/(T (T −1)hm)
T
∑

t=1

T
∑

s ̸=t
HjT (s, t,g), i = 1,2,3. We will treat Jj [Qθ ] −

Jj [Qθ −CT ] for j = 1,2,3 separately.
(1) T hm/2 [J1(Qθ )− J1(Qθ −CT )

]
=Op(1). By simple manipulation, we have

J1(Qθ )− J1(Qθ −CT )

= 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]

= 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Kts

{
[1(yt ! Qθ (xt ))− F(Qθ (xt )|zt )]

× [1(ys ! Qθ (xs))− F(Qθ (xs)|zs)]
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− [1(yt ! (Qθ (xt )−CT ))− F((Qθ (xt )−CT )|zt )]

× [1(ys ! (Qθ (xs)−CT ))− F((Qθ (xs)−CT )|zs)]
}
.

(A.21)

To avoid tedious work to get bounds on the second moment of J1(Qθ ) − J1(Qθ − CT )
with dependent data, we note that the right-hand side of (A.21) is a degenerate U -statistic
of order 2. Thus we can apply Lemma 3.2 and have

T hm/2 [J1(Qθ )− J1(Qθ −CT )
]
→ N (0,σ 2

2 ) in distribution, (A.22)

where the definition of the asymptotic variance σ 2
2 is based on the i.i.d. sequence having

the same marginal distributions as weakly dependent variables in (A.21). That is,

σ 2
2 = 2h−m Ẽ

[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]2,

where the notation Ẽ is an expectation evaluated at an i.i.d. sequence having the same
marginal distribution as the mixing sequences in (A.21) (Fan and Li, 1999, p. 248). Now,
to show that T hm/2 [J1(Qθ )− J1(Qθ −CT )

]
= Op(1), we only need to show that the

asymptotic variance σ 2
2 (z) is O(1) with i.i.d. data. Use #T to denote an upper bound

consistent with the integral over Kts being of the order O(hm). We have

Ẽ
[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]2

!#T Ẽ{[1t (Qθ )− Ft (Qθ )] [1s(Qθ )− Fs(Qθ )]

− [1t (Qθ −CT )− Ft (Qθ −CT )] [1s(Qθ −CT )− Fs(Qθ −CT )]}2

!#T Ẽ{Ft (Qθ ) [1− Ft (Qθ )] Fs(Qθ ) [1− Fs(Qθ )]}

+ Ẽ{Ft (Qθ −CT ) [1− Ft (Qθ −CT )] Fs(Qθ −CT ) [1− Fs(Qθ −CT )]}
−2E{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}

= #T Ẽ{[Ft (Qθ )− Ft (Qθ )Ft (Qθ )] [Fs(Qθ )− Fs(Qθ )Fs(Qθ )]}

−#T Ẽ{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}

+#T Ẽ{[Ft (Qθ −CT )− Ft (Qθ −CT )Ft (Qθ −CT )]

× [Fs(Qθ −CT )− Fs(Qθ −CT )Fs(Qθ −CT )]}

−#T Ẽ{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}
!#T CT . (A.23)

Thus we have that σ 2
2 =O(CT ) =O(1), and so

T hm/2 [J1(Qθ )− J1(Qθ −CT )
]
=Op(1). (A.24)
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(2) T hm/2 [J2(Qθ )− J2(Qθ −CT )
]
=Op(1). Note that H2T (s, t, Qθ ) = 0 because of

Fy|z(Qθ (xs)|zs)− θ = 0. Then we have

J2(Qθ )− J2(Qθ −CT ) = −J2(Qθ −CT )

= − 1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)

×{1(yt ! Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )}
×{Fy|z(Qθ (xs)−CT |zs)− θ}. (A.25)

By taking a Taylor expansion of Fy|z(Qθ (xs)−CT |zs) around Qθ (xs), it equals

− 1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)

× {1(yt ! Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )}

× (−CT ) fy|z(Q̄θ (xs)|zs), (A.26)

where Q̄θ is between Qθ and Qθ −CT . Thus we have

(J2(Qθ )− J2(Qθ −CT ))2

!
[

1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)

×
{

1(yt ! Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )
}]2

"2C2
T

= "2C2
T

[
1
T

T

∑
t=1

{
1(yt ! Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT )

}
f̂z(zt )

]2

≡ "2C2
T

{
1
T

T

∑
t=1

ut f̂z(zt )

}2

= "2C2
T T −2

T

∑
t=1

u2
t f̂ 2

z (zt )+"2C2
T T −2

T

∑
t=1

T

∑
s ̸=t

ut us f̂z(zt ) f̂z(zs)

≡ J21 + J22, (A.27)

where the inequality holds because of Assumption (A.1)(e).

E |J21| = "2C2
T T −1

[

T −1
T

∑
t=1

E
{

u2
t f̂ 2

z (zt )
}]

= O
(

C2
T T −2h−m

)
, (A.28)

where the second equality is derived by using Lemma C.3(iii) of Li (1999).
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J22 = !2C2
T

[

T −2
T

∑
t=1

T

∑
s ̸=t

ut us fz(zt ) fz(zs)

+2T −2
T

∑
t=1

T

∑
s ̸=t

ut us fz(zt )
{

f̂z(zs)− fz(zs)
}

+ T −2
T

∑
t=1

T

∑
s ̸=t

ut us

{
f̂z(zt )− fz(zt )

}{
f̂z(zs)− fz(zs)

}]

≡ !C2
T (J221 + J222 + J223) . (A.29)

Following the line of the proof of Lemma A.2(i) of Li (1999) we have that

J221 =Op

(
T −2
)

, J222 =Op

(
T −1
)

, and J223 =Op

(
T −1
)

; thus

J22 =Op

(
C2

T T −1
)

. (A.30)

Thus, combining (A.28) and (A.30), we have

T hm/2 [J2(Qθ )− J2(Qθ −CT )
]
=Op (CT )+Op

(
CT T 1/2hm/2

)

=Op(1). (A.31)

(3) T hm/2 [J3(Qθ )− J3(Qθ −CT )
]
= Op(1). Noting that H3T (s, t, Qθ ) = 0 because

of F(Qθ (xj )|zj )− θ = 0 for j = t,s, we have

J3(Qθ )− J3(Qθ −CT )

= − 1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)

× {F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ}

= 1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)
C2

T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs)

= C2
T

1
T

T

∑
t=1

fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.32)

Thus, we have

E |J3(Qθ )− J3(Qθ −CT )|

! !C2
T

1
T

T

∑
t=1

E
∣∣∣ f̂z(zt )

∣∣∣

! !C2
T

1
T

T

∑
t=1

E | fz(zt )|+!C2
T

1
T

T

∑
t=1

E
∣∣∣ f̂z(zt )− fz(zt )

∣∣∣

=O
(

C2
T

)
. (A.33)
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Finally, we have

T hm/2 [J3(Qθ )− J3(Qθ −CT )
]
=Op

(
T hm/2C2

T

)

=Op(1). (A.34)

By combining (A.24), (A.31), and (A.34), we have the result of step 3. !

Proof of Theorem 3.1(ii). Because

σ 2
0 = 2θ2(1− θ)2E{ fz(zt )}

∫
K 2(u)du and

σ̂ 2
0 ≡ 2θ2(1− θ)2 1

T (T −1)hm ∑
s ̸=t

K 2
ts ,

it is enough to show that

σ 2
T ≡ 1

T (T −1)hm ∑
s ̸=t

K 2
ts

= E{ fz(zt )}
∫

K 2(u)du +Op(1). (A.35)

Note that σ 2
T is a nondegenerate U -statistic of order 2 with kernel

HT (zt , zs) = 1
hm K 2

(
zt − zs

h

)
. (A.36)

Because Assumptions (A2)(d) and (e) satisfy the conditions of Lemma 3.2 of Yoshihara
(1976) on the asymptotic equivalence of the U -statistic and its projection under β-mixing,
we have for γ = 2(δ − δ′)/δ′(2+ δ) > 0

σ 2
T ≡ 1

T (T −1) ∑
s ̸=t

HT (zt , zs)

=
∫ ∫

HT (z1, z2)d Fz(z1)d Fz(z2)

+2T −1
T

∑
t=1

[∫
HT (zt , z2)d Fz(z2)−

∫ ∫
HT (z1, z2)d Fz(z1)d Fz(z2)

]

+Op(T −1−γ )

=
∫ ∫

HT (z1, z2)d Fz(z1)d Fz(z2)+Op(1)

=
∫ ∫ 1

hm K 2
(

z1 − z2
h

)
d Fz(z1)d Fz(z2)+Op(1)

=
∫

K 2 (u)du
∫

f 2
z (z)dz +Op(1). (A.37)

The result of Theorem 3.1(ii) follows from (A.37). !

Proof of Theorem 3.1(iii). The proof of Theorem 3.1(iii) consists of two steps.



884 KIHO JEONG ET AL.

Step 1. Show that ĴT = JT +Op(1) under the alternative hypothesis (4).

Step 2. Show that JT = J +Op(1) under the alternative hypothesis (4),

where J = E{[Fy|z(Qθ (xt )|zt )− θ ]2 fz(zt )}. The combination of steps 1 and
2 yields Theorem 3.1(iii).

Proof of Step 1. We note that the results of step 2 and T hm/2 [J1(Qθ )− J1(Qθ −CT )
]
=

Op(1) of step 3 in the proof of Theorem 3.1(i) still hold under the alternative hy-
pothesis (4). Thus we focus on showing that J2(Qθ ) − J2(Qθ − CT ) = Op(1) and
J3(Qθ )− J3(Qθ −CT ) =Op(1).

We begin with showing that J2(Qθ )− J2(Qθ −CT ) =Op(1). By the same procedures
as in (A.27), we can show that J2(Qθ −CT ) = Op(T −1h−m/2). Thus it remains to show
that J2(Qθ ) = Op(1). By taking a Taylor expansion of Fy|z(Qθ (xs)|zs) around Qθ (xs),
we have

J2(Qθ ) = − 1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)

×{1(yt ! Qθ (xt ))− Fy|z(Qθ (xt )|zt )}× fy|z(Q̄θ (xs)|zs)

= 1
T

T

∑
t=1

{1(yt ! Qθ (xt ))− Fy|z(Qθ (xt ))} fy|z(Q̄θ (xs)|zs) f̂z(zt )

≡ 1
T

T

∑
t=1

ut fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.38)

By similar arguments as in (A.26) and (A.31), we have

J2(Qθ ) =O
(

T −1h−m
)

. (A.39)

Next, we show that T hm/2 [J3(Qθ )− J3(Qθ −CT )
]

= Op(1) under the alternative hy-
pothesis (4). Because F(Qθ (xj )|zj )− θ ̸= 0 for j = t,s under the alternative hypothesis,
we have

J3(Qθ )− J3(Qθ −CT )

= 1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)
{F(Qθ (xt )|zt )− θ}{F(Qθ (xs)|zs)− θ}

− 1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)

× {F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ}

= 1
T

T

∑
t=1

{F(Qθ (xt )|zt )− θ}{F(Qθ (xs)|zs)− θ} f̂z(zt )

− 1
T

T

∑
t=1

{F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ} f̂z(zt ). (A.40)
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By taking a Taylor expansion of Fy|z(Qθ (xj ) − CT |zj ) around Qθ (zj ) for j = t,s, we
have

J3(Qθ )− J3(Qθ −CT ) = 1
T

T

∑
t=1

{F(Qθ (xt )|zt )− θ}CT fy|z(Q̄θ (xt )|zt ) f̂z(zt )

+ 1
T

T

∑
t=1

CT fy|z(Q̄θ (xt )|zt ){F(Qθ (xs)|zs)− θ} f̂z(zt )

− 1
T

T

∑
t=1

C2
T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.41)

We further take a Taylor expansion of Fy|z(Qθ (xj )|zj ) around Qθ (zj ) for j = t,s and
have

J3(Qθ )− J3(Qθ −CT ) = 1
T

T

∑
t=1

fy|z(Q̄θ (xt , zt )|zt )CT fy|z(Q̄θ (xs)|zs) f̂z(zt )

+ 1
T

T

∑
t=1

CT fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs , zs)|zs) f̂z(zt )

− 1
T

T

∑
t=1

C2
T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ), (A.42)

where Q̄θ (xs , zs) is between Qθ (xs) and Qθ (zs). Then by using the same procedures as
in (A.30), we have

J3(Qθ )− J3(Qθ −CT ) =O (CT ) . (A.43)

Now we have the result of step 1 for the proof of Theorem 3.1(iii). !

Proof of Step 2. Using (7) and the uniform convergence rate of the kernel regression
estimator under a β-mixing process, we have

JT = 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Ktsεtεs

= 1
T ∑

t=1
Ê(εt |zt ) f̂z(zt )εt

= 1
T ∑

t=1
E(εt |zt ) fz(zt )εt + 1

T ∑
t=1

{
Ê(εt |zt ) f̂z(zt )−E(εt |zt ) fz(zt )

}
εt

= 1
T ∑

t=1
E(εt |zt ) fz(zt )εt +Op(1)

= E
[
E(εt |zt ) fz(zt )εt

]
+Op(1)

= J +Op(1). (A.44)
!
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Proof of Theorem 3.1(iv). The proof of Theorem 3.1(iv) is close in line with the proof
in Zheng (1998). The proof of Theorem 3.1(iv) consists of two steps.

Step 1. Show that ĴT = JT +Op(T −1h−m/2) under the alternative hypothesis (A.2).

Step 2. Show that T hm/2 JT → N (µ,σ 2
1 ) under the alternative hypothesis (A.2),

where µ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
, σ 2

1 = 2E
{
σ 4
v (zt ) fz(zt )

}

∫
K 2(u)du,and σ 2

v (zt ) = E(v2
t |zt ) with vt ≡ I {yt ! Qθ (xt )}− F(Qθ (xt )|zt ).

Proof of Step 1. The results of step 1 in the proof of Theorem 3.1(iii) show that,
under the general alternative hypothesis (4), the elements consisting of ĴT − JT are all

Op(T −1h−m/2) except for J2(Qθ (x)), the order of which is O
(

T −1h−m
)

as in (A.39).

Thus we need to show that J2(Qθ (x)) = Op(T −1h−m/2) under the local alternative hy-
pothesis (A.2). Taking a Taylor expansion of Fy|z {Qθ (zt )+dT l(zt )|zt } around dT = 0,
we have

Fy|z {Qθ (zt )+dT l(zt )|zt } = θ +dT fy|z {Qθ (zt )|zt } l(zt )+Op(d2
T ). (A.45)

By similar procedures as in (A.38) and (A.39), we have

J2(Qθ (x)) = − 1
T (T −1)

T

∑
t=1

T

∑
s ̸=t

1
hm K

(
zt − zs

h

)
{1(yt ! Qθ (xt ))− Fy|z(Qθ (xt )|zt )}

× dT fy|z {Qθ (zt )|zt } l(zt )+Op

(
d2

T

)

= −dT
1
T

T

∑
t=1

{1(yt ! Qθ (xt ))− Fy|z(Qθ (xt )|zt )}

× fy|z {Qθ (zt )|zt } l(zt ) f̂z(zt )+Op

(
d2

T

)

≡ −dT
1
T

T

∑
t=1

ut fy|z {Qθ (zt )|zt } l(zt ) f̂z(zt )+Op

(
d2

T

)

=Op

(
d2

T

)
. (A.46)

"

Proof of Step 2. Taking a Taylor expansion of Fy|z {Qθ (zt )+dT l(zt )|zt } around
dT = 0, we have

JT (Qθ (x)) = 1
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Kts {1(yt ! Qθ (xt ))F(Qθ (xt )|zt )}

×{1(ys ! Qθ (xs))− F(Qθ (xs)|zs)}

− 2dT
T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Kts {1(yt ! Qθ (xt ))− F(Qθ (xt )|zt )}

× fy|z {Qθ (zs)|zs} l(zs)
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+ d2
T

T (T −1)hm

T

∑
t=1

T

∑
s ̸=t

Kts fy|z {Qθ (zt )|zt } l(zt ) fy|z {Qθ (zs)|zs} l(zs)

+Op

(
d2

T

)

= T1T −2dT T2T +d2
T T3T +Op

(
d2

T

)
. (A.47)

Noting that T1T is a degenerate U -statistic of order 2, by Lemma 3.2, we have

T hm/2T1T → N
(

0,σ 2
1

)
in distribution, (A.48)

Similarly to the proof for (A.31), we can show that T2T =O
{
(T hm)−1

}
, and so dT T2T =

O
{
(T hm/2)

−1}
. And by the same procedures as in (A.44), we have

T3T → E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
in probability. (A.49)

Thus,

T hm/2 JT → N
(
µ,σ 2

1

)
, (A.50)

where µ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
. !
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empirical distribution function (edf) for residuals. It is known that the approximation
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1. Introduction

Quantile regression, as first introduced by Koenker and Bassett [25], is ‘‘gradually developing into a comprehensive
strategy for completing the regression prediction’’ as claimedbyKoenker andHallock [26]. Quantile smoothing is an effective
method to estimate quantile curves in a flexible nonparametric way. Since this technique makes no structural assumptions
on the underlying curve, it is very important to have a device for understanding when observed features are significant and
deciding between functional forms. For example, a question often asked in this context is whether or not an observed peak
or valley is actually a feature of the underlying regression function or is only an artifact of the observational noise. For such
issues, confidence bands (i.e., uniform over location) give an idea about the global variability of the estimate.

The nonparametric quantile estimate could be obtained either using a check function such as a robustified local linear
smoother [10,35,36], or through estimating the conditional distribution function using the double-kernel local linear
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technique [11,35,36]. Besides these, [17] proposed aweighted version of theNadaraya–Watson estimator,whichwas further
studied by Cai [5]. In the previous work the theoretical focus has mainly been on obtaining consistency and asymptotic
normality of the quantile smoother, and thereby providing the necessary ingredients to construct its pointwise confidence
intervals. This, however, is not sufficient to get an idea about the global variability of the estimate; neither can it be used
to correctly answer questions about the curve’s shape, which contains the lack of fit test as an immediate application. This
motivates us to construct the confidence bands.

To this end, [22] used strong approximations of the empirical process and extreme value theory. However, the very
poor convergence rate of extremes of a sequence of n independent normal random variables is well documented and was
first noticed and investigated by Fisher and Tippett [12], and discussed in greater detail by Hall [16]. In the latter paper it
was shown that the rate of the convergence to its limit (the suprema of a stationary Gaussian process) can be no faster than
(log n)�1. For example, the supremumof a nonparametric quantile estimate can converge to its limit no faster than (log n)�1.
These results may make extreme value approximation of the distributions of suprema somewhat doubtful, for example in
the context of the uniform confidence band construction for a nonparametric quantile estimate.

This paper proposes and analyzes a bootstrap-based method of obtaining the confidence bands for nonparametric
quantile estimates. The method is simple to implement, does not rely on the evaluation of quantities which appear in
asymptotic distributions, and takes the bias properly into account (at least asymptotically). Additionally, we show that
the bootstrap distribution can approximate the true one (w.r.t. the k · k1 norm, details in Theorem 2.1) up to n�2/5, which
represents a significant improvement relative to (log n)�1, which is based on the asymptotic Gumbel distribution, as studied
byHärdle and Song [22]. Previous research byHahn [15] showed consistency of a bootstrap approximation to the cumulative
distribution function (cdf) without assuming independence of the error and regressor terms. Ref. [23] showed bootstrap
methods for median regression models based on a smoothed least-absolute-deviations (SLAD) estimate.

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sequence of independent identically distributed bivariate random variables with
joint pdf f (x, y), joint cdf F(x, y), conditional pdf f (y|x), f (x|y), conditional cdf F(y|x), F(x|y) for Y given X and X given Y
respectively, and marginal pdf fX (x) for X, fY (y) for Y . With some abuse of notation we use the letters f and F to denote
different pdfs and cdfs respectively. The exact distribution will be clear from the context. At the first stage we assume that
x 2 J⇤ = (a, b) for some 0 < a < b < 1. Let l(x) denote the p-quantile curve, i.e. l(x) = F�1

Y |x (p).
In economics, discrete or categorial regressors are very common. An example is from labor market analysis where one

tries to find out how revenues depend on the age of the employee w.r.t. different education levels, labor union statuses,
genders and nationalities, i.e. in econometric analysis one targets the differential effects. For example, [4] examined the US
wage structure by quantile regression techniques. This motivates the extension to multivariate covariables by partial linear
modelling (PLM). This is convenient especiallywhenwehave categorial elements of theX vector. Partial linearmodels,which
were first considered by Green and Yandell [14,8,34,32], are gradually developing into a class of commonly used and studied
semiparametric regression models, which can retain the flexibility of nonparametric models and ease the interpretation of
linear regression models while avoiding the ‘‘curse of dimensionality’’. Recently [29] used penalized quantile regression for
variable selection of partially linear models with measurement errors.

In this paper, we propose an extension of the quantile regression model to x = (u, v)> 2 Rd with u 2 Rd�1 and
v 2 J⇤ ⇢ R. The quantile regression curve we consider is l̃(x) = F�1

Y |x (p) = u>� + l(v). Themultivariate confidence band can
then be constructed, based on the univariate uniform confidence band, plus the estimated linear part which we will prove
is more accurately (

p
n consistency) estimated. This makes various tasks in economics, e.g. labor market differential effect

investigation, multivariate model specification tests and the investigation of the distribution of income and wealth across
regions or countries or the distribution across households possible. Additionally, since the natural link between quantile and
expectile regression was developed by Newey and Powell [30], we can further extend our result into expectile regression
for various tasks, e.g. demography risk research or expectile-based Value at Risk (EVAR) as in [28]. For high-dimensional
modelling, [2] recently investigated high-dimensional sparse models with L1 penalty. Additionally, our result might also be
further extended to intersection bounds (one side confidence bands), which is similar to thework of Chernozhukov et al. [6].

The rest of this article is organized as follows. To keep the main idea transparent, in Section 2, as an introduction to the
more complicated situation, the bootstrap approximation rate for the (univariate) confidence band is presented through a
coupling argument. An extension to multivariate covariance X with partial linear modelling is shown in Section 3 with the
actual type of confidence bands and their properties. In Section 4, we compare via aMonte Carlo study the bootstrap uniform
confidence band with the one based on the asymptotic theory and investigate the behavior of partial linear estimates with
the corresponding confidence band. In Section 5, an application considers the labormarket differential effect. The discussion
is restricted to the semiparametric extension. We do not discuss the general nonparametric regression. We conjecture that
this extension is possible under appropriate conditions. Section 6 contains concluding remarks. All proofs are sketched in
the Appendix.

2. Bootstrap confidence bands in the univariate case

Suppose Yi = l(Xi) + "i, i = 1, . . . , n, where "i has the (conditional) distribution function F(·|Xi). For simplicity, but
without any loss of generality, we assume that F(0|Xi) = p. F(⇠ |x) is smooth as a function of x and ⇠ for any x, and for any
⇠ in the neighborhood of 0. We assume:
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(A1) X1, . . . , Xn are an i.i.d. sample, and infx fX (x) = �0 > 0. The quantile function satisfies supx |l(j)(x)|  �j < 1, j = 1, 2.
(A2) The distribution of Y given X has a density and infx,t f (t|x) � �3 > 0, continuous at all x 2 J⇤, and at t only in a

neighborhood of 0. More exactly, we have the following Taylor expansion at x0 = x, t = 0, for some A(·) and f0(·):
F(t|x0) = F(0|x) + @F(t|x0)

@x0

�

�

�

�

x0=x,t=0
t + @F(t|x0)

@t

�

�

�

�

x0=x,t=0
(x0 � x) + R(t, x0; x)

def= p + f0(x)t + A(x)(x0 � x) + R(t, x0; x), (1)
where

sup
t,x,x0

|R(t, x0; x)|
t2 + |x0 � x|2 < 1.

Let K be a symmetric density function with compact support and dK = R

u2 K(u)du < 1. Let lh(·) = ln,h(·) be the
nonparametric p-quantile estimate of Y1, . . . , Yn with weight function K{(Xi � ·)/h} for some global bandwidth h =
hn (Kh(u) = h�1K(u/h)), that is, a solution of

n
P

i=1
Kh(x � Xi)1{Yi < lh(x)}

n
P

i=1
Kh(x � Xi)

< p 

n
P

i=1
Kh(x � Xi)1{Yi  lh(x)}

n
P

i=1
Kh(x � Xi)

. (2)

Generally, the bandwidth may also depend on x. A local (adaptive) bandwidth selection though deserves future research.
Note that by assumption (A1), lh(x) is the quantile of a discrete distribution, which is equivalent to a sample of sizeOp(nh)

from a distribution with p-quantile whose bias is O(h2) relative to the true value. Let �n be the local rate of convergence
of the function lh, essentially �n = h2 + (nh)�1/2 = O(n�2/5) with optimal bandwidth choice h = hn = O(n�1/5) as
in [36]. We employ also an auxiliary estimate lg

def= ln,g , essentially one similar to ln,h but with a slightly larger bandwidth
g = gn = hnn⇣ (a heuristic explanation of why it is essential to oversmooth g is given later), where ⇣ is some small number.
The asymptotically optimal choice of ⇣ as shown later is 4/45.
(A3) The estimate lg satisfies

sup
x2J⇤

|l00g (x) � l00(x)| = Op(1),

sup
x2J⇤

|l0g(x) � l0(x)| = Op(�n/h). (3)

Assumption (A3) is only stated to overwrite the issue here. It actually follows from the assumptions on (g, h). A sequence
{an} is slowly varying if n�↵an ! 0 for any ↵ > 0. With some abuse of notation we will use Sn to denote any slowly varying
function which may change from place to place, e.g. S2n = Sn is a valid expression (since if Sn is a slowly varying function,
then S2n is slowly varying as well). �i and Ci are generic constants throughout this paper and the subscripts have no specific
meaning. Note that there is no Sn term in (3) exactly because the bandwidth gn used to calculate lg is slightly larger than
that used for lh. We want to smooth it such that lg , as an estimate of the quantile function, has a slightly worse rate of
convergence, but its derivatives converge faster.

We also consider a family of estimates F̂(·|Xi), i = 1, . . . , n, estimating respectively F(·|Xi) and satisfying F̂(0|Xi) = p. For
example we can take the distribution with a point mass [Pn

j=1 K{↵n(Xj � Xi)}]�1K{(Xj � Xi)/h} on Yj � lh(Xi), j = 1, . . . , n,
i.e.

F̂(·|Xi) =

n
P

j=1
Kh(Xj � Xi)1{Yj � lh(Xi)  ·}

n
P

j=1
Kh(Xj � Xi)

. (4)

We additionally assume:
(A4) fX (x) is twice continuously differentiable and f (t|x) is continuous in x, Hölder-continuous in t and uniformly bounded

in x and t by, say, �4.

For the precision of F̂(·|Xi)’s approximation around 0, we employ the following lemma from Franke and Mwita [13]:

Lemma 2.1 ([13, Lemma A.3-5]). If assumptions (A1,A2,A4) hold, then for |t| < Sn�n, �n ! 0, i = 1, . . . , n, Xi 2 J⇤,

sup
|t|<Sn�n,i=1,...,n,Xi2J⇤

|F̂(t|Xi) � F(t|Xi)| = Op{Sn�n}. (5)
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Let F�1(·|·) and F̂�1(·|·) be the inverse function of the conditional cdf and its estimate. We consider the following
bootstrap procedure. Let U1, . . . ,Un be i.i.d. uniform [0, 1] variables. Let

Y ⇤
i = lg(Xi) + F̂�1(Ui|Xi), i = 1, . . . , n (6)

be the bootstrap sample.We couple this sample to an unobserved hypothetical sample from the true conditional distribution

Y#
i = l(Xi) + F�1(Ui|Xi), i = 1, . . . , n. (7)

Note that the vectors (Y1, . . . , Yn) and (Y#
1 , . . . , Y#

n ) are equally distributed given X1, . . . , Xn. We are really interested in the
exact values of Y#

i and Y ⇤
i only when they are near the appropriate quantile, that is, only if |Ui � p| < Sn�n. But then, by

Eq. (1), Lemma 2.1 and the inverse function theorem, we have

max
i:|F�1(Ui|Xi)�F�1(p)|<Sn�n

|F�1(Ui|Xi) �bF�1(Ui|Xi)| = max
i:|Y#

i �l(Xi)|<Sn�n
|Y#

i � l(Xi) � Y ⇤
i + lg(Xi)| = Op{Sn�n}. (8)

Let now qhi(Y1, . . . , Yn) be the solution of the local quantile as given by (2) at Xi, with bandwidth h, i.e. qhi(Y1, . . . , Yn)
def=

lh(Xi) for data set {(Xi, Yi)}ni=1. Note that by (3), if |Xi � Xj| = O(h), then

max
|Xi�Xj|<ch

|lg(Xi) � lg(Xj) � l(Xi) + l(Xj)| = Op(�n). (9)

Let l⇤h and l#h be the local bootstrap quantile and its coupled sample analogue. Then

l⇤h(Xi) � lg(Xi) = qhi[{Y ⇤
j � lg(Xi)}nj=1]

= qhi[{Y ⇤
j � lg(Xj) + lg(Xj) � lg(Xi)}nj=1], (10)

while

l#h (Xi) � l(Xi) = qhi[{Y#
j � l(Xj) + l(Xj) � l(Xi)}nj=1]. (11)

From (8)–(11) we conclude that

max
i

|l⇤h(Xi) � lg(Xi) � l#h (Xi) + l(Xi)| = Op(�n). (12)

Based on (12), we obtain the following theorem (the proof is given in the Appendix):

Theorem 2.1. If assumptions (A1–A4) hold, then

sup
x2J⇤

|l⇤h(x) � lg(x) � l#h (x) + l(x)| = Op(�n) = Op(n�2/5).

Remark. Theorem 2.1 indicates that the r.v. l⇤h(x) � lg(x) approximates the one of l⇤h(x) up to n�2/5 (w.r.t. the k · k1 norm).
Thus a number of replications of l⇤h(x) can be used as the basis for simultaneous error bars.

Although Theorem 2.1 is stated with a fixed bandwidth, in practice, to take care of the heteroscedasticity effect, we
construct confidence bands with the width depending on the densities, which is motivated by the counterpart based on the
asymptotic theory as in [22]. Thus we have the following corollary.

Corollary 2.1. Let d ⇤↵ be defined by P⇤(|l⇤h(x) � lg(x)| > d⇤
↵) = ↵, where P⇤ is the bootstrap distribution conditioned on the

sample. If (A1)–(A4) hold, then the confidence interval lh(x) ± d⇤
↵ has an asymptotic uniform coverage of 1 � ↵, in the sense

that P(supx2J⇤ |lh(x) � l(x)| > d⇤
↵) ! ↵.

In practice we would use the approximate (1 � ↵) ⇥ 100% confidence band over R given by

lh(x) ±
h

f̂ {lh(x)|x}
q

f̂X (x)
i�1

d⇤
↵, (13)

where d⇤
↵ is based on the bootstrap sample (defined later) and f̂ {lh(x)|x}, f̂X (x) are consistent estimators of f {l(x)|x}, fX (x)

with use of f (y|x) = f (x, y)/fX (x).
Below is the summary of the basic steps for the bootstrap procedure.

(1) Given (Xi, Yi), i = 1, . . . , n, compute the local quantile smoother lh(x) of Y1, . . . , Yn with bandwidth h and obtain
residuals "̂i = Yi � lh(Xi), i = 1, . . . , n.
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(2) Compute the conditional edf:

F̂(t|x) =

n
P

i=1
Kh(x � Xi)1{"̂i 6 t}

n
P

i=1
Kh(x � Xi)

.

(3) For each i = 1, . . . , n, generate random variables "⇤
i,b ⇠ F̂(t|Xi), b = 1, . . . , B and construct the bootstrap sample

Y ⇤
i,b, i = 1, . . . , n, b = 1, . . . , B as follows:

Y ⇤
i,b = lg(Xi) + "⇤

i,b.

(4) For each bootstrap sample {(Xi, Y ⇤
i,b)}ni=1, compute l⇤h and the random variable

db
def= sup

x2J⇤

h

f̂ {l⇤h(x)|x}
q

f̂X (x)|l⇤h(x) � lg(x)|
i

(14)

where f̂ {l(x)|x}, f̂X (x) are consistent estimators of f {l(x)|x}, fX (x).
(5) Calculate the (1 � ↵) quantile d⇤

↵ of d1, . . . , dB.

(6) Construct the bootstrap uniform confidence band centered around lh(x), i.e. lh(x) ±
h

f̂ {lh(x)|x}
q

f̂X (x)
i�1

d⇤
↵ .

While bootstrapmethods are well-known tools for assessing variability, more caremust be taken to properly account for
the type of bias encountered in nonparametric curve estimation. The choice of bandwidth is crucial here. In our experience
the bootstrap works well with a rather crude choice of g; one may, however, specify g more precisely. Since the main role
of the pilot bandwidth is to provide a correct adjustment for the bias, we use the goal of bias estimation as a criterion. Recall
that the bias in the estimation of l(x) by l#h (x) is given by

bh(x) = El#h (x) � l(x).

The bootstrap bias of the estimate constructed from the resampled data is

b̂h,g(x) = El⇤h(x) � lg(x). (15)

Note that in (15) the expected value is computed under the bootstrap estimation. The following theorem gives an
asymptotic representation of themean squared error for the problemof estimating bh(x) by b̂h,g(x). It is then straightforward
to find g to minimize this representation. Such a choice of g will make the quantiles of the original and coupled bootstrap
distributions close to each other. In addition to the technical assumptions before, we also need:

(A5) l and f are four times continuously differentiable.
(A6) K is twice continuously differentiable.

Theorem 2.2. Under assumptions (A1–A6), for any x 2 J⇤

E

hn

b̂h,g(x) � bh(x)
o2

�

�X1, . . . , Xn

i

⇠ h4(C1g4 + C2n�1g�5) (16)

in the sense that the ratio between the RHS and the LHS tends in probability to 1 for some constants C1, C2.

An immediate consequence of Theorem 2.2 is that the rate of convergence of g should be n�1/9, see also [20]. This makes
precise the previous intuitionwhich indicated that g should slightly oversmooth. Under our assumptions, reasonable choices
of h will be of the order n�1/5 as in [36]. Hence, (16) shows once again that g should tend to zero more slowly than h. Note
that Theorem 2.2 is not stated uniformly over h. The reason is that we are only trying to give some indication of how the
pilot bandwidth g should be selected.

We summarize how to select the bandwidth h for the local quantile smoother and g for the oversmoothed estimate as
below.

1 Select h as in [36] which is also quoted below.
– Use ready-made and sophisticated methods to select hmean, the optimal bandwidth choice for regresion mean

estimation; we use the technique of Ruppert et al. [33].
– Use h = hmean{p(l� p)/�(��1(p))2}1/5 to obtain all other h’s (w.r.t. different p’s) from hmean. � and are the PDF and

CDF of standard normal distributions respectively.
2 According to Theorem 2.2, select g as g = n4/45h.
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3. Bootstrap confidence bands in PLMs

The case of multivariate regressors may be handled via a semiparametric specification of the quantile regression curve.
More specifically we assume that with x = (u, v)> 2 Rd, v 2 R:

l̃(x) = u>� + l(v).

In this section we show how to proceed in this multivariate setting and how — based on Theorem 2.1 — a multivariate
confidence band may be constructed. We first describe the numerical procedure for obtaining estimates of � and l, where l
denotes — as in the earlier sections — the one-dimensional conditional quantile curve. We then move on to the theoretical
properties. First note that the PLM quantile estimation problem can be seen as estimating (�, l) in

y = u>� + l(v) + "

= l̃(x) + " (17)

where the p-quantile of " conditional on both u and v is 0.
In order to estimate � , let an denote an increasing sequence of positive integers and set bn = a�1

n . For each n = 1, 2, . . . ,
partition the unit interval [0, 1] for v in an intervals Ini, i = 1, . . . , an, of equal length bn and let mni denote the midpoint
of Ini. In each of these small intervals Ini, i = 1, . . . , an, l(v) can be considered as being approximately constant, and hence
(17) can be considered as a linear model. This observation motivates the following two stage estimation procedure.

(1) A linear quantile regression inside each partition is used to estimate �̂i, i = 1, . . . , an. Their weighted mean yields
�̂ . More exactly, consider the parametric quantile regression of y on u, 1

�

v 2 [0, bn)
�

, 1
�

v 2 [bn, 2bn)
�

, . . . , 1
�

v 2
[1 � bn, 1]

�

. That is, let

 (t) def= (p � 1)t1(t < 0) + pt1(t > 0).

Then let

�̂ = argmin
�

min
l1,...,lan

n
X

i=1

 

(

Yi � �TUi �
an

X

j=1

lj1
�

Vi 2 Ini
�

)

.

(2) Calculate the smooth quantile estimate as in (2) from (Vi, Yi � U>
i �̂)ni=1, and name it as ˜̃lh(v).

The following theorem states the asymptotic distribution of �̂ .

Theorem 3.1. If assumption (A1) holds, for the above two stage estimation procedure, there exist positive definite matrices D, C,
such that

p
n(�̂ � �)

L! N{0, p(1 � p)D�1CD�1} as n ! 1,

where C = plimn!1Cn and D = plimn!1Dn with Cn = 1
n

Pn
i=1 U

>
i Ui and Dn = 1

n

Pn
j=1 f {l(Vj)|Vi}U>

j Uj respectively.

Note that l(v), l̃h(v) (quantile smoother based on (v, y � u>�)) and ˜̃lh(v) can be treated as zeros (w.r.t. ✓ , ✓ 2 I where I
is a possibly infinite, or possibly degenerate, interval in R) of the functions

eH(✓ , v)
def=

Z

R
f (v, ỹ) (ỹ � ✓)dỹ, (18)

eHn(✓ , v)
def= n�1

n
X

i=1

Kh(v � Vi) (eYi � ✓), (19)

e

eHn(✓ , v)
def= n�1

n
X

i=1

Kh(v � Vi) (eeYi � ✓), (20)

where

eYi
def= Yi � U>

i �,

e

eYi
def= Yi � U>

i �̂ = Yi � U>
i � + U>

i (� � �̂)
def= eYi + Zi.

From Theorem 3.1 we know that �̂ � � = Op(1/
p
n) and kZik1 = Op(1/

p
n). Under the following assumption, which is

satisfied by exponential and generalized hyperbolic distributions, also used in [18]:

(A7) The conditional densities f (·|ỹ), ỹ 2 R, are uniformly local Lipschitz continuous of order ↵̃ (ulL-↵̃) on J , uniformly in
ỹ 2 R, with 0 < ↵̃ 6 1, and (nh)/ log n ! 1,
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for some constant C3 not depending on n, Lemma 2.1 in [22] shows a.s. as n ! 1:

sup
✓2I

sup
v2J⇤

|eHn(✓ , v) � eH(✓ , v)|  C3 max{(nh/ log n)�1/2, h↵̃}.

Observing that
p
h/ log n = O(1), we then have

sup
✓2I

sup
v2J⇤

|eeHn(✓ , v) � eH(✓ , v)|  sup
✓2I

sup
v2J⇤

|eHn(✓ , v) � eH(✓ , v)| + sup
✓2I

sup
v2J⇤

|eHn(✓ , v) � e

eHn(✓ , v)|
| {z }

Op(1/
p
n) sup

v2J
|n�1 P

Kh|

 C4 max{(nh/ log n)�1/2, h↵̃} (21)

for a constant C4 which can be different from C3. To show the uniform consistency of the quantile smoother, we shall reduce
the problem of strong convergence of ˜̃lh(v)� l(v), uniformly in v, to an application of the strong convergence ofeeHn(✓ , v) to
eH(✓ , v), uniformly in v and ✓ . For our result on ˜̃lh(·), we shall also require

(A8) infv2J⇤
�

�

R

 {y � l(v) + "}dF(y|v)
�

� > q̃|"|, for |"| 6 �1,

where �1 and q̃ are some positive constants, see also [19]. This assumption is satisfied if a constant q̃ exists giving f {l(v)|v} >
q̃/p, x 2 J . Ref. [22] showed:

Lemma 3.1. Under assumptions (A7) and (A8) , we have a.s. as n ! 1
sup
v2J⇤

|̃̃lh(v) � l(v)|  C5 max{(nh/ log n)�1/2, h↵̃} (22)

with another constant C5 not depending on n. If we consider the bandwidth h = O(n�1/5) and then skip the slow varying function
log n, then (nh/ log n)�1/2 = O(n�2/5) < O(n�1/5) 6 h↵̃ , (22) can be further simplified to

sup
v2J⇤

|̃̃lh(v) � l(v)|  C5{h↵̃}.

Since the proof is essentially the same as Theorem 2.1 of the above mentioned reference, it is omitted here.
The convergence rate for the parametric part Op(n�1/2) (Theorem 3.1) is smaller than the bootstrap approximation error

for the nonparametric part Op(n�2/5) as shown in Theorem 2.1. This makes the construction of uniform confidence bands
for multivariate x 2 Rd with a partial linear model possible.

Proposition 3.1. Under the assumptions (A1)–(A8), an approximate (1 � ↵) ⇥ 100% confidence band over Rd�1 ⇥ [0, 1] is

u>�̂ + ˜̃lh(v) ±
h

f̂ {˜̃lh(x)|x}
q

f̂X (x)
i�1

d⇤
↵,

where f̂ {˜̃lh(x)|x}, f̂X (x) are consistent estimators of f {l(x)|x}, fX (x).

Note that here we actually only require that the convergence rate of the parametric part, which is typically Op(n�1/2),
is smaller than the bootstrap approximation error for the nonparametric part Op(n�2/5). This makes construction for the
uniform confidence bands of more general semiparametric models possible instead of just the partial linear model shown
here and similar results could be obtained easily.

4. A Monte Carlo study

This section is divided into two parts. First we concentrate on a univariate regressor variable x, check the validity of the
bootstrap procedure togetherwith settings in the specific example, and compare itwith asymptotic uniformbands. Secondly
we incorporate the partial linear model to handle the multivariate case of x 2 Rd.

Below is the summary of the simulation procedure.

(1) Simulate (Xi, Yi), i = 1, . . . , n according to their joint pdf f (x, y).
In order to comparewith earlier results in the literature, we choose the joint pdf of bivariate data {(Xi, Yi)}ni=1, n = 1000
as

f (x, y) = fy|x(y � sin x)1(x 2 [0, 1]), (23)

where fy|x(x) is the pdf of N(0, x) with an increasing heteroscedastic structure. Thus the theoretical quantile is l(x) =
sin(x) + p

x��1(p). Based on this normality property, all the assumptions can be seen to be satisfied.
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Fig. 1. The real 0.9 quantile curve (black dotted line), 0.9 quantile estimate (cyan solid line) with corresponding 95% uniform confidence band from
asymptotic theory (magenta dashed lines) and confidence band from bootstrapping (red dashed–dot lines). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

(2) Compute the local quantile smoother lh(x) of Y1, . . . , Yn with bandwidth h and obtain residuals "̂i = Yi � lh(Xi),
i = 1, . . . , n.
If we choose p = 0.9, then ��1(p) = 1.2816, l(x) = sin(x) + 1.2816

p
x. Set h = 0.05.

(3) Compute the conditional edf:

F̂(t|x) =

n
P

i=1
Kh(x � Xi)1{"̂i 6 t}

n
P

i=1
Kh(x � Xi)

.

The choice of kernel functions plays a minor role here. Section 3.4.3 and Table 3.3 of Härdle et al. [21] discuss the
efficiencies of different kernels. The Epanechnikov kernel would be the optimal one; however, the differences among
various kernels are small. Thus, we just use the Gaussian kernel to assure numerical stability. This is also convenient
because the optimal bandwidth suggested by Yu and Jones [36] is also calculated based on the Gaussian kernel.

(4) For each i = 1, . . . , n, generate random variables "⇤
i,b ⇠ F̂(t|x), b = 1, . . . , B and construct the bootstrap sample

Y ⇤
i,b, i = 1, . . . , n, b = 1, . . . , B as follows:

Y ⇤
i,b = lg(Xi) + "⇤

i,b,

with g = 0.2.
(5) For each bootstrap sample {(Xi, Y ⇤

i,b)}ni=1, compute l⇤h and the random variable

db
def= sup

x2J⇤

h

f̂ {l⇤h(x)|x}
q

f̂X (x)|l⇤h(x) � lg(x)|
i

, (24)

where f̂ {l(x)|x}, f̂X (x) are consistent estimators of f {l(x)|x}, fX (x) with use of f (y|x) = f (x, y)/fX (x).
(6) Calculate the (1 � ↵) quantile d⇤

↵ of d1, . . . , dB.

(7) Construct the bootstrap uniform confidence band centered around lh(x), i.e. lh(x) ±
h

f̂ {lh(x)|x}
q

f̂X (x)
i�1

d⇤
↵ .

Fig. 1 shows the theoretical 0.9 quantile curve, 0.9 quantile estimate with corresponding 95% uniform confidence band
from the asymptotic theory and the confidence band from the bootstrap. The real 0.9 quantile curve is marked as the black
dotted line. We then compute the classic local quantile estimate lh(x) (cyan solid) with its corresponding 95% uniform
confidence band (magenta dashed) based on asymptotic theory according to Härdle and Song [22]. The 95% confidence
band from the bootstrap is displayed as red dashed–dot lines. At first sight, the quantile smoother, together with two
corresponding bands, all capture the heteroscedastic structure quite well, and the width of the bootstrap confidence band
is similar to the one based on asymptotic theory in [22]. Fig. 2 presents the bootstrap confidence bands constructed using
different oversmoothing bandwidths w.r.t. the same (but different from the one used for Fig. 1) randomly generated data
set, namely, 1/2, 1 and 2 times (from left to right) of the oversmoothing bandwidth g = n4/45h used before. As we can see,
when we deviate from g = n4/45h, the bootstrap confidence bands get wider.

Wenowextend x to themultivariate case anduse a different quantile function to verify ourmethod. Choose x = (u, v)> 2
Rd, v 2 R, and generate the data {(Ui, Vi, Yi)}ni=1, n = 1000 with

y = 2u + v2 + " � 1.2816, (25)

where u and v are uniformly distributed random variables in [0, 2] and [0, 1] respectively. " has a standard normal
distribution. The theoretical 0.9-quantile curve is l̃(x) = 2u + v2. Since the choice of an is uncertain here, we test different
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Fig. 2. The real 0.9 quantile curve (black dotted line), 0.9 quantile estimate (cyan solid line) with corresponding 95% uniform confidence band from
asymptotic theory (magenta dashed lines) and confidence band from bootstrapping (red dashed–dot lines). The left, middle and right plots correspond to
the oversmoothing bandwidth set as n4/45h/2, n4/45h and 2n4/45h respectively. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1

SSE of �̂ with respect to an for different numbers of observations.

an n = 1000 n = 8000 n = 261148

n1/3/8 3.6 ⇥ 10�3

n1/3/4 5.4 ⇥ 10�1 4.0 ⇥ 10�2 3.3 ⇥ 10�3

n1/3/2 6.1 ⇥ 10�1 3.5 ⇥ 10�2 3.2 ⇥ 10�3

n1/3 6.2 ⇥ 10�1 3.6 ⇥ 10�2 3.1 ⇥ 10�3

n1/3 · 2 8.0 ⇥ 10�1 3.9 ⇥ 10�2 2.9 ⇥ 10�3

n1/3 · 4 4.9 ⇥ 10�1 3.6 ⇥ 10�2 2.8 ⇥ 10�3

n1/3 · 8 3.4 ⇥ 10�3

choices of an for different n by simulation. To this end, we modify the theoretical model as follows:

y = 2u + v2 + " � ��1(p)

such that the real � is always equal to 2 no matter if p is 0.01 or 0.99. The result is displayed in Fig. 3 for n = 1000,
n = 8000, n = 261148 (number of observations for the data set used in the following application part including both
uncensored and censored observations). Different lines correspond to different an, i.e. n1/3/8, n1/3/4, n1/3/2, n1/3, n1/3 · 2,
n1/3 · 4 and n1/3 · 8. At first, it seems that the choice of an does not matter too much. To further investigate this, we calculate
the SSE (

P99
1 {�̂(i/100) � �}) where �̂(i/100) denotes the estimate corresponding to the i/100 quantile. The results are

displayed in Table 1. Obviously an has much less effect than n on SSE. Considering the computational cost, which increases
with an, and the estimation performance, empirically we suggest an = n1/3. Certainly this issue is far from settled and needs
further investigation.

Thus for the specific model (25), we have an = 10, �̂ = 1.997, h = 0.2 and g = 0.7. In Fig. 4 the theoretical 0.9 quantile
curve with respect to v, and the 0.9 quantile estimate with corresponding uniform confidence band are displayed. The real
0.9 quantile curve is marked as the black dotted line. We then compute the quantile smoother lh(x) (magenta solid). The
95% bootstrap uniform confidence band is displayed as red dashed lines and covers the true quantile curve quite well.

5. A labor market application

Our intuition of the effect of education on income is summarized by Day and Newburger’s basic claim [7]: ‘‘At most ages,
more education equates with higher earnings, and the payoff is most notable at the highest educational levels’’, which is
actually from the point of viewofmean regression. However,whether this difference is significant or not is still questionable,
especially for different ends of the (conditional) income distribution. To this end, a careful investigation of quantile
regression is necessary. Since different education levels may reflect different productivity, which is unobservable and may
also results from different ages, abilities etc., to study the labor market differential effect with respect to different education
levels, a semiparametric partial linear quantile model is preferred, which can retain the flexibility of the nonparametric
models for the age and other unobservable factors and ease the interpretation of the education factor.

We use the administrative data from the German National Pension Office (Deutsche Rentenversicherung Bund) for the
following group: West German part, males, born between 1939 and 1942 who began receiving a pension in 2004 or 2005
(when they were 62–66 years old) with at least 30 yearly uncensored observations. Since different people entered into
the pension system and stopped receiving job earnings at different ages, we only consider those earnings recorded by the
pension system when they were between 25 and 59 years old. For example, we consider person A’s yearly earnings when
he was 25–59 (entering into the pension system at 25), person B’s when he was 27–59 (entering into the pension system
at 27), and person C’s when he was 30–59 (entering into the pension system at 30). In total, n = 128429 observations are
available. We have the following three education categories: ‘‘low education’’, ‘‘apprenticeship’’ and ‘‘university’’ for the
variable u (we assign them the numerical values 1, 2 and 3 respectively); the variable v is the age of the employee. ‘‘Low
education’’meanswithout post-secondary education inGermany. ‘‘Apprenticeship’’means part of Germany’s dual education
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Fig. 3. �̂ with respect to different quantiles for different numbers of observations, i.e. n = 1000 (top), n = 8000 (middle), n = 261 148 (bottom). Different
lines in the same plot correspond to different an , i.e. n1/3/8, n1/3/4, n1/3/2, n1/3, n1/3 · 2, n1/3 · 4 and n1/3 · 8.

system. Depending on the profession, a person may work for three to four days a week in the company and then spend
one or two days at a vocational school (Berufsschule). ‘‘University’’ in Germany also includes technical colleges (applied
universities). Since the level and structure of wages differ substantially between East and West Germany, we concentrate
onWest Germany only here (whichwe usually refer to simply as Germany). Our data have several advantages over themost
often used German Socio-Economics Panel (GSOEP) data for analyzing wages in Germany. Firstly, they are available for a
much longer period, as opposed to from 1984 only for the GSOEP data. Secondly, and more importantly, they have a much
larger sample size. Thirdly, wages are likely to bemeasuredmuchmore precisely. Fourthly, we observe a complete earnings
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Fig. 4. Nonparametric part smoothing, real 0.9 quantile curve (black dotted line) with respect to v, 0.9 quantile smoother (magenta solid line) with
corresponding 95% bootstrap uniform confidence band (red dashed lines). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Boxplots for ‘‘low education’’ (red), ‘‘apprenticeship’’ (blue) and ‘‘university’’ (brown) groups corresponding to different ages. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. �̂ corresponding to different quantiles with 6, 13, 25 partitions.

history from the individual’s first job until his retirement, therefore this is a true panel, not a pseudo-panel. There are also
several drawbacks. For example, some verywealthy individuals are not registered in the German pension system, e.g. if their
monthly income is more than some threshold (which may vary for different years due to the inflation effect), the individual
has the right not to be included in the public pension system, and thus is not recorded. Besides this, it is also right-censored at
the highest level of earnings that is subject to social security contributions, so the censored observations in the data are only
for those who actually decided to stay within the public system. Because of the combination of truncation and censoring,
this paper focuses on the uncensored data only, and we should not draw inferences from the very high quantile, i.e. we only
consider the 0.80 quantiles here. Recently, similar data were also used to investigate the German wage structure as in [9].
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Fig. 7. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.20-quantile smoothers w.r.t. 3 different education levels. The ‘‘low
education’’, ‘‘apprenticeship’’ and ‘‘university’’ levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.20-quantile smoothers w.r.t. 3 different education levels with the
oversmoothing bandwidth set as g/2, g/4, 2g and 4g (from left to right, up to down) respectively. The ‘‘low education’’, ‘‘apprenticeship’’ and ‘‘university’’
levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Following from Becker’s [1] human capital model, a log transformation is performed first on the hourly real wages
(unit: EUR, at year 2000 prices). Fig. 5 displays the boxplots for the ‘‘low education’’, ‘‘apprenticeship’’ and ‘‘university’’
groups corresponding to different ages. In the data all ages (25–59) are reported as integers and are categorized in one-year
groups. We rescaled them to the interval [0, 1] by dividing by 40, with corresponding bandwidths h of 0.041, 0.039, 0.041
for the 0.20, 0.50, 0.80 nonparametric quantile smoothers respectively. Correspondingly, as discussed before, we choose
g = n4/45h, thus 0.12, 0.11, 0.12 for the corresponding oversmoothers respectively. To detect whether a differential effect
for different education levels exists, we compare the corresponding uniform confidence bands, i.e. differences indicate that
the differential effect may exist for different education levels in the German labor market for that specific labor group.

Following an application of the partial linear model in Section 3, Fig. 6 displays �̂ with respect to different quantiles for
6, 13, and 25 partitions, respectively. At first, the �̂ curve is quite surprising, since it is not, as in mean regression, a positive
constant, but rather varies a lot, e.g. �̂(0.20) = 0.026, �̂(0.50) = 0.057 and �̂(0.80) = 0.061. Furthermore, it is robust
to different numbers of partitions. It seems that the differences between the ‘‘low education’’ and ‘‘university’’ groups are
different for different tails of the wage distribution. To judge whether these differences are significant, we use the uniform
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Fig. 9. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.50-quantile smoothers w.r.t. 3 different education levels. The ‘‘low
education’’, ‘‘apprenticeship’’ and ‘‘university’’ levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.50-quantile smoothers w.r.t. 3 different education levels with the
oversmoothing bandwidth set as g/2, g/4, 2g and 4g (from left to right, up to down) respectively. The ‘‘low education’’, ‘‘apprenticeship’’ and ‘‘university’’
levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

confidence band techniques discussed in Section 2 which are displayed in Figs. 7–11 corresponding to the 0.20, 0.50 and
0.80 quantiles respectively.

The 95% uniform confidence bands from bootstrapping for the ‘‘low education’’ group are marked as red dashed lines,
while the ones for ‘‘apprenticeship’’ and ‘‘university’’ are displayed as blue dotted and brown dashed–dot lines, respectively.
The corresponding asymptotic bands studied in [22] are also added for reference (thin lines with the same style and color),
which overlap with the bootstrap bands for large samples as here. For the 0.20 quantile in Fig. 7, the bands for ‘‘university’’,
‘‘apprenticeship’’ and ‘‘low education’’ do not differ significantly from one another although they become progressively
lower, which indicates that high education does not equate to higher earnings significantly for the lower tails of wages,
while increasing age seems to be the main driving force. For the 0.50 quantile in Fig. 9, the bands for ‘‘university’’ and ‘‘low
education’’ differ significantly fromone another although not from that for ‘‘apprenticeship’’. However, for the 0.80 quantiles
in Fig. 11, all the bands differ significantly (except on the right boundary because of the nonparametric method’s boundary
effect) resulting from the relatively large �̂(0.80) = 0.061, which indicates that high education is significantly associated
with higher earnings for the upper tails of wages.
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Fig. 11. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.80-quantile smoothers w.r.t. 3 different education levels. The ‘‘low
education’’, ‘‘apprenticeship’’ and ‘‘university’’ levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.80-quantile smoothers w.r.t. 3 different education levels with the
oversmoothing bandwidth set as g/2, g/4, 2g and 4g (from left to right, up to down) respectively. The corresponding line styles and colors are the same
as in Fig. 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Coupled with Figs. 7, 9 and 11, Figs. 8, 10 and 12 present the corresponding bootstrap confidence bands constructed
using different oversmoothing bandwidths, namely, half, quarter, twice and quadruple (from left to right, up to down) of
the oversmoothing bandwidth g = n4/45h used before. The corresponding asymptotic bands are also added for reference
(thin lines with the same style and color). As we can see, in practice, for the typically large labor economic data set, the
bootstrap confidence bands are quite robust to the choice of the oversmoothing bandwidth.

If we investigate the explanations for the differences in different tails of the income distribution, maybe the most
prominent reason is the rapid development of technology, which has been extensively studied. The point is that technology
does not simply increase the demand for upper-end labor relative to that of lower-end labor, but instead asymmetrically
affects the bottom and the top of the wage distribution, resulting in its strong asymmetry.

6. Conclusions

In this paper we construct confidence bands for nonparametric quantile estimates of regression functions. The method
is based on bootstrapping, where resampling is done from a suitably estimated empirical distribution function (edf) for
residuals. It is proven that the bootstrap approximation provides an improvement over the confidence bands constructed
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via the asymptotic Gumbel distribution. We also propose a partial linear model to handle the case of multidimensional and
discrete regressor variables. An economic application considering the labormarket differential effect with respect to various
education levels is studied. The conclusions from the point of view of quantile regression are consistent with those of the
(grouped) mean regression, but in a more careful way in the sense that we provide formal statistical tools to judge these
uniformly. The partial linear quantile regression techniques, togetherwith confidence bands, developed in this paper display
very interesting findings compared with classic (mean) methods and will bring in more contributions to the differential
analysis of the labor market.

Appendix

Proof of Theorem 2.1. We start by proving Eq. (8).Write first F̂�1(Ui|Xi) = F�1(Ui|Xi)+�i. Fix any i such that |F�1(Ui|Xi)�
F�1(p)|  Sn�n, which, by Eq. (1), implies that |Ui � p| < Sn�n. Lemma 2.1 gives

max
i

|F̂(S2n�n|Xi) � F(S2n�n|Xi)| = Op(Sn�n). (26)

Together with F(±S2n�n|Xi) = p ± O(S2n�n), again by Eq. (1), we have F̂(±S2n�n|Xi) = p ± Op(S2n�n) and thus

F̂(�S2n�n|Xi) = p � Op(S2n�n) 6 p � Sn�n < Ui < p + Sn�n

< p + Op(S2n�n) = F̂(S2n�n|Xi).

Since F̂(·|Xi) is monotone non-decreasing, |F̂�1(Ui|Xi)|  S2n�n, which means, by S2n = Sn,

|F̂�1(Ui|Xi)|  Sn�n. (27)

Apply now Lemma 2.1 again to Eq. (27), and obtain

Sn�n � |F̂{F̂�1(Ui|Xi)|Xi} � F{F̂�1(Ui|Xi)|Xi}|
= |Ui � F{F�1(Ui|Xi) +�i|Xi}|
= |F{F�1(Ui|Xi)|Xi} � F{F�1(Ui|Xi) +�i|Xi}|
� f0(Xi)|�i|. (28)

Hence |�i| < Sn�n, and we summarize it as

max
i:|F�1(Ui|Xi)�F�1(p)|<Sn�n

|F�1(Ui|Xi) �bF�1(Ui|Xi)| = Op{Sn�n}.

To show Eq. (12), define

Z1j
def= Y ⇤

j � lg(Xj) + lg(Xj) � lg(Xi),

Z2j
def= Y#

j � l(Xj) + l(Xj) � l(Xi).

Thus qhi[{(Y ⇤
j �lg(Xj)+lg(Xj)�lg(Xi))}nj=1] and qhi[{Y#

j �l(Xj)+l(Xj)�l(Xi)}nj=1] can be seen as lh(Xi) for data sets {(Xi, Z1i)}ni=1
and {(Xi, Z2i)}ni=1 respectively. Similarly to Härdle and Song [22], they can be treated as zeros (w.r.t. ✓ , ✓ 2 I where I is a
possibly infinite, or possibly degenerate, interval in R) of the functions

eGn(✓ , Xi)
def= n�1

n
X

j=1

Kh(Xi � Xj) (Z1j � ✓), (29)

e

eGn(✓ , Xi)
def= n�1

n
X

j=1

Kh(Xi � Xj) (Z2j � ✓). (30)

From (8) and (9), we have

max
i

�

�[{Y ⇤
j � lg(Xj) + lg(Xj) � lg(Xi)}nj=1] � [{Y#

j � l(Xj) + l(Xj) � l(Xi)}nj=1]
�

�

= Op{Sn�n} + Op(�n) = Op(�n). (31)

Thus

sup
✓2I

max
i

|eGn(✓ , Xi) �e

eGn(✓ , Xi)|  Op(�n)max
�

�

�

n�1
X

Kh

�

�

�

= Op(�n).
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To show the difference of the two quantile smoothers, we shall reduce the strong convergence of qhi[{Y ⇤
j � lg(Xj) + lg(Xj) �

lg(Xi)}nj=1] � qhi[{Y#
j � l(Xj) + l(Xj) � l(Xi)}nj=1], for any i, to an application of the strong convergence ofeG(✓ , Xi) toe

eGn(✓ , Xi),
uniformly in ✓ , for any i. Under assumptions (A7) and (A8), in a similar spirit to Härdle and Song [22], we get

max
i

|l⇤h(Xi) � lg(Xi) � l#h (Xi) � l(Xi)| = Op(�n).

To show the supremum of the bootstrap approximation error, without loss of generality, based on assumption (A1), we
reorder the original observations {Xi, Yi}ni=1, such that X1 6 X2 6, . . . , 6 Xn. First decompose:

sup
x2J⇤

|l⇤h(x) � lg(x) � l#h (x) � l(x)| = max
i

|l⇤h(Xi) � lg(Xi) � l#h (Xi) + l(Xi)|

+ max
i

sup
x2[Xi,Xi+1]

|l⇤h(x) � lg(x) � l#h (x) + l(x)|. (32)

From assumption (A1) we know l0(·)  �1 and maxi(Xi+1 � Xi) = Op(Sn/n). By the mean value theorem, we conclude that
the second term of (32) is of a lower order than the first term. Together with Eq. (12) we have

sup
x2J⇤

|l⇤h(x) � lg(x) � l#h (x) � l(x)| = O{max
i

|l⇤h(Xi) � lg(Xi) � l#h (Xi) � l(Xi)|} = Op(�n),

whichmeans that the supremumof the approximation error over all x is of the same order of themaximumover the discrete
observed Xi. ⇤

Proof of Theorem 2.2. The proof of (16) usesmethods related to those in the proof of Theorem 3 of Härdle andMarron [20],
so only the main steps are explicitly given. The first step is a bias-variance decomposition,

E

"

n

b̂h,g(x) � bh(x)
o2 |X1, . . . , Xn

#

= Vn + B2
n , (33)

where

Vn = Var

⇥

b̂h,g(x)|X1, . . . , Xn
⇤

,

Bn = E

⇥

b̂h,g(x) � bh(x)|X1, . . . , Xn
⇤

.

Following the uniform Bahadur representation techniques for quantile regression as in Theorem 3.2 of Kong et al. [27],
we have the following linear approximation for the quantile smoother as a local polynomial smoother corresponding to a
specific loss function:

l#h (x) � l(x) = Ln + Op(Ln),

where

Ln = n�1 P

Kh(x � Xi) {Yi � l(x)}
f {l(x)|x} fX (x)

for

 (u) = p1{u 2 (0, 1)} � (1 � p)1{u 2 (�1, 0)}
= p � 1{u 2 (�1, 0)},

l(x � t) � l(x) = l0(x)(�t) + l00(x)t2 + O(t2),
{l(x � t) � l(x)}0 = l00(x)(�t) + l000(x)t2 + O(t2),
f (x � t) = f (x) + f 0(x)(�t) + f 00(x)(t2) + O(t2),
f 0(x � t) = f 0(x) + f 00(x)(�t) + f 000(x)t2 + O(t2),
Z

Kh(t)tdt = 0,
Z

Kh(t)t2dt = h2dK ,

Z

Kh(t)O(t2)dt = O(h2).

Then we have

Bn = Bn1 + O(Bn1),
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where

Bn1 =
R

Kg(x � t)Uh(t)dt � Uh(x)
fX (x)f {l(x)|x}

for

Uh(x) =
Z

Kh(x � s) {l(s) � l(x)} f (s)ds

=
Z

Kh(t) {l(x � t) � l(x)} f (x � t)dt.

By differentiation, a Taylor expansion and properties of the kernel K (see assumption (A2)),

U0
h(x) =

Z

Kh(t)[ 0 {l(x � t) � l(x)}0 f (x � t) +  {l(x � t) � l(x)} f 0(x � t)]dt.

Here  0 is the derivative of  except the 0 point, which actually does not matter since there is integration afterwards.
Collecting terms, we get

U0
h(x) =

Z

Kh(t){ 0l00(x)f 0
X (x)t

2 +  0l000fX (x)t2 + af 000(x)t2 + O(t2)}dt

=
Z

Kh(t)
�

C0t2 + o(t2)
 

dt = h2dK · C0 + O(h2),

where a is a constant with |a| < 1 and C0 =  0l00(x)f 0
X (x) +  0l000fX (x) + af 000(x).

Hence, by another substitution and Taylor expansion, for the first term in the numerator of Bn1, we have

Bn2 = g2h2(dK )2 · C0 + O(g2h2).

Thus, along almost all sample sequences,

B2
n = C1g4h4 + O(g4h4) (34)

for C1 = (dK )4C2
0/[f 2X (x)f 2 {l(x)|x}].

For the variance term, calculation in a similar spirit shows that

Vn = Vn1 + O(Vn1),

where

Vn1 =
R

K 2
g (x � t)Wh(t)dt � �R

Kg(x � t)Uh(t)dt
 2 fX (x)f {l(x)|x}

fX (x)f {l(x)|x}
for

Wh(x) =
Z

K 2
h (x � s) {l(s) � l(x)}2 f (s)ds

=
Z

K 2
h (t) {l(x � t) � l(x)}2 f (x � t)dt.

Hence, by Taylor expansion, collecting items and similar calculation, we have

Vn = n�1h4g�5C2 + O(n�1h4g�5) (35)

for a constant C2. This, together with (33) and (34), completes the proof of Theorem 2.2. ⇤

Proof of Theorem 3.1. In the case where the function l is known, the estimate �̂I is

�̂I = argmin
�

n
X

i=1

 {Yi � l(Vi) � U>
i �}.

Since l is unknown, in each of these small intervals Ini, l(Vi) could be regarded as a constant ↵ = l(mni) for some iwhose
corresponding interval Ini covers Vi. From assumption (A1), we know that |l(Vi) � ↵i|  �1bn < 1. If we define our first
step estimate �̂i inside each small interval as

(↵̂i, �̂i) = argmin
↵, �

X

 (Yi � ↵ � U>
i �),
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|{Yi � l(Vi) � U>
i �} � (Yi � ↵ � U>

i �)|  �1bn < 1 indicates that we could treat �̂i as �̂I inside each partition. If we use di
to denote the number of observations inside partition Ini (based on the i.i.d. assumption as in assumption (A1), on average
di = n/an). For each of the �̂i’s inside interval Ini, various parametric quantile regression works, e.g. the convex function rule
in [31,24], yield

p

di(�̂i � �)
L! N{0, p(1 � p)D0�1

i (p)C 0
i D

0�1
i (p)} (36)

with the matrices C 0
i = di�1 Pdi

i=1 U
>
i Ui and D0

i(p) = di�1 Pdi
i=1 f {l(Vi)|Vi}U>

i Ui.
To get �̂ , our second step is to take the weighted mean of �̂1, . . . , �̂an as

�̂ = argmin
�

an
X

i=1

di(�̂i � �)2 =
an

X

i=1

di�̂i/n.

Note that under this construction, �̂1, . . . , �̂an are independent but not identical. Thus we intend to use the Lindeberg
condition for the central limit theorem. To this end, we use s2n to denote Var(

Pan
i=1 di�̂i/n), and we need to further check

whether the following ‘‘Lindeberg condition’’ holds:

lim
an!1

1
s2n

an
X

i=1

Z

(|di�̂i/n��|>"sn)
(�̂i � �)2 dF = 0, for all " > 0. (37)

Since

Var

(

an
X

i=1

di(�̂i � �)/n

)

=
an

X

i

p(1 � p)

("

n/di
di

X

j=1

f {l(Vj)|v}U>
j Uj

#�1

⇥
di

X

i=1

U>
i Ui

"

n/di
di

X

j=1

f {l(Vj)|v}U>
j Uj

#�1)

⇡ p(1 � p)
h

n
X

j=1

f {l(Vj)|v}U>
j Uj

#�1 n
X

i=1

U>
i Ui

"

n
X

j=1

f {l(Vj)|v}U>
j Uj

#�1

def= 1
n
p(1 � p)D�1

n CnD�1
n ,

where Dn = 1
n

Pn
j=1 f {l(Vj)|Vi}U>

j Uj and Cn = 1
n

Pn
i=1 U

>
i Ui, together with the normality of �̂i as in (36) and properties of

the tail of the normal distribution, e.g. Exe. 14.3–14.4 of Borak et al. [3], (37) follows.
Thus as n, an ! 1 (although at a lower rate than n), together with C = plimn!1Cn,D = plimn!1Dn, we have

p
n(�̂ � �)

L! N{0, p(1 � p)D�1CD�1}. ⇤ (38)
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1. Introduction

Semiparametric partial linear models have received considerable attention in statistics and econometrics. They have a
wide range of applications, from biomedical studies to economics. In thesemodels, some explanatory variables have a linear
effect on the response while others are entering nonparametrically. Consider the semiparametric regression model:

yi = x>
i � + f (ti) + "i, i = 1, . . . , n (1)

where yi’s are observations at ti, 0  t1  t2  · · ·  tn  1 and x>
i = (xi1, xi2, . . . , xip) are known p-dimensional vectors

with p  n. In many applications, ti’s are values of an extra univariate ‘‘time’’ variable at which responses yi are observed.
In the case ti 2 Rk, ti = (t1i, . . . , tki)>, the triples (y1, x1, t1), . . . , (yn, xn, tn) should be ordered using one of the algorithms
mentioned in [30], Appendix A, or in [8, Section 2.2].
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In Eq. (1), � = (�1, . . . ,�p)
> is an unknown p-dimensional parameter vector, f (·) is an unknown smooth function and

"’s are independent and identically distributed random errors with E("|x, t) = 0 and Var("|x, t) = � 2. We shall call f (t)
the smooth part of the model and assume that it represents a smooth unparameterized functional relationship.

The goal is to estimate the unknown parameter vector � and the nonparametric function f (t) from the data {yi, xi, ti}ni=1.
In vector/matrix notation, (1) is written as

y = X� + f + " (2)

where y = (y1, . . . , yn)>, X = (x1, . . . , xn), f = {f (t1), . . . , f (tn)}>, " = ("1, . . . , "n)
>.

Semiparametric models are by design more flexible than standard linear regression models since they combine both
parametric and nonparametric components. There exist various goodness-of-fit tests to identify the nonparametric part in
this kind of models; see [8] and the references therein. Estimation techniques for semiparametric partially linear models
are based on different nonparametric regression procedures. The most important approaches to estimate � and f are given
in [12,4,7,6,5,14,24,15,33].

In practice, researchers often encounter the problem of multicollinearity. In case of multicollinearity, we know that
the (p ⇥ p) matrix X>X has one or more small eigenvalues; the estimates of the regression coefficients can therefore
have large variances: the least squares estimator performs poorly in this case. Hoerl and Kennard [17] proposed the ridge
regression estimator and it has become themost commonmethod to overcome this particular weakness of the least squares
estimator. For the purpose of this paper, we will employ the biased estimator that was proposed by Liu [20] to combat the
multicollinearity. The Liu estimator combines the Stein [26] estimator with the ridge regression estimator; see also [1,13].

The condition number is a measure of multicollinearity. If X>X is ill-conditioned with a large condition number, the
ridge regression estimator or Liu estimator can be used to estimate � , [21]. We consider difference based ridge and Liu
type estimators in comparison to the unbiased difference based approach. We give theoretical conditions that determine
superiority among the estimation techniques in the mean squared error matrix sense.

We use data on monthly electricity consumption and its determinants (income, electricity and gas prices, temperature)
for Germany. The purpose is to understand electricity consumption as a linear function of income and price and a nonlinear
function of temperature: semiparametric approach is therefore necessary here. The data reveal a high condition number
of 20.5; we therefore expect a more precise estimation with Ridge or Liu type estimators. We show how our theoretically
derived conditions can be implemented for a given data set and be used to determine the appropriate biased estimation
technique.

The paper is organized as follows. In Section 2, the model and the differencing estimator is defined. We introduce
difference based ridge and Liu type estimators in Section 3. In Section 4, the differencing estimator proposed by Yatchew [30]
and the difference based Liu type estimator are compared in terms of the mean squared error. In Section 5, both biased
regressionmethodologies in semiparametric regressionmodels are compared in terms of the mean squared error. Section 6
relaxes the assumption of i.i.d. errors and replicates the results of the previous sections in the presence of heteroscedasticity
and autocorrelation. Section 7 gives a real data example to show the performance of the proposed estimators.

2. The model and differencing estimator

In this section, we introduce a difference based technique for the estimation of the linear coefficient vector in a
semiparametric regression. This technique has been used to remove the nonparametric component in the partially linear
model by various authors (e.g. [30,32,19,3]).

Consider the semiparametric regression model (2). Let d = (d0, d1, . . . , dm)> be an m + 1 vector where m is the order
of differencing and d0, d1, . . . , dm are differencing weights that minimize

mX

k=1

 
m�kX

j=1

djdk+j

!2

,

such that
mX

j=0

dj = 0 and
mX

j=0

d2j = 1 (3)

are satisfied.
Let us define the (n � m) ⇥ n differencing matrix D to have first and last rows (d>, 0>

n�m�1), (0
>
n�m�1, d

>) respectively,
with i-th row (0i, d>, 0>

n�m�i�1), i = 1, . . . , (n � m � 1), where 0r indicates an r-vector of all zero elements

D =

0

BBBB@

d0 d1 d2 · · · dm 0 · · · · · · 0
0 d0 d1 d2 · · · dm 0 · · · 0
...

...
0 · · · · · · d0 d1 d2 · · · dm 0
0 0 · · · · · · d0 d1 d2 · · · dm

1

CCCCA
.
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Applying the differencing matrix to (2) permits direct estimation of the parametric effect. Eubank et al. [6] showed that
the parameter vector in (2) can be estimated with parametric efficiency. If f is an unknown function with bounded first
derivative, then Df is essentially 0, so that applying the differencing matrix we have

Dy = DX� + Df + D" ⇡ DX� + D"

ey ⇡ eX� +e" (4)

whereey = Dy,eX = DX ande" = D". Constraints (3) ensure that the nonparametric effect is removed and Var(e") = Var(") =
� 2. With (4), a simple differencing estimator of the parameter � in the semiparametric regression model results:

b�(0) = {(DX)>(DX)}�1(DX)>Dy

=
�eX>eX

��1eX>ey. (5)

Thus, differencing allows one to perform inferences on � as if there were no nonparametric component f in model (2), [9].
We will also use the modified estimator of � 2 proposed by Eubank et al. [7]

b� 2 = ey>(I � P?)ey
tr{D>(I � P?)D} (6)

with P? = eX(eX>eX)�1eX>, I (p ⇥ p) identity matrix and tr(·) denoting the trace function for a square matrix.

3. Difference based ridge and Liu type estimator

As an alternative tob�(0) in (5), [27] propose:

b�(1)(k) = (eX>eX + kI)�1eX>ey, k � 0;
here k is the ridge-biasing parameter selected by the researcher.We callb�(1)(k) a difference based ridge regression estimator
of the semiparametric regression model.

From the least squares perspective, the coefficients � are chosen to minimize

(ey �eX�)>(ey �eX�). (7)

Adding to the least squares objective (7) a penalizing function of the squared norm k⌘b�(0) ��k2 for the vector of regression
coefficients, yields a conditional objective:

L = (ey �eX�)>(ey �eX�) + (⌘b�(0) � �)>(⌘b�(0) � �). (8)

Minimizing (8) with respect to � , we obtain the estimatorb�(2)(⌘) an alternative tob�(0) in (5):

b�(2)(⌘) = (eX>eX + I)�1(eX>ey + ⌘b�(0)), (9)

where ⌘, 0  ⌘  1, is a biasing parameter and when ⌘ = 1,b�(2)(⌘) = b�(0). The formal resemblance between (9) and the
Liu estimator motivated [1,18,29] to call it the difference based Liu type estimator of the semiparametric regression model.

4. Mean squared error matrix (MSEM) comparison of

b�(0) with

b�(2)(⌘)

In this section, the objective is to examine the difference of the mean square error matrices ofb�(0) andb�(2)(⌘). We note
that for any estimatore� of � , its mean squared error matrix (MSEM) is defined as MSEM(e�) = Cov(e�) + Bias(e�) Bias(e�)>,
where Cov(e�) denotes the variance–covariance matrix and Bias(e�) = E(e�) � � is the bias vector. The expected value of
b�(2)(⌘) can be written as

E{b�(2)(⌘)} = � � (1 � ⌘)(eX>eX + I)�1�.

The bias of theb�(2)(⌘) is given as

Bias{b�(2)(⌘)} = �(1 � ⌘)(eX>eX + I)�1�. (10)

Denoting F⌘ = (eX>eX + I)�1(eX>eX + ⌘I) and observing F⌘ and (eX>eX)�1 are commutative, we may writeb�(2)(⌘) as

b�(2)(⌘) = F⌘
b�(0) = F⌘(eX>eX)�1eX>ey

= (eX>eX)�1F⌘
eX>ey.



E. Akdeniz Duran et al. / Journal of Multivariate Analysis 105 (2012) 164–175 167

Setting S = (D>eX)>(D>eX) and U = (eX>eX)�1 we may write Cov{b�(2)(⌘)} as
Cov{b�(2)(⌘)} = � 2F⌘USUF>

⌘ , (11)

Cov(b�(0)) = � 2USU . (12)

Using (11) and (12), the difference �1 = Cov(b�(0)) � Cov{b�(2)(⌘)} can be expressed as

�1 = � 2 �USU � F⌘USUF>
⌘

�

= � 2F⌘{F�1
⌘ USU(F>

⌘ )�1 � USU}F>
⌘

= � 2(1 � ⌘2)(U�1 + I)�1
⇢

1
1 + ⌘

(US + SU) + USU
�

(U�1 + I)�1. (13)

Let ⌧ = 1
1+⌘

> 0,M = USU,N = US + SU . Since M = L>L and rank(L) = p < n � m, then M is a (p ⇥ p) positive definite
matrix, where L = D>eX(eX>eX)�1 and N = US + SU is a symmetric matrix. Thus, we may write (13) as

�1 = � 2(1 � ⌘2)H(M + ⌧N)H
= � 2(1 � ⌘2)H(Q>)�1(Q>MQ + ⌧Q>NQ )Q�1H
= � 2(1 � ⌘2)H(Q>)�1(I + ⌧E)Q�1H,

where I+⌧E = diag(1+⌧e11, . . . , 1+⌧epp) andH = (U�1+I)�1. SinceM is a positive definite andN is a symmetricmatrix,
a nonsingular matrix Q exists such that Q>MQ = I and Q>NQ = E; here E is a diagonal matrix and its diagonal elements
are the roots of the polynomial equation |M�1N � eI| = 0 (see [11, pp. 408] and [16, pp. 563]) and since N = US + SU 6= 0,
there is at least one diagonal element of E that is nonzero. Let eii < 0 for at least one i; then positive definiteness of I + ⌧E
is guaranteed by

0 < ⌧ < min
eii<0

����
1
eii

���� . (14)

Hence 1+⌧eii > 0 for all i = 1, . . . , p and therefore I+⌧E is a positive definitematrix. Consequently,�1 becomes a positive
definite matrix, as well. It is now evident that the estimatorb�(2)(⌘) has a smaller variance compared with the estimatorb�(0)
if and only if (14) is satisfied.

Next, we give necessary and sufficient conditions for the difference based Liu type estimatorb�(2)(⌘) to be superior tob�(0)
in the mean squared error matrix (MSEM) sense.

The proof of the next theorem requires the following lemma.

Lemma 4.1 (Farebrother [10]). Let A be a positive definite (p ⇥ p) matrix, b a (p ⇥ 1) nonzero vector and � a positive scalar.
Then �A � bb> is non-negative if and only if b>A�1b  �.

Let us compare the performance ofb�(2)(⌘) with the differencing estimatorb�(0) with respect to the MSEM criterion. In order
to do that, define �2 = MSEM(b�(0)) � MSEM{b�(2)(⌘)}. Observe that

MSEM(b�(0)) = Cov(b�(0)) = � 2USU (15)

and

MSEM{b�(2)(⌘)} = � 2F⌘USUF>
⌘ + (1 � ⌘)2(U�1 + I)�1��>(U�1 + I)�1. (16)

Then from (15) and (16) one derives

�2 = � 2F⌘{F�1
⌘ USU(F>

⌘ )�1 � USU}F>
⌘ � (1 � ⌘)2(U�1 + I)�1��>(U�1 + I)�1,

= H
�
� 2(1 � ⌘2)(M + ⌧N) � (1 � ⌘)2��> H,

= (1 � ⌘)2H
⇢
� 2 1 + ⌘

1 � ⌘
(M + ⌧N) � ��>

�
H.

Applying Lemma 4.1 and assuming condition (14) to be satisfied, we see �2 is positive definite if and only if

�>(M + ⌧N)�1�  � 2 1 + ⌘

1 � ⌘
, 0 < ⌘ < 1.

Now we may state the following theorem.

Theorem 4.1. Consider the two estimatorsb�(2)(⌘) andb�(0) of � . Let W = 1+⌘
1�⌘

(M + ⌧N) be a positive definite matrix. Then the
biased estimator b�(2)(⌘) is MSEM superior tob�(0) if and only if

�>W�1�  � 2.
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5. MSEM comparison of

b�(1)(k) andb�(2)(⌘)

Let us now compare the MSEM performance of
b�(1)(k) = (eX>eX + kI)�1eX>ey

= SkeX>Dy
= A1y (17)

with
b�(2)(⌘) = (eX>eX + I)�1(eX>y + ⌘b�(0))

= (eX>eX)�1(eX>eX + I)�1(eX>eX + ⌘I)eX>ey
= UF⌘eX>Dy

= A2y. (18)
The MSEM of the difference based ridge regression estimatorb�(1)(k) is given by

MSEM{b�(1)(k)} = Cov{b�(1)(k)} + Bias{b�(1)(k)} Bias{b�(1)(k)}>
= Sk(� 2S + k2��>)S>

k

= � 2(A1A>
1 ) + d1d>

1 ,

where Sk = (eX>eX + kI)�1 and d1 = Bias{b�(1)(k)} = �kSk�; see [27]. The MSEM in (16) may be written as

MSEM{b�(2)(⌘)} = � 2(A2A>
2 ) + d2d>

2 ,

with d2 = Bias{b�(2)(⌘)} = �(1 � ⌘)(U�1 + I)�1� .
Define

�3 = MSEM{b�(1)(k)} � MSEM{b�(2)(⌘)} = � 2(A1A>
1 � A2A>

2 ) + (d1d>
1 � d2d>

2 ). (19)
For the following proofs we employ the following lemma.

Lemma 5.1 (Trenkler and Toutenburg [28]). Let e�(j) = Ajy, j = 1, 2 be the two linear estimators of � . Suppose the difference
Cov(e�(1)) � Cov(e�(2)) of the covariance matrices of the estimators e�(1) and e�(2) is positive definite. Then MSEM(e�(1)) �
MSEM(e�(2)) is positive definite if and only if d>

2 {Cov(e�(1)) � Cov(e�(2)) + d1d>
1 }�1d2 < 1.

Theorem 5.1. The sampling variance of b�(2)(⌘) is smaller than that of b�(1)(k), if and only if �min(G�1
2 G1) > 1, where �min is

the minimum eigenvalue of G�1
2 G1 and Gj = � 2AjA>

j , j = 1, 2.
Proof. Consider the difference

�⇤ = Cov{b�(1)(k)} � Cov{b�(2)(⌘)}
= � 2(A1A>

1 � A2A>
2 ),

= G1 � G2

withG1 = (D>eXWkU)> = V>V ,Wk = I+kU andG2 = (eXF>
⌘ U)>(eXF>

⌘ U). Since rank(V ) = p < n�m,G1 is a (p⇥p)positive
definite matrix and G2 is a symmetric matrix. Hence, a nonsingular matrix O exists such that O>G1O = I and O>G2O = ⇤,
with ⇤ diagonal matrix with diagonal elements roots � of the polynomial equation |G1 � �G2| = 0 (see [16, p. 563]
or [25, p. 160]). Thus, we may write �⇤ = (O>)�1(O>G1O � O>G2O)O�1 = (O>)�1(⇤ � I)O�1 or O>�⇤O = ⇤ � I . If
G1 � G2 is positive definite, then O>G1O� O>G2O =  � I is positive definite. Hence �i � 1 > 0, i = 1, 2, . . . , p, so we get
�min(G�1

2 G1) > 1.
Now let �min(G�1

2 G1) > 1 hold. Furthermore, with G2 positive definite and G1 symmetric, we have �min < ⌫>G1⌫
⌫>G2⌫

< �max

for all nonzero (p⇥ 1) vectors ⌫, so G1 �G2 is positive definite; see [23, p. 74]. It is obvious that Cov{b�(2)(⌘)}� Cov{b�(1)(k)}
is positive definite for 0  ⌘  1, k � 0 if and only if �min(G�1

2 G1) > 1. ⇤

Theorem 5.2. Consider b�(1)(k) = A1y and b�(2)(⌘) = A2y of � . Suppose that the difference Cov{b�(1)(k)} � Cov{b�(2)(⌘)} is
positive definite. Then

�3 = MSEM{b�(1)(k)} � MSEM{b�(2)(⌘)}
is positive definite if and only if

d>
2 {� 2(A1A>

1 � A2A>
2 ) + d1d>

1 }�1d2 < 1

with A1 = SkeX>D, A2 = UF⌘eX>D.
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Proof. The difference between the MSEMs ofb�(2)(⌘) andb�(1)(k) is given by

�3 = MSEM{b�(1)(k)} � MSEM{b�(2)(⌘)}
= � 2(A1A>

1 � A2A>
2 ) + (d1d>

1 � d2d>
2 )

= Cov{b�(1)(k)} � Cov{b�(2)(⌘)} + (d1d>
1 � d2d>

2 ).

Applying Lemma 5.1 yields the desired result. ⇤

It should be noted that all results reported above are based on the assumption that k and ⌘ are non-stochastic. The
theoretical results indicate that theb�(2)(⌘) is not always better than theb�(1)(k), and vice versa. For practical purposes, we
have to replace these unknown parameters by some suitable estimators.

6. The heteroscedasticity and correlated error case

Up to this point, independent errorswith equal variancewere assumed. The error termmight also exhibit autocorrelation.
To account for these effects, we extend the results in this section and consider the more general case of heteroscedasticity
and autocovariance in the error terms.

Consider nowobservations {yt , xt , tt}Tt=1 and the semiparametric partial linearmodel yt = x>
t �+f (tt)+"t , t = 1, . . . , T .

Let E("">|x, t) = ⌦ not necessarily diagonal. To keep the structure of the errors for later inference, we define an (n ⇥ n)
permutation matrix P as in [32]. Consider a permutation:

0

BBB@

1 t(1)
· · · · · ·
i t(i)

· · · · · ·
n t(n)

1

CCCA

where i = 1, . . . , n is the index of the ordered nonparametric variable and t(i) = 1, . . . , T corresponding time index of the
observations. Then P is defined for i, j = 1, . . . , n:

Pij =
⇢
1, j = t(i)
0, otherwise.

We can now rewrite the model after reordering and differencing:

DPy = DPX� + DPf (x) + DP", E("">|x, t) = ⌦. (20)

Then, witheX = DPX andey = DPy from (20),b�(0) is given:

b�(0) = (eX>eX)�1eX>ey (21)

with

Cov(b�(0)) = (eX>eX)�1eX>DP⌦D>P>eX(eX>eX)�1

= UeX>DP⌦D>P>eXU . (22)

We will use a heteroscedasticity and autocovariance consistent estimator described in [22] for the interior matrix of (22),
which is in our case:

\DP⌦D>P> = {dDP"(dDP")>} �
(

LX

`=0

✓
1 � `

L + 1

◆
H`

)

(23)

with dDP" =ey �eXb�(0), � denoting the elementwise matrix product, L the maximum lag of nonzero autocorrelation in the
errors and H0 the identity matrix. Let L` be a matrix with ones on the `th diagonal; then H`, ` = 1, . . . L are such that:

H`
ij =

⇢
0, if {DP(L` + L>

` )D>P>}ij = 0,
1, otherwise and i, j = 1, . . . , p.

Plugging (23) in (22), we obtain a consistent estimator for Cov(b�(0)); see [31] for details.
DenotingeS = eX>DP⌦D>P>eX , we can write down Cov{b�(1)(k)} and Cov{b�(2)(⌘)} in model (20).

Cov{b�(1)(k)} = SkeSSk (24)

Cov{b�(2)(⌘)} = F⌘UeSUF⌘. (25)
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Using (22) and (25), the difference �1 = Cov(b�(0)) � Cov{b�(2)(⌘)} can be expressed as

�1 =
�
UeSU � F⌘UeSUF>

⌘

�

= F⌘{F�1
⌘ UeSU(F>

⌘ )�1 � UeSU}F>
⌘

= (1 � ⌘2)(U�1 + I)�1
⇢

1
1 + ⌘

(UeS +eSU) + UeSU
�

(U�1 + I)�1, (26)

with ⌧ = 1
1+⌘

> 0, eM = UeSU , eN = UeS +eSU . Since eM is a (p ⇥ p) positive definite matrix and eN is a symmetric matrix, a
nonsingular matrix T exists such that T>eMT = I and T>eNT = eE; hereeE is a diagonal matrix and its diagonal elements are
the roots of the polynomial equation |eM�1eN �eeI| = 0 (see [11, pp. 408] and [16, pp. 563]) and we may write (26) as

�1 = (1 � ⌘2)H(eM + ⌧eN)H

= (1 � ⌘2)H(T>)�1(T>eMT + ⌧T>eNT )T�1H

= (1 � ⌘2)H(T>)�1(I + ⌧eE)T�1H,

where I +e⌧eE = diag(1 + ⌧ee11, . . . , 1 + ⌧eepp) and H = (U�1 + I)�1. SinceeN = UeS +eSU 6= 0, there is at least one diagonal
element ofeE that is nonzero.

Leteeii < 0 for at least one i; then positive definiteness of I + ⌧eE is guaranteed by

0 < ⌧ < min
eeii<0

����
1
eeii

���� . (27)

Hence 1+⌧eeii > 0 for all i = 1, . . . , p and therefore I+⌧eE is a positive definitematrix. Consequently,�1 becomes a positive
definite matrix, as well. It is now evident that the estimatorb�(2)(⌘) has a smaller variance compared with the estimatorb�(0)
if and only if (27) is satisfied.

With

�0
1 = Cov(b�(0)) � Cov{b�(1)(k)}

= k2Sk
⇢
1
k
(UeS +eSU) + UeSU

�
Sk

= k2Sk
✓
1
k
eN + eM

◆
Sk

and analogous argumentation as above obtained forb�(1)(k):

0 <
1
k

< min
eeii<0

����
1
eeii

���� . (28)

The next theorem extends the results of Theorem 3.1 in [27] and Theorem 4.1 of Section 4 to the more general case
of (20).

Theorem 6.1. Consider the estimatorsb�(i)(x), i = {1, 2}; x = {k, ⌘} andb�(0) of � . Let W1 = eM + ⌧eN,W2 = 1+⌘
1�⌘

(eM + ⌧eN)

be positive definite (alternative: assume that (27) and (28) hold). Then the biased estimator b�(i)(x) is MSEM superior to b�(0) if
and only if

�>W�1
i �  1.

Proof. Consider the differences

�2 = MSEM(b�(0)) � MSEM{b�(2)(⌘)}
= Cov(b�(0)) � Cov{b�(2)(⌘)} � Bias{b�(2)(⌘)} Bias{b�(2)(⌘)}>
= F⌘{F�1

⌘ UeSU(F>
⌘ )�1 � UeSU}F>

⌘ � (1 � ⌘)2(U�1 + I)�1��>(U�1 + I)�1

= (1 � ⌘)2H
⇢
1 + ⌘

1 � ⌘
(eM + ⌧eN) � ��>

�
H

= (1 � ⌘)2H
�
W2 � ��>�

H.
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�0
2 = MSEM(b�(0)) � MSEM{b�(1)(k)}

= Cov(b�(0)) � Cov{b�(1)(k)} � Bias{b�(1)(k)} Bias{b�(1)(k)}>
= Sk{k(eSU + UeS) + k2UeSU � k2��>}Sk
= k2Sk

✓
1
k
eN + eM � ��>

◆
Sk

= k2Sk(W1 � ��>)Sk.

With Lemma 4.1, the assertion follows. ⇤

Theorem 6.1 gives conditions under which the biased estimatorb�(i)(x), i = {1, 2}; x = {k, ⌘} is superior tob�(0) in the
presence of heteroscedasticity and autocorrelation in the data.

Note that for comparison of the biased estimators Theorem 5.1 can be extended straight forwardly to the general case
by exchanging G1 and G2 by eG1 = eA1⌦eA>

1 and eG2 = eA2⌦eA>
2 correspondingly, witheA1 = SkeX>DP, eA2 = UF⌘

eX>DP . Hence,
the sampling variance of b�(2)(⌘) is always smaller than that of b�(1)(k), if and only if �min(eG2

�1 eG1) > 1, where �min is the
minimum eigenvalue of eG2

�1 eG1.
Now, we give a generalized version of Theorem 5.2.

Theorem 6.2. Consider b�(1) = eA1y andb�(2) = eA2y of � . Suppose that the difference Cov{b�(1)} � Cov{b�(2)} is positive definite.
Then

�3 = MSEM(b�(1)) � MSEM(b�(2))

is positive definite if and only if

d>
2 (eA1⌦eA>

1 �eA2⌦eA>
2 + d1d>

1 )�1d2 < 1.

Proof. The difference between the MSEMs ofb�(2)(⌘) andb�(1)(k) is given by

�3 = MSEM(b�(1)) � MSEM(b�(2))

= eA1⌦eA>
1 �eA2⌦eA>

2 + d1d>
1 � d2d>

2

= Cov(b�(1)) � Cov(b�(2)) + d1d>
1 � d2d>

2 .

Applying Lemma 5.1 yields the desired result. ⇤

We note that in order to use the criteria above, one has to estimate the parameters. The estimation of ⌦ is thereby the
most challenging. However, as long as estimator (23) is available, all considered criteria can be evaluated on the real data
and can be used for practical purposes.

7. Determinants of electricity demand

The empirical study example is motivated by the importance of explaining variation in electricity consumption. Since
electricity is a non-storable good, electricity providers are interested in understanding and hedging demand fluctuations.

Electricity consumption is known to be influenced negatively by the price of electricity and positively by the incomeof the
consumers. As electricity is frequently used for heating and cooling, the effect of the air temperature must also be present.
Both heating by low temperatures and cooling by high temperatures result in higher electricity consumption and motivate
the use of a nonparametric specification for the temperature effect. Thus we consider the semiparametric regression model
defined in (1)

y = f (t) + �1x1 + �2x2 + �3x3 + · · · + �13x13 + ", (29)

where y is the log monthly electricity consumption per person (aggregated electricity consumption was divided by
population interpolated linearly from quarterly data), t is cumulated average temperature index for the corresponding
month taken as average of 20 German cities computed from the data of German weather service (Deutscher Wetterdienst),
x1 is the log GDP per person interpolated linearly from quarterly data, detrended and deseasonalized and x2 is the log rate
of electricity price to the gas price, detrended. The data for 199601-201009 comes from EUROSTAT. Reference prices for
electricity were computed as an average of electricity tariffs for consumer groups IND-Ie and HH-Dc, for gas—IND-I3-2 and
HH-D3with reference period 2005S1. Time series of priceswere obtained by scalingwith electricity price or correspondingly
gas price indices. x3, x4, . . . , x13 are dummy variables for the monthly effects.

The model in (29) includes both parametric effects and a nonparametric effect. The only nonparametric effect is implied
by the temperature variable. From Fig. 1, we can see that the effect of t on y is likely to be nonlinear, while the effects of
other variables are roughly linear. The dummy variables enter into the linear part in the specification of the semiparametric
regression as well.
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Fig. 1. Plots of individual exp. variables vs. dependent variable, linear fit (green), local polynomial fit (red), 95% confidence bands (black). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

We note that the condition number of X>X of these explanatory variables is 20.5, which justifies the use ofb�(1)(k) and
b�(2)(⌘); see [2].

Throughout the paper, we use fifth-order differencing (m = 5). Results for other orders of differencing were similar.
The admissible regions for the biasing parameters ⌘ and k for MSEM superiority were ⌘ � 0.923 and k  0.0085.

These bounds were determined using the estimated parameters and the inequalities from Theorem 4.1 and Theorem 3.1
in [27], respectively. Under more general assumptions on ⌦ and resulting heteroscedasticity and autocovariance consistent
Newey–West covariance estimator, defined in (23), the admissible region for ⌘ (Theorem 6.1 and restriction (27)) was
shrinked to ⌘ � 0.927. For b�(1)(k), no admissible values of k were found, since admissible k � 1.57 of (28) do not satisfy
the condition of Theorem 6.1 (see Table 2).

Alternatively, we used a scalar mean squared error (SMSE), defined as the trace of the corresponding MSEM, to compare
the estimators. The bounds for k and ⌘ can then be calculated only numerically using a grid on [0, 1] for the biasing
parameters and determining the regions where SMSEs of the proposed estimators are lower. SMSE superiority of b�(1)(k)
andb�(2)(⌘) overb�(0) under general ⌦ is given for k  0.0267 and ⌘ � 0.384 compared to k  0.0123 and ⌘ � 0.708 by
standard assumptions; see Fig. 2 which depicts SMSE of the estimators and the corresponding ⌘ and k under standard and
general assumptions. Thus the SMSE superiority intervals for ⌘ and k become even larger in the case of the general form
of ⌦ .

Our computations here are performed with R 2.10.1 and the codes are available on www.quantlet.org.
Results of different estimation procedures can be found in Table 1. We note that regardless of the estimator type, the

effect of income is positive and the effect of relative price is negative as expected from an economic perspective, as in [4].
However, the R2 obtained by difference based methods is higher and SMSE lower for Liu type and ridge difference based
estimator. The values of biasing parameters for which conditions of Theorems 5.1 and 5.2 are satisfied are given in Table 3.
The superiority ofb�(2)(⌘) overb�(1)(k) is assured for the zone of values marked by plus.

Returning to our semiparametric specification, wemay now remove the estimated parametric effect from the dependent
variable and analyze the nonparametric effect. We use a local linear estimator of f to model the nonparametric effect of
temperature. The resulting plots are presented in Fig. 3wherewe also include the linear effect.Wenotice that all differencing
procedures result in similar estimators of f , regardless of notable differences in the coefficients of the linear part. The
estimator of f is consistent with findings e.g. of [4] for US electricity data.

In both specifications, f is different from the linear effect and therefore including temperature as a linear effect is
misleading.

http://www.quantlet.org
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Fig. 2. SMSE ofb�(2)(⌘) in dependence of ⌘ (left) andb�(1)(k) in dependence of k (right) against that ofb�(0) (dashed) under standard assumptions (black)
and under generalized assumptions (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1

Results of OLS, difference based and Liu type difference based estimations.
b�OLS b�(0) b�(1)(10�3) b�(2)(0.95)

x1 0.634 0.578* 0.550* 0.562*

x2 �0.152*** �0.160*** �0.158*** �0.161***

x3 0.030*** 0.030* 0.030* 0.030*

x4 �0.043*** �0.040** �0.040** �0.040**

x5 0.011 0.031 0.031 0.031
x6 �0.051** �0.014 �0.013 �0.014
x7 �0.054* �0.014 �0.013 �0.014
x8 �0.079** �0.065 �0.064 �0.065
x9 �0.036 �0.037 �0.036 �0.037
x10 �0.052 �0.044 �0.043 �0.044
x11 �0.049 �0.013 �0.012 �0.013
x12 �0.000 0.040 0.040 0.040
x13 �0.001 0.016 0.016 0.016
t �13 · 10�5*** – – –
R2 0.729 0.749 0.749 0.749
* Indicates significance on 10%.
** Indicates significance on 5%.
*** Indicates significance on 1%.

Table 2

Standard errors of the estimators in comparison to Newey–West standard errors for the effects of x1 (income) and x2 (relative price).
b⌦ b�(0) b�(1)(10�3) b�(2)(0.95)

b� 2I b⌦NW b� 2I b⌦NW b� 2I b⌦NW

x1 0.215 0.347 0.209 0.337 0.205 0.215
x2 0.034 0.047 0.034 0.047 0.034 0.034
SMSE 0.058 0.148 0.056 0.141 0.054 0.058

8. Conclusion

Weproposed a difference based Liu type estimator and a difference based ridge regression estimator for the partial linear
semiparametric regression model.

The results show that in case of multicollinearity, the proposed estimator, b�(2)(⌘) is superior to the difference based
estimator b�(0). We gave bounds on the value of ⌘ which ensure the superiority of the proposed estimator. The two biased
estimatorsb�(2)(⌘) andb�(1)(k) for different values of ⌘ and k can be compared in terms of MSEMwith the theoretical results
above.

Finally, an application to electricity consumption has been provided to show properties of the proposed estimator
based on the mean square error criterion. We could estimate the linear effects of the linear determinants as well as the
nonparametric effect f of a cumulated average temperature index.

Thus, the theoretical results obtained allow us to tackle the problem of multicollinearity in real applications of
semiparametric models. Moreover, we are able to get estimators of the linear effects with lower standard errors by tuning
parameters k and ⌘ accordingly.



174 E. Akdeniz Duran et al. / Journal of Multivariate Analysis 105 (2012) 164–175

Table 3

Admissible biasing parameters ⌘ and k marked by plus if they satisfy conditions of Theorems 5.1 and 5.2, i.e.b�(2)(⌘) is superior tob�(1)(k).

⌘ · 102 k · 104

1 2 3 4 5 6 7 8 9 10 11 12 13

9.23–9.23 � � � � � � � � � � � � �
9.24–9.24 + � � � � � � � � � � � �
9.25–9.25 + + � � � � � � � � � � �
9.26–9.26 + + + � � � � � � � � � �
9.27–9.27 + + + + � � � � � � � � �
9.28–9.28 + + + + + � � � � � � � �
9.29–9.30 + + + + + + � � � � � � �
9.31–9.31 + + + + + + + � � � � � �
9.32–9.32 + + + + + + + + � � � � �
9.34–9.35 + + + + + + + + + � � � �
9.36–9.37 + + + + + + + + + + � � �
9.38–9.39 + + + + + + + + + + + � �
9.40–9.43 + + + + + + + + + + + + �
9.44–9.56 + + + + + + + + + + + + +
9.57–9.61 + + + + + + + + + + + + �
9.62–9.65 + + + + + + + + + + + � �
9.66–9.69 + + + + + + + + + + � � �
9.70–9.72 + + + + + + + + + � � � �
9.73–9.76 + + + + + + + + � � � � �
9.77–9.79 + + + + + + + � � � � � �
9.80–9.82 + + + + + + � � � � � � �
9.83–9.85 + + + + + � � � � � � � �
9.86–9.88 + + + + � � � � � � � � �
9.89–9.91 + + + � � � � � � � � � �
9.92–9.94 + + � � � � � � � � � � �
9.95–9.97 + � � � � � � � � � � � �
9.98–9.99 � � � � � � � � � � � �

Fig. 3. Estimated f nonlinear effect of t on y via differenced based (left), Liu-type differenced based (right) and difference-based ridge (center) approaches.
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We model the dynamics of ask and bid curves in a limit order book market using a dynamic
semiparametric factor model. The shape of the curves is captured by a factor structure which is
estimated nonparametrically. Corresponding factor loadings are modelled jointly with best bid
and best ask quotes using a vector error correction specification. Applying the framework to
four stocks traded at the Australian Stock Exchange (ASX) in 2002, we show that the suggested
model captures the spatial and temporal dependencies of the limit order book. We find spill-
over effects between both sides of the market and provide evidence for short-term quote
predictability. Relating the shape of the curves to variables reflecting the current state of the
market, we show that the recent liquidity demand has the strongest impact. In an extensive
forecasting analysis we show that the model is successful in forecasting the liquidity supply
over various time horizons during a trading day. Moreover, it is shown that the model's
forecasting power can be used to improve optimal order execution strategies.

© 2012 Elsevier B.V. All rights reserved.

JEL classification:
C14
C32
C53
G11

Keywords:
Limit order book
Liquidity risk
Semiparametric model
Factor structure
Prediction

1. Introduction

Due to technological progress in the organization of trading systems and exchanges, electronic limit order book trading has
become the dominant trading form for equities. Open limit order books provide important information on the current liquidity
supply as reflected by the offered price-quantity relationships on both sides of the market. These supply and demand schedules
provide valuable information on traders' price expectations in the spirit of the seminal paper by Glosten (1994), reflect the
current implied costs of trading as well as demand and supply elasticities. However, while the dynamic behavior of liquidity
demand, as reflected by trading intensities and trade sizes, has been already studied in various papers (see, e.g., (Hautsch
and Huang (2012) and Brownlees et al. (2009)), the stochastic properties of liquidity supply is still widely unknown. An obvious
reason is that liquidity supply is reflected by high-dimensional bid and ask schedules which are not straightforwardly modelled
in a dynamic setting. Consequently, it is a widely open question whether and to which extent liquidity supply might be
predictable.
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The paper's major idea is to capture the shape of high-dimensional ask and bid curves by a lower-dimensional factor structure
which is estimated non-parametrically. We propose a dynamic semiparametric factor model where the shape of order schedules
is captured by a non-parametric factor structure while the curves' dynamic behavior is driven by time-varying factor loadings. The
latter are modelled parametrically employing a vector error correction model (VECM). We show that the model captures the
dynamics of high-dimensional order curves very well and is sufficiently parsimonious to produce valuable out-of-sample
predictions. Moreover, the schedule of market depth posted around best quotes reveals strong serial dependence and thus is
predictable. This structure is induced by the inventory character of order volume which is strongly persistent over time.

By providing empirical evidence on the dynamics and predictability of order book schedules, this paper fills a gap in empirical
literature and complements recent (mostly theoretical) work on order splitting and dynamic order submission strategies. For
instance, the question of how to reduce the costs of trading by optimally splitting a large order over time (e.g., over the course of a
trading day) is of high relevance in financial practice. Obizhaeva and Wang (2005) and Engle and Ferstenberg (2007) analyze
optimal splitting strategies whose implementations ultimately require predictions of future liquidity demand and supply.
Bertsimas and Lo (1998) and Almgren and Chriss (2000) derive optimal execution strategies by minimizing expected costs of
executing, an order in the context of static price impact functions. Optimal execution in a limit order book market is analyzed by
Alfonsi et al. (2010). They allow for general shapes of order book curves and derive explicit optimal execution strategies in
discrete time. By providing insights into the actual form of order book curves and their dynamic behavior, our results can be used
as valuable inputs in theoretical frameworks.

While to the best of our knowledge our study is the first which models the shapes and dynamics of a complete (high-
dimensional) order book, there is a substantial body of empirical literature on the dynamics of limit order books and the analysis
of traders' order submission strategies, such as, e.g., Biais et al. (1995), Griffiths et al. (2000), Ahn et al. (2001), Ranaldo (2004),
Hollifield et al. (2004), Bloomfield et al. (2005), Degryse et al. (2005), Hall and Hautsch (2006, 2007), Large (2007), Hasbrouck
and Saar (2009) or Cao et al. (2009).

An important aspect in this literature is to analyze the question of how to optimally balance risks and gains of a trader's
decision whether to post a market order or a limit order. As recently illustrated by Chacko et al. (2008), a limit order can be
ultimately seen as an American option and transaction costs are rents that a monopolistic market maker extracts from impatient
investors who trade via aggressive limit orders or market orders. Consequently, the analysis of liquidity risks (see, e.g., Johnson,
(2008), Liu (2009), Garvey andWu (2009), Goyenko et al. (2009)) and transaction costs (see, e.g. Chacko et al. (2008), Hasbrouck
(2009)) are in the central focus of recent literature.

Given the objective to capture not only the volume around the best quotes but also pending quantities more deeply in the
book, the underlying problem becomes inherently high-dimensional. A typical graphical snapshot of ask and bid curves for four
stocks traded at the Australian Securities Exchange (ASX) in 2002, is given by Fig. 1. The curse of dimensionality applies
immediately as soon as time variations of the order curve shapes have to be taken into account. As shown by Fig. 1 and as
illustrated in more detail in the sequel of the paper, order volume is not necessarily only concentrated around the best quotes but
can be substantially dispersed over a wider range of price levels. This is a typical scenario for moderately liquid markets as that of
the ASX. In such a context, the dynamic modelling of all volume levels individually becomes complicate and intractable.

We suggest reducing the high dimensionality of the order book by means of a factor decomposition using the so-called
Dynamic Semiparametric Factor Model (DSFM) proposed by Fengler et al. (2007), Brüggemann et al. (2008), Park et al. (2009)
and Cao et al. (2009). Accordingly, we model the shape of the book in terms of underlying latent factors which are defined on a
grid space around the best ask or bid quotes and can depend on additional explanatory variables capturing, e.g., the state of the
market. In order to avoid specific functional forms for the shape of the curves, the factors as well as the corresponding loadings are
estimated nonparametrically using B-splines. Then, in a second step, we model the multivariate dynamics of the factor loadings
together with the best bid and the best ask price using a VEC specification.

Using this framework we aim answering the following research questions: (i) How many factors are required to model order
book curves reasonably well? (ii) What does the shape of the factors look like? (iii) What do the dynamics of the estimated factor
loadings look like? (iv) Does there exist evidence for a strong cross-dependence between both sides of the order book? (v) Can
quotes be predictable in the short run? (vi) Does the shape of the order book curves depend on past price movements, past
trading volume as well past volatility? (vii) How successful is the model in predicting future liquidity supply and can it be used to
improve order execution strategies?
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Fig. 1. Limit order books for selected stocks traded at the ASX on July 8, 2002 at 10:15. Red: bid curve, blue: ask curve.
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Using limit order book data from four stocks traded at the ASX covering twomonths in 2002, we show that approximately 95%
of the order book variations observed on 5-min intervals can be explained by two underlying time-varying factors. While the first
factor captures the overall slope of the curves, the second one is associated with its curvature. Knowing the shape of the order
book can help us to predict quotes in the short run. Further empirical results show relatively weak spill-over effects between the
bid and the ask side of the market. It turns out that recent liquidity demand represented by the cumulative buy/sell trading
observed over the past 5 min has an effect on the shape of the curve but does not induce a higher explanatory power. Similar
evidence is shown for the impact of past returns and corresponding (realized) volatility. Moreover, we find that factor loadings
follow highly persistent though stationary dynamics.

To evaluate the model's forecasting power, we perform an extensive out-of-sample forecasting analysis which is in line with a
typical scenario in financial practice. In particular, at every 5-min interval during a trading day, the model is re-estimated and
used to produce forecasts for the pending volume on each price level for all future 5-min intervals during the remainder of the
trading day. We show that our approach is able to outperform a naive prediction, where the current order book is used as a
predictor for the remaining day. These results can be used to improve intra-day order execution strategies by reducing implied
transaction costs.

The remainder of the paper is structured as follows: After the data description in Section 2, the Dynamic Semiparametric
Factor Model (DSFM) is introduced in Section 3. Empirical results regarding the modelling and forecasting of liquidity supply are
provided in Sections 4 and 5, respectively. Section 6 concludes.

2. Data

2.1. Trading at the ASX and descriptive statistics

The Australian Stock Exchange (ASX) is a continuous double auction electronic market, where the continuous auction trading
period is preceded and followed by a call auction. Normal trading takes place continuously on all stocks between 10:09 a.m. and
4:00 p.m. from Monday to Friday. During continuous trading, any buy (sell) order entered that has a price that is greater than
(less than) or equal to existing queued buy (sell) orders, will be executed immediately. If an order cannot be executed completely,
the remaining volume enters the queues as a limit order. Limit orders are queued in the buy and sell queues according to a strict
price-time priority order. Orders can be entered, deleted and modified without restriction.

For order prices below 10 cents, theminimum tick size is 0.1 cents, for order prices above 10 cents and below 50 cents it is 0.5 cents,
whereas for orders priced 50 cents and above it is 1 cent. Note that there might be orders which are entered with an undisclosed or
hidden volume if the total value of the order exceeds AUD 200,000. Since this applies only to a small fraction of the posted volumes, we
can safely neglect the occurrence of hidden volume in our empirical study. For more details on the data, see Hall and Hautsch (2007)
using the same data base as well as the official description of the trading rules of the Stock Exchange Automated Trading System
(SEATS) on the ASX on www.asxonline.com.

We select four companies traded at the ASX covering the period from July 8 to August 16, 2002 (30 trading days), namely
Broken Hill Proprietary Limited (BHP), National Australia Bank Limited (NAB), MIM and Woolworths (WOW). The number of
market and limit orders for the selected stocks is given in Table 1.

We observe more buy orders than sell orders implying that the bid side of the limit order book was changing more frequently
than the ask side. BHP and NAB are significantly more actively traded than MIM and WOW shares. Aggregated over all stocks,
20.08% (23.98%) of all bid (ask) limit orders have been changed (after posting), whereas 13.70% (14.89%) have been cancelled.
Furthermore, for both traded as well as posted quantities we find that on average sell volumes are higher than buy volumes (not
reported here). Hence, confirming the result above, liquidity variations on the bid side are higher than that of the ask side. This
finding might be explained by the fact that during the analyzed period the market generally went down creating more sell
activities than buy activities.

The original dataset contains all limit order book records as well as the corresponding order curves represented by the
underlying price-volume combinations. The latter is the particular object of interest for the remainder of the analysis.

Table 1
Total number of market and limit orders for selected stocks traded at the ASX from July 8 to August 16, 2002.

Orders BHP NAB MIM WOW

Market orders
(i) Buy 28,030 16,304 4115 7260
(ii) Sell 16,755 15,142 2789 6464

Limit orders
(i) Buy (bid side) 50,012 28,850 9551 13,234
– Changed 8009 7561 1637 3203
– Cancelled 5202 4725 2044 1951

(ii) Sell (ask side) 32,053 25,953 6474 11,318
– Changed 6891 6261 1862 3164
– Cancelled 4692 3863 1178 1554
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2.2. Notation and data preprocessing

The underlying limit order book data contains identification attributes regarding r=1,…,R different orders as well as
quantities demanded and offered for different price levels j=1,…,J, at any time point t=1,…,T. Particularly, at any t, we observe
J=101 price levels on a fixed minimum tick size grid originating from the best bid and ask quote.

Since the order book dynamics are found to be very persistent, we choose a sampling frequency of 5 min without losing too
much information on the liquidity supply. To remove effects due to market opening and closure, the first 15 min and last 5 min
are discarded. Hence, at each trading day, starting at 10:15 and ending at 15:55, we select per stock 69 price-quantity vectors, in
total T=2070 vectors over the whole sample period. Denote ~Y b

t;j and ~Y a
t;j as the pending bid and ask volumes at bid and ask limit

prices ~Sbt;j and ~Sat;j, respectively at time point t.
We define the best bid price at time t as the highest buy price ~Sbt;101, and similarly, the best ask price at t as the lowest sell price

~Sat;1. The corresponding quantities at best bid and ask prices are then ~Y b
t;101 and ~Y a

t;1, respectively, yielding the mid-quote price to
be defined as ~S!t ¼ ~Sbt;101 þ ~Sat;1

! "
=2. The absolute price deviations from the best bid and ask price at level j and time t are given by

⌣S
b
t;j ¼ ~Sbt;j−~Sbt;101 and ⌣S

a
t;j ¼ ~Sat;j−~Sat;1, respectively and constitute a fixed price grid. To measure spreads between individual price

levels in relative terms, i.e., in relation to the prevailing best bid and ask price, we define so-called 'relative price levels' as

Sbt;j ¼
⌣S

b
t;j=

~Sbt;101 and Sat;j ¼
⌣S

a
t;j=

~Sat;1, respectively.
In order to investigate towhich extent order book informationmight reveal information to predict high-frequency returns,we regress

1 min and 5 min mid-quote returns, respectively, on lagged order imbalances

~Y b
t−1;j=

~Y b
t−1;j þ ~Y a

t−1;j

! "

and

~Y a
t−1;j=

~Y b
t−1;j þ ~Y a

t−1;j

! "
;

respectively, for j=1,…,101. Fig. 2 shows the implied R2 values in dependence of the number of included imbalance levels. It
turns out that order book imbalances indeed reveal short-term predictability. Interestingly, even levels far apart from the market
have still distinct prediction power pushing the R2 to values of approximately 10%. These findings show that the order book itself
reveals predictive content for future price movements which could be exploited in trading strategies.

In order to account for intra-day seasonality effects, we adjust the order volumes correspondingly. To avoid to seasonally
adjust all individual volume series separately, we assume that the seasonality impact on quoted volumes at all levels is identical
and is well captured by the seasonalities in market depth on the best bid and ask levels ~Y b

t;101 and ~Y a
t;1, respectively. Assuming a

multiplicative impact of the seasonality factor, the seasonally adjusted quantities are computed for both sides of the market at
price level j, and time t as

Yb
t;j ¼

~Y b
t;j

sbt
ð1Þ

Ya
t;j ¼

~Y a
t;j

sat
; ð2Þ

with stb and sta representing the seasonality components at time t for the bid and the ask side, respectively.
The non-stochastic seasonal trend factors stb and sta are specified parametrically using a flexible Fourier series approximation as

proposed by Gallant (1981) and are given by

sbt ¼ δb⋅!t þ
XMb

m¼1

δbc;mcos !t⋅2πmð Þ þ δbs;msin !t⋅2πmð Þ
n o

ð3Þ
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Fig. 2. Coefficients of determination (R2) implied by linear regression of 1 min (red) and 5 min (blue) mid-quote returns on lagged order imbalances for selected
stocks traded at the ASX from July 8 to August 16, 2002 (30 trading days). The horizontal axis depicts the number of included imbalance levels.
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sat ¼ δa⋅!t þ
XMa

m¼1

δac;mcos !t⋅2πmð Þ þ δas;msin !t⋅2πmð Þ
n o

: ð4Þ

Here δb, δa, δc,mb , δc,ma and δs,mb and δs,ma are coefficients to be estimated, and!t denotes a normalized time trend mapping the time
of the day on a (0,1] intervals. The polynomial orders Mb and Ma are selected according to the Bayes information criterion (BIC).
For all stocks we selectMb=Ma=1, except for the bid side for BHP (Mb=2). The resulting intra-day seasonality patterns for both
sides of all order book markets are plotted in Fig. 3.

For all stocks, we observe that the liquidity supply increases before market closure. We attribute this finding to traders'
pressure and willingness to close positions overnight. Posting aggressive limit orders on the best levels (or even within the
spread) maximizes the execution probability and avoids crossing the spread. Moreover, weak evidence for a ‘lunch time dip’ is
presented which, however, is only observed for the more liquid stocks (NAB and BHP). In contrast, for the less liquid stocks, the
amount of posted volume nearly monotonically increases over the course of the day.

3. The dynamic semiparametric factor model

Recall that the object of interest is the high-dimensional object of seasonally adjusted level-dependent order volume
inventories Yb

t;j; Y
a
t;j

! "
∈R202, observed on a 5-min frequency. Proposing a suitable statistical model requires finding an appropriate

way of reducing the high dimension without losing too much information on the spatial and dynamic structure of the process.
Moreover, applicability of the model requires computational tractability as well as numerical stability.

A common way to reduce the dimensionality of multivariate processes is to apply a factor decomposition. The underlying idea
is that the high-dimensional process is ideally driven by only a few common factors which contain most underlying information.
Factor models are often applied in the asset pricing literature to extract underlying common risk factors. In this spirit, a successful
parametric factor model has been proposed, for instance, by Nelson and Siegel (1987) to model yield curves. In this framework,
the shape of the curve is parametrically captured by Laguerre polynomials.

Limit order book curves inherently reflect traders' price expectations and the supply and demand in the market (see, e.g.
Glosten (1994) for a theoretical framework). As there is no obvious parametric form for ask and bid curves and we want to avoid
imposing assumptions on functional form, we prefer to capture the curve's spatial structure in a nonparametric way. A natural
and powerful class of models for these kind of problems is the class of Dynamic Semiparametric Factor Models (DSFMs) proposed
by Fengler et al. (2007), Brüggemann et al. (2008), Park et al. (2009) and Cao et al. (2009). The DSFMmodel successfully combines
the advantages of a nonparametric approach for cross-sectionally (‘spatially’) fitting a curve and that of a parametric time series
model for modelling persistent multivariate dynamics.

Assume that that the observable J-dimensional random vector, Yt,j, can be modelled based on the following orthogonal L-factor
model,

Yt;j ¼ m0;j þ Zt;1m1;j þ ⋯þ Zt;LmL;j þ εt;j; ð5Þ

where m(⋅)=(m0,m1,…,mL)⊤ denotes the time-invariant factors, a tuple of functions with the property ml : Rd→R; l ¼ 0;…; L; Zt ¼
1T ; Zt;1;…; Zt;L
# $⊤ denotes the time series of factor loadings, and εt,j represents a white noise error term. The time index is denoted by
t=1,…,T, whereas the cross-sectional index is j=1,…,J. Note that this type of factor model is rather restrictive, because it does not
take explanatory variables into account.
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Fig. 3. Estimated intra-day seasonality factors for quantities offered at best bid prices (red) and for quantities supplied at best ask prices (blue) across selected
stocks traded at the ASX from July 8 to August 16, 2002 (30 trading days).
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The DSFM is a generalization of the factor model given in Eq. (5) and allows the factors ml to depend upon explanatory
variables, Xt,j. Its analytical form is given by

Yt;j ¼
XL

l¼0

Zt;lml Xt;j

! "
þ εt;j ¼ Z⊤

t m Xt;j

! "
þ εt;j; ð6Þ

where the processes Xt,j, εt,j and Zt are assumed to be independent. Moreover, the number of underlying factors L should not
exceed the dimension of the object, J. The main idea of the DSFM is that L is significantly smaller than J resulting in a severe
dimension reduction of the process.

As suggested by Park et al. (2009), the estimation of the factorsml is performed using a series estimator. For K≥1, appropriate
functions ψk : 0;1½ &d→R; k ¼ 1;…;K , which are normalized such that ∫ψk

2(x)dx=1 holds, are selected. Park et al. (2009) select
tensor B-spline basis functions for ψk, whereas Fengler et al. (2007) use a kernel smoothing approach. In the present study, we
follow the former strategy and employ tensor B-spline basis functions.

After selecting the functions ψk, the factors m(⋅)=(m0,m1,…,mL)⊤ are approximated by Aψ, where A ¼ al;k
# $

∈R Lþ1ð ÞK is a
coefficient matrix, and ψ(⋅)=(ψ1,…,ψK)⊤ denotes a vector of selected functions. Here, K denotes the number of knots used for the
tensor B-spline functions and is interpretable as a bandwidth parameter. Thus, the first part in the right-hand side of (6), which
incorporates all factors and factor loadings, can be rewritten as

Z⊤
t m Xt;j

! "
¼

XL

l¼0

Zt;lml Xt;j

! "
¼

XL

l¼0

Zt;l

XK

k¼1

al;kψk Xt;j

! "
¼ Z⊤

t Aψ Xt;j

! "
: ð7Þ

In modelling liquidity supply we use either the ‘relative price levels’ on the bid side St,jb or those on the ask side St,ja as the most
important explanatory variable Xt,j. When focusing on the LOB shape predictability, we add key (weakly exogenous) trading
variables, namely the past 5-min aggregated trading volume on both sides of the market, the past 5-min log mid-quote return as
well as the past 5-min volatility, see Section 3.

The coefficient matrix A and time series of factor loadings Zt can be estimated using least squares. Hence, the estimated matrix
Â and factor loadings Ẑ t ¼ 1T ; Ẑ t;1;…; Ẑ t;L

! "⊤
are defined as minimizers of the sum of squared residuals, S(A,Zt)

Ẑ t ; Â
! "

¼ arg min
Zt ;A

S A; Ztð Þ ð8Þ

¼ arg min
Zt ;A

XT

t¼1

XJ

j¼1

Yt;j−Z⊤
t Aψ Xt;j

! "n o2
: ð9Þ

To find a solution of the minimization problem stated in Eq. (9), a Newton–Raphson algorithm is used. As shown by Park et al.
(2009), this algorithm is shown to converge to a solution at a geometric rate under some weak conditions on the initial choice

vec Að Þ 0ð Þ; Z 0ð Þ
t

n o
. Moreover, Park et al. (2009) prove that the difference between the estimated loadings Ẑ t and the true loadings Zt

are asymptotically negligible. Consequently, it is justified to use in a second step multivariate time series specifications in order to
model the dynamics of the factor loadings. Note that due to the estimation complexity, the coefficients of the seasonal trend
factors in Eqs. (1) and (2) are not estimated jointly with the unknown parameters (matrix A) and the factor loadings.

The selection of the number of time-invariant factors (L) and the number of knots K is performed by evaluating the proportion
of explained variance (EV) given by

EV Lð Þ ¼ 1−RV Lð Þ ¼ 1−

PT

t¼1

PJ

j¼1
Yt;j−

PL

l¼0
Ẑ t;lm̂l Xt;j

! "( )2

PT

t¼1

PJ

j¼1
Yt;j−!Y

n o2
: ð10Þ

Moreover, the knots used in the tensor B-spline functions should be specified in advance. We choose linearly spaced knots,
with a starting point determined by the minimal value of the explanatory variable (corrected by −5%), and the end point
corresponding to the maximal value (corrected by 5%). Sensitivity analysis shows that the results are quite stable regarding the
choice of grid points.

Because of the use of tensor B-spline functions for the demand and supply curves, which are monotonous in the price levels,
our estimated first factor m̂1 and the estimated quantities Ŷ t;j are adjusted for extreme price levels. Correspondingly, for the bid
side we keep constant the first (lowest) ten level values, and analogously, for the ask side we fix the last (highest) ten level values.
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The model's goodness-of-fit is evaluated using the root mean squared error (RMSE) criterion,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
TJ

XT

t¼1

XJ

j¼1

Yt;j−
XL

l¼0

Ẑ t;lm̂l Xt;j

" #( )2
vuut : ð11Þ

4. Modelling limit order book dynamics

To model order book dynamics we follow a two step procedure for each stock individually. Employing the DSFM approach in
the first step, we model the shape of order book curves in dependence of relative price levels. In the following step, the dynamics
of the estimated factor loadings is analysed jointly with the best bid quotes, best ask quotes and the bid-ask spread in a parametric
multivariate time series context. This procedure allows us to study the cross-dependency between both sides of the market, the
interactions between the limit order book and the quotes, as well as the impact of the bid-ask spread on liquidity supply.
Moreover, we investigate whether the order book shape itself is predictable by additional covariates, particularly, the past trading
volume, past (realized) volatility as well as past log returns.

4.1. Limit order book modelling using the DSFM

We distinguish between two implementation methods of the DSFM:

(i) Separated approach: Separate analysis of both sides of the limit order book, i.e., the bid side Yb
t;j∈R101, and the ask side,

Ya
t;j∈R101.

(ii) Combined approach: Simultaneous modelling of both sides of the limit order book with the bid side reversed, i.e.

−Yb
t;j;Y

a
t;j

" #
∈R202.

To model the limit order book in dependence of the relative price levels using the DSFM, i.e., the relative price deviations from
the best bid price and best ask price, St,jb and St,ja , respectively, we impose K=20 knots for the B-spline functions in case of the
separated approach and K=40 knots in case of the combined approach. Using more knots does not result in significant
improvements of the explained variance or in the corresponding RMSE, as defined in Eqs. (10) and (11).

Empirical results, available from the authors upon request, show that up to approximately 95% of the explained variation in
order curves can be explained using L=2 factors, whereas the marginal contribution of a potentially third factor is only very
small. Consequently, a two-factor DSFM specification is sufficient to capture the curve dynamics and is used in the sequel of the
analysis. Furthermore, comparing the performance of the two alternative DSFM specifications, it turns out that in almost all cases
the DSFM-separated approach outperforms the DSFM-combined approach in terms of a higher proportion of explained variance
and lower values of the root mean squared error. We observe that at almost every price level the DSFM-separated approach
outperforms the DSFM-combined approach. Therefore, the remainder of the analysis will rely on the DSFM-separated approach
with two factors.
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Fig. 4. Estimated first and second factor of the limit order book depending on relative price levels using the DSFM-separated approach with two factors for
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616 W.K. Härdle et al. / Journal of Empirical Finance 19 (2012) 610–625



Fig. 4 depicts the nonparametric estimates of the first and second factor m̂1 and m̂2 in dependence of the relative price grids.
The first factor obviously captures the overall slope of the curve which is associated with the average trading costs for all volume
levels on the corresponding sides of the market. In contrast, the second factor captures order curve fluctuations around the overall
slope and thus can be interpreted as a ‘curvature’ factor in the spirit of Nelson and Siegel (1987). The shape of this factor reveals
that the curve's curvature is particularly distinct for levels close to the best quotes and for levels very deep in the book where the
curve seems to spread out. The shapes of the estimated factors are remarkably similar for all stocks except for MIM. For the latter
stock, the shapes of both factors are quite similar and significantly deviate from those reported for the other stocks. This finding is
explained by the peculiarities of MIM for which the relative tick size is larger than for the other stocks. This implies that liquidity
is concentrated on relatively few price levels around the best ask and bid quotes whereas the book flattens out for higher levels.
This pattern is clearly revealed by the corresponding factors shown in Fig. 4.

However, a priori it is unclear whether modelling order book curves based on all 101 price levels is most appropriate in a
prediction context. Besides the well-known trade-off between in-sample fit and out-of-sample prediction performance, we also
face the difficulty that the predictive information revealed by order book volumemight depend on the distance to the best quotes.
For instance, if price levels far away from the market may contain information that help predicting books in the future, this
information should be taken into account. However, if they contain virtually only noise (e.g., because of stale orders) it would be
more optimal to ignore this information in order to extract a more precise factor structure on lower price levels only. Since
optimizing this choice in an (out-of-sample) prediction context is tedious and computationally cumbersome, we restrict
ourselves to the quite common proceeding of performing model selection based on in-sample information. Accordingly, we
evaluate the model implied explained variance when not the full grid of 101 levels but just 25, 50 and 75 levels are employed. It
turns out that the explained variance remains widely unchanged with the model fit increasing with the number of incorporated
levels. This is particularly important in the context of order books of less liquid stocks. Therefore, we proceed by extracting the
factor structure employing the entire book.

Time series plots of the corresponding factor loadings Ẑ b
t and Ẑ

a
t are shown in Fig. 5. We observe that the loadings strongly vary

over time reflecting time variations in the shape of the book. The series reveal clustering structures indicating a relatively high
persistence in the processes. This result is not very surprising given the fact that order book inventories do not change too
severely during short time horizons. Observing order book volumes on even higher frequencies than 5 min further increases this
persistence, ultimately driving the processes toward unit root processes. Naturally, this behavior is particularly distinct for less
frequently traded stocks and less severe for highly active stocks (cf. Hautsch and Huang (2012) for corresponding results for more
liquid assets).

The high persistence is confirmed by autocorrelation functions of Ẑ b
t and Ẑ a

t (not shown in the paper) and corresponding unit
root and stationarity tests. According to the Schmidt-Phillips test (see Schmidt and Phillips (1992), H0 : unit root) for all processes
the null hypothesis of an unit root can be rejected at the 5% significance level (test statistics for all estimated factor loadings are in
the range [−201.53, −53.88], whereas the critical value equals −25.20). Conversely, testing the null hypothesis of stationarity
using the KPSS test (see Kwiatkowski et al. (1992), H0 : weak stationarity) implies no rejections for the majority of the processes.
Nevertheless, in five cases we have to reject stationarity. Finally, to test for possible cointegration between the factor loadings, we
perform Johansen (1991) trace test (not shown in the paper) but do not find significant evidence for common stochastic trends
underlying the order book.

A graphical illustration for the goodness-of-fit of the model, depicting the estimated vs. the actually observed limit order book
curve, would suggest that the model fits the observed curves very well (no illustrations provided here). This is particularly true

08 22 05 16
0

15

30
BHP

1s
t L

oa
di

ng
s

08 22 05 16
−4

0

4

Trading Day

2n
d 

L
oa

di
ng

s

08 22 05 16
0

5

10
NAB

08 22 05 16
−2

0

2

Trading Day

08 22 05 16
0

10

20
MIM

08 22 05 16
−4

0

4

Trading Day

08 22 05 16
0

10

20
WOW

08 22 05 16
−2

0

2

Trading Day

Fig. 5. Estimated first and second factor loadings of the limit order book depending on relative price levels using the DSFM-separated approach with two factors
for selected stocks traded at the ASX from July 8 to August 16, 2002 (30 trading days). Red: bid curve, blue: ask curve.

617W.K. Härdle et al. / Journal of Empirical Finance 19 (2012) 610–625



for price levels close to the best ask and bid quotes, at any chosen trading day and stock. Slight deviations are observed for price
levels deeply in the book. However, the latter case is less relevant for most applications in practice.

4.2. Modelling limit order book dynamics

Our approach, stipulated under the philosophy smooth in space and parametric in time, allows us to investigate the limit order
book dynamics in a multivariate time series modelling context, as well as to relate the order book dynamics to the time evolution
of additional covariates. Formally, for each stock we focus on the dynamics of the four estimated stationary factor loadings.
Including the best bid and the best ask price returns, we consider a (six dimensional) vector of endogenous variables

zt ¼ Ẑ b
1;t ; Ẑ

b
2;t ; Ẑ

a
1;t ; Ẑ

a
2;t ;Δlog~S

b
t;101;Δlog~S

a
t;1

! "⊤
;

where Ẑ b
1;t , Ẑ

b
2;t , Ẑ

a
1;t and Ẑ a

2;t denote the estimated first (1) and second (2) factor loadings for the bid (b) and ask side (a),
respectively. We denote by Δlog~Sbt;101 the best bid price return, and similarly, by Δlog~Sat;1 the best ask price return.

Following Engle and Patton (2004) and Hautsch and Huang (2012), the bid-ask spread log~Sbt−1;101−log~Sat−1;1

! "
serves as a

natural cointegration relationship between the two integrated ask and bid series. As all other endogenous variables are shown to
be stationary, we obtain a vector error correction (VEC) specification of order q with the spread as the only cointegration
relationship, i.e.,

zt ¼ cþ Γ1zt−1 þ…þ Γqzt−q þ γ log~Sbt−1;101−log~Sat−1;1

! "
þ εt : ð12Þ

Here c denotes a vector with constants, vector γ ¼ γ1;…;γ6ð Þ⊤ collects parameters associated with the lagged bid-ask spread
and εt represents a white noise error term. The matrices Γ1,Γ2,…,Γq are parameter matrices associated with lagged endogenous
variables. Technically, we determine the order q according to the BIC.

Estimation results show that in all cases, a maximum lag order of q=4 is sufficient. In particular, the following model orders
are selected: BHP and WOW (q=3), NAB (q=2), MIM (q=4). For sake of brevity we refrain from showing all parameter
estimates here, but just report the estimates of matrix Γ1 and vector γ for BHP, NAB, MIM and WOW, respectively, which contain
the most relevant information for an economic interpretation (5% significance is denoted by an asterisk (*)):
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The estimation results can be summarised as follows:

Firstly, we observe strong own-process dynamics, but only relatively weak (mostly insignificant) cross-dependencies
between the endogenous variables. The latter are most pronounced for less frequently traded stocks (MIM and WOW).
Overall, the quite weak inter-dependencies between the processes on the ask and bid side indicate that time variations in the
liquidity schedule on the one side is almost unaffected by that on the other side.
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Secondly, the major finding is that quote changes are short-run predictable given the shape of the book. More precisely,
changes in the factor loading have a short term impact on the quote changes, up to, say, 5–10 min. The impact is significant for
the frequently traded stocks, and less severe for less liquid stocks. In particular, a shock on the bid side resulting in upward
rotation of the bid curve (inducing a higher sell pressure) leads to an instantaneous decrease in the best bid quote followed by
a significant increase of the price within the next fewminutes, see, e.g. Fig. 6. This is driven by a growing buy pressure reflected
by an increase of bid depth at and behind the market. Fig. 6 depicts the impulse responses of ask and bid quotes driven by a
shock in the order book slope. While these effects are quite distinct on the bid side, they are, however, less pronounced on the
ask side. A shock on the ask side, however, has a more neutral effect on the price, see, e.g. Fig. 6. However, note that the
predictability of quotes only holds over comparably short horizons. Therefore, for daily order execution strategies, as discussed
in Section 5, these effects are only of limited use.

Thirdly, we find slight evidence for asymmetric reactions of slope factor loadings on changes of the bid-ask spread. In
particular, we observe that rising spreads tend to reduce the order aggressiveness on the bid side while the converse is true on
the ask side. Hence, we conclude that as the bid and ask curves move apart, the price is (on average) decreasing. Similarly, as
the bid-ask spread shrinks, the price is expected to increase. This re-confirms our finding in Chapter 2, that liquidity variations
on the bid side are higher than that of the ask side with more sell activities than buy activities.

4.3. Drivers of the order book shape

In this section, we analyse whether the shape of order book curves is predictable based on key (weakly exogenous) trading
variables. We select three variables for which we expect to observe the strongest impact on the book's shape, namely the past 5-min
aggregated trading volume on both sides of the market representing the recent liquidity demand, the past 5-min log mid-quote
return as well as the past 5-min volatility.

The buy and sell trading volumes at time t are given by the sum of traded quantities from all market orders r, ~Q b
r and ~Q s

r , over
5 min interval, namely, ~Q b

t ¼ ∑Rb
t

r¼1
~Q b
r and ~Q s

t ¼ ∑Rs
t

r¼1
~Q s
r , where Rtb and Rts denote the number of buy and sell orders over the

interval (t−1,t], respectively. Correspondingly, log returns rt and volatility Vt are computed as

rt ¼ log
~S"t
~S"t−1

ð13Þ

Vt ¼ r2t ; ð14Þ

where ~S"t and ~S"t−1 denote the mid-quotes observed at t and t-1, respectively. Note that the trading volumes as well as the volatility
are seasonally adjusted following the procedure explained above. Moreover, the used nonparametric procedure requires the
variables to be standardized between −1 and 1. This standardization is performed based on the minimum and maximum
observations of the corresponding variables. Finally, as commonly known, nonparametric regression becomes computationally
cumbersome for a high number of regressors. To keep our approach computationally tractable and to avoid problems due to the
curse of dimensionality, we include the regressors only individually (together with the relative price distances). This ultimately
yields a three-dimensional problem.
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Fig. 6. Orthogonalized impulse-response analysis: responses of the best bid quote return to a one standard deviation shock in the estimated first bid factor
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employ the DSFM-separated approach with two factors and a VEC specification for selected stocks traded at the ASX from July 8 to August 16, 2002 (30 trading
days). The response variable always enters the VEC specification in the first position. 95% confidence intervals are shown with dashed lines.
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Figs. 7 and 8 show the estimated first factors for the bid and the ask side in dependence of the past 5-min sell and buy trading
volumes, respectively. As expected, we observe that the past liquidity demand influences the order book curve. A high trading
volume implies that a non-trivial part of the pending volume in the book is removed. Thus, most of the observed variation of the
factor's shape is induced by the fact that either quoted price levels close to the best quotes have been completely absorbed and the
remaining volume is correspondingly 'shifted down' in relation to the new best quote or, alternatively, only a part of the pending
volume on the best quotes is removed changing the distribution of the pending volumes across the (relative) price levels.

As expected, the curve flattens in the area of high volumes. Strikingly, we also observe a decaying pattern if the volume sizes
decline. Actually, in all pictures, the maximum slope (and thus the highest level of liquidity supply) is observed for magnitudes of
the standardized volume between −1 and 0, i.e., comparably small (though not zero) trading volumes. This pattern might be
technically explained by the standardization procedure based on extreme values or by the usual boundary problems of non-
parametric regression. On the other hand, note that due the curse-of-dimensionality problem we cannot simultaneously control
for other variables. For instance, very small market-side-specific trading volumes can indicate the occurrence of market
imbalances or, alternatively, might be associated with wide spreads. Both scenarios could force investors to post rather limit
orders than market orders which might explain the decaying shape of the figures after having observed small trading volumes.

To evaluate whether the inclusion of past trading volume further increases the model's goodness-of-fit, we calculated the
corresponding RMSEs. Comparing the results (range from 4.37 to 10.42) with that for the basis model (range from 0.18 to 3.49)
shows that the included regressors yield higher estimation errors. Hence, obviously the inclusion of additional regressors
ultimately generates more noise overcompensating a possibly higher explanatory power. Similar results are also found for the
past log returns and past volatility serving as regressors. The inclusion of log returns yields smaller estimation errors than the
inclusion of volatility. However, the overall performance is lower than in the cases above. Because of this reason, we refrain from
showing corresponding graphs of the estimated factors.

A possible reason for the declining model performance in case of included regressors might be the lower dimensionality of the
regressors in comparison with that of the limit order book. Note that the included regressors do not reveal any variation across
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the levels of the book. Consequently, the explanatory variables cannot improve the model's spatial fit but just its dynamic fit.
Obviously, the latter is not sufficient to obtain an overall reduction of estimation errors.

5. Forecasting liquidity supply

5.1. Setup

The aim of this section is to analyse the model's forecasting performance in a realistic setting mimicking the situation in
financial applications. We consider an investor observing the limit order book at 5-minute snapshots together with the
history over the past 10 trading days. It is assumed that during a trading day an investor updates limit order book every 5 min
and requires producing forecasts for all (5 min) intervals of the remainder of the day. Such information might be useful in
order to optimally balance order execution during the course of a day. Since we do not exceed beyond the end of the trading
day (in order to avoid overnight effects), the forecasting horizon h subsequently declines if we approach market closure.
Hence, starting at 10:30, we produce multi-step forecasts for all remaining h=66 intervals during the day. Correspondingly,
at 15:50, we are left with a horizon of h=1. Since quotes themselves – according to our results above – are only predictable
over short horizons which are virtually irrelevant for the present analysis, we do not explicitly incorporate this information
here.

Consequently, the model is re-estimated every 5 min exploiting past information over a fixed window of 10 trading days
(including the recent observation). Due to the length of the estimation period, we do not produce forecasts for the first two weeks
of our sample but focus on the period between July 22 and August 16, 2002, thereby covering the period of 20 trading days. In
accordance with our in-sample results reported in the previous section, we choose the DSFM-Separated approach based on two
factors without additional regressors as underlying specification.

A natural benchmark to evaluate our model is the naive forecast. In this context, we assume that the investor has no
appropriate prediction model but just uses the current liquidity supply as a forecast for the remainder of the day. More formally,
we suppose that our investor can use the following two approaches in order to forecast liquidity supply Ŷ t′þh;j at a given time
point t′ from July 22 at 10:25 until August 16, 2002, at 15:50, t′=693,…,2069=T−1, over a forecasting horizon 1≤h≤66, and
over the absolute price level j:

(i) DSFM approach: Firstly, the factors and factor loadings are estimated using the DSFM-Separated approach with two factors,
K=20 knots used for the B-spline basis functions, and with past 690 observed (de-seasonalized) limit order book curves.
More precisely, at time point t′, relative price levels St′−691 : t′,j

b and St′−691 : t′,j
a and de-seasonalized observed bid and ask

sides Yt′−691 : t′,j
b and Yt′−691 : t′,j

a enter the estimation procedures. This yields estimates for the bid (ask) side, 66 times per
day for each stock, in total 1320 times over 20 days.
Secondly, since we do not account for (short-term) quote return predictability but only forecast the liquidity supply, we
employ a simple 4-dimensional VAR(p) model for the four time-varying factor loadings. When fitted to the entire time
series (30 trading days) and according to the BIC, a maximum lag order p=4 is sufficient. In particular, the following
VAR(p) models are selected: BHP and MIM – VAR(4), NAB – VAR(2), WOW – VAR(3). Using this specifications, we forecast
the factor loadings over the forecasting period Ẑ t′þh. Then, the predicted factor loadings together with the estimated time-
invariant factors m̂l are used to predict the order book.

(ii) Naive approach: Among all historical 690 limit order book curves, only the last one at time t′, (Yt′,jb , Yt′,ja ), is selected as the h-
step ahead forecast.

The predictions are evaluated using the root mean squared prediction error (RMSPE), i.e., a version of the in-sample RMSE
(11) where the sum over the sampling periods t and the sample size T are replaced by the forecasting horizons h and H,
respectively. Since future quotes and relative price grids are not predicted by the model, we assume that quotes themselves
follow random walk processes and the spread remains constant. Future quotes are therefore predicted using the current one.
Consequently, the predicted future relative price grid remains constant.

5.2. Forecasting results

Fig. 9 shows the RMSPEs for each required forecasting horizon h during a trading day implied by the DSFM as well as the naive
model. The following results can be summarized: First, overall the DSFM forecasts outperform the naive ones. Nevertheless, the
naive forecast is a serious competitor which is hard to beat. This result is not surprising given the high persistence in liquidity
supply. Secondly, the model's forecasting performance is obviously higher on the bid side than on the ask side. This result might
be explained by the fact that during the sample period we observe a downward market inducing higher activities on the bid side
than on the ask side. This is confirmed by the descriptive statistics shown above. Thirdly, the DSFM outperforms the naive model
particularly over horizons up to 1 to 2 hours. For longer horizons, the picture is less clear.

Analyzing average RMSPEs (averaged over all forecasting horizons and both sides of the market) as reported by Table 2
indicate that the overall prediction performance of the DSFM approach is significantly higher than that of the benchmark.
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5.3. Financial and economic applications

The results in the previous section show that the DSFM is able to successfully predict liquidity supply over various forecasting
horizons during a day. In this subsection, we apply these results to two practical examples. The first one is devoted to an order
execution strategy, whereas the second one deals with forecasts of demand and supply elasticities.

Example 1. (Trading Strategy)

Suppose an institutional investor decides to buy (sell) a certain number of shares v over the course of a trading day, starting
from 10:30 until 15:40. The size of the traded quantity for BHP, NAB and WOW is chosen as to be 5 or 10 times the average
pending volume at the best bid (ask) level. In case of MIM, where liquidity supply is muchmore concentrated at the first level and
the book is very thin for higher levels (see the empirical results in the previous sections), we choose the traded volume as being 2
and 5 times the average first level depth. This yields to the following quantities in the respective two cases of high (a) and very
high (b) liquidity demand:

(a) BHP – 175,000 shares; NAB – 25,000 shares; WOW – 50,000 shares; MIM – 1,860,000 shares
(b) BHP – 350,000 shares; NAB – 50,000 shares; WOW – 100,000 shares; MIM – 4,650,000 shares.

To reduce the computational burden, we assume that trading is only performed on a 5 min grid throughout the day
corresponding to 63 possible trading time points. Moreover, suppose that the investor makes her trading decision at 10:30 but
does not monitor the market anymore during the day. Consequently, her forecasting horizon covers h=63 periods at each trading
day. Then, she has to decide between two execution strategies:

(i) Splitting the buy (sell) order of size v in a 5 minute frequency proportionally over the trading day resulting into 63 trades of
size v/63 each.

(ii) Placing orders not proportionally but at those m (5 minute interval) time points throughout the day where the DSFM-
based predicted implied trading costs c of the volume v are smallest (among all 63 possible periods). Then, the volume v is
split over them time points according to the relative proportions of expected trading costs. Hence, at interval i,wi⋅v shares
are traded, with wi ¼ ci=∑m

j¼1 cj for i=1,…,m.

Table 2
Average root mean squared prediction errors (RMPSEs) of both limit order book sides implied by the DSFM-separated approach with two factors and the naive
model for selected stocks traded at the ASX in the period from July 22 to August 6, 2002 (20 forecasting days).

Approach BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW

Naive 7.11 7.59 6.03 6.08 6.50 5.96 5.96 6.19
DSFM 7.18 5.10 4.84 5.33 5.56 5.46 5.63 5.45
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Fig. 9. Root mean squared prediction errors (RMSPEs) implied by the DSFM-separated approach with two factors for the bid side (red) as well as the ask side
(blue) and by the naive approach (black) for all intra-day forecasting horizons (in hours) for selected stocks traded at the ASX. Prediction period: July 22 to
August 16, 2002 (20 trading days).
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Strategy (i) can be seen as a special case of strategy (ii) if m is chosen as m=63 and the volume v is just equally split.
Conversely, for m=1, we obtain the extreme case, where the entire quantity is traded once requiring to severely 'walk up' the
book. The DSFM predictions of trading costs are computed based on the predicted order book shape at each point and the effective
costs to buy or to sell the quantity vwhile using the ask and bid quotes prevailing at 10:25 (in accordance with the assumption of
a random walk). Note that we do not optimize over the quantity underlying the predicted trading costs but just fix it at v
corresponding to the maximally possible trade size per time point. Consequently, our strategy selects those trading points where
the execution of the entire quantity v is expected to be cheapest and thus covers also the hypothetical (limiting) case of putting all
weight wi on a single point implying a 'one-shot' execution. Of course, an even more sophisticated (and optimized) strategy
would require the prediction of trading costs for relative proportions of v which are themselves simultaneously optimized.
However, this would substantially increase the numerical and computational burden and is beyond the scope of the current study.

To implement these strategies, we consider 20 forecasting days covering the period from July 22 to August 16, 2002. Fig. 10
shows the average percentage reduction in trading costs of strategy (ii) in excess of the equal-splitting ('naive') strategy (i) for
various choices of m∈ [1,63]. In most cases we observe that a strategic placing of orders according to DSFM predictions yield
excess gains of approximately 10 basis points on average. Overall, the selling strategies are more beneficial than the buying
strategies confirming the findings on prediction errors above. This is most striking for BHP where we observe a significant
difference between sell-based and buy-based profits if the number of trading points are low. Apart from this observation we find a
generally non-monotonic behavior of the curves implying losses ifm is small, increasing (and positive) gains for a higher number
of trading points and a convergence to zero for m reaching the upper limit of 63. This pattern indicates that trading the daily
position using only a few large market orders is inferior to an equal-splitting strategy as the underlying transactions have to walk
up the book too severely and cause huge price impacts. For higher values of m, the strategic placement according to DSFM
predictions become profitable where in the limit of m=63, relative benefits are only due to a strategic (non-equal) weighting
scheme. However, for MIM we observe a significantly different pattern implying the highest gains for m being small and nearly
monotonically declining profits if m is increasing. This pattern is obviously induced by the peculiarities of the MIM order book
which is extremely deep on the first level and makes 'one-shot' executions of large volumes quite beneficial. Overall, the patterns
are very similar for the two classes of daily quantities, where as expected the relative gains become smaller with higher traded
daily volume.

Overall, our findings indicate that the model is successful in predicting times where the market is sufficiently deep in order to
execute a large orders. The fact that the model performs reasonably well is promising for more elaborate practical applications of
the DSFM. Moreover, note that the reported results are valid under the assumption that there are no transaction fees. Actually, in
practice, a proportional splitting strategy induces higher transaction costs as a complete execution via a market order. This
component is not taken into account here and would even increase the performance of the DSFM-based execution strategy.
Finally, predictions of trading costs could be further improved by exploiting possible predictive information of the limit order
book for future returns. Our descriptive statistics reported above show that order book imbalances have indeed (slight) prediction
power. We will leave these issues, however, for future research.
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Fig. 10. Average percentage gains by reduced transaction costs compared to an equal-splitting strategy when buying (blue) and selling (red) shares based on m
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Example 2. (Demand and Supply Elasticity)

A straightforward dimension-less measure for the order book slope is the curve's elasticity which we compute at best bid (~Sbt′ ;101)
and best ask prices (~Sat′ ;1) as

Êd
t′þh ¼

Ŷ b
t′þh;1−Ŷ b

t′þh;101

Ŷ b
t′þh;101

=
~Sbt′ ;1−~Sbt′ ;101

~Sbt′ ;101
; ð15Þ

Ês
t′þh ¼

Ŷ a
t′þh;101−Ŷ a

t′þh;1

Ŷ a
t′þh;1

=
~Sat′ ;101−~Sat′ ;1

~Sat′ ;1
; ð16Þ

for the demand (bid) and supply (ask) side, respectively. The elasticity is a measure for the marginal trading costs reflecting the
curve's curvature.

Suppose at 10:30 an investor aims to predict the demand and supply elasticity at best bid and best ask prices for all 5-min
intervals during the trading day covering the forecast horizons h=1,…,66. As above, the forecasts are computed using the last 10
trading days. Since we are not forecasting the price process, the last observed ask and bid quotes are used for prediction. Fig. 11
shows the 10:30 predictions of demand and supply elasticities at best bid and best ask prices during all trading days. We observe
that marginal trading costs exhibit significant variations over time. The fact that predicted elasticities reveal temporarily trending
patterns might be used for improving trading strategies.

Consider the case of NAB on July 24 and July 30, 2002. We observe that the demand elasticities (in absolute terms) are
increasing on the first day, and decreasing on the second day. Practically, it would be better to sell shares late on July 24, and early
on July 30, under the assumption that the price does not change significantly over both trading days. The supply elasticities show
converse patterns across the days. Consequently, it would be advisable to buy shares early on July 24, and late on July 30, provided
that the prices remain unchanged. While this section aims to illustrate possible applications of the DSFM approach, more detailed
elaborations of dynamic strategies are beyond the scope of the paper.

6. Conclusions

In this paper, we propose a dynamic semiparametric factor model (DSFM) for modelling and forecasting liquidity supply. The
main idea of the DSFM as proposed by Brüggemann et al. (2008), Cao et al. (2009), Fengler et al. (2007) and Park et al. (2009) is to
capture the order curve's spatial structure across various relative distances to the best quotes using a factor decomposition which
is estimated nonparametrically. To capture the order book's time variations, the corresponding factor loadings are modelled using
a multivariate time series model. The framework is flexible though parsimonious and turns out to provide a powerful way to
reduce the high dimension of the book and to extract the relevant underlying information regarding order book dynamics.

The model is applied to four stocks traded at the Australian Stock Exchange (ASX). It is shown that two underlying factors can
explain up to 95% of in-sample variations of ask and bid liquidity supply.While the first factor captures the overall order curve's slope,
the second factor is associated with the curve's curvature. The extracted factor loadings reveal highly persistent though weakly
stationary dynamics which are successfully captured by a vector error correction specification. We find relatively weak spill-over
effects between both sides of the limit order book sides that are more pronounced for less liquid stocks compared to high frequently
traded ones. It is shown that order book shapes have short-term prediction power for quote changes. Furthermore, we show that the
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order curves' shapes are driven by explanatory variables reflecting the recent liquidity demand, volatility as well as mid-quote
returns.

Employing the DSFM approach in an extensive and realistic out-of-sample forecasting exercise we show that the model
successfully predicts the liquidity supply over various forecasting horizons during a trading day and outperforms a naive approach.
Using the forecasting results in a trading strategy it is shown that order execution costs can be reduced if orders are optimally placed
according to predictions of liquidity supply. In particular, it turns out that optimal order placement in periods of high liquidity results
in smaller transaction costs than in the case of a proportional splitting over time. Finally, our flexible approach allows us to estimate
and to predict future (excess) demand and supply elasticities.

These results show that the DSFM approach is suitable for modelling and forecasting liquidity supply. Since it is computationally
tractable, it can serve as a valuable building block for automated trading models.
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ABSTRACT Weather derivatives (WD) are end-products of a process known as securitization
that transforms non-tradable risk factors (weather) into tradable financial assets. For pricing and
hedging non-tradable assets, one essentially needs to incorporate the market price of risk (MPR),
which is an important parameter of the associated equivalent martingale measure (EMM). The
majority of papers so far has priced non-tradable assets assuming zero or constant MPR, but
this assumption yields biased prices and has never been quantified earlier under the EMM frame-
work. Given that liquid-derivative contracts based on daily temperature are traded on the Chicago
Mercantile Exchange (CME), we infer the MPR from traded futures-type contracts (CAT, CDD,
HDD and AAT). The results show how the MPR significantly differs from 0, how it varies in
time and changes in sign. It can be parameterized, given its dependencies on time and temperature
seasonal variation. We establish connections between the market risk premium (RP) and the MPR.

KEY WORDS: CAR process, CME, HDD, seasonal volatitity, risk premium

1. Introduction

In the 1990s weather derivatives (WD) were developed to hedge against the ran-
dom nature of temperature variations that constitute weather risk. WD are financial
contracts with payments based on weather-related measurements. WD cover against
volatility caused by temperature, rainfall wind, snow, and frost. The key factor in effi-
cient usage of WD is a reliable valuation procedure. However, due to their specific
nature one encounters several difficulties. First, because the underlying weather (and
indices) is not tradable and second, the WD market is incomplete, meaning that the
WD cannot be cost-efficiently replicated by other WD.

Since the largest portion of WD traded at Chicago Mercantile Exchange (CME) is
written on temperature indices, we concentrate our research on temperature deriva-
tives. There have been basically four branches of temperature derivative pricing:
actuarial approach, indifference pricing, general equilibrium theory or pricing via no
arbitrage arguments. While the actuarial approach considers the conditional expecta-
tion of the pay-off under the real physical measure discounted at the riskless rate (Brix
et al., 2005), the indifference pricing relies on the equivalent utility principle (Barrieu
and El Karoui, 2002; Brockett et al., 2010) and the general equilibrium theory assumes
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investors’ preferences and rules of Pareto optimal risk allocation (Cao and Wei, 2004;
Horst and Mueller, 2007; Richards et al., 2004). The Martingale approach, although
less demanding in terms of assumptions, concentrates on the econometric modelling
of the underlying dynamics and requires the selection of an adequate equivalent mar-
tingale measure (EMM) to value the pay-offs by taking expectations (Alaton et al.,
2002; Benth, 2003; Benth and Saltyte-Benth, 2007; Benth et al., 2007; Brody et al.,
2002; Huang-Hsi et al., 2008; Mraoua and Bari, 2007).

Here we prefer the latter approach. First, since the underlying (temperature) we
consider is of local nature, our analysis aims at understanding the pricing at different
locations around the world. Second, the EMM approach helps identify the market
price of risk (MPR), which is an important parameter of the associated EMM, and it is
indispensable for pricing and hedging non-tradable assets. The MPR can be extracted
from traded securities and one can use this value to price other derivatives, though any
inference about the MPR requires an assumption about its specification.

The MPR is of high scientific interest, not only for financial risk analysis, but
also for better economic modelling of fair valuation of risk. Constantinides (1987)
and Landskroner (1977) studied the MPR of tradable assets in the Capital Asset
Pricing Model (CAPM) framework. For pricing interest rate derivatives, Vasicek
(1977) assumed a constant market price of interest rate, while Hull and White (1990)
used the specification of Cox et al. (1985). In the oil market, Gibson and Schwartz
(1990) supposed an intertemporal constant market price of crude oil conveniences
yield risk. Benth et al. (2008) introduced a parameterization of the MPR to price elec-
tricity derivatives. In the WD framework, Cao and Wei (2004) and Richards et al.
(2004) studied the MPR as an implicit parameter in a generalization of the Lucas’
(1978) equilibrium framework. They showed that the MPR is not only statistically
significant for temperature derivatives, but also economically large as well. However,
calibration problems arise with the methodology suggested by Cao and Wei (2004),
since it deals with a global model like the Lucas’ (1978) approach while weather is
locally specified. Benth and Saltyte-Benth (2007) introduced theoretical ideas of equiv-
alent changes of measure to get no arbitrage futures/option prices written on different
temperature indices. Huang-Hsi et al. (2008) examined the MPR of the Taiwan Stock
Exchange Capitalization-Weighted Stock Index ((the mean of stock returns – risk-free
interest rate)/SD of stock returns) and used it as a proxy for the MPR on temperature
option prices. The majority of temperature pricing papers so far has priced tempera-
ture derivatives assuming 0 or constant MPR (Alaton et al., 2002; Cao and Wei, 2004;
Dorfleitner and Wimmer, 2010; Huang-Hsi et al., 2008; Richards et al., 2004), but this
assumption yields biased prices and has never been quantified earlier using the EMM
framework. This article deals exactly with the differences between ‘historical’ and ‘risk
neutral’ behaviours of temperature.

The contribution of this article is threefold. First, in contrast to Campbell and
Diebold (2005), Benth and Saltyte-Benth (2007) and Benth et al. (2007), we cor-
rect for seasonality and seasonal variation of temperature with a local smoothing
approach to get, independently of the chosen location, the driving stochastics close
to a Gaussian Process and with that being able to apply pricing technique tools of
financial mathematics (Karatzas and Shreve, 2001). Second and the main contribution,
using statistical modelling and given that liquid derivative contracts based on daily
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temperature are traded on the CME, we imply the MPR from traded futures-type con-
tracts (CAT/HDD/CDD/AAT) based on a well-known pricing model developed by
Benth et al. (2007). We have chosen this methodology because it is a stationary model
that fits the stylized characteristics of temperature well; it nests a number of previous
models (Alaton et al., 2002; Benth, 2003; Benth and Saltyte-Benth, 2005, 2007; Brody
et al., 2002; Dornier and Querel, 2007); it provides closed-form pricing formulas; and
it computes, after deriving the MPR, non-arbitrage prices based on a continuous-
time hedging strategy. Moreover, the price dynamics of futures are easy to compute
and require only a one-time estimation. Our implied MPR approach is a calibra-
tion procedure for financial engineering purposes. In the calibration exercise, a single
date (but different time horizons and calibrated instruments are used) is required,
since the model is recalibrated daily to detect intertemporal effects. Moreover, we use
an economic and statistical testing approach, where we start from a specification of
the MPR and check consistency with the data. The aim of this analysis is to study
the effect of different MPR specifications (a constant, a (two) piecewise linear func-
tion, a time-deterministic function and a ‘financial-bootstrapping’) on the temperature
futures prices. The statistical point of view is to beat this as an inverse problem with
different degrees of smoothness expressed through the penalty parameter of a smooth-
ing spline. The degrees of smoothness will allow for a term structure of risk. Since
smoothing estimates are fundamentally different from estimating a deterministic func-
tion, we also assure our results by fitting a parametric function to all available contract
prices (calendar year estimation). The economic point of view is to detect possible time
dependencies that can be explained by investor’s preferences in order to hedge weather
risk. Our findings that the MPR differs significantly from 0 confirm the results found
in Cao and Wei (2004), Huang-Hsi et al. (2008), Richards et al. (2004) and Alaton
et al. (2002), but we differ from them, by showing that it varies in time and changes
in sign. It is not a reflection of bad model specification, but data-extracted MPR. This
contradicts the assumption made earlier in the literature that the MPR is 0 or con-
stant and rules out the ‘burn-in’ analysis, which is popular among practitioners since
it uses the historical average index value as the price for the futures (Brix et al., 2005).
This brings significant challenges to the statistical branch of the pricing literature.
We also establish connections between the market risk premium (RP) (a Girsanov-
type change of probability) and the MPR. As a third contribution, we discuss
how to price over-the-counter (OTC) temperature derivatives with the information
extracted.

Our article is structured as follows. Section 2 presents the fundamentals of tem-
perature derivatives (futures and options) and describes the temperature data and the
temperature futures traded at CME, the biggest market offering this kind of product.
Section 3 is devoted to explaining the dynamics of temperature data – the economet-
ric part. The temperature model captures linear trend, seasonality, mean reversion,
intertemporal correlations and seasonal volatility effects. Section 4 – the financial
mathematics part – connects the weather dynamics with the pricing methodology.
Section 5 solves the inverse problem of determining the MPR of CME temperature
futures using different specifications. Section 1 introduces the estimation results and
test procedures of our specifications applied into temperature-derivative data. Here we
give (statistical and economic) interpretations of the estimated MPR. The pricing of

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] a

t 0
6:

53
 2

5 
A

pr
il 

20
12

 



62 W. K. Härdle and B. López Cabrera

OTC temperature products is discussed at the end of this section. Section 6 concludes
the article. All computations in this article were carried out in Matlab version 7.6 (The
MathWorks, Inc., Natick, MA, USA). To simplify notation, dates are denoted with
yyyymmdd format.

2. Temperature Derivatives

The largest portion of futures and options written on temperature indices is traded on
the CME. Most of the temperature derivatives are written on daily average temperature
indices, rather than on the underlying temperature by itself. A call option written on
futures F(t,τ1,τ2) with exercise time t ≤ τ1 and delivery over a period [τ1, τ2] will pay
max

{
F(t,τ1,τ2) − K , 0

}
at the end of the measurement period [τ1, τ2]. The most common

weather indices on temperature are Heating Degree Day (HDD), Cooling Degree Day
(CDD) and Cumulative Averages (CAT). The HDD index measures the temperature
over a period [τ1, τ2], usually between October and April:

HDD(τ1, τ2) =
∫ τ2

τ1

max(c− Tu, 0) du, (1)

where c is the baseline temperature (typically 18◦C or 65◦F) and Tu = (Tu,max +
Tu,min)/2 is the average temperature on day u. Similarly, the CDD index measures the
temperature over a period [τ1, τ2], usually between April and October:

CDD(τ1, τ2) =
∫ τ2

τ1

max(Tu − c, 0) du. (2)

The HDD and the CDD index are used to trade futures and options in 24 US cities,
6 Canadian cities and 3 Australian cities. The CAT index accounts the accumulated
average temperature over [τ1, τ2]:

CAT(τ1, τ2) =
∫ τ2

τ1

Tudu. (3)

The CAT index is the substitution of the CDD index for 11 European cities. Since
max(Tu − c, 0)−max(c− Tu, 0) = Tu − c, we get the HDD–CDD parity:

CDD(τ1, τ2)−HDD(τ1, τ2) = CAT(τ1, τ2)− c(τ2 − τ1). (4)

Therefore, it is sufficient to analyse only HDD and CAT indices. An index similar to
the CAT index is the Pacific Rim Index, which measures the accumulated total of 24-hr
average temperature (C24AT) over a period [τ1, τ2] days for Japanese cities:

C24AT(τ1, τ2) =
∫ τ2

τ1

T̃udu, (5)

where T̃u = 1
24

∫ 24
1 Tui dui and Tui denotes the temperature of hour ui. A difference of

the CAT and the C24AT index is that the latter is traded over the whole year. Note that
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The Implied Market Price of Weather Risk 63

temperature is a continuous-time process even though the indices used as underlying
for temperature futures contracts are discretely monitored.

As temperature is not a marketable asset, the replication arguments for any temper-
ature futures contract do not hold and incompleteness of the market follows. In this
context, any probability measure Q equivalent to the objective P is also an EMM and a
risk neutral probability turns all the tradable assets into martingales after discounting.
However, since temperature futures/option prices dynamics are indeed tradable assets,
they must be free of arbitrage. Thanks to the Girsanov theorem, equivalent changes of
measures are simply associated with changes of drift. Hence, under a probability space
(!,F , Q) with a filtration {Ft}0≤t≤τmax

, where τmax denotes a maximal time covering
all times of interest in the market, we choose a parameterized equivalent pricing mea-
sure Q = Qθ that completes the market and pin it down to compute the arbitrage-free
temperature futures price:

F(t,τ1,τ2) = E Qθ [Y |Ft], (6)

where Y refers to the pay-off from the temperature index in Equations (2)–(5). The
MPR θ is assumed to be a real-valued, bounded and piecewise continuous function.
We later relax that assumption, by considering the time-dependent MPR θt. In fact,
the MPR can depend on anything that can affect investors’ attitudes. The MPR can be
inferred from market data.

The choice of Q determines the RP demanded for investors for holding the tem-
perature derivative, and opposite, having knowledge of the RP determines the choice
of the risk-neutral probability. The RP is defined as a drift of the spot dynamics
or a Girsanov-type change of probability. In Equation (6), the futures price is set
under a risk-neutral probability Q = Qθ , thereby the RP measures exactly the differ-
ences between the risk-neutral F(t,τ i

1,τ i
2,Q) (market prices) and the temperature market

probability predictions F̂(t,τ i
1,τ i

2,P) (under P):

RP = F(t,τ i
1,τ i

2,Q) − F̂(t,τ i
1,τ i

2,P). (7)

Using the ‘burn-in’ approach of Brix et al. (2005), the futures price is only the historical
average index value, therefore there is no RP since Q = P.

2.1 Data

We have temperature data available from 35 US, 30 German, 159 Chinese and
9 European weather stations. The temperature data were obtained from the National
Climatic Data Center (NCDC), the Deutscher Wetterdienst (DWD), Bloomberg
Professional Service, the Japanese Meteorological Agency (JMA) and the China
Meteorological Administration (CMA). The temperature data contain the minimum,
maximum and average daily temperatures measured in degree Fahrenheit for US cities
and degree Celsius for other cities. The data set period is, in most of the cities, from
19470101 to 20091231.

The WD data traded at CME were provided by Bloomberg Professional Service. We
use daily closing prices from 20000101 to 20091231. The measurement periods for the

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] a

t 0
6:

53
 2

5 
A

pr
il 

20
12

 



64 W. K. Härdle and B. López Cabrera

different temperature indices are standardized to be as each month of the year or as
seasonal strips (minimum of 2 and maximum of 7 consecutive calendar months). The
futures and options at the CME are cash settled, that is, the owner of a futures contract
receives 20 times the index at the end of the measurement period, in return for a fixed
price. The currency is British pounds for the European futures contracts, US dollars for
the US contracts and Japanese Yen for the Asian cities. The minimum price increment
is 1 index point. The degree day metric is Celsius or Fahrenheit and the termination of
the trading is two calendar days following the expiration of the contract month. The
accumulation period of each CAT/CDD/HDD/C24AT index futures contract begins
with the first calendar day of the contract month and ends with the calendar day of the
contract month. Earth Satellite Corporation (ESC) reports to CME the daily average
temperature. Traders bet that the temperature will not exceed the estimates from ESC.

3. Temperature Dynamics

In order to derive explicitly no arbitrage prices for temperature derivatives, we need
first to describe the dynamics of the underlying under the physical measure. This article
studies the average daily temperature data (because most of the temperature derivative
trading is based on this quantity) for US, European and Asian cities. In particular,
we analyse the weather dynamics for Atlanta, Portland, Houston, New York, Berlin,
Essen, Tokyo, Osaka, Beijing and Taipei (Table 1). Our interest in these cities is because
all of them with the exception of the latter two are traded at CME and because a casual
examination of the trading statistics on the CME website reveals that the Atlanta
HDD, Houston CDD and Portland CDD temperature contracts have relatively more
liquidity.

Most of the literature that discuss models for daily average temperature and cap-
ture a linear trend (due to global warming and urbanization), seasonality (peaks in
cooler winter and warmer summers), mean reversion, seasonal volatility (a variation
that varies seasonally) and strong correlations (long memory); see, for example, Alaton
et al. (2002), Cao and Wei (2004), Campbell and Diebold (2005) and Benth et al.
(2007). They differ from their definition of temperature variations, which is exactly
the component that characterizes weather risk. Here we show that an autoregres-
sive (AR) model AR of high order (p) for the detrended daily average temperatures
(rather than the underlying temperature itself) is enough to capture the stylized facts
of temperature.

We first need to remove the seasonality in mean !t from the daily temperature
series Tt, check intertemporal correlations and remove the seasonality in variance to
deal with a stationary process. The deterministic seasonal mean component can be
approximated with Fourier-truncated series (FTS):

!t = a + bt +
L∑

l=1

clcos
{

2π (t− dl)
l · 365

}
, (8)

where the coefficients a and b indicate the average daily temperature and global warm-
ing, respectively. We observe low temperatures in winter times and high temperatures
in summer for different locations. The temperature data sets do not deviate from its
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66 W. K. Härdle and B. López Cabrera

mean level and in most of the cases a linear trend at 1% significance level is detectable
as it is displayed in Table 1.

Our findings are similar to Alaton et al. (2002) and Benth et al. (2007) for Sweden;
Benth et al. (2007) for Lithuania; Campbell and Diebold (2005) for the United States;
and Papazian and Skiadopoulos (2010) for Barcelona, London, Paris and Rome. In
our empirical results, the number of periodic terms of the FTS series varies from city
to city, sometimes from 4 to 21 or more terms. We notice that the series expansion
in Equation (8) with more and more periodic terms provides a fine tuning, but this
will increase the number of parameters. Here we propose a different way to correct for
seasonality. We show that a local smoothing approach does that job instead, but with
less technical expression. Asymptotically they can be approximated by FTS estimators.
For a fixed time point s ∈ [1, 365], we smooth!s with a Local Linear Regression (LLR)
estimator:

!s = arg min
e, f

365∑

t=1

{
T̄t − es − fs(t− s)

}2
K
(

t− s
h

)
, (9)

where T̄t is the mean of average daily temperature in J years, h is the smoothing
parameter and K(·) denotes a kernel. This estimator, using Epanechnikov Kernel,
incorporates an asymmetry term since high temperatures in winter are more pro-
nounced than in summer as Figure 1 displays in a stretch of 8 years plot of the average
daily temperatures over the FTS estimates.

After removing the LLR-seasonal mean (Equation (9)) from the daily average tem-
peratures (Xt = Tt −!t), we apply the Augmented Dickey–Fuller (ADF) and the
Kwaitkowski–Phillips–Schmidt–Shin (KPSS) tests to check whether Xt is a station-
ary process. We then plot the Partial Autocorrelation Function (PACF) of Xt to detect
possible intertemporal correlations. This suggests that persistence of daily average is
captured by AR processes of higher order p:

Xt+p =
p∑

i=1

βiXt−i + εt, εt = σtet, et ∼ N(0, 1), (10)

with residuals εt. Under the stationarity hypothesis of the coefficients βs and the mean
zero of residuals εt, the mean temperature E [Tt] = !t. This is different to the approach
of Campbell and Diebold (2005), who suggested to regress deseasonalized tempera-
tures on original temperatures. The analysis of the PACFs and Akaike’s information
criterion (AIC) suggests that the AR(3) model in Benth et al. (2007) explains the tem-
perature evolution well and holds for many cities. The results of the stationarity tests
and the coefficients of the fitted AR(3) are given in Table 2. Figure 2 illustrates that the
ACFs of the residuals εt are close to 0 and according to Box-Ljung statistic the first
few lags are insignificant, whereas the ACFs of the squared residuals ε2

t show a high
seasonal pattern.

We calibrate the deterministic seasonal variance function σ 2
t with FTS and an

additional generalized autoregressive conditional heteroskedasticity (GARCH) (p, q)
term:
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Figure 1. A stretch of 8 years plot of the average daily temperatures (black line), the seasonal
component modelled with a Fourier-truncated series (dashed line) and the local linear regres-
sion (grey line) using Epanechnikov Kernel. (a) Atlanta, (b) Beijing, (c) Berlin, (d) Essen, (e)
Houston, (f) New York, (g) Osaka, (h) Portland, (i) Taipei and (j) Tokyo.

σ̂ 2
t = c +

L∑

l=1

{
c2l cos

(
2lπ t
365

)
+ c2l+1 sin

(
2lπ t
365

)}
+ α1(σt−1ηt−1)2 + β1σ

2
t−1, ηt

∼ iid N(0, 1).

(11)
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68 W. K. Härdle and B. López Cabrera

Table 2. Result of the stationary tests and the coefficients of the fitted AR(3).

ADF–KPSS AR(3) CAR(3)

City τ̂ k̂ β1 β2 β3 α1 α2 α3 λ1 λ2,3

Atlanta −55.55+ 0.21∗∗∗ 0.96 −0.38 0.13 2.03 1.46 0.28 −0.30 −0.86
Beijing −30.75+ 0.16∗∗∗ 0.72 −0.07 0.05 2.27 1.63 0.29 −0.27 −1.00
Berlin −40.94+ 0.13∗∗ 0.91 −0.20 0.07 2.08 1.37 0.20 −0.21 −0.93
Essen −23.87+ 0.11∗ 0.93 −0.21 0.11 2.06 1.34 0.16 −0.16 −0.95
Houston −38.17+ 0.05∗ 0.90 −0.39 0.15 2.09 1.57 0.33 −0.33 −0.87
New York −56.88+ 0.08∗ 0.76 −0.23 0.11 2.23 1.69 0.34 −0.32 −0.95
Osaka −18.65+ 0.09∗ 0.73 −0.14 0.06 2.26 1.68 0.34 −0.33 −0.96
Portland −45.13+ 0.05∗ 0.86 −0.22 0.08 2.13 1.48 0.26 −0.27 −0.93
Taipei −32.82+ 0.09∗ 0.79 −0.22 0.06 2.20 1.63 0.36 −0.40 −0.90
Tokyo −25.93+ 0.06∗ 0.64 −0.07 0.06 2.35 1.79 0.37 −0.33 −1.01

Notes: ADF, augmented Dickey–Fuller; KPSS, Kwiatkowski–Phillips–Schmidt–Shin; AR, autoregressive
process; CAR, continuous autoregressive model.
ADF and KPSS statistics, coefficients of the AR(3), CAR(3) and eigenvalues λ1,2,3, of the matrix A of the
CAR(3) model for the detrended daily average temperatures for different cities.
+0.01 critical values, ∗0.1 critical value, ∗∗0.05 critical value, ∗∗∗0.01 critical value.

The Fourier part in Equation (11) captures the seasonality in volatility, whereas
the GARCH part captures the remaining non-seasonal volatility. Note again that
more and more periodic terms in Equation (11) provide a good fitting but this
will increase the number of parameters. To avoid this and in order to achieve pos-
itivity of the variance, Gaussian risk factors and volatility model flexibility in a
continuous time, we propose the calibration of the seasonal variance in terms of
an LLR:

arg min
g,h

365∑

t=1

{
ε̂2

t − gs − hs(t− s)
}2

K
(

t− s
h

)
, (12)

where ε̂2
t is the mean of squared residuals in J years and K(·) is a kernel. Figure 3

shows the daily empirical variance (the average of squared residuals for each day of
the year), the fittings using the FTS-GARCH(1,1) and the LLR (with Epanechnikov
kernel) estimators. Here we obtain the Campbell and Diebold’s (2005) effect for differ-
ent temperature data, high variance in winter to earlier summer and low variance in
spring to late summer. The effects of non-seasonal GARCH volatility component are
small.

Figure 4 displays the ACFs of temperature residuals εt and squared residuals ε2
t

after dividing out the deterministic LLR seasonal variance. The ACF plots of the
standardized residuals remain unchanged but now the squared residuals presents a
non-seasonal pattern. The LLR seasonal variance creates almost normal residuals and
captures the peak seasons as Figure 5 in a log Kernel smoothing density plot shows
against a Normal Kernel evaluated at 100 equally spaced points. Table 3 presents
the calibrated coefficients of the FTS-GARCH seasonal variance estimates and the
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Figure 2. The ACF of residuals εt (left panels) and squared residuals ε2
t (right panels) of

detrended daily temperatures for different cities.

descriptive statistics for the residuals after correcting by the FTS-GARCH and LLR
seasonal variance. We observe that independently of the chosen location, the driving
stochastics are close to a Wiener process. This will allow us to apply the pricing tools
of financial mathematics.
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Figure 3. The daily empirical variance (black line), the Fourier-truncated (dashed line) and
the local linear smoother seasonal variation using Epanechnikov kernel (grey line) for differ-
ent cities. (a) Atlanta, (b) Beijing, (c) Berlin, (d) Essen, (e) Houston, (f) New York, (g) Osaka,
(h) Portland, (i) Taipei and (j) Tokyo.

4. Stochastic Pricing Model

Temperatures are naturally evolving continuously over time, so it is very convenient
to model the dynamics of temperature with continuous-time stochastic processes,
although the data may be on a daily scale. We therefore need the reformulation of the
underlying process in continuous time to be more convenient with market definitions.
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Figure 4. The ACF of residuals εt (left panels) and squared residuals ε2
t (right panels) of

detrended daily temperatures after dividing out the local linear seasonal variance for different
cities.

We show that the AR(p) (Equation (10)) estimated in Section 3 for the detrended tem-
perature can be therefore seen as a discretely sampled continuous-time autoregressive
(CAR) process (CAR(p)) driven by a one-dimensional Brownian motion Bt (though
the continuous-time process is Markov in higher dimension) (Benth et al., 2007):

dXt = AXtdt + epσtdBt, (13)
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Figure 5. The log of Normal Kernel (∗) and log of Kernel smoothing density estimate of residuals
after correcting FTS (+) and locar linear (o) seasonal variance for different cities (a) Atlanta,
(b) Beijing, (c) Berlin, (d) Essen, (e) Houston, (f) New York, (g) Osaka, (h) Portland, (i) Taipei
and (j) Tokyo.

where the state vector X t ∈ Rp for p ≥ 1 is a vectorial Ornstein–Uhlenbeck process,
namely, the temperatures after removing seasonality at times t, t− 1, t− 2, t− 3, . . . ;
ek denotes the kth unit vector in Rp for k = 1, . . . , p; σt > 0 is a deterministic volatility
(real-valued and square integrable function); and A is a p× p matrix:

A =

⎛

⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . . 0
...

0 . . . . . . 0 0 1
−αp −αp−1 . . . 0 −α1

⎞

⎟⎟⎟⎟⎠
, (14)

with positive constants αk. Following this nomenclature, Xq(t) with q = 1, . . . , p is
the qth coordinate of Xt and by setting q = 1 is equivalent to the detrended tem-
perature time series X1(t) = Tt −#t. The proof is derived by an analytical link
between X1(t), X2(t) and X3(t) and the lagged temperatures up to time t− 3. X1(t+3) is
approximated by Euler discretization. Thus for p = 1, Xt = X1(t) and Equation (13)
becomes

dX1(t) = −α1X1(t)dt + σtdBt, (15)

which is the continuous version of an AR(1) process. Similarly for p = 2, assume a time
step of length 1 dt = 1 and substitute X2(t) iteratively to get

X1(t+2) ≈ (2− α1)X1(t+1) + (α1 − α2 − 1)X1(t) + σtet, (16)
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ĉ 5
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74 W. K. Härdle and B. López Cabrera

where et = Bt+1 − Bt. For p = 3, we have:

X1(t+1) − X1(t) = X2(t)dt,

X2(t+1) − X2(t) = X3(t)dt,

X3(t+1) − X3(t) = −α3X1(t)dt− α2X2(t)dt− α1X3(t)dt + σtet,

. . . ,

X1(t+3) − X1(t+2) = X2(t+2)dt,

X2(t+3) − X2(t+2) = X3(t+2)dt,

X3(t+3) − X3(t+2) = −α3X1(t+2)dt− α2X2(t+2)dt− α1X3(t+2)dt + σtet,

(17)

substituting into the X1(t+3) dynamics and setting dt = 1:

X1(t+3) ≈ (3− α1)︸ ︷︷ ︸
β1

X1(t+2) + (2α1 − α2 − 3)︸ ︷︷ ︸
β2

X1(t+1) + (−α1 + α2 − α3 + 1)︸ ︷︷ ︸
β3

X1(t). (18)

Please note that this corrects the derivation in Benth et al. (2007) and Equation (18)
leads to Equation (10) (with p = 3). The approximation of Equation (18) is required to
compute the eigenvalues of matrix A. The last columns of Table 2 display the CAR(3)-
parameters and the eigenvalues of the matrix A for the studied temperature data. The
stationarity condition is fulfilled since the eigenvalues of A have negative real parts and
the variance matrix

∫ t
0 σ

2
t−s exp {A(s)} epe⊤p exp

{
A⊤(s)

}
ds converges as t→∞.

By applying the multidimensional Itô Formula, the process in Equation (13) with
Xt = x ∈ Rp has the explicit form Xs = exp {A(s− t)} x +

∫ s
t exp {A(s− u)} epσudBu for

s ≥ t ≥ 0.
Since dynamics of temperature futures prices must be free of arbitrage under the

pricing equivalent measure Qθ , the temperature dynamics of Equation (13) becomes
for s ≥ t ≥ 0:

dXt = (AXt + epσtθt)dt + epσtdBθt ,

Xs = exp {A(s− t)} x +
∫ s

t
exp {A(s− u)} epσuθudu +

∫ s

t
exp {A(s− u)} epσudBθu .

(19)

By inserting Equations (1)–(3) into Equation (6), Benths et al. (2007) explicity calcu-
lated the risk neutral prices for HDD/CDD/CAT futures (and options) for contracts
traded before the temperature measurement period, that is 0 ≤ t ≤ τ1 < τ2:
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The Implied Market Price of Weather Risk 75

FHDD(t,τ1,τ2) =
∫ τ2

τ1

υt,sψ

[c−m{t,s,e⊤1 exp{A(s−t)}Xt}
υt,s

]
ds,

FCDD(t,τ1,τ2) =
∫ τ2

τ1

υt,sψ

[m{t,s,e⊤1 exp{A(s−t)}Xt} − c

υt,s

]
ds,

FCAT(t,τ1,τ2) =
∫ τ2

τ1

$udu + at,τ1,τ2 Xt +
∫ τ1

t
θuσuat,τ1,τ2 epdu

+
∫ τ2

τ1

θuσue⊤1 A−1 [exp {A(τ2 − u)}− Ip
]

epdu,

(20)

with at,τ1,τ2 = e⊤1 A−1 [exp {A(τ2 − t)}− exp {A(τ1 − t)}]; Ip is a p× p identity matrix;
ψ(x) = x'(x) + ϕ(x) (' denotes the standard normal cumulative distribution
function (cdf)) with x = e⊤1 exp {A(s− t)} Xt; υ2

t,s =
∫ s

t σ
2
u

[
e⊤1 exp {A(s− t)} ep

]2 du;
and m{t,s,x} = $s +

∫ s
t σuθue⊤1 exp {A(s− t)} epdu + x. The solution to Equation (20)

depends on the assumed specification for the MPR θ . In the next section, it is shown
that different assumed risk specifications can lead into different derivative prices.

The model in Benth et al. (2007) nests a number of previous models (Alaton et al.,
2002; Benth, 2003; Benth and Saltyte-Benth, 2005; Brody et al., 2002); it general-
izes the Benth and Saltyte-Benth (2007) and Dornier and Querel (2007) approaches
and is a very well studied methodology in the literature (Benth et al., 2011; Papazian
and Skiadopoulos, 2010; Zapranis and Alexandridis, 2008). Besides it gives a clear
connection between the discrete- and continuous-time versions, it provides closed-
form non-arbitrage pricing formulas and it requires only a one-time estimation for
the price dynamics. With the time series approach (Campbell and Diebold, 2005), the
continuous-time approaches (Alaton et al., 2002; Huang-Hsi et al., 2008), neural net-
works (Zapranis and Alexandridis, 2008, 2009) or the principal component analysis
approach (Papazian and Skiadopoulos, 2010) are not easy to compute price dynamics
of CAT/CDD/HDD futures and one needs to use numerical approaches or simu-
lations in order to calculate conditional expectations in Equation (6). In that case,
partial differential equations or Monte Carlo simulations are being used. For option
pricing, this would mean to simulate scenarios from futures prices. This translates into
intensive computer simulation procedures.

5. The Implied Market Price of Weather Risk

For pricing and hedging non-tradable assets, one essentially needs to incorporate the
MPR θ which is an important parameter of the associated EMM and it measures the
additional return for bearing more risk. This section deals exactly with the differences
between ‘historical’ (P) and ‘risk-neutral’ (Q) behaviours of temperature. Using statis-
tical modelling and given that liquid-derivative contracts based on daily temperatures
are traded on the CME, one might infer the MPR (the change of drift) from traded
(CAT/CDD/HDD/C24AT) futures–options-type contracts.
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76 W. K. Härdle and B. López Cabrera

Our study is a calibration procedure for financial engineering purposes. In the cali-
bration exercise, a single date (but different time horizons and calibrated instruments
are used) is required, since the model is recalibrated daily to detect intertemporal
effects. Moreover, we use an economic and statistical testing approach, where we
start from a specification of the MPR and check consistency with the data. By giving
assumptions about the MPR, we implicitly make an assumption about the aggregate
risk aversion of the market. The risk parameter θ can then be inferred by finding the
value that satisfies Equation (20) for each specification. Once we know the MPR for
temperature futures, then we know the MPR for options and thus one can price new
‘non-standard maturities’ or OTC derivatives. The concept of implied MPR is similar
to that used in extracting implied volatilities (Fengler et al., 2007) or the market price
of oil risk (Gibson and Schwartz, 1990).

To value temperature derivatives, the following specifications of the MPR are inves-
tigated: a constant, a piecewise linear function, a two-piecewise linear function, a
time-deterministic function and a ‘financial-bootstrapping’ MPR. The statistical point
of view is to beat this as an inverse problem with different degrees of smoothness
expressed through the penalty parameter of a smoothing spline. The economic point
of view is to detect possible time dependencies that can be explained by investor’s
preferences in order to hedge weather risk.

In this article we concentrate on contracts with monthly measurement length peri-
ods, but similar implications apply for seasonal strip contracts. We observe different
temperature futures contracts i = 1, . . . , I with measurement periods t ≤ τ i

1 < τ i
2 and

τ i
2 ≤ τ i+1

1 traded at time t, meaning that contracts expire at some point in time and roll
over to another contract. Therefore, i = 1 denotes contract types with measurement
period in 30 days, i = 2 denotes contract types in 60 days and so on. For example,
a contract with i = 7 is six months ahead from the trading day t. For United States
and Europe, the number of temperature futures contracts is I = 7 (April–October or
October–April), while for Asia I = 12 (January–December). The details of the temper-
ature futures data are displayed in Table 4. To simplify notation, dates are written in
yyyymmdd format.

5.1 Constant MPR for Each Contract per Trading Date

Given observed temperature futures market prices and by inverting Equation (20), we
imply the MPR θu for i = 1, . . . , I futures contracts with different measurement time
horizon periods [τ i

1, τ i
2], t ≤ τ i

1 < τ i
2 and τ i

2 ≤ τ i+1
1 traded at date t. Our first assumption

is to set, for the ith contract, a constant MPR over [t, τ i
2], that is, we have that θu = θ i

t :

θ̂ i
t,CAT = arg min

θ i
t

(

FCAT(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

#̂udu− at,τ i
1,τ i

2
Xt − θ i

t

{∫ τ1

t
σ̂uat,τ i

1,τ i
2
epdu

+
∫ τ i

2

τ i
1

σ̂ue⊤1 A−1 [exp
{
A(τ i

2 − u)
}
− Ip

]
epdu

})2

,
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78 W. K. Härdle and B. López Cabrera

θ̂ i
t,HDD = arg min

θ i
t

⎛

⎝FHDD(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

υt,sψ

⎡

⎣
c− m̂1

{t,s,e⊤1 exp{A(s−t)}X t}
υt,s

⎤

⎦ ds

⎞

⎠
2

, (21)

with m̂1
{t,s,x} = %s + θ i

t

∫ s
t σue⊤1 exp {A(s− t)} epdu + x, υ2

t,s,ψ(x) and x defined as in
Equation (20). The MPR for CDD futures θ̂ i

t,CDD is equivalent to the HDD case in
Equation (21) and we will therefore omit CDD parameterizations. Note that this spec-
ification can be seen as a deterministic time-varying MPR θ i

t that varies with date for
any given contract i, but it is constant over [t, τ i

2].

5.2 One Piecewise Constant MPR

A simpler MPR parameterization is to assume that it is constant across all time hori-
zon contracts priced in a particular date (θt). We therefore estimate this constant MPR
for all contract types traded at t ≤ τ i

1 < τ i
2, i = 1, . . . , I as follows:

θ̂t,CAT = arg min
θt

I∑

i=1

(

FCAT(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

%̂udu− ât,τ i
1,τ i

2
X t − θt

{∫ τ i
1

t
σ̂uât,τ i

1,τ i
2
epdu

+
∫ τ i

2

τ i
1

σ̂ue⊤1 A−1 [exp
{
A(τ i

2 − u)
}
− Ip

]
epdu

})2

,

θ̂t,HDD = arg min
θt

I∑

i=1

⎛

⎝FHDD(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

υt,sψ

⎡

⎣
c− m̂2

{t,s,e⊤1 exp{A(s−t)}X t}
υt,s

⎤

⎦ ds

⎞

⎠
2

,

(22)

with m̂2
{t,s,x} = %s + θt

∫ s
t σue⊤1 exp {A(s− t)} epdu + x and υ2

t,s,ψ(x) and x as defined in
Equation (20). This ‘one piecewise constant’ MPR specification (θt) is solved by means
of the ordinary least squares (OLS) minimization procedure and differs from θ i

t in
Equation (21) because for all traded contracts at date t, we get only one MPR estimate
(instead of i estimates) at time t, that is, θt is constant over [t, τ I

2 ].

5.3 Two Piecewise Constant MPR

Assuming now that, instead of one constant MPR per trading day, we have a step
function with a given jump point ξ (take e.g. the first 150 days before the beginning
of the measurement period), so we have that θ̂t = I (u ≤ ξ) θ1

t + I (u > ξ) θ2
t . The two

piecewise constant function θ̂t with t ≤ τ i
1 < τ i

2 is estimated with the OLS minimization
procedure as follows:
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The Implied Market Price of Weather Risk 79

fCAT (ξ ) = arg min
θ1

t,CAT ,θ2
t,CAT

I∑

i=1

(

FCAT(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

$̂udu− ât,τ i
1,τ i

2
X t

− θ1
t,CAT

{∫ τ i
1

t
I (u ≤ ξ) σ̂uât,τ i

1,τ i
2
epdu

+
∫ τ i

2

τ i
1

I (u ≤ ξ) σ̂ue⊤1 A−1 [exp
{
A(τ i

2 − u)
}
− Ip

]
epdu

}

− θ2
t,CAT

{∫ τ i
1

t
I (u > ξ) σ̂uât,τ i

1,τ i
2
epdu

+
∫ τ i

2

τ i
1

I (u > ξ) σ̂ue⊤1 A−1 [exp
{
A(τ i

2 − u)
}
− Ip

]
epdu

})2

,

(23)

fHDD(ξ ) = arg min
θ1

t,HDD,θ2
t,HDD

I∑

i=1

⎛

⎝FHDD(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

υt,sψ

⎡

⎣
c− m̂3

{t,s,e⊤1 exp{A(s−t)}X t}
υt,s

⎤

⎦ ds

⎞

⎠
2

,

m̂3
{t,s,x} = $s + θ1

t,HDD

{∫ s

t
I (u ≤ ξ) σue⊤1 exp {A(s− t)} epdu + x

}

+ θ2
t,HDD

{∫ s

t
I (u > ξ) σue⊤1 exp {A(s− t)} epdu + x

}
,

and υ2
t,s, ψ(x) and x as defined in Equation (20). In the next step, we optimized the

value of ξ such as fCAT (ξ ) or fHDD(ξ ) is minimized. This MPR specification will vary
according to the unknown ξ . This would mean that the market does a risk adjustment
for contracts traded close or far from the measurement period.

5.4 General Form of the MPR per Trading Day

Generalizing the piecewise continuous function given in the previous subsection, the
(inverse) problem of determining θt with t ≤ τ i

1 < τ i
2, i = 1, . . . , I , can be formulated

via a series expansion for θt:

arg min
γk

I∑

i=1

(

FCAT(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

$̂udu− ât,τ i
1,τ i

2
X̂t −

∫ τ i
1

t

K∑

k=1

γkhk(ui)σ̂ui ât,τ i
1,τ i

2
epdui

−
∫ τ i

2

τ i
1

K∑

k=1

γkhk(ui)σ̂ui e
⊤
1 A−1 [exp

{
A(τ i

2 − ui)
}
− Ip

]
epdui

)2

,
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80 W. K. Härdle and B. López Cabrera

arg min
ak

I∑

i=1

⎛

⎝FHDD(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

υt,sψ

⎡

⎣
c− m̂4

{t,s,e⊤1 exp{A(s−t)}X t}
υt,s

⎤

⎦ ds

⎞

⎠
2

, (24)

with m̂4
{t,s,x} = $s +

∫ s
t

∑K
k = 1 aklk(ui)σ̂ui e⊤1 exp {A(s− t)} epdui + x and υ2

t,s,ψ(x) and x
as defined in Equation (20). hk(ui) and lk(ui) are vectors of known basis functions and
may denote a B-spline basis for example. γ k and ak define the coefficients and K is the
number of knots. This means that the inferred MPR is going to be a solution for an
inverse problem with different degrees of smoothness expressed through the penalty
parameter of a smoothing spline. The degrees of smoothness will allow for a term
structure of risk. In other words, a time-dependent risk factor offers the possibility to
have different risk adjustments for different times of the year.

5.5 Bootstrapping the MPR

In this section we propose a bootstrapping technique to detect possible MPR time-
dependent paths of temperature futures contracts. More importantly, since these
futures contract types have different measurement periods [τ i

1, τ i
2] with τ i

1 < τ i+1
1 ≤

τ i
2 < τ i+1

2 , i = 1, . . . , I , and they roll over to another contracts when they expire at
some point in time, it makes sense to construct MPR estimates from which we can price
contracts with any maturity, without the need of external information. This ‘financial’
bootstrapping idea consists of estimating by forward substitution the MPR θ i

t of the
futures price contracts with the closest measurement period and placing it into the esti-
mation for the next MPR θ i+1

t . We implement the estimation for CAT contracts, but
the idea applies also for HDD/CDD contract types. First, for the first contract i = 1
and t ∈ [τ 1

1 , τ 1
2 ], θ̂1

t,CAT is estimated from Equation (21):

θ̂1
t,CAT = arg min

θ1
t

(

FCAT(t,τ 1
1 ,τ 1

2 ) −
∫ τ 1

2

τ 1
1

$̂udu− ât,τ 1
1 ,τ 1

2
X̂t − θ1

t

{∫ τ 1
1

t
σ̂uât,τ 1

1 ,τ 1
2
epdu

+
∫ τ 1

2

τ 1
1

σ̂ue⊤1 A−1 [exp
{
A(τ 1

2 − u)
}
− Ip

]
epdu

})2

. (25)

Second, the estimated θ̂1
t,CAT is substituted in the period [τ 1

1 , τ 1
2 ] to get an estimate of

θ̂2
t,CAT :

θ̂2
t,CAT = arg min

θ2
t,CAT

(

FCAT(t,τ 2
1 ,τ 2

2 ) −
∫ τ 2

2

τ 2
1

$̂udu− ât,τ 2
1 ,τ 2

2
X̂t −

∫ τ 1
1

t
θ̂1

t,CAT σ̂uât,τ 2
1 ,τ 2

2
epdu

−
∫ τ 2

2

τ 2
1

θ2
t,CAT σ̂ue⊤1 A−1 [exp

{
A(τ 2

2 − u)
}
− Ip

]
epdu

)2

. (26)

D
ow

nl
oa

de
d 

by
 [H

um
bo

ld
t-U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] a

t 0
6:

53
 2

5 
A

pr
il 

20
12

 



The Implied Market Price of Weather Risk 81

Then substitute θ̂1
t,CAT in the period [τ 1

1 , τ 1
2 ] and θ̂2

t,CAT in the period [τ 2
1 , τ 2

2 ] to estimate
θ̂3

t,CAT :

θ̂3
t,CAT = arg min

θ̂3
t,CAT

(

FCAT(t,τ 3
1 ,τ 3

2 ) −
∫ τ 3

2

τ 3
1

#̂udu− ât,τ 3
1 ,τ 3

2
X t −

∫ τ 1
1

t
θ̂1

t,CAT σ̂uât,τ 3
1 ,τ 3

2
epdu

−
∫ τ 2

2

τ 2
1

θ̂2
t,CAT σ̂uât,τ 3

1 ,τ 3
2
epdu−

∫ τ 3
2

τ 3
1

θ3
t,CAT σ̂ue⊤1 A−1 [exp

{
A(τ 3

2 − u)
}
− Ip

]
epdu

)2

.

In a similar way, one obtains the estimation of θ̂4
t,CAT , . . . , θ̂ I

t,CAT .

5.6 Smoothing the MPR over Time

Since smoothing individual estimates is different from estimating a deterministic func-
tion, we also assure our results by fitting a parametric function to all available contract
prices (calendar year estimation). After computing the MPR θ̂t,CAT , θ̂t,HDD and θ̂t,CDD
for each of the previous specification and for each of the nth trading days t for different
ith contracts, the MPR time series can be smoothed with the inverse problem points to
find an MPR θ̂u for every calendar day u and with that being able to price temperature
derivatives for any date:

arg min
f∈Fj

n∑

t=1

{
θ̂t − f (ut)

}2
= arg min

αj

n∑

t=1

⎧
⎨

⎩θ̂t −
J∑

j=1

αj&j(ut)

⎫
⎬

⎭

2

, (27)

where &j(ut) is a vector of known basis functions, αj defines the coefficients, J is the
number of knots, ut = t−'+ 1 with increment ' and n is the number of days to be
smoothed. In our case, ut = 1 day and &j(ut) is estimated using cubic splines.

Alternatively, one can first do the smoothing with basis functions of all available
futures contracts:

arg min
βj

n∑

t=1

I∑

i=1

⎧
⎨

⎩F(t,τ i
1,τ i

2) −
J∑

j=1

βj&j(ut)

⎫
⎬

⎭

2

, (28)

and then estimate the time series of θ̂ s
t s with the obtained smoothed futures prices

Fs
(t,τ 1

1 ,τ I
2 )

.
For example, for a constant MPR for all CAT futures contracts type traded over all

ts with t ≤ τ i
1 < τ i

2 and τ i
2 ≤ τ i+1

1 , we have:
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θ̂ s
t,CAT = arg min

θ s
t,CAT

(

Fs
CAT(t,τ 1

1 ,τ I
2 ) −

∫ τ I
2

τ 1
1

#̂udu− ât,τ 1
1 ,τ I

2
X t − θ s

t,CAT

{∫ τ 1
1

t
σ̂uât,τ 1

1 ,τ I
2
epdu

+
∫ τ I

2

τ 1
1

σ̂ue⊤1 A−1 [exp
{
A(τ I

2 − u)
}
− Ip

]
epdu

})2

. (29)

5.7 Statistical and Economical Insights of the Implied MPR

In this section, using the previous specifications, we imply the MPR (the change
of drift) for CME (CAT/CDD/HDD/C24AT) futures contracts traded for different
cities. Note that one might also infer the MPR from options data and compare the
findings with prices in the futures market.

Table 5 presents the descriptive statistics of different MPR specifications for Berlin-
CAT, Essen-CAT and Tokyo-C24AT daily futures contracts with t ≤ τ i

1 < τ i
2 traded

during 20031006–20080527 (5102 contracts in 1067 trading days with 29 different mea-
surement periods), 20050617–20090731 (3530 contracts in 926 trading dates with 28
measurement periods) and 20040723–20090831 (2611 contracts in 640 trading dates
with 27 measurement periods). The MPR ranges vary between [–10.71, 10.25], [31.05,
5.73] and [–82.62, 52.17] for Berlin-CAT, Essen-CAT and Tokyo-C24AT futures con-
tracts, respectively, whereas the MPR averages are 0.04, 0.00 and –3.08 for constant
MPR for different contracts; –0.08, –0.38 and 0.73 for one piecewise constant; –0.22,
–0.43 and –3.50 for two piecewise constant; 0.04, 0.00 and –3.08 for spline; and 0.07,
0.00 and –0.11 when bootstrapping the MPR. We observe that the two piecewise con-
stant MPR function is a robust least square estimation, since its values are sensitive
to the choice of ξ . Figure 6 shows the MPR estimates for Berlin-CAT futures prices
traded on 20060530 with ξ = 62, 93, 123 and 154 and sum of squared errors equal to
2759, 14,794, 15,191 and 15,526. The line displays a discontinuity indicating that trad-
ing was not taking place (CAT futures are only traded from April to November and
MPR estimates cannot be computed since there are no market prices). When the jump
ξ is getting far from the measurement period, the value of the MPR θ̂1

t decreases and
θ̂2

t increases, yielding a θ̂t around 0. Table 5 also displays the estimates of the time-
dependent MPR (or spline MPR) from the bootstrapping technique. The spline MPR
smooths the estimates over time and it is estimated using cubic polynomials with k
equal to the number of traded contracts I at date t. The performance of the boost-
rapped MPR is similar to the constant MPR for different contracts per trading date
estimates, suggesting that the only risk which the statistical model might imply is that
the MPR will be equal at any trading date across all temperature contract types.

The first panel in Figure 7 displays the Berlin-CAT, Essen-CAT and Tokyo-
C24AT futures contracts traded at 20060530, 20060530 and 20050531, respectively.
The second, third and fourth panels of Figure 7 show the MPR when it is
assumed to be constant for different contracts per trading date, a two piecewise
constant and the spline MPR. In the case of the constant MPR for different
contracts per trading date, the lines overlap because the MPR for every contract
i = 1, . . . , 12 is supposed to be constant over the period [t, τ i

2] at trading date t.
The two piecewise constant function adjusts the risk according to the choice of ξ
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Figure 6. Two piecewise constant MPR with jumps ξ = (a) 62, (b) 93, (c) 123 and (d) 154 days for
Berlin-CAT contracts traded on 20060530. The corresponding sum of squared errors are 2759,
14794, 15191 and 15526. When the jump ξ is getting far from the measurement period, the value
of the MPR θ̂ 1

t decreases and θ̂ 2
t increases, yielding a θ̂t around 0.

(in this case ξ = 150 days). The spline MPR smooths over time and for days without
trading (see the case of Berlin-CAT or Essen-CAT futures), it displays a maximum, for
example, in winter. A penalizing term in Equation (24) might correct for this.

In all the specifications, we verified the discussion that MPR is different from 0 (as
Cao and Wei (2004), Huang-Hsi et al. (2008), Richards et al. (2004) and Alaton et al.
(2002) do) varies in time and moves from a negative to a positive domain according
to the changes in the seasonal variation. The MPR specifications change signs when
a contract expires and rolls over to another contract (e.g. from 210 to 180, 150, 120,
90, 60, 30 days before measurement period); they react negatively to the fast changes
in seasonal variance σt within the measurement period (Figure 3) and to the changes
in CAT futures volatility σtat,τ1,τ2 ep. Figure 8 shows the Berlin-CAT volatility paths for
contracts issued before and within the measurement periods 2004–2008. We observed
the Samuelson effect for mean-reverting futures: for contracts traded within the mea-
surement period, CAT volatility is close to 0 when the time to measurement is large
and it decreases up to the end of the measurement period. For contracts traded before
the measurement period, CAT volatility is also close to 0 when the time to measure-
ment is large, but increases up to the start of the measurement period. In Figure 9,
two Berlin-CAT contracts issued on 20060517 but with different measurement peri-
ods are plotted: the longest the measurement period, the largest the volatility. Besides
this, one observes the effect of the CAR(3) in both contracts when the volatility decays
just before maturity of the contracts. These two effects are comparable with the study
for Stockholm CAT futures in Benth et al. (2007); however, the deviations are less
smoothed for Berlin.
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Figure 7. Futures CAT prices (1 row panel) and MPR specifications: constant MPR for different
contracts per trading day, two piecewise constant and spline (2, 3 and 4 row panel) for Berlin-
CAT (left), Essen-CAT (middle), Tokyo-AAT (right) of futures traded on 20060530, 20060530
and 20060531, respectively.

We investigate the proposition that the MPR derived from CAT/HDD/CDD
futures is different from 0. We conduct the Wald statistical test to check whether this
effect exists by testing the true value of the parameter based on the sample estimate. In
the multivariate case, the Wald statistic for

{
θt ∈ Ri

}n
t=1 is

(θ̂t − θ0)⊤"(θ̂t − θ0) ∼ χ2
p ,"

1
2 (θ̂t − θ0) ∼ N (0, Ii),

where " is the variance matrix and the estimate θ̂t is compared with the proposed
value θ0 = 0. Using a sample size of n trading dates of contracts with t ≤ τ i

1 < τ i
2,

i = 1, . . . , I , we illustrate in Table 5 the Wald statistics for all previous MPR specifica-
tions. We reject H0 : θ̂t = 0 under the Wald statistic

{
θt ∈ Ri

}n
t=1 for all cases. Although

the constant per trading day and general MPR specifications smooth deviations over
time, the Wald statistic confirms that the MPR differs significantly from 0. Our results
are robust to all specifications.

Figure 10 shows the smoothing of MPR individuals (Equation (27)) for different
specifications in 1 (20060530), 5 (20060522–20060530) and 30 trading days (20060417–
20060530) of Berlin-CAT futures, while the last panel in Figure 10 gives the results
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Figure 8. The Samuelson effect for Berlin-CAT futures explained by the CAT volatility σtat,τ1,τ2 ep
(black line) and the volatility σt of Berlin-CAT futures (dash line) from 2004 to 2008 and 2006
for contracts traded before (a) and (b) and within (c) and (d) the measurement period.

when MPR estimates are obtained from smoothed prices using the calendar year esti-
mation (Equation (29)). Both smoothing procedures lead to similar outcomes: notable
changes in sign, MPR deviations are smoothed over time and the higher the number of
calendar days, the closer the fit of Equations (27) and (29). This indicates that sample
size does not influence the stochastic behaviour of the MPR.

To interpret the economic meaning of the previous MPR results, recall, for example,
the relationship between the RP (the market price minus the implied futures price with
MPR equal to 0) and the MPR for CAT temperature futures:

RPCAT =
∫ τ i

1

t
θuσuat,τ i

1,τ i
2
epdu +

∫ τ i
2

τ i
1

θuσue⊤1 A−1 [exp
{
A(τ i

2 − u)
}
− Ip

]
epdu, (30)

which can be interpreted as the aggregated MPR times the amount of temperature risk
σt over [t, τ i

1] (first integral) and [τ i
1, τ i

2] (second integral). By adjusting the MPR value,
these two terms contribute to the CAT futures price. For temperature futures with
values that are positive related to weather changes in the short term, this implies a
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Figure 9. (a) The CAT term structure of volatility and (b) the autoregressive effect of two con-
tracts issued on 20060517: one with whole June as measurement period (straight line) and the
other one with only the 1st week of June (dotted line).

negative RP meaning that buyers of temperature derivatives expect to pay lower prices
to hedge weather risk (insurance RP). In this case, θt must be negative for CAT futures,
since σt and X t are both positive. Negative MPRs translate into premiums for bear-
ing risk, implying that investor will accept a reduction in the return of the derivative
equal to the right-hand side of Equation (30) in exchange for eliminating the effects
of the seasonal variance on pay-offs. On the other side, positive RP indicates the exis-
tence of consumers, who consider temperature derivatives for speculation purposes.
In this case, θt must be positive and implies discounts for taking additional (weather)
risk. This rules out the ‘burn-in’ analysis of Brix et al. (2005), which seems to popular
among practitioners since it uses the historical average index value as the price for the
futures. The sign of MPR–RP reflects the risk attitude and time horizon perspectives
of market participants in the diversification process to hedge weather risk in peak sea-
sons. By understanding the MPR, market participants might earn money (by shorting
or longing, according to the sign). The investors impute value to the weather prod-
ucts, although they are non-marketable. This might suggest some possible relationships
between risk aversion and the MPR.

The non-stationarity behaviour of the MPR (sign changes) is also possible because
it is capturing all the non-fundamental information affecting the futures pricing:
investors preferences, transaction costs, market illiquidity or other fractions like effects
on the demand function. When the trading is illiquid the observed prices may contain
some liquidity premium, which can contaminate the estimation of the MPR.

Figure 11 illustrates the RP of Berlin-CAT futures for monthly contracts traded on
20031006–20080527. We observe RPs different from 0, time dependent, where positive
(negative) MPR contributes positively (negatively) to futures prices. The mean for the
constant MPR for the i = 1, . . . , 7th Berlin-CAT futures contracts per trading date
is of size 0.02, 0.05, 0.02, 0.01, 0.10, 0.02 and 0.04, thus the terms in Equation (30)
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Figure 10. Smoothing the MPR parameterization for Berlin-CAT futures traded on 20060530:
the calendar year smoothing (black line) for 1 day (left), 5 days (middle) and 30 days (right). The
last row gives MPR estimates obtained from smoothed prices.

contribute little to the prices compared to the seasonal mean !t. The RPs are very
small for all contract types, and they behave constant within the measurement month
but fluctuate with σt and θt, leading to higher RPs during volatile months (winters
or early summers). This suggests that the temperature market does the risk adjustment
according to the seasonal effect, where low levels of mean reversion mean that volatility
plays a greater role in determining the prices.

Our data extracted MPR results can be comparable with Cao and Wei (2004),
Richards et al. (2004) and Huang-Hsi et al. (2008), who showed that the MPR is not
only different from 0 for temperature derivatives, but also significant and economically
large as well. However, the results in Cao and Wei (2004) and Richards et al. (2004)
rely on the specification of the dividend process and the risk aversion level, while the
approach of Huang-Hsi et al. (2008) depends on the studied Stock index to compute
the proxy estimate of the MPR. Alaton et al. (2002) concluded that the MPR impact
is likely to be small. Our findings can also be compared with the MPR of other non-
tradable assets, for example, in commodities markets; the MPR may be either positive
or negative depending on the time horizon considered. In Schwartz (1997), the cal-
ibration of futures prices of oil and copper delivered negative MPR in both cases.
For electricity, Cartea and Figueroa (2005) estimated a negative MPR. Cartea and
Williams (2008) found a positive MPR for gas long-term contracts and for short-term
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Figure 11. Risk premiums (RPs) of Berlin-CAT monthly futures prices traded during (20031006–
20080527) with t ≤ τ i

1 < τ i
2 and contracts i = 1 (30 days), i = 2 (60 days),. . ., i = I (210 days)

traded before measurement period. RPs of Berlin CAT futures for (a) 30 days, (b) 60 days, (c)
90 days, (d) 120 days, (e) 150 days, (f) 180 days and (g) 210 days.

contracts the MPR changes signs across time. Doran and Ronn (2008) demonstrated
the need of a negative market price of volatility risk in both equity and commodity-
energy markets (gas, heating oil and crude oil). Similar to weather, electricity, natural
gas and heating oil markets show seasonal patterns, where winter months have higher
RP. The only difference is that in temperature markets, the spot–futures relation is not
clear since the underlying is not storable (Benth et al., 2008).

5.8 Pricing CAT–HDD–CDD and OTC Futures

Once that market prices of traded derivatives are used to back out the MPR for tem-
perature futures, the MPR for options is also known and thus one can price other
temperature contract types with different maturity (weekly, daily or seasonal contracts)
and over the counter OTC derivatives (e.g. Berlin-CDD futures or for cities without
formal WD market). This method seems to be popular among practitioners in other
markets.

This section tests the MPR specifications to fit market prices in sample. The implied
MPR (under multiple specifications) from monthly CAT futures in Section 5.7 are used
to calculate theoretical CDD prices Equation (20) for Berlin, Essen and Tokyo. We
then compute HDD futures prices from the HDD–CDD parity in Equation (4) and
compare them with market data (in sample performance). Table 4 shows the CME
futures prices (Column 5), the estimated risk-neutral prices with P = Q (MPR = 0),
the estimated futures prices with constant MPR for different contracts per trading
date and the index values computed from the realized temperature data I(τ1,τ2). While
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The Implied Market Price of Weather Risk 91

the inferred prices with constant MPR replicate market prices, the estimated prices
with P = Q are close to the realized temperatures, meaning that the history is likely a
good prediction of the future. Table 6 describes the root mean squared errors (RMSEs)
of the differences between the market prices and the estimated futures prices, with
MPR values implied directly from specific futures contract types and with MPR values
extracted from the HDD/CDD/CAT parity method, over different periods and cities.
The RMSE is defined as

RMSE =

√√√√n−1
n∑

t=1

(Ft,τ i
1,τ i

2
− F̂t,τ i

1,τ i
2
)2,

where F̂t,τ i
1,τ i

2
are the estimated futures prices and small RMSE values denote good mea-

sure of precision. The RMSE estimates in the case of the constant MPR for different
CAT futures contracts are statistically significant enough to know CAT futures prices,
but fail for HDD futures. Since temperature futures are written on different indices, the
implied MPR will be then contract-specific hence requiring a separate estimation pro-
cedure. We argue that this inequality in prices results from additional premiums that
the market incorporates to the HDD estimation, due to possible temperature market
probability predictions operating under a more general equilibrium rather than non-
arbitrage conditions (Horst and Mueller, 2007) or due to the incorporation of weather
forecast models in the pricing model that influence the risk attitude of market partici-
pants in the diversification process of hedging weather risk (Benth and Meyer-Brandis,
2009; Dorfleitner and Wimmer, 2010; Papazian and Skiadopoulos, 2010).

We investigate the pricing algorithm for cities without formal WD market. In this
context, the stylized facts of temperature data ("t, σt) are the only risk factors. Hence,
a natural way to infer the MPR for emerging regions is by knowing the MPR depen-
dency on seasonal variation of the closest geographical location with formal WD
market. For example, for pricing Taipei weather futures derivatives, one could take
the WD market in Tokyo and learn the dependence structure by simply regressing the
average MPR of Tokyo-C24AT futures contracts i over the trading period against the
seasonal variation in period [τ1, τ2]:

θ̂ i
τ1,τ2

= 1
τ1 − t

τ1∑

t

θ̂ i
t ,

σ̂ 2
τ1,τ2

= 1
τ2 − τ1

τ2∑

t=τ1

σ̂ 2
t .

In this case, the quadratic function that parameterizes the dependence is θt = 4.08−
2.19σ̂ 2

τ1,τ2
+ 0.28σ̂ 4

τ1,τ2
, with R2

adj = 0.71 and MPR increases by increasing the drift and
volatility values (Figure 12). The dependencies of the MPR on time and temperature
seasonal variation indicate that for regions with homogeneous weather risk there is
some common market price of weather risk (as we expect in equilibrium).
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Figure 12. The calibrated MPR as a deterministic function of the monthly temperature variation
of Tokyo-C24AT futures from November 2008 to November 2009 (prices for 8 contracts were
available).

6. Conclusions and Further Research

This article deals with the differences between ‘historical’ and ‘risk-neutral’ behaviours
of temperature and gives insights into the MPR, a drift adjustment in the dynamics of
the temperature process to reflect how investors are compensated for bearing risk when
holding the derivative. Our empirical work shows that independently of the chosen
location, the temperature-driving stochastics are close to the Gaussian risk factors
that allow us to work under the financial mathematical context.

Using statistical modelling, we imply the MPR from daily temperature futures-type
contracts (CAT, CDD, HDD, C24AT) traded at the CME under the EMM framework.
Different specifications of the MPR are investigated. It can be parameterized, given its
dependencies on time and seasonal variation. We also establish connections between
the RP and the MPR. The results show that the MPRs–RPs are significantly different
from 0, changing over time. This contradicts with the assumption made earlier in the
literature that MPR is 0 or constant and rules out the ‘burn-in’ analysis, which is pop-
ular among practitioners. This brings significant challenges to the statistical branch of
the pricing literature, suggesting that for regions with homogeneous weather risk there
is a common market price of weather risk. In particular, using a relationship of the
MPR with a utility function, one may link the sign changes of the MPR with risk atti-
tude and time horizon perspectives of market participants in the diversification process
to hedge weather risk.

A further research on the explicit relationship between the RP and the MPR should
be carried out to explain possible connections between modelled futures prices and
their deviations from the futures market. An important issue for our results is that the
econometric part in Section 2 is carried out with estimates rather than true values. One
thus deals with noisy observations, which are likely to alter the subsequent estimations
and test procedures. An alternative to this is to use an adaptive local parametric estima-
tion procedure, for example, in Mercurio and Spokoiny (2004) or Härdle et al. (2011).
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Finally, a different methodology, but related to this article, would be to imply the
pricing kernel of option prices.
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Abstract E-learning plays an important role in education as it supports online teach-
ing via computer networks and provides educational services by utilising informa-
tion technologies. This paper presents a case study describing the development of an
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cerning e-learning in Arab countries with special focus on the difficulties of the appli-
cation of e-learning in the Arabic world as well as designing an Arabic platform with
its language and technical challenges. For the platform we have chosen a wiki that
supports LaTEX for formulas and R to generate tables and figures as well as some inter-
activity. Our system, Arabic MM*Stat, can be found at http://mars.wiwi.hu-berlin.de/
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1 Introduction

Due to the proliferation of the Internet, e-learning has become a significant aspect of
education and many universities and educational institutions have created their own
web sites and e-learning systems. Future trends predict that e-learning will significantly
complement classic learning. Statistics show that the size of the worldwide e-learning
market is estimated to be 52.6 billion US dollars yearly, with the ratio at 65–75% for
the United States and Europe. Statistics also indicate that 30% of the education was
delivered electronically. In comparison the e-learning market in Arab countries with
a size around 15 million US dollars yearly is very weak. The gap between Europe and
the United States and the Arab countries is very large.

The reasons for this gap is briefly summarised below:

– According to the latest figures available on Internet World Statistics 2010 (de
Argaez 2011), Internet world usage still varies widely across the world and across
languages as shown in Table 1. The diffusion of Internet services in the most Arab
countries is weak compared to other regions of the world. This is mainly due to the
government monopolies over the telecommunications sector, resulting in higher
prices. As a consequence only 3.3% of Internet users come from the Arabic region,
even though the Arabic population is 5% of world population. Another example
for this gap is that the percentage of web users in the Arabic world is 18.8%
compared with 58.4% in Europe, 77.4% in the USA and 28.7% on average in the
whole world. Arabic users have much less experience with e-learning platforms,
telecourses and educational courses.

– English is the most common language in the e-learning platforms, but most Arabic
users have difficulties in understanding and speaking English.

– General educational problems: A high level of illiteracy can be found in the Arabic
world which varies between 25 and 45% (Clayton 2007; Al-Fadhli 2008).

– There is only a limited number of specialised cadres and scientific expertise in the
area of e-learning in Arab countries (Maegaard et al. 2005).

Due to the above mentioned problems Arab countries need more time to acquire
the advantage of e-learning. The dissemination of the culture of e-learning in schools
and universities needs a new generation of qualified professionals who can deal suc-
cessfully with modern technology and the experiences of e-learning.

In fact, our Internet research showed that only a few Arabic e-learning platforms
exists, especially for statistics we could not find a single one. For this reason we find
the creation of a platform that would aid Arabic students in learning statistics highly
necessary. The platform should cover the basic statistical topics, and is supported by
multiple examples and ease-of-use will be adapted for Arabic students.

From the perspective described above we developed an Arabic e-learning platform
in statistics (Arabic MM*Stat), which might become an important reference point in
the study of statistics in Arabic through the Internet.

Around about 2000 a system known as MM*Stat was developed at the School
for Business and Economics of Humboldt-Universität zu Berlin (Müller et al. 2000).
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Table 1 World internet users for 10 languages by June 2010 (de Argaez 2011)

Top 10
languages in
the internet

Internet
users
(Mio.)

Internet
penetration,
(%)

Growth in
internet
(2000–2010),
(%)

Internet users
% of total,
(%)

World
population
(2010
estimate)

English 537 42.0 281 27.3 1,278

Chinese 445 32.6 1,277 22.6 1,278

Spanish 153 36.5 742 7.8 420

Japanese 99 78.2 111 5.0 127

Portuguese 83 33.0 990 4.2 250

German 75 78.6 173 3.8 96

Arabic 65 18.8 2,501 3.3 347

French 60 17.2 389 3.0 348

Russian 60 42.8 1,826 3.0 139

Korean 39 55.2 107 2.0 71

Top 10 languages 1,615 36.4 421 82.2 4,442

Other languages 351 14.6 588 17.8 2,403

World total 1,966 28.7 444 100.0 6,846

MM*Stat is a platform for e-learning statistics and is an HTML based multimedia
environment to support teaching and learning statistics via CD or Internet.

A MM*Stat course consists of lectures of specific topics in basic statistics, see Fig. 1
for the hypergeometric distribution. Each lecture gives the basic concepts of general
statistical theory, definitions, formulae and mathematical proofs. At the bottom is a
set of buttons, on the left-hand side three buttons for navigation (go to the previous
lecture, jump to the table of contents, go to the next lecture) and on the right-hand side
a number of buttons which link to pages with additional information. Four types of
additional information are provided, these are:

Explained examples which require only knowledge of the current lecture to under-
stand them.

Enhanced examples which require knowledge from different lectures than the current
one to understand them.

Interactive examples which allow the user, via an embedded statistical software, to
run them. For example, to plot the probability density function or the cumulative
distribution function for different parameters of n and p) or apply tests.

More information which contain for example historical information or mathematical
derivations which are not necessary for first-hand understanding.

Each chapter with lectures is finished with a lecture containing multiple-choice ques-
tions such that a user can evaluate his/her learning progress.

Students or anyone interested in statistics can interactively learn about the basic
concepts of statistics at anytime and anywhere and consequently we based Arabic
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Fig. 1 The graphical user interface of MM*Stat, as an example the lecture entitled hypergeometric dis-
tribution. Note the navigation button (bottom left) and buttons to examples and more information (bottom
right). The tabs at the top reflect the user history and allow for a fast change between lectures

MM*Stat on the existing MM*Stat, which already existed in various languages: Czech,
German, English, Spanish, French, Indonesian, Italian, Polish and Portuguese.

2 Difficulties to design Arabic platforms

There are some problems, however, associated with the making of an Arabic platform,
these relate to language as well as technology. We summarise these problems below:

Language problems

There are some items related to translation, some words and scientific terms are
similar in Arabic and could create a problem when translated. For example, see
Table 2. The Arabic language makes no distinction between “administration” and
“management” or “calculate” and “compute”. The reader must recognise from the
context which meaning is correct. This makes a text more difficult to understand.

Technical problems

1. User interface
The different language versions of MM*Stat were based on two different sys-
tems:
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Table 2 Some similar words in Arabic

– The German version was written in HTML and the user interface was
developed with JavaScript for Internet Explorer 5. The problem was that
neither later Internet Explorer versions nor browsers other than the Internet
Explorer were able to run the JavaScript code.

– The English version was written in LaTEX for a variety of reasons, for
example, translating MM*Stat into a new language just required a change
to the LaTEX text which is much easier to handle than translating from a
HTML page with a lot of embedded JavaScript codes. We used a soft-
ware based on LaTeX2HTML to create the HTML/JavaScript version of
MM*Stat with the same user interface as before (Witzel and Klinke 2002).

2. Writing from left to right
Arabic script runs from right to left as opposed to most other languages, there-
fore all lists, paragraphs, statistical forms, tables and graphics also run from
right to left. In some cases however Arabic text may contain information that
needs to run in the opposite direction (from left to right) such as numbers
and Latin texts. Any program that supports the Arabic language should pro-
vide the possibility of changing the direction when needed. A solution would
be to use ArabTeX (Lagally 2004), but with ArabTeX the Arabic texts are
written in English with special character combinations and not in Arabic, see
Fig. 2. Obviously this is unfamiliar to most Arabic speaking people. Addition-
ally LaTeX2HTML supports neither text from right to left, Arabic or Arab-
TeX.

3. Interactive examples
MM*Stat contained a set of interactive examples, which are important since
they allow the user to practice repeatedly with various variables or data
sets, and with alternate sample sizes or parameters of the statistical meth-
ods applied. In this manner, the student obtains a better understanding of how
the statistical method works. However, the client-server technology imple-
mented by Lehmann (2004) for MM*Stat worked only with the statisti-
cal software XploRe. The development and support of the XploRe software
has unfortunately ceased, so the question arises how one should include the
interactive examples in Arabic MM*Stat such that they will be runnable in
future.

The language problem can only be solved by adapting the texts. To solve the tech-
nical problems we decided to use another technology, the so called “wiki technology”.
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Fig. 2 Sample Arabtex input in LaTEX, see examples/guha.tex in Arabtex

3 Wiki technology

3.1 What is a wiki?

Wiki is a system that allows users to collaborate in forming the content of a web site.
The first wiki web site, “WikiWikiWeb”, was designed by Cunningham and Leuf in
1995 (Leuf and Cunnigham 2001). They describe the wiki system as a simple database
that can operate on the World Wide Web. The goal is to simplify the process of partic-
ipation and cooperation in the development of web content with maximum flexibility.
The main advantages of a wiki are:

– Wiki simplifies the process of content editing. Each web page contains a link to
change content within the web browser. After saving a modified page it can be
viewed immediately.

– It uses simple markup to coordinate content, and it is suitable for users with
little experience with computers or web site development, as no HTML language
knowledge is required.

– Wiki sites keep a record of the page history and therefore makes the comparison
of older and newer web pages an easy task. If a mistake is made, one can revert
to the older version of the page.

– Wiki sites can be publicly open and therefore allow any user to improve the content.
– Wiki simplifies the organisation of a site: Wiki sites create hypertext databases

and can regulate the content in any manner desired; many content management
systems require the planning of the organization of the content before anything is
written. This allows for flexibility which is not available in content management
systems.

3.2 Application of wiki

The flexibility of the wiki concept makes it an ideal knowledge transfer tool, at universi-
ties, educational institutes, in companies and with specialised web sites. For example,
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Fig. 3 Entry page of Arabeyes wiki (http://wiki.arabeyes.org)

a teacher could write his course using a wiki and offer it to his students as useful
material for study, see e.g., Klinke (2011).

Nowadays, we have many more examples of web sites using wikis as a tool for
the development of content, like Wikipedia (2011). The Wikipedia project started 15
January 2001 and today there are more than 10 million articles in the encyclopedia
in all languages, more than 3.7 million articles in the English encyclopedia alone.
Millions of volunteers around the world modify and add to the contents daily and
new articles are created. The Arabic version of the free encyclopedia was launched in
July 2003 and currently contains approximately 160 thousand articles as the Arabic
encyclopedia is in the content-building phase.

The Arabic wiki platform “Arabeyes” (Afifi et al. 2011) provides a good envi-
ronment for discussion and exchange of experience and knowledge about the Arabic
language. Arabeyes offers the translation into Arabic for free open-source programs.
In addition Arabeyes provides a technical dictionary that aims to translate and stan-
dardise the technical terms used in translating the software to the Arabic user. Arabeyes
is a solution for the language problem, see Fig. 3.

3.3 Implementation of Arabic MM*Stat

Arabic MM*Stat is directed at students and Arabic users that serve the e-learning
issues in the Arabic region. The content of Arabic MM*Stat is a translation of the
content of the former CD’s into Arabic.
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Fig. 4 Graphical user interface (GUI) of Arabic MM*Stat. Note that the interface language (English) is
different from the content language (Arabic) due to user settings

Wikimatrix (2011) offers an overview of the available wiki software and their capa-
bilities. A useful wiki should support:

– LaTEX to provide the possibility to write a statistical formula in “mathemati-
cal” language rather than integrate it as a graphic, generated for example by
LaTeX2HTML.

– Arabic as a language for the content and the interface.
– Integration of statistical software, preferably R, to recreate interactive examples.
– Multiple choice questions to test students knowledge.

As wiki software we finally decided to use the Mediawiki, the software behind the
(Arabic) Wikipedia. It solves all possible technical problems (see Figs. 4 and 5):

– User interface
It is able to have the content and the user interface in the Arabic language as the
Arabic Wikipedia shows.

– Writing from left to right
To some extent, it can change the writing direction for formulas, list etc.

– Interactive examples
Through Mediawiki extensions we are able to transfer the functionality of the
MM*Stat CD to the new system:
– The R extension allows to embed (interactive) tables and graphics generated

by R into wiki page as well as interactive examples.
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Fig. 5 An interactive example of a graphic of a probability density function and a table of a cdf of a
binomial distribution (p = 0.6)

Fig. 6 The wiki source code for the page shown in Fig. 5. On top the Arabic text and within the RForm
tags the input parameters and within the R tags the R program
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– The Quiz extension provided multiple choice questions (Babé 2007).
– The Math extension allows formulas written in LaTEX to be embedded into

the wiki page (Wegrzanowski and Vibber 2011).

3.4 Integration of R program into Arabic MM*Stat

R is a language and environment for statistical computing and graphics (R Develop-
ment Core Team 2011). Arabic MM*Stat uses R programs to create tables and graphics
which can be incorporated in courses notes. For the Mediawiki software an extension
to embed R into the wiki page exists.

They enable the students and learners, for example to visualise statistics distribu-
tions and probability tables via the Internet. See Fig. 5 as an example of a graphic of
a probability density function and a table of a cdf function of a binomial distribution.
Choosing other input values will lead to different tables or graphics.

Figure 6 shows the wiki source code for the example shown in Fig. 5. The inter-
active example consists of two tags Rform und R which share a common attribute
name.

<Rform name=’’binom’’>
... Input parameters...
</Rform>

<R output=’’display’’ name=’’binom’’>
... R program...
</R>

Between the opening and closing Rform tags are the input parameters as defined
in an HTML form. The following opening and closing R tag contain the R program
which produces a graphic. For more detail see Klinke and Zlatkin-Troitschanskaia
(2007).

There are in Arabic MM*Stat other examples, e.g., for other distributions like nor-
mal, Poisson and exponential distribution.

4 Conclusion

Using E-learning/e-teaching tools to offer effective learning of statistics is a necessity
for students. There is the possibility of creating an e-learning system with Arabic
MM*Stat through the application of wiki technology. Some of the specific charac-
teristics we have discussed earlier for developing an Arabic platform already exist in
the wiki. We see that embedding of R is an solution for the interactive examples in
Arabic MM*Stat. We hope that the Arabic MM*Stat platform for e-learning of statis-
tics will be a significant help for the Arabic user as it clearly overcomes weaknesses
in developing such electronic platforms in Arabic.

This research was supported by the Deutsche Forschungsgemeinschaft through the
CRC 649 ‘Economic Risk’.
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ABSTRACT
Several empirical studies reported that pricing kernels exhibit a
common pattern across different markets. The main interest in pricing
kernels lies in validating the presence of the peaks and their variability
in location among curves. Motivated by this observation we investigate
the problem of estimating pricing kernels based on the shape invariant
model, a semi-parametric approach used for multiple curves with
shape-related nonlinear variation. This approach allows us to capture
the common features contained in the shape of the functions and at the
same time characterize the nonlinear variability with a few interpretable
parameters. These parameters provide an informative summary of the
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1 METHODOLOGY

1.1 Pricing Kernel and Risk Aversion

Risk analysis and management drew much attention in quantitative finance
recently. Understanding the basic principles of financial economics is a challenging
task in particular in a dynamic context. With the formulation of utility maximization
theory, individuals’ preferences are explained through the shape of the underlying
utility functions. Namely, a concave, convex, or linear utility function is associated
with risk averse, risk seeking, or risk neutral behavior, respectively. The comparison
is often made through the Arrow-Pratt measure of absolute risk aversion (ARA), as
a summary of aggregate investor’s risk-averseness. The quantity is originated from
the expected utility theory and is defined by

ARA(u)=−U′′(u)
U′(u)

,

where U is the individual utility as a function of wealth.
With an economic consideration that one unit gain and loss does not carry

the same value for every individual, understanding state-dependent risk behavior
becomes an increasingly important issue. The fundamental problem is that
individual agents are not directly observable but it is assumed that the prices of
goods traded in the market reflect the dynamics of their risk behavior. Several
efforts have been made to relate the price processes of assets and options traded in
a market to risk behavior of investors, since options are securities guarding against
losses in risky assets.

A standard option pricing model in a complete market assumes a risk neutral
distribution of returns, which gives the fair price under no arbitrage assumptions.
If markets are not complete, there are more risk neutral distributions and the fair
price depends on the hedging problem. The subjective or historical distribution of
observed returns reflects a risk-adaptive behavior of investors based on subjective
assessment of the future market. Then the equilibrium price is the arbitrage free
price and the transition from risk neutral pricing to subjective rule is achieved
through the pricing kernel. Assuming those densities exist, write q for the risk
neutral density and p for the historical density. The pricing kernel K is defined by
the ratio of those densities:

K(u)= q(u)
p(u)

.

Through the intermediation of these densities, there exists a link between the
pricing kernel and ARA, see for example Leland (1980)

ARA(u)= p′(u)
p(u)
− q′(u)

q(u)
=−dlogK(u)

du
.
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Figure 1 Examples of inter-temporal pricing kernels for various maturities in January–February
2006 (left) and monthly pricing kernels from the first six months in 2006 for maturity one month
(right).

In this way, rather than specifying a priori preferences of agents (risk neutral, averse,
or risk seeking) and implicitly the monotonicity of the pricing kernel, we can infer
the risk patterns from the shape of the pricing kernel.

1.2 Dynamics of Empirical Pricing Kernels (EPKs)

With increasing availability of large market data, several approaches to recovering
pricing kernels from empirical data have been proposed. As many of them estimate
p and q separately to recover K, potentially relevant are studies focusing on
recovering risk neutral density, see e.g. Jackwerth (1999), and Bondarenko (2003) for
comparison of different approaches. For the estimation of p nonparametric kernel
methods or parametric models such as GARCH or Heston models are popular
choices.

Examples of empirical pricing kernels obtained from European options data
on the German stock index DAX (Deutscher Aktien index) in 2006 are shown in
Figure 1, based on separate estimation of p and q. A detailed account of estimation
is given in Section 3.4. To make these comparable, they are shown on a continuously
compounded returns scale. Throughout the article, the pricing kernel is considered
as a function of this common scale of returns. Figure 1 depicts inter-temporal pricing
kernels with various maturities in January–February 2006 (left), and monthly
pricing kernels with fixed maturity one month in 2006 (right). The sample of
curves appears to have a bump around 1 and has convexity followed by concavity
in all cases. The location as well as the magnitude of the bump vary among
curves, which reflects individual variability on different dates or under different
investment horizons. Some features that are of particular economic interest include
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the maximum of the bump, the spread or duration of the bump and the location of
the bump.

From a statistical perspective, properties of the pricing kernel are intrinsically
related to assumptions about the data generation process. A very restrictive model,
with normal marginal distributions, is the Black–Scholes model. This results in an
overall decreasing pricing kernel in wealth, which is consistent with overall risk-
averse behavior. These preferences are often assumed in the classical economic
theory of utility-maximizing agent and correspond to a concave indirect von
Neumann and Morgenstern utility function. However, under richer parametric
specifications or nonparametric models monotonicity of the pricing kernel has
been rejected in practice (Rosenberg and Engle, 2002; Giacomini and Härdle, 2008).
The phenomenon of locally nondecreasing pricing kernel is referred to as the
pricing kernel puzzle in the literature. There have been many attempts to reconcile
the underlying economic theory with the empirical findings. A recent solution
suggested by Hens and Reichlin (2012) relates the puzzle to the violation of the
fundamental assumptions in the equilibrium model framework.

Most of earlier works adopt a static viewpoint, showing a snapshot of markets
on selected dates but report that there is a common pattern across different
markets. The first dynamic viewpoint appears in Jackwerth (2000), who recovers
a series of pricing kernels in consecutive times and claims that these do not
correspond to the basic assumptions of asset pricing theory. In a similar framework
Giacomini and Härdle (2008) perform a factor analysis based on the so-called
dynamic semiparametric factor models, while Giacomini, Härdle and Handel
(2008) introduce time series analysis of daily summary measures of pricing kernels
to examine variability between curves.

Chabi-Yo, Garcia, and Renault (2008) explain the observed dynamics or the
puzzles by means of latent variables in the asset pricing models. Effectively, they
propose to build conditional models of the pricing kernels given the state variables
reflecting preferences, economic fundamentals, or beliefs. Within this framework
they are able to reproduce the puzzles, in conjunction with some joint parametric
specifications for the pricing kernel and the asset return processes.

Due to evolution of markets over time under different circumstances, the
pricing kernels are intrinsically time varying. Thus, approaches that do not take
into account the changing market make limited use of information available in the
current data. On the other hand, changes over time may not be completely arbitrary,
as there are common rules and underlying laws that assure some consistency
across different market system. Moreover, variability observed in pricing kernels,
as shown in Figures 1, is not necessarily linear, and thus factors constructed from a
linear combination of observations are only meaningful for explaining aggregated
effects.

Considering the pricing kernels as an object of curves, we approach the
problem of estimating the pricing kernels and implied risk aversion functions
from a functional data analysis viewpoint (Ramsay and Silverman, 2002). The main
interest in pricing kernels lies in validating the presence of the peaks and their
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variability in location among curves. Motivated by this observation we investigate
the estimation method based on the shape invariant model, which will be formally
introduced in Section 2. This is chosen over the commonly adopted functional
principal component analysis to accommodate the nonlinear features such as
variation of peak locations, which encapsulate quantities amenable to economic
interpretation. The shape invariant model allows us to capture the common
characteristics, reported across different studies on different markets. We then
explain individual variability as a deviation from the common curve or a reference.

Our contribution is three-fold. Firstly, we analyze the phenomenon of pricing
kernel puzzle from a dynamic viewpoint using shape invariant modeling approach.
The starting question was how to compare the empirical evidence. By taking into
account variability among curves, we quantify a trend of the puzzle in the series
of the pricing kernels by a few interpretable parameters. Secondly, we provide a
unified framework for estimation and interpretation of ARA and utility functions
consistent with the underlying pricing kernels with the same set of parameters. The
ARA corresponding to the reference pricing kernel could be viewed as a typical
pattern of risk behavior for the period under consideration. Due to nonlinear
transformation involved in deriving ARA from the pricing kernel function, this
common ARA function does not necessarily coincide with the simple average ARA
functions. Thirdly, the output of the analysis provides a summary measure to study
the relationship with macroeconomic variables. Through real data example we have
related the changes in risk behavior to some macroeconomic variables of interest
and found that local risk loving behavior is procyclical. We acknowledge that we
do not provide an economic explanation to the puzzle but rather try to understand
the nature of the phenomenon by means of statistical analysis.

The paper is organized as follows. Section 2 motivates common shape modeling
approach and Section 3 reviews the shape invariant model and describes it in
detail in the context of pricing kernel estimation. This section serves the basis of
our analysis. Numerical studies based on simulation are found in Section 4. An
application to real data example is summarized in Section 5.

2 COMMON SHAPE MODELING

2.1 Shape Invariant Model for Pricing Kernel

We consider a common shape modeling approach for the series of pricing kernels
with explicit components of location and scale. To represent varying pricing kernels,
we introduce the time index t in the pricing kernel as Kt and consider a general
regression model:

Yt =Kt +εt ,

where εt represents an error with mean 0 and variance σ 2
t . We begin with a working

assumption of independent error as in Kneip and Engel (1995). The effect of
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dependent error is investigated in simulation studies in Section 4.2. The relationship
among Kts is specified as

Kt(u)=θt1g
(

u−θt3

θt2

)
+θt4 , (1)

with some unknown constants θ t = (θt1,θt2,θt3,θt4) and an unknown function g. The
common shape function g can be interpreted as a reference curve. Deviation from
the reference curve is described by four parameters θ t = (θt1,θt2,θt3,θt4) that capture
scale changes and a shift in horizontal and vertical direction. This parametrization
in (1) is commonly known as a shape invariant model (SIM), originally introduced
by Lawton, Sylvestre and Maggio (1972) and studied by Kneip and Engel (1995).
Note that the model includes as a special case complete parametric models with
known g.

In contrast to standard applications of SIM as a regression model, the SIM
application to pricing kernel estimation does not, strictly speaking, satisfy the
model assumption. There is no realization of the pricing kernels available and thus
our formulation of regression model should be viewed as an approximation. The
original data used would be intraday options data and daily returns data, which are
collected from separate sources with sample sizes of different orders of magnitude
but estimation of p and q can be effectively done independently of each other. It may
be possible to elaborate our approach to incorporate simultaneous estimation with
a two-step state-dependent dynamic model formulation whereby the dynamics of
the observed return processes are specified and the unobserved pricing kernel
processes enter as a state variable. However, with current advancement in the
methodology, this is only possible with limited parametric model choices, see for
example Chabi-Yo et al. (2008), and extension to a flexible shape invariant model is
left for future work.

Instead we exploit the fact that preliminary estimates of pricing kernels based
on separate estimation of p and q are readily available from market data and this can
easily substitute Y. From now on, we treat the estimates as something observable
and denote by Yt, similar to the regression formulation with direct measurements
Yt and state the asymptotic result without further complication of pre-processing
steps. After all, these estimates of curves are available from the beginning and the
SIM aims to characterize a structural relationship among these curves. This however
may impact the parametric rate of convergence attainable (Kneip and Engel, 1995)
because our observations are already contaminated by a nonparametric error of
estimation. As is shown in Section 3.6, the dominating error comes from the
estimation of q, which involves second derivative estimation. The optimal rate of
convergence for estimating second derivative is known to be O(N−2/9), where N
is the sample size used (Stone, 1982). This implies that σ 2

t =αN,tv2 where αN,t is
a constant of order O(N−2/9), which should be understood as the multiplication
factor for the parametric rate of convergence.

A particular choice of estimates of individual pricing kernels is not part of
the model formulation but affects the starting values for the estimation of shape
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Figure 2 Example of location and scale shift family of pricing kernels (left) and corresponding
utility functions (right). Solid line in each plot represents reference curves of g(u)=u−γ and U0(u)=
u1−γ /(1−γ ) with γ =0.7, respectively. Parameters are θt1 =1.1,θt2 =1,θt3 =1−θ

(1/γ )
t1 , and θt4 =0 for

dot-dashed (red) and θt4 =−0.5 for dashed (blue) lines.

invariant model. Our choice of initial estimates will be explained in Section 3.4.
Our main interest lies in quantifying the variation among the pricing kernels given
those estimates.

The new message here is an analysis of a sequence of pricing kernels through
shape invariant models. Although we start with different motivation, our approach
is in line with that of Chabi-Yo et al. (2008). In contrast to their approach, we impose
a structural constraint that is related to the shape of the function. This way we strike
a balance between flexibility much desired in parametric model specification and
interpretability of the results lacking in full nonparametric models.

2.2 SIM and Black–Scholes Model

To appreciate the model formulation, given in the Equation (1), it is instructive to
consider utility functions implied by this family of pricing kernels together. The
utility function can be derived from

Ut(u)=α

∫ u

0
Kt(x)dx,

for a constant α. Figure 2 shows an example based on a power utility function,
which corresponds to risk averse behavior. Pricing kernels Kt are shown on the
left and the corresponding utility functions Ut are on the right. The solid lines
represent reference curves and the dashed and dot-dashed lines represent Kt and
Ut with appropriate parameters θ t in the Equation (1). Depending on the choice of
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parameters, the utility function can increase quickly or slowly. As an illustration, we
consider the Black–Scholes model with power utility function. The Black–Scholes
model assumes that the stock price follows a geometric Brownian motion

dSt/St =µdt+σdWt ,

which gives rise to a log normal distribution for the historical density p. Under the
risk neutral measure, the drift µ is replaced by the riskless rate r but the density q
is still log normal. The pricing kernel can be written as a power function

K(u)=λu−γ ,0<γ <1,

with appropriate constants λ and γ . The corresponding utility function is a power
utility

U(u)=λ
u1−γ

1−γ
.

Assume that λ=1 and suppose that g is a power function, say u−γ . Then the class
of pricing kernels implied by (1) is given by

Kt(u) = θt1

(u−θt3

θt2

)−γ
+θt4

= θ∗t1(u−θt3)−γ +θt4 ,

where θ∗t1 =θt1θ
γ
t2. Notice that with this family of functions θt1 and θt2 are not

identifiable and Kt is defined for u>θt3. For the sake of argument we set θt2 =1
for the moment. The corresponding utility function is

Ut(u) =
∫ u

θt3

Kt(x)dx

= θt1

1−γ
(u−θt3)(1−γ ) +θt4(u−θt3)

def= θ∗∗t1 (u−θt3)(1−γ ) +θt4(u−θt3).

When θt4 =0, this produces again a transformed power utility. When θt4 ̸=0, there
is additional linear term in the function. See Figure 2 for comparison.

2.3 Identifiability Condition for SIM

The previous section illustrates two aspects of applicability of the shape invariant
models. The class of functions that can be generated by the relation (1) is rich, but
in order to uniquely identify the model parameters, some restriction is necessary.
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For example, we have seen that the two scale parameters in the pricing kernel
functions corresponding to the Black–Scholes model are not separable. Basically,
unless there exist some qualitatively distinct common characteristics for each curve,
the model is not identifiable (Kneip and Gasser, 1988). In the case of no prior
structural information available as in the case of pricing kernels, it is sufficient
to consider a few landmarks such as peaks and inflection points.

Even with a unique g, some translation and scaling of parameters lead to
multiple representations of the models. For uniqueness of parameters, we will
impose normalizing conditions suggested in Kneip and Engel (1995):

T−1
T∑

t=1

θt1 =1, T−1
T∑

t=1

θt2 =1, T−1
T∑

t=1

θt3 =0, T−1
T∑

t=1

θt4 =0

in the sense that there exists an average curve. These conditions are not restriction
at all and can be replaced by any appropriate combination of parameters.
Alternatively, we could consider the first curve as a reference, as done in
Härdle and Marron (1990), which implies the restriction θ1 = (1,1,0,0). Generally,
an application-driven normalization scheme can be devised and examples are
found in Lawton, Sylvestre and Maggio (1972).

2.4 SIM Implied Risk Aversion and Utility Function

The utility function corresponding to Kt is given by

Ut(u) = θt1θt2

{
G
(

u−θt3

θt2

)
−G

(
−θt3

θt2

)}
+θt4u

≡ θ∗t1G
(

u−θt3

θt2

)
+θ∗t4 +θt4u,

where G(t)=
∫ t

0 g(u)du. The utility function Ut is a combination of a SIM class of the
common utility function and a linear utility function.

The ARA measure is given by

ARAt(u)=
− θt1

θt2
g′
(

u−θt3
θt2

)

θt1g
(

u−θt3
θt2

)
+θt4

. (2)

For example, assuming g(u)=u−γ with θt2 =1 gives

ARAt(u)=γ
{
(u−θt3)+(θt4/θt1)(u−θt3)

γ+1
}−1

.

When θt4 =0, this function is monotonically decreasing but in general this is not
the case. Note the common ARA function corresponding to g is γ u−1 compared to
the mean ARA function computed by taking the sample average T−1∑T

t=1ARAt(u).
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Figure 3 Effect of parameters on pricing kernel (top), ARA (middle), and utility function (bottom)
compared to the baseline model θ0 = (1,1,0,0) (black). Dot-dashed lines are used for increasing
direction and dashed lines for decreasing direction.

In order to gain some insights, we take a closer look at the changes in
relation to individual scale and shift parameters. These individual effects are
demonstrated in Figure 3. We vary each θi with respect to a baseline model and
then we show how these modifications translate into changes of the risk attitudes
and the corresponding utility functions. The parameters used in Figure 3 are
θ = (0.5,0.7,−0.025,−0.25) in dashed line and θ = (1.5,1.3,0.025,0.25) in dot-dashed
line.

For this exercise we first standardize the common curve that we have estimated
via the shape invariant model so that the peak occurs at the value 0 on the abscissa
and the effect of the scale and shift parameters is separately captured. But we
added the peak coordinates back for visualization so that they are comparable
to other figures shown on returns scale. We observe that an increase in θ1 marks
the bump of the pricing kernel more distinctive while the shape of ARA remains
unchanged compared to the baseline model because, as we can see from (2), ARA
does not depend on θ1 when θ4 =0. Yet, the effect of θ1 on ARA can be analyzed by
considering two distinct cases: θ4 >0 and θ4 <0. These specifications are important
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because the direction of change in the slope of ARA is dictated by the sign of θ4. In
the present case—after normalization—θ1 varies around 0 and its effect on ARA is
almost nil.

A larger value in the parameter θ2 as compared to a benchmark value stretches
the x-axis, which implies larger spread of the bump. When we vary θ2 alone the
slope of ARA(θ2u) is 1/θ2

2

[{
g′2(u)−g′′(u)/g(u)

}
/g2(u)

]
. The term in brackets does

not depend on θ2; it is equal to the slope of ARA(u). Therefore, there is an inverse
relationship between the direction of change in the parameter and that of the
absolute value of the slope. These changes in slope occur around an inflection
point that corresponds to the peak of the pricing kernel.

A positive increment in θ3 shifts both curves to the left without any modification
in the shape. θ4 simply translates pricing kernel curves above or below the reference
curve following a sign rule. Similarly to θ2, the shape of ARA modifies around
the fixed inflection point that marks the change from risk proclivity (negative
ARA) to risk aversion (positive ARA). The effect of θ4 on the values of ARA is
straightforward: since θ4 adds to the g in the denominator its increase will diminish
the absolute ARA level and the other way around. Insulating the effects of a change
in θ4 on the slope of ARA(u) analytically proves to be a more complicated task than
in the case of θ2 because the change in the slope depends jointly on the change in θ4
and on the pricing kernel values and its first two derivatives. In our case, the slope
around the inflection point increases when θ4 decreases.

As for the utility function, positive changes in θ1 and θ4 increases its absolute
slope. In the horizontal direction, θ3 translates the curve to the left or right similarly
to the pricing kernel and ARA while θ2 shrinks or expands its domain.

With this information at hand we can characterize the changes in risk patterns
in relation to economic variables of interest, see Section 5.4.

3 FITTING SHAPE INVARIANT MODELS

3.1 Estimation of SIM

The model in (1) is equivalently written as

Kt(θt2u+θt3)=θt1g(u)+θt4 , θt1 >0, θt2 >0. (3)

The estimation procedure is developed using the least squares criterion based
on nonparametric estimates of individual curves. If there are only two curves,
parameter estimates are obtained by minimizing

∫
{K̂2(θ2u+θ3)−θ1K̂1(u)−θ4}2w(u)du, (4)
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where K̂i are nonparametric estimates of the curves. Härdle and Marron (1990)
studied comparison of two curves and Kneip and Engel (1995) extended to multiple
curves with an iterative algorithm. We consider an adaption of such algorithm here.

The weight function w is introduced to ensure that the functions are compared
in a domain where the common features are defined. We assume that there is an
interval [a,b]∈ J where boundary effects are eliminated and then define

w(u)=
∏

t

1[a,b]
{
(u−θt3)/θt2

}
.

The parameter estimates are compared only in the common region defined by w
but the individual curve estimates are defined on the whole interval. Weights can
be extended to account for additional variability.

The normalization leads to:

T−1
T∑

t=1

Kt(θt2u+θt3)=g(u). (5)

Formula (5) was exploited in the algorithm proposed by Kneip and Engel (1995).
We adopt a similar strategy here.

• Initialize

– Let K̂t =Yt and set starting values
(
θ

(0)
t2 ,θ

(0)
t3

)
for t=1,2,··· ,T.

– Construct an initial estimate g(0) by

g(0) (u)=T−1
T∑

t=1

K̂t

(
θ

(0)
t2 u+θ

(0)
t3

)
.

• For r-th step, r=1,2,··· ,R,

– Determine parameters θ (r) separately for t=1,2,··· ,T by minimizing
∫ {

K̂t (θt2u+θt3)−θt1g(r−1) (u)−θt4

}2
w(u)du.

– Normalize parameters: for j= (1,2) and k = (3,4)

θ
(r)
tj ←

θ
(r)
tj

∑
tθ

(r)
tj

, θ
(r)
tk ←θ

(r)
tk −T−1

∑

t

θ
(r)
tk .

– Update g(r−1) to

g(r) (u)=T−1
T∑

t=1

K̂t

(
θ

(r)
t2 u+θ

(r)
t3

)
.
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• Determine final estimates:

θ̃ t = θ
(R)
t ,

g̃(u) = T−1
T∑

t=1

K̂t

(
θ̃t2u+ θ̃t3

)
.

Kneip and Engel (1995) proved consistency of the estimator. In particular
despite nonparametric initial curve estimates, the parameters are shown to be

√
T

consistent. In their analysis it is noted that the initial estimates of the curves are of
minor importance compared to the final estimate of g. So the original algorithm
includes the final updating of each curve. This improves precision of the estimates
because the pooled sample estimate reduces the variance of g̃, which allows
undersmoothing at the final stage to reduce bias. However, this final updating step
is not practical for our situation with indirect measurements and is not implemented
here for pricing kernel estimation. On the other hand, we can take advantage
of having smooth curves evaluated at finite grid points as data. It is easier to
improve the initialization step, explained in Section 3.2. This leads to simplification
of the estimating procedure with little compromise of the quality of the fit. In
fact, the number of iterations required is very small and often 3 or 4 is sufficient in
practical terms. We found that when the initial estimates are determined sufficiently
accurate, the iteration is not necessary.

As a working model we have assumed an independent error. If there is a
reasonable dependence structure available, this could be incorporated easily in
the estimation algorithm with weighted least squares estimation in (4). The effect
of independence assumption mainly appears in the standard error estimation and
a correction can be made with a sandwich variance–covariance estimator. To assess
the effect of model misspecification, we also carried out some simulation studies
with dependent errors and reported the results in Section 4.

3.2 Starting Values

If there is no scale change in horizontal direction, due to prominent peaks in each
curve, the parameter θ3 can be identified easily by the location of the individual
peak. If the models hold true, and there are two unique landmarks identifiable for
each curve, simple linear regression between the individual mark and the average
mark provides an estimate of the slope parameter θ2. Suppose that the peak is
identified by u satisfying K′t(u)=0. Then we have

0=K′t(u)= θt1

θt2
g′
(

u−θt3

θt2

)
.

Writing u∗t for K′t and u∗0 for g′ leads to a simple linear relation:

u∗t =θt2u∗0 +θt3 . (6)
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Figure 4 Initial estimates Kt(u) (left) and final estimates Kt(θt2u+θt3) from SIM (right) with g
overlayed. Marked in the left plot are two landmarks identified for estimation of the starting values
of (θt2,θt3).

If an inflection point is used, we would have

0=K′′t (u)= θt1

θ2
t2

g′′
(

u−θt3

θt2

)
,

which gives rise to the same relation as (6), with the corresponding u∗∗t and u∗∗0
substituted. The coefficients of intercept and slope estimates are used for starting
values of θt3 and θt2, respectively.

We used the peak and the inflection points around 1 as landmarks, marked
in Figure 4. The location of the landmarks is defined by the zero crossings of the
first and second derivatives. Because the initial observations Kt are a smoothed
curve, we find that additional smoothing procedure is not required at this stage:
a finite difference operation is sufficient to apply mean value theorem with linear
interpolation.

The slope between any two points did not vary much, which is consistent with
the model specification. This step is also used as an informal check and should
there be any nonlinearity detected, the model needs to be extended to include a
nonlinear transformation. With our example, this was not the case.

3.3 Nonlinear Optimization

Given the estimates of (θt2,θt3), the nonlinear least squares optimization uses (4),
which is approximated by

∑

j

{
K̂t
(
θt2uj +θt3

)
−θt1ĝ

(
uj
)
−θt4

}2
w
(
uj
)
. (7)
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When the initial values of (θt2,θt3) are sufficiently accurate, this step is simplified
to a linear regression. Conditional on θt2,θt3 and ĝ, the solutions to the least square
regression with response variable K̂t(θt2uj +θt3) and explanatory variable ĝ(uj)
provide (θt1,θt4). When a further optimization routine is employed to improve the
estimates, these numbers serve as initial values for (θt1,θt4).

3.4 Initial Estimates of K
To start the algorithm the initial estimates of K should be supplied. An example of
initial estimates of K is shown in Figure 4 on the scale of continuously compounded
returns. These are obtained from separate estimation of p and q, which are described
below. Individual smoothing parameter choice is discussed in Section 5 with real
data example.

3.4.1 Estimation of the historical density p. We use the nonparametric
kernel density estimates similar to Ait-Sahalia and Lo (2000) based on the past
observations of returns for a fixed maturity τ . With this approach the returns
of the stock prices are assumed to vary slowly and thus the process can be
assumed stationary for a short period of time. Alternatively, if additional modeling
assumption is made for the evolution of the stock price such as GARCH, a
simulation-based approach could be employed.

At given time t and T = t+τ we obtain realizations of future return values from
a window of historical return values of length J:

rk
T = log

(
St−(k−1)/St−τ−k+1

)
and Sk

T =Sterk
T , k =1,...,J .

The probability density of rT is obtained by the kernel density estimator

p̂hp (r)= 1
Jhp

J∑

k=1

K

(
rk

T−r
hp

)

,

where K is a kernel weight function and hp is the bandwidth. Some variations are
also explored such as overlapping and nonoverlapping windows with a real data
example in Section 5.

3.5 Estimation of the Risk Neutral Density q

We begin with the call price option formula that links the call prices to the
risk neutral density estimation. The European call price option formula is given
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by (Ait-Sahalia and Duarte, 2003)

C
(
X,τ,rt,τ ,δt,τ ,St

)
=e−rt,τ τ

∫ ∞

0
max(ST−X,0)q

(
ST |τ,rt,τ ,δt,τ ,St

)
dST

where

• St: the underlying asset price at time t,
• X: the strike price,
• τ : the time to maturity,
• T = t+τ : the expiration date,
• rt,τ : the deterministic risk free interest rate for that maturity,
• δt,τ : the corresponding dividend yield of the asset.

Write q(ST) for q(ST |τ,rt,τ ,δt,τ ,St). For fixed t and τ , assume rt,τ =r and δt,τ =δ,
the risk neutral density is expressed as

q(u)=erτ ∂2C
∂X2 |X=u .

The relation is due to Breeden and Litzenberger (1978) and serves the basis of
many current semi-parametric and nonparametric approaches. We employ the
semiparametric estimates of Rookley (1997), where the parametric Black–Scholes
formula is assumed except that the volatility parameterσ is a function of the option’s
moneyness and the time to maturity τ . In this work, we fix the maturity and consider
it as one dimensional regression problem.

Define F=Ste(r−δ)τ and m=X/F is moneyness. Write % and φ for the
cumulative distribution function and its density of standard normal random
variable, respectively. The Black–Scholes model assumes

CBS(X,τ ) = Ste−δτ%(d1)−e−rτ X%(d2)

= e−rτ F
{
%
(
d1
)
−m%

(
d2
)}

.

In a semiparametric call price function, the volatility parameter σ is expressed as a
function of the option’s moneynes and the time to maturity τ :

C(X,τ,r,δ,St)=CBS(X,τ,F,σ (m,τ )) .

To derive the second derivative of C, it is simpler to work with a standardized
call price function c(m,τ )=erτ C(X,τ,r,δ,σ )/F=%(d1)−m%(d2). The derivatives of
C and c are related as

∂C
∂X

= e−rτ F
∂c
∂m

∂m
∂X

=e−rτ ∂c
∂m

,

∂2C
∂X2 = e−rτ ∂c2

∂m2
∂m
∂X

= e−rτ

F
∂c2

∂m2 .
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With some manipulation we obtain the following expressions, which are only
functions of (σ,σ ′,σ ′′):

∂c
∂m

= φ
(
d1
) ∂d1

∂m
−$

(
d2
)
−mφ

(
d2
) ∂d2

∂m

∂2c
∂m2 = −d1φ

(
d1
)(∂d1

∂m

)2
+φ

(
d1
) ∂2d1

∂m2 −φ
(
d2
) ∂d2

∂m
−φ

(
d2
) ∂d2

∂m

+md2φ
(
d2
)(∂d2

∂m

)2
−mφ

(
d2
) ∂2d2

∂m2 ,

where

∂d1

∂m
= − 1√

τ

1
mσ (m,τ )

+ 1√
τ

ln(m)
σ ′(m,τ )

σ 2(m,τ )
+
√

τ

2
σ ′(m,τ )

∂d2

∂m
= ∂d1

∂m
−√τσ ′(m,τ )

∂2d1

∂m2 = 1
m2√τσ (m,τ )

+ 2√
τ

σ ′(m,τ )

σ 2(m,τ )

{
1
m
−ln(m)

σ ′(m,τ )

σ (m,τ )

}

+σ ′′(m,τ )

{
ln(m)

σ 2(m,τ )
√

τ
+
√

τ

2

}

∂2d2

∂m2 = ∂2d1

∂m2 −
√

τσ ′′(m,τ ) .

Note that this leads to a slightly different derivation from Rookley (1997), albeit
using the same principle.

In order to compute the derivatives of σ , we used the local polynomial
smoothing on implied volatility. Let σi be the implied volatility corresponding to
the call price Ci with moneyness mi. The local polynomial smoothing estimates are
obtained by minimizing

∑

i

⎧
⎨

⎩σi−
3∑

j=0

βj (m)(mi−m)j

⎫
⎬

⎭

2

W
(
(mi−m)/hq

)
,

where W(·) is a weight function. The estimates are computed as σ̂ (m)=
β̂0(m),σ̂ ′(m)= β̂1(m) and σ̂ ′′(m)=2β̂2(m). Substituting the estimates to the above
expressions gives an estimate of q. The density estimates are defined on the scale
of ST . To define the density on the same returns scale rT = log(ST/St) as p, a simple
transformation can be applied:

q(rT)=q(ST)ST .

Notice that all results are shown on a continuously compounded 1-month period
returns RT =1+rT =1+log(ST/St).
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3.6 Word on Asymptotics

There are two layers of estimation involved. The first step deals with individual
curve estimation and the second step introduces shape invariant modeling. The
shape invariant modeling is largely robust to how the data are prepared before
entering the iterative algorithm and the resulting estimates are interpreted as
conditional on the individual curves. Therefore, the main estimation error arises in
the first stage where p and q are separately estimated with possibly different sample
sizes and separately chosen bandwidths.

In practical terms, the sample size used in estimating p is normally of smaller
order, say n compared to N =nM for q for a constant M. This is due to the
difference between the daily observations available for estimating p and the
intraday observations available for estimating q. Thus it might be expected that
the estimation error will be dominated by the estimation error of p. On the other
hand, the underlying function p for which simple kernel estimation is used is much
simpler and more stable compared to q for which nonparametric second derivative
estimation is required.

Because the estimates of ratios are constructed from the ratio of the estimates,
we can decompose the error as

K̂(u)−K(u) = q̂(u)
p̂(u)
− q(u)

p(u)

≃ q̂(u)−q(u)
p(u)

− q(u)
p(u)

p̂(u)−p(u)
p(u)

.

Numerical instability might occur in the region where p̂≈0 however this is not of
theoretical concern. In fact, the pricing kernel is the Radon-Nikodym derivative of
an absolutely continuous measure, and thus p and q are equivalent measures, that
is, the null set of p is the same as the null set of q. So we can limit our attention to
the case where p(u)>ϵ for some constant ϵ. Provided that p(u)>ϵ and q(u)>ϵ, the
asymptotic approximation is straightforward and asymptotic bias and variance can
be computed from

E
[
K̂(u)−K(u)

]
≃ E

[
q̂(u)−q(u)

]

p(u)
− q(u)

p(u)

E
[
p̂(u)−p(u)

]

p(u)

= O
(

h4
q

)
+O

(
h2

p

)
+O

(
h2

p +h4
q

)
,

Var
[
K̂(u)−K(u)

]
≃ K2(u)

{
Var

[
q̂(u)

]

q2(u)
+ Var

[
p̂(u)

]

p2(u)

}

= O
{(

Nhq
)−1}+O

{(
nhp

)−1}+O
{(

Nhq
)−1 +

(
nhp

)−1}
.

Since q̂ involves estimation of second derivative of a regression function, the error is
dominated by the estimation of q. The optimal rate of convergence for q is O(N−2/9)
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while that for p is O(n−2/5). These will be equivalent when M=O(n39/15)>O(n2). In
practice M is of much smaller order and therefore the leading error terms come from
the estimation of q. Ait-Sahalia and Lo (2000) showed in a similar framework that
the error is dominated by the estimation of q and for the purpose of asymptotics
p can be regarded as a fixed quantity. For this reason we actually implement a
semiparametric estimator for q to stabilize the estimator.

Consistency and asymptotic normality of the parameter estimates are shown
in Härdle and Marron (1990) for two curves and in Kneip and Engel (1995) for
multiple curves. We write the approximate distribution for θ̂ t as

θ̂ t≈N(θ t,!t).

Due to the iterative algorithm, the asymptotic covariance matrix is more
complicated for multiple curves but Kneip and Engel (1995) show that, as the
number of curves increases, the additional terms arising in the covariance matrix is
of lower order than the standard error term due to nonlinear least square methods.
There is no suggested estimate for the asymptotic covariance matrix but a consistent
estimate can be constructed as in standard nonlinear least square methods. Define
the residual êtj = K̂t(uj)−K̃t(uj) where K̂ is the initial estimates and K̃ is the SIM
estimates and let

σ̂ 2
t = 1

n

n∑

j=1

ê2
tj .

The covariance matrix can be estimated as

!̂t = σ̂ 2
t

⎡

⎣n−1
n∑

j=1

{
▽θ K̃t

(
uj;θ̃

)}{
▽θ K̃t

(
uj;θ̃

)}⊤
⎤

⎦
−1

,

where ▽θK(u;θ ) is the first derivative of the function, given by

∂K(u)

∂θ1
= g

(
u−θ3

θ2

)
,

∂K(u)

∂θ2
= −θ1

θ2

(
u−θ3

θ2

)
g′
(

u−θ3

θ2

)
,

∂K(u)

∂θ3
= −θ1

θ2
g′
(

u−θ3

θ2

)
,

∂K(u)

∂θ4
= 1.

To see whether the location or scale parameters are different between any pair of
curves, we can compute the standard errors of the estimates to make a comparison.
A formal hypothesis testing also appears in Härdle and Marron (1990) for kernel-
based estimates and in Ke and Wang (2001) for spline-based estimates. For example
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Table 1 Parameter values of θ

Distribution Mean Standard deviation
θ1 Log-normal 1 0.33
θ2 Log-normal 1 0.28
θ3 Normal 0 0.27
θ4 Normal 0 0.35

we might be interested in testing whether a location or a scale parameter can be
removed.

Although these results are practically relevant, we note that the methods
mentioned all assume direct observations of the underlying function of interest,
with one smoothing parameter selection involved. Obtaining comparable rigorous
results for our estimator is complicated in the present situation due to the
nonstandard nature of the estimator being a ratio of two separate nonparametric
estimates with independent bandwidths. We consider this out of scope of this paper
and leave it for separate work.

4 NUMERICAL STUDIES OF SIM ESTIMATION

Applying the SIM to pricing kernels involves two rather separate estimation steps,
the initial estimation of the pricing kernels and the SIM estimation given the pre-
estimates. The former has been studied extensively and in particular the properties
of the nonparametric methods that we have used are well established in the
literature. This section mainly concerns the latter.

We identify the two main factors that could affect the performance of SIM
estimation to be error misspecification and smoothing parameter selection for the
individual curves. Their effects are evaluated in the following simulation studies.
The effects on pricing kernel estimation are separately studied in Section 5.4, in
comparison to the standard nonparametric approach used in Jackwerth (2000).

4.1 Generating Curves

In each simulation 50 curves are generated at 50 (random uniform) grid points. In
order to mimic the common shape of the observed pricing kernel, we generated
the common curve by a ratio of two densities

g(u)=q0(u)/p0(u),

where p0 is density of Gamma(0.8,1) distribution and q0 is density of mixture w∗
Gamma(0.2,1)+(1−w)∗N(0.91,0.32) distribution with w=0.3. In accordance with
the normalization scheme, the θ values are set as in Table 1. The values of the

 at H
um

boldt-U
niversitaet zu B

erlin on M
ay 17, 2013

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


[11:47 22/2/2013 nbs019.tex] JFINEC: Journal of Financial Econometrics Page: 390 370–399

390 Journal of Financial Econometrics

Table 2 Parameter values for error specification

Error 1 Error 2 Error3

Case 1 σ 0.02 0.05 0.10
Case 2 φ 0.75 0.75 0.75

σu 0.02 0.03 0.09
Case 3 α −3.69 −2.99 −2.30

β 0.75 0.52 0.53
σv 0.01 0.02 0.02

Case 4 α −2.41 −1.89 −1.39
β 0.45 0.40 0.42
φ 0.75 0.45 0.45
σv 0.10 0.25 0.25

standard deviation were chosen to be similar to the observed ones in the real data
example.

4.2 Error Specification

For the error specification, we have included dependent errors in time as well as in
moneyness as following.

• Case 1: Independent error: εt,j∼N
(
0,σ 2)

• Case 2: Dependent error in moneyness:

εt,j =φεt,j−1 +ut,j , the set of the ut,j∼N
(

0,σ 2
u

)

• Case 3: Dependent error in time: εt,j∼N
(
0,σ 2

t
)

log(σt)=α+β log(σt−1)+vt , vt∼N
(

0,σ 2
v

)

• Case 4: Dependent error in moneyness and time:

εt,j = φεt,j−1 +ut,j , ut,j∼N
(

0,σ 2
ut

)
,

log(σut) = α+β log
(
σu,t−1

)
+vt , vt∼N

(
0,σ 2

v

)

Cases 1 and 2 are commonly assumed but Cases 3 and 4 were rarely used in
the literature with SIM estimation. Table 2 lists the parameter values used for
simulation. These values are chosen to be comparable in terms of overall variability
among cases.
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4.3 Smoothing Parameter Selection

We consider three versions of the least squares cross-validation (CV) based criteria
for bandwidth selection:

CVt(h)=
n∑

i=1

{
Yt,i−K̂−(i)

t,h (ui)
}2

,

where K̂−(i)
t,h is the local linear fit without using the i-th observation. For each

observed curve we find the optimal bandwidth h∗t =argminCVt(h). Due to
considerable variability in the x-dimension we standardize the optimal bandwidths
(h̃∗t =h∗t /st), where st is the empirical standard deviation of ui, and we choose the
common bandwidth as follows:

hopt,1 =max(h̃∗t ) hopt,2 =average(h̃∗t ) or hopt,3 =argmin
∑

t

CVt(h).

Finally, we multiply hopt by st and use these values to perform smoothing of each
curve.

4.4 Results of Simulation

We considered various simulation scenarios based on the combinations of the case
of errors and bandwidth selection methods. Table 3 summarizes the results of the
goodness of fit measured by MSE for the case σ =0.05. For comparison we added in
the last row the MSE for the standard nonparametric estimates based on individual
optimal bandwidths to their advantage. For larger error (σ =0.1, not shown) we also
observed some dramatic deterioration with Case 4. Nevertheless, the simulation
studies suggest that the overall error is in the same order of magnitude and we
suspect that the impact of these factors is limited. The fit was however best with
smoothing parameters selected by h1.

5 REAL DATA EXAMPLE

We use intraday European options data on the Deutscher Aktien index (DAX),
provided by European Exchange EUREX and maintained by the CASE, RDC SFB
649 (http://sfb649.wiwi.hu-berlin.de) in Berlin. We have identified options data
with maturity one month (31 working days/23 trading days) from June 2003 to
June 2006 from DAX 30 Index European options, which adds up to 37 days.

We obtain the initial estimates for p and q as described in Section 3.4. For the
choice of kernel functions, we have used quartic function for both p and q.
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Table 3 Comparison of SIM estimation with respect to error misspecification and
smoothing parameter selection

σ =0.05

methods parms. case 1 case 2 case 3 case 4

h1 θ1 31 32 67 65
θ2 60 70 84 77
θ3 54 62 81 76
θ4 32 32 77 75
Kis 1.2 1.6 1.5 1.5

h2 θ1 67 68 80 69
θ2 115 115 110 99
θ3 111 110 105 103
θ4 70 72 99 85
Kis 1.1 1.6 1.9 1.9

h3 θ1 67 71 67 73
θ2 115 108 91 82
θ3 111 100 88 84
θ4 70 74 83 88
Kis 1.1 1.6 1.8 1.8

npK 3.5 2.0 4.2 3.6

Numbers are MSE multiplied by 10000. Kis computes the average MSE for all curves from SIM and npK
without SIM but using individual optimal bandwidths for each curve.

5.1 Estimation of the Risk Neutral Density q

The stock index price varies within one day and we would need to identify the
price at which a certain transaction has taken place. However, several authors (e.g.
Jackwerth, 2000) report that the intraday change of the index price is stale and we
use instead the prices of futures contracts closest to the time of the registered pair
of the option and strike prices to derive the corresponding stock price, corrected for
dividends and difference in taxation following a methodology described in Fengler
(2005).

The data contains the actually traded call prices, the implied stock index price
corrected for the dividends from the futures derivatives on the DAX, the strike
prices, the interest rates (linearly interpolated based on EURIBOR to approximate
a riskless interest rate for the specific option’s time to maturity), the maturity, the
type of the options, calculated moneyness, calculated Black and Scholes implied
volatility, the volume, and the date. For each day, we use only at-the-money and
out-of-the-money call options and in-the-money puts to compute the Black–Scholes
implied volatilities. This guarantees that unreliable observations (high volatility)
will be removed from our estimation samples. Since the intraday stock price varies,
we use its median (St) to compute the risk neutral density and correct the strike
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price to preserve the ratio relative to the underlying stock price. For this price, we
verify if our observations satisfy the no arbitrage condition:

St≥Ci≥max(St−Xie−rτ ,0),

where Xi is the adjusted strike price and Ci is the corresponding call price. For the
remaining observations (Xi,Ci) we compute the (mi,σi) counterparts for the fixed
St by implicitly assuming that the volatility does not depend on the changes in the
intraday stock price. The estimates are computed based on these pairs (mi,σi).

5.2 Estimation of the Historical Density p

We compute the nonparametric kernel density estimates as described earlier.
Jackwerth (2000) argues that some discrepancies between the nonparametric
estimates are attributed to overlapping and nonoverlapping windows of the past
observations selected. For comparison to the earlier works, we also experimented
with a choice of time varying equity premium and constant equity premium (we
demean the densities and supplant it with the risk free rate on the estimation
day plus 8% equity premium per annum as in Jackwerth (2000) adjusted for
the corresponding maturity), overlapping and nonoverlapping returns, window
lengths of 2, 4, and 6 years, respectively. The estimates for different choices of
parameters are then compared subsequently in terms of pricing kernel, implied
risk aversion and implied utility function estimation. We find that with varying
degrees of assumptions on the model, common characteristics such as peaks and
skewness are reportedly observed in a wide range of estimates.

5.3 Smoothing Parameter Selection

In contrast to the simulation studies, the effect of smoothing parameter is less
transparent with real data when we estimate p and q separately. At first glance,
the bandwidth selection for q seems more influential than that of p in gauging
performance of the estimates, as it involves derivative estimation. Figure 5 examines
the effect of the bandwidth choices on q̂. Top left panel shows the implied volatility
estimates overlayed, the top right shows the first derivative estimates and bottom
left shows the second derivative estimates, respectively, which are used as inputs to
create the estimates of q on bottom right panel. The bandwidths used are (0.05, 0.10,
0.15, 0.20). With the apparent undersmoothing at the smallest bandwidth, there is
notable variability in terms of smoothness in estimation of implied volatility and
its derivatives, however the resulting density estimates demonstrate robustness.
Similar observations are made to other dates. However by smoothing on implied
volatility domain, we find that the estimates are stable with relatively a wide range
of bandwidth choices.
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Figure 5 Example of q estimates with varying bandwidths (0.05, 0.1, 0.15, 0.20). The first three
panels show estimates of implied volatility, its first and second derivative. The corresponding
densities are shown in lower right panel. Estimates are stable for a wide range of bandwidths
choices.

For a systematic choice, we employed a version of CV criteria (hopt,1 defined
in Section 4.3) for p and q estimation. For estimation of q, we have used the least
squares CV for local cubic estimation to include the second derivative of σ :

CV(hq) =
n∑

i=1

n∑

j ̸=i

{
σi− σ̂

(0)
hq,−i(mi)− σ̂

(1)
hq,−i(mi)(mj−mi)

−1
2
σ̂

(2)
hq,−i(mi)(mj−mi)2

}2
w(mi),

where σ̂
(k)
hq,−i is the k-th derivative estimate without the i-th observation (mi,σi) and

0≤w(mi)≤1 is a weight function. The h1-optimal bandwidth in implied volatility
space turns out to be hq =0.2.

For estimation of p, we have used the likelihood CV for each curve on returns
scale:

logL(hp)=
n∑

i=1

logp̂−(i)
hp

(ri),
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Figure 6 Illustration of SIM with common EPK, ARA, utility function, and mean ARA.

where p̂−(i)
hp

(ri) is the leave-one-out kernel estimator for php (ri). However, we found
that the optimal bandwidth selected tends to systematically oversmooth and thus
we chose a smaller value close to the maximum of individually optimal bandwidths,
which is in our case hp =0.05.

5.4 Estimation of Pricing Kernels, ARA and Utility Function

We have considered in Section 5.2 various options for the parameter choice in
estimating p and have ended up with 12 series of pre-estimates of pricing kernel. We
are interested in seeing how these choices influence the estimated common curves
and θt parameters by SIM. Since, as it turns out, the results are very similar among
specifications we depict graphically only four of them in Figures 6 and 7: those
based on nonoverlapping (solid) and overlapping (dashed) returns over the last
two years, nonoverlapping returns over the last four (dot-dashed) and six (dotted)
years, respectively with varying equity premium. The added lines in Figure 7 are
95% pointwise confidence band for the first series of pre-estimates.

The common curves are represented in Figure 6. All estimates display a
paradoxical feature: pricing kernel has a bump, ARA has a region of negative values
that correspond to the increasing region in the pricing kernel, utility function has a
convex region in the domain around the peak of the pricing kernel. The variability

 at H
um

boldt-U
niversitaet zu B

erlin on M
ay 17, 2013

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


[11:47 22/2/2013 nbs019.tex] JFINEC: Journal of Financial Econometrics Page: 396 370–399

396 Journal of Financial Econometrics

2003/06 2004/11 2006/05

1

2

θ 1

2003/06 2004/11 2006/05

1

2

θ 2

2003/06 2004/11 2006/05

0

1

θ 4

2003/06 2004/11 2006/05

0

1

θ 4

Figure 7 Estimated SIM parameters under variations in the choice of the window lengths of returns
values.

among curves is expressed by θt-s. In Figure 7, we observe that the main difference
in the dynamics of different series has to do with the magnitude but less with
the direction of change. In addition, we computed the mean of implied ARA
corresponding to our estimation period by computing the sample average and
found that it was similar to the the mean ARA for S&P500 appearing in Figure
3C—19 March 1991 to 19 August 1993 in Jackwerth (2000), and to a certain extent
to the yearly average from 2003 and 2005 shown in Figure 4 in Chabi-Yo et al.
(2008). It is worth noting that the mean ARA and the common ARA curves differ a
great deal due to the nonlinear transformation involved in deriving ARA from the
pricing kernel, e.g. see Equation (2) in Section 2.4. This is not surprising since the
interpretation of common curve is different from the average curve, in particular
the common curve and the mean curves have different scales of the x-domains—by
means of registration.

5.5 Relation to Macroeconomic Variables

With an aid of the SIM model for EPK, we wish to characterize changes in risk
patterns in relation to economic variables of interest. Before doing this, we should
mention that in the case of nonstandard common curves—in our empirical example
the peak does not occur at 0—both θ1 and θ2 introduce a shift effect in EPK together
with its shape effect. In order to disentangle these effects and improve interpretation
we first standardize the EPK curves by the location of the peak before applying SIM.
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Table 4 Correlation table for the first difference of SIM parametethers and the
selected macro economic variables

θ1 θ2 θ3 θ4 CS DAX YT
θ1 1.00 0.55∗ 0.02 0.78∗ −0.25 0.38∗∗ −0.26
θ2 1.00 0.38∗ −0.04 0.06 −0.12 −0.39∗∗

θ3 1.00 −0.18 0.07 −0.21 −0.28∗∗∗

θ4 1.00 −0.37∗∗ 0.62∗ −0.04

∗, ∗∗, and ∗∗∗ significant at 1%, 5%, and 10% levels, respectively.

This introduces two more parameters, the horizontal and vertical coordinates of the
peaks in the analysis. Since their shift effect is comprised by parameters θ3 and θ4
we will not treat them here separately.

Previous studies trying to link the parameters describing risk attitudes to the
business conditions include Rosenberg and Engle (2002). Based on power pricing
kernel specifications they show that risk aversion is counter-cyclical. Other related
work investigates the relation between equity premiums, (e.g., Fama and French,
1989), smile asymmetry of volatility (Bekaert and Wu, 2000; Drechsler and Yaron,
2010), or market efficiency (Marshall, Cahan, and Cahan, 2008). The advantage
of our approach over Rosenberg and Engle (2002) is that it allows us to identify
how the change in economic variables relates to the shape of a nonparametrically
estimated pricing kernel. Due to limited sample size—37 observations—it is
impossible to estimate a structural model that correctly deals with the simultaneity
of our set of dependent variables. Further research will involve the estimation of
a (S)VAR specification, in order to account for the aforementioned endogeneity.
We instead evaluate the potential univariate correlations between the estimated
θt parameters and macroeconomic variables associated with the business cycle
and interpret our results from the perspective of local EPK and risk aversion
functions. We use the following variables that have a revealed relation with the
state of the economy: credit spread (CS) is the difference between the yield on the
corporate bond, based on the German CORPTOP Bond maturing in 3–5 years, and
the government bond maturing in 5 years; the yield curve slope (YT) refers to the
difference between the 30-year government bond yield and three-months interbank
rate; short-term interest rate (IR) is the three-months interbank rate; and DAX 30
Performance index as a proxy for consumption. Depending on data availability
we collect daily or monthly data. Tests on unit roots failed to reject stationarity
in all parameter series and economic variables; we therefore work with their first
difference. For conciseness we present only the correlation table for nonoverlapping
returns over the past two years with varying equity premium and interpret the
results below in relation to Figure 3.

In Table 4, we read significant positive correlation between changes in θ1 and
DAX and negative one with the credit spread, indicating that the EPK becomes
more pronounced when the economic indicators suggest an expanding economy;
changes in θ2 and YT are negatively correlated, suggesting that risk aversion slope
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becomes locally steeper during economic boom. The same interpretation holds for
the negative correlation between changes in θ3 and YT. The height of the peak
varies with the returns on the index, pointing to an increasing local risk proclivity
in periods of economic expansion. We have not found any significant correlation
between changes in θt and in the short-term interest rate. Finally, we observe a
positive correlation between the increments in θ1 and θ2 that suggests that over
periods of concerted negative evolution of the economic indicators the EPK bump
will shrink in both horizontal and vertical direction, possibly leading to an overall
decreasing EPK.

In summary, the sense of the relations between the indicators of the business
cycle and the parameters that summarize risk preferences indicates that locally risk
loving behavior is procyclical. These findings are also in line with the results found
in Rosenberg and Engle (2002).
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