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Localized Realized Volatility Modeling
Ying CHEN, Wolfgang Karl HÄRDLE, and Uta PIGORSCH

With the recent availability of high-frequency financial data the long-range dependence of volatility regained researchers’ interest and has led
to the consideration of long-memory models for volatility. The long-range diagnosis of volatility, however, is usually stated for long sample
periods, while for small sample sizes, such as one year, the volatility dynamics appears to be better described by short-memory processes.
The ensemble of these seemingly contradictory phenomena point towards short-memory models of volatility with nonstationarities, such as
structural breaks or regime switches, that spuriously generate a long memory pattern. In this paper we adopt this view on the dependence
structure of volatility and propose a localized procedure for modeling realized volatility. That is at each point in time we determine a past
interval over which volatility is approximated by a local linear process. A simulation study shows that long memory processes as well as
short memory processes with structural breaks can be well approximated by this local approach. Furthermore, using S&P500 data we find
that our local modeling approach outperforms long-memory type models and models with structural breaks in terms of predictability.

KEY WORDS: Adaptive procedure; Localized autoregressive modeling.

1. INTRODUCTION

Volatility is one of the key elements in modeling the stochas-
tic dynamic behavior of financial assets. It is not only a mea-
sure of uncertainty about returns but also an important input pa-
rameter in derivative pricing, hedging, and portfolio selection.
Accurate volatility modeling is therefore in the focus of finan-
cial econometrics and quantitative finance research. With the
availability of high-frequency data, so-called realized volatility
estimators (sums of squared high-frequency returns) have been
proposed and have been shown to provide better volatility fore-
casts than the concurrent volatility estimators based on a coarser
(e.g., daily) sampling frequency; see, for example, Andersen et
al. (2001b).

Realized volatility together with other volatility measures ex-
hibit significant autocorrelation which is the basis for the sta-
tistical predictability of volatility. In fact, the sample autocor-
relation function has typically a hyperbolically-like decaying
shape, also known as “long memory.” A strand of literature fo-
cused on this kind of correlation phenomenon. The long mem-
ory “diagnosis,” however, is usually stated for long sample pe-
riods such as three to 10 years. Over shorter sample periods,
however, the autocorrelation function usually exhibits less per-
sistence. This is also illustrated in Figure 1, which depicts the
daily sample autocorrelation functions of daily logarithmic re-
alized volatility of the S&P500 index futures for a long sample
period (1985–2005) and for a short sample period (1995). The
different degrees of persistence suggest that the diagnosis can
also be generated by a simple model with structural change in-
side such a rather long interval; the possibility of such interme-
diate changes provides an alternative view on the described phe-
nomenon. Like in the physical sciences, where one uses wave
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and particle theory to explain the emission of light, we have
here a duality of theories for the emission of volatility. It is the
objective of our study to investigate this dual view on volatility
phenomenon.

In the literature of the long memory view of volatility, frac-
tionally integrated [I(d)] processes have frequently been under
consideration due to their hyperbolically decaying shock prop-
agation for 0 < d < 1. These processes have been proposed
by, for example, Granger (1980), Granger and Joyeux (1980),
and Hosking (1981). When applied to volatility they seem
to provide a better description and predictability than short-
memory models estimated over (the same) long sample peri-
ods. A typical example is the empirically better performance
of the fractional integrated generalized autoregressive condi-
tional heteroscedaticity (FIGARCH) model of Baillie, Boller-
slev, and Mikkelsen (1996) as opposed to a standard GARCH
model. For realized volatility, the autoregressive fractional inte-
grated moving average (ARFIMA) process emerged as a stan-
dard model; see, for example, Andersen et al. (2003) and Pong
et al. (2004). An alternative and quite popular model that does
not belong to the class of fractionally integrated processes but
approximates the long-range dependence by a sum of several
multiperiod volatility components is the heterogenous autore-
gressive (HAR) model proposed by Corsi (2009).

The question on the true source of the long-memory diagno-
sis, however, still remains. Long memory in realized volatility
may in fact be due to its construction, that is, by the aggre-
gation over squared intraday returns, which are well known to
exhibit also long-range dependence. Liebermann and Phillips
(2008) therefore develop refined methods for conducting infer-
ence on long memory. Their empirical results, however, support
the general finding on long memory in realized volatility.

Moreover, the presence of structural breaks may result in
misleading inference on the long memory diagnosis, as has al-
ready been noted in Diebold (1986) and Lamoureux and Las-
trapes (1990). In fact, the theoretical results provided in Diebold
and Inoue (2001) and Granger and Hyung (2004) show that
this phenomenon can also be spuriously generated by a short-
memory model with structural breaks or regime shifts. More
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Figure 1. Sample ACF plots of daily logarithmic realized volatility
of the S&P500 index futures for the sample from 1985–2005 (upper
panel) and for the year 1995 (lower panel).

generally, Mikosch and Stărică (2004b) even argue indepen-
dently of any particular model assumptions that nonstationar-
ities in the data, such as changes in the unconditional mean
or variance, can lead to the diagnosis of long-range depen-
dencies. Such findings have led to the development of struc-
tural break detection methods and their application to financial
volatility, where breaks are found in volatility processes using
real data; see, for example, Chen and Gupta (1997), Mikosch
and Stărică (2004a), Liu and Maheu (2008), and Čížek, Härdle,
and Spokoiny (2009). Similarly, volatility models with time-
varying coefficients have been proposed, which allow some
or all of the model parameters to vary over time either in an
abrupt fashion—for example, via Markov-Switching (see, e.g.,
Hamilton and Susmel 1994 and So, Lam, and Li 1998) and
mixture multiplicative error specifications (see Lanne 2006)—
or via a smooth function of time or other transition variables;
see, for example, Baillie and Morana (2009b) and Scharth and
Medeiros (2009), who show that nonlinearities, such as struc-
tural breaks and regimes induced by asymmetries like the lever-
age effect, may generate the observed long-range dependence.
Such methods are also applied to long-memory models, ad-
dressing the possibility of the coexistence of long memory and
structural breaks; see, for example, Baillie and Morana (2009a),
Hillebrand and Medeiros (2008), and McAleer and Medeiros
(2008b). The number of breaks in long memory realized volatil-
ity models is usually found to be one or two. Most of these stud-
ies, however, focus on sample periods covering at least 10 years.
Given such a long time span of data, the presence of breaks
even in long-memory models may be expected. Noteworthy,
when it comes to forecasting, the more complicated models
with breaks are often unable to significantly outperform the no-
break long memory alternatives; see Hillebrand and Medeiros
(2008), McAleer and Medeiros (2008b), and Martens, Dijk, and
de Pooter (2009). Moreover, in some cases short memory mod-
els with breaks have been found to provide superior realized
volatility forecasts than alternative long-memory models and
regime switching ARFIMA models; see, for example, Lanne
(2006) and Morana and Beltratti (2004).

In this paper we introduce the localized realized volatility
modeling approach to describe realized volatility. In this ap-
proach the time-varying (local) structure of volatility is conve-
niently determined via adaptive statistical techniques, that allow

us to find for each time point a past time interval, over which a
local volatility model is a good approximator. Thus, in contrast
to the previously cited literature our approach is local rather
than global. The parameters of the local model as well as the
length of the past time interval are determined at each point
in time and may, therefore, differ from period to period. The
method basically tries to adapt to local volatility. In doing so,
it does not require any prior information or modeling assump-
tions on the number of break points, the potential (economic)
sources of the break, its magnitude nor on its type (e.g., abrupt
or smooth). This makes it very appealing. Moreover, it also al-
lows to straightforwardly account for time-varying volatility of
volatility, a feature that currently attracts researcher’s interest,
like Barndorff-Nielsen and Veraart (2009), and has been recog-
nized to be important also for realized volatility; see Corsi et al.
(2008) and Allen, McAleer, and Scharth (2010).

Although localized realized volatility modeling is a quite
general concept that can be applied to various types of local
parametric volatility models, we investigate it here based on au-
toregressive processes. In particular, we push here the alterna-
tive view on long memory to its limit by assuming a local linear
short-memory model. Estimation and forecasting based on our
approach is thus computationally straightforward.

The flexibility of our procedure is demonstrated within a sim-
ulation study, which shows that both, short-memory processes
with breaks as well as long-memory processes, can be well de-
scribed by the local approach. We additionally apply localized
realized volatility modeling to S&P500 data and compare it to
(approximate) long-memory techniques, such as the ARFIMA
and HAR models, and to models with breaks. We find that our
technique provides improved volatility forecasts.

The remainder of the paper is structured as follows. The next
section reviews the concept of realized volatility, its construc-
tion, and the empirical properties of realized volatility of the
S&P500 index futures. Section 3 presents in detail the localized
realized volatility modeling approach along with a simulation
study. Section 4 briefly reviews the alternative models consid-
ered in this paper, and Section 5 empirically compares the vari-
ous models within a forecasting exercise. Section 6 concludes.

2. REALIZED VOLATILITY

Measuring the volatility of a financial asset based on high-
frequency data has been one of the major focuses in the recent
financial econometrics literature. The idea is to measure ex post
the variation of asset prices over a lower frequency, commonly
a day, by summing over products of high frequency, that is, in-
tradaily returns. The approach is motivated by the theory of
quadratic variation of semimartingales. For the ease of expo-
sition, consider the case where the log price of a financial asset,
p, follows a Brownian semimartingale—an assumption that is
very popular in the asset pricing literature, that is,

pt =
∫ t

0
μ(s)ds +

∫ t

0
σ(s)dW(s) ∀t ≥ 0, (1)

where the instantaneous mean process {μ(t)}t≥0 is continu-
ous and of finite variation, {σ(t)}t≥0 with σ(t) > 0 ∀t denotes
the càdlàg instantaneous volatility, and {W(t)}t≥0 is a standard
Brownian Motion. Then the quadratic variation process of (1),

[p]t = plim
l−1∑
j=0

(
pτj+1 − pτj

)2
, (2)
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where τ0 = 0 ≤ τ1 ≤ · · · ≤ τl = t denotes a sequence of parti-
tions with supj{τj+1 − τj} → 0 for l → ∞, is given by

[p]t =
∫ t

0
σ 2(s)ds, (3)

that is, as the integrated variance
∫ t

0 σ 2(s)ds of the price
process.

The theory of quadratic variation, thus, suggests that the sum
over squared high-frequency returns may provide an ex post
measure of the integrated variance and this is what is, often-
times interchangeably, referred to as realized variance or real-
ized volatility. Suppose we are interested in measuring volatility
over a day t using M +1 intraday prices observed at time points
n0, . . . ,nM . Furthermore, let pt,nj denote the logarithmic price
observed at time point nj of trading day t. The continuously
compounded jth within-day return of day t is therefore given
by

rt,j = pt,nj − pt,nj−1 , j = 1, . . . ,M. (4)

Then daily realized volatility is defined as

R̃Vt =
M∑

j=1

r2
t,j. (5)

Now, if M → ∞, that is, the intraday sampling frequency goes
to infinity, realized volatility converges to the quadratic varia-
tion of the price process; see, for example, Andersen and Boller-
slev (1998) and Barndorff-Nielsen and Shephard (2002b). This
implies that if the price follows a pure diffusion process as given
in (1), realized volatility converges to the daily integrated vari-
ance, that is, R̃Vt → IVt for M → ∞ with IVt = ∫ t

t−1 σ 2(s)ds,
which is oftentimes the main object of interest. Consistency
and asymptotic distribution of realized volatility as an estimator
of the integrated variance are derived in Barndorff-Nielsen and
Shephard (2002a).

The theoretical results on realized volatility obviously build
on the notion of an infinite sampling frequency. In practice,
however, the sampling frequency is invariably limited by the ac-
tual quotation, or transaction frequency. Moreover, the observed
high-frequency prices are further contaminated by market mi-
crostructure effects, such as the bid-and-ask bounce effect
and price discreteness, which are due to the particular design
and trading mechanism of financial markets; see, for exam-
ple, Hasbrouck (2007). These effects introduce biases into re-
alized volatility; see, for example, Andersen et al. (2001a) and
Barndorff-Nielsen and Shephard (2002a). A common approach
to reduce their impact is to simply construct realized volatility
based on lower frequency returns (e.g., 10 to 30 minutes), at
which market microstructure effects are negligible. However,
such a procedure comes at the cost of a less precise volatility
estimate, as it makes no use of all available data. Various alter-
native methods have therefore been proposed to solve this bias-
variance trade-off. For a review, see McAleer and Medeiros
(2008a) and Pigorsch, Pigorsch, and Popov (2010).

In this paper we compute a market microstructure noise ro-
bust version of realized volatility based on the approach of
Barndorff-Nielsen et al. (2008). The reason for our choice
is that their class of so-called realized kernel estimators of
quadratic variation have very attractive properties. In particular,
they are consistent and efficient and they are robust to a host of
different market microstructure effects.

2.1 Noise-Corrected Realized Volatility

The idea of the realized kernel estimators is similar to that
of autocorrelation and heteroscedasticity robust variance and
covariance estimators, like the Newey–West estimator, that is,
the correction is based on the sum of weighted autocovari-
ances. Define the hth realized autocovariance for day t by
γt,h = ∑M

j=1 rt,jrt,j−h. In the realized kernel estimators, realized
volatility is then corrected by the weighted sum of those re-
alized autocovariances. In particular, the flat-top realized ker-
nel estimator, that we employ in this paper, provides a noise-
corrected realized volatility RVt by

RVt = R̃Vt +
H∗

t∑
h=1

k

(
h − 1

H∗
t

)
(γt,h + γt,−h), (6)

where the weights are given by the kernel function k being twice
continuously differentiable on [0,1] and satisfying k(0) = 1,
and k(1) = k′(0) = k′(1) = 0. The bandwith parameter H∗

t de-
notes the optimal number of lags to be considered for day t. It is
optimal in the sense that it minimizes the asymptotic variance of
the noise-corrected realized volatility. Barndorff-Nielsen et al.
(2008) show that H∗

t depends on the chosen kernel weight func-
tion and on the noise-to-signal ratio ξt = ω2

t /IVt, that relates the
(daily) variance of the market microstructure noise, ω2

t , to the
(daily) integrated variance. In particular, H∗

t = c∗ξt
√

M, where
c∗ is a constant that depends, inter alia, on the specific kernel
weight function. Its value is chosen such that it minimizes the
asymptotic variance. The bandwith selection H∗

t and the com-
putation of the noise-corrected realized volatility, thus, involve
the precise specification of the kernel weight function and the
estimation of the noise-to-signal ratio. We now turn to these is-
sues.

For our empirical application we consider the modified
Tukey–Hanning kernel with weight function k(x) = sin2{π

2 (1−
x)a}, as it is most efficient among the finite lag kernels analyzed
in Barndorff-Nielsen et al. (2008). Moreover, for increasing
a the noise-corrected realized volatility approaches the (para-
metric) efficiency bound. As such, a large value of a might
be preferable. However, an increasing number of a also leads
to an increase in the number of autocovariances H∗

t consid-
ered in the noise correction (6), as c∗ is increasing with a; see
Barndorff-Nielsen et al. (2008). In practice, this imposes some
limitations as the computation of the autocovariances γt,h then
involves an increasing number of returns outside the daily time
interval. Note that in our application we make exclusive use of
price observations within a day, such that fewer observations
are available for the estimation of γt,h as h increases. An in-
crease in a therefore implies the use of less precisely estimated
autocovariance terms. We therefore follow Barndorff-Nielsen
et al. (2008) and choose a = 2 for our empirical application.
For this kernel specification c∗ = 5.74, see Barndorff-Nielsen
et al. (2008). Noteworthy, the chosen realized kernel estimator
is still close to efficient.

To finally determine H∗
t we estimate the noise-to-signal ratio

ξt in the following way: we employ the estimator of the noise
variance suggested by Bandi and Russell (2005) and compute
the (scaled) conventional realized volatility estimator based on
one minute returns, that is, ω̂2

t = R̃V1 min/2M1 min, where the
superscripts indicate the used sampling interval. An estimate

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] 

at
 0

7:
00

 2
5 

A
pr

il 
20

12
 



Chen, Härdle, and Pigorsch: Localized Realized Volatility Modeling 1379

Figure 2. Time evolvement of logarithmic realized volatility of the
S&P500 index futures.

of the variance of the “signal” (the integrated variance) is ob-
tained by the realized volatility computed at a low, that is,
15 minutes, sampling interval, at which market microstructure
effects should be negligible, thus ÎVt = R̃V15 min. The optimal
bandwidth is thus based on the estimate

Ĥ∗
t = 5.74

ω̂2
t

ÎVt

√
M1 min. (7)

Rounding Ĥ∗
t to the nearest integer gives the final value of

the bandwith. Given this bandwith, the noise-corrected realized
volatility RVt is then finally computed according to (6). Note
that we estimate the realized autocovariances γt,h and the mar-
ket microstructure noise uncorrected realized volatility, R̃Vt,
based on one minute returns. Moreover, all intraday returns are
constructed using the previous-tick method and by excluding
overnight returns.

2.2 Data Description

Our empirical analysis focuses on the noise-corrected real-
ized volatility of the S&P500 index futures ranging from Jan-
uary 2, 1985 to February 4, 2005; see Figure 2. From the vari-
ous S&P500 Index futures with maturity dates in March, June,
September, and December, we consider only the most liquid
contracts. In addition, we have removed one day, February 18,
1990, from our dataset as there are only two transactions re-
ported.

The descriptive statistics of the resulting realized volatility
series are presented in Table 1. In summary, the empirical char-
acteristics of the series are in line with the findings reported in
the earlier literature on realized volatility. In particular, realized
volatility is strongly skewed and fat-tailed, while its logarith-
mic version is much closer to Gaussianity. This is also con-
firmed by the kernel density estimate of logarithmic realized
volatility, which is presented in Figure 3 along with the kernel
density estimate of iid random variables simulated from the fit-
ted normal distribution (with a sample size corresponding to the
empirical one). Moreover, the sample autocorrelation function

Table 1. Descriptive statistics of realized volatility

Series Mean Std.Dev. Skewness Kurtosis Ljung–Box(21)(1)

RVt 1.0880 8.6961 55.5857 3412 1204
log(RVt)−0.5314 0.8875 0.5343 4.9912 4.6861

(1)The critical value of the Ljung–Box test statistic of no autocorrelation up to approx-
imately 1 month is 32.671.

Figure 3. Kernel density estimate of logarithmic realized volatility
of the S&P500 index futures (solid line). The shaded area corresponds
to the pointwise 95% confidence intervals and the dashed line rep-
resents the kernel density estimate of iid random variables simulated
from the fitted normal distribution.

of (logarithmic) realized volatility, Figure 1, exhibits the afore-
mentioned hyperbolic decay. We evaluate this long-memory di-
agnosis in more detail in the empirical application. In the fol-
lowing, however, we first introduce our localized approach to
realized volatility modeling.

3. THE LOCALIZED REALIZED
VOLATILITY APPROACH

In this paper we adopt a local view on realized volatility mod-
eling. The idea is simple. It is assumed that at each point in time
there exists a past-time interval over which volatility can be well
approximated by a local autoregressive (LAR) model. In con-
trast to fitting a global volatility model, we obtain at each point
in time a potentially new set of parameters, which is estimated
based on the so-called interval of homogeneity. For each point
in time, the interval of homogeneity is selected in a sequential
testing procedure, which starts from a small interval, where the
local approximation holds and the AR parameters are approxi-
mately constant. The procedure then iteratively extends this in-
terval and tests for time homogeneity until a structural break is
found or data is exhausted. The local model is then fitted and
can be used for volatility predictions.

The local (time-varying) autoregressive scheme is defined
through a time-varying parameter set θt = (θ0t, θ1t, . . . , θpt,

σt)

:

log RVt = θ0t +
p∑

i=1

θit log RVt−i + εt, εt ∼ N(0, σ 2
t ), (8)

where the Gaussian distributed innovations εt have mean zero
and variance σ 2

t . Note that the specification also allows for
time-varying volatility of volatility by letting σt rely on time.

Time-varying parameters at any point in time t are of course
too flexible to really constitute a practical dynamic model.
We therefore need to strike a balance between model flexi-
bility and dimensionality. Traditional ways either estimate the
time-varying parameters nonparametrically by assuming that
the parameters are smooth functions of time (see, e.g., Cai,
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Fan, and Li 2000) or assume that the time-varying parame-
ters are piecewise constant functions provided that the num-
ber of changes are given (see, e.g., Bai and Perron 1998 and
Mikosch and Stărică 2004a). Here we follow a different strat-
egy by localizing (in time) a low-dimensional time series dy-
namics in the high-dimensional model (8). The basic idea is
to approximate (8) at a fixed time point τ by a constant para-
meter vector θτ = (θ0τ , θ1τ , . . . , θpτ , στ )


 over Iτ = [τ − lτ , τ )

with p + 2 ≤ lτ < τ . The interval Iτ is called the interval of
homogeneity, whose length depends on time point τ . In the es-
timation of (8) at a particular time point τ , we only assume
that an Iτ exists over which the local parametric model (ap-
proximately) holds for the process. This assumption nests the
abovementioned “smooth transition” and “regime switching”
assumptions as special cases: parameters can either smoothly
vary over time or change abruptly. The question now is how to
find Iτ or the value of lτ over which the model parameters can
be estimated.

The next section discusses the estimation and the test statis-
tics employed to determine the interval of homogeneity. The
sequential testing procedure is described in Section 3.2, while
Section 3.3 discusses the choice of parameters involved in the
procedure. The performance and sensitivity of the procedure are
demonstrated in a set of simulations in Section 3.4.

3.1 Estimation and Test of Homogeneity

The estimation of the local parametric model is carried out
via maximum likelihood. In particular, given an interval of ho-
mogeneity Iτ for time point τ , over which the process can be
safely described by an AR model with constant parameters, the
maximum likelihood (ML) estimator θ̃τ is defined as

θ̃τ = argmax
θ∈


L(log RV; Iτ , θ)

= argmax
θ∈


{
− lτ − p

2
log 2π − (lτ − p) logσ

− 1

2σ 2

τ−1∑
t=τ−lτ +p

(
log RVt − θ0 −

p∑
i=1

θi log RVt−i

)2}
,

where 
 denotes the parameter space and L(log RV; Iτ , θ) the
local conditional log-likelihood function, for which we also use
the short notation L(Iτ , θ). We refer to the estimator θ̃τ as the
local ML estimator.

The question now is how the interval of homogeneity Iτ can
be determined. To this end likelihood ratio testing ideas are em-
ployed. Suppose that (log) RV is driven by an AR(p) process
with a constant set of true parameters θ∗

τ at time point τ . The
accuracy of estimation can be measured by the log-likelihood
ratio (LR) (under homogeneity)

LR(Iτ , θ̃τ , θ
∗
τ ) = L(Iτ , θ̃τ ) − L(Iτ , θ

∗
τ ). (9)

Polzehl and Spokoiny (2006) derived a bound for LR and its
power transformation |LR(Iτ , θ̃τ , θ

∗
τ )|r with r > 0 for an iid se-

quence of Gaussian innovations [in our case this refers to the
innovations of the LAR(p) process]:

Eθ∗
τ
|LR(Iτ , θ̃τ , θ

∗
τ )|r ≤ ξr. (10)

This bound is nonasymptotic and can be applied to any inter-
val Iτ . It allows to construct a confidence interval that can be
used for testing homogeneity. The null hypothesis of time ho-
mogeneity means that the process follows the model (8) with a
constant parameter, which implies that the ML estimator θ̃τ and
the corresponding LR fulfill the risk bound (10). Therefore, the
test of homogeneity can be performed, for example, by using
the LR test statistic

|LR(Iτ , θ̃τ , θ
∗
τ )|r.

In practice, the hypothetical AR(p) parameters θ∗
τ and also the

risk bound ξr are unknown but can be computed empirically.
Details on the feasible test procedure are given in the next sec-
tion. In the estimation we are searching for an interval of ho-
mogeneity over which the process is well approximated by a
parametric model. In other words, we mimic the unknown data-
generating process by a local parametric model and simulta-
neously require that the modeling bias under this local para-
metric assumption is small. There exists a well-established the-
ory addressing this local parametric assumption under a small
modeling bias condition; see, e.g., Chen and Spokoiny (2010).
Belomestny and Spokoiny (2007) shows that an optimal choice
of an interval of local homogeneity can be obtained via an adap-
tive procedure. In the following, we concentrate on the con-
struction details and its application to the dual view on the de-
pendence structure of volatility. However, details of the results
can be found in the cited literature and a comprehensive sim-
ulation study in Section 3.4 illustrates the performance of the
adaptively selected estimators.

3.2 Adaptive Identification of the Interval of Homogeneity

This section presents a feasible adaptive selection algorithm
of the interval of homogeneity for a particular point in time.
Nevertheless, the procedure is general and is applied at every
time point. The aim of the algorithm is to select the longest
interval of homogeneity over which the parametric model is a
good approximator for the process. The number of possible in-
terval candidates is large, for example, the first interval may
include just a few past observations and the intervals consid-
ered thereafter may be increased by just one observation in each
step up to including all past observations. As this results in a
large number of candidate intervals, it is practical to consider
only a finite set of intervals Iτ = {I1

τ , . . . , IK
τ } with K candidates

as suggested in Chen and Spokoiny (2010). For computational
tractability, the intervals are increasingly ordered according to
their length, that is, I1

τ ⊂ · · · ⊂ IK
τ . To each interval there corre-

sponds a local ML estimator, denoted by θ̃k
τ with k = 1, . . . ,K.

In statistical learning theory those are called weak learners.
Note that we are using the parametric assumption where the
LAR model is only a good approximator of the process. Refer-
ring to the nonparametric smoothing literature, an increase in
the length of intervals in (8) leads to an increase in modeling
bias while the variance of the estimators is decreasing; see, for
example, Härdle et al. (2004). In accordance with the chosen
Iτ , the K weak learners therefore exhibit an increasing mod-
eling bias and decreasing variance. Under the assumption that
the interval of local homogeneity exists, the first interval I1

τ is
required to be short such that the modeling bias is small. Our in-
terest here is to select an optimal estimator that has the smallest
variance without violating the small modeling bias condition.
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Figure 4. Sequential test of homogeneity: the longer interval Ik
τ is tested after the hypothesis of homogeneity over the shorter interval Ik−1

τ

has been accepted.

The selection algorithm is based on a sequential testing
procedure. The procedure starts from the shortest interval I1

τ ,
over which local homogeneity holds by assumption. The weak
learner θ̃1

τ is automatically accepted as an eligible local homo-
geneous estimator: θ̂1

τ = θ̃1
τ . Sequentially, at each step k with

2 ≤ k ≤ K, we test the hypothesis of local homogeneity given
that at the former step k − 1 the null hypothesis has not been
rejected; see Figure 4. The selected interval Îτ corresponds to
the largest accepted interval Ik

τ such that

|LR(Ik
τ , θ̃

k
τ , θ̂k−1

τ )|r ≤ ζk, (11)

where ζk is the critical value at step k and is described in more
detail below. Note that this test (11) measures the difference of
an estimator θ̃k

τ over a “possible” interval of local homogene-
ity Ik

τ to the most recently available optimal estimator θ̂k−1
τ . It

differs from the LR test statistic implicitly linked to (10). Here
the unknown hypothetical parameter θ∗

τ is replaced by the ten-
tatively optimal estimator θ̂k−1

τ since the latter is the possibly
best estimator at the current step k. If there is no significant
difference between the two estimators, it means that there is
no significant change in the dynamics and the small modeling
bias condition is not violated. We thus accept the null hypoth-
esis of homogeneity and adopt the new estimator θ̂k

τ = θ̃k
τ as

it has a smaller variance. On the other hand, if the test statis-
tic is significant, it indicates that at least one structural change
of the process exists and the LAR model is no longer a good
approximator of the process. The sequential testing procedure
terminates. This procedure then leads to the optimal estimator
θ̂τ that corresponds to the selected interval Îτ .

The formal definition of the procedure for a particular point
in time τ is as follows:

1. Initialization: θ̂1
τ = θ̃1

τ .
2. k = 2: while |LR(Iτ , θ̃k

τ , θ̂k−1
τ )|r ≤ ζk and k ≤ K,

k = k + 1,

θ̂k
τ = θ̃k

τ .

3. Final estimate: θ̂τ = θ̂k
τ .

3.3 Choice of Parameters and Implementation Details

Clearly, the proposed procedure depends on a set of parame-
ters, such as the lag order p in the LAR setup, the set of inter-
vals, the power parameter r, and the critical values {ζk}K

k=1. In
the following we address the choice of these parameters, and
also discuss the computation of the critical values via Monte
Carlo simulations.

3.3.1 Set of Intervals. We consider a finite set with K = 13
intervals in our study. This set is composed of the following
interval lengths:

{1w,1m,3m,6m,1y,1.5y,2y,2.5y,3y,3.5y,4y,4.5y,5y},
where w denotes a week (5 days), m refers to one month
(21 days), and y to one year (252 days). In other words,
I1
τ = [τ − 1w, τ ), I2

τ = [τ − 1m, τ ), . . . , I13
τ = [τ − 5y, τ ). This

choice is motivated by the practical reason that investors are
often concerned about special investment horizons. As the set
Iτ = {Ik

τ }13
k=1 is used for each time point τ , we drop the sub-

script in the following for notational convenience. Other sets of
intervals may be considered (see also Section 3.4). However, it
is important to assure homogeneity over the shortest interval.

3.3.2 Selection of the Lag Order. While the lag selection
in the (global) AR models is straightforward, it is more com-
plicated in the LAR approach as the identification of the lo-
cal intervals of homogeneity depends on the assumed lag order.
The selection of the lag order p can be based, for example, on
the minimum average value of the information criteria obtained
from the log-likelihood values of the selected optimal estima-
tors or on the minimum root mean square forecast errors. De-
pending on the number of lags, such a procedure may of course
be computationally demanding (but still feasible).

Alternatively, we can exploit the flexibility of the LAR pro-
cedure, where the local parametric model, that is, the LAR(p)

model, is only required to provide a good approximation of the
true latent DGP over the interval of local homogeneity. The
small modeling bias guarantees that the confidence set, built
on the basis of the upper risk bound given in Equation (10),
continues to hold with a slightly smaller coverage probability;
see also Čížek, Härdle, and Spokoiny (2009). In other words,
even if the assumed lag order of the LAR model is not the true
one, but close to it, the procedure is appropriate. Section 3.4.3
addresses the issue of a wrong lag selection within a simulation
study, which supports our expectation. To investigate the dual
view on long memory, we therefore adopt in the empirical ap-
plication the most extreme case of a short-memory model, that
is, an AR(1) specification.

3.3.3 Parameter r. Belomestny and Spokoiny (2007) sug-
gest to choose r = 1/2 in order to provide a stable performance
and to minimize the computation error in the Monte Carlo simu-
lation. We follow their recommendation in our empirical appli-
cation. The sensitivity of the LAR procedure to different values
of r is also assessed within a simulation study.

3.3.4 Critical Values. In the testing procedure, critical val-
ues measure the significance of ML estimators under the hy-
pothesis of local homogeneity. The critical values are selected
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using the general approach of testing theory: to provide a pre-
scribed performance of the procedure under the null hypothesis.
In particular, we generate global homogeneous processes, that
is, AR(p) models with constant parameters in (8), ensuring ho-
mogeneity for every past interval. The critical values are then
selected so that the ML estimators under homogeneity fulfill
the risk bound (10) over each interval.

As an illustration, we calculate critical values for LAR(1)
based on 100,000 generated AR(1) processes with θt = θ∗ =
(θ∗

0 , θ∗
1 , σ ∗)
 for all t:

yt = θ∗
0 + θ∗

1 yt−1 + εt, εt ∼ N(0, σ ∗2).

The starting value is set to y0 = θ∗
0 /(1 − θ∗

1 ). The sample size
of each process is 1261 in correspondence to the largest interval
of IK = I13 = 5y. Under homogeneity, the ML estimator with
respect to the largest interval is the optimal estimator (with the
smallest variance among others), that is, θ̂t = θ̂K

t = θ̃K
t . Given a

reasonable set of critical values, the risk bound (10) holds over
the longest interval of homogeneity

Eθ∗
∣∣LR

(
IK, θ̃K

t , θ̂K
t(ζ1,...,ζK)

)∣∣r ≤ ξr. (12)

We mimic here the environment of the sequential testing by re-
placing the unknown hypothetical AR(p) parameter θ∗ with the
most recently available optimal estimator θ̂k

t . In addition, we
use the notation θ̂k

t(ζ1,...,ζk)
to emphasize that the adaptively se-

lected estimator depends on the critical values {ζ1, . . . , ζk}. The
bound ξr = Eθ∗ |LR(IK, θ̃K

t , θ∗)|r is empirically calculated. We
also notice that the sequential testing procedure accumulates
uncertainty in estimation due to the increase in the degrees of
freedom. To take this into account, a condition similar to (12)
is imposed at each step:

Eθ∗
∣∣LR

(
Ik, θ̃k

t , θ̂k
t(ζ1,...,ζk)

)∣∣r ≤ k − 1

K − 1
ξr, k = 1, . . . ,K.

(13)

The sequential testing procedure is adopted to compute the
critical values. At step k = 1, we set ζ1 = ∞ in agreement with
the local homogeneity in the shortest interval I1 leading to θ̂1

t =
θ̃1

t . In the computation of ζ2 we set all the remaining ζk = ∞ for
k ≥ 3 to specify the contribution of ζ2 and choose the minimal
value of ζ2 that delivers the estimator satisfying the following
risk function:

Eθ∗
∣∣LR

(
Ik, θ̃k

t , θ̂k
t(ζ1,ζ2)

)∣∣r ≤ 1

K − 1
ξr, k = 2, . . . ,K.

Consequently with ζ1, ζ2, . . . , ζk−1 fixed, we select the minimal
value of ζk for k = 3, . . . ,K which fulfills

Eθ∗
∣∣LR

(
Iq, θ̃

q
t , θ̂

q
t(ζ1,ζ2,...,ζk)

)∣∣r ≤ k − 1

K − 1
ξr, q = k, . . . ,K.

3.3.5 Hypothetical Parameters. Clearly, critical values also
depend on the hypothetical parameters θ∗ used for generating
the homogeneous processes. In our study, we consider two ways
for selecting θ∗: a global selection where θ∗ is estimated over
the full sample period or an adaptive selection where θ∗ is rees-
timated at each time point using a rolling window with a fixed
length. For the adaptive selection, a large rolling window size
means that we put more attention to a time homogeneous sit-
uation. Such a choice leads to a rather conservative procedure

Figure 5. The set of critical values for LAR(1) model. They are
based on r = 1/2 and on θ∗ = (−0.1156,0.7827,0.5525)
, which are
calculated for the log realized volatility of the S&P500 index futures
under the hypothesis of constant parameters in (8). The set of interval
lengths is given on the x-axis.

with possibly low accuracy of estimation. On the contrary, a
rolling window including fewer observations is more sensitive
to structural shifts. Alternatively, the size of rolling window
can be selected in a data driven way by minimizing some ob-
jective function, for example, by minimizing the forecast error,
which is however computationally more intensive. In our em-
pirical analysis we consider the predictive performance of the
LAR procedure using both the global selection scheme as well
as the adaptive selection based on rolling windows of 1 month,
6 months, 1 year, and 2.5 years. As expected, using the time
dependent critical values (slightly) increases the accuracy of
prediction.

Figure 5 depicts the global critical values calculated for a
LAR(1) model with r = 1/2, the interval candidates given
in Section 3.3.1 and the hypothetical AR(p) parameter θ∗ =
(−0.1156,0.7827,0.5525)
, the estimates of an AR(1) model
fitted to our real dataset—the logarithm of realized volatility of
the S&P500 index data.

3.4 Simulation Experiments and Sensitivity Analysis

This section investigates the performance of the localized RV
approach in a number of simulation studies focusing on the
LAR(1) model. In particular, we assess its performance under
different types of structural breaks, we analyze the impact of
the parameters involved in the adaptive technique, and we as-
sess the issue of model misspecification, such as a wrong lag
selection.

3.4.1 Parameter Changes. In the following we consider
the performance of the LAR(1) approach under various sce-
narios. Specifically, we simulate from an AR(1) with suddenly
and gradually changing parameters in order to investigate the
appropriateness of the LAR approach under different types of
changes. The actual values of the parameters are again based on
the estimates of an AR(1) model fitted to the full S&P500 real-
ized volatility data. In each scenario, only one parameter varies
over time while the other two remain constant. The processes
of the changing parameters are displayed in Figures 6 to 8. The
character S denotes a scenario with sudden changes of para-
meters, where big changes occur at time points t = 1501 and
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Chen, Härdle, and Pigorsch: Localized Realized Volatility Modeling 1383

Figure 6. Simulation results for scenarios S1 and G1 (changing parameter: θ0t). The red dashed line represents the process of the true
time-varying parameter (S1: θ∗

0t = 1.1557 for t ∈ [1501,2000],0.3467 for t ∈ [2401,2800],−0.1156 otherwise) and the bold solid line gives
the average value of the estimated parameter over 500 simulations. The shaded area corresponds to the pointwise 95% confidence intervals. The
average values of the selected homogeneous intervals for each time point are presented in the bottom panel of each scenario. The online version
of this figure is in color.

t = 2000 and small ones at t = 2401 and t = 2800, respectively.
The G scenarios, on the contrary, denote gradual changes where
the parameter gradually reaches to a new level within 100 steps
after the change point. For example, in scenario G2 the au-
toregressive parameter θ1t gradually changes from 0.7827 to
−0.7827 over the period from 1501 to 1600, stays at the new
level until it drops gradually back to 0.7827 over the period
from 2001 to 2100. Similarly the small gradual changes occur
over the periods [2401,2500] and [2801,2900]. For each sce-

nario, we generate 500 LAR(1) processes with 3261 observa-
tions. The first 1261 observations, corresponding to the largest
interval I13 = 5 years, are used as training set.

The average value of the estimated parameters (solid line)
and the pointwise 95% confidence intervals (shaded areas) are
displayed in Figures 6 to 8 along with the true values of θ∗
(dashed line). For each point in time the average value of the se-
lected homogeneous intervals is also presented. Obviously, the
selected homogeneous intervals are long when the parameters
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1384 Journal of the American Statistical Association, December 2010

Figure 7. Simulation results for scenarios S2 and G2 (changing parameter: θ1t). The red dashed line represents the process of the true
time-varying parameter (S2: θ∗

1t = −0.7827 for t ∈ [1501,2000],0.6261 for t ∈ [2401,2800],0.7827 otherwise) and the bold solid line gives the
average values of the estimated parameter over 500 simulations. The shaded area corresponds to the pointwise 95% confidence intervals. The
average value of the selected homogeneous intervals for each time point are presented in the bottom panel of each scenario. The online version
of this figure is in color.

are constant over a long past time interval, but decline sharply
when shifts occur. It indicates that the LAR procedure selects
reasonable intervals of homogeneity.

In order to assess the performance of the local procedure
in more detail, we additionally compute the detection speed,
that is, the number of periods required for reaching 50% and
75% of the new level of the parameter. In the G scenarios the
counting starts once the parameter has reached its new level,
that is, after the gradual changes have finished. In the S sce-

narios the counting starts immediately from the change point.
Table 2 reports the results. In general, the adaptive procedure
works well. It shows that the procedure reacts quickly to a big
shift, but slowly to a small shift. For example in the scenario
S2, where the AR coefficient θ1t jumps at t = 1501, the tech-
nique only needs 12 periods to catch up 50% of the big shift,
while for the small shift at t = 2401 it takes 213 periods. This
finding, however, is quite reasonable. After a small change of
the parameters of the DGP the simulated observations may still
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Chen, Härdle, and Pigorsch: Localized Realized Volatility Modeling 1385

Figure 8. Simulation results for scenarios S3 and G3 (changing parameter: σt). The red dashed line represents the process of the true
time-varying parameter (S3: σ∗

t = 0.1000 for t ∈ [1501,2000],0.4000 for t ∈ [2401,2800],0.5525 otherwise) and the bold solid line gives
the average values of the estimated parameter over 500 simulations. The shaded area corresponds to the pointwise 95% confidence intervals. The
average value of the selected homogeneous intervals for each time point are presented in the bottom panel of each scenario. The online version
of this figure is in color.

be very close to those of the previous DGP and it is there-
fore hard for the procedure to differentiate between the two
processes. In this case, more observations from the new DGP
are needed for the identification of the parameter change. Nev-
ertheless, the technique is able to detect the changes as more
and more small shifts accumulate over time. Similar patterns
are observed in the G scenarios which correspond to many small
subsequent shifts. The results for the scenarios of σt further
show that positive shifts, corresponding to an increase in the

signal-to-noise ratio, can be only slowly detected; see also Fig-
ure 8.

3.4.2 Impact of Parameters. In the following we investi-
gate the effect of the choice of parameters on the performance
of the LAR procedure. Here we compute the detection speed of
the LAR approach based on different sets of intervals {Ik}K

k=1,
different values of the power transformation parameter r and
of the hypothetical AR(p) parameters θ∗ used in the compu-
tation of the critical values. Moreover, we compute the root
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Table 2. Detection speeds for the different scenarios

S1 S2 S3 G1 G2 G3

t 50% 75% 50% 75% 50% 75% t 50% 75% 50% 75% 50% 75%

1501 21 23 12 18 18 20 1601 207 232 1 4 12 56
2001 9 19 13 19 169 >400 2101 1 1 1 6 88 >400
2401 66 374 213 >400 1 1 2501 169 >400 183 >400 1 1
2801 20 243 56 >400 293 >400 2901 1 166 1 346 176 >400

NOTE: Reported are the number of steps required for reaching 50% and 75% of the parameter change.

mean square forecast errors (RMSFEs) of LAR forecasts based
on different choices of these parameters. The results are com-
pared to our “default” case, where the parameters are set to
the suggested values in Section 3.3, that is, the interval set is
given by Iτ = {Ik

τ }13
k=1 = {1w, 1m, 3m, 6m, 1y, 1.5y, 2y, 2.5y,

3y, 3.5y, 4y, 4.5y, 5y}, r = 1/2 and the vector of hypothetical
AR(1) parameters θ∗ = (−0.1156,0.7827,0.5525)
. For the
ease of exposition we only report the results for the scenarios
with changes in the autoregressive parameter, that is, S2 and
G2, as those are also particularly interesting in the model mis-
specification analysis discussed later. In particular, we consider
two alternative sets of intervals. In order to assess the impact
of the maximum length of the intervals, we truncate the default
set of intervals at K = 9 (corresponding to 3 years), while the
second scenario aims at investigating the sensitivity of the pro-
cedure towards a finer grid of intervals by including more in-
termediate subintervals, that is, introducing a three-months grid
such that K = 22. We further evaluate the impact of a smaller
value and a larger value of the power transformation parame-
ter setting r = 1/3 and r = 1. As the critical values rely on the
choice of the hypothetical parameters, we check the predictive
performance using 80%θ∗ and 120%θ∗ to generate the homo-
geneous processes in the computation of critical values, which

can be interpreted as an underestimation and overestimation of
the actual parameter values, respectively.

Table 3 presents the results. In order to facilitate the compar-
ison, we report here the relative average RSMFE of one-step
ahead predictions, that is,

R-RMSFE =
500∑
j=1

R-RMSFEnondefault
j

/ 500∑
j=1

R-RMSFEdefault
j ,

where the average value of the RMSFEs with default choice
is 0.5411 for S2 and 0.5374 for G2. We also define the rela-
tive detection speed as the difference of the average detection
speed of the LAR procedure based on nondefault parameters to
the average detection speed using the default choice. Thus, a
positive/negative value indicates a slower/faster reaction of the
technique with nondefault choices. The results illustrate well,
that the LAR procedure is quite robust to the choice of the pa-
rameters. The “worst” cases appear when CVs are calculated
based on imprecise hypothetical AR(p) parameters: a 2.74%
improved predictability for 0.8θ∗ and a 3.95% worse perfor-
mance for 1.2θ∗. It suggests that using alternative choices of
the parameters delivers only small deviations from the default
choices. Moreover, there are no crucial changes in the detec-
tion speed in the presence of large parameter changes, although

Table 3. Sensitivity analysis: impact of parameters

Choice of parameters

K = 9 K = 22 r = 1/3 r = 1 0.8θ∗ 1.2θ∗

Scenario S2
R-RMSFE: 0.9956 1.0128 1.0102 0.9974 0.9726 1.0395

R-DS: 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%
t = 1501 −1 −1 2 2 0 0 2 2 −1 −4 6 5
t = 2001 0 0 3 0 1 0 2 0 −3 0 5 1
t = 2401 0 – 5 – 5 – 0 – 0 – 47 –
t = 2801 >344 – >344 – >344 – >344 – >344 – >344 –

Scenario G2
R-RMSFE: 0.9946 1.0132 1.0143 0.9922 0.9728 1.0506

R-DS: 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%
t = 1601 0 0 0 0 0 0 0 0 0 0 0 4
t = 2001 0 0 0 0 0 0 0 0 0 0 0 6
t = 2501 0 – 0 – 0 – 0 – 0 – 184 –
t = 2801 >399 >54 >399 >54 >399 >54 >399 >54 >399 >54 >399 >54

NOTE: Reported are the relative one-step-ahead RMSFEs and the relative detections speeds (R-DS) in the scenarios S2 and G2 for different choices of the parameters. The default

choice (i.e., the benchmark) is given by K = 13, r = 1/2, and θ∗ = (−0.1156,0.7827,0.5525)
. In the alternative choices only one parameter is changed fixing the other ones to the
default values. K = 9 corresponds to a scenario with reduced maximum interval length while K = 22 is characterized by a finer grid of intervals. More details are given in the text.
Scenarios S2 and G2 are displayed in Figure 7. “–” indicates that the detection speeds in both scenarios are greater than 400.
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for small parameter changes the detection speed slows down.
In general, the sensitivity analysis supports our default choice
of parameters and the results suggest that for an adaptive, data-
driven computation of the critical values the selection of the pa-
rameters may become even less important with respect to pre-
dictability.

3.4.3 Model Misspecification. In this section we investi-
gate the robustness of the LAR procedure towards model mis-
specification, that is, if the true DGP has a different lag structure
than the assumed one or, even worse, if the true DGP follows
a different dynamic structure. The analysis is twofold: we first
focus on short-memory models, which allow us to evaluate the
impact of the lag order, and then consider the performance of
the LAR procedure if the true DGP is a long-memory process.

For the short-memory scenarios we consider the local con-
stant model, that is, yt = θ0t + εt, εt ∼ N(0, σ 2

t ) and the LAR
model with lag order p = 2, 5, and 10, yt = θ0t +∑p

j=1 θjtyt−j +
εt, εt ∼ N(0, σ 2

t ), in order to account for the situations where
the true DGPs either have less or more lags than is assumed in
the LAR(1). The actual parameter values are again set to the
ML estimates obtained by fitting the globally constant version
of these models to the full S&P500 data sample. The design of
the time variation in the parameters is similar to the scenarios in
Figures 6 to 8, where the big and small changes are determined
by a new level of the parameters (e.g., −1θp and 0.8θp respec-
tively). As the focus is on the impact of a misspecification in the
lag order, we consider here only cases with changes in θ0t in the
local constant model and changes in θpt, the pth autoregressive
part of the LAR(p) model. In the long-memory scenario we
simulate from an ARFIMA(2,0.47,0) with constant parame-
ters. The specification of the ARFIMA model is also guided by
the empirical results obtained for the full S&P500 sample; see
Section 4. For each DGP, 500 series are simulated, each with a
length of 3261 observations.

The sensitivity of the LAR procedure towards model mis-
specification is assessed in terms of predictability. In particu-
lar, we compute for each simulated series 2000 one-step-ahead
forecasts based on: (i) the “wrong” but flexible LAR(1) ap-
proach, where the intervals of local homogeneity are selected
by using the adaptive technique; (ii) the true data-generating
model using optimally time-varying window size. More pre-
cisely, for a particular time point the optimal window is either
identified using the LAR(p) procedure (for LAR scenarios) or
assumed to be the interval used for generating the process (oth-
erwise). In addition, the shortest/longest length of the intervals
is set to include 15/1250 observations, which is in line with the
assumption of homogeneity in the LAR procedure and assures
the feasibility of estimation. The average value of the RMSFEs
for different scenarios are reported in Table 4. In most cases, the

Table 4. Sensitivity analysis: model misspecification

DGP: Local const. LAR(2) LAR(5) LAR(10) ARFIMA
θ0t θ2t θ5t θ10t

D̂GP 1.0225 0.6247 0.5664 0.5568 0.5105
LAR(1) 0.9339 0.6293 0.5848 0.5724 0.5619

NOTE: Reported are the average RMSFEs based on the LAR(1) procedure and the esti-
mated data-generating processes, D̂GP.

forecasts based on the LAR(1) specification yield only slightly
bigger RSMFEs than the true DGPs. It supports that the LAR
procedure with the lag order p = 1 can provide a quite accurate
approximation. In other words, the LAR procedure is quite ro-
bust to the selection of the lag order p. Moreover, the LAR(1)
performs also well if the true source of the long-range depen-
dence is a long-memory process, confirming that long mem-
ory can well be approximated by a short-memory model with
breaks. In summary, the simulation shows that the local adap-
tive procedure with lag order p = 1 is a reasonable approxima-
tion, even if the underlying process deviates from the LAR(1)
setup.

4. ALTERNATIVE MODELS

As we aim at a comparison of the LAR procedure to the
long memory view of volatility, we primarily consider alterna-
tive models that emanate from this view. Nevertheless, we also
compare our procedure to the smooth transition regression tree
(STR-Tree) model, that is, a model with breaks.

The ARFIMA model is one of the standard models used in
the realized volatility literature; see, for example, Andersen et
al. (2003). Under the ARFIMA(p,d,q) model, the dynamics of
logarithmic realized volatility is given by

φ(L)(1 − L)d(log RVt − μ) = ψ(L)ut, (14)

with φ(L) = 1 − φ1L − · · · − φpLp, ψ(L) = 1 + ψ1L + · · · +
ψqLq, L denoting the lag operator, and d ∈ (0,0.5) is the frac-
tional difference parameter. Given the empirical distributional
properties of logarithmic realized volatility, ut is usually as-
sumed to be a Gaussian white noise process, which facilitates
the exact maximum-likelihood estimation of the model.

The HAR model aims at reproducing the observed volatil-
ity phenomenon. However, in contrast to the ARFIMA model,
the HAR model is formally not a long-memory model. Instead,
the correlation structure is approximated by the sum of a few
multiperiod volatility components. The use of such compo-
nents is motivated by the existence of heterogenous agents hav-
ing different investment horizons; see Corsi (2009) and Müller
et al. (1997). In particular, the HAR model put forward by
Corsi (2009) builds on a daily, weekly, and monthly compo-
nent, which are defined by

RVt+1−k:t = 1

k

k∑
j=1

RVt−j

with k = 1,5,21, respectively. The HAR model is then given
by

log RVt = α0 + αd log RVt−1

+ αw log RVt−5:t−1 + αm log RVt−21:t−1 + ut (15)

with ut typically being also Gaussian white noise. Maximum-
likelihood estimation is straightforward. Interestingly, the HAR
and ARFIMA models have been found to obtain a similar fore-
casting performance with both models outperforming the tradi-
tional volatility models based on daily returns; see, for example,
Andersen, Bollerslev, and Diebold (2007) and Koopman, Jung-
backer, and Hol (2005).

It is sometimes argued that volatility exhibits both long mem-
ory and structural breaks. We therefore compare our procedure

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] 

at
 0

7:
00

 2
5 

A
pr

il 
20

12
 



1388 Journal of the American Statistical Association, December 2010

also to the adaptive ARFIMA model, that has recently been
developed in Baillie and Morana (2009a) for modeling infla-
tion dynamics. The model is based on a time-dependent inter-
cept that is given by a Flexible Fourier Form representation,
and an innovation term that follows a stationary long-memory
process. The flexible functional form of the intercept allows for
smooth as well as sharp nonlinearities without the need to iden-
tify break points and the magnitude of the breaks. Baillie and
Morana (2009b) have shown that a FIGARCH model with such
a time dependent intercept provides superior volatility forecasts
in comparison to alternative GARCH and adaptive GARCH
specifications. We therefore adopt the adaptive ARFIMA model
for modeling logarithmic realized volatility, which is given by

log RVt = μ +
k∑

j=1

(sin(2π jt/T) + δj cos(2π jt/T)) + ut, (16)

where

φ(L)(1 − L)dut = ψ(L)εt.

It is characterized as A-ARFIMA(p,d,q, k).
The STR-Tree model proposed in da Rosa, Veiga, and

Medeiros (2008) provides an interesting alternative to the LAR
procedure. It builds on the methodology of classification and
regression tress, where it is assumed that the dependent vari-
able is given by the sum of regression models, each of which is
determined by recursive partitions of the covariate space. The
structure of a regression tree model is usually represented in
the format of a binary choice decision tree with a set of parent
and terminal nodes, denoted here by J and K, respectively. The
splits at the parent nodes are sharp. The STR-Tree model in-
stead smoothes the splits by replacing the indicator function by
a logistic function

G(x;γ, c) = 1

1 + e−γ (x−c)
.

Scharth and Medeiros (2009) advocate the use of the STR-
Tree approach for modeling logarithmic realized volatility, that
is,

log RVt = α
wt +
∑
k∈K

θ

k ztBJk(xt,βk) + ut, (17)

where xt = (x1,t, . . . , xm,t)

 denotes the vector of explanatory

variables, or in terms of the smooth transition literature the so-
called transition variables, zt = (log RVt−1, . . . , log RVt−p)


,
and wt is a vector of linear regressors that are unaffected by
the tree, wt � xt. Moreover,

BJk(xt,βk) =
∏
j∈J

G
(
xsj,t;γj, cj

)nk,j(1+nk,j)/2

× [
1 − G

(
xsj,t;γj, cj

)](1−nk,j)(1+nk,j), (18)

where sj ∈ {1, . . . ,m} gives the transition variable being rele-
vant at node j and

nk,j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if parent node j is not included
in the path to terminal node k

0 if the right-child node of parent node j
is included in the path to terminal node k

1 if the left-child node of parent node j
is included in the path to terminal node k.

The spirit of the STR-Tree model is similar to the LAR pro-
cedure in the sense that realized volatility is approximated
by local AR(p) models. However, in the STR-Tree model the
regimes are due to partitions of the transition variables, such
as lagged returns (capturing the well-known leverage effect),
which are determined globally, that is, over the full sample pe-
riod. The LAR instead is more flexible, as the interval of ho-
mogeneity is determined locally. Moreover, it does not require
the specification of a set of variables that may lead to parameter
changes. In fact, any event or changes in variables that affect the
parameters of the AR(p) model such that local homogeneity is
rejected are automatically encountered in the procedure.

5. EMPIRICAL ANALYSIS

We now turn to the empirical investigation of the dual views
on the dynamics of volatility. We focus our analysis on realized
volatility of the S&P500 index futures from January 2, 1985 to
February 4, 2005 (see Section 2). Like in the simulation exer-
cise we use the first 5 years of our sample as a training set. For
the local autoregressive procedure this means that January 2,
1990 is the first time point for which we estimate the LAR
model and that we allow the longest interval of homogeneity
(K = 13) to be 5 years with the remaining set of subintervals
given as in the Section 3.3, that is, 1 week (k = 1), 1 month
(k = 2), . . ., 4.5 years (k = 12).

The estimation of the LAR model is conducted for different
sets of critical values, in order to assess also the empirical sen-
sitivity of the approach with respect to the choice of the critical
values. We therefore consider critical values obtained from a
Monte Carlo simulation based on the parameter values of the
AR model being estimated over the full sample period. We re-
fer to this as the global LAR model. The other sets of criti-
cal values are obtained adaptively using a 1 month, 6 months,
1 year, and 2.5 years sample period. Figure 9 shows the dis-
tribution of the lengths of the selected homogenous intervals
of the LAR(1) model over the evaluation period (January 2,
1990 to February 4, 2005) based on the global and the adaptive

Figure 9. Boxplot of the homogenous intervals selected by the
LAR(1) procedure with 1 month, 6 months, 1 year, 2.5 years adaptive
critical values and the global LAR(1) procedure.
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critical values. Obviously, the global LAR(1) model exhibits a
slightly higher variation in the length of the selected intervals.
Interestingly, with the exception of the adaptive 1 month and 6
months LAR(1) models for which the median interval length is
at k = 3, we find that the median is k = 4, which corresponds
to 6 months of homogeneity. Furthermore, note that the average
interval length is for nearly all LAR(1) models about 6 months,
which indicates only a weak sensitivity of the interval selec-
tion procedure to the sample size used in the computation of
the critical values.

In our analysis we assess the forecasting performance for
several periods into the future. Such multiperiod predictions
may seem to be at odds with the idea of the LAR procedure,
which builds on local homogeneity. Local homogeneity has the
advantage that forecasts are based only on the most recent in-
formation being relevant at the particular forecast origins. But
for iterative long-term predictions it also implies that the pro-
cedure may perform poor as for increasing forecast horizons it
becomes more likely that the assumption of local homogeneity
is violated. Nevertheless, the advantage of local homogeneity
can also be transferred to the case of multiperiod predictions by
incorporating the forecast horizon into the adaptive selection
via a restricted LAR(h) specification:

log RVt+h = θ0t + θht log RVt + εt, εt ∼ N(0, σ 2
t ), (19)

which leads to a direct forecasting approach. We adopt this
specification in the empirical analysis.

Table 5 presents the RMSFEs of the LAR model for the 1-
day, 5-days, and 10-days ahead forecasts using the different sets
of critical values. The empirical results reveal that an adaptive
approach and a reduction of the sample period underlying the
computation of the critical values introduces more flexibility
into the procedure, which seems to result in an increase in fore-
cast accuracy.

We investigate the dual views by comparing the forecasting
performance of the LAR procedure to the alternative models. To
this end, we recursively compute (logarithmic) realized volatil-
ity forecasts from all model types over the evaluation period.
Moreover, as we have observed different degrees of persistence
in log realized volatility for different lengths of the sample pe-
riod (see Figure 1), we consider for each of the alternative mod-
els forecasts conditional on different information sets, that is,
different sample sizes.

Table 5. Root mean square forecast errors of the LAR model based
on different sets of critical values

Sample size used in
the critical values h = 1 h = 5 h = 10

1m 0.4823 0.4619 0.4615
6m 0.4791 0.4791 0.4873
1y 0.4842 0.4881 0.4945
2.5y 0.4898 0.5027 0.5056

Global 0.4986 0.5660 0.5884

NOTE: The table reports the root mean square forecast errors (RMSFE) of the h-day
ahead logarithmic realized volatility forecasts of the S&P500 index futures based on the
LAR(h) models. The first column refers to the information set that is used in the compu-
tation of the critical values. For example, the number reported in the first upper-left cell
gives the RMSFE of forecasts based on the LAR(1) approach with critical values being
computed adaptively over the previous month. Global indicates that the critical values have
been computed based on the full sample. Bold numbers indicate the minimum RMSFE for
each forecast horizon.

More precisely, forecasts of the ARFIMA, adaptive ARFI-
MA, and HAR models are based on a rolling window scheme,
with rolling window sizes ranging from 3 months to 5 years,
which is broadly consistent with our choice of subintervals in
the LAR procedure. The conditioning on the different sample
sizes is also an attempt to account for the possibility that both
long memory and structural breaks are driving volatility. For
the STR-Tree model we follow Scharth and Medeiros (2009),
and form forecasts based on the recursive scheme. We addition-
ally compute forecasts from constant AR models conditional on
the set of rolling windows used also in the HAR and ARFIMA
models, as this allows for a direct evaluation of the relevance of
the local selection of the interval length employed in the LAR
procedure. Such an evaluation requires that forecasts from AR
models are also based on the direct forecasting approach.

The forecasts of the other models are computed iteratively,
such that their specifications remain the same for all forecast
horizons. In particular, the ARFIMA forecasts are based on an
ARFIMA(2,d,0) specification, which was selected according
to the Akaike as well as the Bayesian information criteria using
the full sample period. For the adaptive ARFIMA model we
obtain an A-ARFIMA(1,d,1,2) specification with γ2 = 0. Es-
timation and forecasting is carried out using the Ox ARFIMA
1.04 package; see Doornik and Ooms (2004, 2006). For the
STR-Tree model we consider the daily lagged return as the tran-
sition variable in order to account for the most popular leverage
specification. Moreover, for consistency with the short-memory
models considered in this paper, we set p = 1, and let only the
AR(1) coefficient be affected by the tree as indicated by statis-
tical tests on the relevance of explanatory variables in the tree
based on the full sample period. Over this period the model
is characterized by two splits. In computing the forecasts we
respecify the tree structure and reestimate the model every pe-
riod. We are grateful to Marcel Scharth for providing us with his
code. Multistep forecasts are based on conditional simulations
as explained in the appendix of Scharth and Medeiros (2009).

For the ease of exposition we do not report all forecasting
results but instead focus only on those models that yielded the
minimal RMSFE within each model class. Table 6 thus reports
the RMSFE of the “best” models along with the correspond-
ing conditioning information set for which the forecasts have

Table 6. Root mean square forecast errors and information sets
of the best models

h = 1 h = 5 h = 10

Model RMSFE Info set RMSFE Info set RMSFE Info set

LAR 0.4791 6m 0.4619 1m 0.4615 1m
AR 0.5047 3m 0.5712 3m 0.5873 3m
STR-Tree 0.5547 Rec. 0.7746 Rec. 0.8738 rec.
ARFIMA 0.4991 3y 0.5827 3y 0.6207 3y
A-ARFIMA 0.5020 4.5y 0.5904 4.5y 0.6312 4y
HAR 0.5014 3y 0.5848 2.5y 0.6232 2.5y

NOTE: The table reports the root mean square forecast errors (RMSFE) of the h-day
ahead logarithmic realized volatility forecasts of the S&P500 index futures based on the
various models. Reported are the results for the models yielding minimal RMSFE within
each model class. “Info set” refers to the corresponding sample size used in the computa-
tion of the critical values (for the LAR procedure) or to the size of the rolling window used
in model estimation and prediction (for the AR, ARFIMA, and HAR models). “Rec.” refers
to forecasts based on the STR-Tree model, for which the recursive forecasting scheme is
employed.
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Figure 10. Time-evolvement of the actual log realized volatility (grey line in the background) and the one-step ahead forecasts of (i) the
LAR(1) model with critical values being computed over 6 months and (ii) the ARFIMA model based on a 3-year rolling window. These model
specifications yield the minimum RMSFE within each model class (see Table 6).

been found to minimize the RMSFE. That is the information
set reports either the rolling window size or the sample size
used in the computation of the critical values. An illustration of
the time-evolvement of the forecasts is presented in Figure 10
which depicts the one-day ahead forecasts of the LAR(1) and
ARFIMA models having minimal RMSFEs.

Interestingly, according to the RMSFEs our LAR procedure
provides the most accurate forecasts at all forecast horizons.
Note that this already holds for the forecasts based on the LAR
model with globally computed critical values, which can be
readily inferred by comparing the results reported in Tables 5
and 6.

The direct comparison of the LAR forecasts with those based
on the constant AR models also reveals, that the selection of the
locally homogenous intervals is indeed important. The adaptive
procedure, which determines at each time point the adequate
length of the time interval over which the AR model is appro-
priate, is superior. Note that for increasing window sizes, that
is, larger information sets, the predictability of the constant AR
model worsens (results are not reported gere, but are available
from the authors upon request). This might be expected as for
larger sample sizes, for example, more than 2 years, the au-
tocorrelation function of realized volatility exhibits more per-
sistence and, thus, an AR model tends to be misspecified. The
STR-Tree model, instead, is better suited to generate long-range
dependence as it picks local AR(1) specifications that depend
on the state of the lagged daily return. It is therefore surpris-
ing that the model performs worse than those without lever-
age effect. However, this may be due to our model specifica-
tion that makes only use of past daily returns. For a different

dataset, Scharth and Medeiros (2009), for example, find a su-
perior performance of the STR-Tree model where the splits are
determined by returns accumulated over the past 90, 39, 5, and
2 days, indicating that long-term returns are important when
modeling and forecasting realized volatility. A more thorough
treatment of the leverage effect is the subject of future research.

In accordance to the empirical results reported in the real-
ized volatility literature so far, the HAR and ARFIMA models
exhibit similar forecast accuracy with a slight tendency of the
ARFIMA model to outperform the HAR model. Interestingly,
the results indicate that the inclusion of structural changes in
the form of the adaptive ARFIMA model does not lead to im-
provements in the predictability of the S&P500 realized volatil-
ity. Moreover, all long-memory models are outperformed by the
LAR method. This becomes even more pronounced for larger
forecast horizons. In order to get a feeling of whether this is due
to a comparison of direct with iterated forecasts we have addi-
tionally computed direct forecasts for the HAR model. We find
that the iterated method provides better forecasts than the di-
rect one (e.g., the RSMFE of the direct HAR forecasts based
on a 2.5 year rolling window size is 0.5857 for h = 5 and
0.6240 for h = 10), which is consistent with the recent empir-
ical findings reported in Ghysels, Rubia, and Valkanov (2009)
and Marcellino, Stock, and Watson (2005).

We further evaluate the predictive performance of the differ-
ent realized volatility models on the grounds of the so-called
Mincer–Zarnowitz regressions, that is, by regressing the ob-
served log realized volatility on the corresponding forecasts of
model i:

log RVt = α + β log R̂Vt,i + νt. (20)
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Table 7. Results of the Mincer–Zarnowitz regressions and
Diebold–Mariano tests for the volatility models

with minimal RMSFEs

DM (best LAR)
Model p-value R2 t-stat.

h = 1
LAR, 6m 0.7242 0.7180
3m AR(1) 0.6203 0.6872 −9.5125
STR-Tree 0.0014 0.6242 −14.8673
3y ARFIMA 0.6375 0.6942 −6.2782
4.5y A-ARFIMA 0.0388 0.6909 −6.8551
3y HAR 0.8842 0.6910 −6.9275

h = 5
LAR, 1m 0.1265 0.7377
3m AR(5) 0.2326 0.6004 −14.4786
STR-Tree 0.0000 0.4860 −15.3163
3y ARFIMA 0.5656 0.5835 −14.2157
4.5y A-ARFIMA 0.0233 0.5745 −14.1834
2.5y HAR 0.7427 0.5803 −14.7150

h = 10
LAR, 1m 0.0705 0.7392
3m AR(10) 0.0897 0.5789 −13.8568
STR-Tree 0.0000 0.1911 −14.7564
3y ARFIMA 0.7593 0.5273 −12.8450
4y A-ARFIMA 0.2201 0.5123 −12.4366
2.5y HAR 0.6611 0.5236 −13.0511

NOTE: Reported are results of the Mincer–Zarnowitz regressions and of the modified
Diebold–Mariano tests for the models yielding the minimum RMSFE within each model
class (see Tables 5 to 6). The results are reported for different forecast horizons h (in
days). The second column reports the p-value of a F-test for H0 :α = 0 and β = 1, and
the third column reports the coefficient of determination (R2) of the Mincer–Zarnowitz
regression given in Equation (20). The last column gives the modified t-statistics of the
Diebold–Mariano test on equal forecast performance, that is, H0 :μ = 0 in the regression
e2

t,LAR − e2
t,i = μ + vt with et,i denoting the forecast error of model i. Results are based

on heteroscedasticity and autocorrelation robust Newey–West (co)variances.

This allows to test for the unbiasedness of the different fore-
casts. Table 7 reports the coefficients of determination (R2s) of
this regression along with the p-value of the F-test on unbiased
forecasts, i.e., H0 :α = 0 and β = 1. Note that for the ease of
exposition we again solely present here the comparison of the
models performing best in terms of the RMSFE.

The results indicate that, with the exception of the forecasts
of the STR-Tree model, none of the forecasts is significantly
biased at the 5% significance level. The coefficients of determi-
nation reported in Table 7 indicate a superior forecasting per-
formance of the adaptive LAR models. We investigate this re-
sult further and test for the significance of the observed dif-
ferences in the forecast accuracies. In particular, we conduct
a pairwise test on the equality of the mean square forecast er-
rors (MSFE) of the LAR procedure and the other models; see
Diebold and Mariano (1995). To this end, we regress the differ-
ence between the squared forecast errors of the LAR model and
those of the competing model i, that is, e2

t,LAR − e2
t,i, on a con-

stant μ. The null hypothesis of equal MSFEs is equivalent to
H0 :μ = 0. Table 7 reports the modified Diebold–Mariano test
statistics proposed in Harvey, Leybourne, and Newbold (1997).
Obviously, the null hypothesis is always strongly rejected in fa-
vor of a significant better forecasting performance of the adap-
tive LAR model, as indicated by the significant negative sign of
the t-statistic. Overall, the LAR approach seems to be superior.

However, it should be noted that this conclusion is based on
a pairwise comparison of the best models and there may be
LAR models for which this is not the case. A simultaneous
comparison of the predictive ability of all competing models
would be desirable at this stage. However, the corresponding
existing tests, like the test for superior predictive ability (SPA)
of Hansen (2005) and the model confidence set approach of
Hansen, Lunde, and Nason (2010) are not applicable here, as
the forecasts are based on time varying window sizes (given by
the locally selected interval of homogeneity and the recursive
forecasting scheme employed in the STR-Tree model), which
violates the assumption of strict stationarity of the loss differen-
tial. The Diebold–Mariano test, in contrast, can still be applied;
see Giacomini and White (2006). To obtain a broader picture on
the performance of the LAR procedure, we therefore extend the
pairwise comparisons. In particular, we additionally conduct a
pairwise comparison of forecasts of the alternative models con-
ditional on a moderately small sample (1 year) and on a large
sample (5 years) with forecasts from the LAR models based
on 1 year adaptively and on globally computed critical values.
Note that for the ease of exposition we do not report the cor-
responding results here, however, they are available from the
authors upon request. Overall, the results are similar to the ones
reported in Table 7. Only for the global LAR model, we fail to
reject the null in the comparison with the one-step-ahead fore-
casts of the long-memory models. But also in those cases the
t-statistics are negative.

6. CONCLUSION

This paper investigates a dual view on the long-range depen-
dence of realized volatility. While the current realized volatility
literature primarily advocates the use of long-memory models
to explain this phenomenon, we argue that volatility can alter-
natively be described by short-memory models with structural
breaks. To this end we propose localized realized volatility
modeling where we consider the case of a dynamic short-
memory model. In particular, at each point in time we deter-
mine an interval of homogeneity over which the volatility is
approximated by an AR process. Our approach is based on lo-
cal adaptive techniques developed in Belomestny and Spokoiny
(2007), which make it flexible and allow for time-varying co-
efficients. It does neither require the specification of the type,
magnitude or reasons of breaks. This contrasts to smooth tran-
sition or regime switching models.

Our procedure relies on parameters, that have to be prede-
termined. A simulation study, however, shows that the proce-
dure is quite robust to the choice of parameters and to model
misspecification. Interestingly, the method performs also well,
even if the true source of the long-range dependence is a long-
memory process. Moreover, we show, that an adaptive view on
intervals of local homogeneity (and a decrease in the respective
underlying sample size) is increasing the procedure’s flexibility,
yielding higher accuracy in estimation and a better forecasting
performance. Furthermore, the choice of the underlying para-
meters can also be based upon criteria reflecting the user’s ob-
jective, such as in sample fit or forecasting criteria. Although
we have refrained from doing so in our empirical application,
we find that our adaptive localized realized volatility procedure
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provides accurate volatility forecasts and significantly outper-
forms the standard long-memory realized volatility models and
two alternative models with breaks. It seems that our view on
volatility is practical and realistic.

Extensions of the local parametric model to explicitly ac-
count for other important data characteristics, such as the lever-
age effect, are left for future research.

[Received January 2009. Revised June 2010.]
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Predicting default risk is important for firms and banks to operate successfully. There are
many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios.
Here we propose the so-called Support Vector Machine (SVM) to predict the default risk of
German firms. Our analysis is based on the Creditreform database. In all tests performed in
this paper the nonlinear model classified by SVM exceeds the benchmark logit model, based
on the same predictors, in terms of the performance metric, AR. The empirical evidence is in
favor of the SVM for classification, especially in the linear non-separable case. The sensitivity
investigation and a corresponding visualization tool reveal that the classifying ability of SVM
appears to be superior over a wide range of SVM parameters. In terms of the empirical results
obtained by SVM, the eight most important predictors related to bankruptcy for these
German firms belong to the ratios of activity, profitability, liquidity, leverage and the
percentage of incremental inventories. Some of the financial ratios selected by the SVM model
are new because they have a strong nonlinear dependence on the default risk but a weak linear
dependence that therefore cannot be captured by the usual linear models such as the DA and
logit models.

Keywords: Statistical learning theory; Applications to default risk; Capital asset pricing;
Economics of risk

1. Introduction

Predicting default probabilities and deducing the corre-
sponding risk classification is becoming more and more
important in order for firms to operate successfully and
for banks to clearly grasp their clients’ specific risk class.
In particular, the implementation of the Basel II capital
accord will further exert pressure on firms and banks. As
both the risk premium and the credit costs are determined
by the default risk, the firms’ ratings will have a deeper
economic impact on banks as well as on the firms
themselves than ever before. Thus, from a risk manage-
ment perspective, the choice of a correct rating model that
can capture consistent predictive information concerning
the probabilities of default over some successive time
periods is of crucial importance.

There are strands of the literature that deal with the
statistical and stochastic analysis of default risk
(Burnham and Anderson 1998, Caouette et al. 1998,

Shumway 1998, Sobehart et al. 2000, Saunders and Allen

2002, Gaeta 2003, Chakrabarti and Varadachari 2004,

Giesecke 2004, Zagst and Hocht 2006). One models

default events using accounting data, whereas other

models recommend using market information.

Market-based models can be further classified into

structural models and reduced form models. There is

also a hybrid approach that uses accounting data as well

as market information to predict the probability of

default. The market-based approach relies on the time

series of company market data. Unfortunately, time series

long enough to reliably estimate the risk is not available

for most companies. Moreover, the majority of German

firms are not listed and, therefore, their market price is

unknown. This justifies the choice of a model for which

only cross-sectional or pooled accounting data would be

required. For this study, accounting data for bankrupt

and operating German companies was provided by

Creditreform.
Among the accounting-based models, the first attempts

to identify the difference between the financial ratios of*Corresponding author. Email: shiyichen@fudan.edu.cn
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solvent and insolvent firms were the studies of Ramser
and Foster (1931), Fitzpatrick (1932), Winakor and Smith
(1935) and Merwin (1942). These studies settled the
fundamentals for bankruptcy prediction research. It was
not until the 1960s that the traditional research was
changed. Beaver (1966) pioneeringly presented the uni-
variate approach to discriminant analysis (DA) for
bankruptcy prediction. Altman (1968) expanded this
analysis to multivariate analysis. Up to the 1980s, DA
was the dominant method in bankruptcy prediction.
However, there are obvious modeling restrictions of this
approach, some of which are the assumptions of normal-
ity, homoscedasticity of the disturbances, fulfillment of
conditional expectation of the dependent variable
between 0 and 1, and no adjustment for multicollinearity.
During the 1980s the DA method was replaced by logistic
analysis, which fits the logistic regression model for
binary or ordinal response data by the method of
maximum likelihood estimation (MLE). In fact, the
logit model uses the logistic cumulative distribution
function in modeling the default probability. Among the
first users of logit analysis in the context of bankruptcy
were Ohlson (1980), Collins and Green (1982), Lo (1986)
and Platt et al. (1994). The advantage of the logit model is
that it does not assume multivariate normality and equal
variance disturbance, and its probability lies between 0
and 1 (Härdle and Simar 2003). However, the logit model
is also sensitive to the collinearity among the variables. In
addition, the key assumption behind the logit model is
that the logarithm of odds is linear in the underlying
random variable; therefore, common to DA and logit
modeling is a linear classifying hyperplane that separates
insolvent and solvent firms. This works well if the data are
linearly separable. A linear separating hyperplane is,
however, not suitable if there is doubt that the separation
mechanism is of a nonlinear kind. There are good reasons
to take the linear non-separability case seriously
(Falkenstein et al. 2000).

Many nonlinear numerical methodologies have been
developed to solve the linear non-separability problem:
Maximum Expected Utility (MEU), Artificial Neural
Networks (ANN) and Support Vector Machines (SVM).
The MEU model was proposed at Standard & Poor’s
Risk Solutions Group, which allows models to incorpo-
rate the nonlinearity, non-monotonicity, and interactions
present in the data, reducing the risk of overfitting.
Friedman and Sandow (2003a, b) and Friedman and
Huang (2003) demonstrated how the MEU method
outperforms the Logit model. ANN was introduced to
analyse bankrupt firms in the 1990s (see Hertz et al.
(1991), Refenes (1995) and Härdle et al. (2004) for more
details). This method also discards the assumption of
linearity and mutual independence of explanatory vari-
ables for the default prediction function (Serrano et al.
1993, Back et al. 1994, 1996, Wilson and Sharda 1994).
ANN models built using K-fold cross-validation techni-
ques can be very robust and reduce over-fitting. Although
the nonlinear ANN can classify a dataset much better
than the linear models, it has often been criticized to be
vulnerable to the multiple minima problem. Common to

the OLS and MLE for linear models, ANN also makes
use of the principle of minimizing empirical risk, which
usually leads to a poor level of classification for
out-of-sample data (Haykin 1999).

Based on statistical learning theory, an alternative
nonlinear separation method, the Support Vector
Machine (SVM), was recently introduced in default risk
analysis. The SVM yields a single minimum without
undesirable local fits as often produced by ANN. This
property results from the minimized target function that
is convex quadratic and linearly restricted. In addition,
the SVM is also able to handle the interactions between
the ratios and does not need any parameter restrictions
and prior assumptions such as that concerning the
distribution for latent errors. Furthermore, the biggest
advantage of SVM among all the alternatives is its ability
to minimize the risk associated with model misspecifica-
tion, which endows SVM with an excellent separating
ability. The current literature in statistical learning theory
has produced strong evidence that SVM systematically
outperforms standard pattern recognition/classification,
function regression and data analysis techniques (Vapnik
1995, Haykin 1999). The application of SVM to company
default analysis is less reported in the management science
and finance literature. Härdle et al. (2005, 2007) report
that, compared with the traditional DA and logit models
in predicting the probabilities of default and rating firms,
the SVM has a superior performance. Gestel et al. (2005)
combined SVM and the logistic regression model to
capture the multivariate nonlinear relations. This combi-
nation technique balances the interpretability and pre-
dictability required to rating banks.

In this study, we investigate the applicability of this new
technique to predicting the risk scores and the probabil-
ities of defaults (PDs) of German firms from the
Creditreform database spanning from 1996 through
2002. The aim is to investigate (1) which of the accounting
ratios are meaningful and have predictive character for
bankruptcy, and (2) does a well-specified SVM-based
nonlinear model consistently outperform the benchmark
logit model in predicting PDs as predicted by theory?

The rest of the paper is organized as follows. In the next
section we give a theoretical introduction to the Support
Vector Machine (SVM) for classification. Section 3
describes the Creditreform database and the variables
and ratios used in this study. In section 4, we present the
validation procedures, re-sampling technique, perfor-
mance measures and the ratios selection methods.
Section 5 analyses the empirical results, including the
predictors related to bankruptcy, the sensitivity analysis
of SVM parameters, and a comparison of the predictive
performance between SVM and the logit model. Section 7
offers conclusions.

2. The Support Vector Machine

The term Support Vector Machine (SVM) originates from
Vapnik’s statistical learning theory (Vapnik 1995, 1997),
which formulates the classification problem as a quadratic

136 S. Chen et al.
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programming (QP) problem. The principles on which the
SVM is based, especially the regularization principle for
solving ill-posed problems, are also described by

Tikhonov (1963), Tikhonov and Arsenin (1977) and
Vapnik (1979). The SVM transforms by nonlinear map-
ping the input space (of covariates) into a
high-dimensional feature space and then solves a linear

separable classification problem in this feature space.
Thus, linear separable classification in the feature space
corresponds to linearly non-separable classification in the
lower-dimensional input space. As the name implies, the

design of the SVM hinges on the extraction of a subset of
the training data that serves as support vectors and that
represents a stable characteristic of the data.

Given a training data set fxi, yig
n
i¼1fðxi, yiÞg

n
i¼1, with

input vector xi 2 Rd (company financial ratios in this
study) xi 2 Rd and output scalar yi 2 þ1, �1f g

yi ¼ fþ1, �1g 2 R1 (�1¼ ‘successful’, þ1¼ ‘bankrupt’),
we aim to find a classifying (score) function f (x) to
approximate the latent, unknown decision function g(x).
In the logistic and the DA case, this is simply a linear

function. In the SVM case, the classifying function is

f ðxÞ ¼
Xl
l¼1

wl�l ðxÞ þ b ¼ wT�ðxÞ þ b, ð1Þ

where �ðxÞ ¼ ½�1ðxÞ, . . . ,�l ðxÞ�
T and w ¼ ½w1, . . . ,wl �

T.
The nonlinear functions �ðxÞ are the transformation

functions from the input space to the feature space that
represent the features of the input space. A simple

example of features for a quadratic function in a
two-dimensional space is �1 ¼ x21, �2 ¼

ffiffiffi
2
p

x1x2 and
�3 ¼ x22. The dimension of the feature space is l, which
is directly related to the capacity of the SVM to

approximate a smooth input–output mapping; the
higher the dimension of the feature space, the more
accurate, at the cost of variability, the approximation will
be. Parameter w denotes a set of linear weights connecting

the feature space to the output space, and b is the bias or
threshold. The optimal solution w� and b� can be used to
construct the optimal hyperplane w�T�ðxÞ þ b� ¼ 0 and
the classification function f ðxÞ ¼ w�T�ðxÞ þ b�. We can
predict solvent and insolvent companies using the

estimated function f (x).

2.1. Advantage of SVM for classification in theory

The main superiority of nonlinear non-parametric SVM
over the benchmarking methods in predicting company

credit risk results from its special theoretical device in two
ways: (1) it takes linearly non-separable situations into
account, whereas the DA and logit models only work well
if the data are linear separable; and (2) it adopts the

principle of structural risk minimization rather than
empirical risk minimization employed by the OLS,
MLE, ANN (and other) models. We illustrate the
principle in figure 1 using the simplest classifying function

f ðxÞ ¼ �x1 � 2x2 þ 2, where x ¼ ðx1, x2Þ
T, w ¼ ð�1, �2Þ

and b¼ 2.

The statistical problem is how to construct a classifying

hyperplane (hypersurface) and obtain the classifying

function f (x). If the data set is linearly separable, the

perfect classification hyperplane does exist. The function

f (x) gives an algebraic measure of the distance from x to

the optimal hyperplane. Perhaps the easiest way to see

this is to express x as x ¼ x0 þ rðw=jjwjjÞ, where x0 is the

normal projection of x onto the optimal hyperplane, r is

the desired algebra distance from any point x to the

optimal hyperplane (positive if x is on the positive side of

the optimal hyperplane and negative otherwise), and jjwjj

is the Euclidean norm of the weight vector w. Since, by

definition, f ðx0Þ ¼ 0, it follows that

f ðxÞ ¼ wTx0 þ wTr
w

jjwjj
þ b ¼ f ðx0Þ þ rjjwjj ¼ rjjwjj

or

r ¼
f ðxÞ

jjwjj
:

Because of the values of yi being �1, the parameters

ðw, bÞ for the optimal hyperplane must satisfy the

constraints f ðxÞ � 1 for yi ¼ þ1 (insolvent) or f ðxÞ � �1

for yi ¼ �1 (solvent), that is yi � f ðxÞ � 1. The particular

data points for which the constraint is satisfied with the

equality sign are called support vectors, hence the name

‘Support Vector Machine’. In conceptual terms, the

support vectors are those data points that lie closest to

the decision surface and are therefore the most difficult

to classify. As such, they have a direct bearing on the

optimum location of the classification hyperplane and

play a prominent role in the operation of SVM. Now

consider the support vectors; they are located on the

upper and lower separation band for which f ðxÞ ¼ �1.

Therefore, the algebraic distance from the support vectors

to the optimal hyperplane is

r ¼
f ðxÞ

jjwjj
¼
�1

jjwjj
:

Let � denote the optimum value of the margin of

separation between solvent and insolvent companies.

Figure 1. Separation margin, misclassification error and struc-
tural risk minimization for the SVM in two-dimensional input
space.
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Then it follows that � ¼ 2r ¼ 2=jjwjj, which states that
maximizing the margin of separation between classes is
equivalent to minimizing the Euclidean norm of w, wk k.
Thus, the classifying function in the linear separable case
can be derived from maximizing the separation margin
directly. Likewise, the distance from the origin to the
optimal hyperplane is given by �b=jjwjj, as shown in
figure 1.

If the training set is linearly non-separable, the hyper-
plane that can correctly classify the training set no longer
exists and, naturally, we need to find a hypersurface
instead. For the hypersurface, however, we know less
about the concept of the geometrical margin that is
particular for the hyperplane; therefore, it is more difficult
to find a hypersurface than a hyperplane. The transfor-
mation from the input space into higher-dimensional
feature space, i.e. x��ðxÞ, is then introduced in
the SVM. It is possible that the new training set in the
feature space f�ðxiÞ, yig

n
i¼1 becomes linearly separable.

Accordingly, the problem of finding a hypersurface in the
input space is transformed into finding a hyperplane in
the feature space and letting its margin or the ‘safe’
distance between classes, where in the perfectly separable
case no observation can lie, be maximized.

It is not possible to construct a separating hyperplane
without encountering classification errors. The margin of
separation between classes is said to be soft if a data point
violates the condition yi � f ðxÞ � 1. This violation can
arise in one of two ways: (1) the data point falls inside the
region of separation but on the right side of the decision
surface; and (2) the data points falls on the wrong side of
the decision surface. Note that we have correct classifi-
cation in case (1), but misclassification in case (2).
Therefore, a new set of non-negative slack variables
f�ig

n
i¼1 are introduced and the condition is softened to

yi � f ðxÞ � 1� �i. Note 05 �i � 1 for case (1), �i � 1 for
case (2), and �i ¼ 0 for the linearly separable case. The
support vectors are those particular data points that
satisfy the soft condition precisely even if �i 4 0. The
support vectors are thus defined in exactly the same way
for both linearly separable and non-separable cases. In
fact, using the soft constraints and the condition �i � 0,
the slack variables �i can be represented as a hinge loss
function which is the tightest convex upper bound of the
misclassification loss and special and preferred to the loss
function of the logit model because it allows a sparse
solution, in the sense that some observations of the
training set, if they are classified correctly, may not be
necessary to construct the separating boundary.
Sparseness of the solution also greatly simplifies the
computation of SVM because then usually only few
observations, so-called support vectors, are required to
restore the solution, while for the logit regression, all
observations are necessary.

The algebraic distance from the misclassification point
to the optimal hyperplane is r ¼ ½ð1� �iÞ=kwk�, which can
be derived making use of the same algebraic manipulation
as in the linear separable case. Thus, the distance between
the misclassification point and the upper band, the case in
figure 1, is �i=kwk and the tolerance to misclassification

errors on the training set can be measured byPn
i¼1 �i=jjwjj. Our goal is to find a separating hyperplane

for which the misclassification error, averaged on the
training set, is minimized, which is similar to minimize the
sum of residual squares, the empirical risk in OLS and
MLE estimation.

Thus, two targets exist for SVM in the linear
non-separable case: still maximize the separation margin
2=jjwjj and simultaneously minimize the misclassification
distance

Pn
i¼1 �i=jjwjj. The most intuitive form of the

objective function to be minimized is

min
w, b, �

1

2
jjwjj þ C

Xn
i¼1

�i
jjwjj

: ð2Þ

As shown above, the second term is the margin-based loss
function, which is the sum of errors measured as the
distance from a misclassified observation to the hyper-
plane boundary, its class weighted with the parameter C.
Equation (2) exhibits the so-called structural risk mini-
mizing principle held by the SVM method. The bench-
mark models such as the DA and logit estimated by OLS
and MLE, and simple ANN-based nonlinear models with
no constraints usually employ the principle of minimizing
error functions calculated on the training sample.
Therefore, SVM not only minimizes the traditional
empirical risk, but also maximizes the separating
margin, and finally obtains a trade-off between two
targets. It is this kind of special design of minimizing the
structural risk that endows SVM with stronger classifying
ability than the benchmark methods.

2.2. SVM algorithm

To minimize the cost function (2), an equivalent quadratic
cost function, ð1=2Þjjwjj2 þ C

Pn
i¼1 �i, can be obtained

from equation (2) multiplied by jjwjj (jjwjj4 0). Thus, the
primary problem of the SVM for the non-separable case is
expressed as

min
w, b, �

1

2
jjwjj2 þ C

Xn
i¼1

�i, ð3Þ

s.t.

yi 	 fw
T�ðxiÞ þ bg þ �i � 1, ð4Þ

�i � 0, i ¼ 1, 2, . . . , n: ð5Þ

As before, minimizing the first term of equation (3) is
equivalent to maximizing the separation margin. The
scaling factor 1/2 is included here for convenience of
presentation. As for the second term, it is an upper bound
on the number of misclassification errors. The formula-
tion of the cost function in equation (3) is also therefore
in perfect accord with the principle of structural risk
minimization. The penalty parameter C40 is introduced
to integrate the weights of two targets. It controls the
trade-off between the complexity of the machine and the
number of non-separable points; that is, the penalty
parameter C controls the extent of penalization
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(or the tolerance) to misclassification errors on the

training set. Partially the optimization function is derived

from the problem of separating the population of

defaulters from non-defaulters. However, it contains a

second part responsible for margin maximization that is

introduced artificially. Although it introduces a bias to

the original optimization problem, it reduces the com-

plexity of the SVM and increases its accuracy on

out-of-sample data. The value of parameter C has to be

selected by the user (Haykin 1999). The optimization

problem for non-separable patterns stated above includes

the optimization problem for linearly separable patterns

as a special case. Specifically, setting �i ¼ 0 for all i in

both equations (3) and (4) reduces them to the corre-

sponding forms for the linearly separable case.
The corresponding dual problem of SVM for

non-separable patterns can be derived using the

Karush–Kuhn–Tucker conditions (Fletcher 1987,

Bertsekas 1995) as follows:

min
�

1

2

Xn
i¼1

Xn
j¼1

yiyj�i�jKðxi, xj Þ �
Xn
i¼1

�j, ð6Þ

s.t

Xn
i¼1

yi�i ¼ 0, ð7Þ

0 � �i � C, i ¼ 1, 2, . . . , n, ð8Þ

where �i and �j are Lagrange multipliers. Note that

neither the slack variables �i nor their Lagrange multi-

pliers appear in the dual problem. Thus, the objective

function (6) to be minimized is the same in both the linear

separable and non-separable cases. Deng and Tian (2004)

demonstrate that the dual problem is easier to solve than

the primal problem. We can then use the optimal solution

��i to obtain the solution of the primal problem:

w� ¼
Xn
i¼1

yi�
�
i �ðxiÞ, ð9Þ

b� ¼ yj �
Xn
i¼1

yi�
�
i Kðxi, xj Þ, 8j 2 f j j05��j 5Cg: ð10Þ

By substitution, the nonlinear classifying (score) func-

tion can be obtained:

f ðxj Þ ¼ w�T�ðxj Þ þ b� ¼
Xn
i¼1

yi�
�
i �

TðxiÞ�ðxj Þ þ b�

¼
Xn
i¼1

yi�
�
i Kðxi, xj Þ þ b�, ð11Þ

where Kðxi, xj Þ ¼ �
TðxiÞ�ðxj Þ is the inner product kernel

function in which xi belongs to the training set and xj is

the new company financial ratio, either in the training set

or validating and forecasting set. For the classification

problem, the decision function (11) is constructed to help

us deduce in what kind of category, say þ1 or �1, the new

output f (xj) corresponding to xj is located. To the end,

the intuitive way is to compare xj with xi pairwise; if xj is
closer to xi on the positive side, then the new output f (xj)
nears þ1, if xj is closer to xi on the negative side f (xj) falls
into the category �1. This is reasonable because a similar
input should lead to the same output. Therefore, the

decision function only depends on the proximity between
two observations and the classification is in fact a
proximity problem. In SVM, the inner product kernel
function K(xi, xj) is the key tool to measure this kind of
proximity. In addition, the SVM theory considers the
form of K(xi, xj) in the Hilbert space without specifying

�ð�Þ explicitly and without computing all corresponding
inner products, which provides the flexibility of the
high-dimensional Hilbert space for low computational
costs and greatly reduces the computational complexity.
Thus, the kernel becomes the crucial part of SVM.

It is necessary to find an appropriate kernel in order to
solve the optimization problem of SVM. The requirement
on the kernel function is to satisfy Mercer’s theorem

(Mercer 1908, Courant and Hilbert 1970), such that the
Kernel matrix, fKðxi, xj Þg

n
i,j¼1, is symmetric and

semi-positive definite. Mercer’s theorem tells us whether
or not a candidate kernel is actually an inner-product
kernel in some space and therefore admissible for use in a
support vector machine. Within this requirement there is

some freedom in how it is chosen. The usual chosen
kernels are linear, polynomial and Gaussian kernel
functions. A different kernel requires estimating the
extent of proximity based on a different metric criterion.
In this study, we choose an anisotropic Gaussian kernel
for the SVM:

Kðxi, xj Þ ¼ expð�ðxi � xj Þ
Tr�2��1ðxi � xj Þ=2Þ, ð12Þ

where � is the variance–covariance matrix of the data and

r is the Gaussian, also known as the radial basis kernel
coefficient which implicitly controls the complexity of the
feature space and the solution—the larger r, the less the
complexity. Therefore, based on expression (11), for any
new company xj, those companies from the training
sample xi will have a greater impact on f (xj) if xj are

closer to xi. The anisotropic Gaussian kernel offers a way
of measuring the proximity between two companies; it is
higher when the companies are close and smaller when
they are far from each other.

3. Data and financial ratios

3.1. Data description

The data used in this study is the Creditreform database.
It contains a random sample of 20,000 solvent and 1000
insolvent firms in Germany and spans the period
from 1996 to 2002, although the data are concentrated
in 2001 and 2002 with approximately 50% of the
observations coming from this period. Most firms
appear in the database several times in different years.

Each firm is described by a set of financial statement
variables such as those in balance sheets and
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income statements. The data for the insolvent firms were

collected two years prior to insolvency.
Figure 2 shows the industry composition and size

distribution of the database. The industries to which each

firm belongs can be systematically classified according to

an internationally recognized system—Classification of

Economic Activities, Edition 1993 (WZ 93)—published

by the German Federal Statistical Office. WZ 93 uses a

hierarchy of five different levels. The higher the level, the

more precise the description of the main activity. In terms

of the classification industry codes of WZ 93, as shown in

figures 2(a) and (b), the 1000 insolvent firms consist of

about 39.7% construction, 25.7% manufacturing, 20.1%

the wholesale and retail trade, 9.4% real estate and 5.1%

others. The others among the 1000 insolvent firms include

agriculture, mining, electricity, gas and water supply,

hotels and restaurants, transport and communication,

financial intermediation and social service activities.

The industries of the 20,000 solvent firms are manufac-

turing (27.4%), wholesale and retail trade (24.8%), real

estate (16.9%), construction (13.9%) and others (17.1%).

Different from the ‘others’ of insolvent firms, the others in

solvency contain additional industries such as publishing,

administration and defense, education and health.
The distribution of total assets can be regarded as being

representative of the distribution of the firm size. In

figures 2(c) and (d), the 1000 insolvent sample comprises

12 firms located in the size category 104 EUR, 216

in 105 EUR, 587 in 106 EUR, 164 in 107 EUR and 21 in
108 EUR. (Here, 104 EUR represents one category of
asset size in which the firms have total assets of between
10,000 and 99,999 EUR. The definition of the other size
categories is similar to that for 104 EUR.) The number of
firms corresponding to each asset size category of the
20,000 solvent firms is 13 (103 EUR and below), 353 (104

EUR), 3153 (105 EUR), 7633 (106 EUR), 6373 (107

EUR), 2126 (108 EUR), 295 (109 EUR) and 54 (1010 EUR
and above).

In an attempt to obtain a more homogeneous company
sample, we cleaned the database of companies whose
characteristics are very different from the others. That is
to say, we do not attempt to cover all firms in the
database for our study because of the very different
nature of some firms. Thus, in focusing on predicting the
PDs of German firms we eliminated the following types of
firms from the whole sample.

. Firms with a small percentage composition of
industry—that is, we eliminate the firms that
belong to the ‘other’ industries in the insolvent
and solvent databases, for example financial
intermediation and public institutions. Thus
only four main types of industry (Construction,
Manufacturing, Wholesale & Retail Trade and
Real Estate) remain in the study.

. Smallest and largest firms—that is, we exclude
those firms that, because of their asset size,

Real estate (9.4%)

Wholesale retail (20.1%)

Construction (39.7%)

Manufacturing (25.7%)

Others (5.1%)

(a) Industry composition of insolvency

Real estate (16.9%)

Wholesale retail (24.8%)

Construction (13.9%)

Manufacturing (27.4%)

Others (17.1%)

(b) Industry composition of solvency
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Figure 2. Industry composition and size distribution of the companies in the Creditreform database.
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are not located in the categories 105, 106 and
107 EUR. As Khandani et al. (2001) noted, the
credit quality of the smallest firms is often as
dependent on the finances of a key individual as
on the firm itself; the number of largest firms
that go bankrupt is usually very small in
Germany.

We further clean the database to ensure that the value
of some variables, such as the denominator when calcu-
lating the ratios, should not be zero. We also exclude the
firms solvent in 1996 because of missing insolvency values
for this year.

Thus, 783 insolvent firms and 9583 solvent firms were
chosen and analysed. The bankrupt firms are paired with
non-bankrupt firms with a similar industry and total asset
size. Correspondingly, the predicted default probabilities
and rating results in this study are only suitable for
German firms from four main industry sectors
(Construction, Manufacturing, Wholesale & Retail
Trade and Real Estate) and with medium asset size
(lying within the categories 105, 106, and 107 EUR).

3.2. Ratio definitions

The Creditreform database provides many financial
statement variables for each firm. In accordance with
the existing literature, 28 ratios were selected for the
bankruptcy analysis. In summary, there are 28 financial
ratios (including one size variable) and a binary response,
which records whether the firm went bankrupt within two
years of the financial statements or not. There is also
information on the industry distribution and on the year
of the accounts. There are no missing values. These ratios
can be grouped into the following six broad categories
(factors): profitability, leverage, liquidity, activity, firm
size and the percentage change for some variables. The
variables applied to calculate these ratios are shown in
table 1. Table 2 describes these ratios and how they were
calculated. For simplicity, we provide short names for
some ratios that capture the essence of what they
measure. Table 3 summarizes the descriptive statistics of
the 28 ratios for both the insolvency and solvency sample.

In previous studies, profitability ratios have appeared
to be strong predictors related to bankruptcy. In addition,

among all the potential risk factors, there are more
profitability ratios than any other factor. The profitability
ratios employed in our study are return on assets (ROA,
NI/TA), net profit margin (NI/SALE), OI/TA, operating
profit margin (OI/SALE), EBIT/TA, EBITDA and
EBIT/SALE, denoted respectively as x1, x2, x3, x4, x5,
x6 and x7.

The ROA figure gives investors an idea of how
effectively the firm is deploying its assets to generate
income. The higher the ROA number, the better, because
the firm is earning more money on less investment. Net
profit margin measures how much of every dollar of sales
a firm actually keeps in earnings. A higher profit margin
indicates a more profitable firm that has better control
over its costs compared with its competitors. Some
investors add extraordinary items back into net income
when performing this calculation because they would like
to use operating returns on assets, which represent a
firm’s true operating performance. Operating income is
also required to calculate operating profit margin, which
describes a firm’s operating efficiency and pricing strat-
egy. EBIT is all profits before taking into account interest
payments and income taxes. An important factor
contributing to the widespread use of EBIT is the way
in which it nullifies the effects of different capital
structures and tax rates used by different firms. By
excluding both taxes and interest expenses the figure
homes in on the firm’s ability to profit and thus makes for
easier cross-firm comparisons. EBIT is the precursor to
EBITDA, which takes the process further by removing
two non-cash items from the equation (depreciation and
amortization). Thus, defaulting firms usually have lower
profitability values; however, firms with extremely large
and volatile profitability may also be likely to translate
into higher default probabilities. We will try to capture
this kind of complex nonlinear dependence in our
database.

Leverage is also a key measure of firm risk. In this
study, seven leverage ratios are analysed. They are simple
and adjusted own funds ratio, CL/TA, net indebtedness,
TL/TA, debt ratio (DEBT/TA) and interest coverage
ratio (EBIT/INTE), represented by x8 through x14.

The own funds ratio measures the ratio of a firm’s
internal capital to its assets. The simple version is widely
used in credit models, which is basically the mirror image

Table 1. Variables used in the study.

Abbreviation Variable Abbreviation Variable

CASH Cash and cash equivalents DEBT Debt
INV Inventories AP Accounts payable
CA Current assets SALE Sales
ITGA Intangible assets AD Amortization and depreciation
TA Total assets INTE Interest expense
QA Quick assets (¼CA-INV) EBIT Earnings before interest and tax
AR Accounts receivable OI Operating income
LB Lands and buildings NI Net income
OF Own funds IDINV Increase (decrease) inventories
CL Current liabilities IDL Increase (decrease) liabilities
TL Total liabilities IDCASH Increase (decrease) cash
WC Working capital (¼CA-CL)

Modeling default risk with support vector machines 141
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Table 2. Definitions of accounting ratios.

Ratio No. Definition Ratio Category

x1 NI/TA Return on assets (ROA) Profitability
x2 NI/SALE Net profit margin Profitability
x3 OI/TA Profitability
x4 OI/SALE Operating profit margin Profitability
x5 EBIT/TA Profitability
x6 (EBITþAD)/TA EBITDA Profitability
x7 EBIT/SALE Profitability
x8 OF/TA Own funds ratio (simple) Leverage
x9 (OF-ITGA)/(TA-ITGA-CASH-LB) Own funds ratio (adjusted) Leverage
x10 CL/TA Leverage
x11 (CL-CASH)/TA Net indebtedness Leverage
x12 TL/TA Leverage
x13 DEBT/TA Debt ratio Leverage
x14 EBIT/INTE Interest coverage ratio Leverage
x15 CASH/TA Liquidity
x16 CASH/CL Cash ratio Liquidity
x17 QA/CL Quick ratio Liquidity
x18 CA/CL Current ratio Liquidity
x19 WC/TA Liquidity
x20 CL/TL Liquidity
x21 TA/SALE Asset turnover Activity
x22 INV/SALE Inventory turnover Activity
x23 AR/SALE Account receivable turnover Activity
x24 AP/SALE Account payable turnover Activity
x25 Log(TA) Size
x26 IDINV/INV Percentage of incremental inventories Percentage
x27 IDL/TL Percentage of incremental Liabilities Percentage
x28 IDCASH/CASH Percentage of incremental cash flow Percentage

Table 3. Descriptive statistics of the 28 accounting ratios. IQR is the interquartile range.

Ratio

Insolvent Solvent

q0.05 Med. q0.95 IQR q0.05 Med. q0.95 IQR

NI/TA �0.19 0.00 0.09 0.04 �0.09 0.02 0.19 0.06
NI/SALE �0.15 0.00 0.06 0.03 �0.07 0.01 0.10 0.03
OI/TA �0.22 0.00 0.10 0.06 �0.11 0.03 0.27 0.09
OI/SALE �0.16 0.00 0.07 0.04 �0.08 0.02 0.13 0.04
EBIT/TA �0.19 0.02 0.13 0.07 �0.09 0.05 0.27 0.09
EBITDA �0.13 0.07 0.21 0.08 �0.04 0.11 0.35 0.12
EBIT/SALE �0.14 0.01 0.10 0.04 �0.07 0.02 0.14 0.05
OF/TA 0.00 0.05 0.40 0.13 0.00 0.14 0.60 0.23
(OF-ITGA) / (TA-ITGA-CASH-LB) �0.01 0.05 0.56 0.17 0.00 0.16 0.95 0.32
CL/TA 0.18 0.52 0.91 0.36 0.09 0.42 0.88 0.39
(CL-CASH)/TA 0.12 0.49 0.89 0.36 �0.05 0.36 0.83 0.41
TL/TA 0.29 0.76 0.98 0.35 0.16 0.65 0.96 0.40
DEBT/TA 0.00 0.21 0.61 0.29 0.00 0.15 0.59 0.31
EBIT/INTE �7.90 1.05 7.20 2.47 �6.78 2.16 73.95 5.69
CASH/TA 0.00 0.02 0.16 0.05 0.00 0.03 0.32 0.10
CASH/CL 0.00 0.03 0.43 0.11 0.00 0.08 1.40 0.29
QA/CL 0.18 0.68 1.90 0.54 0.25 0.94 4.55 1.00
CA/CL 0.56 1.26 3.73 0.84 0.64 1.58 7.15 1.56
WC/TA �0.32 0.15 0.63 0.36 �0.22 0.25 0.73 0.41
CL/TL 0.34 0.84 1.00 0.37 0.22 0.85 1.00 0.44
SALE/TA 0.43 1.63 4.15 1.41 0.50 2.08 6.19 1.76
INV/SALE 0.02 0.16 0.89 0.26 0.01 0.11 0.56 0.16
AR/SALE 0.02 0.12 0.33 0.11 0.00 0.09 0.25 0.09
AP/SALE 0.03 0.14 0.36 0.10 0.01 0.07 0.24 0.08
Log(TA) 13.01 14.87 17.16 1.69 12.82 15.41 17.95 2.37
IDINV/INV �1.20 0.00 0.75 0.34 �0.81 0.00 0.56 0.07
IDL/TL �0.44 0.00 0.48 0.15 �0.53 0.00 0.94 0.14
IDCASH/CASH �12.71 0.00 0.94 0.79 �7.13 0.00 0.91 0.52

142 S. Chen et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
E

di
nb

ur
gh

] 
at

 0
2:

32
 2

0 
A

ug
us

t 2
01

2 



of TL/TA, as expected: they are mathematical comple-
ments. We have made some adjustments to the simple
own funds ratio to counter creative accounting practices,
and to try to generate a better measure of firm credit
strength. The adjustments are also used by Khandani
et al. (2001). Net indebtedness measures the level of
short-term liabilities not covered by the firm’s most liquid
assets as a proportion of its total assets. Thus, in addition
to measuring the short-term leverage of a firm, it also
provides a measure of the liquidity of a firm. While the
debt ratio performs about as well as TL/TA for public
firms, it does considerably worse for private firms, which
makes TL/TA preferred. The difference between debt and
liabilities is that liabilities is a more inclusive term that
includes debt, deferred taxes, minority interest, accounts
payable, and other liabilities. The interest coverage ratio
is highly predictive. Falkenstein et al. (2000) argue that
the interest coverage ratio turns out to be one of the most
valuable explanatory variables in the public firm dataset
in a multivariate context, although in the private firm
database its relative power decreases significantly.

Six liquidity ratios, CASH/TA, cash ratio, quick ratio,
current ratio, WC/TA and CL/TA (x15 through x20), are
analysed in this paper. Liquidity is a common variable in
most credit decisions and represents the ability to convert
an asset into cash quickly. In the private dataset, CASH/
TA is the most important single variable relative to
default. Quick ratio is an indicator of a firm’s short-term
liquidity and measures a firm’s ability to meet its
short-term obligations with its most liquid assets. The
larger the quick ratio, the better the position of the firm.
The quick ratio is more conservative than the current
ratio because it excludes inventory from current assets.
Current ratio is mainly used to give an idea of the firm’s
ability to pay back its short-term liabilities (debt and
payables) with its short-term assets (cash, inventory,
receivables). If a firm is in default, its current ratio must
be low. Yet, just as the cash in your wallet does not
necessarily imply wealth, a high current ratio does not
necessarily imply health. Working capital measures both a
firm’s efficiency and its short-term financial health.
Altman (1968) reported that the WC/TA ratio is a
measure of the net liquid assets of the firm relative to
the total capitalization and proved to be more valuable
than the current ratio and the quick ratio. Falkenstein
et al. (2000) showed that, firstly, the CL/TL ratio appears
of little use in forecasting, second that the quick ratio
appears slightly more powerful than the WC/TA ratio,
and third, the quick ratio and current ratio carry roughly
similar information.

Activity ratios also capture important bankruptcy
information and are frequently used when performing
fundamental analysis for different firms. We analyse four
different activity ratios: the asset turnover (TA/SALE,
x21), the inventory turnover (INV/SALE, x22), the
account receivable and payable turnover (AR/SALE,
x23; AP/SALE, x24).

The asset turnover ratio is a standard financial ratio
illustrating the sales-generating ability of the firm’s assets.
Usually, the asset turnover is non-monotonic and

very flat. Note that some studies report that the asset
turnover degrades model predictability, for example the
Z-score that reduces the asset turnover performs better
than the one that keeps it. The reciprocal of the inventory
turnover shows how many times a firm’s inventory is sold
and replaced over a period. A high turnover implies poor
sales and, therefore, excess inventory. High inventory
levels are unhealthy because they represent an investment
with a rate of return of zero. Accounts payable and
receivable turnover ratios are more powerful predictors,
the reciprocals of which also display how many times
the firm’s accounts are converted into sales over a period.
The former is a short-term liquidity measure used to
quantify the rate at which a firm pays off its suppliers.
The latter is a measure used to quantify a firm’s
effectiveness in extending credit as well as collecting
debts. By maintaining accounts receivable, firms are
indirectly extending interest-free loans to their clients.
The above description of the activity ratios is usually true
in the manufacturing industry but is not the case for other
industries. For instance, service firms may have no
inventory to turn over.

Sales or total assets are almost indistinguishable as
indicators of size risk, which makes the choice between
the two measures arbitrary. In this study, we use the
natural logarithm of total assets (log(TA), x25) to
represent the firm size to investigate the default risk of
small, medium (SMEs) and large firms. For example,
access to capital for these firms is very different and may
affect the prediction ability of some financial ratios and,
consequently, the performance of the SVM model. Due to
the available variables provided by the Creditreform
database, we also compute three ratios of the percentage
of incremental inventories, liabilities and cash flow (x26,
x27, x28), respectively. For example, the increased
(decreased) cash flow is the additional operating cash
flow that an organization receives from taking on a new
project. A positive incremental cash flow means that the
firm’s cash flow will increase with the acceptance of the
project, the ratio of which is a good indication that an
organization should spend some time and money invest-
ing in the project.

Previous empirical research has found that a firm is
more likely to go bankrupt if it is unprofitable, highly
leveraged, and suffers cashflow difficulties (Myers 1977,
Aghion and Bolton 1992, Lennox 1999). Moreover, large
firms are less likely to encounter credit constraints
because of reputation effects. This is clearly demonstrated
by the statistical description of financial ratios in table 3,
which shows that insolvent firms are typically small, have
poor profitability and liquidity, and are highly leveraged,
compared with solvent firms, with only a few exceptions
such as EBIT/SALE, OF/TA and EBIT/INTE. In addi-
tion, the firms that go on to default have higher values for
the activity ratio. Except for the last three, all ratios for
insolvent firms vary less than for solvent firms because of
the smaller number of observations.

The statistics described in table 3 reveal that several of
the ratios are highly skewed and there are many outliers;
this may affect whether they can be of much help in
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identifying insolvent and solvent firms. It is also possible
that many of these outliers are errors of some kind.
Therefore, the ratios used in the following analysis are
processed as follows: if xi 5 q0:05ðxiÞ, then xi ¼ q0:05ðxiÞ,
and if xi 4 q0:95ðxiÞ, then xi ¼ q0:95ðxiÞ, i ¼ 1, 2, . . . , 28.
q�ðxiÞ is an � quantile of xi. Thus, the discriminating
results obtained from both the SVM and the logit model
are robust and not sensitive to outliers.

4. Prediction framework

4.1. The validation procedure

To compare the SVM and the logit models in a setting
most close to the real situation in which these models are
used in practice, the holdout method is chosen in this
study for cross validation, namely training of the model
on all available data up to the present period and the
forecasting of default events for the next period. In this
study, the training data are chosen from 1997 through
1999, and the validating set are selected from 2000
through 2002. Then the model is first estimated using the
training data; once the model form and parameters are
established, the model is used to identify insolvencies
among all the firms available during the holdout period
(2000–2002). Note that the predicted outputs for 2000
through 2002 are out of time for firms existing in the
previous three years, and out of sample for all the firms
whose data become available only after 2000. Such
out-of-sample and out-of-time tests are the most appro-
priate way to compare model performance. The valida-
tion result set is the collection of all the out-of-sample and
out-of-time model predictions that can then be used to
analyse the performance of the model in more detail. For
an introduction to the validation framework, see
Sobehart et al. (2001).

Following the holdout validation procedure, we con-
struct a training set containing 387 insolvent and 3534
solvent companies and a validation set containing 396
default events and 6049 non-defaulters. Note that the
training and validation sets are themselves a subsample of
the population and, therefore, may yield spurious model
performance differences based only on data anomalies.
A common approach to overcome this problem is to use
the re-sampling techniques to leverage the available data
and reduce the dependency on the particular sample at
hand (Efron and Tibshirani 1993, Herrity et al. 1999,
Horowitz 2001). Re-sampling approaches provide two
related benefits (Sobehart et al. 2001). First, they give an
estimate of the variability around the actual reported
model performance. This variability can be used to
determine whether differences in model performance are
statistically significant, using familiar statistical tests.
Second, because of the low numbers of defaults,
re-sampling approaches decrease the likelihood that
individual defaults (or non-defaults) will overly influence
the chances of a particular model being ranked higher or
lower than another model. Similar to previous bank-
ruptcy studies, this paper also adopts a matched pairs

approach for drawing subsamples for both the training
and validation set. The advantage of the matching
procedure is that it helps to cut the cost of data collection,
as the proportion of insolvent firms in the population is
very small. The problem that the use of relatively small
samples could lead to over-fitting can be avoided by the
re-sample techniques.

The re-sampling technique employed in this analysis is
the bootstrap, which proceeds as follows. We use all
insolvent firms, 387 in the training set and 396 in the
validation set, and randomly select a subsample with
the same number of solvencies from the 3534 solvencies in
the training set and the 6049 solvencies in the validation
set, respectively.

For the selected validation subset the performance
measure is calculated and recorded. Then we perform a
Monte Carlo experiment: another subsample is drawn,
and the process is repeated. This continues for many
repetitions until a distribution for each performance
measure is established. In this paper the process will be
repeated 30 times.

4.2. Performance measures

We now introduce two metrics for measuring and
comparing the performance of credit risk models: the
Accuracy Ratio (AR) and the misclassification error.
These two measures aim to determine the power of
discrimination that a model exhibits in warning of default
risk. These techniques are quite general and can be used
to compare different types of models even when the model
outputs differ and are difficult to compare directly.

AR is a valuable and simple tool to determine the
discriminative power of risk models. AR can be derived
from the Cumulative Accuracy Profile (CAP) curve,
which is particularly useful in that it simultaneously
measures Type I and Type II errors (Herrity et al. 1999,
Engelmann et al. 2003, Basle Committee on Banking
Supervision 2005). In statistical terms, the CAP curve
represents the cumulative probability distribution of
default events for different percentiles of the risk score
scale. To obtain CAP curves, firms are first ordered by
their risk scores. For a given fraction x% of the total
number of firms, a CAP curve is constructed by calcu-
lating the percentage y(x) of the defaulters whose risk
score is equal to or smaller than that for fraction x. In
other words, for a given x, y(x) measures the fraction of
defaulters (of the total defaulters) whose risk scores are
equal to or smaller than those of fraction x (of the total
firms). One would expect a concentration of
non-defaulters at the highest scores and defaulters at the
lowest scores.

Figure 3 shows a CAP plot. The random CAP
represents the case of zero information (which is equiv-
alent to a random assignment of scores). The ideal CAP
represents the case in which the model is able to
discriminate perfectly, and all defaults are caught at the
lowest model output. The actual CAP shows the perfor-
mance of the model being evaluated. It depicts the
percentage of defaults captured by the model.
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Therefore, AR is defined as the ratio of the area

between a model’s CAP curve and the random CAP curve

to the area between the perfect CAP curve and the

random CAP curve (see figure 3). The AR value is a

fraction between zero and one. Risk measures with AR

that approach zero have little advantage over a random

assignment of risk scores, whereas those close to one

display good predictive power. Mathematically, the AR

value is defined as

AR ¼

R 1
0 yðxÞ dx� ð1=2ÞR 1

0 yidealðxÞdx� ð1=2Þ
: ð13Þ

If the number of bankruptcies equals the number of

operating companies in the sample, then the AR becomes

AR 
 2

Z 1

0

yðxÞ dx� 1: ð14Þ

In addition, when evaluating the explanatory power of

the bankruptcy models, it is helpful to define two types of

prediction error: a type I error, which indicates low

default risk when in fact the risk is high, and a type II

error, which conversely indicates a high default risk when

in fact the risk is low. Usually, minimizing one type of

error comes at the expense of increasing the other type of

error. Clearly, the type I and type II error rates depend on

the number of firms predicted to fail. The higher (lower)

the number of firms predicted to go bankrupt, the smaller

(larger) is the type I error rate and the larger (smaller) is

the type II error rate. The number of predicted bank-

ruptcies depends on the cut-off probability, which is equal

to 0.5 in our study. From a supervisory viewpoint, type I

errors are more problematic as they produce higher costs.

Usually, the cost of a default is higher than the loss of

prospective profits. Altman et al. (1977) estimated the

relative costs of type I and type II errors for commercial

bank loans as being 7:1. Sobehart et al. (2001) also

described the cost scenarios schematically.
For more details on the performance measures, we refer

to DeLong et al. (1988), Swets (1998), Keenan and

Sobehart (1999), Swets et al. (2000), Sobehart et al. (2001)
and Sobehart and Keenan (2004).

4.3. Predictor selection

In this study, the benchmark linear parametric probability
model is the conditional logit model estimated by MLE,
which is described as follows:

Prð yi ¼ 1jxi1, . . . ,xidÞ ¼
1

1þ e�ð�0þ�1xi1þ���þ�dxidþ"iÞ
: ð15Þ

Based on equation (1) or (11), the target nonlinear
non-parametric probability model estimated by the SVM
can also be expressed in the following form:

Prð yi ¼ 1jxi1, . . . , xidÞ ¼ f ðxi1, . . . , xidÞ þ "i, ð16Þ

where yi¼ 1 indicates the bankrupt company, and yi¼ 0
for the logit case and yi¼�1 for SVM represent the
successful firm; the input vectors xi are the relevant
company financial ratios explaining the probability of
bankrupcy. Before we begin to estimate the models, the
process of predictor selection is illustrated.

For a parametric model we can estimate the distribu-
tion of the coefficients of the predictors and their
confidence intervals. However, we cannot do so for
non-parametric models. Instead, we can use the bootstrap
technique, as described in the subsection on the validation
procedure, to empirically estimate the distribution of the
AR on many subsamples. In this study we randomly
select 30 subsamples and compute the corresponding ARs
30 times. The median AR provides a robust measure to
compare different ratios as predictors.

There are so many possible financial ratios that can be
used as explanatory variables in credit scoring models
that selection criteria are needed to obtain a parsimonious
model. There are two main methods for selecting the
appropriate ratios (Falkenstein et al. 2000). The first is
forward stepwise selection. Start with the predictor that
has the highest performance accuracy and then sequen-
tially add the next predictor that also has the highest
accuracy in the group and higher than the former until
additional predictors have no additional improvement.

Figure 3. Cumulative accuracy profile (CAP) curve.
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The second is backward elimination in which one starts
with all predictors, then reduces all of the poor variables.
In this study, forward selection is preferred for the SVM
method due to its relatively lower computational cost.
The logit model, with forward selection, together with the
investigation of the statistical significance and correct sign
of the individual parameters of the predictors, is likely to
choose different explanatory variables than the SVM.
To compute and compare each method more conveni-
ently, we will only report the results of the logit model
with the same predictors as the SVM-based model. The
discriminating power of each ratio is assessed using the
median of the AR performance measures.

5. Empirical results

This section discusses the empirical results for each stage
of the analysis of the German bankruptcy data using an
SVM model. The prediction horizon in each case is two
years, i.e. the data were recorded two years prior to
bankruptcy for the companies that would become bank-
rupt. The balance sheet and income statement data for
20,000 solvent and 1000 insolvent firms in Germany were
selected randomly by Creditreform. These data are
represented as the financial ratios listed in table 4. They
cover the period from 1996 to 2002. Each company may
appear several times in different years.

5.1. Selection of the first predictor and the sensitivity of
the SVM parameters

The first stage of analysing default risk is the selection of
the first best predictor related to bankruptcy among the
28 ratios using the median of the AR metric in which
the SVM model has one input. It is often argued that the
SVM lacks interpretability of the results as is the case for
the logit model. Most importantly, since there are no
distributional assumptions underlying the SVM model-
ing, it is impossible to test the significance of variables
within the SVM framework. Therefore, we will identify

the most significant variable in an additional procedure

before analysing the SVM model.
Based on table 4 we can see that Accounts Payable

Turnover (AP/SALE, x24) provides the highest median

AR of 49.17%. We can also see that CL/TL (x20), IDL/
TL (x27) and IDCASH/CASH (x28) have a very low

accuracy: their median AR values are below zero. For the

next step we will select Accounts Payable Turnover (x24)

as the first best single predictor related to German default

firms, which is somewhat different from previous studies

in which it was usually argued that the most significant
predictors were profitability or leverage ratios. In fact, the

SVM-based nonlinear model is able to search the

nonlinear dependence of the data automatically as

opposed to the logit model and it is Accounts Payable

Turnover selected by SVM as the first predictor that
greatly improves the classifying performance of SVM by

more than 10%. Using most of the other ratios as the first

predictor, the SVM-based model does not exceed the logit

model by much in modeling the default risk.
The accounts payable turnover ratio is calculated by

taking the average accounts payable and dividing it by the
total sales during the same period. Its reciprocal shows

investors how many times per period the firm pays its

average payable amount. If the turnover ratio increases

from one period to another, this is a sign that it takes the

firm longer to pay off its suppliers than before. The
opposite is true when the turnover ratio is falling, which

means that the firm is paying off suppliers at a faster rate.

Therefore, the firms with higher accounts payable turn-

over values will have less ability to convert their accounts

into sales, have lower revenues, and go bankrupt more

readily.
The SVM model has two control parameters, the

influence of which was investigated in this study: the

penalty parameter C and the Gaussian kernel coefficient

r. C controls the tolerance to misclassification errors on

the training set, while r represents the complexity of
classifying functions. The possibility of fine-tuning SVM

using these parameters, besides the flexibility of its

classification function, further contributed to the higher

performance of the SVM compared with the logit model,

Table 4. Median of the AR measure for a univariate SVM model. Accounts payable turnover (AP/SALE, x24) produces the
highest AR median.

No. Ratio AR median No. Ratio AR median

x1 NI/TA 28.428 x15 CASH/TA 22.140
x2 NI/SALE 22.985 x16 CASH/CL 25.821
x3 OI/TA 36.358 x17 QA/CL 28.746
x4 OI/SALE 31.413 x18 CA/CL 16.983
x5 EBIT/TA 29.941 x19 WC/TA 14.264
x6 EBITDA 29.155 x20 CL/TL �7.608
x7 EBIT/SALE 19.447 x21 SALE/TA 17.414
x8 OF/TA 32.941 x22 INV/SALE 24.764
x9 (OF-ITGA) / (TA-ITGA-CASH-LB) 31.938 x23 AR/SALE 17.468
x10 CL/TA 18.020 x24 AP/SALE 49.174

x11 (CL-CASH)/TA 23.319 x25 Log(TA) 23.816
x12 TL/TA 22.477 x26 IDINV/INV 15.493
x13 DEBT/TA 16.528 x27 IDL/TL �9.528
x14 EBIT/INTE 28.270 x28 IDCASH/CASH �6.562
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which has no similar adjustment parameters. Moreover, a

grater SVM performance is a consequence of the SVM
loss function, which is a tighter upper bound on the {0,1}
step loss function. For univariate models, as figure 4
illustrates, the gain in performance of the SVM over the

logit model is substantial and greater than for multi-
variate models since the former intrinsically has a larger
number of degrees of freedom than the latter, which is
limited by the number of variables.

The results in table 4 were obtained from the SVM with

parameters C¼ 10 and r¼ 0.6, which were chosen
according to the following sensitivity investigation of
the SVM parameters (see box plot in figure 4 and table 5).
That is to say, the values of parameters C and r could be

determined experimentally via the standard use of a
re-sampling training data set. Obviously, the SVM differs

in different values of the penalty parameter C and the

Gaussian kernel coefficient r. The ratio AP/SALE (x24) is
exemplified here and the result for the benchmark logit
model is also reported.

Here the median ARs are also estimated on 30
bootstrapped subsamples. On the whole, the discriminat-

ing ability of the SVM seems to be more sensitive to the
value of r rather than to that of C. In figure 4(top), with
fixed r¼ 0.6, the median of the AR starts from 47.4% for
C¼ 0.001 and reaches the highest value 49.2% for C¼ 10

and slightly decreases to 48.7% when C¼ 1000. The
varying range of AR is very small. Figure 4(bottom)
illustrates the AR of the SVM versus r with fixed C¼ 10.
Within the interval, r is found to have a strong impact on

the AR value, which starts at 34.4% when r¼ 0.002 and
drastically increases to the highest value 49.2%
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Figure 4. Sensitivity of the SVM to different parameters.

Table 5. Misclassification error (30 randomly selected samples; one predictor AP/SALE, x24).

Model

Parameter Type I error Type II error Total error

C r Mean Std Mean Std Mean Std

SVM 0.001 0.6 40.57 0.1167 23.43 0.9812 32.01 0.5723
0.1 0.6 38.42 0.5125 24.45 1.1938 31.44 0.7014
10 0.6 34.43 1.2126 27.86 1.637 31.15 0.9433
100 0.6 25.22 0.6176 34.66 1.3541 29.94 0.8086
1000 0.6 25.76 0.7705 34.26 1.3805 30.01 0.8712
10 0.002 37.2 2.4512 32.79 2.5753 34.99 1.7611
10 0.06 31.86 3.1527 29.25 2.2887 30.56 1.1405
10 0.6 34.43 1.2126 27.86 1.637 31.15 0.9433
10 60 37.27 0.5112 25.87 1.2134 31.57 0.7798
10 2000 41.09 0.0791 24.85 0.3265 32.97 0.1123

Logit 38.15 0.5625 32.77 1.1888 35.46 0.7151
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when r¼ 0.6 and then decreases to 37.7% when r¼ 2000.

In both parts of the figure the discriminating performance

of the logit model is inferior to that of the SVM-based

model with different parameter values.
As we have seen, C¼ 10 and r¼ 0.6 seem to be the best

choice of parameter combination for the study in this

paper. Thus, if we do not mention it particularly, the

results of the SVM in the remaining part of this paper are

all obtained using these parameter values. Note that this

is not the case for the other data sample. The appropriate

values of the C and r parameters will vary from sample to

sample, therefore the sensitivity investigation of the SVM

parameters should be carried out before classifying

different data samples.
Table 5 shows the percentage of misclassified

out-of-sample observations for the logit model and the

SVM-based model with different parameters using a

single predictor, the Account Payable Turnover. These

errors are also obtained by bootstrap, and are all

significant according to the standard deviations listed in

table 5. Smaller values indicate better model accuracy.

As shown in the table, the logit model has higher type I,

type II and total error rates than the SVM-based model

with only a few exceptions, suggesting that a

well-specified SVM-based nonlinear model is superior to

a logit model. For the SVM, with an increase of C from

0.001 to 1000, type II errors also increase, but type I

errors decrease, and the total errors first decrease and

then increase slightly. With increasing r values, type I and

total errors also follow a U-shaped trend and type II

errors have a monotonic negative relation with the r

value. Therefore, C¼ 10 and r¼ 0.6 also appear to be the

appropriate trade-off choice for our study in the following

part of this paper. They produce only 34.43% type I

errors, 27.86% type II errors and 31.15% total errors,

whereas logit analysis produces 38.15% type I errors,

32.77% type II errors and 35.46% total errors.
As is evident from figure 5, which shows a univariate

dependence of PD on AP/SALE, this dependence is not

monotonously increasing or following any distinctive

pattern, e.g. a logistic function. The SVM, being a more

flexible non-parametric approach, is better suited for

describing a broader class of dependence, such as this one,

than the logit model. Another advantage of the SVM is its

smaller bias in the estimation of the boundary between

the solvent and insolvent companies in a situation when

the number of the former is much larger than the number

of the latter, as is almost always the case. The score of the

logit model, which is interpreted as a PD, can be

significantly biased for score values much lower or

higher than 0.5. Subsequently, the threshold score for

the boundary between solvent and insolvent companies is

also biased. This is one reason for the substantial

improvement in accuracy of the SVM compared with

the logit model, as illustrated in figure 4. Because of this

feature the SVM gains an additional improvement over

the logit model if instead of subsamples with a 50/50 ratio

of insolvent versus solvent companies we use subsamples

where solvent companies prevail.

5.2. Comparison of models with two predictors and PD
visualization

Table 6 shows the identifying performance of bivariate
SVM-based models using the best predictor from the
univariate model (AP/SALE) and one other. The values
of the median of the AR direct us to the profitability ratio
OI/TA (x3), the value of which increases to the highest of
56.46%, which indicates that OI/TA (x3) is the best choice
for the second predictor.

Therefore, different from the usual result that NI/TA
dominates other profitability ratios related to default risk,
our study reveals that OI/TA performs better than the
others in identifying bankrupt German firms. As the
operating income does not include items such as invest-
ments in other firms, taxes, interest expenses and depre-
ciation, the ratio represents a firm’s true operating
performance.

For two dimensions (i.e. two predictors), graphs are
obviously an extremely useful tool for studying the data
and assessing the quality of different default risk models.
In addition, because of its nonlinearity it is more
necessary for the SVM-based model to use visual tools
than for the logit model to represent classification results.
We demonstrate an application of visualization techni-
ques for default analysis and parameter sensitivity inves-
tigation based on the SVM in figure 6. In the case of the
logit model, the scores can be directly explained as the
default probabilities, whereas for the SVM-based model
the probabilities of default need to be calculated using the
risk scores predicted by the estimated classifying function.
Making use of the monotonic logistic cumulative distri-
bution function, the default probabilities of German
companies by SVM are calculated from the scores and
then plotted as the background contour in figure 6
(corresponding to the right-hand bar in each sub-figure).
The two predictors are the ratios AP/SALE (x24) and OI/
TA (x3). These graphs are a subset of those used in
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Figure 5. Insolvency rate evaluated for the financial ratio AP/
SALE (x24) from the German Creditreform database. The
k-nearest-neighbors procedure was used with the size of the
window around 1/12 of 18,800 observations (the observations
with zero values of sales used as the denominator to calculate
the ratios were deleted from all 21,000 observations).
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the study. White and black points represent the 396
insolvent and 396 solvent firms from one random
subsample of the validation set. The outliers were
capped at the 5% and 95% quantiles as described in
section 3.2 and kept in the subsample. In most panels of
figure 6 they appear at the border. The classifying
decision function (optimal hyperplane) is represented by
the line denoted 0.5, along which the default probability is
0.5 and the risk scores are zero for SVM. The lines
denoted 0.3 and 0.7 (or, more accurately, 0.27 and 0.73)
are the lower and upper boundaries of the separation
margin corresponding to scores of �1 and þ1 in SVM. As
shown in figure 6, clearly most successful firms lying in
the blue area have positive profitability (OI/TA) and
relatively lower account payable turnover (AP/SALE),
while a majority of bankrupt firms is located in the
opposite area. As known, low profitability usually
indicates a high default risk, but extremely high profit-
ability may also indicate a high cash flow volatility that is
likely to translate into a higher default probability.
Although the SVM-based model is sufficiently flexible
to reveal a nonlinear dependence between profitability
and PD, different from the logit model, for the
Creditreform data in this study, the dependence could
be too weak to be captured by SVM. Also, the sensitivity
investigation results of the free parameters, C and r, of
SVM could easily be determined from the figure.

Figure 6(a) shows the classification results for the logit
model. Because the disadvantage of the logit model is the
linearity of its solution, we see a straight classification line
that is the linear combination of two predictors.
Figure 6(b) shows the discriminating results obtained
with the SVM-based model using a classifying function of
moderate complexity (r¼ 0.6) and C¼ 10. This nonlinear
classifying line (score 0 and PD 0.5) seems to identify the
two types of firms very well with the areas in which
solvent and insolvent firms are localized.

Fix r¼ 0.6. If the penalty is too low (C decreases to 0.01
and 0.1 as in figures 6(c) and (d)), the discriminating curve
becomes flatter than that in figure 6(b). The calculated
default probabilities are too small to display the two
boundaries. That is, most of the firms fall inside the
separation region but the insolvent and solvent firms are

still clustered in their own areas. If the penalty increases,
for example C¼ 500 as in figure 6(e), the identifying
ability of SVM cannot be increased further than shown in
figure 6(b).

Fix C¼ 10. If the complexity of the classifying functions
increases (the r value decreases to 0.06 as illustrated in
figure 6(f)), the SVM will try to capture each observation,
although the majority of the insolvent firms still lie inside
the band (0.5, 0.7) and above, with the solvent firms inside
(0.5, 03) and below. The complexity in this case is too high
for the given sample. If the r value increases to 60
(figure 6(g)), the classifying curve becomes flatter than
that with r¼ 0.6; if r increases further to 2000 (figure 6(h)),
the discriminating curve can be approximated as a linear
combination of two predictors and is similar to the
benchmark logit model, although the coefficients of the
predictors may be different. The calculated default
probabilities are also very small. The complexity here is
too low to obtain a more detailed picture.

Although two cases of high complexity clearly demon-
strate overfitting, (f) when C¼ 10 and r¼ 0.06, and
(e) when C¼ 500 and r¼ 0.6, in all other cases the
separating line is moderately nonlinear and for the case of
a virtually linear SVM (h) with C¼ 10 and r¼ 2000 the
separating line resembles that for the logit regression (a),
with a different slope. Perfect separation for
out-of-sample observations is not possible in any case.
Nevertheless, comparing panel (a) for the logit with panel
(f) for the SVM that achieved the maximum separation
power, we observe that the most important difference
between the two is in the area where the density of
observations is the highest and even a small change in
shape can lead to a substantial change in the classification
ability.

The sensitivity analysis information obtained from this
graphical analysis is similar to Härdle et al. (2005) and
also confirms the choice combination of parameters as
described in the sensitivity investigation of section 5.1.
A set of alternative random subsamples as extracted from
the validation set also display similar findings using the
same visualization technique.

While the analysis here has been restricted to only two
classes, namely bankruptcy and solvency, it can easily be

Table 6. Median of AR measure for a bivariate SVM model. AP/SALE (x24) and OI/TA (x3) produce the highest AR median.

No. Ratio AR median No. Ratio AR median

x1 NI/TA 54.362 x15 CASH/TA 53.011
x2 NI/SALE 53.809 x16 CASH/CL 52.233
x3 OI/TA 56.460 x17 QA/CL 50.553
x4 OI/SALE 55.652 x18 CA/CL 44.678
x5 EBIT/TA 54.409 x19 WC/TA 48.676
x6 EBITDA 53.847 x20 CL/TL 49.725
x7 EBIT/SALE 52.948 x21 SALE/TA 49.624
x8 OF/TA 51.907 x22 INV/SALE 51.305
x9 (OF-ITGA) / (TA-ITGA-CASH-LB) 51.316 x23 AR/SALE 49.604
x10 CL/TA 48.197 x24 AP/SALE
x11 (CL-CASH)/TA 49.680 x25 Log(TA) 51.545
x12 TL/TA 51.080 x26 IDINV/INV 49.904
x13 DEBT/TA 52.231 x27 IDL/TL 49.013
x14 EBIT/INTE 46.517 x28 IDCASH/CASH 46.617
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(c) SVM (C=0.01, r=0.6) 
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(d) SVM (C=0.1, r=0.6) 
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(a) Logit (benchmark) 

0.5

0.5

0.5

0.05 0.1 0.15 0.2

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Accounts payable/total sales

O
pe

ra
tin

g 
in

co
m

e/
to

ta
l a

ss
et

s

(e) SVM (C=500, r=0.6) 
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(f) SVM (C=10, r=0.06) 
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(g) SVM (C=10, r=60) 
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(h) SVM (C=10, r=2000) 
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Figure 6. Default probabilities predicted for one random subsample and sensitivity analysis for the SVM.
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generalized to multiple classes. In a multiple class case,
financial analysts usually pre-specify rating classes (i.e.
AAA, A, BB, C, etc.). A certain range of scores and
default probabilities is associated with each rating class.
The ranges are computed on the basis of historical data.
According to the similarity of the scores, a new firm is
assigned to one particular class. Therefore, we can draw
more than one classifying function in the figure above to
separate different rating classes.

5.3. Powerful predictors related to insolvent German
firms

The selection procedure will be repeated for each new
ratio added. The values of the AR increase until the
model includes eight ratios, then they slowly decline. The
medians of the AR for the models with eight ratios are
shown in table 7. Most of the models tested here had AR
values in the range 43.50–60.51% for out-of-sample and
out-of-time tests. The results reported here are the
product of the bootstrap approach described in the
previous section. Obviously, the SVM-based model
including ratios AP/SALE (x24), OI/TA (x3), CASH/
TA (x15), TL/TA (x12), IDINV/INV (x26), INV/SALE
(x22), EBIT/TA (x5) and NI/SALE (x2) attains the
highest median AR, 60.51%. For comparison, we also
report the median AR for the benchmark logit model with
the same ratios. We can see that, for models containing
the former seven ratios and one of the remaining, the
medians of the AR are always higher for the SVM. This
clearly reveals that the SVM-based model is always
consistently superior to the benchmark logit model in
identifying bankrupt firms and confirms the theoretical
advantage of SVM for classification in the linear
non-separable case. With respect to the percentage of
correctly classified out-of-sample observations, a similar
result is achieved (71.85% for the SVM-based model vs.
67.24% for the logit model).

It is noteworthy that, because the insolvency data was
collected two years prior to insolvency, the predicted risk

scores and calculated performance metrics in this study

measure the model’s ability to identify the firms that are

going to default within the next two years. For example,

the predicted default probability for 2002 denotes the

probability that a firm defaults in 2003 or 2004.
We could not significantly improve upon our results by

adding more ratios, and no model with fewer ratios

performed as well. The eight selected predictors related to

bankrupt German firms are AP/SALE (account payable

turnover, x24), OI/TA (x3), CASH/TA (x15), TL/TA

(x12), IDINV/INV (percentage of changing inventories,

x26), INV/SALE (inventory turnover, x22), EBIT/TA

(x5) and NI/SALE (net profit margin, x2). The size of the

company was controlled in the analysis by the logarithm

of the total assets (log(TA), x25). This can serve as a

proxy for the cost of capital. In contrast to other studies,

firm size has been shown to have no important effects on

the probability of bankruptcy, which could be the result

of pre-selecting only medium-sized companies.
Among the powerful predictors in identifying bankrupt

German firms, there are two activity ratios (Account

Payable Turnover and Inventory Turnover), three prof-

itability ratios (OI/TA, EBIT/TA and Net Profit Margin),

one liquidity ratio (CASH/TA), one leverage ratio (TL/

TA) and one percentage of change ratio (Percentage of

Incremental Inventories). It seems that activity ratios play

the most important role in predicting the default

probabilities of German firms. The activity ratio measures

a firm’s ability to convert different positions of their

balance sheets into cash or sales. German firms will

typically try to turn their accounts payable and inven-

tories into sales as fast as possible because these will

actually lead to higher revenues. Instead of ROA, EBIT/

TA has a more powerful impact on insolvent German

firms. In essence, it measures the operating performance

and true productivity of firm assets on whose earning

power the existence of the firm is based. Of course, the

earnings of a firm only cannot tell the entire story. High

earnings are good, but an increase in earnings does not

mean that the net profit margin of a firm is improving.

Table 7. Median of AR measure for the best SVM model with eight important financial ratios calculated on 50/50 subsamples.

AR median AR median

No. Ratio Logit SVM Predictors No. Ratio Logit SVM Predictors

x1 NI/TA 35.12 59.93 x15 CASH/TA 3

x2 NI/SALE 35.15 60.51 8 x16 CASH/CL 34.87 59.42
x3 OI/TA 2 x17 QA/CL 34.66 55.62
x4 OI/SALE 35.06 60.44 x18 CA/CL 34.41 54.93
x5 EBIT/TA 7 x19 WC/TA 34.72 59.48
x6 EBITDA 34.93 59.85 x20 CL/TL 33.91 57.45
x7 EBIT/SALE 35.14 60.4 x21 SALE/TA 35.05 56.61
x8 OF/TA 35.04 59.64 x22 INV/SALE 6
x9 (OF-ITGA)/(TA-ITGA-CASH-LB) 34.94 59.42 x23 AR/SALE 35.15 59.81
x10 CL/TA 33.94 58.19 x24 AP/SALE 1

x11 (CL-CASH)/TA 34.01 57.76 x25 Log(TA) 36.14 55.77
x12 TL/TA 4 x26 IDINV/INV 5

x13 DEBT/TA 34.97 59.07 x27 IDL/TL 35.22 58.88
x14 EBIT/INTE 35.03 54.37 x28 IDCASH/CASH 35.06 55.08
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For instance, if a firm has costs that have increased at a
greater rate than sales, it leads to a lower profit margin.
This is an indication that costs need to be under better
control. Therefore, net profit margin is also very useful
when analysing German bankruptcy data. In our study
the liquidity ratio CASH/TA is only inferior to activity
and profitability ratios when explaining German bank-
ruptcies. Its strong explanatory power may result because
the sample used in this study is mainly composed of
private firms and this might not be true for public firms
used in previous studies. The leverage ratio TL/TA also
has a powerful influence on the identification of German
bankruptcies. This metric is used to measure a firm’s
financial risk by determining how much of its assets have
been financed by debt. This is a very broad ratio as it
includes short- and long-term liabilities (debt) as well as
all types of both tangible and intangible assets. The higher
a firm’s degree of leverage, the more the firm is considered
risky. A firm with high leverage is more vulnerable to
downturns in the business cycle because the firm must
continue to service its debt regardless of how bad sales
are. The incremental inventories provided by the
Creditreform database also contain useful information
for studying insolvent German firms.

To summarize our results, a German firm is most likely
to go bankrupt when it has high turnover, low profits, low
cash flows, is highly leveraged and has a high percentage
of changing inventories. Although these results are similar
to those of previous studies, the discovery of significant
effects of the activity ratio and incremental inventories for
predicting defaults in Germany is new.

6. Conclusions

We use a discrimination technique, the Support Vector
Machine for classification, to analyse the German bank-
rupt company database spanning from 1996 through
2002. The identifying ability of an SVM-based nonlinear
and non-parametric model is compared with that of the
benchmark logit model with regard to two performance
metrics (AR and misclassification error) on the basis of
bootstrapped subsamples. The evidence from empirical
results consistently shows that a credit risk model based
on SVM significantly outperforms the benchmark linear
parametric model in modeling the default risk of German
firms out of sample and out of time. The sensitivity of the
SVM to the penalty parameter C and Gaussian kernel
coefficient r is examined according to the median of the
AR using box plots (see figure 4), classification errors (see
table 5) and two-dimensional visualization tools
(figure 6). It is found that the discriminating ability of
the SVM seems to be more sensitive to the values of r
than C. Thus, appropriate trade-off values of parameters
C and r should be chosen for bankruptcy analysis; for
example, C¼ 10 and r¼ 0.6 in this study for the formal
empirical analysis.

In addition to the unique minimum, no prior assump-
tions and it not being necessary to adjust the collinearity
between the ratios, in particular the principle of structural

risk minimization, endows the SVM approach with the
most excellent classifying ability among all alternatives.
Also, the SVM-based model is good at searching the
linear non-separable hypersurface, which the logit model
cannot do. As shown in table 4, the ratio Account Payable
Turnover was selected by SVM among 28 candidates as
the first best predictor to model the risk, which drastically
upgrades the classifying accuracy, AR, of SVM by more
than 10% as opposed to most of the other ratios selected.
Otherwise, the performance gap between the SVM-based
and logit model would not be so great, as shown in
table 7. If the data are nonlinear, e.g. the Creditreform
database, no linear model is able to separate the
populations optimally, regardless of the DA, and the
logit and probit models. The SVM method (as well as
other pattern-recognition techniques) provides a more
consistent way of finding the nonlinearities in the data, as
opposed to performing an ad-hoc search of all possible
combinations of the logit model. The holdout validation
method, the most appropriate for modeling the real risk
in practice, and the bootstrap re-sampling technique,
guarantee the robustness and stability of the SVM
approach. Due to the application of a kernel function
and the sparseness of the algorithm, the achievement of
such an improvement by SVM is not at a cost of much
computational time, just a few seconds. Therefore, the
empirical evidence confirms the theoretical advantage of
SVM for classification and justifies it as applicable in
practice. Of course, the non-parametric nature behind the
SVM will come at the expense of understanding and
insight; that is, the impact (the magnitude and direction
and its significance) of the predictors on the default
probabilities cannot be interpreted explicitly, in contrast
to the parametric logit model. What the SVM is good at is
capturing the nonlinearities better and forecasting the
default probabilities more accurately than the benchmark.

As described in section 5.3, there are eight accounting
ratios that are powerful predictors related to the bank-
ruptcy of German companies. It turns out that activity
ratios such as Account Payable and Inventory Turnover
play the most important role in predicting the default
probabilities. The percentage of incremental inventories
provided by the Creditreform database also contains
useful information for German bankruptcy analysis.
These findings are new and somewhat different from the
other default risk studies. The ability to automatically
find the nonlinear dependence of the SVM model and the
application of a widely accepted forward stepwise selec-
tion procedure in our case provides adequate selection
that cannot be done by the usual linear classifying
techniques such as the DA, logit model. That is to say,
for German companies, Account Payable and Inventory
Turnover, the percentage of incremental inventories
selected have a strong nonlinear dependence on PDs,
but a weak linear dependence that may lead to their
unpopularity. Consistent with previous research, the
profitability ratios, e.g. OI/TA, EBIT/TA and NI/SALE
(net profit margin), are also powerful predictors related to
German insolvency. Other results are similar to published
research, e.g. that liquidity and leverage ratios also have
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important effects on the probability of default for
German companies. But, in contrast to the others, firm
size (log(TA), x25) was not chosen by the forward
selection procedure as a predictor, which could be the
result of pre-selecting only medium-sized companies.
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W.K. Härdle was also partially supported by the National
Center for Theoretical Sciences (South), Taiwan. R.A.
Moro was supported by the German Academic Exchange
Service (DAAD).

References

Aghion, P. and Bolton, P., An ‘incomplete contracts’ approach
to financial contracting. Rev. Econ. Stud., 1992, 59(3),
473–494.

Altman, E.I., Financial ratios, discriminant analysis and the
prediction of corporate bankruptcy. J. Finance, 1968, 23(4),
589–609.

Altman, E.I., Haldeman, R. and Narayanan, P., Zeta analysis: a
new model to identify bankruptcy risk of corporations.
J. Bank. Finance, 1977, 1(1), 29–54.

Back, B., Laitinen, T. and Sere, K., Neural networks and
bankruptcy prediction, in 17th Annual Congress of the
European Accounting Association, Venice, Italy, 1994.
Abstract in Collected Abstracts of the 17th Annual Congress
of the European Accounting Association 116.

Back, B., Laitinen, T., Sere, K. and Wezel, M., Choosing
bankruptcy predictors using discriminant analysis, logit
analysis, and genetic algorithms. Technical Report 40,
TUCS Research Group, 1996.

Basle Committee on Banking Supervision, Studies on the
validation of internal rating systems. AIG/RTF BIS
Working Paper No. 14, 2005.

Beaver, W., Financial ratios as predictors of failures. Empirical
research in accounting: Selected studies. J. Account. Res.,
1966, 5(suppl.), 71–111.

Bertsekas, D.P., Nonlinear Programming, 1995 (Athenas
Science: Belmont, MA).

Burnham, K.P. and Anderson, D.R., Model Selection and
Inference, 1998 (Springer: New York).

Caouette, J.B., Altman, E.I. and Narayanan, P., Managing
Credit Risk: The Next Great Financial Challenge, 1998 (Wiley:
New York).

Chakrabarti, B. and Varadachari, R., Quantitative methods for
default probability estimation – a first step towards Basel II.
i-flex solutions, 2004.

Collins, R. and Green, R., Statistical methods for bankruptcy
prediction. J. Econ. Business, 1982, 34(4), 349–354.

Courant, R. and Hilbert, D., Methods of Mathematical Physics,
Vol. I and II, 1970 (Wiley Interscience: New York).

DeLong, E.R., DeLong, D.M. and Clarke-Pearson, D.L.,
Comparing the areas under two or more correlated receiver
operating characteristic curves: a non-parametric approach.
Biometrics, 1988, 44(3), 837–845.

Deng, N.Y. and Tian, Y.J., New Methods in Data Mining:
Support Vector Machine, 2004 (Science Press: Beijing).

Efron, B. and Tibshirani, R.J., An Introduction to the Bootstrap,
1993 (Chapman & Hall: New York).

Engelmann, B., Hayden, E. and Tasche, D., Testing rating
accuracy. Risk, 2003, January, 82–86.

Falkenstein, E., Boral, A. and Carty, L., Riskcalc for private
companies: Moody’s default model, Report Number: 56402,
Moody’s Investors Service, Inc., New York, 2000.

Fitzpatrick, P., A Comparison of the Ratios of Successful
Industrial Enterprises With Those of Failed Companies, 1932
(The Accountants Publishing Company: Washington, DC).

Fletcher, R., Practical Methods of Optimization, 2nd ed., 1987
(Wiley: New York).

Friedman, C. and Sandow, S., Model performance measures for
expected utility maximizing investors. Int. J. Theor. Appl.
Finance, 2003a, 6(4), 355–401.

Friedman, C. and Sandow, S., Learning probabilistic models: an
expected utility maximization approach. J. Mach. Learn. Res.,
2003b, 4, 257–291.

Friedman, C. and Huang, J., Default probability modeling: a
maximum expected utility approach. Standard & Poor’s Risk
Solutions Group, New York, 2003.

Gaeta, G., editor, The Certainty of Credit Risk: Its
Measurement and Management, 2003 (Wiley Finance
(Asia): Singapore).

Gestel, T.V., Baesens, B., Dijcke, P.V., Suykens, J., Garcia, J.
and Alderweireld, T., Linear and nonlinear credit scoring by
combining logistic regression and support vector machines.
J. Credit Risk, 2005, 1(4), 31–60.

Giesecke, K., Credit risk modeling and valuation: An introduc-
tion. In Credit Risk: Modeling and Management, 2nd ed.,
edited by D. Shimko, pp. 487–526, 2004 (Risk Books:
London).

Hanley, A. and McNeil, B., The meaning and use of the area
under a receiver operating characteristics (ROC) curve.
Diagn. Radiol., 1982, 143(1), 29–36.
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Abstract Expectile regression, as a general M smoother, is used to capture the tail
behaviour of a distribution. Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. rvs. Denote by v(x)

the unknown τ -expectile regression curve of Y conditional on X, and by vn(x) its
kernel smoothing estimator. In this paper, we prove the strong uniform consistency
rate of vn(x) under general conditions. Moreover, using strong approximations of
the empirical process and extreme value theory, we consider the asymptotic maximal
deviation sup0≤x≤1 |vn(x) − v(x)|. According to the asymptotic theory, we construct
simultaneous confidence bands around the estimated expectile function. Furthermore,
we apply this confidence band to temperature analysis. Taking Berlin and Taipei as
an example, we investigate the temperature risk drivers to these two cities.

Keywords Expectile regression · Consistency rate · Simultaneous confidence
bands · Asymmetric least squares · Kernel smoothing

1 Introduction

In regression function estimation, most investigations are concerned with the condi-
tional mean. Geometrically, the observations {(Xi, Yi), i = 1, . . . , n} form a cloud
of points in a Euclidean space. The mean regression function focuses on the center
of the point-cloud, given the covariate X, see Efron (1991). However, more insights
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about the relation between Y and X can be gained by considering the tails of the
conditional distribution.

Asymmetric least squares estimation provides a convenient and relatively efficient
method of summarizing the conditional distribution of a dependent variable given
the regressors. It turns out that similar to conditional percentiles, the conditional ex-
pectiles also characterize the distribution. Breckling and Chambers (1988) proposed
M-quantiles, which extend this idea by a “quantile-like” generalization of regres-
sion based on asymmetric loss functions. Expectile regression, and more general M-
quantile regression, can be used to characterize the relationship between a response
variable and explanatory variables when the behaviour of “non-average” individuals
is of interest. Jones (1994) described that expectiles and M-quantiles are related to
means and quantiles are related to the median, and moreover expectiles are indeed
quantiles of a transformed distribution. However, Koenker (2005) pointed out that
expectiles have a more global dependence on the form of the distribution.

The expectile curves can be key aspects of inference in various economic problems
and are of great interest in practice. Kuan et al. (2009) considered the conditional au-
toregressive expectile (CARE) model to calculate the VaR. Expectiles are also applied
to calculate the expected shortfall in Taylor (2008). Moreover, Schnabel and Eilers
(2009a) analyzed the relationship between gross domestic product per capita (GDP)
and average life expectancy using expectile curves. Several well-developed methods
already existed to estimate expectile curves. Schnabel and Eilers (2009b) combined
asymmetric least square and P -splines to calculate a smooth expectile curve. In this
paper, we apply the kernel smoothing techniques for the expectile curve, and con-
struct the simultaneous confidence bands for the expectile curve, which describes a
picture about the global variability of the estimator.

Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. rvs. We denote the joint probability density
function (pdf) of the rvs is f (x, y), F(x, y) is the joint cumulative distribution func-
tion (cdf), conditional pdf is f (y|x), f (x|y) and conditional cdf F(y|x), F(x|y).
Further, x ∈ J with J a possibly infinite interval in Rd and y ∈ R. In general, X may
be a multivariate covariate.

From an optimization point of view, both quantile and expectile can be expressed
as minimum contrast parameter estimators. Define ρτ (u) = |I(u ≤ 0) − τ ||u| for 0 <

τ < 1, then the τ th quantile is expressed as arg minθ Eρτ (y − θ), where

Eρτ (y − θ) = (1 − τ)

∫ θ

−∞
|y − θ |dF(y|x) + τ

∫ ∞

θ

|y − θ |dF(y|x)

where θ is the estimator of the τ expectile, and define θ ∈ I , where the compact
set I ⊂ R. With the interpretation of the contrast function ρτ (u) as the negative log
likelihood of asymmetric Laplace distribution, we can see the τ th quantile as a quasi
maximum estimator in the location model. Changing the loss (contrast) function to

ρτ (u) = ∣∣I(u ≤ 0) − τ
∣∣u2, τ ∈ (0,1) (1)

leads to expectile. Note that for τ = 1
2 , we obtain the mean respective to the sample

average. Putting this into a regression framework, we define the conditional expectile
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function (to level τ ) as

v(x) = arg min
θ

E
{
ρτ (y − θ)|X = x

}
(2)

Inserting (1) into (2), we obtain the expected loss function:

E
{
ρτ (y − θ)|X = x

} = (1 − τ)

∫ θ

−∞
(y − θ)2 dF(y|x) + τ

∫ ∞

θ

(y − θ)2 dF(y|x)

(3)
From now on, we silently assume τ is fixed therefore we suppress the explicit

notion. Recall that the conditional quantile l(x) at level τ can be considered as

l(x) = inf
{
y ∈ R|F(y|x) ≥ τ

}
Therefore, the proposed estimate ln(x) can be expressed:

ln(x) = inf
{
y ∈ R|F̂ (y|x) ≥ τ

}
where F̂ (y|x) is the kernel estimator of F(y|x):

F̂ (y|x) =
∑n

i=1 Kh(x − Xi)I(Yi ≤ y)∑n
i=1 Kh(x − Xi)

In the same spirit, define GY |x(θ) as

GY |x(θ) =
∫ θ

−∞ |y − θ |dF(y|x)∫ ∞
−∞|y − θ |dF(y|x)

Replacing θ by v(x), we get

GY |x(v) =
∫ v(x)

−∞ |y − v(x)|dF(y|x)∫ ∞
−∞ |y − v(x)|dF(y|x)

= τ

so v(x) can be equivalently seen as solving: GY |x(θ) − τ = 0 (w.r.t. θ ). Therefore,

v(x) = G−1
Y |x(τ )

with the τ th expectile curve kernel smoothing estimator:

vn(x) = Ĝ−1
Y |x(τ )

where the nonparametric estimate of GY |x(v) is

ĜY |x(θ) =
∑n

i=1 Kh(x − Xi) I(Yi < y)|y − θ |∑n
i=1 Kh(x − Xi)|y − θ |

Quantiles and expectiles both characterize a distribution function although they are
different in nature. As an illustration, Fig. 1 plots curves of quantiles and expectiles
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Fig. 1 (Color online) Quantile
curve (blue) and expectile curve
(green) for standard normal
distribution

of the standard normal N(0,1). Obviously, there is a one-to-one mapping between
quantile and expectile, see Yao and Tong (1996). For fixed x, define w(τ) such that
vw(τ)(x) = l(x), then w(τ) is related to the τ th quantile curve l(x) via

w(τ) = τ l(x) − ∫ l(x)

−∞ y dF(y|x)

2 E(Y |x) − 2
∫ l(x)

−∞ y dF(y|x) − (1 − 2τ)l(x)
(4)

l(x) is an increasing function of τ , therefore, w(τ) is also a monotonically increasing
function. Expectiles correspond to quantiles with this transformation w. However, it
is not straightforward to apply (4), since it depends on the conditional distribution of
the regressors. For very simple distributions, it is not hard to calculate the transfor-
mation w(τ), for example, Y ∼ U(−1,1), then w(τ) = τ 2/(2τ 2 −2τ +1). However,
if the distribution is more complicated, even worse, the conditional distribution is un-
known, it is hard to apply this transformation, see Jones (1994). Therefore, it is not
feasible to calculate expectiles from the corresponding quantiles.

In the current paper, we apply the methodology to weather studies. Weather risk
is an uncertainty caused by weather volatility. Energy companies take positions in
weather risk if it is a source of financial uncertainty. However, weather is also a
local phenomenon, since the location, the atmosphere, human activities and some
other factors influence the temperature. We investigate whether such local factors
exist. Taking two cities, Berlin and Taipei, as an example, we check whether the
performance of high expectiles and low expectiles of temperature varies over time. To
this end, we calculate the expectiles of trend and seasonality corrected temperature.

The structure of this paper is as follows. In Sect. 2, the stochastic fluctuation
of the process {vn(x) − v(x)} is studied and the simultaneous confidence bands
are presented through the equivalence of several stochastic processes. We calcu-
late the asymptotic distribution of vn(x), and the strong uniform consistency rate
of {vn(x) − v(x)} is discussed in this section. In Sect. 3, a Monte Carlo study is to
investigate the behaviour of vn(x) when the data are generated with the error terms
standard normally distributed. Section 4 considers an application in the temperature
of Berlin and Taipei. All proofs are attached in Appendix.
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2 Results

In light of the concepts of M-estimation as in Huber (1981), if we define ψ(u) as

ψ(u) = ∂ρ(u)

∂u

= ∣∣I(u ≤ 0) − τ
∣∣u

= {
τ − I(u ≤ 0)

}|u|
vn(x) and v(x) can be treated as a zero (w.r.t. θ ) of the function:

Hn(θ, x)
def= n−1

n∑
i=1

Kh(x − Xi)ψ(Yi − θ) (5)

H(θ, x)
def=

∫
R

f (x, y)ψ(y − θ) dy (6)

respectively.
Härdle (1989) has constructed the uniform confidence bands for general M-

smoothers. Härdle and Song (2009) studied the uniform confidence bands for quantile
curves. In our paper, we investigate expectile curves, one kind of M-smoother. The
loss function for quantile regression is not differentiable, however it is differentiable
for expectile when it is in the asymmetric quadratic form. Therefore, by employing
similar methods as those developed in Härdle (1989), it is shown in this paper that

P
[
(2δ logn)1/2

{
sup
x∈J

r(x)
∣∣vn(x) − v(x)

∣∣/λ(K)1/2 − dn

}
< z

]
−→ exp

{−2 exp(−z)
}
, as n → ∞ (7)

with some adjustment of vn(x), we can see that the supreme of vn(x) − v(x) follows
the asymptotic Gumbel distribution, where r(x), δ, λ(K), dn are suitable scaling pa-
rameters. The asymptotic result (7) therefore allows the construction of simultaneous
confidence bands for v(x) based on specifications of the stochastic fluctuation of
vn(x). The strong approximation with Brownian bridge techniques is applied in this
paper to prove the asymptotic distribution of vn(x).

To construct the confidence bands, we make the following necessary assumptions
about the distribution of (X,Y ) and the score function ψ(u) in addition to the exis-
tence of an initial estimator whose error is a.s. uniformly bounded.

(A1) The kernel K(·) is positive, symmetric, has compact support [−A,A] and is
Lipschitz continuously differentiable with bounded derivatives.

(A2) (nh)−1/2(logn)3/2 → 0, (n logn)1/2h5/2 → 0, (nh3)−1(logn)2 ≤ M , M is a
constant.

(A3) h−3(logn)
∫
|y|>an

fY (y) dy = O(1), fY (y) the marginal density of Y , {an}∞n=1
a sequence of constants tending to infinity as n → ∞.

(A4) infx∈J |p(x)| ≥ p0 > 0, where p(x) = ∂ E{ψ(Y − θ)|x}/∂θ |θ=v(x) · fX(x),
where fX(x) is the marginal density of X.
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(A5) The expectile function v(x) is Lipschitz twice continuously differentiable, for
all x ∈ J .

(A6) 0 < m1 ≤ fX(x) ≤ M1 < ∞, x ∈ J , and the conditional density f (·|y), y ∈ R,
is uniform locally Lipschitz continuous of order α̃ (ulL-α̃) on J , uniformly in
y ∈ R, with 0 < α̃ ≤ 1, and ψ(x) is piecewise twice continuously differen-
tiable.

Define also

σ 2(x) = E
[
ψ2{Y − v(x)

}|x]
Hn(x) = (nh)−1

n∑
i=1

K
{
(x − Xi)/h

}
ψ

{
Yi − v(x)

}
Dn(x) = (nh)−1 ∂

∑n
i=1 K{(x − Xi)/h}ψ{Yi − θ}

∂θ

∣∣∣∣
θ=v(x)

and assume that σ 2(x) and fX(x) are differentiable.
Assumption (A1) on the compact support of the kernel could possibly be relaxed

by introducing a cutoff technique as in Csörgö and Hall (1982) for density estima-
tors. Assumption (A2) has purely technical reasons: to keep the bias at a lower rate
than the variance and to ensure the vanishing of some non-linear remainder terms.
Assumption (A3) appears in a somewhat modified form also in Johnston (1982). As-
sumption (A4) guarantees that the first derivative of the loss function, i.e. ψ(u) is
differentiable. Assumptions (A5) and (A6) are common assumptions in robust esti-
mation as in Huber (1981), Härdle et al. (1988) that are satisfied by exponential, and
generalized hyperbolic distributions.

Zhang (1994) has proved the asymptotic normality of the nonparametric expectile.
Under the Assumptions (A1) to (A4), we have

√
nh

{
vn(x) − v(x)

} L→ N
{
0,V (x)

}
(8)

with

V (x) = λ(K)fX(x)σ 2(x)/p(x)2

where we can denote

λ(K) =
∫ A

−A

K2(u) du

σ 2(x) = E
[
ψ2{Y − v(x)

}|x]
=

∫
ψ2{y − v(x)

}
dF(y|x)

= τ 2
∫ ∞

v(x)

{
y − v(x)

}2
dF(y|x) + (1 − τ)2

∫ v(x)

−∞
{
y − v(x)

}2
dF(y|x) (9)
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p(x) = E
[
ψ ′{Y − v(x)

}|x] · fX(x)

=
{
τ

∫ ∞

v(x)

dF (y|x) + (1 − τ)

∫ v(x)

−∞
dF(y|x)

}
· fX(x) (10)

For the uniform strong consistency rate of vn(x) − v(x), we apply the result of
Härdle et al. (1988) by taking β(y) = ψ(y − θ), y ∈ R, for θ ∈ I , q1 = q2 = −1,
γ1(y) = max{0,−ψ(y − θ)}, γ2(y) = min{0,−ψ(y − θ)} and λ = ∞ to satisfy the
representations for the parameters there. We have the following lemma under some
specified assumptions:

Lemma 1 Let Hn(θ, x) and H(θ, x) be given by (5) and (6). Under Assumption
(A6) and (nh/ logn)1/2 → ∞ through Assumption (A2), for some constant A∗ not
depending on n, we have a.s. as n → ∞

sup
θ∈I

sup
x∈J

∣∣Hn(θ, x) − H(θ, x)
∣∣ ≤ A∗ max

{
(nh/ logn)−1/2, hα̃

}
(11)

For our result on vn(·), we shall also require

inf
x∈J

∣∣∣∣∫ ψ
{
y − v(x) + ε

}
dF(y|x)

∣∣∣∣ ≥ q̃|ε|, for |ε| ≤ δ1 (12)

where δ1 and q̃ are some positive constants, see also Härdle and Luckhaus (1984).
This assumption is satisfied if there exists a constant q̃ such that f {v(x)|x} > q̃/p,
x ∈ J .

Theorem 1 Under the conditions of Lemma 1 and also assuming (12) holds, we have
a.s. as n → ∞

sup
x∈J

∣∣vn(x) − v(x)
∣∣ ≤ B∗ max

{
(nh/ logn)−1/2, hα̃

}
(13)

with B∗ = A∗/m1q̃ not depending on n and m1 a lower bound of fX(x). If addition-
ally α̃ ≥ {log(

√
logn) − log(

√
nh)}/logh, it can be further simplified to

sup
x∈J

∣∣vn(x) − v(x)
∣∣ ≤ B∗{(nh/ logn)−1/2}

Theorem 2 Let h = n−δ , 1
5 < δ < 1

3 with λ(K) as defined before, and

dn = (2δ logn)1/2 + (2δ logn)−1/2
[

log
{
c1(K)/π1/2} + 1

2
(log δ + log logn)

]
if c1(K) = {

K2(A) + K2(−A)
}
/
{
2λ(K)

}
> 0

dn = (2δ logn)1/2 + (2δ logn)−1/2 log
{
c2(K)/2π

}
otherwise with c2(K) =

∫ A

−A

{
K ′(u)

}2
du/

{
2λ(K)

}
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Then (7) holds with

r(x) = (nh)−
1
2 p(x)

{
fX(x)

σ 2(x)

} 1
2

This theorem can be used to construct uniform confidence intervals for the regres-
sion function as stated in the following corollary.

Corollary 1 Under the assumptions of the theorem above, an approximate (1−α)×
100% confidence band over [0,1] is

vn(x) ± (nh)−1/2{σ̂ 2(x)λ(K)/f̂X(x)
}1/2

p̂−1(x)
{
dn + c(α)(2δ logn)−1/2}

where c(α) = log 2 − log | log(1 − α)| and f̂X(x), σ̂ 2(x) and p̂(x) are consistent
estimates for fX(x), σ 2(x) and p(x).

With
√

V (x) introduced, we can further write Corollary 1 as

vn(x) ± (nh)−1/2{dn + c(α)(2δ logn)−1/2}√V̂ (x)

where V̂ (x) is the nonparametric estimator of V (x). Bandwidth selection is quite
crucial in kernel smoothing. In this paper, we use the optimal bandwidth discussed in
Zhang (1994), which has the following form

h
opt
n =

(
σ 2(x)λ(K)

n[Λ{v(x)|x}]2[∫ {y − v(x)}2K2{y − v(x)}dF(y|x)]2

)1/5

(14)

where

Λ(θ |x) = ∂2ψ(θ |x − u)

∂u2
|u=0

The proof is essentially based on a linearization argument after a Taylor series
expansion. The leading linear term will then be approximated in a similar way as in
Johnston (1982), Bickel and Rosenblatt (1973). The main idea behind the proof is
a strong approximation of the empirical process of {(Xi, Yi)

n
i=1} by a sequence of

Brownian bridges as proved by Tusnady (1977).
As vn(x) is the zero (w.r.t. θ ) of Hn(θ, x), it follows by applying second-order

Taylor expansions to Hn(θ, x) around v(x) that

vn(x) − v(x) = {
Hn(x) − EHn(x)

}/
p(x) + Rn(x) (15)

where {Hn(x) − EHn(x)}/p(x) is the leading linear term and the remainder term is
written as

Rn(x) = Hn(x)
{
p(x) − Dn(x)

}/{
Dn(x) · p(x)

} + EHn(x)/p(x)

+ 1

2

{
vn(x) − v(x)

}2 · {Dn(x)
}−1 (16)
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· (nh)−1
n∑

i=1

K
{
(x − Xi)/h

}
ψ ′′{Yi − v(x) + rn(x)

}
, (17)

∣∣rn(x)
∣∣ <

∣∣vn(x) − v(x)
∣∣.

We show in Appendix that (Lemma 4) that ‖Rn‖ = supx∈J |Rn(x)| =
Op{(nh logn)−1/2}.

Furthermore, the rescaled linear part

Yn(x) = (nh)1/2{σ 2(x)fX(x)
}−1/2{

Hn(x) − EHn(x)
}

is approximated by a sequence of Gaussian processes, leading finally to the Gaussian
process

Y5,n(x) = h−1/2
∫

K
{
(x − t)/h

}
dW(x) (18)

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain asymp-
totically the Gumbel distribution.

We also need the Rosenblatt (1952) transformation,

T (x, y) = {
FX|y(x|y),FY (y)

}
which transforms (Xi, Yi) into T (Xi,Yi) = (X′

i , Y
′
i ) mutually independent uniform

rv’s. In the event that x is a d-dimension covariate, the transformation becomes

T (x1, x2, . . . , xd, y) = {
FX1|y(x1|y),FX2|y(x2|x1, y), . . . ,

FXk |xd−1,...,x1,y(xk|xd−1, . . . , x1, y),FY (y)
}

(19)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be applied to
obtain the following lemma.

Lemma 2 On a suitable probability space a sequence of Brownian bridges Bn exists
that

sup
x∈J,y∈R

∣∣Zn(x, y) − Bn

{
T (x, y)

}∣∣ = O
{
n−1/2(logn)2} a.s.

where Zn(x, y) = n1/2{Fn(x, y) − F(x, y)} denotes the empirical process of
{(Xi, Yi)}ni=1.

For d > 2, it is still an open problem which deserves further research.
Before we define the different approximating processes, let us first rewrite (18) as

a stochastic integral w.r.t. the empirical process Zn(x, y),

Yn(x) = {
hg′(x)

}−1/2
∫∫

K
{
(x − t)/h

}
ψ

{
y − v(x)

}
dZn(t, y)

g′(x) = σ 2(x)fX(x)
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The approximating processes are now

Y0,n(x) = {
hg(x)

}−1/2
∫∫

Γn

K
{
(x − t)/h

}
ψ

{
y − v(x)

}
dZn(t, y)

where Γn = {|y| ≤ an

}
,

g(t) = E
[
ψ2{y − v(x)

} · I
(|y| ≤ an

)∣∣X = x
] · fX(x) (20)

Y1,n(x) = {
hg(x)

}−1/2
∫∫

Γn

K
{
(x − t)/h

}
ψ

{
y − v(x)

}
dBn

{
T (t, y)

}
{Bn} being the sequence of Brownian bridges from Lemma 2 (21)

Y2,n(x) = {
hg(x)

}−1/2
∫∫

Γn

K
{
(x − t)/h

}
ψ

{
y − v(x)

}
dWn

{
T (t, y)

}
{Wn} being the sequence of Wiener processes satisfying

Bn

(
t ′, y′) = Wn

(
t ′, y′) − t ′y′Wn(1,1) (22)

Y3,n(x) = {
hg(x)

}−1/2
∫∫

Γn

K
{
(x − t)/h

}
ψ

{
y − v(t)

}
dWn

{
T (t, y)

}
(23)

Y4,n(x) = {
hg(x)

}−1/2
∫

g(t)1/2K
{
(x − t)/h

}
dW(t) (24)

Y5,n(x) = h−1/2
∫

K
{
(x − t)/h

}
dW(t){

W(·)} being the Wiener process (25)

Lemmas 5 to 10 ensure that all these processes have the same limit distributions. The
result then follows from

Lemma 3 (Theorem 3.1 in Bickel and Rosenblatt 1973) Let dn, λ(K), δ as in Theo-
rem 2. Let

Y5,n(x) = h−1/2
∫

K
{
(x − t)/h

}
dW(t)

Then, as n → ∞, the supremum of Y5,n(x) has a Gumbel distribution.

P
{
(2δ logn)1/2

[
sup
x∈J

∣∣Y5,n(x)
∣∣/{

λ(K)
}1/2 − dn

]
< z

}
→ exp

{−2 exp(−z)
}

Same as quantile, the supremum of a nonparametric expectile converge to its limit
at a rate (logn)−1. We do not check the bootstrap confidence bands in this paper,
which can be future work. Instead, we point out several well documented litera-
ture about this issue. For example, Claeskens and Keilegom (2003) discussed the
bootstrap confidence bands for regression curves and their derivatives. Partial linear
quantile regression and bootstrap confidence bands are well studied in Härdle et al.
(2010). They proved that the convergence rate by bootstrap approximation to the dis-



Simultaneous confidence bands for expectile functions

Fig. 2 (Color online) τ = 0.5 (left) and τ = 0.9 (right) estimated quantile and expectile plot. Quantile
curve, theoretical expectile curve, estimated expectile curve

tribution of the supremum of a quantile estimate has been improved from (logn)−1

to n−2/5.

3 A Monte Carlo study

In the design of the simulation, we generate bivariate random variables {(Xi, Yi)}ni=1
with sample size n = 50, n = 100, n = 200, n = 500. The covariate X is uniformly
distributed on [0,2]

Y = 1.5X + 2 sin(πX) + ε (26)

where ε ∼ N(0,1).
Obviously, the theoretical expectiles (fixed τ ) are determined by

v(x) = 1.5x + 2 sin(πx) + vN(τ) (27)

where vN(τ) is the τ th expectile of the standard Normal distribution.
Figure 2 (in the left part) describes the simulated data (the grey points), together

with the 0.5 estimated quantile and estimated expectile and theoretical expectile
curves, which represents, respectively, the conditional median and conditional mean.
The conditional mean and conditional median coincide with each other, since the er-
ror term is symmetrically distributed, which is obvious in Fig. 2. In the right part
of the figure, we consider the conditional 0.9 quantile and expectile curves. Via a
transformation (4), there is a gap between the quantile curve and the expectile curve.
By calculating w(τ) for the standard normal distribution, the 0.9 quantile can be ex-
pressed by the around 0.96 expectile. The estimated expectile curve is close to the
theoretical one.

Figure 3 shows the 95% uniform confidence bands for expectile curve, which are
represented by the two red dashed lines. We calculate both 0.1 (left) and 0.9 (right)
expectile curves. The black lines stand for the corresponding 0.1 and 0.9 theoretical
expectile curves, and the blue lines are the estimated expectile curves. Obviously, the
theoretical expectile curves locate in the confidence bands.
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Fig. 3 Uniform confidence bands for expectile curve for τ = 0.1 (left) and τ = 0.9 (right). Theoretical
expectile curve, estimated expectile curve and 95% uniform confidence bands

Table 1 Simulated coverage
probabilities of 95% confidence
bands for 0.9 expectile with 500
runs of simulation. cp stands for
the coverage probability, and h

is the width of the band

n cp h

50 0.526 1.279

100 0.684 1.093

200 0.742 0.897

500 0.920 0.747

Table 2 Simulated coverage
probabilities of 95% confidence
bands for 0.1 expectile with 500
runs of simulation. cp stands for
the coverage probability, and h

is the width of the band

n cp h

50 0.386 0.859

100 0.548 0.768

200 0.741 0.691

500 0.866 0.599

To check the performance of the calculated confidence bands, we compare the
simulated coverage probability with the nominal values for coverage probability 95%
for different sample sizes. We apply this method to both 0.9 and 0.1 expectile. Table 1
and Table 2 present the corresponding results. We run the simulation 500 times for
each scenario. Obviously, the coverage probabilities improve with the increased the
sample size, and the width of the bands h becomes smaller for both 0.9 and 0.1
expectile. It is noteworthy that when the number of observation is large enough, for
example n = 500, the coverage probability is very close to the nominal probability,
especially for the 0.9 expectile.

4 Application

In this part, we apply the expectile into the temperature study. We consider the daily
temperature both of Berlin and Taipei, ranging from 19480101 to 20071231, together
21900 observations for each city. The statistical properties of the temperature are
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Table 3 Statistical summary of
the temperature in Berlin and
Taipei

Mean SD Skewness Kurtosis Max Min

Berlin 9.66 7.89 −0.315 2.38 30.4 −18.5

Taipei 22.61 5.43 −0.349 2.13 33.0 6.5

Fig. 4 (Color online) The time
series plot of the temperature
in Berlin and Taipei from
2002–2007. The black line
stands for the temperature
in Taipei, and the blue line is
in Berlin

summarized in Table 3. The Berlin temperature data were obtained from Deutscher
Wetterdienst, and the Taipei temperature data were obtained from the center for adap-
tive data analysis in National Central University.

Before proceeding to detailed modeling and forecasting results, it is useful to get
an overall view of the daily average temperature data. Figure 4 displays the average
temperature series of the sample from 2002 to 2007. The black line stands for the
temperature in Taipei, and the blue line describes for the temperature in Berlin. The
time series plots reveal strong and unsurprising seasonality in average temperature:
in each city, the daily average temperature moves repeatedly and regularly through
periods of high temperature (summer) and low temperature (winter). It is well docu-
mented that seasonal volatility in the regression residuals appears highest during the
winter months where the temperature shows high volatility. Importantly, however,
the seasonal fluctuations differ noticeably across cities both in terms of amplitude
and detail of pattern.

Based on the observed pattern, we apply a stochastic model with seasonality and
inter temporal autocorrelation, as in Benth et al. (2007). To understand the model
clearly, let us introduce the time series decomposition of the temperature, with t =
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Fig. 5 0.9 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from 1948–2007
with the 95% uniform confidence bands for the first 20 years expectile

1, . . . ,365 days, and j = 0, . . . , J years:

X365j+t = Tt,j − Λt

X365j+t =
L∑

l=1

βljX365j+t−l + εt,j

Λt = a + bt +
M∑

m=1

cl cos

{
2π(t − dm)

l · 365

} (28)

where Tt,j is the temperature at day t in year j , and Λt denotes the seasonality
effect. Motivation of this modeling approach can be found in Diebold and Inoue
(2001). Further studies as Campbell and Diebold (2005) has provided evidence that
the parameters βlj are likely to be j independent and hence estimated consistently
from a global autoregressive process AR(Lj ) model with Lj = L. The analysis of
the partial autocorrelations and Akaike’s Information Criterion (AIC) suggests that a
simple AR(3) model fits well the temperature evolution both in Berlin and Taipei.

In this paper, the risk factor of temperature, which is the residual ε̂t,j from (28),
is studied in the expectile regression. We intend to construct the confidence bands for
the 0.01 and 0.9 expectile curves for the volatility of temperature. It is interesting to
check whether the extreme values perform differently in different cities.

The left part of the figures describes the expectile curves for Berlin, and the right
part is for Taipei. In each figure, the thick black line depicts the average expectile
curve with the data from 1948 to 2007. The red line is the expectile for the residuals
from (28) with the data of the first 20 years temperature, i.e. in the period from 1948
to 1967. The 0.9 expectile for the second 20 years (1968–1987) residuals is described
by the green line, and the blue line stands for the expectile curve in the latest 20 years
(1988–2007). The dotted lines are the 95% confidence bands corresponding to the ex-
pectile curve with the same color. Figures 5, 6 and 7 describe the 0.9 expectile curves
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Fig. 6 0.9 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from 1948–2007
with the 95% uniform confidence bands for the second 20 years expectile

Fig. 7 0.9 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from 1948–2007
with the 95% uniform confidence bands for the latest 20 years expectile

for Berlin and Taipei, as well as their corresponding confidence bands. Obviously,
the variance is higher in winter–earlier summer both in Berlin and Taipei.

Note that the behaviour of expectile curves in Berlin and Taipei is quite different.
Firstly, the variation of the expectiles in Berlin is smaller than that of Taipei. All the
expectile curves cross with each other in the last 100 observations of the year for
Berlin, and the variance in this period is smaller. Moreover, all of these curves nearly
locate in the corresponding three confidence bands. However, the performance of
the expectile in Taipei is quite different from that of Berlin. The expectile curves for
Taipei have similar trends for each 20 years. They have highest volatilities in January,
and lowest volatility in July. More interestingly, the expectile curve for the latest 20
years does not locate in the confidence bands constructed using the data from the
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Fig. 8 0.01 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from
1948–2007 with the 95% uniform confidence bands for the first 20 years expectile

Fig. 9 0.01 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from
1948–2007 with the 95% uniform confidence bands for the second 20 years expectile

first 20 years and second 20 years, see Figs. 5 and 7. Similarly, the expectile curve
for the first 20 years does not locate in the confidence bands constructed using the
information from the latest 20 years.

Further, let us study low expectile for the residuals of the temperature in Berlin
and Taipei. It is hard to calculate very small percentage of quantile curves, due to the
sparsity of the data, expectiles though can overcome this drawback. One can calculate
very low or very high expectiles, such as 0.01 and 0.99 expectile curves, even when
there are not so many observations. Display of the 0.01 expectiles for the residuals
and their corresponding confidence bands is given in Figs. 8, 9 and 10. One can
detect that the shapes of the 0.01 expectile for Berlin and Taipei are different. It
does not fluctuate a lot during the whole year in Berlin, while the variation in Taipei
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Fig. 10 0.01 expectile curves for Berlin (left) and Taipei (right) daily temperature residuals from
1948–2007 with the 95% uniform confidence bands for the latest 20 years expectile

is much bigger. However, all the curves both for Berlin and Taipei locate in their
corresponding confidence bands.

As depicted in the figures, the performance of the residuals are quite different from
Berlin and Taipei, especially for high expectiles. The variation of the temperature in
Taipei is more volatile. One interpretation is that in the last 60 years, Taiwan has
been experiencing a fast developing period. Industrial expansion, burning of fossil
fuel and deforestation and other sectors, could be an important factor for the bigger
volatility in the temperature of Taipei. However, Germany is well-developed in this
period, especially in Berlin, where there are no intensive industries. Therefore, one
may say the residuals reveals the influence of the human activities, which induce the
different performance of the residuals of temperature.
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Appendix

Proof of Theorem 1 By the definition of vn(x) as a zero of (5), we have, for ε > 0,

if vn(x) > v(x) + ε, and then Hn

{
v(x) + ε, x

}
> 0 (29)

Now

Hn

{
v(x) + ε, x

} ≤ H
{
v(x) + ε, x

} + sup
θ∈I

∣∣Hn(θ, x) − H(θ, x)
∣∣ (30)

Also, by the identity H {v(x), x} = 0, the function H {v(x) + ε, x} is not positive and
has a magnitude ≥ m1q̃ε by assumption (A6) and (12), for 0 < ε < δ1. That is, for
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0 < ε < δ1,

H
{
v(x) + ε, x

} ≤ −m1q̃ε (31)

Combining (29), (30) and (31), we have, for 0 < ε < δ1:

if vn(x) > v(x) + ε, and then sup
θ∈I

sup
x∈J

∣∣Hn(θ, x) − H(θ, x)
∣∣ > m1q̃ε

With a similar inequality proved for the case vn(x) < v(x) + ε, we obtain, for
0 < ε < δ1:

if sup
x∈J

∣∣vn(x) − v(x)
∣∣ > ε, and then sup

θ∈I

sup
x∈J

∣∣Hn(θ, x) − H(θ, x)
∣∣ > m1q̃ε (32)

It readily follows that (32) and (11) imply (13). �

Below we first show that ‖Rn‖∞ = supx∈J |Rn(x)| vanishes asymptotically faster
than the rate (nh logn)−1/2; for simplicity we will just use ‖ · ‖ to indicate the sup-
norm.

Lemma 4 For the remainder term Rn(t) defined in (16) we have

‖Rn‖ = Op

{
(nh logn)−1/2} (33)

Proof First we have by the positivity of the kernel K ,

‖Rn‖ ≤
[

inf
0≤x≤1

{∣∣Dn(x)
∣∣ · p(x)

}]−1{‖Hn‖ · ‖p − Dn‖ + ‖Dn‖ · ‖EHn‖
}

+ C1 · ‖vn − l‖2 ·
{

inf
0≤t≤1

∣∣Dn(x)
∣∣}−1 · ‖fn‖

where fn(x) = (nh)−1 ∑n
i=1 K{(x − Xi)/h}.

The desired result (4) will then follow if we prove

‖Hn‖ = Op

{
(nh)−1/2(logn)1/2} (34)

‖p − Dn‖ = Op

{
(nh)−1/4(logn)−1/2} (35)

‖EHn‖ = O
(
h2) (36)

‖vn − v‖2 = Op

{
(nh)−1/2(logn)−1/2} (37)

Since (36) follows from the well-known bias calculation

EHn(x) = h−1
∫

K
{
(x − u)/h

}
E
[
ψ

{
y − v(x)

}|X = u
]
fX(u)du = O

(
h2)

where O(h2) is independent of x in Parzen (1962), we have from assumption (A2)
that ‖EHn‖ = Op{(nh)−1/2(logn)−1/2}.
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According to Lemma A.3 in Franke and Mwita (2003),

sup
x∈J

∣∣Hn(x) − EHn(x)
∣∣ = O

{
(nh)−1/2(logn)1/2}

and the following inequality:

‖Hn‖ ≤ ‖Hn − EHn‖ + ‖EHn‖
= O

{
(nh)−1/2(logn)1/2} + Op

{
(nh)−1/2(logn)−1/2}

= O
{
(nh)−1/2(logn)1/2}

Statement (34) thus is obtained.
Statement (35) follows in the same way as (34) using assumption (A2) and the

Lipschitz continuity properties of K , ψ ′, l.
According to the uniform consistency of vn(x) − v(x) shown before, we have

‖vn − v‖ = Op

{
(nh)−1/2(logn)1/2}

which implies (37).
Now the assertion of the lemma follows, since by tightness of Dn(x),

inf0≤t≤1 |Dn(x)| ≥ q0 a.s. and thus

‖Rn‖ = Op

{
(nh logn)−1/2}(1 + ‖fn‖

)
Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), ‖fn‖ = Op(1); thus the
desired result ‖Rn‖ = Op{(nh logn)−1/2} follows. �

We now begin with the subsequent approximations of the processes Y0,n to Y5,n.

Lemma 5

‖Y0,n − Y1,n‖ = O
{
(nh)−1/2(logn)2} a.s.

Proof Let x be fixed and put L(y) = ψ{y − v(x)} still depending on x. Using inte-
gration by parts, we obtain∫∫

Γn

L(y)K
{
(x − t)/h

}
dZn(t, y)

=
∫ A

u=−A

∫ an

y=−an

L(y)K(u)dZn(x − h · u,y)

= −
∫ A

−A

∫ an

−an

Zn(x − h · u,y)d
{
L(y)K(u)

}
+ L(an)(an)

∫ A

−A

Zn(x − h · u,an) dK(u)

− L(−an)(−an)

∫ A

−A

Zn(x − h · u,−an) dK(u)
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+ K(A)

{∫ an

−an

Zn(x − h · A,y)dL(y)

+ L(an)(an)Zna (x − h · A,an) − L(−an)(−an)Zn(x − h · A,−an)

}
− K(−A)

{∫ an

−an

Zn(x + h · A,y)dL(y) + L(an)(an)Zn(x + h · A,an)

− L(−an)(−an)Zn(x + h · A,−an)

}
If we apply the same operation to Y1,n with Bn{T (x, y)} instead of Zn(x, y) and use
Lemma 2, we finally obtain

sup
0≤x≤1

h1/2g(x)1/2
∣∣Y0,n(x) − Y1,n(x)

∣∣ = O
{
n−1/2(logn)2} a.s. �

Lemma 6 ‖Y1,n − Y2,n‖ = Op(h1/2).

Proof Note that the Jacobian of T (x, y) is f (x, y). Hence

Y1,n(x) − Y2,n(x)

=
∣∣∣∣{g(x)h

}−1/2
∫∫

Γn

ψ
{
y − v(x)

}
K

{
(x − t)/h

}
f (t, y) dt dy

∣∣∣∣ · ∣∣Wn(1,1)
∣∣

It follows that

h−1/2‖Y1,n − Y2,n‖ ≤ ∣∣Wn(1,1)
∣∣ · ∥∥g−1/2

∥∥
· sup

0≤t≤1
h−1

∫∫
Γn

∣∣ψ{
y − v(x)

}
K

{
(x − t)/h

}∣∣f (t, y) dt dy

Since ‖g−1/2‖ is bounded by assumption, we have

h−1/2‖Y1,n − Y2,n‖ ≤ ∣∣Wn(1,1)
∣∣ · C4 · h−1

∫
K

{
(x − t)/h

}
dx = Op(1) �

Lemma 7 ‖Y2,n − Y3,n‖ = Op(h1/2).

Proof The difference |Y2,n(x) − Y3,n(x)| may be written as∣∣∣∣{g(x)h
}−1/2

∫∫
Γn

[
ψ

{
y − v(x)

} − ψ
{
y − v(t)

}]
K

{
(x − t)/h

}
dWn

{
T (t, y)

}∣∣∣∣
If we use the fact that l is uniformly continuous, this is smaller than

h−1/2
∣∣g(x)

∣∣−1/2 · Op(h)

and the lemma thus follows. �
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Lemma 8 ‖Y4,n − Y5,n‖ = Op(h1/2).

Proof

∣∣Y4,n(x) − Y5,n(x)
∣∣ = h−1/2

∣∣∣∣∫ [{
g(t)

g(x)

}1/2

− 1

]
K

{
(x − t)/h

}
dW(x)

∣∣∣∣
≤ h−1/2

∣∣∣∣∫ A

−A

W(x − hu)
∂

∂u

[{
g(x − hu)

g(x)

}1/2

− 1

]
K(u)du

∣∣∣∣
+ h−1/2

∣∣∣∣K(A)W(t − hA)

[{
g(x − Ah)

g(x)

}1/2

− 1

]∣∣∣∣
+ h−1/2

∣∣∣∣K(−A)W(x + hA)

[{
g(x + Ah)

g(x)

}1/2

− 1

]∣∣∣∣
S1,n(x) + S2,n(x) + S3,n(x), say

The second term can be estimated by

h−1/2‖S2,n‖ ≤ K(A) · sup
0≤x≤1

∣∣W(x − Ah)
∣∣ · sup

0≤x≤1
h−1

∣∣∣∣[{
g(x − Ah)

g(x)

}1/2

− 1

]∣∣∣∣
by the mean value theorem it follows that

h−1/2‖S2,n‖ = Op(1)

The first term S1,n is estimated as

h−1/2S1,n(x) =
∣∣∣∣h−1

∫ A

−A

W(x − uh)K ′(u)

[{
g(x − uh)

g(x)

}1/2

− 1

]
du

× 1

2

∫ A

−A

W(x − uh)K(u)

{
g(x − uh)

g(x)

}1/2{
g′(x − uh)

g(x)

}
du

∣∣∣∣
= ∣∣T1,n(x) − T2,n(x)

∣∣, say

‖T2,n‖ ≤ C5 · ∫ A

−A
|W(t − hu)|du = Op(1) by assumption on g(x) = σ 2(x) · fX(x).

To estimate T1,n we again use the mean value theorem to conclude that

sup
0≤x≤1

h−1
∣∣∣∣{g(x − uh)

g(x)

}1/2

− 1

∣∣∣∣ < C6 · |u|

hence

‖T1,n‖ ≤ C6 · sup
0≤x≤1

∫ A

−A

∣∣W(x − hu)
∣∣K ′(u)u/du = Op(1)

Since S3,n(x) is estimated as S2,n(x), we finally obtain the desired result. �
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The next lemma shows that the truncation introduced through {an} does not affect
the limiting distribution.

Lemma 9 ‖Yn − Y0,n‖ = Op{(logn)−1/2}.

Proof We shall only show that g′(x)−1/2h−1/2
∫∫

R−Γn
ψ{y − v(x)} ×

K{(x − t)/h}dZn(t, y) fulfills the lemma. The replacement of g′(x) by g(x) may
be proved as in Lemma A.4 of Johnston (1982). The quantity above is less than
h−1/2‖g−1/2‖ · ‖ ∫∫

{|y|>an} ψ{y − v(x)}K{(x − t)/h}dZ(t, y)‖. It remains to be

shown that the last factor tends to zero at a rate Op{(logn)−1/2}. We show first
that

Vn(x) = (logn)1/2h−1/2
∫∫

{|y|>an}
ψ

{
y − v(x)

}
K

{
(x − t)/h

}
dZn(t, y)

p→ 0 for all x

and then we show tightness of Vn(x), the result then follows:

Vn(x) = (logn)1/2(nh)−1/2
n∑

i=1

[
ψ

{
Yi − v(x)

}
I
(|Yi | > an

)
K

{
(x − Xi)/h

}
− Eψ

{
Yi − v(x)

}
I
(|Yi | > an

)
K

{
(x − Xi)/h

}]
=

n∑
i=1

Xn,x(x)

where {Xn,x(x)}ni=1 are i.i.d. for each n with EXn,x(x) = 0 for all x ∈ [0,1]. We then
have

EX2
n,x(x) ≤ (logn)(nh)−1 Eψ2{Yi − v(x)

}
I
(|Yi | > an

)
K2{(x − Xi)/h

}
≤ sup

−A≤u≤A

K2(u) · (logn)(nh)−1 Eψ2{Yi − v(x)
}
I
(|Yi | > an

)
hence

Var
{
Vn(x)

} = E

{
n∑

i=1

Xn,x(x)

}2

= n · EX2
n,x(x)

≤ sup
−A≤u≤A

K2(u)h−1(logn)

∫
{|y|>an}

fy(y) dy · Mψ

where Mψ denotes an upper bound for ψ2. This term tends to zero by assump-
tion (A3). Thus by Markov’s inequality we conclude that

Vn(x)
p→ 0 for all x ∈ [0,1]
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To prove tightness of {Vn(x)} we refer again to the following moment condition as
stated in Lemma 4:

E
{∣∣Vn(x) − Vn(x1)

∣∣ · ∣∣Vn(x2) − Vn(x)
∣∣} ≤ C′ · (x2 − x1)

2

C′ denoting a constant, x ∈ [x1, x2]
We again estimate the left-hand side by Schwarz’s inequality and estimate each factor
separately,

E
{
Vn(x) − Vn(x1)

}2 = (logn)(nh)−1 E

[
n∑

i=1

Ψn(x, x1,Xi, Yi) · I
(|Yi | > an

)

− E
{
Ψn(x, x1,Xi, Yi) · I

(|Yi | > an

)}]2

where Ψn(x, x1,Xi, Yi) = ψ{Yi − v(x)}K{(x − Xi)/h} − ψ{Yi − v(x1)}K{(x1 −
X1)/h}. Since ψ , K are Lipschitz continuous except at one point and the expectation
is taken afterwards, it follows that[

E
{
Vn(x) − Vn(x1)

}2]1/2

≤ C7 · (logn)1/2h−3/2|x − x1| ·
{∫

{|y|>an}
fy(y) dy

}1/2

If we apply the same estimation to Vn(x2) − Vn(x1) we finally have

E
{∣∣Vn(x) − Vn(x1)

∣∣ · ∣∣Vn(x2) − Vn(x)
∣∣}

≤ C2
7(logn)h−3|x − x1||x2 − x| ×

∫
{|y|>an}

fy(y) dy

≤ C′ · |x2 − x1|2 since x ∈ [x1, x2] by (A3) �

Lemma 10 Let λ(K) = ∫
K2(u) du and let {dn} be as in the theorem. Then

(2δ logn)1/2[‖Y3,n‖/
{
λ(K)

}1/2 − dn

]
has the same asymptotic distribution as

(2δ logn)1/2[‖Y4,n‖/
{
λ(K)

}1/2 − dn

]
Proof Y3,n(x) is a Gaussian process with

EY3,n(x) = 0

and covariance function
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r3(x1, x2) = EY3,n(x1)Y3,n(x2)

= {
g(x1)g(x2)

}−1/2
h−1

∫∫
Γn

ψ2{y − v(x)
}
K

{
(x1 − x)/h

}
× K

{
(x2 − x)/h

}
f (t, y) dt dy

= {
g(x1)g(x2)

}−1/2
h−1

∫∫
Γn

ψ2{y − v(x)
}
f (y|x)dyK

{
(x1 − x)/h

}
× K

{
(x2 − x)/h

}
fX(x)dx

= {
g(x1)g(x2)

}−1/2
h−1

∫
g(x)K

{
(x1 − x)/h

}
K

{
(x2 − x)/h

}
dx

= r4(x1, x2)

where r4(x1, x2) is the covariance function of the Gaussian process Y4,n(x), which
proves the lemma. �
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Single-index models are natural extensions of linear models and circum-
vent the so-called curse of dimensionality. They are becoming increasingly
popular in many scientific fields including biostatistics, medicine, economics
and financial econometrics. Estimating and testing the model index coeffi-
cients β is one of the most important objectives in the statistical analysis.
However, the commonly used assumption on the index coefficients, ‖β‖ = 1,
represents a nonregular problem: the true index is on the boundary of the unit
ball. In this paper we introduce the EFM approach, a method of estimating
functions, to study the single-index model. The procedure is to first relax the
equality constraint to one with (d − 1) components of β lying in an open
unit ball, and then to construct the associated (d − 1) estimating functions
by projecting the score function to the linear space spanned by the residu-
als with the unknown link being estimated by kernel estimating functions.
The root-n consistency and asymptotic normality for the estimator obtained
from solving the resulting estimating equations are achieved, and a Wilks
type theorem for testing the index is demonstrated. A noticeable result we
obtain is that our estimator for β has smaller or equal limiting variance than
the estimator of Carroll et al. [J. Amer. Statist. Assoc. 92 (1997) 447–489].
A fixed-point iterative scheme for computing this estimator is proposed. This
algorithm only involves one-dimensional nonparametric smoothers, thereby
avoiding the data sparsity problem caused by high model dimensionality. Nu-
merical studies based on simulation and on applications suggest that this new
estimating system is quite powerful and easy to implement.

1. Introduction. Single-index models combine flexibility of modeling with
interpretability of (linear) coefficients. They circumvent the curse of dimensional-
ity and are becoming increasingly popular in many scientific fields. The reduction
of dimension is achieved by assuming the link function to be a univariate func-
tion applied to the projection of explanatory covariate vector on to some direction.
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In this paper we consider an extension of single-index models where, instead of
a distributional assumption, assumptions of only the mean function and variance
function of the response are made. Let (Yi,Xi), i = 1, . . . , n, denote the observed
values with Yi being the response variable and Xi as the vector of d explanatory
variables. The relationship of the mean and variance of Yi is specified as follows:

E(Yi |Xi) = μ{g(β�Xi )}, Var(Yi |Xi ) = σ 2V {g(β�Xi )},(1.1)

where μ is a known monotonic function, V is a known covariance function, g is an
unknown univariate link function and β is an unknown index vector which belongs
to the parameter space � = {β = (β1, . . . , βd)� :‖β‖ = 1, β1 > 0,β ∈ Rd}. Here
we assume the parameter space is � rather than the entire Rd in order to ensure
that β in the representation (1.1) can be uniquely defined. This is a commonly used
assumption on the index parameter [see Carroll et al. (1997), Zhu and Xue (2006),
Lin and Kulasekera (2007)]. Another reparameterization is to let β1 = 1 for the
sign identifiability and to transform β to (1, β2, . . . , βd)/(1 +∑d

r=2 β2
r )1/2 for the

scale identifiability. Clearly (1, β2, . . . , βd)/(1+∑d
r=2 β2

r )1/2 can also span the pa-
rameter space � by simply checking that ‖(1, β2, . . . , βd)/(1 +∑d

r=2 β2
r )1/2‖ = 1

and the first component 1/(1 + ∑d
r=2 β2

r )1/2 > 0. However, the fixed-point al-
gorithm recommended in this paper for normalized vectors may not be suitable
for such a reparameterization. Model (1.1) is flexible enough to cover a vari-
ety of situations. If μ is the identity function and V is equal to constant 1,
(1.1) reduces to a single-index model Härdle, Hall and Ichimura (1993). Model
(1.1) is an extension of the generalized linear model McCullagh and Nelder
(1989) and the single-index model. When the conditional distribution of Y is lo-
gistic, then μ{g(β�X)} = exp{g(β�X)}/[1 + exp{g(β�X)}] and V {g(β�X)} =
exp{g(β�X)}/[1 + exp{g(β�X)}]2.

For single-index models: μ{g(β�X)} = g(β�X) and V {g(β�X)} = 1, var-
ious strategies for estimating β have been proposed in the last decades. Two
most popular methods are the average derivative method (ADE) introduced in
Powell, Stock and Stoker (1989) and Härdle and Stoker (1989), and the simul-
taneous minimization method of Härdle, Hall and Ichimura (1993). Next we
will review these two methods in short. The ADE method is based on that
∂E(Y |X = x)/∂x = g′(β�x)β which implies that the gradient of the regres-
sion function is proportional to the index parameter β . Then a natural estima-
tor for β is β̂ = n−1∑n

i=1 ∇̂G(Xi )/‖n−1∑n
i=1 ∇̂G(Xi )‖ with ∇G(x) denoting

∂E(Y |X = x)/∂x and ‖ · ‖ being the Euclidean norm. An advantage of the ADE
approach is that it allows estimating β directly. However, the high-dimensional
kernel smoothing used for computing ∇̂G(x) suffers from the “curse of dimension-
ality” if the model dimension d is large. Hristache, Juditski and Spokoiny (2001)
improved the ADE approach by lowering the dimension of the kernel gradually.
The method of Härdle, Hall and Ichimura (1993) is carried out by minimizing a
least squares criterion based on nonparametric estimation of the link g with respect
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to β and bandwidth h. However, the minimization is difficult to implement since it
depends on an optimization problem in a high-dimensional space. Xia et al. (2002)
proposed to minimize average conditional variance (MAVE). Because the kernel
used for computing β is a function of ‖Xi −Xj‖, MAVE meets the problem of data
sparseness. All the above estimators are consistent under some regular conditions.
Asymptotic efficiency comparisons of the above methods have been discussed in
Xia (2006) resulting in the MAVE estimator of β having the same limiting vari-
ance as the estimators of Härdle, Hall and Ichimura (1993), and claiming alterna-
tive versions of the ADE method having larger variance. In addition, Yu and Rup-
pert (2002) fitted the partially linear single-index models using a penalized spline
method. Huh and Park (2002) used the local polynomial method to fit the unknown
function in single-index models. Other dimension reduction methods that were re-
cently developed in the literature are sliced inverse regression, partial least squares
and canonical correlation method. These methods handle high-dimensional pre-
dictors; see Zhu and Zhu (2009a, 2009b) and Zhou and He (2008).

The main challenges of estimation in the semiparametric model (1.1) are that
the support of the infinite-dimensional nuisance parameter g(·) depends on the
finite-dimensional parameter β , and the parameter β is on the boundary of a unit
ball. For estimating β the former challenge forces us to deal with the infinite-
dimensional nuisance parameter g. The latter one represents a nonregular problem.
The classic assumptions about asymptotic properties of the estimates for β are not
valid. In addition, as a model proposed for dimension reduction, the dimension
d may be very high and one often meets the problem of computation. To attack
the above problems, in this paper we will develop an estimating function method
(EFM) and then introduce a computational algorithm to solve the equations based
on a fixed-point iterative scheme. We first choose an identifiable parameterization
which transforms the boundary of a unit ball in Rd to the interior of a unit ball in
Rd−1. By eliminating β1, the parameter space � can be rearranged to a form {((1−∑d

r=2 β2
r )1/2, β2, . . . , βd)� :

∑d
r=2 β2

r < 1}. Then the derivatives of a function with
respect to (β2, . . . , βd)� are readily obtained by the chain rule and the classical
assumptions on the asymptotic normality hold after transformation. The estimating
functions (equations) for β can be constructed by replacing g(β�X) with ĝ(β�X).
The estimate ĝ for the nuisance parameter g is obtained using kernel estimating
functions and the smoothing parameter h is selected using K-fold cross-validation.
For the problem of testing the index, we establish a quasi-likelihood ratio based on
the proposed estimating functions and show that the test statistics asymptotically
follow a χ2-distribution whose degree of freedom does not depend on nuisance
parameters, under the null hypothesis. Then a Wilks type theorem for testing the
index is demonstrated.

The proposed EFM technique is essentially a unified method of handling dif-
ferent types of data situations including categorical response variable and discrete
explanatory covariate vector. The main results of this research are as follows:
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(a) Efficiency. A surprising result we obtain is that our EFM estimator for β has
smaller or equal limiting variance than the estimator of Carroll et al. (1997).

(b) Computation. The estimating function system only involves one-dimensional
nonparametric smoothers, thereby avoiding the data sparsity problem caused
by high model dimensionality. Unlike the quasi-likelihood inference [Carroll
et al. (1997)] where the maximization is difficult to implement when d is large,
the reparameterization and the explicit formulation of the estimating functions
facilitate an efficient computation algorithm. Here we use a fixed-point iter-
ative scheme to compute the resultant estimator. The simulation results show
that the algorithm adapts to higher model dimension and richer data situations
than the MAVE method of Xia et al. (2002).

It is noteworthy that the EFM approach proposed in this paper cannot be ob-
tained from the SLS method proposed in Ichimura (1993) and investigated in
Härdle, Hall and Ichimura (1993). SLS minimizes the weighted least squares crite-
rion

∑n
j=1[Yj −μ{ĝ(β�Xj )}]2V −1{ĝ(β�Xj )}, which leads to a biased estimating

equation when we use its derivative if V (·) does not contain the parameter of inter-
est. It will not in general provide a consistent estimator [see Heyde (1997), page 4].
Chang, Xue and Zhu (2010) and Wang et al. (2010) discussed the efficient estima-
tion of single-index model for the case of additive noise. However, their methods
are based on the estimating equations induced from the least squares rather than
the quasi-likelihood. Thus, their estimation does not have optimal property. Also
their comparison is with the one from Härdle, Hall and Ichimura (1993) and its
later development. It cannot be applied to the setting under study. In this paper,
we investigate the efficiency and computation of the estimates for the single-index
models, and systematically develop and prove the asymptotic properties of EFM.

The paper is organized as follows. In Section 2, we state the single-index model,
discuss estimation of g using kernel estimating functions and of β using profile
estimating functions, and investigate the problem of testing the index using quasi-
likelihood ratio. In Section 3 we provide a computation algorithm for solving the
estimating functions and illustrate the method with simulation and practical stud-
ies. The proofs are deferred to the Appendix.

2. Estimating function method (EFM) and its large sample properties. In
this section, which is concerned with inference based on the estimating function
method, the model of interest is determined through specification of mean and vari-
ance functions, up to an unknown vector β and an unknown function g. Except for
Gaussian data, model (1.1) need not be a full semiparametric likelihood specifi-
cation. Note that the parameter space � = {β = (β1, . . . , βd)� :‖β‖ = 1, β1 > 0,

β ∈ Rd} means that β is on the boundary of a unit ball and it represents there-
fore a nonregular problem. So we first choose an identifiable parameterization
which transforms the boundary of a unit ball in Rd to the interior of a unit ball
in Rd−1. By eliminating β1, the parameter space � can be rearranged to a form
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{((1 −∑d
r=2 β2

r )1/2, β2, . . . , βd)� :
∑d

r=2 β2
r < 1}. Then the derivatives of a func-

tion with respect to β(1) = (β2, . . . , βd)� are readily obtained by chain rule and
the classic assumptions on the asymptotic normality hold after transformation.
This reparameterization is the key to analyzing the asymptotic properties of the
estimates for β and to facilitating an efficient computation algorithm. We will in-
vestigate the estimation for g and β and propose a quasi-likelihood method to test
the statistical significance of certain variables in the parametric component.

2.1. The kernel estimating functions for the nonparametric part g. If β is
known, then we estimate g(·) and g′(·) using the local linear estimating functions.
Let h denote the bandwidth parameter, and let K(·) denote the symmetric kernel
density function satisfying Kh(·) = h−1K(·/h). The estimation method involves
local linear approximation. Denote by α0 and α1 the values of g and g′ evaluating
at t , respectively. The local linear approximation for g(β�x) in a neighborhood of
t is g̃(β�x) = α0 + α1(β

�x − t). The estimators ĝ(t) and ĝ′(t) are obtained by
solving the kernel estimating functions with respect to α0, α1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

Kh(β
�Xj − t)μ′{g̃(β�Xj )}V −1{g̃(β�Xj )}

× [Yj − μ{g̃(β�Xj )}] = 0,
n∑

j=1

(β�Xj − t)Kh(β
�Xj − t)μ′{g̃(β�Xj )}V −1{g̃(β�Xj )}

× [Yj − μ{g̃(β�Xj )}] = 0.

(2.1)

Having estimated α0, α1 at t as α̂0, α̂1, the local linear estimators of g(t) and g′(t)
are ĝ(t) = α̂0 and ĝ′(t) = α̂1, respectively.

The key to obtain the asymptotic normality of the estimates for β lies in the
asymptotic properties of the estimated nonparametric part. The following theorem
will provide some useful results. The following notation will be used. Let X =
{X1, . . . ,Xn}, ρl(z) = {μ′(z)}lV −1(z) and J = ∂β

∂β(1) the Jacobian matrix of size

d × (d − 1) with

J =
(

−β(1)�/

√
1 − ∥∥β(1)

∥∥2

Id−1

)
, β(1) = (β2, . . . , βd)�.

The moments of K and K2 are denoted, respectively, by, j = 0,1, . . . ,

γj =
∫

tjK(t) dt and νj =
∫

tjK2(t) dt.

PROPOSITION 1. Under regularity conditions (a), (b), (d) and (e) given in the
Appendix, we have:
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(i) With h → 0, n → ∞ such that h → 0 and nh → ∞, ∀β ∈ �, the asymp-
totic conditional bias and variance of ĝ are given by

E
{{ĝ(β�x) − g(β�x)}2|X

}
= {1

2γ2h
2g′′(β�x)

}2

(2.2)
+ ν0σ

2/[nhfβ�x(β
�x)ρ2{g(β�x)}]

+ OP (h4 + n−1h−1).

(ii) With h → 0, n → ∞ such that h → 0 and nh3 → ∞, for the estimates of
the derivative g′, it holds that

E
{{ĝ′(β�x) − g′(β�x)}2|X

}
= {1

6γ4γ
−1
2 h2g′′′(β�x)

+ 1
2(γ4γ

−1
2 − γ2)h

2g′′(β�x)
(2.3)

× [ρ′
2{g(β�x)}/ρ2{g(β�x)} + f ′

β�x
(β�x)/fβ�x(β

�x)]}2

+ ν2γ
−2
2 σ 2/[nh3fβ�x(β

�x)ρ2{g(β�x)}]
+ OP (h4 + n−1h−3).

(iii) With h → 0, n → ∞ such that h → 0 and nh3 → ∞, we have that

E

{∥∥∥∥∂ĝ(β�x)

∂β(1)
− g′(β�x)J�{x − E(x|β�x)}

∥∥∥∥2∣∣∣X
}

= OP (h4 + n−1h−3).(2.4)

The proof of this proposition appears in the Appendix. Results (i) and (ii)
in Proposition 1 are routine and similar to Carroll, Ruppert and Welsh (1998).
In the situation where σ 2V = σ 2 and the function μ is identity, results (i) and
(ii) coincide with those given by Fan and Gijbels (1996). From result (iii), it is
seen that ∂ĝ(β�x)/∂β(1) converges in probability to g′(β�x)J�{x − E(x|β�x)},
rather than g′(β�x)J�x as if g were known. That is, limn→∞{∂ĝ(β�x)/∂β(1)} 
=
∂{limn→∞ ĝ(β�x)}/∂β(1), which means that the convergence in probability and
the derivation of the sequence ĝn(β

�x) (as a function of n) cannot commute. This
is primarily caused by the fact that the support of the infinite-dimensional nuisance
parameter g(·) depends on the finite-dimensional projection parameter β . In con-
trast, a semiparametric model where the support of the nuisance parameter is inde-
pendent of the finite-dimensional parameter is a partially linear regression model
having form Y = X�θ +η(T )+ ε. It is easy to check that the limit of ∂η̂(T )/∂θ is
equal to E(X|T ), which is the derivative of limn→∞ η̂(T ) = E(Y |T )−E(X�|T )θ
with respect to θ . Result (iii) ensures that the proposed estimator does not require
undersmoothing of g(·) to obtain a root-n consistent estimator for β and it is also
of its own interest in inference theory for semiparametric models.
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2.2. The asymptotic distribution for the estimates of the parametric part β .
We will now proceed to the estimation of β ∈ �. We need to estimate the (d − 1)-
dimensional vector β(1), the estimator of which will be defined via

n∑
i=1

[
∂μ{ĝ(β�Xi )}/∂β(1)]V −1{ĝ(β�Xi )}[Yi − μ{ĝ(β�Xi)}] = 0.(2.5)

This is the direct analogue of the “ideal” estimating equation for known g, in that it
is calculated by replacing g(t) with ĝ(t). An asymptotically equivalent and easily
computed version of this equation is

Ĝ(β)
def=

n∑
i=1

J�ĝ′(β�Xi ){Xi − ĥ(β�Xi )}ρ1{ĝ(β�Xi )}[Yi − μ{ĝ(β�Xi)}]
(2.6)

= 0

with J = ∂β

∂β(1) the Jacobian mentioned above, ĝ and ĝ′ are defined by (2.1), and

ĥ(t) the local linear estimate for h(t) = E(X|β�X = t) = (h1(t), . . . , hd(t))�,

ĥ(t) =
n∑

i=1

bi(t)Xi

/ n∑
i=1

bi(t),

where bi(t) = Kh(β
�Xi − t){Sn,2(t)− (β�Xi − t)Sn,1(t)}, Sn,k =∑n

i=1 Kh(β
� ×

Xi − t)(β�Xi − t)k, k = 1,2. We use (2.6) to estimate β(1) in the single-index

model, and then use the fact that β1 =
√

1 − ‖β(1)‖2 to obtain β̂1. The use of (2.6)
constitutes in our view a new approach to estimating single-index models; since
(2.6) involves smooth pilot estimation of g, g′ and h we call it the Estimation
Function Method (EFM) for β .

REMARK 1. The estimating equations Ĝ(β) can be represented as the gradient
vector of the following objective function:

Q̂(β) =
n∑

i=1

Q[μ{ĝ(β�Xi )}, Yi]

with Q[μ,y] = ∫ y
μ

s−y

V {μ−1(s)} ds and μ−1(·) the inverse function of μ(·). The exis-

tence of such a potential function makes Ĝ(β) to inherit properties of the ideal
likelihood score function. Note that {‖β(1)‖ < 1} is an open, connected sub-
set of Rd−1. By the regularity conditions assumed on μ(·), g(·),V (·) (for de-
tails see the Appendix), we know that the quasi-likelihood function Q̂(β) is
twice continuously differentiable on {‖β(1)‖ < 1} such that the global maxi-
mum of Q̂(β) can be achieved at some point. One may ask whether the so-
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lution is unique and also consistent. Some elementary calculations lead to the

Hessian matrix ∂2Q̂(β)/∂β(1)∂β(1)�, because the partial derivative ∂μ{ĝ(β�Xi )}
∂β(1) =

μ′{ĝ(β�Xi )}ĝ′(β�Xi ){Xi − ĥ(β�Xi )}, then

1

n

∂2Q̂(β)

∂β(1)∂β(1)�

= 1

n

∂Ĝ(β)

∂β(1)

= 1

n

n∑
i=1

∂[J�ĝ′(β�Xi ){Xi − ĥ(β�Xi )}ρ1{ĝ(β�Xi)}]
∂β(1)

[Yi − μ{ĝ(β�Xi)}]

− 1

n

n∑
i=1

J�ĝ′(β�Xi ){Xi − ĥ(β�Xi )}ρ1{ĝ(β�Xi)}∂μ{ĝ(β�Xi )}
∂β(1)

= 1

n

n∑
i=1

[
−∂{β(1)/

√
1 − ‖β(1)‖2}

∂β(1)
ĝ′(β�Xi ){X1i − ĥ1(β

�Xi)}ρ1{ĝ(β�Xi )}

+ J�{Xi − ĥ(β�Xi)}∂ĝ′(β�Xi)

∂β(1)� ρ1{ĝ(β�Xi )}

+ J�ĝ′(β�Xi ){Xi − ĥ(β�Xi )}∂ρ1{ĝ(β�Xi )}
∂β(1)�

− J�ĝ′(β�Xi)
∂ĥ(β�Xi )

∂β(1)
ρ1{ĝ(β�Xi )}

]
× [Yi − μ{ĝ(β�Xi)}]

− 1

n

n∑
i=1

J�ĝ′2(β�Xi ){Xi − ĥ(β�Xi)}{Xi − ĥ(β�Xi )}�ρ2{ĝ(β�Xi )}J.

By the regularity conditions in the Appendix, the multipliers of the residuals
[Yi − μ{ĝ(β�Xi)}] in the first sum of (2.7) are bounded. Mimicking the proof
of Proposition 1, the first sum can be shown to converge to 0 in probability as n

goes to infinity. The second sum converges to a negative semidefinite matrix. If

the Hessian matrix 1
n

∂2Q̂(β)

∂β(1)∂β(1)� is negative definite for all values of β(1), Ĝ(β)

has a unique root. At sample level, however, estimating functions may have more
than one root. For the EFM method, the quasi-likelihood Q̂(β) exists, which can
be used to distinguish local maxima from minima. Thus, we suppose (2.6) has a
unique solution in the following context.



1666 X. CUI, W. K. HÄRDLE AND L. ZHU

REMARK 2. It can be seen from the proof in the Appendix that the population
version of Ĝ(β) is

G(β) =
n∑

i=1

J�g′(β�Xi ){Xi − h(β�Xi )}ρ1{g(β�Xi )}[Yi − μ{g(β�Xi)}],(2.7)

which is obtained by replacing ĝ, ĝ′, ĥ with g,g′,h in (2.6). One important prop-
erty of (2.7) is that the second Bartlett identity holds, for any β:

E{G(β)G�(β)} = −E

{
∂G(β)

∂β(1)

}
.

This property makes the semiparametric efficiency of the EFM (2.6) possible.

Let β0 = (β0
1 ,β(1)0�

)� denote the true parameter and B+ denote the Moore–
Penrose inverse of any given matrix B. We have the following asymptotic result
for the estimator β̂(1).

THEOREM 2.1. Assume the estimating function (2.6) has a unique solution
and denote it by β̂(1). If the regularity conditions (a)–(e) in the Appendix are sat-
isfied, the following results hold:

(i) With h → 0, n → ∞ such that (nh)−1 log(1/h) → 0, β̂(1) converges in
probability to the true parameter β(1)0.

(ii) If nh6 → 0 and nh4 → ∞,
√

n
(
β̂(1) − β(1)0) L−→ Nd−1(0,�β(1)0),(2.8)

where �β(1)0 = {J��J}+|β(1)=β(1)0 , J = ∂β

∂β(1) and

� = E[{XX� − E(X|β�X)E(X�|β�X)}ρ2{g(β�X)}{g′(β�X)}2/σ 2].

REMARK 3. Note that β��β = 0, so the nonnegative matrix � degener-
ates in the direction of β . If the mean function μ is the identity function and
the variance function is equal to a scale constant, that is, μ{g(β�X)} = g(β�X),
σ 2V {g(β�X)} = σ 2, the matrix � in Theorem 2.1 reduces to be

� = E[{XX� − E(X|β�X)E(X�|β�X)}{g′(β�X)}2/σ 2].

Technically speaking, Theorem 2.1 shows that an undersmoothing approach is
unnecessary and that root-n consistency can be achieved. The asymptotic covari-
ance �β(1)0 in general can be estimated by replacing terms in its expression by

estimates of those terms. The asymptotic normality of β̂ = (β̂1, β̂
(1)�)� will fol-

low from Theorem 2.1 with a simple application of the multivariate delta-method,
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since β̂1 =
√

1 − ‖β̂(1)‖2. According to the results of Carroll et al. (1997), the
asymptotic variance of their estimator is �+. Define the block partition of matrix
� as follows:

� =
(

�11 �12
�21 �22

)
,(2.9)

where �11 is a positive constant, �12 is a (d − 1)-dimensional row vector, �21 is
a (d − 1)-dimensional column vector and �22 is a (d − 1) × (d − 1) nonnegative
definite matrix.

COROLLARY 1. Under the conditions of Theorem 2.1, we have

√
n(β̂ − β0)

L−→ Np(0,�β0)(2.10)

with �β0 = J{J��J}+J�|β=β0 . Further,

�β0 ≤ �+|β=β0

and a strict less-than sign holds when det(�22) = 0. That is, in this case EFM is
more efficient than that of Carroll et al. (1997).

The possible smaller limiting variance derived from the EFM approach partly
benefits from the reparameterization so that the quasi-likelihood can be adopted.
As we know, the quasi-likelihood is often of optimal property. In contrast, most
existing methods treat the estimation of β as if it were done in the framework of
linear dimension reduction. The target of linear dimension reduction is to find the
directions that can linearly transform the original variables vector into a vector of
one less dimension. For example, ADE and SIR are two relevant methods. How-
ever, when the link function μ(·) is identity, the limiting variance derived here may
not be smaller or equal to the ones of Wang et al. (2010) and Chang, Xue and Zhu
(2010) when the quasi-likelihood of (2.5) is applied.

2.3. Profile quasi-likelihood ratio test. In applications, it is important to test
the statistical significance of added predictors in a regression model. Here we es-
tablish a quasi-likelihood ratio statistic to test the significance of certain variables
in the linear index. The null hypothesis that the model is correct is tested against
a full model alternative. Fan and Jiang (2007) gave a recent review about gener-
alized likelihood ratio tests. Bootstrap tests for nonparametric regression, general-
ized partially linear models and single-index models have been systematically in-
vestigated [see Härdle and Mammen (1993), Härdle, Mammen and Müller (1998),
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Härdle, Mammen and Proenca (2001)]. Consider the testing problem:

H0 :g(·) = g

(
r∑

k=1

βkXk

)
(2.11)

←→ H1 :g(·) = g

(
r∑

k=1

βkXk +
d∑

k=r+1

βkXk

)
.

We mainly focus on testing βk = 0, k = r + 1, . . . , d , though the following test
procedure can be easily extended to a general linear testing Bβ̃ = 0 where B is
a known matrix with full row rank and β̃ = (βr+1, . . . , βd)�. The profile quasi-
likelihood ratio test is defined by

Tn = 2
{

sup
β∈�

Q̂(β) − sup
β∈�,β̃=0

Q̂(β)
}
,(2.12)

where Q̂(β) = ∑n
i=1 Q[μ{ĝ(β�Xi )}, Yi],Q[μ,y] = ∫ y

μ
s−y

V {μ−1(s)} ds and μ−1(·)
is the inverse function of μ(·). The following Wilks type theorem shows that the
distribution of Tn is asymptotically chi-squared and independent of nuisance pa-
rameters.

THEOREM 2.2. Under the assumptions of Theorem 2.1, if βk = 0, k = r +
1, . . . , d , then

Tn
L−→ χ2(d − r).(2.13)

3. Numerical studies.

3.1. Computation of the estimates. Solving the joint estimating equations
(2.1) and (2.6) poses some interesting challenges, since the functions ĝ(β�X) and
ĝ′(β�X) depend on β implicitly. Treating β�X as a new predictor (with given β),
(2.1) gives us ĝ, ĝ′ as in Fan, Heckman and Wand (1995). We therefore focus on
(2.6), as estimating equations. It cannot be solved explicitly, and hence one needs
to find solutions using numerical methods. The Newton–Raphson algorithm is one
of the popular and successful methods for finding roots. However, the computa-
tional speed of this algorithm crucially depends on the initial value. We propose
therefore a fixed-point iterative algorithm that is not very sensitive to starting val-
ues and is adaptive to larger dimension. It is worth noting that this algorithm can be
implemented in the case that d is slightly larger than n, because the resultant pro-
cedure only involves one-dimensional nonparametric smoothers, thereby avoiding
the data sparsity problem caused by high dimensionality.

Rewrite the estimating functions as Ĝ(β) = J�F̂(β) with

F̂(β) = (F̂1(β), . . . , F̂d(β))�
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and

F̂s(β) =
n∑

i=1

{Xsi − ĥs(β
�Xi)}μ′{ĝ(β�Xi)}ĝ′(β�Xi)V

−1{ĝ(β�Xi)}

× [Yi − μ{ĝ(β�Xi)}].
Setting Ĝ(β) = 0, we have that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−β2F̂1(β)/

√
1 − ∥∥β(1)

∥∥2 + F̂2(β) = 0,

−β3F̂1(β)/

√
1 − ∥∥β(1)

∥∥2 + F̂3(β) = 0,

· · ·
−βdF̂1(β)/

√
1 − ∥∥β(1)

∥∥2 + F̂d(β) = 0.

(3.1)

Note that ‖β(1)‖2 =∑d
r=2 β2

r , β1 =
√

1 − ‖β(1)‖2 and after some simple calcula-
tions, we can get that {

β1 = |F̂1(β)|/‖F̂(β)‖, s = 1,
β2

s = F̂ 2
s (β)/‖F̂(β)‖2, s ≥ 2,

and sign{βsF̂1(β)} = sign{F̂s(β)}, s ≥ 2. The above equation can also be rewritten
as

β
F̂1(β)

‖F̂(β)‖ = |F̂1(β)|
‖F̂(β)‖ × F̂(β)

‖F̂(β)‖ .(3.2)

Then solving the equation (2.6) is equivalent to finding a fixed point for (3.2).
Though ‖β(1)‖ < 1 holds almost surely in (3.2) and always ‖β‖ = 1, there will
be some trouble if (3.2) is directly used as iterative equations. Note that the value
of ‖F̂(β)‖ is used as denominator that may sometimes be small, which poten-
tially makes the algorithm unstable. On the other hand, the convergence rate
of the fixed-point iterative algorithm derived from (3.2) depends on L, where

‖ ∂{F̂(β)|/‖F̂(β)‖}
∂β ‖ ≤ L. For a fast convergence rate, it technically needs a shrink-

age value L. An ad hoc fix introduces a constant M , adding Mβ on both sides of
(3.2) and dividing by F̂1(β)/‖F̂(β)‖ + M :

β = M

F̂1(β)/‖F̂(β)‖ + M
β + |F̂1(β)|/‖F̂(β)‖2

F̂1(β)/‖F̂(β)‖ + M
F̂(β),

where M is chosen such that F̂1(β)/‖F̂(β)‖ + M 
= 0. In addition, to accelerate
the rate of convergence, we reduce the derivative of the term on the right-hand side
of the above equality, which can be achieved by choosing some appropriate M .
This is the iteration formulation in Step 2. Here the norm of βnew is not equal
to 1 and we have to normalize it again. Since the iteration in Step 2 makes βnew
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to violate the identifiability constraint with norm 1, we design (3.2) to include the
whole β vector. The possibility of renormalization for βnew avoids the difficulty of
controlling ‖β(1)

new‖ < 1 in each iteration in Step 2.
Based on these observations, the fixed-point iterative algorithm is summarized

as:

Step 0. Choose initial values for β , denoted by βold.
Step 1. Solve the estimating equation (2.1) with respect to α, which yields

ĝ(β�
oldxi ) and ĝ′(β�

oldxi ), 1 ≤ i ≤ n.
Step 2. Update βold with βold = βnew/‖βnew‖ by solving the equation (2.6) in

the fixed-point iteration

βnew = M

F̂1(βold)/‖F̂ (βold)‖ + M
βold + |F̂1(βold)|/‖F̂ (βold)‖2

F̂1(βold)/‖F̂ (βold)‖ + M
F̂(βold),

where M is a constant satisfying F̂1(β)/‖F̂ (β)‖ + M 
= 0 for any β .
Step 3. Repeat Steps 1 and 2 until max1≤s≤d |βnew,s − βold,s | ≤ tol is met with

tol being a prescribed tolerance.

The final vector βnew/‖βnew‖ is the estimator of β0. Similarly to other direct es-
timation methods [Horowitz and Härdle (1996)], the preceding calculation is easy
to implement. Empirically the initial value for β , (1,1, . . . ,1)�/

√
d can be used in

the calculations. The Epanechnikov kernel function K(t) = 3/4(1 − t2)I (|t | ≤ 1)

is used. The bandwidth involved in Step 1 can be chosen to be optimal for esti-
mation of ĝ(t) and ĝ′(t) based on the observations {β�

oldXi , Yi}. So the standard
bandwidth selection methods, such as K-fold cross-validation, generalized cross-
validation (GCV) and the rule of thumb, can be adopted. In this step, we recom-
mend K-fold cross-validation to determine the optimal bandwidth using the quasi-
likelihood as a criterion function. The K-fold cross-validation is not too compu-
tationally intensive while making K not take too large values (e.g., K = 5). Here
we recommend trying a number of smoothing parameters that smooth the data
and picking the one that seems most reasonable. As an adjustment factor, M will
increase the stability of iteration. Ideally, in each iteration an optimum value for
M should be chosen guaranteeing that the derivative on the right-hand side of the
iteration formulation in Step 2 is close to zero. Following this idea, M will be de-
pending the changes of β and F̂(β)/‖F̂(β)‖. This will be an expensive task due to
the computation for the derivative on the right-hand side of the iteration formula-
tion in Step 2. We therefore consider M as constant nonvarying in each iteration,
and select M by the K-fold cross-validation method, according to minimizing the
model prediction error. When the dimension d gets larger, M will get smaller. In
our simulation runs, we empirically search M in the interval [2/

√
d, d/2]. This

choice gives pretty good practical performance.
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3.2. Simulation results.

EXAMPLE 1 (Continuous response). We report a simulation study to investi-
gate the finite-sample performance of the proposed estimator and compare it with
the rMAVE [refined MAVE; for details see Xia et al. (2002)] estimator and the
EDR estimator [see Hristache et al. (2001), Polzehl and Sperlich (2009)]. We con-
sider the following model similar to that used in Xia (2006):

E(Y |β�X) = g(β�X), g(β�X) = (β�X)2 exp(β�X);
(3.3)

Var(Y |β�X) = σ 2, σ = 0.1.

Let the true parameter β = (2,1,0, . . . ,0)�/
√

5. Two sets of designs for X are
considered: Design (A) and Design (B). In Design (A), (Xs + 1)/2 ∼ Beta(τ,1),
1 ≤ s ≤ d and, in Design (B), (X1 + 1)/2 ∼ Beta(τ,1) and P(Xs = ±0.5) = 0.5,
s = 2,3,4, . . . , d . The data generated in Design (A) are not elliptically symmetric.
All the components of Design (B) are discrete except for the first component X1.
Y is generated from a normal distribution. This simulation data set consists of 400
observations with 250 replications. The results are shown in Table 1. All rMAVE,
EDR and EFM estimates are close to the true parameter vector for d = 10. How-
ever, the average estimation errors from rMAVE and EDR estimates for d = 50 are
about 2 and 1.5 times as large as those of the EFM estimates, respectively. This
indicates that the fixed-point algorithm is more adaptive to high dimension.

EXAMPLE 2 (Binary response). This simulation design assumes an underly-
ing single-index model for binary responses with

P(Y = 1|X) = μ{g(β�X)} = exp{g(β�X)}/[1 + exp{g(β�X)}],
(3.4)

g(β�X) = exp(5β�X − 2)/{1 + exp(5β�X − 3)} − 1.5.

The underlying coefficients are assumed to be β = (2,1,0, . . . ,0)�/
√

5. We con-
sider two sets of designs: Design (C) and Design (D). In Design (C), X1 and X2

TABLE 1
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.3)

Design (A) Design (B)

d τ rMAVE EDR EFM rMAVE EDR EFM

10 0.75 0.0559∗ 0.0520 0.0792 0.0522∗ 0.0662 0.0690
10 1.5 0.0323∗ 0.0316 0.0298 0.0417∗ 0.0593 0.0457
50 0.75 0.9900 0.7271 0.5425 0.9780 0.7712 0.4515
50 1.5 0.3776 0.3062 0.1796 0.4693 0.4103 0.2211

∗The values are adopted from Xia (2006).
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TABLE 2
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.4)

Design (C) Design (D)

d rMAVE EDR EFM rMAVE EDR EFM

10 0.5017 0.5281 0.4564 0.9614 0.9574 0.7415
50 2.0991 1.2695 1.1744 2.5040 2.4846 1.9908

follow the uniform distribution U(−2,2). In Design (D), X1 is also assumed to
be uniformly distributed in interval (−2,2) and (X2 + 1)/2 ∼ Beta(1,1). Similar
designs for generalized partially linear single-index models are assumed in Kane,
Holt and Allen (2004). Here a sample size of 700 is used for the case d = 10 and
3,000 is used for d = 50. Different sample sizes from Example 1 are used due to
varying complexity of the two examples. For this example, 250 replications are
simulated and the results are displayed in Table 2. In this set of simulations, the
average estimation errors from rMAVE estimates and EDR estimates are about 1.5
and 1.2 times as large as EFM estimates, under both Design (C) and Design (D)
for d = 10 or d = 50. The values in the row marked by d = 50 look a little bigger.
However, it is reasonable because the number of summands in the average estimate
error for d = 50 is five times as large as that for d = 10. Again it appears that the
EFM procedure achieves more precise estimators.

EXAMPLE 3 (A simple model). To illustrate the adaptivity of our algorithm to
high dimension, we consider the following simple single-index model:

Y = (β�X)2 + ε.(3.5)

The true parameter is β = (2,1,0, . . . ,0)�/
√

5; X is generated from Nd(2, I).
Both homogeneous errors and heterogeneous ones are considered. In the for-
mer case, ε ∼ N(0,0.22) and in the latter case, ε = exp(

√
5β�X/14)̃ε with

ε̃ ∼ N(0,1). The latter case is designed to show whether our method can han-
dle heteroscedasticity. A similar modeling setup was also used in Wang and Xia
(2008), Example 5. The simulated results given in Table 3 are based on 250 repli-
cates with a sample of n = 100 observations. An important observation from this
simulation is that the proposed EFM approach still works even when the dimen-
sion of the parameter is equal to or slightly larger than the number of observations.
It can be seen from Table 3 that our approach also performs well under the het-
eroscedasticity setup.

EXAMPLE 4 (An oscillating function model). A single-index model is de-
signed as

Y = sin(aβ�X) + ε,(3.6)
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TABLE 3
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.5)

ε d = 10 d = 50 d = 100 d = 120

rMAVE 0.0318 0.3484 — —
ε ∼ N(0,0.22) EDR 0.0363 0.5020 — —

EFM 0.0272 0.2302 2.9409 5.0010

rMAVE 0.3427 4.6190 — —
ε ∼ N(0, exp(

2X1+X2
7 )) EDR 0.2542 2.1112 — —

EFM 0.2201 1.7937 4.1435 6.4973

— means that the values cannot be calculated by rMAVE and EDR because of high dimension.

where β = (2,1,0, . . . ,0)�/
√

5, X is generated from Nd(2, I) and ε ∼ N(0,0.22).
The number of replications is 250 and the sample size n = 400. The simulation re-
sults are shown in Table 4. In these chosen values for a, we see that EFM performs
better than rMAVE and EDR. But as is understood, more oscillating functions are
more difficult to handle than those less oscillating functions.

EXAMPLE 5 (Comparison of variance). To make our simulation results com-
parable with those of Carroll et al. (1997), we mimic their simulation setup. Data
of size 200 are generated according to the following model:

Yi = sin{π(β�Xi − A)/(B − A)} + αZi + εi,(3.7)

where Xi are trivariate with independent U(0,1) components, Zi are independent
of Xi and Zi = 0 are for i odd and Zi = 1 for i even, and εi follow a normal
distribution N(0,0.01) independent of both Xi and Zi . The parameters are taken
to be β = (1,1,1)�/

√
3, α = 0.3, A = √

3/2 − 1.645/
√

12 and B = √
3/2 +

1.645/
√

12. Note that the EFM approach can still be applicable for this model as
the conditionally centered response Y given Z has the model as, because of the
independence between X and Z,

Yi − E(Yi |Zi) = a + sin{π(β�Xi − A)/(B − A)} + εi.

TABLE 4
Average estimation errors

∑d
s=1 |β̂s − βs | for model (3.6)

a = π/2 a = 3π/4

d rMAVE EDR EFM rMAVE EDR EFM

10 0.0981 0.0918 0.0737 0.0970 0.0745 0.0725
50 0.5247 0.6934 0.4355 0.6350 1.8484 0.5407
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TABLE 5
Estimation for β of model (3.7) based on two randomly chosen samples

One group of sample Another group of sample

X1 X2 X3 X1 X2 X3

GPLSIM est. 0.595∗ 0.568∗ 0.569∗ 0.563∗ 0.574∗ 0.595∗
GPLSIM s.e. 0.013∗ 0.013∗ 0.013∗ 0.010∗ 0.010∗ 0.010∗
EFM est. 0.579 0.575 0.577 0.573 0.577 0.580
EFM s.e. 0.011 0.011 0.011 0.010 0.010 0.010

∗The values are adopted from Carroll et al. (1997). We abbreviate “estimator” to “est.” and “standard
error” to “s.e.,” which are computed from the sample version of �

β̂
defined in (2.10).

As Zi are dummy variables, estimating E(Yi |Zi) is simple. Thus, when we regard
Yi −E(Yi |Zi) as response, the model is still a single-index model. Here the number
of replications is 100. The method derived from Carroll et al. (1997) is referred to
be the GLPSIM approach. The numerical results are reported in Table 5. It shows
that compared with the GPLSIM estimates, the EFM estimates have smaller bias
and smaller (or equal) variance. Also in this example both EFM and GPLSIM can
provide reasonably accurate estimates.

Performance of profile quasi-likelihood ratio test. To illustrate how the profile
quasi-likelihood ratio performs for linear hypothesis problems, we simulate the
same data as above, except that we allow some components of the index to follow
the null hypothesis:

H0 :β4 = β5 = · · · = βd = 0.

We examine the power of the test under a sequence of the alternative hypotheses
indexed by parameter δ as follows:

H1 :β4 = δ, βs = 0 for s ≥ 5.

When δ = 0, the alternative hypothesis becomes the null hypothesis.
We examine the profile quasi-likelihood ratio test under a sequence of alter-

native models, progressively deviating from the null hypothesis, namely, as δ in-
creases. The power functions are calculated at the significance level: 0.05, us-
ing the asymptotic distribution. We calculate test statistics from 250 simulations
by employing the fixed-point algorithm and find the percentage of test statistics
greater than or equal to the associated quantile of the asymptotic distribution. The
pictures in Figures 1, 2 and 3 illustrate the power function curves for two mod-
els under the given significance levels. The power curves increase rapidly with δ,
which shows the profile quasi-likelihood ratio test is powerful. When δ is close
to 0, the test sizes are all approximately the significance levels.
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FIG. 1. Simulation results for Design (A) in Example 1. The left graphs depict the case τ = 1.5
with τ the first parameter in Beta(τ,1). The right graphs are for τ = 0.75.

FIG. 2. Simulation results for Design (B) in Example 1. The left graphs depict the case τ = 1.5
with τ the first parameter in Beta(τ,1). The right graphs are for τ = 0.75.

FIG. 3. Simulation results for Example 2. The left graphs depict the case of Design (C) with pa-
rameter dimension being 10 and 50. The right graphs are for Design (D).
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3.3. A real data example. Income, to some extent, is considered as an index
of a successful life. It is generally believed that demographic information, such as
education level, relationship in the household, marital status, the fertility rate and
gender, among others, has effects on amounts of income. For example, Murray
(1997) illustrated that adults with higher intelligence have higher income. Kohavi
(1996) predicted income using a Bayesian classifier offered by a machine learn-
ing algorithm. Madalozzo (2008) examined income differentials between married
women and those who remain single or cohabit by using multivariate linear regres-
sion. Here we will use the single-index model to explore the relationship between
income and some of its possible determinants.

We use the “Adult” database, which was extracted from the Census Bureau
database and is available on website: http://archive.ics.uci.edu/ml/datasets/Adult.
It was originally used to model income exceeds over USD 50,000/year based on
census data. The purpose of using this example is to understand the personal in-
come patterns and demonstrate the performance of the EFM method in real data
analysis. After excluding a few missing data, the data set in our study includes
30,162 subjects. The selected explanatory variables are:

• sex (categorical): 1 = Male, 0 = Female.
• native-country (categorical): 1 = United-States, 0 = others.
• work-class (categorical): 1 = Federal-gov, 2 = Local-gov, 3 = Private, 4 = Self-

emp-inc (self-employed, incorporated), 5 = Self-emp-not-inc (self-employed,
not incorporated), 6 = State-gov.

• marital-status (categorical): 1 = Divorced, 2 = Married-AF-spouse (married,
armed forces spouse present), 3 = Married-civ-spouse (married, civilian spouse
present), 4 = Married-spouse-absent [married, spouse absent (exc. separated)],
5 = Never-married, 6 = Separated, 7 = Widowed.

• occupation (categorical): 1 = Adm-clerical (administrative support and cler-
ical), 2 = Armed-Forces, 3 = Craft-repair, 4 = Exec-managerial (executive-
managerial), 5 = Farming-fishing, 6 = Handlers-cleaners, 7 = Machine-op-
inspct (machine operator inspection), 8 = Other-service, 9 = Priv-house-serv
(private household services), 10 = Prof-specialty (professional specialty), 11 =
Protective-serv, 12 = Sales, 13 = Tech-support, 14 = Transport-moving.

• relationship (categorical): 1 = Husband, 2 = Not-in-family, 3 = Other-relative,
4 = Own-child, 5 = Unmarried, 6 = Wife.

• race (categorical): 1 = Amer-Indian-Eskimo, 2 = Asian-Pac-Islander, 3 =
Black, 4 = Other, 5 = White.

• age (integer): number of years of age and greater than or equal to 17.
• fnlwgt (continuous): The final sampling weights on the CPS files are controlled

to independent estimates of the civilian noninstitutional population of the United
States.

• education (ordinal): 1 = Preschool (less than 1st Grade), 2 = 1st–4th, 3 = 5th–
6th, 4 = 7th–8th, 5 = 9th, 6 = 10th, 7 = 11th, 8 = 12th (12th Grade no

http://archive.ics.uci.edu/ml/datasets/Adult


THE EFM APPROACH FOR SINGLE-INDEX MODELS 1677

Diploma), 9 = HS-grad (high school Grad-Diploma or Equiv), 10 = Some-
college (some college but no degree), 11 = Assoc-voc (associate degree-
occupational/vocational), 12 = Assoc-acdm (associate degree-academic pro-
gram), 13 = Bachelors, 14 = Masters, 15 = Prof-school (professional school),
16 = Doctorate.

• education-num (continuous): Number of years of education.
• capital-gain (continuous): A profit that results from investments into a capital

asset.
• capital-loss (continuous): A loss that results from investments into a capital as-

set.
• hours-per-week (continuous): Usual number of hours worked per week.

Note that all the explanatory variables up to “age” are categorical with more
than two categories. As such, we use dummy variables to link up the correspond-
ing categories. Specifically, for every original explanatory variable up to “age,” we
use dummy variables to indicate it in which the number of dummy variables is
equal to the number of categories minus one. By doing so, we then have 41 ex-
planatory variables, where the first 35 ones are dummy and the remaining ones are
continuous. After a preliminary data check, we find that the explanatory variables
X37 = “fnlwgt,” X39 = “capital-gain” and X40 = “capital-loss” are very skewed
to the left and the latter two often take zero value. Before fitting (3.8) we first
make a logarithm transformation for these three variables to have log(“fnlwgt”),
log(1 + “capital-gain”) and log(1 + “capital-loss”). To make the explanatory vari-
ables comparable in scale, we standardize each of them individually to obtain mean
0 and variance 1. Since “education” and “education-num” are correlated, “edu-
cation” is dropped from the model and it results in a significantly smaller mean
residual deviance.

The single-index model will be used to model the relationship between income
and the relevant 43 predictors X = (X1, . . . ,X43)

�:

P(“income” > 50,000|X) = exp{g(β�X)}/[1 + exp{g(β�X)}],(3.8)

where Y = I (“income” > 50,000) and β = (β1, . . . , β43)
� and βs represents the

effect of the sth predictor. Formally, we are testing the effect of gender, that is,

H0 :β1 = 0 ←→ H1 :β1 
= 0.(3.9)

The fixed-point iterative algorithm is employed to compute the estimate for β .
To illustrate further the practical implications of this approach, we compare our
results to those obtained by using an ordinary logistic regression (LR). The coef-
ficients of the two models are given in Table 6. To make the analyses presented in
the table comparable, we consider two standardizations. First, we standardize ev-
ery explanatory variable with mean 0 and variance 1 so that the coefficients can be
used to compare the relative influence from different explanatory variables. How-
ever, such a standardization does not allow us to compare between the single-index
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TABLE 6
Fitted coefficients for model (3.8) (estimated standard errors in parentheses)

Variables β̂ of SIM β̂ of LR

Sex 0.1102 (0.0028) 0.1975 (0.0181)

Native-country 0.0412 (0.0027) 0.0354 (0.0116)

Work-class
Federal-gov 0.1237 (0.0059) 0.0739 (0.0108)

Local-gov 0.2044 (0.0065) 0.0155 (0.0135)

Private −0.2603 (0.0075) 0.0775 (0.0200)

Self-em-inc 0.1252 (0.0068) 0.0520 (0.0112)

Self-emp-not-inc 0.1449 (0.0066) −0.0157 (0.0147)

Marital-Status
Divorced −0.0353 (0.0061) −0.0304 (0.0264)

Married-AF-spouse 0.0195 (0.0036) 0.0333 (0.0079)

Married-civ-spouse 0.3257 (0.0150) 0.4545 (0.0754)

Married-spouse-absent −0.0115 (0.0029) −0.0095 (0.0146)

Never-married −0.1876 (0.0085) −0.1452 (0.0370)

Separated −0.0412 (0.0050) −0.0221 (0.0179)

Occupation
Adm-clerical −0.0302 (0.0050) 0.0131 (0.0164)

Armed-Forces −0.0086 (0.0031) −0.0091 (0.0131)

Craft-repair −0.0913 (0.0050) 0.0263 (0.0146)

Exec-managerial 0.1813 (0.0061) 0.1554 (0.0148)

Farming-fishing −0.0370 (0.0036) −0.0772 (0.0125)

Handlers-cleaners −0.0947 (0.0033) −0.0662 (0.0153)

Machine-op-inspct −0.1067 (0.0038) −0.0290 (0.0133)

Other-service −0.1227 (0.0045) −0.1192 (0.0195)

Priv-house-serv −0.0501 (0.0020) −0.0833 (0.0379)

Prof-specialty 0.2502 (0.0065) 0.1153 (0.0160)

Protective-serv 0.1954 (0.0061) 0.0508 (0.0095)

Sales 0.0316 (0.0050) 0.0615 (0.0147)

Tech-support 0.0181 (0.0037) 0.0619 (0.0102)

Relationship
Husband −0.1249 (0.0093) −0.3264 (0.0254)

Not-in-family −0.0932 (0.0093) −0.2074 (0.0612)

Other-relative −0.0958 (0.0038) −0.1498 (0.0219)

Own-child −0.2218 (0.0076) −0.3769 (0.0498)

Unmarried −0.1124 (0.0067) −0.1739 (0.0446)

Race
Amer-Indian-Eskimo −0.0252 (0.0024) −0.0226 (0.0109)

Asian-Pac-Islander 0.0114 (0.0030) 0.0062 (0.0101)

Black −0.0300 (0.0024) −0.0182 (0.0111)

Other −0.0335 (0.0021) −0.0286 (0.0129)
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TABLE 6
(Continued)

Variables β̂ of SIM β̂ of LR

Age 0.2272 (0.0042) 0.1798 (0.0111)

Fnlwgt 0.0099 (0.0028) 0.0414 (0.0092)

Education-num 0.4485 (0.0045) 0.3732 (0.0122)

Capital-gain 0.2859 (0.0055) 0.2582 (0.0084)

Capital-loss 0.1401 (0.0042) 0.1210 (0.0078)

Hours-per-week 0.2097 (0.0035) 0.1823 (0.0101)

model and the ordinary logistic regression model. We then further normalize the
coefficients to be with Euclidean norm 1, and then the estimates of their standard
errors are also adjusted accordingly. The single-index model provides more reason-
able results: X38 = “education-num” has its strongest positive effect on income;
those who got a bachelor’s degree or higher seem to have much higher income
than those with lower education level. In contrast, results derived from a logistic
regression show that “married-civ-spouse” is the largest positive contributor.

Some other interesting conclusions could be obtained by looking at the output.
Both “sex” and “native-country” have a positive effect. Persons who worked with-
out pay in a family business, unpaid childcare and others earn a lower income
than persons who worked for wages or for themselves. The “fnlwgt” attribute
has a positive relation to income. Males are likely to make much more money
than females. The expected sign for marital status except the married (married-
AF-spouse, married-civ-spouse) is negative, given that the household production
theory affirms that division of work is efficient when each member of a family
dedicates his or her time to the more productive job. Men usually receive relatively
better compensation for their time in the labor market than in home production.
Thus, the expectation is that married women dedicate more time to home tasks
and less to the labor market, and this would imply a different probability of work-
ing given the marital status choice.

Also “race” influences the income and Asian or Pacific Islanders seem to make
more money than other races. And also, one’s income significantly increases as
working hours increase. Both “capital-gain” and “capital-loss” have positive ef-
fects, so we think that people make more money who can use more money to in-
vest. The presence of young children has a negative influence on the income. “age”
accounts for the experience effect and has a positive effect. Hence the conclusion
based on the single-index model is consistent with what we expect.

To help with interpretation of the model, plots of β�X versus predicted re-
sponse probability and ĝ(β�X) are generated, respectively, and can be found on
the right column in Figure 4. When the estimated single-index is greater than 0,
ĝ(β̂X) shows some degree of curvature. An alternative choice is to fit the data
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FIG. 4. Adult data: The left graph is a plot of predicted response probability based on the single-in-
dex model. The right graph is the fitted curve for the unknown link function g(·).

using generalized partially linear additive models (GPLAM) with nonparametric
components of continuous explanatory variables. The relationships among “age,”
“fnlwgt,” “capital-gain,” “capital-loss” and “hours-per-week” all show nonlinear-
ity. The mean residual deviances of SIM, LR and GPLAM are 0.7811, 0.6747 and
0.6240, respectively. SIM under study provides a slightly worse fit than the others.
However, we note that LR is, up to a link function, linear about X, and, according
to the results of GPLAM, which is a more general model than LR, the actual rela-
tionship cannot have such a structure. SIM can reveal nonlinear structure. On the
other hand, although the minimum mean residual deviance can be not surprisingly
attained by GPLAM, this model has, respectively, ≈ 34 and 41 more degrees of
freedom than SIM and LR have.

We now employ the quasi-likelihood ratio test to the test problem (3.9). The
QLR test statistic is 166.52 with one degree of freedom, resulting in a P -value of
< 10−5. Hence this result provides strong evidence that gender has a significant
influence on high income.

The Adult data set used in this paper is a rich data set. Existing work mainly
focused on the prediction accuracy based on machine learning methods. We make
an attempt to explore the semiparametric regression pattern suitable for the data.
Model specification and variable selection merit further study.

APPENDIX: OUTLINE OF PROOFS

We first introduce some regularity conditions.
Regularity Conditions:

(a) μ(·),V (·), g(·),h(·) = E(X|β�X = ·) have two bounded and continuous
derivatives. V (·) is uniformly bounded and bounded away from 0.

(b) Let q(z, y) = μ′(z)V −1(z){y −μ(z)}. Assume that ∂q(z, y)/∂z < 0 for z ∈ R
and y in the range of the response variable.
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(c) The largest eigenvalue of �22 is bounded away from infinity.
(d) The density function fβ�x(β

�x) of random variable β�X is bounded away
from 0 on Tβ and satisfies the Lipschitz condition of order 1 on Tβ , where
Tβ = {β�x : x ∈ T } and T is a compact support set of X.

(e) Let Q∗[β] = ∫
Q[μ{g(β�x)}, y]f (y|β0�x)f (β0�x) dy d(β0�x) with β0 de-

noting the true parameter value and Q[μ,y] = ∫ y
μ

s−y

V {μ−1(s)} ds. Assume that

Q∗[β] has a unique maximum at β = β0, and

E
[
sup
β(1)

sup
β�X

|μ′{g(β�X)}V −1{g(β�X)}[Y − μ{g(β�X)}]|2
]
< ∞

and E‖X‖2 < ∞.
(f) The kernel K is a bounded and symmetric density function with a bounded

derivative, and satisfies∫ ∞
−∞

t2K(t) dt 
= 0 and
∫ ∞
−∞

|t |jK(t) dt < ∞, j = 1,2, . . . .

Condition (a) is some mild smoothness conditions on the involved functions
of the model. We impose condition (b) to guarantee that the solutions of (2.1),
ĝ(t) and ĝ′(t), lie in a compact set. Condition (c) implies that the second mo-
ment of estimating equation (2.7), tr(J��J), is bounded. Then the CLT can be
applied to G(β). Condition (d) means that X may have discrete components and
the density function of β�X is positive, which ensures that the denominators in-
volved in the nonparametric estimators, with high probability, are bounded away
from 0. The uniqueness condition in condition (e) can be checked in the following
case for example. Assume that Y is a Poisson variable with mean μ{g(β�x)} =
exp{g(β�x)}. The maximizer β0 of Q∗[β] is equal to the solution of the equation
E[E{[exp{g(β0�X)} − exp{g(β�X)}]g′(β�X)}J�X|β0�X}] = 0. β0 is unique
when g′(·) is not a zero-valued constant function and the matrix J�E(XX�)J is
not singular. Under the second part of condition (e), it is permissible to interchange
differentiation and integration when differentiating E[Q[μ{g(β�X)}, Y ]]. Condi-
tion (f) is a commonly used smoothness condition, including the Gaussian kernel
and the quadratic kernel. All of the conditions can be relaxed at the expense of
longer proofs.

Throughout the Appendix, Zn = OP (an) denotes that a−1
n Zn is bounded in

probability and the derivation for the order of Zn is based on the fact that

Zn = OP {
√

E(Z2
n)}. Therefore, it allows to apply the Cauchy–Schwarz inequal-

ity to the quantity having stochastic order an.

A.1. Proof of Proposition 1. We outline the proof here, while the details are
given in the supplementary materials [Cui, Härdle and Zhu (2010)].
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(i) Conditions (a), (b), (d) and (f) are essentially equivalent conditions given
by Carroll, Ruppert and Welsh (1998), and as a consequence the derivation of bias
and variance for ĝ(β�x) and ĝ′(β�x) is similar to that of Carroll, Ruppert and
Welsh (1998).

(ii) The first equation of (2.1) is

0 =
n∑

j=1

Kh(β
�Xj − β�x)μ′{α̂0 + α̂1(β

�Xj − β�x)}

× V −1{α̂0 + α̂1(β
�Xj − β�x)}[Yj − μ{α̂0 + α̂1(β

�Xj − β�x)}].
Taking derivatives with respect to β(1) on both sides, direct observations lead to

∂α̂0

∂β(1)
= {B(β�x)}−1{A1(β

�x) + A2(β
�x) + A3(β

�x)},

where

B(β�x) = −
n∑

j=1

Kh(β
�Xj − β�x)q ′

z{α̂0 + α̂1(β
�Xj − β�x), Yj },

A1(β
�x) =

n∑
j=1

Kh(β
�Xj − β�x)J�(Xj − x)q ′

z{α̂0 + α̂1(β
�Xj − β�x), Yj }α̂1,

A2(β
�x) =

n∑
j=1

Kh(β
�Xj − β�x)q ′

z{α̂0 + α̂1(β
�Xj − β�x), Yj }

× (β�Xj − β�x)
∂α̂1

∂β(1)
,

A3(β
�x) =

n∑
j=1

h−1K ′
h(β

�Xj − β�x)J�(Xj − x)q{α̂0 + α̂1(β
�Xj − β�x), Yj }

with K ′
h(·) = h−1K ′(·/h). Note that ∂α̂0/∂β(1) = ∂ĝ(β�x)/∂β(1); then we have

∂ĝ(β�x)

∂β(1)
= {B(β�x)}−1A1(β

�x)

(A.1)
+ {B(β�x)}−1A2(β

�x) + {B(β�x)}−1A3(β
�x).

We will prove that

E‖{B(β�x)}−1A1(β
�x) − g′(β�x)J�{x − h(β�x)}‖2

(A.2)
= OP (h4 + n−1h−3),

the second term in (A.1) is of order OP (h4 + n−1h), and the third term is of order
OP (h4 + n−1h−3). The combination of (A.1) and these three results can directly
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lead to result (ii) of Proposition 1. The detailed proof is summarized in three steps
and is given in the supplementary materials [Cui, Härdle and Zhu (2010)].

(iii) By mimicking the proof of (ii), we can show that (iii) holds. See supple-
mentary materials for details.

A.2. Proofs of (2.6) and (2.7). It is proved in the supplementary materials
[Cui, Härdle and Zhu (2010)].

A.3. Proof of Theorem 2.1. (i) Note that the estimating equation defined in
(2.6) is just the gradient of the following quasi-likelihood:

Q̂(β) =
n∑

i=1

Q[μ{ĝ(β�Xi )}, Yi]

with Q[μ,y] = ∫ μ y−s

V {μ−1(s)} ds and μ−1(·) is the inverse function of μ(·). Then

for β(1) satisfying (

√
1 − ‖β(1)‖2,β(1)�)� ∈ �, we have

β̂(1) = arg max
β(1)

Q̂(β).

The proof is based on Theorem 5.1 in Ichimura (1993). In that theorem the consis-
tency of β(1) is proved by means of proving that

sup
β(1)

∣∣∣∣∣1n
n∑

i=1

Q[μ{ĝ(β�Xi )}, Yi] − 1

n

n∑
i=1

Q[μ{g(β�Xi )}, Yi]
∣∣∣∣∣= OP (1),(A.3)

sup
β(1)

∣∣∣∣∣1n
n∑

i=1

Q[μ{g(β�Xi )}, Yi] − 1

n

n∑
i=1

E[Q[μ{g(β�Xi)}, Yi]]
∣∣∣∣∣= OP (1)(A.4)

and ∣∣∣∣∣1n
n∑

i=1

Q[μ{ĝ(β�
0 Xi)}, Yi] − 1

n

n∑
i=1

E[Q[μ{g(β�
0 Xi )}, Yi]]

∣∣∣∣∣= OP (1).(A.5)

Regarding the validity of (A.5), this directly follows from (A.3) and (A.4). The
type of uniform convergence result such as (A.4) has been well established in the
literature; see, for example, Andrews (1987). We now verify the validity of (A.3),
which reduces to showing the uniform convergence of the estimator ĝ(t) under
condition (e) [see Ichimura (1993)]. This can be obtained in a similar way as in
Kong, Linton and Xia (2010), taking into account that the regularity conditions
imposed in Theorem 2.1 are stronger than the corresponding ones in that paper.

(ii) Recall the notation J,� and G(β) introduced in Section 2. By (2.7), we
have shown that

√
n
(
β̂(1) − β(1)0)= 1√

n
{J��J}+G(β) + OP (1).(A.6)

Theorem 2.1 follows directly from the above asymptotic expansion and the fact
that E{G(β)G�(β)} = nJ��J. �
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A.4. Proof of Corollary 1. The asymptotic covariance of β̂ can be obtained
by adjusting the asymptotic covariance of β̂(1) via the multivariate delta method,
and is of form J(J��J)+J�. Next we will compare this asymptotic covariance
with that (denoted by �+) given in Carroll et al. (1997). Write � as

� =
(

�11 �12
�21 �22

)
,

where �22 is a (d −1)×(d −1) matrix. We will next investigate two cases, respec-

tively: det(�22) 
= 0 and det(�22) = 0. Let α = −β(1)/

√
1 − ‖β(1)‖2 = −β(1)/β1.

Consider the case that det(�22) 
= 0. Because rank(�) = d − 1, det(�11�22 −
�21�12) = 0. Note that �22 is nondegenerate; it can be easily shown that �11 =
�12�

−1
22 �21. Combining this with the following fact:

J��J = (α Id−1 )

(
�11 �12
�21 �22

)(
ατ

Id−1

)
= �22 + (

�21/
√

�11 +√
�11α

)(
�12/

√
�11 +√

�11α
�)− �21�12/�11,

we can get that J��J is nondegenerate. In this situation, its inverse (J��J)+ is
just the ordinary inverse (J��J)−1. Then J(J��J)+J� = {J(J��J)−1/2}{(J� ×
�J)−1/2J�}, a full-rank decomposition. Then

{J(J��J)+J�}+ = {J(J��J)−1/2}
× {(J��J)−1/2J�J(J��J)−1J�J(J��J)−1/2}−1

× {(J��J)−1/2J�}
= J(J�J)−1J��J(J�J)−1J�

= �.

This means that J(J��J)+J� = �+.
When det(�22) = 0, we can obtain that

�+ =
(

1/�11 + �12�
+
22.1�21/�

2
11 −�12�

+
22.1/�11

−�+
22.1�21/�11 �+

22.1

)

with �22.1 = �22 − �21�12/�11. Write J(J��J)+J� as(
α�(J��J)+α α�(J��J)+
(J��J)+α (J��J)+

)
.

Note that J��J = �22.1 + (�21/
√

�11 + √
�11α)(�12/

√
�11 + √

�11α
�), so

J��J ≥ �22.1. Combining this with rank(�22) = d − 2, we have that (J��J)+ ≤
�+

22.1. It is easy to check that α��22.1 = 0, so α ⊥ span(�22.1) and α��+
22.1α = 0,

and then α�(J��J)+ = 0. In this situation, J(J��J)+J� ≤ �+ and the stick less-
than sign holds since J��J 
= �22.1 and 1/�11 > 0. �
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A.5. Proof of Theorem 2.2. Under H0, we can rewrite the index vector as

β = [e B]�(

√
1 − ‖ω(1)‖2,ω(1)τ )� where e = (1,0, . . . ,0)� is an r-dimensional

vector,

B =
(

0� 0
Ir−1 0

)
is an r × (d − 1) matrix and ω(1) = (β2, . . . , βr)

� is an (r − 1)× 1 vector. Let ω =
(

√
1 − ‖ω(1)‖2,ω(1)�)�. So under H0 the estimator is also the local maximizer ω̂

of the problem

Q̂([ e B ]�ω̂) = sup
‖ω(1)‖<1

Q̂([ e B ]�ω).

Expanding Q̂(B�ω̂) at β̂(1) by a Taylor’s expansion and noting that ∂Q̂(β)/

∂β(1)|
β(1)=β̂(1) = 0, then Q̂(β̂) − Q̂(B�ω̂) = T1 + T2 + OP (1), where

T1 = −1

2

(
β̂(1) − B�ω̂

)� ∂2Q̂(β)

∂β(1)∂β(1)τ

∣∣∣∣
β(1)=β̂(1)

(
β̂(1) − B�ω̂

)
,

T2 = 1

6

(
β̂(1) − B�ω̂

)�
×

∂{(β̂(1) − B�ω̂)�∂2Q̂(β)/(∂β(1) ∂β(1)τ )|
β(1)=β̂(1) (β̂

(1) − B�ω̂)}
∂β(1)

.

Assuming the conditions in Theorem 2.1 and under the null hypothesis H0, it is
easy to show that

√
n(B�ω̂ − B�ω) = 1√

n
B�B(J��J)+G(β) + OP (1).

Combining this with (A.6), under the null hypothesis H0,
√

n
(
β̂(1) − B�ω̂(1))
= 1√

n
(J��J)1/2+{Id−1 − (J��J)1/2B�B(J��J)1/2+}(A.7)

× (J��J)1/2+G(β) + oP (1).

Since 1√
n

G(β) = OP (1), ∂2Q̂(β)

∂β(1) ∂β(1)τ |β(1) = −nJ��J + OP (n) and matrix J��J

has eigenvalues uniformly bounded away from 0 and infinity, we have ‖β̂(1) −
B�ω̂(1)‖ = OP (n−1/2) and then |T2| = OP (1). Combining this and (A.7), we have

Q̂(β̂) − Q̂(B�ω̂) = n

2

(
β̂(1) − B�ω̂(1))�J��J

(
β̂(1) − B�ω̂(1))

= n

2
G�(β)(J��J)1/2+P(J��J)1/2+G(β)
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with P = Id−1 − (J��J)1/2B�B(J��J)1/2+. Here P is idempotent having rank
d − r , so it can be written as P = S�S where S ia a (d − r) × (d − 1) matrix
satisfying SS� = Id−r . Consequently,

2{Q̂(β̂) − Q̂(B�ω̂)} = (√
nS(J��J)1/2+G(β)

)�(√
nS(J��J)1/2+G(β)

)
L−→ χ2(d − r).
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proofs of Proposition 1, (2.6) and (2.7).
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