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This paper proposes a nonparametric test of Granger causality in quantile. Zheng
(1998, Econometric Theory 14, 123–138) studied the idea to reduce the problem
of testing a quantile restriction to a problem of testing a particular type of mean
restriction in independent data. We extend Zheng’s approach to the case of dependent
data, particularly to the test of Granger causality in quantile. Combining the results
of Zheng (1998) and Fan and Li (1999, Journal of Nonparametric Statistics 10,
245–271), we establish the asymptotic normal distribution of the test statistic under
a β-mixing process. The test is consistent against all fixed alternatives and detects
local alternatives approaching the null at proper rates. Simulations are carried out
to illustrate the behavior of the test under the null and also the power of the test
under plausible alternatives. An economic application considers the causal relations
between the crude oil price, the USD/GBP exchange rate, and the gold price in the
gold market.

1. INTRODUCTION

Whether movements in one economic variable cause reactions in another vari-
able is an important issue in economic policy and also for financial investment
decisions. A framework for investigating causality between economic indicators
has been developed by Granger (1969). Testing for Granger causality between
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(MOEHRD) (KRF-2006-B00002), and Härdle and Song’s work was supported by the Deutsche Forschungsgemein-
schaft through the SFB 649 “Economic Risk.” We thank the editor, two anonymous referees, and Holger Dette for
concrete suggestions on improving the manuscript and restructuring the paper. Their valuable comments and sugges-
tions are gratefully acknowledged. Address correspondence to Kiho Jeong, Kyungpook National University, Korea;
e-mail: khjeong@knu.ac.kr.

c© Cambridge University Press 2012 861



862 KIHO JEONG ET AL.

economic time series has been since studied intensively in empirical macroeco-
nomics and empirical finance. The majority of research results were obtained in
the context of Granger causality in the conditional mean. The conditional mean,
though, is a questionable element of analysis if the distributions of the variables
involved are nonelliptic or fat tailed as is to be expected with, for example, finan-
cial returns. The focus of a causality analysis on the mean might result in unclear
news. The conditional mean is only one element of an overall summary for the
conditional distribution. A tail area causal relation may be quite different from
a causality based on the center of the distribution. Lee and Yang (2007) explore
money-income Granger causality in the conditional quantile and find that Granger
causality is significant in tail quantiles, whereas it is not significant in the center
of the distribution.

An illustrating motivation for the research presented here is from labor market
analysis where one tries to find out how income depends on the age of the em-
ployee for different education levels, genders, and nationalities, and so on (dis-
crimination effects); see, for example, Buchinsky (1995). In particular, the effect
of education on income is summarized by the basic claim of Day and Newburger
(2007): At most ages, more education equates with higher earnings, and the pay-
off is most notable at the highest educational level, which is actually from the
point of view of mean regression. However, whether this difference is signifi-
cant or not is still questionable, especially for different ends of the (conditional)
income distribution. Härdle, Ritov, and Song (2009) show that for the 0.20 quan-
tile confidence bands for income given “university,” “apprenticeship,” and “low
education” status do not differ significantly from one another although they be-
come progressively lower, which indicates that high education does not equate
to higher earnings significantly for the lower tails of income, whereas increasing
age seems to be the main driving force. For the conditional median, the bands
for “university” and “low education” differ significantly. For the 0.80 quantiles,
all conditional quantiles differ, which indicates that higher education is associ-
ated with higher earnings. However, these findings do not necessarily indicate
causalities. To answer the question “Does education Granger cause income in
various conditional quantiles?” the concept of Granger causality in means can-
not be used to estimate or test for these effects. Hence the need for the concept
of Granger causality in quantiles and the need to develop tests for these effects
emerge.

Another motivation comes from controlling and monitoring downside market
risk and investigating large comovements between financial markets. These are
important for risk management and portfolio/investment diversification (Hong,
Liu, and Wang, 2009). Various other risk management tasks are described in
Bollerslev (2001) and Campbell and Cochrane (1999) indicating the impor-
tance of Granger causality in quantile. Yet another motivation comes from the
well-known robustness properties of the conditional quantile: like the paral-
lel boxplot—calculated across an explanatory variable—the set of conditional
quantiles characterizes the entire distribution in more detail.
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Based on the kernel method, we propose a nonparametric test for Granger
causality in quantile. Testing conditional quantile restrictions by nonparametric
estimation techniques in dependent data situations has not been considered in the
literature before. This paper intends to fill this literature gap. In an unpublished
working paper that has been independently carried out from ours, Lee and Yang
(2007) also propose a test for Granger causality in the conditional quantile. Their
test, however, relies on linear quantile regression and thus is subject to possible
functional misspecification of quantile regression. Recently, Hong et al. (2009) in-
vestigated Granger causality in value at risk (VaR) with a corresponding (kernel-
based) test. Their method, however, offers two possible improvements. The first is
that it needs a parametric specification of VaR, again subject to misspecification
errors. The second is that their test does not directly check causality but rather a
necessary condition for causality.

The problem of testing conditional mean restrictions using nonparametric es-
timation techniques has been actively studied for dependent data. Among the re-
lated work, the testing procedures of Fan and Li (1999) and Li (1999) use the
general hypothesis of the form E(ε|z) = 0, where ε and z are the regression er-
ror term and the vector of regressors, respectively. They consider the distance
measure of J = E[εE(ε|z) f (z)] to construct kernel-based procedures. For the ad-
vantages of using this distance measure in kernel-based testing procedures, see
Li and Wang (1998) and Hsiao and Li (2001). A feasible test statistic based on
J has a second-order degenerate U-statistic as the leading term under the null
hypothesis. Generalizing the result of Hall (1984) for independent data, Fan and
Li (1999) establish the asymptotic normal distribution for a general second-order
degenerate U -statistic with dependent data.

All the results stated previously on testing mean restrictions are however irrel-
evant when testing quantile restrictions. Zheng (1998) proposed an idea to trans-
form quantile restrictions to mean restrictions in independent data. Following his
idea, one can use the existing technical results on testing mean restrictions in test-
ing quantile restrictions. In this paper, by combining Zheng’s idea and the results
of Fan and Li (1999) and Li (1999), we derive a test statistic for Granger causal-
ity in quantile and establish the asymptotic normal distribution of the proposed
test statistic under a β-mixing process. Our testing procedure can be extended to
several hypothesis testing problems with conditional quantile in dependent data;
for example, testing a parametric regression functional form, testing the insignifi-
cance of a subset of regressors, and testing semiparametric versus nonparametric
regression models.

The paper is organized as follows. Section 2 presents the test statistic. Sec-
tion 3 establishes the asymptotic normal distribution under the null hypothesis of
no causality in quantile. Section 4 displays a fairly extensive simulation study to
illustrate the behavior of the test under the null, in addition to the power of the
test under plausible alternatives. Section 5 considers the causal relations between
the crude oil and gold prices as an economic application. Section 6 concludes the
paper. Technical proofs are given in the Appendix.



864 KIHO JEONG ET AL.

2. NONPARAMETRIC TEST FOR GRANGER CAUSALITY
IN QUANTILE

To simplify the exposition, we assume a bivariate case, or that only {yt ,wt } are
observable. Granger causality in mean (Granger, 1988) is defined as follows.

1. wt does not cause yt in mean with respect to {yt−1, . . . , yt−p,wt−1, . . . ,
wt−q} if

E( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) = E( yt |yt−1, . . . , yt−p) and

2. wt is a prima facie cause in mean of yt with respect to {yt−1, . . . , yt−p,
wt−1, . . . ,wt−q} if

E( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) �= E( yt |yt−1, . . . , yt−p).

Motivated by the definition of Granger causality in mean, we define Granger
causality in quantile as follows.

1. wt does not cause yt in the θ -quantile with respect to {yt−1, . . . , yt−p,
wt−1, . . . , wt−q} if

Qθ ( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) = Qθ ( yt |yt−1, . . . , yt−p). (1)

2. wt is a prima facie cause in the θ -quantile of yt with respect to {yt−1, . . . ,
yt−p, wt−1, . . . ,wt−q} if

Qθ ( yt |yt−1, . . . , yt−p,wt−1, . . . ,wt−q) �= Qθ ( yt |yt−1, . . . , yt−p), (2)

where Qθ (yt |·) is the θ th (0 < θ < 1 ) conditional quantile of yt given ·,
which depends on t .

Denote xt ≡ (yt−1, . . . , yt−p) , zt ≡ (yt−1, . . . , yt−p,wt−1, . . . ,wt−q), and the
conditional distribution function yt given zt (xt ) by Fyt |zt (yt |zt )(Fyt |zt (yt |xt )),
which is abbreviated as Fy|z(y|z) (Fy|x (y|x)) later, and vt = (xt , zt ). In this paper,
Fy|z(y|z) is assumed to be absolutely continuous in y for almost all v = (x, z).
Denote Qθ (zt ) ≡ Qθ (yt |zt ) and Qθ (xt ) ≡ Qθ (yt |xt ). Then we have, with proba-
bility 1,

Fy|z {Qθ (zt )|zt } = θ, v = (x, z) and

from the definitions (1) and (2), the hypotheses to be tested are

H0 : P
{

Fy|z(Qθ (xt )|zt ) = θ
}= 1 a.s. (3)

H1 : P
{

Fy|z(Qθ (xt )|zt ) = θ
}

< 1 a.s. (4)
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Zheng (1998) proposed an idea to reduce the problem of testing a quantile re-
striction to a problem of testing a particular type of mean restriction. The null hy-
pothesis (3) is true if and only if E[1{yt � Qθ (xt )|zt }] = θ or 1{yt � Qθ (xt )} =
θ + εt where E(εt |zt ) = 0 and 1(·) is the indicator function. For a list of related
literature we refer to Li and Wang (1998) and Zheng (1998). Although various
distance measures can be used to consistently test the hypothesis (3), we consider
the following distance measure:

J ≡ E
[{

Fy|z(Qθ (xt )|zt )− θ
}2

fz(zt )
]
, (5)

with fzt (zt ) being the marginal density function of zt , which is sometimes ab-
breviated as fz(zt ). Note that J � 0 and the equality holds if, and only if, H0 is
true, with strict inequality holding under H1. Thus J can be used as a proper
candidate for consistent testing of H0 (Li, 1999, p. 104). Because E(εt |zt ) =
Fy|z {Qθ (xt )|zt }− θ we have

J = E{εt E(εt |zt ) fz(zt )} . (6)

The test is based on a sample analogue of E{ε E(ε|z) fz(z)}. Including the density
function fz(z) avoids the problem of trimming on the boundary of the density
function; see Powell, Stock, and Stoker (1989) for an analogue approach. The
density-weighted conditional expectation E(ε|z) fz(z) can be estimated by kernel
methods

Ê(εt |zt ) f̂z(zt ) = 1

(T −1)hm

T

∑
s �=t

Ktsεs, (7)

where m = p + q is the dimension of z, Kts = K {(zt − zs)/h} is the kernel
function, and h is a bandwidth. Then we have a sample analogue of J as

JT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεtεs

= 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts [1{yt � Qθ (xt )}− θ ] [1{ys � Qθ (xs)}− θ ] . (8)

The θ th conditional quantile of yt given xt , Qθ (xt ), can also be estimated by the
nonparametric kernel method

Q̂θ (xt ) = F̂−1
y|x (θ |xt ), (9)

where

F̂y|x (yt |xt ) =
∑

s �=t
Lts1(ys � yt )

∑
s �=t

Lts
(10)

is the Nadaraya–Watson kernel estimator of Fy|x (yt |xt ) with the kernel function
of Lts = L (xt − xs)/a and the bandwidth parameter of α. The unknown error ε
can be estimated as
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ε̂t ≡ I
{

yt � Q̂θ (xt )
}

− θ. (11)

Replacing ε by ε̂, we have a feasible kernel-based test statistic of J ,

ĴT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts ε̂t ε̂s

= 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts

[
1
{

yt � Q̂θ (xt )
}

− θ
][

1
{

ys � Q̂θ (xs)
}

− θ
]
. (12)

3. THE LIMITING DISTRIBUTIONS OF THE TEST STATISTIC

Two existing works are useful in deriving the limiting distribution of the test statis-
tic; one is Theorem 2.3 of Franke and Mwita (2003) on the uniform convergence
rate of a nonparametric quantile estimator; another is Lemma 2.1 of Li (1999)
on the asymptotic distribution of a second-order degenerate U -statistic, which is
derived from Theorem 2.1 of Fan and Li (1999). We restate these results in lem-
mas subsequently for ease of reference. We collect the assumptions needed for
Theorem 3.1.

(A1)

(a) {yt ,wt }T
t=1 is strictly stationary and absolutely regular with mixing coeffi-

cients β(τ) =O(ρτ ) for some 0 < ρ < 1.

(b) For some integer v � 2, fy, fz, and fx all are bounded and belong to A∞
v

(see (D2) later in this section).

(c) Use μt
s(z) (μt

s(ε)) to denote the σ algebra generated by (zs, ..., zt ) ((εs, ...,

εt )) for s ≤ t . With probability 1, E
[
εt |μt−∞(z),μt−1−∞(ε)

]
= 0, that is, the

error εt is a martingale difference process. The terms E
[∣∣∣ε4+η

t

∣∣∣] < ∞ and

E

[∣∣∣εi1
t1 ε

i2
t2 . . . ε

il
tl

∣∣∣1+ξ
]

< ∞ for some arbitrarily small η > 0 and ξ > 0,

where 2 � l � 4 is an integer, 0 � i j � 4, and ∑l
j=1 i j � 8. The terms

σ 2
ε (z) = E(ε2

t |zt = z) and με4(z) = E
[
ε4

t |zt = z
]

all satisfy some Lipschitz

conditions: |a(u + v)−a(u)| � D(u)‖v‖ with E
[
|D(z)|2+η′]

< ∞ for

some small η′ > 0, where a (·) = σ 2
ε (·) ,με4 (·).

(d) Let fτ1,...,τl ( ) be the joint probability density function of
(
zτ1 , . . . , zτl

)
(1� l � 3). Then fτ1,...,τl ( ) is bounded and satisfies a Lipschitz condition:∣∣ fτ1,...,τl (z1 +u1, z2 +u2, . . . , zl +ul)− fτ1,...,τl (z1, z2, . . . , zl)

∣∣ � Dτ1,...,τl

(z1, . . . , zl)‖u‖, where u = (u1, ...,ul), z = (z1, ..., zl), and Dτ1,...,τl ( ) is in-
tegrable and satisfies the condition that

∫ ∫ ∫
Dτ1,...,τl (z1, . . . , zl)‖z‖2ξ dz1,

. . . ,dzl < M < ∞ and
∫ ∫ ∫

Dτ1,...,τl (z1, . . . , zl) fτ1,...,τl (z1, . . . , zl)dz1, ...,
dzl < M < ∞ for some ξ > 1.
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(e) For any y and x satisfying 0 < Fy|x (y|x) < 1 and fx (x) > 0, Fy|x and
fx (x) are continuous and bounded in x and y; for fixed y, the conditional
distribution function Fy|x and the conditional density function fy|x belong
to A∞

3 ; fy|x (Qθ (x)|x) > 0 for all x ; fy|x is uniformly bounded in x and y
by, say, cf .

(f) For some compact set G, there are ε > 0 and γ > 0 such that fx � γ
for all x in the ε-neighborhood {x |‖x −u‖ < ε, u ∈ G } of G. For the
compact set G and some compact neighborhood �0 of 0, the set � =
{v = Qθ (x)+μ|x ∈ G,μ ∈ �0} is compact, and for some constant c0 > 0,
fy|x (y|x)� c0 for all x ∈ G,v ∈ �.

(g) There is an increasing sequence sT of positive integers such that for some
finite A,
T
sT

β2sT /(3T )(sT )� A, 1� sT � T
2 for all T � 1.

(A2)

(a) We use product kernels for both L (·) and K (·). Let l and k be their corre-
sponding univariate kernel which is bounded and symmetric. Then l(·) is
nonnegative, l(·) ∈ ϒv , k(·) is nonnegative, and k(·) ∈ ϒ2.

(b) h =O(T −α′
) for some 0 < α′ < (7/8)m.

(c) a =O(1) and S̃T = T a p(sT log T )−1 → ∞ for some sT → ∞.

(d) A positive number δ exists such that for r = 2+δ and a generic number M0

∫ ∫ ∣∣∣∣ 1

hm
K

(
z1 − z2

h

)∣∣∣∣
r

d Fz(z1)d Fz(z2)� M0 < ∞ and

E

∣∣∣∣ 1

hm
K

(
z1 − z2

h

)∣∣∣∣
r

� M0 < ∞.

(e) For some δ′ (0 < δ′ < δ), β(T ) =O(T −(2+δ′)/δ′
).

The following definitions are due to Robinson (1988).

DEFINITION (D1). ϒλ, λ � 1 is the class of even functions k : R → R satis-
fying

∫
R ui k(u)du = δi0 (i = 0,1, . . . ,λ−1),

k(u) =O
(
(1+|u|λ+1+ε)

−1
)
, for some ε > 0,

where δi j is the Kronecker’s delta.

DEFINITION (D2). Aα
μ, α > 0, μ > 0 is the class of functions g : Rm → R

satisfying that g is (d − 1)-times partially differentiable for d − 1 � μ � d;
for some ρ > 0, supy∈φzρ

∣∣g(y)− g(z)− Gg(y, z)
∣∣/|y − z|μ � Dg(z) for all z,

where φzρ = {y| |y − z| < ρ}; Gg = 0 when d = 1; Gg is a (d − 1)th degree
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homogeneous polynomial in y − z with coefficients being the partial derivatives
of g at z of orders 1 through d − 1 when d > 1; and g(z), its partial derivatives
of order d −1 and less, and Dg(z) have finite αth moments.

The functions in Aα
μ are thus expanded in a Taylor series with a local Lipschitz

condition on the remainder, (α,μ) depending simultaneously on smoothness and
moment properties. Bounded functions in Lip(μ) (the Lipschitz class of degree μ)
for 0 < μ ≤ 1 are in Aα

μ; for μ > 1, Aα
μ contains the bounded and (d − 1)-times

boundedly differentiable functions whose (d − 1)th partial derivatives are in Lip
(μ−d +1)). In applying Aα

μ to f and F , we take α = ∞.
Conditions (A1)(a)–(d) and (A2)(a) and (b) are adopted from conditions (D1)

and (D2) of Li (1999), which are used to derive the asymptotic normal distribution
of a second-order degenerate U -statistic. Assumption (A1)(a) requires {yt ,wt }T

t=1
to be a stationary absolutely regular process with geometric decay rate. Assump-
tions (A1)(b)–(d) are mainly some smoothness and moment conditions; these con-
ditions are quite weak in the sense that they are similar to those used in Fan and
Li (1996) for the independent data case. However, for autoregressive condition-
ally skedastic (ARCH) or generalized autoregressive conditionally heteroskedas-
tic (GARCH) type error processes as considered in Engle (1982) and Bollerslev
(1986), the error term εt may not have finite fourth moments in some situations.
For example, let εt |εt−1 ∼ N (0,α0 +α1ε

2
t−1). Engle (1982) showed that εt does

not have a finite fourth moment if α1 > 1/
√

3. Thus, Assumption (A1)(c) will be
violated in such a case.

Assumption (A2)(a) requires L(·) to be a vth- (v � 2 ) order kernel. This con-
dition together with (A1)(b) ensures that the bias in the kernel estimation (of the
null model) is bounded. The requirement that k is a nonnegative second-order
kernel function in (A2)(b) is a quite weak and standard assumption.

Conditions (A1)(e)–(g) and (A2)(c) are technical conditions (A1), (A2), (B1),
(B2), (C1), and (C2) of Theorem 2.3 of Franke and Mwita (2003), which are re-
quired to get the uniform convergence rate of the nonparametric kernel estimator
of the conditional distribution function and corresponding conditional quantile
with mixing data. Because the simple ARCH models (Engle, 1982; Masry and
Tjøstheim, 1995, 1997), their extensions (Diebolt and Guegan, 1993), and the
bilinear Markovian models are geometrically strongly mixing under some general
ergodicity conditions, Assumption (A1)(g) is usually satisfied. There also exist
simple methods to determine the mixing rates for various classes of random pro-
cesses, for example, Gaussian, Markov, autoregressive moving average, ARCH,
and GARCH. Hence the assumption of a known mixing rate is reasonable and
has been adopted in many studies, for example, Györfi, Härdle, Sarda, and Vieu
(1989), Irle (1997), Meir (2000), Modha and Masry (1998), Roussas (1988), and
Yu (1993). Auestad and Tjøstheim (1990) provided excellent discussions on the
role of mixing for model identification in nonlinear time series analysis. But since
the restriction of Assumption (A1)(c) as discussed before, ARCH or GARCH
type processes may not satisfy all assumptions here. Finally conditions (A2)(d)
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and (e) are adopted from conditions of Lemma 3.2 of Yoshihara (1976), which
are required to get the asymptotic equivalence of the nondegenerate U -statistic
and its projection under the β-mixing process. They are technical assumptions
and are quite standard.

LEMMA 3.1 (Franke and Mwita, 2003). Suppose conditions (A1)(e)–(g)
and (A2)(c) hold. The bandwidth sequence is such that a = O(1) and S̃T =
T a p(sT log T )−1 → ∞ for some sT → ∞. Let ST = a2 + S̃−1/2

T . Then for the non-
parametric kernel estimator of the conditional quantile of Q̂θ (xt ), equation (9),
we have

sup
‖x‖∈G

∣∣∣Q̂θ (x)− Qθ (x)
∣∣∣=O (ST )+O

(
1

T a p

)
a.s. (13)

LEMMA 3.2 (Li, 1999). Let Lt = (εt , zt )
T be a stochastic process that satisfies

conditions (A1)(a)–(d). εt ∈ R, zt ∈ Rm, and K (·) be the kernel function with h
being the smoothing parameter that satisfies conditions (A2)(a) and (b). Define

σ 2
ε (z) = E[ε2

t | zt = z] and (14)

JT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεtεs . (15)

Then

T hm/2 JT → N(0,σ 2
0 ) in distribution, (16)

where σ 2
0 = 2E

{
σ 4

ε (zt ) fz(zt )
}{∫

K 2(u)du
}

and fz(·) is the marginal density
function of zt .

We consider testing for local departures from the null that converge to the null
at the rate T −1/2h−m/4. More precisely we consider the sequence of local alter-
natives

H1T : Fy|z {Qθ (xt )+dT l(zt )|zt } = θ, (17)

where dT = T −1/2h−m/4 and the function l(·) and its first-order derivatives are
bounded.

THEOREM 3.1. Assume the conditions (A1) and (A2). Then

(i) Under the null hypothesis (3), T hm/2 ĴT
L→ N(0,σ 2

0 ) in distribution, where

σ 2
0 = 2E

{
σ 4

ε (zt ) fz(zt )
}{∫

K 2(u)du

}
and

σ 2
ε (zt ) = E(ε2

t |zt ) = θ(1− θ).

(ii) Under the null hypothesis (3), σ̂ 2
0 ≡ 2θ2(1− θ)21/(T (T −1)hm)∑s �=t K 2

ts

is a consistent estimator of σ 2
0 = 2E

{
σ 4

ε (zt ) fz(zt )
}∫

K 2(u)du. Thus
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T hm/2 ĴT /σ̂0

=
√

T

T −1

T
∑

t=1

T
∑

s �=t
Kts

[
1
{

yt � Q̂θ (xt )
}

− θ
][

1
{

ys � Q̂θ (xs)
}

− θ
]

√
2θ(1− θ)

√
∑

s �=t
K 2

ts

.

(iii) Under the alternative hypothesis (4),

ĴT → E{[Fy|z(Qθ (xt )|zt )− θ ]2 fz(zt )} > 0 in probability.

(iv) Under the local alternatives (A.2) in the Appendix, T hm/2 ĴT → N(μ,σ 2
1 )

in distribution, where

μ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
,

σ 2
1 = 2E

{
σ 4

v (zt ) fz(zt )
}∫

K 2(u)du, and

σ 2
v (zt ) = E(v2

t |zt ) with vt ≡ I {yt � Qθ (xt )}− F(Qθ (xt )|zt ).

Theorem 3.1 generalizes the results of Zheng (1998) for independent data to
the weakly dependent data case. A detailed proof of Theorem 3.1 is given in
the Appendix. The main difficulty in deriving the asymptotic distribution of the
statistic defined in equation (12) is that a nonparametric quantile estimator is
included in the indicator function that is not differentiable with respect to the
quantile argument and thus prevents taking a Taylor expansion around the true
conditional quantile Qθ (xt ). To circumvent the problem, Zheng (1998) made
use of the work of Sherman (1994) on uniform convergence of U -statistics in-
dexed by parameters. In this paper, we bound the test statistic by the statistics
in which the nonparametric quantile estimator in the indicator function is re-
placed with sums of the true conditional quantile and upper and lower bounds
consistent with the uniform convergence rate of the nonparametric quantile esti-
mator, 1(yt � Qθ (xt )−CT ) and 1(yt � Qθ (xt )+CT ).

An important further step is to show that the differences of the ideal test statistic
JT given in equation (8) and the statistics having the indicator functions obtained
from the first step stated previously are asymptotically negligible. We may directly
show that the second moments of the differences are asymptotically negligible by
using the result of Yoshihara (1976) on the bound of moments of U -statistics
for absolutely regular processes. However, it is tedious to get bounds on the
second moments with dependent data. In the proof we use instead the fact that
the differences are second-order degenerate U-statistics. Thus by using the result
on the asymptotic normal distribution of the second-order degenerate U -statistic
of Fan and Li (1999), we can derive the asymptotic variance that is based on the
independent and identically distributed (i.i.d.) sequence having the same marginal
distributions as weakly dependent variables in the test statistic. With this little
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trick we only need to show that the asymptotic variance is O(1) in an i.i.d.
situation. For details refer to the Appendix.

4. SIMULATION

We generate bivariate data {yt ,wt }T
t=1 according to the following model:

yt = 1

2
yt−1 + cw2

t−1 + ε1t ,

wt = 1+ 1

2
wt−1 + ε2t ,

where ε1t and ε2t are independent standard normal random variables. Here c = 0
corresponds to the hypothetical model; that is, wt does not cause yt in the θ
quantile with respect to {yt−1,wt−1}. All the coefficients are set such that the
corresponding time series is stationary and β-mixing with corresponding densities
bounded to satisfy the assumptions discussed before. We use different values of
c ∈ [0,1] to investigate the power of the test, such that the higher c is, the stronger
the causality of wt on yt is. Without loss of generality, we choose θ = 0.1,0.5,0.9
and T = 500,1,000,5,000 here with the bandwidth h and a as in (7) and (10)
as for a typical Nadaraya–Watson type estimator. We consider the nominal 0.05
significance level and repeat the test 500 times to generate the power.

Table 1 displays the power performance of the test for different combinations
of T, c, and θ . First, obviously the power is very sensitive to the choice of T ; that
is, the larger T is, for the same c and θ , the larger the power is. From a technical
point of view, this makes sense, because the more data we have, the more evidence
we can draw from to detect the “causality” effect. Our asymptotic result, Theorem
3.1, needs the plug-in estimation of the asymptotic covariance matrix that is used
to normalize the test statistic. Note that such an estimator is model-dependent and
under the alternative is consistent with a different value than the one under the
null. As a result, the power deteriorates for small T . On the other hand, whether
the causality effect exists or not is the nature of the series, which is independent of
the sample size used in this technical test. Enhancing the power performance for
small-sample data using the simulation-based method deserves further research.
Second, as discussed before, the higher c is, the stronger the causality of wt on yt

is, which is confirmed by the larger and larger power values. Third, for different
quantiles θ , we find that the powers with respect to θ = 0.5 are usually larger than
the powers with respect to θ = 0.1 and 0.9.

5. APPLICATION TO COMMODITY PRICES

In financial and commodity markets, it has been argued that the covariation of
the tails may be different from that of the rest of the distribution. The gold mar-
ket is one of the most important markets in the world, where trading takes place
24 hours a day around the globe and transactions involving billions of dollars of
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TABLE 1. Power performance for different combinations of T,c, and θ

c Power (θ 0.1) c Power (θ 0.5) c Power (θ 0.9)
T = 500

0.00 0.024 0.00 0.108 0.00 0.010
0.03 0.030 0.03 0.288 0.03 0.020
0.06 0.058 0.06 0.796 0.06 0.108
0.09 0.190 0.09 0.991 0.09 0.585
0.12 0.414 0.12 1.000 0.12 0.950
0.15 0.696 0.15 1.000 0.15 0.994
0.18 0.888 0.18 1.000 0.18 1.000
0.21 0.962 0.21 1.000 0.21 1.000
0.24 0.988 0.24 1.000 0.24 1.000
0.27 1.000 0.27 1.000 0.27 1.000
0.30 1.000 0.30 1.000 0.30 1.000

T = 1,000
0.00 0.014 0.00 0.130 0.00 0.018
0.01 0.022 0.01 0.144 0.01 0.024
0.02 0.038 0.02 0.296 0.02 0.024
0.03 0.026 0.03 0.564 0.03 0.040
0.04 0.060 0.04 0.788 0.04 0.108
0.05 0.110 0.05 0.946 0.05 0.284
0.06 0.196 0.06 0.990 0.06 0.506
0.07 0.356 0.07 1.000 0.07 0.838
0.08 0.530 0.08 1.000 0.08 0.950
0.09 0.676 0.09 1.000 0.09 0.994
0.10 0.816 0.10 1.000 0.10 0.996
0.11 0.906 0.11 1.000 0.11 1.000
0.12 0.958 0.12 1.000 0.12 1.000
0.13 0.972 0.13 1.000 0.13 1.000
0.14 0.994 0.14 1.000 0.14 1.000
0.15 0.998 0.15 1.000 0.15 1.000
0.16 1.000 0.16 1.000 0.16 1.000

T = 5,000
0.00 0.020 0.00 0.116 0.00 0.026
0.01 0.028 0.01 0.328 0.01 0.046
0.02 0.124 0.02 0.904 0.02 0.142
0.03 0.490 0.03 1.000 0.03 0.728
0.04 0.924 0.04 1.000 0.04 0.988
0.05 1.000 0.05 1.000 0.05 1.000
0.06 1.000 0.06 1.000 0.06 1.000
0.07 1.000 0.07 1.000 0.07 1.000
0.08 1.000 0.08 1.000 0.08 1.000
0.09 1.000 0.09 1.000 0.09 1.000
0.10 1.000 0.10 1.000 0.10 1.000
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TABLE 2. Unit root tests

Time CR Unit root
Test trend Test value Unit after

Variable type term statistics 5% root differencing
LN Oil DF no 0.86955 −1.94160 yes no

ADF no 0.72255 −1.94160 yes no
PP no 0.73107 −1.94160 yes no

KPSS no 2.16221 0.14600 yes no
DF include −0.81819 −2.86386 yes no

ADF include −1.03287 −2.86386 yes no
PP include −0.94355 −2.86386 yes no

KPSS include 2.16221 0.14600 yes no

GBP DF no −0.12461 −1.94160 yes no
ADF no −0.16186 −1.94160 yes no
PP no −0.12506 −1.94160 yes no

KPSS no 5.26720 0.14600 yes no
DF include −1.53295 −2.86386 yes no

ADF include −1.51000 −2.86386 yes no
PP include −1.53853 −2.86386 yes no

KPSS include 5.26720 0.14600 yes no

LN Gold DF no 0.45931 −1.94160 yes no
ADF no 1.03139 −1.94160 yes no
PP no 0.69975 −1.94160 yes no

KPSS no 3.50910 0.14600 yes no
DF include −1.98422 −2.86386 yes no

ADF include −1.36627 −2.86386 yes no
PP include −1.66336 −2.86386 yes no

KPSS include 3.50910 0.14600 yes no

Note: ”LN Oil”, ”GBP”, and ”LN Gold” refer to the logarithmic Brent crude oil price, USD/GBP exchange rate, and
logarithmic NYMEX spot gold price, respectively. The “Test types” DF, ADF, PP, and KPSS refer to unit root tests
of, respectively, Dickey–Fuller (Fuller, 1976), augmented Dickey–Fuller (Fuller, 1976), Phillips–Perron (Phillips &
Perron, 1988), and (Kwaitkowski et al., 1992).

gold are carried out each day. Understanding the mechanism of gold price changes
is important for many outstanding issues in international economics and finance.
Market participants are increasingly concerned with their exposure to large gold
price fluctuations with special interest in which factors drive the changes. In this
section, we apply the quantile causality test to investigate relations between the
Brent crude oil, USD/GBP exchange rate and NYMEX spot gold prices (in USD
per barrel and per ounce, respectively). The data, as seen in Figure 1, obtained
from Datastream, are daily observations from 20 February 1997 to 17 July 2009
(T = 3,237). We use the USD/GBP instead of USD/EUR because the euro was
only introduced as a new currency from 1 January 1999. As indicated by Table 2,
we assume differenced logarithmic data are stationary and β-mixing with corre-
sponding densities bounded. Because a long memory effect is not expected, we
choose p = q = 1 and m = 2.
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FIGURE 1. Plot of the gold prices, oil price, and exchange rate time series from 20
February 1997 to 17 July 2009.

FIGURE 2. Test statistics with respect to different quantiles for the oil-gold prices causality
test.

Figures 2 and 3 present results of testing whether oil prices Granger cause gold
prices and whether the USD/GBP exchange rate Granger causes gold prices at
the various quantiles, respectively, where logarithmic returns instead of the raw
observations are used. The solid line and dotted line represent the standardized
test statistics with respect to different quantiles (x-axis) and the critical value
1.96, respectively. In Figures 2 and 3, because the test statistic exceeds the critical
value when 0.22 ≤ θ ≤ 0.80, we conclude that the oil price and exchange rate
changes do not cause the gold price change in θ < 0.22 or θ > 0.80, whereas it is
a prima facie cause in the 0.22 ≤ θ ≤ 0.80 quantile, respectively. For example, the
oil price and USD/GBP exchange rate increases suggest that investors are wary of
the U.S. dollar’s weakness and inflation. Because gold is typically bought as an
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FIGURE 3. Test statistics with respect to different quantiles for the exchange rate-gold
prices causality test.

alternative to the dollar among safe-haven assets, investors seeking safety from
inflation risk and currency devaluation will cause the gold price to rise. However,
the extreme low and high changes of the gold market may be caused by specula-
tion. This is consistent with most of the empirical findings in the literature that the
codependency may be stronger in the center than in the tails. By combining results
from Figures 2 and 3, we find that the oil price and exchange rate changes have a
significant predictive power for nonextreme gold price changes, which is, however,
not significant for extreme changes. This finding could help to make it possible to
use the gold price and GBP to hedge oil price changes in a more precise way with
more careful investigation of their relations, which deserves further research.

6. CONCLUSION

By extending the Zheng (1998) idea to dependent data, we propose a consistent
test for Granger causality in conditional quantile. The appealing feature of our
proposed test is that it can investigate Granger causality in various conditional
quantiles. The benefit of this is illustrated in the commodity market application
where the causal relationships among the oil price, USD/GBP exchange rate, and
gold price were shown to be different between a tail area and in the center of the
distribution. We also illustrate that oil price and USD/GBP changes have signifi-
cant predictive power on nonextreme gold price changes.

The test can be extended in a number of ways to test conditional quantile re-
strictions with dependent data: First, it can be extended to test functional mis-
specification, or the insignificance of a subset of regressors in quantile regression
function, and second, it can also be used to test some semiparametric versus non-
parametric models in quantile regression models.
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APPENDIX

Proof of Theorem 3.1(i). In the proof, we use several approximations to ĴT . We define
them now and recall a few already defined statistics for convenience of reference.

ĴT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts ε̂t ε̂s , (A.1)

JT ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεtεs , (A.2)

JT U ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

KtsεtU εsU , (A.3)

JT L ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεt LεsL , (A.4)

where ε̂t = I
{

yt � Q̂θ (xt )
}

− θ,

εt = I {yt � Qθ (xt )}− θ,

εtU = I {yt +CT � Qθ (xt )}− θ,

εt L = I {yt −CT � Qθ (xt )}− θ,

and CT is an upper bound consistent with the uniform convergence rate of the nonparamet-
ric estimator of conditional quantile given in equation (13). The proof of Theorem 3.1(i)
consists of three steps.
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Step 1. Asymptotic normality.

T hm/2 JT → N (0,σ 2
0 ), (A.5)

where σ 2
0 = 2E

{
θ2(1− θ)2 f (zt )

}{∫
K 2(u)du

}
under the null.

Step 2. Conditional asymptotic equivalence. Suppose that both T hm/2(JT − JT U ) =
Op(1) and T hm/2(JT − JT L ) =Op(1).

Then T hm/2( ĴT − JT ) =Op(1). (A.6)

Step 3. Asymptotic equivalence.

T hm/2(JT − JT U ) =Op(1) and T hm/2(JT − JT L ) =Op(1). (A.7)

The combination of steps 1–3 yields Theorem 3.1(i).

Proof of Step 1. Because JT is a degenerate U -statistic of order 2, the result follows
from Lemma 3.2. �

Proof of Step 2. The proof of step 2 is motivated by the technique of Härdle and Stoker
(1989) that was used in treating trimming an indicator function asymptotically. Suppose
that the following two statements hold:

T hm/2(JT − JT U ) =Op(1) and (A.8)

T hm/2(JT − JT L ) =Op(1). (A.9)

Use CT to denote an upper bound consistent with the uniform convergence rate of the
nonparametric estimator of conditional quantile given in equation (13). Suppose that

sup |Q̂θ (x)− Qθ (x)|� CT . (A.10)

If inequality (A.10) holds, then the following statements also hold:

{Qθ (x) > yt +CT } ⊂ {Q̂θ (x) > yt } ⊂ {Qθ (x) > yt −CT }, (A.11)

1(Qθ (x) > yt +CT ) � 1( Q̂θ (x) > yt ) � 1( Qθ (x) > yt −CT ), (A.12)

JT U � ĴT � JT L , (A.13)

|T hm/2(JT − ĴT )|� max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|}. (A.14)

Using (A.10) and (A.14), we have the following inequality:

P
{
|T hm/2(JT − ĴT )| > δ | sup

∣∣∣Q̂θ (x)− Qθ (x)|� CT

}
� P
{

max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|} > δ
∣∣∣ sup |Q̂θ (x)− Qθ (x)|� CT

}
for allδ > 0. (A.15)
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Invoking Lemma 3.1 and condition (A2)(c), we have

P
{

sup |Q̂θ (x)− Qθ (x)|� CT

}
→ 1 as T → ∞. (A.16)

By (A.8) and (A.9), as T → ∞, we have

P
{

max{|T hm/2(JT − JT U )|, |T hm/2(JT − JT L )|} > δ
}

→ 0 for all δ > 0. (A.17)

Therefore, as T → ∞,

the right-hand side of the inequality (A.15) × P
{

sup |Q̂θ (x)− Qθ (x)|� CT

}
→ 0;

the left-hand side of the inequality (A.15) × P
{

sup |Q̂θ (x)− Qθ (x)|� CT

}
= P
{
|T hm/2(JT − ĴT )| > δ

}
→ 0.

In summary, we have that if both T hm/2(JT − JT U ) =Op(1) and T hm/2(JT − JT L ) =
Op(1), then T hm/2( ĴT − JT ) =Op(1). �

Proof of Step 3. In the remaining proof, we focus on showing that T hm/2(JT − JT U ) =
Op(1), with the proof of T hm/2(JT − JT L ) = Op(1) being treated similarly. The proof
of step 3 is close in line with the proof in Zheng (1998). Denote

HT (s, t,g) ≡ Kts{1(yt � g(xt ))− θ}{1(ys � g(xs))− θ} and (A.18)

J [g] ≡ 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

HT (s, t,g). (A.19)

Then we have JT ≡ J [Qθ ] and JT U ≡ J [Qθ −CT ]. We decompose HT (s, t,g) into three
parts:

HT (s, t,g) = Kts{1(yt � g(xt ))− F(g(xt )|zt )}{1(ys � g(xs))− F(g(xs)|zs)}
+2× Kts{1(yt � g(xt ))− F(g(xt )|zt )}{F(g(xs)|zs)− θ}
+ Kts{F(g(xt )|zt )− θ}{F(g(xs)|zs)− θ}

= H1T (s, t,g)+2H2T (s, t,g)+ H3T (s, t,g). (A.20)

Then let Jj [g] = 1/(T (T −1)hm)
T
∑

t=1

T
∑

s �=t
HjT (s, t,g), i = 1,2,3. We will treat Jj [Qθ ] −

Jj [Qθ −CT ] for j = 1,2,3 separately.

(1) T hm/2 [J1(Qθ )− J1(Qθ −CT )
]=Op(1). By simple manipulation, we have

J1(Qθ )− J1(Qθ −CT )

= 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]

= 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts

{
[1(yt � Qθ (xt ))− F(Qθ (xt )|zt )]

× [1(ys � Qθ (xs))− F(Qθ (xs)|zs)]



880 KIHO JEONG ET AL.

− [1(yt � (Qθ (xt )−CT ))− F((Qθ (xt )−CT )|zt )]

× [1(ys � (Qθ (xs)−CT ))− F((Qθ (xs)−CT )|zs)]
}
.

(A.21)

To avoid tedious work to get bounds on the second moment of J1(Qθ ) − J1(Qθ − CT )
with dependent data, we note that the right-hand side of (A.21) is a degenerate U -statistic
of order 2. Thus we can apply Lemma 3.2 and have

T hm/2 [J1(Qθ )− J1(Qθ −CT )
]→ N (0,σ 2

2 ) in distribution, (A.22)

where the definition of the asymptotic variance σ 2
2 is based on the i.i.d. sequence having

the same marginal distributions as weakly dependent variables in (A.21). That is,

σ 2
2 = 2h−m Ẽ

[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]2,

where the notation Ẽ is an expectation evaluated at an i.i.d. sequence having the same
marginal distribution as the mixing sequences in (A.21) (Fan and Li, 1999, p. 248). Now,
to show that T hm/2 [J1(Qθ )− J1(Qθ −CT )

] = Op(1), we only need to show that the

asymptotic variance σ 2
2 (z) is O(1) with i.i.d. data. Use �T to denote an upper bound

consistent with the integral over Kts being of the order O(hm). We have

Ẽ
[
H1T (s, t, Qθ )− H1T (s, t, Qθ −CT )

]2
��T Ẽ{[1t (Qθ )− Ft (Qθ )] [1s(Qθ )− Fs(Qθ )]

− [1t (Qθ −CT )− Ft (Qθ −CT )] [1s(Qθ −CT )− Fs(Qθ −CT )]}2

��T Ẽ{Ft (Qθ ) [1− Ft (Qθ )] Fs(Qθ ) [1− Fs(Qθ )]}
+ Ẽ{Ft (Qθ −CT ) [1− Ft (Qθ −CT )] Fs(Qθ −CT ) [1− Fs(Qθ −CT )]}
−2E{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}
= �T Ẽ{[Ft (Qθ )− Ft (Qθ )Ft (Qθ )] [Fs(Qθ )− Fs(Qθ )Fs(Qθ )]}

−�T Ẽ{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}
+�T Ẽ{[Ft (Qθ −CT )− Ft (Qθ −CT )Ft (Qθ −CT )]

× [Fs(Qθ −CT )− Fs(Qθ −CT )Fs(Qθ −CT )]}
−�T Ẽ{[Ft (min(Qθ , Qθ −CT ))− Ft (Qθ )Ft (Qθ −CT )]

× [Fs(min(Qθ , Qθ −CT ))− Fs(Qθ )Fs(Qθ −CT )]}
��T CT . (A.23)

Thus we have that σ 2
2 =O(CT ) =O(1), and so

T hm/2 [J1(Qθ )− J1(Qθ −CT )
]=Op(1). (A.24)



NONPARAMETRIC TEST FOR CAUSALITY IN QUANTILE 881

(2) T hm/2 [J2(Qθ )− J2(Qθ −CT )
]=Op(1). Note that H2T (s, t, Qθ ) = 0 because of

Fy|z(Qθ (xs)|zs)− θ = 0. Then we have

J2(Qθ )− J2(Qθ −CT ) = −J2(Qθ −CT )

= − 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

×{1(yt � Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )}
×{Fy|z(Qθ (xs)−CT |zs)− θ}. (A.25)

By taking a Taylor expansion of Fy|z(Qθ (xs)−CT |zs) around Qθ (xs), it equals

− 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

× {1(yt � Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )}
× (−CT ) fy|z(Q̄θ (xs)|zs), (A.26)

where Q̄θ is between Qθ and Qθ −CT . Thus we have

(J2(Qθ )− J2(Qθ −CT ))2

�
[

1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

×{1(yt � Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT |zt )
}]2

�2C2
T

= �2C2
T

[
1

T

T

∑
t=1

{
1(yt � Qθ (xt )−CT )− Fy|z(Qθ (xt )−CT )

}
f̂z(zt )

]2

≡ �2C2
T

{
1

T

T

∑
t=1

ut f̂z(zt )

}2

= �2C2
T T −2

T

∑
t=1

u2
t f̂ 2

z (zt )+�2C2
T T −2

T

∑
t=1

T

∑
s �=t

ut us f̂z(zt ) f̂z(zs)

≡ J21 + J22, (A.27)

where the inequality holds because of Assumption (A.1)(e).

E |J21| = �2C2
T T −1

[
T −1

T

∑
t=1

E
{

u2
t f̂ 2

z (zt )
}]

= O
(

C2
T T −2h−m

)
, (A.28)

where the second equality is derived by using Lemma C.3(iii) of Li (1999).
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J22 = �2C2
T

[
T −2

T

∑
t=1

T

∑
s �=t

ut us fz(zt ) fz(zs)

+2T −2
T

∑
t=1

T

∑
s �=t

ut us fz(zt )
{

f̂z(zs)− fz(zs)
}

+ T −2
T

∑
t=1

T

∑
s �=t

ut us

{
f̂z(zt )− fz(zt )

}{
f̂z(zs)− fz(zs)

}]

≡ �C2
T (J221 + J222 + J223) . (A.29)

Following the line of the proof of Lemma A.2(i) of Li (1999) we have that

J221 =Op

(
T −2
)

, J222 =Op

(
T −1
)

, and J223 =Op

(
T −1
)

; thus

J22 =Op

(
C2

T T −1
)

. (A.30)

Thus, combining (A.28) and (A.30), we have

T hm/2 [J2(Qθ )− J2(Qθ −CT )
]=Op (CT )+Op

(
CT T 1/2hm/2

)
=Op(1). (A.31)

(3) T hm/2 [J3(Qθ )− J3(Qθ −CT )
] = Op(1). Noting that H3T (s, t, Qθ ) = 0 because

of F(Qθ (xj )|zj )− θ = 0 for j = t,s, we have

J3(Qθ )− J3(Qθ −CT )

= − 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

× {F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ}

= 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)
C2

T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs)

= C2
T

1

T

T

∑
t=1

fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.32)

Thus, we have

E |J3(Qθ )− J3(Qθ −CT )|

� �C2
T

1

T

T

∑
t=1

E
∣∣∣ f̂z(zt )

∣∣∣
� �C2

T
1

T

T

∑
t=1

E | fz(zt )|+�C2
T

1

T

T

∑
t=1

E
∣∣∣ f̂z(zt )− fz(zt )

∣∣∣
=O
(

C2
T

)
. (A.33)
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Finally, we have

T hm/2 [J3(Qθ )− J3(Qθ −CT )
]=Op

(
T hm/2C2

T

)
=Op(1). (A.34)

By combining (A.24), (A.31), and (A.34), we have the result of step 3. �

Proof of Theorem 3.1(ii). Because

σ 2
0 = 2θ2(1− θ)2E{ fz(zt )}

∫
K 2(u)du and

σ̂ 2
0 ≡ 2θ2(1− θ)2 1

T (T −1)hm ∑
s �=t

K 2
ts ,

it is enough to show that

σ 2
T ≡ 1

T (T −1)hm ∑
s �=t

K 2
ts

= E{ fz(zt )}
∫

K 2(u)du +Op(1). (A.35)

Note that σ 2
T is a nondegenerate U -statistic of order 2 with kernel

HT (zt , zs) = 1

hm K 2
(

zt − zs

h

)
. (A.36)

Because Assumptions (A2)(d) and (e) satisfy the conditions of Lemma 3.2 of Yoshihara
(1976) on the asymptotic equivalence of the U -statistic and its projection under β-mixing,
we have for γ = 2(δ − δ′)/δ′(2+ δ) > 0

σ 2
T ≡ 1

T (T −1)
∑
s �=t

HT (zt , zs)

=
∫ ∫

HT (z1, z2)d Fz(z1)d Fz(z2)

+2T −1
T

∑
t=1

[∫
HT (zt , z2)d Fz(z2)−

∫ ∫
HT (z1, z2)d Fz(z1)d Fz(z2)

]

+Op(T −1−γ )

=
∫ ∫

HT (z1, z2)d Fz(z1)d Fz(z2)+Op(1)

=
∫ ∫ 1

hm K 2
(

z1 − z2

h

)
d Fz(z1)d Fz(z2)+Op(1)

=
∫

K 2 (u)du
∫

f 2
z (z)dz +Op(1). (A.37)

The result of Theorem 3.1(ii) follows from (A.37). �

Proof of Theorem 3.1(iii). The proof of Theorem 3.1(iii) consists of two steps.
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Step 1. Show that ĴT = JT +Op(1) under the alternative hypothesis (4).

Step 2. Show that JT = J +Op(1) under the alternative hypothesis (4),

where J = E{[Fy|z(Qθ (xt )|zt )− θ ]2 fz(zt )}. The combination of steps 1 and
2 yields Theorem 3.1(iii).

Proof of Step 1. We note that the results of step 2 and T hm/2 [J1(Qθ )− J1(Qθ −CT )
]=

Op(1) of step 3 in the proof of Theorem 3.1(i) still hold under the alternative hy-
pothesis (4). Thus we focus on showing that J2(Qθ ) − J2(Qθ − CT ) = Op(1) and
J3(Qθ )− J3(Qθ −CT ) =Op(1).

We begin with showing that J2(Qθ )− J2(Qθ −CT ) =Op(1). By the same procedures
as in (A.27), we can show that J2(Qθ −CT ) = Op(T −1h−m/2). Thus it remains to show
that J2(Qθ ) = Op(1). By taking a Taylor expansion of Fy|z(Qθ (xs)|zs) around Qθ (xs),
we have

J2(Qθ ) = − 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

×{1(yt � Qθ (xt ))− Fy|z(Qθ (xt )|zt )}× fy|z(Q̄θ (xs)|zs)

= 1

T

T

∑
t=1

{1(yt � Qθ (xt ))− Fy|z(Qθ (xt ))} fy|z(Q̄θ (xs)|zs) f̂z(zt )

≡ 1

T

T

∑
t=1

ut fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.38)

By similar arguments as in (A.26) and (A.31), we have

J2(Qθ ) =O
(

T −1h−m
)

. (A.39)

Next, we show that T hm/2 [J3(Qθ )− J3(Qθ −CT )
] = Op(1) under the alternative hy-

pothesis (4). Because F(Qθ (xj )|zj )− θ �= 0 for j = t,s under the alternative hypothesis,
we have

J3(Qθ )− J3(Qθ −CT )

= 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)
{F(Qθ (xt )|zt )− θ}{F(Qθ (xs)|zs)− θ}

− 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)

× {F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ}

= 1

T

T

∑
t=1

{F(Qθ (xt )|zt )− θ}{F(Qθ (xs)|zs)− θ} f̂z(zt )

− 1

T

T

∑
t=1

{F(Qθ (xt )−CT |zt )− θ}{F(Qθ (xs)−CT |zs)− θ} f̂z(zt ). (A.40)
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By taking a Taylor expansion of Fy|z(Qθ (xj ) − CT |zj ) around Qθ (zj ) for j = t,s, we
have

J3(Qθ )− J3(Qθ −CT ) = 1

T

T

∑
t=1

{F(Qθ (xt )|zt )− θ}CT fy|z(Q̄θ (xt )|zt ) f̂z(zt )

+ 1

T

T

∑
t=1

CT fy|z(Q̄θ (xt )|zt ){F(Qθ (xs)|zs)− θ} f̂z(zt )

− 1

T

T

∑
t=1

C2
T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ). (A.41)

We further take a Taylor expansion of Fy|z(Qθ (xj )|zj ) around Qθ (zj ) for j = t,s and
have

J3(Qθ )− J3(Qθ −CT ) = 1

T

T

∑
t=1

fy|z(Q̄θ (xt , zt )|zt )CT fy|z(Q̄θ (xs)|zs) f̂z(zt )

+ 1

T

T

∑
t=1

CT fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs , zs)|zs) f̂z(zt )

− 1

T

T

∑
t=1

C2
T fy|z(Q̄θ (xt )|zt ) fy|z(Q̄θ (xs)|zs) f̂z(zt ), (A.42)

where Q̄θ (xs , zs) is between Qθ (xs) and Qθ (zs). Then by using the same procedures as
in (A.30), we have

J3(Qθ )− J3(Qθ −CT ) =O (CT ) . (A.43)

Now we have the result of step 1 for the proof of Theorem 3.1(iii). �

Proof of Step 2. Using (7) and the uniform convergence rate of the kernel regression
estimator under a β-mixing process, we have

JT = 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Ktsεtεs

= 1

T ∑
t=1

Ê(εt |zt ) f̂z(zt )εt

= 1

T ∑
t=1

E(εt |zt ) fz(zt )εt + 1

T ∑
t=1

{
Ê(εt |zt ) f̂z(zt )−E(εt |zt ) fz(zt )

}
εt

= 1

T ∑
t=1

E(εt |zt ) fz(zt )εt +Op(1)

= E
[
E(εt |zt ) fz(zt )εt

]+Op(1)

= J +Op(1). (A.44)
�
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Proof of Theorem 3.1(iv). The proof of Theorem 3.1(iv) is close in line with the proof
in Zheng (1998). The proof of Theorem 3.1(iv) consists of two steps.

Step 1. Show that ĴT = JT +Op(T −1h−m/2) under the alternative hypothesis (A.2).

Step 2. Show that T hm/2 JT → N (μ,σ 2
1 ) under the alternative hypothesis (A.2),

where μ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
, σ 2

1 = 2E
{
σ 4
v (zt ) fz(zt )

}
∫

K 2(u)du,and σ 2
v (zt ) = E(v2

t |zt ) with vt ≡ I {yt � Qθ (xt )}− F(Qθ (xt )|zt ).

Proof of Step 1. The results of step 1 in the proof of Theorem 3.1(iii) show that,
under the general alternative hypothesis (4), the elements consisting of ĴT − JT are all

Op(T −1h−m/2) except for J2(Qθ (x)), the order of which is O
(

T −1h−m
)

as in (A.39).

Thus we need to show that J2(Qθ (x)) = Op(T −1h−m/2) under the local alternative hy-
pothesis (A.2). Taking a Taylor expansion of Fy|z {Qθ (zt )+dT l(zt )|zt } around dT = 0,
we have

Fy|z {Qθ (zt )+dT l(zt )|zt } = θ +dT fy|z {Qθ (zt )|zt } l(zt )+Op(d2
T ). (A.45)

By similar procedures as in (A.38) and (A.39), we have

J2(Qθ (x)) = − 1

T (T −1)

T

∑
t=1

T

∑
s �=t

1

hm K

(
zt − zs

h

)
{1(yt � Qθ (xt ))− Fy|z(Qθ (xt )|zt )}

× dT fy|z {Qθ (zt )|zt } l(zt )+Op

(
d2

T

)

= −dT
1

T

T

∑
t=1

{1(yt � Qθ (xt ))− Fy|z(Qθ (xt )|zt )}

× fy|z {Qθ (zt )|zt } l(zt ) f̂z(zt )+Op

(
d2

T

)

≡ −dT
1

T

T

∑
t=1

ut fy|z {Qθ (zt )|zt } l(zt ) f̂z(zt )+Op

(
d2

T

)

=Op

(
d2

T

)
. (A.46)

�

Proof of Step 2. Taking a Taylor expansion of Fy|z {Qθ (zt )+dT l(zt )|zt } around
dT = 0, we have

JT (Qθ (x)) = 1

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts {1(yt � Qθ (xt ))F(Qθ (xt )|zt )}

×{1(ys � Qθ (xs))− F(Qθ (xs)|zs)}

− 2dT

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts {1(yt � Qθ (xt ))− F(Qθ (xt )|zt )}

× fy|z {Qθ (zs)|zs} l(zs)
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+ d2
T

T (T −1)hm

T

∑
t=1

T

∑
s �=t

Kts fy|z {Qθ (zt )|zt } l(zt ) fy|z {Qθ (zs)|zs} l(zs)

+Op

(
d2

T

)
= T1T −2dT T2T +d2

T T3T +Op

(
d2

T

)
. (A.47)

Noting that T1T is a degenerate U -statistic of order 2, by Lemma 3.2, we have

T hm/2T1T → N
(

0,σ 2
1

)
in distribution, (A.48)

Similarly to the proof for (A.31), we can show that T2T =O
{
(T hm)−1

}
, and so dT T2T =

O
{
(T hm/2)

−1
}

. And by the same procedures as in (A.44), we have

T3T → E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
in probability. (A.49)

Thus,

T hm/2 JT → N
(
μ,σ 2

1

)
, (A.50)

where μ = E
[

f 2
y|z {Qθ (zt )|zt } l2(zt ) fz(zt )

]
. �
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error for the confidence band by the asymptotic Gumbel distribution is logarithmically
slow. It is proved that the bootstrap approximation provides an improvement. The case
of multidimensional and discrete regressor variables is dealt with using a partial linear
model. An economic application considers the labor market differential effect with respect
to different education levels.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Quantile regression, as first introduced by Koenker and Bassett [25], is ‘‘gradually developing into a comprehensive
strategy for completing the regression prediction’’ as claimedbyKoenker andHallock [26]. Quantile smoothing is an effective
method to estimate quantile curves in a flexible nonparametric way. Since this technique makes no structural assumptions
on the underlying curve, it is very important to have a device for understanding when observed features are significant and
deciding between functional forms. For example, a question often asked in this context is whether or not an observed peak
or valley is actually a feature of the underlying regression function or is only an artifact of the observational noise. For such
issues, confidence bands (i.e., uniform over location) give an idea about the global variability of the estimate.

The nonparametric quantile estimate could be obtained either using a check function such as a robustified local linear
smoother [10,35,36], or through estimating the conditional distribution function using the double-kernel local linear
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technique [11,35,36]. Besides these, [17] proposed aweighted version of theNadaraya–Watson estimator,whichwas further
studied by Cai [5]. In the previous work the theoretical focus has mainly been on obtaining consistency and asymptotic
normality of the quantile smoother, and thereby providing the necessary ingredients to construct its pointwise confidence
intervals. This, however, is not sufficient to get an idea about the global variability of the estimate; neither can it be used
to correctly answer questions about the curve’s shape, which contains the lack of fit test as an immediate application. This
motivates us to construct the confidence bands.

To this end, [22] used strong approximations of the empirical process and extreme value theory. However, the very
poor convergence rate of extremes of a sequence of n independent normal random variables is well documented and was
first noticed and investigated by Fisher and Tippett [12], and discussed in greater detail by Hall [16]. In the latter paper it
was shown that the rate of the convergence to its limit (the suprema of a stationary Gaussian process) can be no faster than
(log n)−1. For example, the supremumof a nonparametric quantile estimate can converge to its limit no faster than (log n)−1.
These results may make extreme value approximation of the distributions of suprema somewhat doubtful, for example in
the context of the uniform confidence band construction for a nonparametric quantile estimate.

This paper proposes and analyzes a bootstrap-based method of obtaining the confidence bands for nonparametric
quantile estimates. The method is simple to implement, does not rely on the evaluation of quantities which appear in
asymptotic distributions, and takes the bias properly into account (at least asymptotically). Additionally, we show that
the bootstrap distribution can approximate the true one (w.r.t. the ∥ · ∥∞ norm, details in Theorem 2.1) up to n−2/5, which
represents a significant improvement relative to (log n)−1, which is based on the asymptotic Gumbel distribution, as studied
byHärdle and Song [22]. Previous research byHahn [15] showed consistency of a bootstrap approximation to the cumulative
distribution function (cdf) without assuming independence of the error and regressor terms. Ref. [23] showed bootstrap
methods for median regression models based on a smoothed least-absolute-deviations (SLAD) estimate.

Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a sequence of independent identically distributed bivariate random variables with
joint pdf f (x, y), joint cdf F(x, y), conditional pdf f (y|x), f (x|y), conditional cdf F(y|x), F(x|y) for Y given X and X given Y
respectively, and marginal pdf fX (x) for X, fY (y) for Y . With some abuse of notation we use the letters f and F to denote
different pdfs and cdfs respectively. The exact distribution will be clear from the context. At the first stage we assume that
x ∈ J∗ = (a, b) for some 0 < a < b < 1. Let l(x) denote the p-quantile curve, i.e. l(x) = F−1

Y |x (p).
In economics, discrete or categorial regressors are very common. An example is from labor market analysis where one

tries to find out how revenues depend on the age of the employee w.r.t. different education levels, labor union statuses,
genders and nationalities, i.e. in econometric analysis one targets the differential effects. For example, [4] examined the US
wage structure by quantile regression techniques. This motivates the extension to multivariate covariables by partial linear
modelling (PLM). This is convenient especiallywhenwehave categorial elements of theX vector. Partial linearmodels,which
were first considered by Green and Yandell [14,8,34,32], are gradually developing into a class of commonly used and studied
semiparametric regression models, which can retain the flexibility of nonparametric models and ease the interpretation of
linear regression models while avoiding the ‘‘curse of dimensionality’’. Recently [29] used penalized quantile regression for
variable selection of partially linear models with measurement errors.

In this paper, we propose an extension of the quantile regression model to x = (u, v)⊤ ∈ Rd with u ∈ Rd−1 and
v ∈ J∗ ⊂ R. The quantile regression curve we consider is l̃(x) = F−1

Y |x (p) = u⊤β+ l(v). Themultivariate confidence band can
then be constructed, based on the univariate uniform confidence band, plus the estimated linear part which we will prove
is more accurately (

√
n consistency) estimated. This makes various tasks in economics, e.g. labor market differential effect

investigation, multivariate model specification tests and the investigation of the distribution of income and wealth across
regions or countries or the distribution across households possible. Additionally, since the natural link between quantile and
expectile regression was developed by Newey and Powell [30], we can further extend our result into expectile regression
for various tasks, e.g. demography risk research or expectile-based Value at Risk (EVAR) as in [28]. For high-dimensional
modelling, [2] recently investigated high-dimensional sparse models with L1 penalty. Additionally, our result might also be
further extended to intersection bounds (one side confidence bands), which is similar to thework of Chernozhukov et al. [6].

The rest of this article is organized as follows. To keep the main idea transparent, in Section 2, as an introduction to the
more complicated situation, the bootstrap approximation rate for the (univariate) confidence band is presented through a
coupling argument. An extension to multivariate covariance X with partial linear modelling is shown in Section 3 with the
actual type of confidence bands and their properties. In Section 4, we compare via aMonte Carlo study the bootstrap uniform
confidence band with the one based on the asymptotic theory and investigate the behavior of partial linear estimates with
the corresponding confidence band. In Section 5, an application considers the labormarket differential effect. The discussion
is restricted to the semiparametric extension. We do not discuss the general nonparametric regression. We conjecture that
this extension is possible under appropriate conditions. Section 6 contains concluding remarks. All proofs are sketched in
the Appendix.

2. Bootstrap confidence bands in the univariate case

Suppose Yi = l(Xi) + εi, i = 1, . . . , n, where εi has the (conditional) distribution function F(·|Xi). For simplicity, but
without any loss of generality, we assume that F(0|Xi) = p. F(ξ |x) is smooth as a function of x and ξ for any x, and for any
ξ in the neighborhood of 0. We assume:
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(A1) X1, . . . , Xn are an i.i.d. sample, and infx fX (x) = λ0 > 0. The quantile function satisfies supx |l(j)(x)| ≤ λj < ∞, j = 1, 2.
(A2) The distribution of Y given X has a density and infx,t f (t|x) ≥ λ3 > 0, continuous at all x ∈ J∗, and at t only in a

neighborhood of 0. More exactly, we have the following Taylor expansion at x′
= x, t = 0, for some A(·) and f0(·):

F(t|x′) = F(0|x)+
∂F(t|x′)

∂x′


x′=x,t=0

t +
∂F(t|x′)

∂t


x′=x,t=0

(x′
− x)+ R(t, x′

; x)

def
= p + f0(x)t + A(x)(x′

− x)+ R(t, x′
; x), (1)

where

sup
t,x,x′

|R(t, x′
; x)|

t2 + |x′ − x|2
< ∞.

Let K be a symmetric density function with compact support and dK =

u2 K(u)du < ∞. Let lh(·) = ln,h(·) be the

nonparametric p-quantile estimate of Y1, . . . , Yn with weight function K{(Xi − ·)/h} for some global bandwidth h =

hn (Kh(u) = h−1K(u/h)), that is, a solution of
n

i=1
Kh(x − Xi)1{Yi < lh(x)}

n
i=1

Kh(x − Xi)

< p ≤

n
i=1

Kh(x − Xi)1{Yi ≤ lh(x)}

n
i=1

Kh(x − Xi)

. (2)

Generally, the bandwidth may also depend on x. A local (adaptive) bandwidth selection though deserves future research.
Note that by assumption (A1), lh(x) is the quantile of a discrete distribution, which is equivalent to a sample of sizeOp(nh)

from a distribution with p-quantile whose bias is O(h2) relative to the true value. Let δn be the local rate of convergence
of the function lh, essentially δn = h2

+ (nh)−1/2
= O(n−2/5) with optimal bandwidth choice h = hn = O(n−1/5) as

in [36]. We employ also an auxiliary estimate lg
def
= ln,g , essentially one similar to ln,h but with a slightly larger bandwidth

g = gn = hnnζ (a heuristic explanation of why it is essential to oversmooth g is given later), where ζ is some small number.
The asymptotically optimal choice of ζ as shown later is 4/45.
(A3) The estimate lg satisfies

sup
x∈J∗

|l′′g (x)− l′′(x)| = Op(1),

sup
x∈J∗

|l′g(x)− l′(x)| = Op(δn/h). (3)

Assumption (A3) is only stated to overwrite the issue here. It actually follows from the assumptions on (g, h). A sequence
{an} is slowly varying if n−αan → 0 for any α > 0. With some abuse of notation we will use Sn to denote any slowly varying
function which may change from place to place, e.g. S2n = Sn is a valid expression (since if Sn is a slowly varying function,
then S2n is slowly varying as well). λi and Ci are generic constants throughout this paper and the subscripts have no specific
meaning. Note that there is no Sn term in (3) exactly because the bandwidth gn used to calculate lg is slightly larger than
that used for lh. We want to smooth it such that lg , as an estimate of the quantile function, has a slightly worse rate of
convergence, but its derivatives converge faster.

We also consider a family of estimates F̂(·|Xi), i = 1, . . . , n, estimating respectively F(·|Xi) and satisfying F̂(0|Xi) = p. For
example we can take the distribution with a point mass [

n
j=1 K{αn(Xj − Xi)}]

−1K{(Xj − Xi)/h} on Yj − lh(Xi), j = 1, . . . , n,
i.e.

F̂(·|Xi) =

n
j=1

Kh(Xj − Xi)1{Yj − lh(Xi) ≤ ·}

n
j=1

Kh(Xj − Xi)

. (4)

We additionally assume:
(A4) fX (x) is twice continuously differentiable and f (t|x) is continuous in x, Hölder-continuous in t and uniformly bounded

in x and t by, say, λ4.

For the precision of F̂(·|Xi)’s approximation around 0, we employ the following lemma from Franke and Mwita [13]:

Lemma 2.1 ([13, Lemma A.3-5]). If assumptions (A1,A2,A4) hold, then for |t| < Snδn, δn → 0, i = 1, . . . , n, Xi ∈ J∗,

sup
|t|<Snδn,i=1,...,n,Xi∈J∗

|F̂(t|Xi)− F(t|Xi)| = Op{Snδn}. (5)
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Let F−1(·|·) and F̂−1(·|·) be the inverse function of the conditional cdf and its estimate. We consider the following
bootstrap procedure. Let U1, . . . ,Un be i.i.d. uniform [0, 1] variables. Let

Y ∗

i = lg(Xi)+ F̂−1(Ui|Xi), i = 1, . . . , n (6)

be the bootstrap sample.We couple this sample to an unobserved hypothetical sample from the true conditional distribution

Y#
i = l(Xi)+ F−1(Ui|Xi), i = 1, . . . , n. (7)

Note that the vectors (Y1, . . . , Yn) and (Y#
1 , . . . , Y

#
n ) are equally distributed given X1, . . . , Xn. We are really interested in the

exact values of Y#
i and Y ∗

i only when they are near the appropriate quantile, that is, only if |Ui − p| < Snδn. But then, by
Eq. (1), Lemma 2.1 and the inverse function theorem, we have

max
i:|F−1(Ui|Xi)−F−1(p)|<Snδn

|F−1(Ui|Xi)−F−1(Ui|Xi)| = max
i:|Y#

i −l(Xi)|<Snδn
|Y#

i − l(Xi)− Y ∗

i + lg(Xi)| = Op{Snδn}. (8)

Let now qhi(Y1, . . . , Yn) be the solution of the local quantile as given by (2) at Xi, with bandwidth h, i.e. qhi(Y1, . . . , Yn)
def
=

lh(Xi) for data set {(Xi, Yi)}
n
i=1. Note that by (3), if |Xi − Xj| = O(h), then

max
|Xi−Xj|<ch

|lg(Xi)− lg(Xj)− l(Xi)+ l(Xj)| = Op(δn). (9)

Let l∗h and l#h be the local bootstrap quantile and its coupled sample analogue. Then

l∗h(Xi)− lg(Xi) = qhi[{Y ∗

j − lg(Xi)}
n
j=1]

= qhi[{Y ∗

j − lg(Xj)+ lg(Xj)− lg(Xi)}
n
j=1], (10)

while

l#h (Xi)− l(Xi) = qhi[{Y#
j − l(Xj)+ l(Xj)− l(Xi)}

n
j=1]. (11)

From (8)–(11) we conclude that

max
i

|l∗h(Xi)− lg(Xi)− l#h (Xi)+ l(Xi)| = Op(δn). (12)

Based on (12), we obtain the following theorem (the proof is given in the Appendix):

Theorem 2.1. If assumptions (A1–A4) hold, then

sup
x∈J∗

|l∗h(x)− lg(x)− l#h (x)+ l(x)| = Op(δn) = Op(n−2/5).

Remark. Theorem 2.1 indicates that the r.v. l∗h(x)− lg(x) approximates the one of l∗h(x) up to n−2/5 (w.r.t. the ∥ · ∥∞ norm).
Thus a number of replications of l∗h(x) can be used as the basis for simultaneous error bars.

Although Theorem 2.1 is stated with a fixed bandwidth, in practice, to take care of the heteroscedasticity effect, we
construct confidence bands with the width depending on the densities, which is motivated by the counterpart based on the
asymptotic theory as in [22]. Thus we have the following corollary.

Corollary 2.1. Let d ∗α be defined by P∗(|l∗h(x) − lg(x)| > d∗
α) = α, where P∗ is the bootstrap distribution conditioned on the

sample. If (A1)–(A4) hold, then the confidence interval lh(x) ± d∗
α has an asymptotic uniform coverage of 1 − α, in the sense

that P(supx∈J∗ |lh(x)− l(x)| > d∗
α) → α.

In practice we would use the approximate (1 − α)× 100% confidence band over R given by

lh(x)±


f̂ {lh(x)|x}


f̂X (x)

−1
d∗

α, (13)

where d∗
α is based on the bootstrap sample (defined later) and f̂ {lh(x)|x}, f̂X (x) are consistent estimators of f {l(x)|x}, fX (x)

with use of f (y|x) = f (x, y)/fX (x).
Below is the summary of the basic steps for the bootstrap procedure.

(1) Given (Xi, Yi), i = 1, . . . , n, compute the local quantile smoother lh(x) of Y1, . . . , Yn with bandwidth h and obtain
residuals ε̂i = Yi − lh(Xi), i = 1, . . . , n.
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(2) Compute the conditional edf:

F̂(t|x) =

n
i=1

Kh(x − Xi)1{ε̂i 6 t}

n
i=1

Kh(x − Xi)

.

(3) For each i = 1, . . . , n, generate random variables ε∗

i,b ∼ F̂(t|Xi), b = 1, . . . , B and construct the bootstrap sample
Y ∗

i,b, i = 1, . . . , n, b = 1, . . . , B as follows:

Y ∗

i,b = lg(Xi)+ ε∗

i,b.

(4) For each bootstrap sample {(Xi, Y ∗

i,b)}
n
i=1, compute l∗h and the random variable

db
def
= sup

x∈J∗


f̂ {l∗h(x)|x}


f̂X (x)|l∗h(x)− lg(x)|


(14)

where f̂ {l(x)|x}, f̂X (x) are consistent estimators of f {l(x)|x}, fX (x).
(5) Calculate the (1 − α) quantile d∗

α of d1, . . . , dB.

(6) Construct the bootstrap uniform confidence band centered around lh(x), i.e. lh(x)±


f̂ {lh(x)|x}


f̂X (x)

−1
d∗
α .

While bootstrapmethods are well-known tools for assessing variability, more caremust be taken to properly account for
the type of bias encountered in nonparametric curve estimation. The choice of bandwidth is crucial here. In our experience
the bootstrap works well with a rather crude choice of g; one may, however, specify g more precisely. Since the main role
of the pilot bandwidth is to provide a correct adjustment for the bias, we use the goal of bias estimation as a criterion. Recall
that the bias in the estimation of l(x) by l#h (x) is given by

bh(x) = El#h (x)− l(x).

The bootstrap bias of the estimate constructed from the resampled data is

b̂h,g(x) = El∗h(x)− lg(x). (15)

Note that in (15) the expected value is computed under the bootstrap estimation. The following theorem gives an
asymptotic representation of themean squared error for the problemof estimating bh(x) by b̂h,g(x). It is then straightforward
to find g to minimize this representation. Such a choice of g will make the quantiles of the original and coupled bootstrap
distributions close to each other. In addition to the technical assumptions before, we also need:

(A5) l and f are four times continuously differentiable.
(A6) K is twice continuously differentiable.

Theorem 2.2. Under assumptions (A1–A6), for any x ∈ J∗

E


b̂h,g(x)− bh(x)
2 X1, . . . , Xn


∼ h4(C1g4

+ C2n−1g−5) (16)

in the sense that the ratio between the RHS and the LHS tends in probability to 1 for some constants C1, C2.

An immediate consequence of Theorem 2.2 is that the rate of convergence of g should be n−1/9, see also [20]. This makes
precise the previous intuitionwhich indicated that g should slightly oversmooth. Under our assumptions, reasonable choices
of h will be of the order n−1/5 as in [36]. Hence, (16) shows once again that g should tend to zero more slowly than h. Note
that Theorem 2.2 is not stated uniformly over h. The reason is that we are only trying to give some indication of how the
pilot bandwidth g should be selected.

We summarize how to select the bandwidth h for the local quantile smoother and g for the oversmoothed estimate as
below.

1 Select h as in [36] which is also quoted below.
– Use ready-made and sophisticated methods to select hmean, the optimal bandwidth choice for regresion mean

estimation; we use the technique of Ruppert et al. [33].
– Use h = hmean{p(l− p)/φ(Φ−1(p))2}1/5 to obtain all other h’s (w.r.t. different p’s) from hmean. φ andΨ are the PDF and

CDF of standard normal distributions respectively.
2 According to Theorem 2.2, select g as g = n4/45h.
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3. Bootstrap confidence bands in PLMs

The case of multivariate regressors may be handled via a semiparametric specification of the quantile regression curve.
More specifically we assume that with x = (u, v)⊤ ∈ Rd, v ∈ R:

l̃(x) = u⊤β + l(v).

In this section we show how to proceed in this multivariate setting and how — based on Theorem 2.1 — a multivariate
confidence band may be constructed. We first describe the numerical procedure for obtaining estimates of β and l, where l
denotes — as in the earlier sections — the one-dimensional conditional quantile curve. We then move on to the theoretical
properties. First note that the PLM quantile estimation problem can be seen as estimating (β, l) in

y = u⊤β + l(v)+ ε

= l̃(x)+ ε (17)

where the p-quantile of ε conditional on both u and v is 0.
In order to estimate β , let an denote an increasing sequence of positive integers and set bn = a−1

n . For each n = 1, 2, . . . ,
partition the unit interval [0, 1] for v in an intervals Ini, i = 1, . . . , an, of equal length bn and let mni denote the midpoint
of Ini. In each of these small intervals Ini, i = 1, . . . , an, l(v) can be considered as being approximately constant, and hence
(17) can be considered as a linear model. This observation motivates the following two stage estimation procedure.

(1) A linear quantile regression inside each partition is used to estimate β̂i, i = 1, . . . , an. Their weighted mean yields
β̂ . More exactly, consider the parametric quantile regression of y on u, 1


v ∈ [0, bn)


, 1


v ∈ [bn, 2bn)


, . . . , 1


v ∈

[1 − bn, 1]

. That is, let

ψ(t) def
= (p − 1)t1(t < 0)+ pt1(t > 0).

Then let

β̂ = argmin
β

min
l1,...,lan

n
i=1

ψ


Yi − βTUi −

an
j=1

lj1

Vi ∈ Ini


.

(2) Calculate the smooth quantile estimate as in (2) from (Vi, Yi − U⊤

i β̂)
n
i=1, and name it as ˜̃lh(v).

The following theorem states the asymptotic distribution of β̂ .

Theorem 3.1. If assumption (A1) holds, for the above two stage estimation procedure, there exist positive definite matrices D, C,
such that

√
n(β̂ − β)

L
→ N{0, p(1 − p)D−1CD−1

} as n → ∞,

where C = plimn→∞Cn and D = plimn→∞Dn with Cn =
1
n

n
i=1 U

⊤

i Ui and Dn =
1
n

n
j=1 f {l(Vj)|Vi}U⊤

j Uj respectively.

Note that l(v), l̃h(v) (quantile smoother based on (v, y − u⊤β)) and ˜̃lh(v) can be treated as zeros (w.r.t. θ, θ ∈ I where I
is a possibly infinite, or possibly degenerate, interval in R) of the functions

H(θ, v) def
=


R
f (v, ỹ)ψ(ỹ − θ)dỹ, (18)

Hn(θ, v)
def
= n−1

n
i=1

Kh(v − Vi)ψ(Yi − θ), (19)

Hn(θ, v)
def
= n−1

n
i=1

Kh(v − Vi)ψ(
Yi − θ), (20)

whereYi
def
= Yi − U⊤

i β,Yi
def
= Yi − U⊤

i β̂ = Yi − U⊤

i β + U⊤

i (β − β̂)
def
= Yi + Zi.

From Theorem 3.1 we know that β̂ − β = Op(1/
√
n) and ∥Zi∥∞ = Op(1/

√
n). Under the following assumption, which is

satisfied by exponential and generalized hyperbolic distributions, also used in [18]:

(A7) The conditional densities f (·|ỹ), ỹ ∈ R, are uniformly local Lipschitz continuous of order α̃ (ulL-α̃) on J , uniformly in
ỹ ∈ R, with 0 < α̃ 6 1, and (nh)/ log n → ∞,
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for some constant C3 not depending on n, Lemma 2.1 in [22] shows a.s. as n → ∞:

sup
θ∈I

sup
v∈J∗

|Hn(θ, v)− H(θ, v)| ≤ C3 max{(nh/ log n)−1/2, hα̃}.

Observing that
√
h/ log n = O(1), we then have

sup
θ∈I

sup
v∈J∗

|
Hn(θ, v)− H(θ, v)| ≤ sup

θ∈I
sup
v∈J∗

|Hn(θ, v)− H(θ, v)| + sup
θ∈I

sup
v∈J∗

|Hn(θ, v)−
Hn(θ, v)|  

≤Op(1/
√
n) sup
v∈J

|n−1 
Kh|

≤ C4 max{(nh/ log n)−1/2, hα̃} (21)

for a constant C4 which can be different from C3. To show the uniform consistency of the quantile smoother, we shall reduce
the problem of strong convergence of ˜̃lh(v)− l(v), uniformly in v, to an application of the strong convergence ofHn(θ, v) toH(θ, v), uniformly in v and θ . For our result on ˜̃lh(·), we shall also require

(A8) infv∈J∗
 ψ{y − l(v)+ ε}dF(y|v)

 > q̃|ε|, for |ε| 6 δ1,

where δ1 and q̃ are some positive constants, see also [19]. This assumption is satisfied if a constant q̃ exists giving f {l(v)|v} >
q̃/p, x ∈ J . Ref. [22] showed:

Lemma 3.1. Under assumptions (A7) and (A8) , we have a.s. as n → ∞

sup
v∈J∗

|
˜̃lh(v)− l(v)| ≤ C5 max{(nh/ log n)−1/2, hα̃} (22)

with another constant C5 not depending on n. If we consider the bandwidth h = O(n−1/5) and then skip the slow varying function
log n, then (nh/ log n)−1/2

= O(n−2/5) < O(n−1/5) 6 hα̃ , (22) can be further simplified to

sup
v∈J∗

|
˜̃lh(v)− l(v)| ≤ C5{hα̃}.

Since the proof is essentially the same as Theorem 2.1 of the above mentioned reference, it is omitted here.
The convergence rate for the parametric part Op(n−1/2) (Theorem 3.1) is smaller than the bootstrap approximation error

for the nonparametric part Op(n−2/5) as shown in Theorem 2.1. This makes the construction of uniform confidence bands
for multivariate x ∈ Rd with a partial linear model possible.

Proposition 3.1. Under the assumptions (A1)–(A8), an approximate (1 − α)× 100% confidence band over Rd−1
× [0, 1] is

u⊤β̂ +
˜̃lh(v)±


f̂ {˜̃lh(x)|x}


f̂X (x)

−1
d∗

α,

where f̂ {˜̃lh(x)|x}, f̂X (x) are consistent estimators of f {l(x)|x}, fX (x).

Note that here we actually only require that the convergence rate of the parametric part, which is typically Op(n−1/2),
is smaller than the bootstrap approximation error for the nonparametric part Op(n−2/5). This makes construction for the
uniform confidence bands of more general semiparametric models possible instead of just the partial linear model shown
here and similar results could be obtained easily.

4. A Monte Carlo study

This section is divided into two parts. First we concentrate on a univariate regressor variable x, check the validity of the
bootstrap procedure togetherwith settings in the specific example, and compare itwith asymptotic uniformbands. Secondly
we incorporate the partial linear model to handle the multivariate case of x ∈ Rd.

Below is the summary of the simulation procedure.

(1) Simulate (Xi, Yi), i = 1, . . . , n according to their joint pdf f (x, y).
In order to comparewith earlier results in the literature, we choose the joint pdf of bivariate data {(Xi, Yi)}

n
i=1, n = 1000

as

f (x, y) = fy|x(y − sin x)1(x ∈ [0, 1]), (23)

where fy|x(x) is the pdf of N(0, x) with an increasing heteroscedastic structure. Thus the theoretical quantile is l(x) =

sin(x)+
√
xΦ−1(p). Based on this normality property, all the assumptions can be seen to be satisfied.
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Fig. 1. The real 0.9 quantile curve (black dotted line), 0.9 quantile estimate (cyan solid line) with corresponding 95% uniform confidence band from
asymptotic theory (magenta dashed lines) and confidence band from bootstrapping (red dashed–dot lines). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

(2) Compute the local quantile smoother lh(x) of Y1, . . . , Yn with bandwidth h and obtain residuals ε̂i = Yi − lh(Xi),
i = 1, . . . , n.
If we choose p = 0.9, thenΦ−1(p) = 1.2816, l(x) = sin(x)+ 1.2816

√
x. Set h = 0.05.

(3) Compute the conditional edf:

F̂(t|x) =

n
i=1

Kh(x − Xi)1{ε̂i 6 t}

n
i=1

Kh(x − Xi)

.

The choice of kernel functions plays a minor role here. Section 3.4.3 and Table 3.3 of Härdle et al. [21] discuss the
efficiencies of different kernels. The Epanechnikov kernel would be the optimal one; however, the differences among
various kernels are small. Thus, we just use the Gaussian kernel to assure numerical stability. This is also convenient
because the optimal bandwidth suggested by Yu and Jones [36] is also calculated based on the Gaussian kernel.

(4) For each i = 1, . . . , n, generate random variables ε∗

i,b ∼ F̂(t|x), b = 1, . . . , B and construct the bootstrap sample
Y ∗

i,b, i = 1, . . . , n, b = 1, . . . , B as follows:

Y ∗

i,b = lg(Xi)+ ε∗

i,b,

with g = 0.2.
(5) For each bootstrap sample {(Xi, Y ∗

i,b)}
n
i=1, compute l∗h and the random variable

db
def
= sup

x∈J∗


f̂ {l∗h(x)|x}


f̂X (x)|l∗h(x)− lg(x)|


, (24)

where f̂ {l(x)|x}, f̂X (x) are consistent estimators of f {l(x)|x}, fX (x)with use of f (y|x) = f (x, y)/fX (x).
(6) Calculate the (1 − α) quantile d∗

α of d1, . . . , dB.

(7) Construct the bootstrap uniform confidence band centered around lh(x), i.e. lh(x)±


f̂ {lh(x)|x}


f̂X (x)

−1
d∗
α .

Fig. 1 shows the theoretical 0.9 quantile curve, 0.9 quantile estimate with corresponding 95% uniform confidence band
from the asymptotic theory and the confidence band from the bootstrap. The real 0.9 quantile curve is marked as the black
dotted line. We then compute the classic local quantile estimate lh(x) (cyan solid) with its corresponding 95% uniform
confidence band (magenta dashed) based on asymptotic theory according to Härdle and Song [22]. The 95% confidence
band from the bootstrap is displayed as red dashed–dot lines. At first sight, the quantile smoother, together with two
corresponding bands, all capture the heteroscedastic structure quite well, and the width of the bootstrap confidence band
is similar to the one based on asymptotic theory in [22]. Fig. 2 presents the bootstrap confidence bands constructed using
different oversmoothing bandwidths w.r.t. the same (but different from the one used for Fig. 1) randomly generated data
set, namely, 1/2, 1 and 2 times (from left to right) of the oversmoothing bandwidth g = n4/45h used before. As we can see,
when we deviate from g = n4/45h, the bootstrap confidence bands get wider.

Wenowextend x to themultivariate case anduse a different quantile function to verify ourmethod. Choose x = (u, v)⊤ ∈

Rd, v ∈ R, and generate the data {(Ui, Vi, Yi)}
n
i=1, n = 1000 with

y = 2u + v2 + ε − 1.2816, (25)

where u and v are uniformly distributed random variables in [0, 2] and [0, 1] respectively. ε has a standard normal
distribution. The theoretical 0.9-quantile curve is l̃(x) = 2u + v2. Since the choice of an is uncertain here, we test different
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Fig. 2. The real 0.9 quantile curve (black dotted line), 0.9 quantile estimate (cyan solid line) with corresponding 95% uniform confidence band from
asymptotic theory (magenta dashed lines) and confidence band from bootstrapping (red dashed–dot lines). The left, middle and right plots correspond to
the oversmoothing bandwidth set as n4/45h/2, n4/45h and 2n4/45h respectively. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1
SSE of β̂ with respect to an for different numbers of observations.

an n = 1000 n = 8000 n = 261148

n1/3/8 3.6 × 10−3

n1/3/4 5.4 × 10−1 4.0 × 10−2 3.3 × 10−3

n1/3/2 6.1 × 10−1 3.5 × 10−2 3.2 × 10−3

n1/3 6.2 × 10−1 3.6 × 10−2 3.1 × 10−3

n1/3
· 2 8.0 × 10−1 3.9 × 10−2 2.9 × 10−3

n1/3
· 4 4.9 × 10−1 3.6 × 10−2 2.8 × 10−3

n1/3
· 8 3.4 × 10−3

choices of an for different n by simulation. To this end, we modify the theoretical model as follows:

y = 2u + v2 + ε − Φ−1(p)

such that the real β is always equal to 2 no matter if p is 0.01 or 0.99. The result is displayed in Fig. 3 for n = 1000,
n = 8000, n = 261148 (number of observations for the data set used in the following application part including both
uncensored and censored observations). Different lines correspond to different an, i.e. n1/3/8, n1/3/4, n1/3/2, n1/3, n1/3

· 2,
n1/3

· 4 and n1/3
· 8. At first, it seems that the choice of an does not matter too much. To further investigate this, we calculate

the SSE (
99

1 {β̂(i/100) − β}) where β̂(i/100) denotes the estimate corresponding to the i/100 quantile. The results are
displayed in Table 1. Obviously an has much less effect than n on SSE. Considering the computational cost, which increases
with an, and the estimation performance, empirically we suggest an = n1/3. Certainly this issue is far from settled and needs
further investigation.

Thus for the specific model (25), we have an = 10, β̂ = 1.997, h = 0.2 and g = 0.7. In Fig. 4 the theoretical 0.9 quantile
curve with respect to v, and the 0.9 quantile estimate with corresponding uniform confidence band are displayed. The real
0.9 quantile curve is marked as the black dotted line. We then compute the quantile smoother lh(x) (magenta solid). The
95% bootstrap uniform confidence band is displayed as red dashed lines and covers the true quantile curve quite well.

5. A labor market application

Our intuition of the effect of education on income is summarized by Day and Newburger’s basic claim [7]: ‘‘At most ages,
more education equates with higher earnings, and the payoff is most notable at the highest educational levels’’, which is
actually from the point of viewofmean regression. However,whether this difference is significant or not is still questionable,
especially for different ends of the (conditional) income distribution. To this end, a careful investigation of quantile
regression is necessary. Since different education levels may reflect different productivity, which is unobservable and may
also results from different ages, abilities etc., to study the labor market differential effect with respect to different education
levels, a semiparametric partial linear quantile model is preferred, which can retain the flexibility of the nonparametric
models for the age and other unobservable factors and ease the interpretation of the education factor.

We use the administrative data from the German National Pension Office (Deutsche Rentenversicherung Bund) for the
following group: West German part, males, born between 1939 and 1942 who began receiving a pension in 2004 or 2005
(when they were 62–66 years old) with at least 30 yearly uncensored observations. Since different people entered into
the pension system and stopped receiving job earnings at different ages, we only consider those earnings recorded by the
pension system when they were between 25 and 59 years old. For example, we consider person A’s yearly earnings when
he was 25–59 (entering into the pension system at 25), person B’s when he was 27–59 (entering into the pension system
at 27), and person C’s when he was 30–59 (entering into the pension system at 30). In total, n = 128429 observations are
available. We have the following three education categories: ‘‘low education’’, ‘‘apprenticeship’’ and ‘‘university’’ for the
variable u (we assign them the numerical values 1, 2 and 3 respectively); the variable v is the age of the employee. ‘‘Low
education’’meanswithout post-secondary education inGermany. ‘‘Apprenticeship’’means part of Germany’s dual education
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Fig. 3. β̂ with respect to different quantiles for different numbers of observations, i.e. n = 1000 (top), n = 8000 (middle), n = 261 148 (bottom). Different
lines in the same plot correspond to different an , i.e. n1/3/8, n1/3/4, n1/3/2, n1/3, n1/3

· 2, n1/3
· 4 and n1/3

· 8.

system. Depending on the profession, a person may work for three to four days a week in the company and then spend
one or two days at a vocational school (Berufsschule). ‘‘University’’ in Germany also includes technical colleges (applied
universities). Since the level and structure of wages differ substantially between East and West Germany, we concentrate
onWest Germany only here (whichwe usually refer to simply as Germany). Our data have several advantages over themost
often used German Socio-Economics Panel (GSOEP) data for analyzing wages in Germany. Firstly, they are available for a
much longer period, as opposed to from 1984 only for the GSOEP data. Secondly, and more importantly, they have a much
larger sample size. Thirdly, wages are likely to bemeasuredmuchmore precisely. Fourthly, we observe a complete earnings
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Fig. 4. Nonparametric part smoothing, real 0.9 quantile curve (black dotted line) with respect to v, 0.9 quantile smoother (magenta solid line) with
corresponding 95% bootstrap uniform confidence band (red dashed lines). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Boxplots for ‘‘low education’’ (red), ‘‘apprenticeship’’ (blue) and ‘‘university’’ (brown) groups corresponding to different ages. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. β̂ corresponding to different quantiles with 6, 13, 25 partitions.

history from the individual’s first job until his retirement, therefore this is a true panel, not a pseudo-panel. There are also
several drawbacks. For example, some verywealthy individuals are not registered in the German pension system, e.g. if their
monthly income is more than some threshold (which may vary for different years due to the inflation effect), the individual
has the right not to be included in the public pension system, and thus is not recorded. Besides this, it is also right-censored at
the highest level of earnings that is subject to social security contributions, so the censored observations in the data are only
for those who actually decided to stay within the public system. Because of the combination of truncation and censoring,
this paper focuses on the uncensored data only, and we should not draw inferences from the very high quantile, i.e. we only
consider the 0.80 quantiles here. Recently, similar data were also used to investigate the German wage structure as in [9].



S. Song et al. / Journal of Multivariate Analysis 107 (2012) 244–262 255

Fig. 7. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.20-quantile smoothers w.r.t. 3 different education levels. The ‘‘low
education’’, ‘‘apprenticeship’’ and ‘‘university’’ levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.20-quantile smoothers w.r.t. 3 different education levels with the
oversmoothing bandwidth set as g/2, g/4, 2g and 4g (from left to right, up to down) respectively. The ‘‘low education’’, ‘‘apprenticeship’’ and ‘‘university’’
levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Following from Becker’s [1] human capital model, a log transformation is performed first on the hourly real wages
(unit: EUR, at year 2000 prices). Fig. 5 displays the boxplots for the ‘‘low education’’, ‘‘apprenticeship’’ and ‘‘university’’
groups corresponding to different ages. In the data all ages (25–59) are reported as integers and are categorized in one-year
groups. We rescaled them to the interval [0, 1] by dividing by 40, with corresponding bandwidths h of 0.041, 0.039, 0.041
for the 0.20, 0.50, 0.80 nonparametric quantile smoothers respectively. Correspondingly, as discussed before, we choose
g = n4/45h, thus 0.12, 0.11, 0.12 for the corresponding oversmoothers respectively. To detect whether a differential effect
for different education levels exists, we compare the corresponding uniform confidence bands, i.e. differences indicate that
the differential effect may exist for different education levels in the German labor market for that specific labor group.

Following an application of the partial linear model in Section 3, Fig. 6 displays β̂ with respect to different quantiles for
6, 13, and 25 partitions, respectively. At first, the β̂ curve is quite surprising, since it is not, as in mean regression, a positive
constant, but rather varies a lot, e.g. β̂(0.20) = 0.026, β̂(0.50) = 0.057 and β̂(0.80) = 0.061. Furthermore, it is robust
to different numbers of partitions. It seems that the differences between the ‘‘low education’’ and ‘‘university’’ groups are
different for different tails of the wage distribution. To judge whether these differences are significant, we use the uniform
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Fig. 9. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.50-quantile smoothers w.r.t. 3 different education levels. The ‘‘low
education’’, ‘‘apprenticeship’’ and ‘‘university’’ levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.50-quantile smoothers w.r.t. 3 different education levels with the
oversmoothing bandwidth set as g/2, g/4, 2g and 4g (from left to right, up to down) respectively. The ‘‘low education’’, ‘‘apprenticeship’’ and ‘‘university’’
levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

confidence band techniques discussed in Section 2 which are displayed in Figs. 7–11 corresponding to the 0.20, 0.50 and
0.80 quantiles respectively.

The 95% uniform confidence bands from bootstrapping for the ‘‘low education’’ group are marked as red dashed lines,
while the ones for ‘‘apprenticeship’’ and ‘‘university’’ are displayed as blue dotted and brown dashed–dot lines, respectively.
The corresponding asymptotic bands studied in [22] are also added for reference (thin lines with the same style and color),
which overlap with the bootstrap bands for large samples as here. For the 0.20 quantile in Fig. 7, the bands for ‘‘university’’,
‘‘apprenticeship’’ and ‘‘low education’’ do not differ significantly from one another although they become progressively
lower, which indicates that high education does not equate to higher earnings significantly for the lower tails of wages,
while increasing age seems to be the main driving force. For the 0.50 quantile in Fig. 9, the bands for ‘‘university’’ and ‘‘low
education’’ differ significantly fromone another although not from that for ‘‘apprenticeship’’. However, for the 0.80 quantiles
in Fig. 11, all the bands differ significantly (except on the right boundary because of the nonparametric method’s boundary
effect) resulting from the relatively large β̂(0.80) = 0.061, which indicates that high education is significantly associated
with higher earnings for the upper tails of wages.
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Fig. 11. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.80-quantile smoothers w.r.t. 3 different education levels. The ‘‘low
education’’, ‘‘apprenticeship’’ and ‘‘university’’ levels are marked as red dashed, blue dotted and brown dashed–dot lines respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. 95% bootstrap (thick) and asymptotic (thin) uniform confidence bands for 0.80-quantile smoothers w.r.t. 3 different education levels with the
oversmoothing bandwidth set as g/2, g/4, 2g and 4g (from left to right, up to down) respectively. The corresponding line styles and colors are the same
as in Fig. 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Coupled with Figs. 7, 9 and 11, Figs. 8, 10 and 12 present the corresponding bootstrap confidence bands constructed
using different oversmoothing bandwidths, namely, half, quarter, twice and quadruple (from left to right, up to down) of
the oversmoothing bandwidth g = n4/45h used before. The corresponding asymptotic bands are also added for reference
(thin lines with the same style and color). As we can see, in practice, for the typically large labor economic data set, the
bootstrap confidence bands are quite robust to the choice of the oversmoothing bandwidth.

If we investigate the explanations for the differences in different tails of the income distribution, maybe the most
prominent reason is the rapid development of technology, which has been extensively studied. The point is that technology
does not simply increase the demand for upper-end labor relative to that of lower-end labor, but instead asymmetrically
affects the bottom and the top of the wage distribution, resulting in its strong asymmetry.

6. Conclusions

In this paper we construct confidence bands for nonparametric quantile estimates of regression functions. The method
is based on bootstrapping, where resampling is done from a suitably estimated empirical distribution function (edf) for
residuals. It is proven that the bootstrap approximation provides an improvement over the confidence bands constructed
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via the asymptotic Gumbel distribution. We also propose a partial linear model to handle the case of multidimensional and
discrete regressor variables. An economic application considering the labormarket differential effect with respect to various
education levels is studied. The conclusions from the point of view of quantile regression are consistent with those of the
(grouped) mean regression, but in a more careful way in the sense that we provide formal statistical tools to judge these
uniformly. The partial linear quantile regression techniques, togetherwith confidence bands, developed in this paper display
very interesting findings compared with classic (mean) methods and will bring in more contributions to the differential
analysis of the labor market.

Appendix

Proof of Theorem 2.1. We start by proving Eq. (8).Write first F̂−1(Ui|Xi) = F−1(Ui|Xi)+∆i. Fix any i such that |F−1(Ui|Xi)−
F−1(p)| ≤ Snδn, which, by Eq. (1), implies that |Ui − p| < Snδn. Lemma 2.1 gives

max
i

|F̂(S2nδn|Xi)− F(S2nδn|Xi)| = Op(Snδn). (26)

Together with F(±S2nδn|Xi) = p ± O(S2nδn), again by Eq. (1), we have F̂(±S2nδn|Xi) = p ± Op(S2nδn) and thus

F̂(−S2nδn|Xi) = p − Op(S2nδn) 6 p − Snδn < Ui < p + Snδn

< p + Op(S2nδn) = F̂(S2nδn|Xi).

Since F̂(·|Xi) is monotone non-decreasing, |F̂−1(Ui|Xi)| ≤ S2nδn, which means, by S2n = Sn,

|F̂−1(Ui|Xi)| ≤ Snδn. (27)

Apply now Lemma 2.1 again to Eq. (27), and obtain

Snδn ≥ |F̂{F̂−1(Ui|Xi)|Xi} − F{F̂−1(Ui|Xi)|Xi}|

= |Ui − F{F−1(Ui|Xi)+∆i|Xi}|

= |F{F−1(Ui|Xi)|Xi} − F{F−1(Ui|Xi)+∆i|Xi}|

≥ f0(Xi)|∆i|. (28)

Hence |∆i| < Snδn, and we summarize it as

max
i:|F−1(Ui|Xi)−F−1(p)|<Snδn

|F−1(Ui|Xi)−F−1(Ui|Xi)| = Op{Snδn}.

To show Eq. (12), define

Z1j
def
= Y ∗

j − lg(Xj)+ lg(Xj)− lg(Xi),

Z2j
def
= Y#

j − l(Xj)+ l(Xj)− l(Xi).

Thus qhi[{(Y ∗

j −lg(Xj)+lg(Xj)−lg(Xi))}
n
j=1] and qhi[{Y#

j −l(Xj)+l(Xj)−l(Xi)}
n
j=1] can be seen as lh(Xi) for data sets {(Xi, Z1i)}ni=1

and {(Xi, Z2i)}ni=1 respectively. Similarly to Härdle and Song [22], they can be treated as zeros (w.r.t. θ, θ ∈ I where I is a
possibly infinite, or possibly degenerate, interval in R) of the functions

Gn(θ, Xi)
def
= n−1

n
j=1

Kh(Xi − Xj)ψ(Z1j − θ), (29)

Gn(θ, Xi)
def
= n−1

n
j=1

Kh(Xi − Xj)ψ(Z2j − θ). (30)

From (8) and (9), we have

max
i

[{Y ∗

j − lg(Xj)+ lg(Xj)− lg(Xi)}
n
j=1] − [{Y#

j − l(Xj)+ l(Xj)− l(Xi)}
n
j=1]


= Op{Snδn} + Op(δn) = Op(δn). (31)

Thus

sup
θ∈I

max
i

|Gn(θ, Xi)−
Gn(θ, Xi)| ≤ Op(δn)max

n−1


Kh

 = Op(δn).
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To show the difference of the two quantile smoothers, we shall reduce the strong convergence of qhi[{Y ∗

j − lg(Xj)+ lg(Xj)−

lg(Xi)}
n
j=1] − qhi[{Y#

j − l(Xj)+ l(Xj)− l(Xi)}
n
j=1], for any i, to an application of the strong convergence ofG(θ, Xi) toGn(θ, Xi),

uniformly in θ , for any i. Under assumptions (A7) and (A8), in a similar spirit to Härdle and Song [22], we get

max
i

|l∗h(Xi)− lg(Xi)− l#h (Xi)− l(Xi)| = Op(δn).

To show the supremum of the bootstrap approximation error, without loss of generality, based on assumption (A1), we
reorder the original observations {Xi, Yi}

n
i=1, such that X1 6 X2 6, . . . ,6 Xn. First decompose:

sup
x∈J∗

|l∗h(x)− lg(x)− l#h (x)− l(x)| = max
i

|l∗h(Xi)− lg(Xi)− l#h (Xi)+ l(Xi)|

+ max
i

sup
x∈[Xi,Xi+1]

|l∗h(x)− lg(x)− l#h (x)+ l(x)|. (32)

From assumption (A1) we know l′(·) ≤ λ1 and maxi(Xi+1 − Xi) = Op(Sn/n). By the mean value theorem, we conclude that
the second term of (32) is of a lower order than the first term. Together with Eq. (12) we have

sup
x∈J∗

|l∗h(x)− lg(x)− l#h (x)− l(x)| = O{max
i

|l∗h(Xi)− lg(Xi)− l#h (Xi)− l(Xi)|} = Op(δn),

whichmeans that the supremumof the approximation error over all x is of the same order of themaximumover the discrete
observed Xi. �

Proof of Theorem 2.2. The proof of (16) usesmethods related to those in the proof of Theorem 3 of Härdle andMarron [20],
so only the main steps are explicitly given. The first step is a bias-variance decomposition,

E


b̂h,g(x)− bh(x)

2
|X1, . . . , Xn


= Vn + B2

n , (33)

where

Vn = Var

b̂h,g(x)|X1, . . . , Xn


,

Bn = E

b̂h,g(x)− bh(x)|X1, . . . , Xn


.

Following the uniform Bahadur representation techniques for quantile regression as in Theorem 3.2 of Kong et al. [27],
we have the following linear approximation for the quantile smoother as a local polynomial smoother corresponding to a
specific loss function:

l#h (x)− l(x) = Ln + Op(Ln),

where

Ln =
n−1 

Kh(x − Xi)ψ {Yi − l(x)}
f {l(x)|x} fX (x)

for

ψ(u) = p1{u ∈ (0,∞)} − (1 − p)1{u ∈ (−∞, 0)}
= p − 1{u ∈ (−∞, 0)},

l(x − t)− l(x) = l′(x)(−t)+ l′′(x)t2 + O(t2),
{l(x − t)− l(x)}′ = l′′(x)(−t)+ l′′′(x)t2 + O(t2),
f (x − t) = f (x)+ f ′(x)(−t)+ f ′′(x)(t2)+ O(t2),
f ′(x − t) = f ′(x)+ f ′′(x)(−t)+ f ′′′(x)t2 + O(t2),

Kh(t)tdt = 0,
Kh(t)t2dt = h2dK ,
Kh(t)O(t2)dt = O(h2).

Then we have

Bn = Bn1 + O(Bn1),
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where

Bn1 =


Kg(x − t)Uh(t)dt − Uh(x)

fX (x)f {l(x)|x}

for

Uh(x) =


Kh(x − s)ψ {l(s)− l(x)} f (s)ds

=


Kh(t)ψ {l(x − t)− l(x)} f (x − t)dt.

By differentiation, a Taylor expansion and properties of the kernel K (see assumption (A2)),

U′

h(x) =


Kh(t)[ψ ′

{l(x − t)− l(x)}′ f (x − t)+ ψ {l(x − t)− l(x)} f ′(x − t)]dt.

Here ψ ′ is the derivative of ψ except the 0 point, which actually does not matter since there is integration afterwards.
Collecting terms, we get

U′

h(x) =


Kh(t){ψ ′l′′(x)f ′

X (x)t
2
+ ψ ′l′′′fX (x)t2 + af ′′′(x)t2 + O(t2)}dt

=


Kh(t)


C0t2 + o(t2)


dt = h2dK · C0 + O(h2),

where a is a constant with |a| < 1 and C0 = ψ ′l′′(x)f ′

X (x)+ ψ ′l′′′fX (x)+ af ′′′(x).
Hence, by another substitution and Taylor expansion, for the first term in the numerator of Bn1, we have

Bn2 = g2h2(dK )2 · C0 + O(g2h2).

Thus, along almost all sample sequences,

B2
n = C1g4h4

+ O(g4h4) (34)

for C1 = (dK )4C2
0/[f

2
X (x)f

2 {l(x)|x}].
For the variance term, calculation in a similar spirit shows that

Vn = Vn1 + O(Vn1),

where

Vn1 =


K 2
g (x − t)Wh(t)dt −


Kg(x − t)Uh(t)dt

2 fX (x)f {l(x)|x}

fX (x)f {l(x)|x}

for

Wh(x) =


K 2
h (x − s)ψ {l(s)− l(x)}2 f (s)ds

=


K 2
h (t)ψ {l(x − t)− l(x)}2 f (x − t)dt.

Hence, by Taylor expansion, collecting items and similar calculation, we have

Vn = n−1h4g−5C2 + O(n−1h4g−5) (35)

for a constant C2. This, together with (33) and (34), completes the proof of Theorem 2.2. �

Proof of Theorem 3.1. In the case where the function l is known, the estimate β̂I is

β̂I = argmin
β

n
i=1

ψ{Yi − l(Vi)− U⊤

i β}.

Since l is unknown, in each of these small intervals Ini, l(Vi) could be regarded as a constant α = l(mni) for some iwhose
corresponding interval Ini covers Vi. From assumption (A1), we know that |l(Vi) − αi| ≤ λ1bn < ∞. If we define our first
step estimate β̂i inside each small interval as

(α̂i, β̂i) = argmin
α, β


ψ(Yi − α − U⊤

i β),
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|{Yi − l(Vi)− U⊤

i β} − (Yi − α− U⊤

i β)| ≤ λ1bn < ∞ indicates that we could treat β̂i as β̂I inside each partition. If we use di
to denote the number of observations inside partition Ini (based on the i.i.d. assumption as in assumption (A1), on average
di = n/an). For each of the β̂i’s inside interval Ini, various parametric quantile regression works, e.g. the convex function rule
in [31,24], yield

di(β̂i − β)
L
→ N{0, p(1 − p)D′−1

i (p)C
′

iD
′−1
i (p)} (36)

with the matrices C ′

i = di−1 di
i=1 U

⊤

i Ui and D′

i(p) = di−1 di
i=1 f {l(Vi)|Vi}U⊤

i Ui.
To get β̂ , our second step is to take the weighted mean of β̂1, . . . , β̂an as

β̂ = argmin
β

an
i=1

di(β̂i − β)2 =

an
i=1

diβ̂i/n.

Note that under this construction, β̂1, . . . , β̂an are independent but not identical. Thus we intend to use the Lindeberg
condition for the central limit theorem. To this end, we use s2n to denote Var(

an
i=1 diβ̂i/n), and we need to further check

whether the following ‘‘Lindeberg condition’’ holds:

lim
an→∞

1
s2n

an
i=1


(|diβ̂i/n−β|>εsn)

(β̂i − β)2 dF = 0, for all ε > 0. (37)

Since

Var


an
i=1

di(β̂i − β)/n


=

an
i

p(1 − p)


n/di

di
j=1

f {l(Vj)|v}U⊤

j Uj

−1

×

di
i=1

U⊤

i Ui


n/di

di
j=1

f {l(Vj)|v}U⊤

j Uj

−1

≈ p(1 − p)
 n

j=1

f {l(Vj)|v}U⊤

j Uj

−1 n
i=1

U⊤

i Ui


n

j=1

f {l(Vj)|v}U⊤

j Uj

−1

def
=

1
n
p(1 − p)D−1

n CnD−1
n ,

where Dn =
1
n

n
j=1 f {l(Vj)|Vi}U⊤

j Uj and Cn =
1
n

n
i=1 U

⊤

i Ui, together with the normality of β̂i as in (36) and properties of
the tail of the normal distribution, e.g. Exe. 14.3–14.4 of Borak et al. [3], (37) follows.

Thus as n, an → ∞ (although at a lower rate than n), together with C = plimn→∞Cn,D = plimn→∞Dn, we have

√
n(β̂ − β)

L
→ N{0, p(1 − p)D−1CD−1

}. � (38)
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We consider a difference based ridge regression estimator and a Liu type estimator of
the regression parameters in the partial linear semiparametric regression model, y =

Xβ+f +ε. Both estimators are analyzed and compared in the sense ofmean-squared error.
We consider the case of independent errors with equal variance and give conditions under
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1. Introduction

Semiparametric partial linear models have received considerable attention in statistics and econometrics. They have a
wide range of applications, from biomedical studies to economics. In thesemodels, some explanatory variables have a linear
effect on the response while others are entering nonparametrically. Consider the semiparametric regression model:

yi = x⊤

i β + f (ti) + εi, i = 1, . . . , n (1)

where yi’s are observations at ti, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1 and x⊤

i = (xi1, xi2, . . . , xip) are known p-dimensional vectors
with p ≤ n. In many applications, ti’s are values of an extra univariate ‘‘time’’ variable at which responses yi are observed.
In the case ti ∈ Rk, ti = (t1i, . . . , tki)⊤, the triples (y1, x1, t1), . . . , (yn, xn, tn) should be ordered using one of the algorithms
mentioned in [30], Appendix A, or in [8, Section 2.2].
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In Eq. (1), β = (β1, . . . , βp)
⊤ is an unknown p-dimensional parameter vector, f (·) is an unknown smooth function and

ε’s are independent and identically distributed random errors with E(ε|x, t) = 0 and Var(ε|x, t) = σ 2. We shall call f (t)
the smooth part of the model and assume that it represents a smooth unparameterized functional relationship.

The goal is to estimate the unknown parameter vector β and the nonparametric function f (t) from the data {yi, xi, ti}ni=1.
In vector/matrix notation, (1) is written as

y = Xβ + f + ε (2)

where y = (y1, . . . , yn)⊤, X = (x1, . . . , xn), f = {f (t1), . . . , f (tn)}⊤, ε = (ε1, . . . , εn)
⊤.

Semiparametric models are by design more flexible than standard linear regression models since they combine both
parametric and nonparametric components. There exist various goodness-of-fit tests to identify the nonparametric part in
this kind of models; see [8] and the references therein. Estimation techniques for semiparametric partially linear models
are based on different nonparametric regression procedures. The most important approaches to estimate β and f are given
in [12,4,7,6,5,14,24,15,33].

In practice, researchers often encounter the problem of multicollinearity. In case of multicollinearity, we know that
the (p × p) matrix X⊤X has one or more small eigenvalues; the estimates of the regression coefficients can therefore
have large variances: the least squares estimator performs poorly in this case. Hoerl and Kennard [17] proposed the ridge
regression estimator and it has become themost commonmethod to overcome this particular weakness of the least squares
estimator. For the purpose of this paper, we will employ the biased estimator that was proposed by Liu [20] to combat the
multicollinearity. The Liu estimator combines the Stein [26] estimator with the ridge regression estimator; see also [1,13].

The condition number is a measure of multicollinearity. If X⊤X is ill-conditioned with a large condition number, the
ridge regression estimator or Liu estimator can be used to estimate β , [21]. We consider difference based ridge and Liu
type estimators in comparison to the unbiased difference based approach. We give theoretical conditions that determine
superiority among the estimation techniques in the mean squared error matrix sense.

We use data on monthly electricity consumption and its determinants (income, electricity and gas prices, temperature)
for Germany. The purpose is to understand electricity consumption as a linear function of income and price and a nonlinear
function of temperature: semiparametric approach is therefore necessary here. The data reveal a high condition number
of 20.5; we therefore expect a more precise estimation with Ridge or Liu type estimators. We show how our theoretically
derived conditions can be implemented for a given data set and be used to determine the appropriate biased estimation
technique.

The paper is organized as follows. In Section 2, the model and the differencing estimator is defined. We introduce
difference based ridge and Liu type estimators in Section 3. In Section 4, the differencing estimator proposed by Yatchew [30]
and the difference based Liu type estimator are compared in terms of the mean squared error. In Section 5, both biased
regressionmethodologies in semiparametric regressionmodels are compared in terms of the mean squared error. Section 6
relaxes the assumption of i.i.d. errors and replicates the results of the previous sections in the presence of heteroscedasticity
and autocorrelation. Section 7 gives a real data example to show the performance of the proposed estimators.

2. The model and differencing estimator

In this section, we introduce a difference based technique for the estimation of the linear coefficient vector in a
semiparametric regression. This technique has been used to remove the nonparametric component in the partially linear
model by various authors (e.g. [30,32,19,3]).

Consider the semiparametric regression model (2). Let d = (d0, d1, . . . , dm)⊤ be an m + 1 vector where m is the order
of differencing and d0, d1, . . . , dm are differencing weights that minimize

m
k=1


m−k
j=1

djdk+j

2

,

such that
m
j=0

dj = 0 and
m
j=0

d2j = 1 (3)

are satisfied.
Let us define the (n − m) × n differencing matrix D to have first and last rows (d⊤, 0⊤

n−m−1), (0
⊤

n−m−1, d
⊤) respectively,

with i-th row (0i, d⊤, 0⊤

n−m−i−1), i = 1, . . . , (n − m − 1), where 0r indicates an r-vector of all zero elements

D =


d0 d1 d2 · · · dm 0 · · · · · · 0
0 d0 d1 d2 · · · dm 0 · · · 0
...

...
0 · · · · · · d0 d1 d2 · · · dm 0
0 0 · · · · · · d0 d1 d2 · · · dm

 .
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Applying the differencing matrix to (2) permits direct estimation of the parametric effect. Eubank et al. [6] showed that
the parameter vector in (2) can be estimated with parametric efficiency. If f is an unknown function with bounded first
derivative, then Df is essentially 0, so that applying the differencing matrix we have

Dy = DXβ + Df + Dε ≈ DXβ + Dεy ≈Xβ +ε (4)

wherey = Dy,X = DX andε = Dε. Constraints (3) ensure that the nonparametric effect is removed and Var(ε) = Var(ε) =

σ 2. With (4), a simple differencing estimator of the parameter β in the semiparametric regression model results:β(0) = {(DX)⊤(DX)}−1(DX)⊤Dy

=
X⊤X−1X⊤y. (5)

Thus, differencing allows one to perform inferences on β as if there were no nonparametric component f in model (2), [9].
We will also use the modified estimator of σ 2 proposed by Eubank et al. [7]

σ 2
=

y⊤(I − P⊥)y
tr{D⊤(I − P⊥)D}

(6)

with P⊥
=X(X⊤X)−1X⊤, I (p × p) identity matrix and tr(·) denoting the trace function for a square matrix.

3. Difference based ridge and Liu type estimator

As an alternative toβ(0) in (5), [27] propose:β(1)(k) = (X⊤X + kI)−1X⊤y, k ≥ 0;

here k is the ridge-biasing parameter selected by the researcher.We callβ(1)(k) a difference based ridge regression estimator
of the semiparametric regression model.

From the least squares perspective, the coefficients β are chosen to minimize

(y −Xβ)⊤(y −Xβ). (7)

Adding to the least squares objective (7) a penalizing function of the squared norm ∥ηβ(0) −β∥
2 for the vector of regression

coefficients, yields a conditional objective:

L = (y −Xβ)⊤(y −Xβ) + (ηβ(0) − β)⊤(ηβ(0) − β). (8)

Minimizing (8) with respect to β , we obtain the estimatorβ(2)(η) an alternative toβ(0) in (5):

β(2)(η) = (X⊤X + I)−1(X⊤y + ηβ(0)), (9)

where η, 0 ≤ η ≤ 1, is a biasing parameter and when η = 1,β(2)(η) = β(0). The formal resemblance between (9) and the
Liu estimator motivated [1,18,29] to call it the difference based Liu type estimator of the semiparametric regression model.

4. Mean squared error matrix (MSEM) comparison ofβ(0) withβ(2)(η)

In this section, the objective is to examine the difference of the mean square error matrices ofβ(0) andβ(2)(η). We note
that for any estimatorβ of β , its mean squared error matrix (MSEM) is defined as MSEM(β) = Cov(β) + Bias(β) Bias(β)⊤,
where Cov(β) denotes the variance–covariance matrix and Bias(β) = E(β) − β is the bias vector. The expected value ofβ(2)(η) can be written as

E{β(2)(η)} = β − (1 − η)(X⊤X + I)−1β.

The bias of theβ(2)(η) is given as

Bias{β(2)(η)} = −(1 − η)(X⊤X + I)−1β. (10)

Denoting Fη = (X⊤X + I)−1(X⊤X + ηI) and observing Fη and (X⊤X)−1 are commutative, we may writeβ(2)(η) asβ(2)(η) = Fη
β(0) = Fη(X⊤X)−1X⊤y

= (X⊤X)−1Fη
X⊤y.
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Setting S = (D⊤X)⊤(D⊤X) and U = (X⊤X)−1 we may write Cov{β(2)(η)} as

Cov{β(2)(η)} = σ 2FηUSUF⊤

η , (11)

Cov(β(0)) = σ 2USU . (12)

Using (11) and (12), the difference ∆1 = Cov(β(0)) − Cov{β(2)(η)} can be expressed as

∆1 = σ 2 USU − FηUSUF⊤

η


= σ 2Fη{F−1

η USU(F⊤

η )−1
− USU}F⊤

η

= σ 2(1 − η2)(U−1
+ I)−1


1

1 + η
(US + SU) + USU


(U−1

+ I)−1. (13)

Let τ =
1

1+η
> 0,M = USU,N = US + SU . Since M = L⊤L and rank(L) = p < n − m, then M is a (p × p) positive definite

matrix, where L = D⊤X(X⊤X)−1 and N = US + SU is a symmetric matrix. Thus, we may write (13) as

∆1 = σ 2(1 − η2)H(M + τN)H
= σ 2(1 − η2)H(Q⊤)−1(Q⊤MQ + τQ⊤NQ )Q−1H
= σ 2(1 − η2)H(Q⊤)−1(I + τE)Q−1H,

where I+τE = diag(1+τe11, . . . , 1+τepp) andH = (U−1
+I)−1. SinceM is a positive definite andN is a symmetricmatrix,

a nonsingular matrix Q exists such that Q⊤MQ = I and Q⊤NQ = E; here E is a diagonal matrix and its diagonal elements
are the roots of the polynomial equation |M−1N − eI| = 0 (see [11, pp. 408] and [16, pp. 563]) and since N = US + SU ≠ 0,
there is at least one diagonal element of E that is nonzero. Let eii < 0 for at least one i; then positive definiteness of I + τE
is guaranteed by

0 < τ < min
eii<0

 1eii
 . (14)

Hence 1+τeii > 0 for all i = 1, . . . , p and therefore I+τE is a positive definitematrix. Consequently,∆1 becomes a positive
definite matrix, as well. It is now evident that the estimatorβ(2)(η) has a smaller variance compared with the estimatorβ(0)
if and only if (14) is satisfied.

Next, we give necessary and sufficient conditions for the difference based Liu type estimatorβ(2)(η) to be superior toβ(0)
in the mean squared error matrix (MSEM) sense.

The proof of the next theorem requires the following lemma.

Lemma 4.1 (Farebrother [10]). Let A be a positive definite (p × p) matrix, b a (p × 1) nonzero vector and δ a positive scalar.
Then δA − bb⊤ is non-negative if and only if b⊤A−1b ≤ δ.

Let us compare the performance ofβ(2)(η) with the differencing estimatorβ(0) with respect to the MSEM criterion. In order
to do that, define ∆2 = MSEM(β(0)) − MSEM{β(2)(η)}. Observe that

MSEM(β(0)) = Cov(β(0)) = σ 2USU (15)

and

MSEM{β(2)(η)} = σ 2FηUSUF⊤

η + (1 − η)2(U−1
+ I)−1ββ⊤(U−1

+ I)−1. (16)

Then from (15) and (16) one derives

∆2 = σ 2Fη{F−1
η USU(F⊤

η )−1
− USU}F⊤

η − (1 − η)2(U−1
+ I)−1ββ⊤(U−1

+ I)−1,

= H

σ 2(1 − η2)(M + τN) − (1 − η)2ββ⊤


H,

= (1 − η)2H

σ 2 1 + η

1 − η
(M + τN) − ββ⊤


H.

Applying Lemma 4.1 and assuming condition (14) to be satisfied, we see ∆2 is positive definite if and only if

β⊤(M + τN)−1β ≤ σ 2 1 + η

1 − η
, 0 < η < 1.

Now we may state the following theorem.

Theorem 4.1. Consider the two estimatorsβ(2)(η) andβ(0) of β . Let W =
1+η

1−η
(M + τN) be a positive definite matrix. Then the

biased estimator β(2)(η) is MSEM superior toβ(0) if and only if

β⊤W−1β ≤ σ 2.
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5. MSEM comparison ofβ(1)(k) andβ(2)(η)

Let us now compare the MSEM performance ofβ(1)(k) = (X⊤X + kI)−1X⊤y
= SkX⊤Dy
= A1y (17)

with β(2)(η) = (X⊤X + I)−1(X⊤y + ηβ(0))

= (X⊤X)−1(X⊤X + I)−1(X⊤X + ηI)X⊤y
= UFη

X⊤Dy

= A2y. (18)

The MSEM of the difference based ridge regression estimatorβ(1)(k) is given by

MSEM{β(1)(k)} = Cov{β(1)(k)} + Bias{β(1)(k)} Bias{β(1)(k)}⊤

= Sk(σ 2S + k2ββ⊤)S⊤

k

= σ 2(A1A⊤

1 ) + d1d⊤

1 ,

where Sk = (X⊤X + kI)−1 and d1 = Bias{β(1)(k)} = −kSkβ; see [27]. The MSEM in (16) may be written as

MSEM{β(2)(η)} = σ 2(A2A⊤

2 ) + d2d⊤

2 ,

with d2 = Bias{β(2)(η)} = −(1 − η)(U−1
+ I)−1β .

Define

∆3 = MSEM{β(1)(k)} − MSEM{β(2)(η)} = σ 2(A1A⊤

1 − A2A⊤

2 ) + (d1d⊤

1 − d2d⊤

2 ). (19)

For the following proofs we employ the following lemma.

Lemma 5.1 (Trenkler and Toutenburg [28]). Let β(j) = Ajy, j = 1, 2 be the two linear estimators of β . Suppose the difference
Cov(β(1)) − Cov(β(2)) of the covariance matrices of the estimators β(1) and β(2) is positive definite. Then MSEM(β(1)) −

MSEM(β(2)) is positive definite if and only if d⊤

2 {Cov(β(1)) − Cov(β(2)) + d1d⊤

1 }
−1d2 < 1.

Theorem 5.1. The sampling variance of β(2)(η) is smaller than that of β(1)(k), if and only if λmin(G−1
2 G1) > 1, where λmin is

the minimum eigenvalue of G−1
2 G1 and Gj = σ 2AjA⊤

j , j = 1, 2.

Proof. Consider the difference

∆∗
= Cov{β(1)(k)} − Cov{β(2)(η)}

= σ 2(A1A⊤

1 − A2A⊤

2 ),

= G1 − G2

withG1 = (D⊤XWkU)⊤ = V⊤V ,Wk = I+kU andG2 = (XF⊤
η U)⊤(XF⊤

η U). Since rank(V ) = p < n−m,G1 is a (p×p)positive
definite matrix and G2 is a symmetric matrix. Hence, a nonsingular matrix O exists such that O⊤G1O = I and O⊤G2O = Λ,
with Λ diagonal matrix with diagonal elements roots λ of the polynomial equation |G1 − λG2| = 0 (see [16, p. 563]
or [25, p. 160]). Thus, we may write ∆∗

= (O⊤)−1(O⊤G1O − O⊤G2O)O−1
= (O⊤)−1(Λ − I)O−1 or O⊤∆∗O = Λ − I . If

G1 − G2 is positive definite, then O⊤G1O− O⊤G2O = Ψ − I is positive definite. Hence λi − 1 > 0, i = 1, 2, . . . , p, so we get
λmin(G−1

2 G1) > 1.
Now let λmin(G−1

2 G1) > 1 hold. Furthermore, with G2 positive definite and G1 symmetric, we have λmin <
ν⊤G1ν
ν⊤G2ν

< λmax

for all nonzero (p× 1) vectors ν, so G1 −G2 is positive definite; see [23, p. 74]. It is obvious that Cov{β(2)(η)}− Cov{β(1)(k)}
is positive definite for 0 ≤ η ≤ 1, k ≥ 0 if and only if λmin(G−1

2 G1) > 1. �

Theorem 5.2. Consider β(1)(k) = A1y and β(2)(η) = A2y of β . Suppose that the difference Cov{β(1)(k)} − Cov{β(2)(η)} is
positive definite. Then

∆3 = MSEM{β(1)(k)} − MSEM{β(2)(η)}

is positive definite if and only if

d⊤

2 {σ 2(A1A⊤

1 − A2A⊤

2 ) + d1d⊤

1 }
−1d2 < 1

with A1 = SkX⊤D, A2 = UFη
X⊤D.
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Proof. The difference between the MSEMs ofβ(2)(η) andβ(1)(k) is given by

∆3 = MSEM{β(1)(k)} − MSEM{β(2)(η)}

= σ 2(A1A⊤

1 − A2A⊤

2 ) + (d1d⊤

1 − d2d⊤

2 )

= Cov{β(1)(k)} − Cov{β(2)(η)} + (d1d⊤

1 − d2d⊤

2 ).

Applying Lemma 5.1 yields the desired result. �

It should be noted that all results reported above are based on the assumption that k and η are non-stochastic. The
theoretical results indicate that theβ(2)(η) is not always better than theβ(1)(k), and vice versa. For practical purposes, we
have to replace these unknown parameters by some suitable estimators.

6. The heteroscedasticity and correlated error case

Up to this point, independent errorswith equal variancewere assumed. The error termmight also exhibit autocorrelation.
To account for these effects, we extend the results in this section and consider the more general case of heteroscedasticity
and autocovariance in the error terms.

Consider nowobservations {yt , xt , tt}Tt=1 and the semiparametric partial linearmodel yt = x⊤
t β+f (tt)+εt , t = 1, . . . , T .

Let E(εε⊤
|x, t) = Ω not necessarily diagonal. To keep the structure of the errors for later inference, we define an (n × n)

permutation matrix P as in [32]. Consider a permutation:
1 t(1)
· · · · · ·

i t(i)
· · · · · ·

n t(n)


where i = 1, . . . , n is the index of the ordered nonparametric variable and t(i) = 1, . . . , T corresponding time index of the
observations. Then P is defined for i, j = 1, . . . , n:

Pij =


1, j = t(i)
0, otherwise.

We can now rewrite the model after reordering and differencing:

DPy = DPXβ + DPf (x) + DPε, E(εε⊤
|x, t) = Ω. (20)

Then, withX = DPX andy = DPy from (20),β(0) is given:β(0) = (X⊤X)−1X⊤y (21)

with

Cov(β(0)) = (X⊤X)−1X⊤DPΩD⊤P⊤X(X⊤X)−1

= UX⊤DPΩD⊤P⊤XU . (22)

We will use a heteroscedasticity and autocovariance consistent estimator described in [22] for the interior matrix of (22),
which is in our case:

DPΩD⊤P⊤ = {DPε(DPε)⊤} ⊙


L

ℓ=0


1 −

ℓ

L + 1


Hℓ


(23)

with DPε =y −Xβ(0), ⊙ denoting the elementwise matrix product, L the maximum lag of nonzero autocorrelation in the
errors and H0 the identity matrix. Let Lℓ be a matrix with ones on the ℓth diagonal; then Hℓ, ℓ = 1, . . . L are such that:

Hℓ
ij =


0, if {DP(Lℓ + L⊤

ℓ )D⊤P⊤
}ij = 0,

1, otherwise and i, j = 1, . . . , p.

Plugging (23) in (22), we obtain a consistent estimator for Cov(β(0)); see [31] for details.
DenotingS =X⊤DPΩD⊤P⊤X , we can write down Cov{β(1)(k)} and Cov{β(2)(η)} in model (20).

Cov{β(1)(k)} = SkSSk (24)

Cov{β(2)(η)} = FηUSUFη. (25)
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Using (22) and (25), the difference ∆1 = Cov(β(0)) − Cov{β(2)(η)} can be expressed as

∆1 =

USU − FηUSUF⊤

η


= Fη{F−1

η USU(F⊤

η )−1
− USU}F⊤

η

= (1 − η2)(U−1
+ I)−1


1

1 + η
(US +SU) + USU (U−1

+ I)−1, (26)

with τ =
1

1+η
> 0,M = USU ,N = US +SU . Since M is a (p × p) positive definite matrix andN is a symmetric matrix, a

nonsingular matrix T exists such that T⊤MT = I and T⊤NT =E; hereE is a diagonal matrix and its diagonal elements are
the roots of the polynomial equation |M−1N −eI| = 0 (see [11, pp. 408] and [16, pp. 563]) and we may write (26) as

∆1 = (1 − η2)H(M + τN)H

= (1 − η2)H(T⊤)−1(T⊤MT + τT⊤NT )T−1H

= (1 − η2)H(T⊤)−1(I + τE)T−1H,

where I +τE = diag(1 + τe11, . . . , 1 + τepp) and H = (U−1
+ I)−1. SinceN = US +SU ≠ 0, there is at least one diagonal

element ofE that is nonzero.
Leteii < 0 for at least one i; then positive definiteness of I + τE is guaranteed by

0 < τ < mineii<0

 1eii
 . (27)

Hence 1+τeii > 0 for all i = 1, . . . , p and therefore I+τE is a positive definitematrix. Consequently,∆1 becomes a positive
definite matrix, as well. It is now evident that the estimatorβ(2)(η) has a smaller variance compared with the estimatorβ(0)
if and only if (27) is satisfied.

With

∆′

1 = Cov(β(0)) − Cov{β(1)(k)}

= k2Sk


1
k
(US +SU) + USU Sk

= k2Sk


1
k
N + M Sk

and analogous argumentation as above obtained forβ(1)(k):

0 <
1
k

< mineii<0

 1eii
 . (28)

The next theorem extends the results of Theorem 3.1 in [27] and Theorem 4.1 of Section 4 to the more general case
of (20).

Theorem 6.1. Consider the estimatorsβ(i)(x), i = {1, 2}; x = {k, η} andβ(0) of β . Let W1 = M + τN,W2 =
1+η

1−η
(M + τN)

be positive definite (alternative: assume that (27) and (28) hold). Then the biased estimator β(i)(x) is MSEM superior toβ(0) if
and only if

β⊤W−1
i β ≤ 1.

Proof. Consider the differences

∆2 = MSEM(β(0)) − MSEM{β(2)(η)}

= Cov(β(0)) − Cov{β(2)(η)} − Bias{β(2)(η)} Bias{β(2)(η)}⊤

= Fη{F−1
η USU(F⊤

η )−1
− USU}F⊤

η − (1 − η)2(U−1
+ I)−1ββ⊤(U−1

+ I)−1

= (1 − η)2H

1 + η

1 − η
(M + τN) − ββ⊤


H

= (1 − η)2H

W2 − ββ⊤


H.
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∆′

2 = MSEM(β(0)) − MSEM{β(1)(k)}
= Cov(β(0)) − Cov{β(1)(k)} − Bias{β(1)(k)} Bias{β(1)(k)}⊤

= Sk{k(SU + US) + k2USU − k2ββ⊤
}Sk

= k2Sk


1
k
N + M − ββ⊤


Sk

= k2Sk(W1 − ββ⊤)Sk.

With Lemma 4.1, the assertion follows. �

Theorem 6.1 gives conditions under which the biased estimatorβ(i)(x), i = {1, 2}; x = {k, η} is superior toβ(0) in the
presence of heteroscedasticity and autocorrelation in the data.

Note that for comparison of the biased estimators Theorem 5.1 can be extended straight forwardly to the general case
by exchanging G1 and G2 by G1 =A1ΩA⊤

1 and G2 =A2ΩA⊤

2 correspondingly, withA1 = SkX⊤DP, A2 = UFη
X⊤DP . Hence,

the sampling variance ofβ(2)(η) is always smaller than that ofβ(1)(k), if and only if λmin(G2
−1G1) > 1, where λmin is the

minimum eigenvalue of G2
−1G1.

Now, we give a generalized version of Theorem 5.2.

Theorem 6.2. Consider β(1) =A1y andβ(2) =A2y of β . Suppose that the difference Cov{β(1)} − Cov{β(2)} is positive definite.
Then

∆3 = MSEM(β(1)) − MSEM(β(2))

is positive definite if and only if

d⊤

2 (A1ΩA⊤

1 −A2ΩA⊤

2 + d1d⊤

1 )−1d2 < 1.

Proof. The difference between the MSEMs ofβ(2)(η) andβ(1)(k) is given by

∆3 = MSEM(β(1)) − MSEM(β(2))

= A1ΩA⊤

1 −A2ΩA⊤

2 + d1d⊤

1 − d2d⊤

2

= Cov(β(1)) − Cov(β(2)) + d1d⊤

1 − d2d⊤

2 .

Applying Lemma 5.1 yields the desired result. �

We note that in order to use the criteria above, one has to estimate the parameters. The estimation of Ω is thereby the
most challenging. However, as long as estimator (23) is available, all considered criteria can be evaluated on the real data
and can be used for practical purposes.

7. Determinants of electricity demand

The empirical study example is motivated by the importance of explaining variation in electricity consumption. Since
electricity is a non-storable good, electricity providers are interested in understanding and hedging demand fluctuations.

Electricity consumption is known to be influenced negatively by the price of electricity and positively by the incomeof the
consumers. As electricity is frequently used for heating and cooling, the effect of the air temperature must also be present.
Both heating by low temperatures and cooling by high temperatures result in higher electricity consumption and motivate
the use of a nonparametric specification for the temperature effect. Thus we consider the semiparametric regression model
defined in (1)

y = f (t) + β1x1 + β2x2 + β3x3 + · · · + β13x13 + ε, (29)

where y is the log monthly electricity consumption per person (aggregated electricity consumption was divided by
population interpolated linearly from quarterly data), t is cumulated average temperature index for the corresponding
month taken as average of 20 German cities computed from the data of German weather service (Deutscher Wetterdienst),
x1 is the log GDP per person interpolated linearly from quarterly data, detrended and deseasonalized and x2 is the log rate
of electricity price to the gas price, detrended. The data for 199601-201009 comes from EUROSTAT. Reference prices for
electricity were computed as an average of electricity tariffs for consumer groups IND-Ie and HH-Dc, for gas—IND-I3-2 and
HH-D3with reference period 2005S1. Time series of priceswere obtained by scalingwith electricity price or correspondingly
gas price indices. x3, x4, . . . , x13 are dummy variables for the monthly effects.

The model in (29) includes both parametric effects and a nonparametric effect. The only nonparametric effect is implied
by the temperature variable. From Fig. 1, we can see that the effect of t on y is likely to be nonlinear, while the effects of
other variables are roughly linear. The dummy variables enter into the linear part in the specification of the semiparametric
regression as well.
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Fig. 1. Plots of individual exp. variables vs. dependent variable, linear fit (green), local polynomial fit (red), 95% confidence bands (black). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

We note that the condition number of X⊤X of these explanatory variables is 20.5, which justifies the use ofβ(1)(k) andβ(2)(η); see [2].
Throughout the paper, we use fifth-order differencing (m = 5). Results for other orders of differencing were similar.
The admissible regions for the biasing parameters η and k for MSEM superiority were η ≥ 0.923 and k ≤ 0.0085.

These bounds were determined using the estimated parameters and the inequalities from Theorem 4.1 and Theorem 3.1
in [27], respectively. Under more general assumptions on Ω and resulting heteroscedasticity and autocovariance consistent
Newey–West covariance estimator, defined in (23), the admissible region for η (Theorem 6.1 and restriction (27)) was
shrinked to η ≥ 0.927. Forβ(1)(k), no admissible values of k were found, since admissible k ≥ 1.57 of (28) do not satisfy
the condition of Theorem 6.1 (see Table 2).

Alternatively, we used a scalar mean squared error (SMSE), defined as the trace of the corresponding MSEM, to compare
the estimators. The bounds for k and η can then be calculated only numerically using a grid on [0, 1] for the biasing
parameters and determining the regions where SMSEs of the proposed estimators are lower. SMSE superiority of β(1)(k)
andβ(2)(η) overβ(0) under general Ω is given for k ≤ 0.0267 and η ≥ 0.384 compared to k ≤ 0.0123 and η ≥ 0.708 by
standard assumptions; see Fig. 2 which depicts SMSE of the estimators and the corresponding η and k under standard and
general assumptions. Thus the SMSE superiority intervals for η and k become even larger in the case of the general form
of Ω .

Our computations here are performed with R 2.10.1 and the codes are available on www.quantlet.org.
Results of different estimation procedures can be found in Table 1. We note that regardless of the estimator type, the

effect of income is positive and the effect of relative price is negative as expected from an economic perspective, as in [4].
However, the R2 obtained by difference based methods is higher and SMSE lower for Liu type and ridge difference based
estimator. The values of biasing parameters for which conditions of Theorems 5.1 and 5.2 are satisfied are given in Table 3.
The superiority ofβ(2)(η) overβ(1)(k) is assured for the zone of values marked by plus.

Returning to our semiparametric specification, wemay now remove the estimated parametric effect from the dependent
variable and analyze the nonparametric effect. We use a local linear estimator of f to model the nonparametric effect of
temperature. The resulting plots are presented in Fig. 3wherewe also include the linear effect.Wenotice that all differencing
procedures result in similar estimators of f , regardless of notable differences in the coefficients of the linear part. The
estimator of f is consistent with findings e.g. of [4] for US electricity data.

In both specifications, f is different from the linear effect and therefore including temperature as a linear effect is
misleading.

http://www.quantlet.org


E. Akdeniz Duran et al. / Journal of Multivariate Analysis 105 (2012) 164–175 173

Fig. 2. SMSE ofβ(2)(η) in dependence of η (left) andβ(1)(k) in dependence of k (right) against that ofβ(0) (dashed) under standard assumptions (black)
and under generalized assumptions (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Results of OLS, difference based and Liu type difference based estimations.βOLS β(0) β(1)(10−3) β(2)(0.95)

x1 0.634 0.578* 0.550* 0.562*

x2 −0.152***
−0.160***

−0.158***
−0.161***

x3 0.030*** 0.030* 0.030* 0.030*

x4 −0.043***
−0.040**

−0.040**
−0.040**

x5 0.011 0.031 0.031 0.031
x6 −0.051**

−0.014 −0.013 −0.014
x7 −0.054*

−0.014 −0.013 −0.014
x8 −0.079**

−0.065 −0.064 −0.065
x9 −0.036 −0.037 −0.036 −0.037
x10 −0.052 −0.044 −0.043 −0.044
x11 −0.049 −0.013 −0.012 −0.013
x12 −0.000 0.040 0.040 0.040
x13 −0.001 0.016 0.016 0.016
t −13 · 10−5*** – – –

R2 0.729 0.749 0.749 0.749
* Indicates significance on 10%.
** Indicates significance on 5%.
*** Indicates significance on 1%.

Table 2
Standard errors of the estimators in comparison to Newey–West standard errors for the effects of x1 (income) and x2 (relative price).Ω β(0) β(1)(10−3) β(2)(0.95)σ 2I ΩNW σ 2I ΩNW σ 2I ΩNW

x1 0.215 0.347 0.209 0.337 0.205 0.215
x2 0.034 0.047 0.034 0.047 0.034 0.034
SMSE 0.058 0.148 0.056 0.141 0.054 0.058

8. Conclusion

Weproposed a difference based Liu type estimator and a difference based ridge regression estimator for the partial linear
semiparametric regression model.

The results show that in case of multicollinearity, the proposed estimator, β(2)(η) is superior to the difference based
estimatorβ(0). We gave bounds on the value of η which ensure the superiority of the proposed estimator. The two biased
estimatorsβ(2)(η) andβ(1)(k) for different values of η and k can be compared in terms of MSEMwith the theoretical results
above.

Finally, an application to electricity consumption has been provided to show properties of the proposed estimator
based on the mean square error criterion. We could estimate the linear effects of the linear determinants as well as the
nonparametric effect f of a cumulated average temperature index.

Thus, the theoretical results obtained allow us to tackle the problem of multicollinearity in real applications of
semiparametric models. Moreover, we are able to get estimators of the linear effects with lower standard errors by tuning
parameters k and η accordingly.
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Table 3
Admissible biasing parameters η and k marked by plus if they satisfy conditions of Theorems 5.1 and 5.2, i.e.β(2)(η) is superior toβ(1)(k).

η · 102 k · 104

1 2 3 4 5 6 7 8 9 10 11 12 13

9.23–9.23 − − − − − − − − − − − − −

9.24–9.24 + − − − − − − − − − − − −

9.25–9.25 + + − − − − − − − − − − −

9.26–9.26 + + + − − − − − − − − − −

9.27–9.27 + + + + − − − − − − − − −

9.28–9.28 + + + + + − − − − − − − −

9.29–9.30 + + + + + + − − − − − − −

9.31–9.31 + + + + + + + − − − − − −

9.32–9.32 + + + + + + + + − − − − −

9.34–9.35 + + + + + + + + + − − − −

9.36–9.37 + + + + + + + + + + − − −

9.38–9.39 + + + + + + + + + + + − −

9.40–9.43 + + + + + + + + + + + + −

9.44–9.56 + + + + + + + + + + + + +

9.57–9.61 + + + + + + + + + + + + −

9.62–9.65 + + + + + + + + + + + − −

9.66–9.69 + + + + + + + + + + − − −

9.70–9.72 + + + + + + + + + − − − −

9.73–9.76 + + + + + + + + − − − − −

9.77–9.79 + + + + + + + − − − − − −

9.80–9.82 + + + + + + − − − − − − −

9.83–9.85 + + + + + − − − − − − − −

9.86–9.88 + + + + − − − − − − − − −

9.89–9.91 + + + − − − − − − − − − −

9.92–9.94 + + − − − − − − − − − − −

9.95–9.97 + − − − − − − − − − − − −

9.98–9.99 − − − − − − − − − − − −

Fig. 3. Estimated f nonlinear effect of t on y via differenced based (left), Liu-type differenced based (right) and difference-based ridge (center) approaches.
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We model the dynamics of ask and bid curves in a limit order book market using a dynamic
semiparametric factor model. The shape of the curves is captured by a factor structure which is
estimated nonparametrically. Corresponding factor loadings are modelled jointly with best bid
and best ask quotes using a vector error correction specification. Applying the framework to
four stocks traded at the Australian Stock Exchange (ASX) in 2002, we show that the suggested
model captures the spatial and temporal dependencies of the limit order book. We find spill-
over effects between both sides of the market and provide evidence for short-term quote
predictability. Relating the shape of the curves to variables reflecting the current state of the
market, we show that the recent liquidity demand has the strongest impact. In an extensive
forecasting analysis we show that the model is successful in forecasting the liquidity supply
over various time horizons during a trading day. Moreover, it is shown that the model's
forecasting power can be used to improve optimal order execution strategies.
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1. Introduction

Due to technological progress in the organization of trading systems and exchanges, electronic limit order book trading has
become the dominant trading form for equities. Open limit order books provide important information on the current liquidity
supply as reflected by the offered price-quantity relationships on both sides of the market. These supply and demand schedules
provide valuable information on traders' price expectations in the spirit of the seminal paper by Glosten (1994), reflect the
current implied costs of trading as well as demand and supply elasticities. However, while the dynamic behavior of liquidity
demand, as reflected by trading intensities and trade sizes, has been already studied in various papers (see, e.g., (Hautsch
and Huang (2012) and Brownlees et al. (2009)), the stochastic properties of liquidity supply is still widely unknown. An obvious
reason is that liquidity supply is reflected by high-dimensional bid and ask schedules which are not straightforwardly modelled
in a dynamic setting. Consequently, it is a widely open question whether and to which extent liquidity supply might be
predictable.
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The paper's major idea is to capture the shape of high-dimensional ask and bid curves by a lower-dimensional factor structure
which is estimated non-parametrically. We propose a dynamic semiparametric factor model where the shape of order schedules
is captured by a non-parametric factor structure while the curves' dynamic behavior is driven by time-varying factor loadings. The
latter are modelled parametrically employing a vector error correction model (VECM). We show that the model captures the
dynamics of high-dimensional order curves very well and is sufficiently parsimonious to produce valuable out-of-sample
predictions. Moreover, the schedule of market depth posted around best quotes reveals strong serial dependence and thus is
predictable. This structure is induced by the inventory character of order volume which is strongly persistent over time.

By providing empirical evidence on the dynamics and predictability of order book schedules, this paper fills a gap in empirical
literature and complements recent (mostly theoretical) work on order splitting and dynamic order submission strategies. For
instance, the question of how to reduce the costs of trading by optimally splitting a large order over time (e.g., over the course of a
trading day) is of high relevance in financial practice. Obizhaeva and Wang (2005) and Engle and Ferstenberg (2007) analyze
optimal splitting strategies whose implementations ultimately require predictions of future liquidity demand and supply.
Bertsimas and Lo (1998) and Almgren and Chriss (2000) derive optimal execution strategies by minimizing expected costs of
executing, an order in the context of static price impact functions. Optimal execution in a limit order book market is analyzed by
Alfonsi et al. (2010). They allow for general shapes of order book curves and derive explicit optimal execution strategies in
discrete time. By providing insights into the actual form of order book curves and their dynamic behavior, our results can be used
as valuable inputs in theoretical frameworks.

While to the best of our knowledge our study is the first which models the shapes and dynamics of a complete (high-
dimensional) order book, there is a substantial body of empirical literature on the dynamics of limit order books and the analysis
of traders' order submission strategies, such as, e.g., Biais et al. (1995), Griffiths et al. (2000), Ahn et al. (2001), Ranaldo (2004),
Hollifield et al. (2004), Bloomfield et al. (2005), Degryse et al. (2005), Hall and Hautsch (2006, 2007), Large (2007), Hasbrouck
and Saar (2009) or Cao et al. (2009).

An important aspect in this literature is to analyze the question of how to optimally balance risks and gains of a trader's
decision whether to post a market order or a limit order. As recently illustrated by Chacko et al. (2008), a limit order can be
ultimately seen as an American option and transaction costs are rents that a monopolistic market maker extracts from impatient
investors who trade via aggressive limit orders or market orders. Consequently, the analysis of liquidity risks (see, e.g., Johnson,
(2008), Liu (2009), Garvey andWu (2009), Goyenko et al. (2009)) and transaction costs (see, e.g. Chacko et al. (2008), Hasbrouck
(2009)) are in the central focus of recent literature.

Given the objective to capture not only the volume around the best quotes but also pending quantities more deeply in the
book, the underlying problem becomes inherently high-dimensional. A typical graphical snapshot of ask and bid curves for four
stocks traded at the Australian Securities Exchange (ASX) in 2002, is given by Fig. 1. The curse of dimensionality applies
immediately as soon as time variations of the order curve shapes have to be taken into account. As shown by Fig. 1 and as
illustrated in more detail in the sequel of the paper, order volume is not necessarily only concentrated around the best quotes but
can be substantially dispersed over a wider range of price levels. This is a typical scenario for moderately liquid markets as that of
the ASX. In such a context, the dynamic modelling of all volume levels individually becomes complicate and intractable.

We suggest reducing the high dimensionality of the order book by means of a factor decomposition using the so-called
Dynamic Semiparametric Factor Model (DSFM) proposed by Fengler et al. (2007), Brüggemann et al. (2008), Park et al. (2009)
and Cao et al. (2009). Accordingly, we model the shape of the book in terms of underlying latent factors which are defined on a
grid space around the best ask or bid quotes and can depend on additional explanatory variables capturing, e.g., the state of the
market. In order to avoid specific functional forms for the shape of the curves, the factors as well as the corresponding loadings are
estimated nonparametrically using B-splines. Then, in a second step, we model the multivariate dynamics of the factor loadings
together with the best bid and the best ask price using a VEC specification.

Using this framework we aim answering the following research questions: (i) How many factors are required to model order
book curves reasonably well? (ii) What does the shape of the factors look like? (iii) What do the dynamics of the estimated factor
loadings look like? (iv) Does there exist evidence for a strong cross-dependence between both sides of the order book? (v) Can
quotes be predictable in the short run? (vi) Does the shape of the order book curves depend on past price movements, past
trading volume as well past volatility? (vii) How successful is the model in predicting future liquidity supply and can it be used to
improve order execution strategies?
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Fig. 1. Limit order books for selected stocks traded at the ASX on July 8, 2002 at 10:15. Red: bid curve, blue: ask curve.
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Using limit order book data from four stocks traded at the ASX covering twomonths in 2002, we show that approximately 95%
of the order book variations observed on 5-min intervals can be explained by two underlying time-varying factors. While the first
factor captures the overall slope of the curves, the second one is associated with its curvature. Knowing the shape of the order
book can help us to predict quotes in the short run. Further empirical results show relatively weak spill-over effects between the
bid and the ask side of the market. It turns out that recent liquidity demand represented by the cumulative buy/sell trading
observed over the past 5 min has an effect on the shape of the curve but does not induce a higher explanatory power. Similar
evidence is shown for the impact of past returns and corresponding (realized) volatility. Moreover, we find that factor loadings
follow highly persistent though stationary dynamics.

To evaluate the model's forecasting power, we perform an extensive out-of-sample forecasting analysis which is in line with a
typical scenario in financial practice. In particular, at every 5-min interval during a trading day, the model is re-estimated and
used to produce forecasts for the pending volume on each price level for all future 5-min intervals during the remainder of the
trading day. We show that our approach is able to outperform a naive prediction, where the current order book is used as a
predictor for the remaining day. These results can be used to improve intra-day order execution strategies by reducing implied
transaction costs.

The remainder of the paper is structured as follows: After the data description in Section 2, the Dynamic Semiparametric
Factor Model (DSFM) is introduced in Section 3. Empirical results regarding the modelling and forecasting of liquidity supply are
provided in Sections 4 and 5, respectively. Section 6 concludes.

2. Data

2.1. Trading at the ASX and descriptive statistics

The Australian Stock Exchange (ASX) is a continuous double auction electronic market, where the continuous auction trading
period is preceded and followed by a call auction. Normal trading takes place continuously on all stocks between 10:09 a.m. and
4:00 p.m. from Monday to Friday. During continuous trading, any buy (sell) order entered that has a price that is greater than
(less than) or equal to existing queued buy (sell) orders, will be executed immediately. If an order cannot be executed completely,
the remaining volume enters the queues as a limit order. Limit orders are queued in the buy and sell queues according to a strict
price-time priority order. Orders can be entered, deleted and modified without restriction.

For order prices below 10 cents, theminimum tick size is 0.1 cents, for order prices above 10 cents and below 50 cents it is 0.5 cents,
whereas for orders priced 50 cents and above it is 1 cent. Note that there might be orders which are entered with an undisclosed or
hidden volume if the total value of the order exceeds AUD 200,000. Since this applies only to a small fraction of the posted volumes, we
can safely neglect the occurrence of hidden volume in our empirical study. For more details on the data, see Hall and Hautsch (2007)
using the same data base as well as the official description of the trading rules of the Stock Exchange Automated Trading System
(SEATS) on the ASX on www.asxonline.com.

We select four companies traded at the ASX covering the period from July 8 to August 16, 2002 (30 trading days), namely
Broken Hill Proprietary Limited (BHP), National Australia Bank Limited (NAB), MIM and Woolworths (WOW). The number of
market and limit orders for the selected stocks is given in Table 1.

We observe more buy orders than sell orders implying that the bid side of the limit order book was changing more frequently
than the ask side. BHP and NAB are significantly more actively traded than MIM and WOW shares. Aggregated over all stocks,
20.08% (23.98%) of all bid (ask) limit orders have been changed (after posting), whereas 13.70% (14.89%) have been cancelled.
Furthermore, for both traded as well as posted quantities we find that on average sell volumes are higher than buy volumes (not
reported here). Hence, confirming the result above, liquidity variations on the bid side are higher than that of the ask side. This
finding might be explained by the fact that during the analyzed period the market generally went down creating more sell
activities than buy activities.

The original dataset contains all limit order book records as well as the corresponding order curves represented by the
underlying price-volume combinations. The latter is the particular object of interest for the remainder of the analysis.

Table 1
Total number of market and limit orders for selected stocks traded at the ASX from July 8 to August 16, 2002.

Orders BHP NAB MIM WOW

Market orders
(i) Buy 28,030 16,304 4115 7260
(ii) Sell 16,755 15,142 2789 6464

Limit orders
(i) Buy (bid side) 50,012 28,850 9551 13,234
– Changed 8009 7561 1637 3203
– Cancelled 5202 4725 2044 1951

(ii) Sell (ask side) 32,053 25,953 6474 11,318
– Changed 6891 6261 1862 3164
– Cancelled 4692 3863 1178 1554
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2.2. Notation and data preprocessing

The underlying limit order book data contains identification attributes regarding r=1,…,R different orders as well as
quantities demanded and offered for different price levels j=1,…,J, at any time point t=1,…,T. Particularly, at any t, we observe
J=101 price levels on a fixed minimum tick size grid originating from the best bid and ask quote.

Since the order book dynamics are found to be very persistent, we choose a sampling frequency of 5 min without losing too
much information on the liquidity supply. To remove effects due to market opening and closure, the first 15 min and last 5 min
are discarded. Hence, at each trading day, starting at 10:15 and ending at 15:55, we select per stock 69 price-quantity vectors, in
total T=2070 vectors over the whole sample period. Denote ~Y b

t;j and ~Y a
t;j as the pending bid and ask volumes at bid and ask limit

prices ~Sbt;j and ~Sat;j, respectively at time point t.
We define the best bid price at time t as the highest buy price ~Sbt;101, and similarly, the best ask price at t as the lowest sell price

~Sat;1. The corresponding quantities at best bid and ask prices are then ~Y b
t;101 and ~Y a

t;1, respectively, yielding the mid-quote price to
be defined as ~S�t ¼ ~Sbt;101 þ ~Sat;1

� �
=2. The absolute price deviations from the best bid and ask price at level j and time t are given by

⌣S
b
t;j ¼ ~Sbt;j−~Sbt;101 and ⌣S

a
t;j ¼ ~Sat;j−~Sat;1, respectively and constitute a fixed price grid. To measure spreads between individual price

levels in relative terms, i.e., in relation to the prevailing best bid and ask price, we define so-called 'relative price levels' as

Sbt;j ¼
⌣
S
b
t;j=

~Sbt;101 and Sat;j ¼
⌣
S
a
t;j=

~Sat;1, respectively.
In order to investigate towhich extent order book informationmight reveal information to predict high-frequency returns,we regress

1 min and 5 min mid-quote returns, respectively, on lagged order imbalances

~Y b
t−1;j=

~Y b
t−1;j þ ~Y a

t−1;j

� �
and

~Y a
t−1;j=

~Y b
t−1;j þ ~Y a

t−1;j

� �
;

respectively, for j=1,…,101. Fig. 2 shows the implied R2 values in dependence of the number of included imbalance levels. It
turns out that order book imbalances indeed reveal short-term predictability. Interestingly, even levels far apart from the market
have still distinct prediction power pushing the R2 to values of approximately 10%. These findings show that the order book itself
reveals predictive content for future price movements which could be exploited in trading strategies.

In order to account for intra-day seasonality effects, we adjust the order volumes correspondingly. To avoid to seasonally
adjust all individual volume series separately, we assume that the seasonality impact on quoted volumes at all levels is identical
and is well captured by the seasonalities in market depth on the best bid and ask levels ~Y b

t;101 and ~Y a
t;1, respectively. Assuming a

multiplicative impact of the seasonality factor, the seasonally adjusted quantities are computed for both sides of the market at
price level j, and time t as

Yb
t;j ¼

~Y b
t;j

sbt
ð1Þ

Ya
t;j ¼

~Y a
t;j

sat
; ð2Þ

with st
b and st

a representing the seasonality components at time t for the bid and the ask side, respectively.
The non-stochastic seasonal trend factors stb and st

a are specified parametrically using a flexible Fourier series approximation as
proposed by Gallant (1981) and are given by

sbt ¼ δb⋅�t þ
XMb

m¼1

δbc;mcos �t⋅2πmð Þ þ δbs;msin �t⋅2πmð Þ
n o

ð3Þ
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Fig. 2. Coefficients of determination (R2) implied by linear regression of 1 min (red) and 5 min (blue) mid-quote returns on lagged order imbalances for selected
stocks traded at the ASX from July 8 to August 16, 2002 (30 trading days). The horizontal axis depicts the number of included imbalance levels.
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sat ¼ δa⋅�t þ
XMa

m¼1

δac;mcos �t⋅2πmð Þ þ δas;msin �t⋅2πmð Þ
n o

: ð4Þ

Here δb, δa, δc,mb , δc,ma and δs,mb and δs,ma are coefficients to be estimated, and�t denotes a normalized time trend mapping the time
of the day on a (0,1] intervals. The polynomial orders Mb and Ma are selected according to the Bayes information criterion (BIC).
For all stocks we selectMb=Ma=1, except for the bid side for BHP (Mb=2). The resulting intra-day seasonality patterns for both
sides of all order book markets are plotted in Fig. 3.

For all stocks, we observe that the liquidity supply increases before market closure. We attribute this finding to traders'
pressure and willingness to close positions overnight. Posting aggressive limit orders on the best levels (or even within the
spread) maximizes the execution probability and avoids crossing the spread. Moreover, weak evidence for a ‘lunch time dip’ is
presented which, however, is only observed for the more liquid stocks (NAB and BHP). In contrast, for the less liquid stocks, the
amount of posted volume nearly monotonically increases over the course of the day.

3. The dynamic semiparametric factor model

Recall that the object of interest is the high-dimensional object of seasonally adjusted level-dependent order volume
inventories Yb

t;j; Y
a
t;j

� �
∈R202, observed on a 5-min frequency. Proposing a suitable statistical model requires finding an appropriate

way of reducing the high dimension without losing too much information on the spatial and dynamic structure of the process.
Moreover, applicability of the model requires computational tractability as well as numerical stability.

A common way to reduce the dimensionality of multivariate processes is to apply a factor decomposition. The underlying idea
is that the high-dimensional process is ideally driven by only a few common factors which contain most underlying information.
Factor models are often applied in the asset pricing literature to extract underlying common risk factors. In this spirit, a successful
parametric factor model has been proposed, for instance, by Nelson and Siegel (1987) to model yield curves. In this framework,
the shape of the curve is parametrically captured by Laguerre polynomials.

Limit order book curves inherently reflect traders' price expectations and the supply and demand in the market (see, e.g.
Glosten (1994) for a theoretical framework). As there is no obvious parametric form for ask and bid curves and we want to avoid
imposing assumptions on functional form, we prefer to capture the curve's spatial structure in a nonparametric way. A natural
and powerful class of models for these kind of problems is the class of Dynamic Semiparametric Factor Models (DSFMs) proposed
by Fengler et al. (2007), Brüggemann et al. (2008), Park et al. (2009) and Cao et al. (2009). The DSFMmodel successfully combines
the advantages of a nonparametric approach for cross-sectionally (‘spatially’) fitting a curve and that of a parametric time series
model for modelling persistent multivariate dynamics.

Assume that that the observable J-dimensional random vector, Yt,j, can be modelled based on the following orthogonal L-factor
model,

Yt;j ¼ m0;j þ Zt;1m1;j þ ⋯þ Zt;LmL;j þ εt;j; ð5Þ

where m(⋅)=(m0,m1,…,mL)⊤ denotes the time-invariant factors, a tuple of functions with the property ml : Rd→R; l ¼ 0;…; L; Zt ¼
1T ; Zt;1;…; Zt;L
� �⊤ denotes the time series of factor loadings, and εt,j represents a white noise error term. The time index is denoted by
t=1,…,T, whereas the cross-sectional index is j=1,…,J. Note that this type of factor model is rather restrictive, because it does not
take explanatory variables into account.
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Fig. 3. Estimated intra-day seasonality factors for quantities offered at best bid prices (red) and for quantities supplied at best ask prices (blue) across selected
stocks traded at the ASX from July 8 to August 16, 2002 (30 trading days).
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The DSFM is a generalization of the factor model given in Eq. (5) and allows the factors ml to depend upon explanatory
variables, Xt,j. Its analytical form is given by

Yt;j ¼
XL
l¼0

Zt;lml Xt;j

� �
þ εt;j ¼ Z⊤

t m Xt;j

� �
þ εt;j; ð6Þ

where the processes Xt,j, εt,j and Zt are assumed to be independent. Moreover, the number of underlying factors L should not
exceed the dimension of the object, J. The main idea of the DSFM is that L is significantly smaller than J resulting in a severe
dimension reduction of the process.

As suggested by Park et al. (2009), the estimation of the factorsml is performed using a series estimator. For K≥1, appropriate
functions ψk : 0;1½ �d→R; k ¼ 1;…;K , which are normalized such that ∫ψk

2(x)dx=1 holds, are selected. Park et al. (2009) select
tensor B-spline basis functions for ψk, whereas Fengler et al. (2007) use a kernel smoothing approach. In the present study, we
follow the former strategy and employ tensor B-spline basis functions.

After selecting the functions ψk, the factors m(⋅)=(m0,m1,…,mL)⊤ are approximated by Aψ, where A ¼ al;k
� �

∈R Lþ1ð ÞK is a
coefficient matrix, and ψ(⋅)=(ψ1,…,ψK)⊤ denotes a vector of selected functions. Here, K denotes the number of knots used for the
tensor B-spline functions and is interpretable as a bandwidth parameter. Thus, the first part in the right-hand side of (6), which
incorporates all factors and factor loadings, can be rewritten as

Z⊤
t m Xt;j

� �
¼

XL
l¼0

Zt;lml Xt;j

� �
¼

XL
l¼0

Zt;l

XK
k¼1

al;kψk Xt;j

� �
¼ Z⊤

t Aψ Xt;j

� �
: ð7Þ

In modelling liquidity supply we use either the ‘relative price levels’ on the bid side St,j
b or those on the ask side St,j

a as the most
important explanatory variable Xt,j. When focusing on the LOB shape predictability, we add key (weakly exogenous) trading
variables, namely the past 5-min aggregated trading volume on both sides of the market, the past 5-min log mid-quote return as
well as the past 5-min volatility, see Section 3.

The coefficient matrix A and time series of factor loadings Zt can be estimated using least squares. Hence, the estimated matrix
Â and factor loadings Ẑ t ¼ 1T ; Ẑ t;1;…; Ẑ t;L

� �⊤
are defined as minimizers of the sum of squared residuals, S(A,Zt)

Ẑ t ; Â
� �

¼ arg min
Zt ;A

S A; Ztð Þ ð8Þ

¼ arg min
Zt ;A

XT
t¼1

XJ

j¼1

Yt;j−Z⊤
t Aψ Xt;j

� �n o2
: ð9Þ

To find a solution of the minimization problem stated in Eq. (9), a Newton–Raphson algorithm is used. As shown by Park et al.
(2009), this algorithm is shown to converge to a solution at a geometric rate under some weak conditions on the initial choice

vec Að Þ 0ð Þ; Z 0ð Þ
t

n o
. Moreover, Park et al. (2009) prove that the difference between the estimated loadings Ẑ t and the true loadings Zt

are asymptotically negligible. Consequently, it is justified to use in a second step multivariate time series specifications in order to
model the dynamics of the factor loadings. Note that due to the estimation complexity, the coefficients of the seasonal trend
factors in Eqs. (1) and (2) are not estimated jointly with the unknown parameters (matrix A) and the factor loadings.

The selection of the number of time-invariant factors (L) and the number of knots K is performed by evaluating the proportion
of explained variance (EV) given by

EV Lð Þ ¼ 1−RV Lð Þ ¼ 1−

PT
t¼1

PJ
j¼1

Yt;j−
PL
l¼0

Ẑ t;lm̂l Xt;j

� �( )2

PT
t¼1

PJ
j¼1

Yt;j−�Y
n o2

: ð10Þ

Moreover, the knots used in the tensor B-spline functions should be specified in advance. We choose linearly spaced knots,
with a starting point determined by the minimal value of the explanatory variable (corrected by −5%), and the end point
corresponding to the maximal value (corrected by 5%). Sensitivity analysis shows that the results are quite stable regarding the
choice of grid points.

Because of the use of tensor B-spline functions for the demand and supply curves, which are monotonous in the price levels,
our estimated first factor m̂1 and the estimated quantities Ŷ t;j are adjusted for extreme price levels. Correspondingly, for the bid
side we keep constant the first (lowest) ten level values, and analogously, for the ask side we fix the last (highest) ten level values.
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The model's goodness-of-fit is evaluated using the root mean squared error (RMSE) criterion,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
TJ

XT
t¼1

XJ

j¼1

Yt;j−
XL
l¼0

Ẑ t;lm̂l Xt;j

� �( )2
vuut : ð11Þ

4. Modelling limit order book dynamics

To model order book dynamics we follow a two step procedure for each stock individually. Employing the DSFM approach in
the first step, we model the shape of order book curves in dependence of relative price levels. In the following step, the dynamics
of the estimated factor loadings is analysed jointly with the best bid quotes, best ask quotes and the bid-ask spread in a parametric
multivariate time series context. This procedure allows us to study the cross-dependency between both sides of the market, the
interactions between the limit order book and the quotes, as well as the impact of the bid-ask spread on liquidity supply.
Moreover, we investigate whether the order book shape itself is predictable by additional covariates, particularly, the past trading
volume, past (realized) volatility as well as past log returns.

4.1. Limit order book modelling using the DSFM

We distinguish between two implementation methods of the DSFM:

(i) Separated approach: Separate analysis of both sides of the limit order book, i.e., the bid side Yb
t;j∈R101, and the ask side,

Ya
t;j∈R101.

(ii) Combined approach: Simultaneous modelling of both sides of the limit order book with the bid side reversed, i.e.

−Yb
t;j;Y

a
t;j

� �
∈R202.

To model the limit order book in dependence of the relative price levels using the DSFM, i.e., the relative price deviations from
the best bid price and best ask price, St,jb and St,j

a , respectively, we impose K=20 knots for the B-spline functions in case of the
separated approach and K=40 knots in case of the combined approach. Using more knots does not result in significant
improvements of the explained variance or in the corresponding RMSE, as defined in Eqs. (10) and (11).

Empirical results, available from the authors upon request, show that up to approximately 95% of the explained variation in
order curves can be explained using L=2 factors, whereas the marginal contribution of a potentially third factor is only very
small. Consequently, a two-factor DSFM specification is sufficient to capture the curve dynamics and is used in the sequel of the
analysis. Furthermore, comparing the performance of the two alternative DSFM specifications, it turns out that in almost all cases
the DSFM-separated approach outperforms the DSFM-combined approach in terms of a higher proportion of explained variance
and lower values of the root mean squared error. We observe that at almost every price level the DSFM-separated approach
outperforms the DSFM-combined approach. Therefore, the remainder of the analysis will rely on the DSFM-separated approach
with two factors.
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Fig. 4 depicts the nonparametric estimates of the first and second factor m̂1 and m̂2 in dependence of the relative price grids.
The first factor obviously captures the overall slope of the curve which is associated with the average trading costs for all volume
levels on the corresponding sides of the market. In contrast, the second factor captures order curve fluctuations around the overall
slope and thus can be interpreted as a ‘curvature’ factor in the spirit of Nelson and Siegel (1987). The shape of this factor reveals
that the curve's curvature is particularly distinct for levels close to the best quotes and for levels very deep in the book where the
curve seems to spread out. The shapes of the estimated factors are remarkably similar for all stocks except for MIM. For the latter
stock, the shapes of both factors are quite similar and significantly deviate from those reported for the other stocks. This finding is
explained by the peculiarities of MIM for which the relative tick size is larger than for the other stocks. This implies that liquidity
is concentrated on relatively few price levels around the best ask and bid quotes whereas the book flattens out for higher levels.
This pattern is clearly revealed by the corresponding factors shown in Fig. 4.

However, a priori it is unclear whether modelling order book curves based on all 101 price levels is most appropriate in a
prediction context. Besides the well-known trade-off between in-sample fit and out-of-sample prediction performance, we also
face the difficulty that the predictive information revealed by order book volumemight depend on the distance to the best quotes.
For instance, if price levels far away from the market may contain information that help predicting books in the future, this
information should be taken into account. However, if they contain virtually only noise (e.g., because of stale orders) it would be
more optimal to ignore this information in order to extract a more precise factor structure on lower price levels only. Since
optimizing this choice in an (out-of-sample) prediction context is tedious and computationally cumbersome, we restrict
ourselves to the quite common proceeding of performing model selection based on in-sample information. Accordingly, we
evaluate the model implied explained variance when not the full grid of 101 levels but just 25, 50 and 75 levels are employed. It
turns out that the explained variance remains widely unchanged with the model fit increasing with the number of incorporated
levels. This is particularly important in the context of order books of less liquid stocks. Therefore, we proceed by extracting the
factor structure employing the entire book.

Time series plots of the corresponding factor loadings Ẑ b
t and Ẑ

a
t are shown in Fig. 5. We observe that the loadings strongly vary

over time reflecting time variations in the shape of the book. The series reveal clustering structures indicating a relatively high
persistence in the processes. This result is not very surprising given the fact that order book inventories do not change too
severely during short time horizons. Observing order book volumes on even higher frequencies than 5 min further increases this
persistence, ultimately driving the processes toward unit root processes. Naturally, this behavior is particularly distinct for less
frequently traded stocks and less severe for highly active stocks (cf. Hautsch and Huang (2012) for corresponding results for more
liquid assets).

The high persistence is confirmed by autocorrelation functions of Ẑ b
t and Ẑ a

t (not shown in the paper) and corresponding unit
root and stationarity tests. According to the Schmidt-Phillips test (see Schmidt and Phillips (1992), H0 : unit root) for all processes
the null hypothesis of an unit root can be rejected at the 5% significance level (test statistics for all estimated factor loadings are in
the range [−201.53, −53.88], whereas the critical value equals −25.20). Conversely, testing the null hypothesis of stationarity
using the KPSS test (see Kwiatkowski et al. (1992), H0 : weak stationarity) implies no rejections for the majority of the processes.
Nevertheless, in five cases we have to reject stationarity. Finally, to test for possible cointegration between the factor loadings, we
perform Johansen (1991) trace test (not shown in the paper) but do not find significant evidence for common stochastic trends
underlying the order book.

A graphical illustration for the goodness-of-fit of the model, depicting the estimated vs. the actually observed limit order book
curve, would suggest that the model fits the observed curves very well (no illustrations provided here). This is particularly true

08 22 05 16
0

15

30
BHP

1s
t L

oa
di

ng
s

08 22 05 16
−4

0

4

Trading Day

2n
d 

L
oa

di
ng

s

08 22 05 16
0

5

10
NAB

08 22 05 16
−2

0

2

Trading Day

08 22 05 16
0

10

20
MIM

08 22 05 16
−4

0

4

Trading Day

08 22 05 16
0

10

20
WOW

08 22 05 16
−2

0

2

Trading Day

Fig. 5. Estimated first and second factor loadings of the limit order book depending on relative price levels using the DSFM-separated approach with two factors
for selected stocks traded at the ASX from July 8 to August 16, 2002 (30 trading days). Red: bid curve, blue: ask curve.

617W.K. Härdle et al. / Journal of Empirical Finance 19 (2012) 610–625



for price levels close to the best ask and bid quotes, at any chosen trading day and stock. Slight deviations are observed for price
levels deeply in the book. However, the latter case is less relevant for most applications in practice.

4.2. Modelling limit order book dynamics

Our approach, stipulated under the philosophy smooth in space and parametric in time, allows us to investigate the limit order
book dynamics in a multivariate time series modelling context, as well as to relate the order book dynamics to the time evolution
of additional covariates. Formally, for each stock we focus on the dynamics of the four estimated stationary factor loadings.
Including the best bid and the best ask price returns, we consider a (six dimensional) vector of endogenous variables

zt ¼ Ẑ b
1;t ; Ẑ

b
2;t ; Ẑ

a
1;t ; Ẑ

a
2;t ;Δlog~S

b
t;101;Δlog~S

a
t;1

� �⊤
;

where Ẑ b
1;t , Ẑ

b
2;t , Ẑ

a
1;t and Ẑ a

2;t denote the estimated first (1) and second (2) factor loadings for the bid (b) and ask side (a),
respectively. We denote by Δlog~Sbt;101 the best bid price return, and similarly, by Δlog~Sat;1 the best ask price return.

Following Engle and Patton (2004) and Hautsch and Huang (2012), the bid-ask spread log~Sbt−1;101−log~Sat−1;1

� �
serves as a

natural cointegration relationship between the two integrated ask and bid series. As all other endogenous variables are shown to
be stationary, we obtain a vector error correction (VEC) specification of order q with the spread as the only cointegration
relationship, i.e.,

zt ¼ cþ Γ1zt−1 þ…þ Γqzt−q þ γ log~Sbt−1;101−log~Sat−1;1

� �
þ εt : ð12Þ

Here c denotes a vector with constants, vector γ ¼ γ1;…;γ6ð Þ⊤ collects parameters associated with the lagged bid-ask spread
and εt represents a white noise error term. The matrices Γ1,Γ2,…,Γq are parameter matrices associated with lagged endogenous
variables. Technically, we determine the order q according to the BIC.

Estimation results show that in all cases, a maximum lag order of q=4 is sufficient. In particular, the following model orders
are selected: BHP and WOW (q=3), NAB (q=2), MIM (q=4). For sake of brevity we refrain from showing all parameter
estimates here, but just report the estimates of matrix Γ1 and vector γ for BHP, NAB, MIM and WOW, respectively, which contain
the most relevant information for an economic interpretation (5% significance is denoted by an asterisk (*)):
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The estimation results can be summarised as follows:

Firstly, we observe strong own-process dynamics, but only relatively weak (mostly insignificant) cross-dependencies
between the endogenous variables. The latter are most pronounced for less frequently traded stocks (MIM and WOW).
Overall, the quite weak inter-dependencies between the processes on the ask and bid side indicate that time variations in the
liquidity schedule on the one side is almost unaffected by that on the other side.
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Secondly, the major finding is that quote changes are short-run predictable given the shape of the book. More precisely,
changes in the factor loading have a short term impact on the quote changes, up to, say, 5–10 min. The impact is significant for
the frequently traded stocks, and less severe for less liquid stocks. In particular, a shock on the bid side resulting in upward
rotation of the bid curve (inducing a higher sell pressure) leads to an instantaneous decrease in the best bid quote followed by
a significant increase of the price within the next fewminutes, see, e.g. Fig. 6. This is driven by a growing buy pressure reflected
by an increase of bid depth at and behind the market. Fig. 6 depicts the impulse responses of ask and bid quotes driven by a
shock in the order book slope. While these effects are quite distinct on the bid side, they are, however, less pronounced on the
ask side. A shock on the ask side, however, has a more neutral effect on the price, see, e.g. Fig. 6. However, note that the
predictability of quotes only holds over comparably short horizons. Therefore, for daily order execution strategies, as discussed
in Section 5, these effects are only of limited use.

Thirdly, we find slight evidence for asymmetric reactions of slope factor loadings on changes of the bid-ask spread. In
particular, we observe that rising spreads tend to reduce the order aggressiveness on the bid side while the converse is true on
the ask side. Hence, we conclude that as the bid and ask curves move apart, the price is (on average) decreasing. Similarly, as
the bid-ask spread shrinks, the price is expected to increase. This re-confirms our finding in Chapter 2, that liquidity variations
on the bid side are higher than that of the ask side with more sell activities than buy activities.

4.3. Drivers of the order book shape

In this section, we analyse whether the shape of order book curves is predictable based on key (weakly exogenous) trading
variables. We select three variables for which we expect to observe the strongest impact on the book's shape, namely the past 5-min
aggregated trading volume on both sides of the market representing the recent liquidity demand, the past 5-min log mid-quote
return as well as the past 5-min volatility.

The buy and sell trading volumes at time t are given by the sum of traded quantities from all market orders r, ~Q b
r and ~Q s

r , over
5 min interval, namely, ~Q b

t ¼ ∑Rb
t

r¼1
~Q b
r and ~Q s

t ¼ ∑Rs
t

r¼1
~Q s
r , where Rt

b and Rt
s denote the number of buy and sell orders over the

interval (t−1,t], respectively. Correspondingly, log returns rt and volatility Vt are computed as

rt ¼ log
~S�t
~S�t−1

ð13Þ

Vt ¼ r2t ; ð14Þ

where ~S�t and ~S�t−1 denote the mid-quotes observed at t and t-1, respectively. Note that the trading volumes as well as the volatility
are seasonally adjusted following the procedure explained above. Moreover, the used nonparametric procedure requires the
variables to be standardized between −1 and 1. This standardization is performed based on the minimum and maximum
observations of the corresponding variables. Finally, as commonly known, nonparametric regression becomes computationally
cumbersome for a high number of regressors. To keep our approach computationally tractable and to avoid problems due to the
curse of dimensionality, we include the regressors only individually (together with the relative price distances). This ultimately
yields a three-dimensional problem.
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Fig. 6. Orthogonalized impulse-response analysis: responses of the best bid quote return to a one standard deviation shock in the estimated first bid factor
loadings (upper panel) and response of the best ask quote return to a one standard deviation shock in the estimated first ask factor loadings (lower panel). We
employ the DSFM-separated approach with two factors and a VEC specification for selected stocks traded at the ASX from July 8 to August 16, 2002 (30 trading
days). The response variable always enters the VEC specification in the first position. 95% confidence intervals are shown with dashed lines.
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Figs. 7 and 8 show the estimated first factors for the bid and the ask side in dependence of the past 5-min sell and buy trading
volumes, respectively. As expected, we observe that the past liquidity demand influences the order book curve. A high trading
volume implies that a non-trivial part of the pending volume in the book is removed. Thus, most of the observed variation of the
factor's shape is induced by the fact that either quoted price levels close to the best quotes have been completely absorbed and the
remaining volume is correspondingly 'shifted down' in relation to the new best quote or, alternatively, only a part of the pending
volume on the best quotes is removed changing the distribution of the pending volumes across the (relative) price levels.

As expected, the curve flattens in the area of high volumes. Strikingly, we also observe a decaying pattern if the volume sizes
decline. Actually, in all pictures, the maximum slope (and thus the highest level of liquidity supply) is observed for magnitudes of
the standardized volume between −1 and 0, i.e., comparably small (though not zero) trading volumes. This pattern might be
technically explained by the standardization procedure based on extreme values or by the usual boundary problems of non-
parametric regression. On the other hand, note that due the curse-of-dimensionality problem we cannot simultaneously control
for other variables. For instance, very small market-side-specific trading volumes can indicate the occurrence of market
imbalances or, alternatively, might be associated with wide spreads. Both scenarios could force investors to post rather limit
orders than market orders which might explain the decaying shape of the figures after having observed small trading volumes.

To evaluate whether the inclusion of past trading volume further increases the model's goodness-of-fit, we calculated the
corresponding RMSEs. Comparing the results (range from 4.37 to 10.42) with that for the basis model (range from 0.18 to 3.49)
shows that the included regressors yield higher estimation errors. Hence, obviously the inclusion of additional regressors
ultimately generates more noise overcompensating a possibly higher explanatory power. Similar results are also found for the
past log returns and past volatility serving as regressors. The inclusion of log returns yields smaller estimation errors than the
inclusion of volatility. However, the overall performance is lower than in the cases above. Because of this reason, we refrain from
showing corresponding graphs of the estimated factors.

A possible reason for the declining model performance in case of included regressors might be the lower dimensionality of the
regressors in comparison with that of the limit order book. Note that the included regressors do not reveal any variation across
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the levels of the book. Consequently, the explanatory variables cannot improve the model's spatial fit but just its dynamic fit.
Obviously, the latter is not sufficient to obtain an overall reduction of estimation errors.

5. Forecasting liquidity supply

5.1. Setup

The aim of this section is to analyse the model's forecasting performance in a realistic setting mimicking the situation in
financial applications. We consider an investor observing the limit order book at 5-minute snapshots together with the
history over the past 10 trading days. It is assumed that during a trading day an investor updates limit order book every 5 min
and requires producing forecasts for all (5 min) intervals of the remainder of the day. Such information might be useful in
order to optimally balance order execution during the course of a day. Since we do not exceed beyond the end of the trading
day (in order to avoid overnight effects), the forecasting horizon h subsequently declines if we approach market closure.
Hence, starting at 10:30, we produce multi-step forecasts for all remaining h=66 intervals during the day. Correspondingly,
at 15:50, we are left with a horizon of h=1. Since quotes themselves – according to our results above – are only predictable
over short horizons which are virtually irrelevant for the present analysis, we do not explicitly incorporate this information
here.

Consequently, the model is re-estimated every 5 min exploiting past information over a fixed window of 10 trading days
(including the recent observation). Due to the length of the estimation period, we do not produce forecasts for the first two weeks
of our sample but focus on the period between July 22 and August 16, 2002, thereby covering the period of 20 trading days. In
accordance with our in-sample results reported in the previous section, we choose the DSFM-Separated approach based on two
factors without additional regressors as underlying specification.

A natural benchmark to evaluate our model is the naive forecast. In this context, we assume that the investor has no
appropriate prediction model but just uses the current liquidity supply as a forecast for the remainder of the day. More formally,
we suppose that our investor can use the following two approaches in order to forecast liquidity supply Ŷ t′þh;j at a given time
point t′ from July 22 at 10:25 until August 16, 2002, at 15:50, t′=693,…,2069=T−1, over a forecasting horizon 1≤h≤66, and
over the absolute price level j:

(i) DSFM approach: Firstly, the factors and factor loadings are estimated using the DSFM-Separated approach with two factors,
K=20 knots used for the B-spline basis functions, and with past 690 observed (de-seasonalized) limit order book curves.
More precisely, at time point t′, relative price levels St′−691 : t′,j

b and St′−691 : t′,j
a and de-seasonalized observed bid and ask

sides Yt′−691 : t′,j
b and Yt′−691 : t′,j

a enter the estimation procedures. This yields estimates for the bid (ask) side, 66 times per
day for each stock, in total 1320 times over 20 days.
Secondly, since we do not account for (short-term) quote return predictability but only forecast the liquidity supply, we
employ a simple 4-dimensional VAR(p) model for the four time-varying factor loadings. When fitted to the entire time
series (30 trading days) and according to the BIC, a maximum lag order p=4 is sufficient. In particular, the following
VAR(p) models are selected: BHP and MIM – VAR(4), NAB – VAR(2), WOW – VAR(3). Using this specifications, we forecast
the factor loadings over the forecasting period Ẑ t′þh. Then, the predicted factor loadings together with the estimated time-
invariant factors m̂l are used to predict the order book.

(ii) Naive approach: Among all historical 690 limit order book curves, only the last one at time t′, (Yt′,jb , Yt′,ja ), is selected as the h-
step ahead forecast.

The predictions are evaluated using the root mean squared prediction error (RMSPE), i.e., a version of the in-sample RMSE
(11) where the sum over the sampling periods t and the sample size T are replaced by the forecasting horizons h and H,
respectively. Since future quotes and relative price grids are not predicted by the model, we assume that quotes themselves
follow random walk processes and the spread remains constant. Future quotes are therefore predicted using the current one.
Consequently, the predicted future relative price grid remains constant.

5.2. Forecasting results

Fig. 9 shows the RMSPEs for each required forecasting horizon h during a trading day implied by the DSFM as well as the naive
model. The following results can be summarized: First, overall the DSFM forecasts outperform the naive ones. Nevertheless, the
naive forecast is a serious competitor which is hard to beat. This result is not surprising given the high persistence in liquidity
supply. Secondly, the model's forecasting performance is obviously higher on the bid side than on the ask side. This result might
be explained by the fact that during the sample period we observe a downward market inducing higher activities on the bid side
than on the ask side. This is confirmed by the descriptive statistics shown above. Thirdly, the DSFM outperforms the naive model
particularly over horizons up to 1 to 2 hours. For longer horizons, the picture is less clear.

Analyzing average RMSPEs (averaged over all forecasting horizons and both sides of the market) as reported by Table 2
indicate that the overall prediction performance of the DSFM approach is significantly higher than that of the benchmark.
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5.3. Financial and economic applications

The results in the previous section show that the DSFM is able to successfully predict liquidity supply over various forecasting
horizons during a day. In this subsection, we apply these results to two practical examples. The first one is devoted to an order
execution strategy, whereas the second one deals with forecasts of demand and supply elasticities.

Example 1. (Trading Strategy)

Suppose an institutional investor decides to buy (sell) a certain number of shares v over the course of a trading day, starting
from 10:30 until 15:40. The size of the traded quantity for BHP, NAB and WOW is chosen as to be 5 or 10 times the average
pending volume at the best bid (ask) level. In case of MIM, where liquidity supply is muchmore concentrated at the first level and
the book is very thin for higher levels (see the empirical results in the previous sections), we choose the traded volume as being 2
and 5 times the average first level depth. This yields to the following quantities in the respective two cases of high (a) and very
high (b) liquidity demand:

(a) BHP – 175,000 shares; NAB – 25,000 shares; WOW – 50,000 shares; MIM – 1,860,000 shares
(b) BHP – 350,000 shares; NAB – 50,000 shares; WOW – 100,000 shares; MIM – 4,650,000 shares.

To reduce the computational burden, we assume that trading is only performed on a 5 min grid throughout the day
corresponding to 63 possible trading time points. Moreover, suppose that the investor makes her trading decision at 10:30 but
does not monitor the market anymore during the day. Consequently, her forecasting horizon covers h=63 periods at each trading
day. Then, she has to decide between two execution strategies:

(i) Splitting the buy (sell) order of size v in a 5 minute frequency proportionally over the trading day resulting into 63 trades of
size v/63 each.

(ii) Placing orders not proportionally but at those m (5 minute interval) time points throughout the day where the DSFM-
based predicted implied trading costs c of the volume v are smallest (among all 63 possible periods). Then, the volume v is
split over them time points according to the relative proportions of expected trading costs. Hence, at interval i,wi⋅v shares
are traded, with wi ¼ ci=∑m

j¼1 cj for i=1,…,m.

Table 2
Average root mean squared prediction errors (RMPSEs) of both limit order book sides implied by the DSFM-separated approach with two factors and the naive
model for selected stocks traded at the ASX in the period from July 22 to August 6, 2002 (20 forecasting days).

Approach BID ASK

BHP NAB MIM WOW BHP NAB MIM WOW

Naive 7.11 7.59 6.03 6.08 6.50 5.96 5.96 6.19
DSFM 7.18 5.10 4.84 5.33 5.56 5.46 5.63 5.45
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Fig. 9. Root mean squared prediction errors (RMSPEs) implied by the DSFM-separated approach with two factors for the bid side (red) as well as the ask side
(blue) and by the naive approach (black) for all intra-day forecasting horizons (in hours) for selected stocks traded at the ASX. Prediction period: July 22 to
August 16, 2002 (20 trading days).
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Strategy (i) can be seen as a special case of strategy (ii) if m is chosen as m=63 and the volume v is just equally split.
Conversely, for m=1, we obtain the extreme case, where the entire quantity is traded once requiring to severely 'walk up' the
book. The DSFM predictions of trading costs are computed based on the predicted order book shape at each point and the effective
costs to buy or to sell the quantity vwhile using the ask and bid quotes prevailing at 10:25 (in accordance with the assumption of
a random walk). Note that we do not optimize over the quantity underlying the predicted trading costs but just fix it at v
corresponding to the maximally possible trade size per time point. Consequently, our strategy selects those trading points where
the execution of the entire quantity v is expected to be cheapest and thus covers also the hypothetical (limiting) case of putting all
weight wi on a single point implying a 'one-shot' execution. Of course, an even more sophisticated (and optimized) strategy
would require the prediction of trading costs for relative proportions of v which are themselves simultaneously optimized.
However, this would substantially increase the numerical and computational burden and is beyond the scope of the current study.

To implement these strategies, we consider 20 forecasting days covering the period from July 22 to August 16, 2002. Fig. 10
shows the average percentage reduction in trading costs of strategy (ii) in excess of the equal-splitting ('naive') strategy (i) for
various choices of m∈ [1,63]. In most cases we observe that a strategic placing of orders according to DSFM predictions yield
excess gains of approximately 10 basis points on average. Overall, the selling strategies are more beneficial than the buying
strategies confirming the findings on prediction errors above. This is most striking for BHP where we observe a significant
difference between sell-based and buy-based profits if the number of trading points are low. Apart from this observation we find a
generally non-monotonic behavior of the curves implying losses ifm is small, increasing (and positive) gains for a higher number
of trading points and a convergence to zero for m reaching the upper limit of 63. This pattern indicates that trading the daily
position using only a few large market orders is inferior to an equal-splitting strategy as the underlying transactions have to walk
up the book too severely and cause huge price impacts. For higher values of m, the strategic placement according to DSFM
predictions become profitable where in the limit of m=63, relative benefits are only due to a strategic (non-equal) weighting
scheme. However, for MIM we observe a significantly different pattern implying the highest gains for m being small and nearly
monotonically declining profits if m is increasing. This pattern is obviously induced by the peculiarities of the MIM order book
which is extremely deep on the first level and makes 'one-shot' executions of large volumes quite beneficial. Overall, the patterns
are very similar for the two classes of daily quantities, where as expected the relative gains become smaller with higher traded
daily volume.

Overall, our findings indicate that the model is successful in predicting times where the market is sufficiently deep in order to
execute a large orders. The fact that the model performs reasonably well is promising for more elaborate practical applications of
the DSFM. Moreover, note that the reported results are valid under the assumption that there are no transaction fees. Actually, in
practice, a proportional splitting strategy induces higher transaction costs as a complete execution via a market order. This
component is not taken into account here and would even increase the performance of the DSFM-based execution strategy.
Finally, predictions of trading costs could be further improved by exploiting possible predictive information of the limit order
book for future returns. Our descriptive statistics reported above show that order book imbalances have indeed (slight) prediction
power. We will leave these issues, however, for future research.
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Fig. 10. Average percentage gains by reduced transaction costs compared to an equal-splitting strategy when buying (blue) and selling (red) shares based on m
DSFM-predicted time points per day. Upper panel: Daily volumes corresponding to 5 (2) times the average first level market depth for BHP, NAB, WOW (MIM).
Lower panel: Daily volumes corresponding to 10 (5) times the average first level market depth for BHP, NAB, WOW (MIM). Prediction period: July 22 to August
16, 2002 (20 trading days).
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Example 2. (Demand and Supply Elasticity)

A straightforward dimension-less measure for the order book slope is the curve's elasticity which we compute at best bid (~Sbt′ ;101)
and best ask prices (~Sat′ ;1) as

Êd
t′þh ¼ Ŷ b

t′þh;1−Ŷ b
t′þh;101

Ŷ b
t′þh;101

=
~Sbt′ ;1−~Sbt′ ;101

~Sbt′ ;101
; ð15Þ

Ês
t′þh ¼ Ŷ a

t′þh;101−Ŷ a
t′þh;1

Ŷ a
t′þh;1

=
~Sat′ ;101−~Sat′ ;1

~Sat′ ;1
; ð16Þ

for the demand (bid) and supply (ask) side, respectively. The elasticity is a measure for the marginal trading costs reflecting the
curve's curvature.

Suppose at 10:30 an investor aims to predict the demand and supply elasticity at best bid and best ask prices for all 5-min
intervals during the trading day covering the forecast horizons h=1,…,66. As above, the forecasts are computed using the last 10
trading days. Since we are not forecasting the price process, the last observed ask and bid quotes are used for prediction. Fig. 11
shows the 10:30 predictions of demand and supply elasticities at best bid and best ask prices during all trading days. We observe
that marginal trading costs exhibit significant variations over time. The fact that predicted elasticities reveal temporarily trending
patterns might be used for improving trading strategies.

Consider the case of NAB on July 24 and July 30, 2002. We observe that the demand elasticities (in absolute terms) are
increasing on the first day, and decreasing on the second day. Practically, it would be better to sell shares late on July 24, and early
on July 30, under the assumption that the price does not change significantly over both trading days. The supply elasticities show
converse patterns across the days. Consequently, it would be advisable to buy shares early on July 24, and late on July 30, provided
that the prices remain unchanged. While this section aims to illustrate possible applications of the DSFM approach, more detailed
elaborations of dynamic strategies are beyond the scope of the paper.

6. Conclusions

In this paper, we propose a dynamic semiparametric factor model (DSFM) for modelling and forecasting liquidity supply. The
main idea of the DSFM as proposed by Brüggemann et al. (2008), Cao et al. (2009), Fengler et al. (2007) and Park et al. (2009) is to
capture the order curve's spatial structure across various relative distances to the best quotes using a factor decomposition which
is estimated nonparametrically. To capture the order book's time variations, the corresponding factor loadings are modelled using
a multivariate time series model. The framework is flexible though parsimonious and turns out to provide a powerful way to
reduce the high dimension of the book and to extract the relevant underlying information regarding order book dynamics.

The model is applied to four stocks traded at the Australian Stock Exchange (ASX). It is shown that two underlying factors can
explain up to 95% of in-sample variations of ask and bid liquidity supply.While the first factor captures the overall order curve's slope,
the second factor is associated with the curve's curvature. The extracted factor loadings reveal highly persistent though weakly
stationary dynamics which are successfully captured by a vector error correction specification. We find relatively weak spill-over
effects between both sides of the limit order book sides that are more pronounced for less liquid stocks compared to high frequently
traded ones. It is shown that order book shapes have short-term prediction power for quote changes. Furthermore, we show that the
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Fig. 11. Predicted demand and supply elasticities at best bid (red) and best ask prices (blue) using the DSFM-separated approach with two factors for selected
stocks traded at the ASX from July 22 to August 2, 2002 (upper panels, 10 trading days) and from August 5 to August 16, 2002 (lower panels, 10 trading days).
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order curves' shapes are driven by explanatory variables reflecting the recent liquidity demand, volatility as well as mid-quote
returns.

Employing the DSFM approach in an extensive and realistic out-of-sample forecasting exercise we show that the model
successfully predicts the liquidity supply over various forecasting horizons during a trading day and outperforms a naive approach.
Using the forecasting results in a trading strategy it is shown that order execution costs can be reduced if orders are optimally placed
according to predictions of liquidity supply. In particular, it turns out that optimal order placement in periods of high liquidity results
in smaller transaction costs than in the case of a proportional splitting over time. Finally, our flexible approach allows us to estimate
and to predict future (excess) demand and supply elasticities.

These results show that the DSFM approach is suitable for modelling and forecasting liquidity supply. Since it is computationally
tractable, it can serve as a valuable building block for automated trading models.
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ABSTRACT Weather derivatives (WD) are end-products of a process known as securitization
that transforms non-tradable risk factors (weather) into tradable financial assets. For pricing and
hedging non-tradable assets, one essentially needs to incorporate the market price of risk (MPR),
which is an important parameter of the associated equivalent martingale measure (EMM). The
majority of papers so far has priced non-tradable assets assuming zero or constant MPR, but
this assumption yields biased prices and has never been quantified earlier under the EMM frame-
work. Given that liquid-derivative contracts based on daily temperature are traded on the Chicago
Mercantile Exchange (CME), we infer the MPR from traded futures-type contracts (CAT, CDD,
HDD and AAT). The results show how the MPR significantly differs from 0, how it varies in
time and changes in sign. It can be parameterized, given its dependencies on time and temperature
seasonal variation. We establish connections between the market risk premium (RP) and the MPR.

KEY WORDS: CAR process, CME, HDD, seasonal volatitity, risk premium

1. Introduction

In the 1990s weather derivatives (WD) were developed to hedge against the ran-
dom nature of temperature variations that constitute weather risk. WD are financial
contracts with payments based on weather-related measurements. WD cover against
volatility caused by temperature, rainfall wind, snow, and frost. The key factor in effi-
cient usage of WD is a reliable valuation procedure. However, due to their specific
nature one encounters several difficulties. First, because the underlying weather (and
indices) is not tradable and second, the WD market is incomplete, meaning that the
WD cannot be cost-efficiently replicated by other WD.

Since the largest portion of WD traded at Chicago Mercantile Exchange (CME) is
written on temperature indices, we concentrate our research on temperature deriva-
tives. There have been basically four branches of temperature derivative pricing:
actuarial approach, indifference pricing, general equilibrium theory or pricing via no
arbitrage arguments. While the actuarial approach considers the conditional expecta-
tion of the pay-off under the real physical measure discounted at the riskless rate (Brix
et al., 2005), the indifference pricing relies on the equivalent utility principle (Barrieu
and El Karoui, 2002; Brockett et al., 2010) and the general equilibrium theory assumes
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investors’ preferences and rules of Pareto optimal risk allocation (Cao and Wei, 2004;
Horst and Mueller, 2007; Richards et al., 2004). The Martingale approach, although
less demanding in terms of assumptions, concentrates on the econometric modelling
of the underlying dynamics and requires the selection of an adequate equivalent mar-
tingale measure (EMM) to value the pay-offs by taking expectations (Alaton et al.,
2002; Benth, 2003; Benth and Saltyte-Benth, 2007; Benth et al., 2007; Brody et al.,
2002; Huang-Hsi et al., 2008; Mraoua and Bari, 2007).

Here we prefer the latter approach. First, since the underlying (temperature) we
consider is of local nature, our analysis aims at understanding the pricing at different
locations around the world. Second, the EMM approach helps identify the market
price of risk (MPR), which is an important parameter of the associated EMM, and it is
indispensable for pricing and hedging non-tradable assets. The MPR can be extracted
from traded securities and one can use this value to price other derivatives, though any
inference about the MPR requires an assumption about its specification.

The MPR is of high scientific interest, not only for financial risk analysis, but
also for better economic modelling of fair valuation of risk. Constantinides (1987)
and Landskroner (1977) studied the MPR of tradable assets in the Capital Asset
Pricing Model (CAPM) framework. For pricing interest rate derivatives, Vasicek
(1977) assumed a constant market price of interest rate, while Hull and White (1990)
used the specification of Cox et al. (1985). In the oil market, Gibson and Schwartz
(1990) supposed an intertemporal constant market price of crude oil conveniences
yield risk. Benth et al. (2008) introduced a parameterization of the MPR to price elec-
tricity derivatives. In the WD framework, Cao and Wei (2004) and Richards et al.
(2004) studied the MPR as an implicit parameter in a generalization of the Lucas’
(1978) equilibrium framework. They showed that the MPR is not only statistically
significant for temperature derivatives, but also economically large as well. However,
calibration problems arise with the methodology suggested by Cao and Wei (2004),
since it deals with a global model like the Lucas’ (1978) approach while weather is
locally specified. Benth and Saltyte-Benth (2007) introduced theoretical ideas of equiv-
alent changes of measure to get no arbitrage futures/option prices written on different
temperature indices. Huang-Hsi et al. (2008) examined the MPR of the Taiwan Stock
Exchange Capitalization-Weighted Stock Index ((the mean of stock returns – risk-free
interest rate)/SD of stock returns) and used it as a proxy for the MPR on temperature
option prices. The majority of temperature pricing papers so far has priced tempera-
ture derivatives assuming 0 or constant MPR (Alaton et al., 2002; Cao and Wei, 2004;
Dorfleitner and Wimmer, 2010; Huang-Hsi et al., 2008; Richards et al., 2004), but this
assumption yields biased prices and has never been quantified earlier using the EMM
framework. This article deals exactly with the differences between ‘historical’ and ‘risk
neutral’ behaviours of temperature.

The contribution of this article is threefold. First, in contrast to Campbell and
Diebold (2005), Benth and Saltyte-Benth (2007) and Benth et al. (2007), we cor-
rect for seasonality and seasonal variation of temperature with a local smoothing
approach to get, independently of the chosen location, the driving stochastics close
to a Gaussian Process and with that being able to apply pricing technique tools of
financial mathematics (Karatzas and Shreve, 2001). Second and the main contribution,
using statistical modelling and given that liquid derivative contracts based on daily
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temperature are traded on the CME, we imply the MPR from traded futures-type con-
tracts (CAT/HDD/CDD/AAT) based on a well-known pricing model developed by
Benth et al. (2007). We have chosen this methodology because it is a stationary model
that fits the stylized characteristics of temperature well; it nests a number of previous
models (Alaton et al., 2002; Benth, 2003; Benth and Saltyte-Benth, 2005, 2007; Brody
et al., 2002; Dornier and Querel, 2007); it provides closed-form pricing formulas; and
it computes, after deriving the MPR, non-arbitrage prices based on a continuous-
time hedging strategy. Moreover, the price dynamics of futures are easy to compute
and require only a one-time estimation. Our implied MPR approach is a calibra-
tion procedure for financial engineering purposes. In the calibration exercise, a single
date (but different time horizons and calibrated instruments are used) is required,
since the model is recalibrated daily to detect intertemporal effects. Moreover, we use
an economic and statistical testing approach, where we start from a specification of
the MPR and check consistency with the data. The aim of this analysis is to study
the effect of different MPR specifications (a constant, a (two) piecewise linear func-
tion, a time-deterministic function and a ‘financial-bootstrapping’) on the temperature
futures prices. The statistical point of view is to beat this as an inverse problem with
different degrees of smoothness expressed through the penalty parameter of a smooth-
ing spline. The degrees of smoothness will allow for a term structure of risk. Since
smoothing estimates are fundamentally different from estimating a deterministic func-
tion, we also assure our results by fitting a parametric function to all available contract
prices (calendar year estimation). The economic point of view is to detect possible time
dependencies that can be explained by investor’s preferences in order to hedge weather
risk. Our findings that the MPR differs significantly from 0 confirm the results found
in Cao and Wei (2004), Huang-Hsi et al. (2008), Richards et al. (2004) and Alaton
et al. (2002), but we differ from them, by showing that it varies in time and changes
in sign. It is not a reflection of bad model specification, but data-extracted MPR. This
contradicts the assumption made earlier in the literature that the MPR is 0 or con-
stant and rules out the ‘burn-in’ analysis, which is popular among practitioners since
it uses the historical average index value as the price for the futures (Brix et al., 2005).
This brings significant challenges to the statistical branch of the pricing literature.
We also establish connections between the market risk premium (RP) (a Girsanov-
type change of probability) and the MPR. As a third contribution, we discuss
how to price over-the-counter (OTC) temperature derivatives with the information
extracted.

Our article is structured as follows. Section 2 presents the fundamentals of tem-
perature derivatives (futures and options) and describes the temperature data and the
temperature futures traded at CME, the biggest market offering this kind of product.
Section 3 is devoted to explaining the dynamics of temperature data – the economet-
ric part. The temperature model captures linear trend, seasonality, mean reversion,
intertemporal correlations and seasonal volatility effects. Section 4 – the financial
mathematics part – connects the weather dynamics with the pricing methodology.
Section 5 solves the inverse problem of determining the MPR of CME temperature
futures using different specifications. Section 1 introduces the estimation results and
test procedures of our specifications applied into temperature-derivative data. Here we
give (statistical and economic) interpretations of the estimated MPR. The pricing of
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OTC temperature products is discussed at the end of this section. Section 6 concludes
the article. All computations in this article were carried out in Matlab version 7.6 (The
MathWorks, Inc., Natick, MA, USA). To simplify notation, dates are denoted with
yyyymmdd format.

2. Temperature Derivatives

The largest portion of futures and options written on temperature indices is traded on
the CME. Most of the temperature derivatives are written on daily average temperature
indices, rather than on the underlying temperature by itself. A call option written on
futures F(t,τ1,τ2) with exercise time t ≤ τ1 and delivery over a period [τ1, τ2] will pay
max

{
F(t,τ1,τ2) − K , 0

}
at the end of the measurement period [τ1, τ2]. The most common

weather indices on temperature are Heating Degree Day (HDD), Cooling Degree Day
(CDD) and Cumulative Averages (CAT). The HDD index measures the temperature
over a period [τ1, τ2], usually between October and April:

HDD(τ1, τ2) =
∫ τ2

τ1

max(c− Tu, 0) du, (1)

where c is the baseline temperature (typically 18◦C or 65◦F) and Tu = (Tu,max +
Tu,min)/2 is the average temperature on day u. Similarly, the CDD index measures the
temperature over a period [τ1, τ2], usually between April and October:

CDD(τ1, τ2) =
∫ τ2

τ1

max(Tu − c, 0) du. (2)

The HDD and the CDD index are used to trade futures and options in 24 US cities,
6 Canadian cities and 3 Australian cities. The CAT index accounts the accumulated
average temperature over [τ1, τ2]:

CAT(τ1, τ2) =
∫ τ2

τ1

Tudu. (3)

The CAT index is the substitution of the CDD index for 11 European cities. Since
max(Tu − c, 0)−max(c− Tu, 0) = Tu − c, we get the HDD–CDD parity:

CDD(τ1, τ2)−HDD(τ1, τ2) = CAT(τ1, τ2)− c(τ2 − τ1). (4)

Therefore, it is sufficient to analyse only HDD and CAT indices. An index similar to
the CAT index is the Pacific Rim Index, which measures the accumulated total of 24-hr
average temperature (C24AT) over a period [τ1, τ2] days for Japanese cities:

C24AT(τ1, τ2) =
∫ τ2

τ1

T̃udu, (5)

where T̃u = 1
24

∫ 24
1 Tui dui and Tui denotes the temperature of hour ui. A difference of

the CAT and the C24AT index is that the latter is traded over the whole year. Note that
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The Implied Market Price of Weather Risk 63

temperature is a continuous-time process even though the indices used as underlying
for temperature futures contracts are discretely monitored.

As temperature is not a marketable asset, the replication arguments for any temper-
ature futures contract do not hold and incompleteness of the market follows. In this
context, any probability measure Q equivalent to the objective P is also an EMM and a
risk neutral probability turns all the tradable assets into martingales after discounting.
However, since temperature futures/option prices dynamics are indeed tradable assets,
they must be free of arbitrage. Thanks to the Girsanov theorem, equivalent changes of
measures are simply associated with changes of drift. Hence, under a probability space
(�,F , Q) with a filtration {Ft}0≤t≤τmax

, where τmax denotes a maximal time covering
all times of interest in the market, we choose a parameterized equivalent pricing mea-
sure Q = Qθ that completes the market and pin it down to compute the arbitrage-free
temperature futures price:

F(t,τ1,τ2) = E Qθ [Y |Ft], (6)

where Y refers to the pay-off from the temperature index in Equations (2)–(5). The
MPR θ is assumed to be a real-valued, bounded and piecewise continuous function.
We later relax that assumption, by considering the time-dependent MPR θt. In fact,
the MPR can depend on anything that can affect investors’ attitudes. The MPR can be
inferred from market data.

The choice of Q determines the RP demanded for investors for holding the tem-
perature derivative, and opposite, having knowledge of the RP determines the choice
of the risk-neutral probability. The RP is defined as a drift of the spot dynamics
or a Girsanov-type change of probability. In Equation (6), the futures price is set
under a risk-neutral probability Q = Qθ , thereby the RP measures exactly the differ-
ences between the risk-neutral F(t,τ i

1,τ i
2,Q) (market prices) and the temperature market

probability predictions F̂(t,τ i
1,τ i

2,P) (under P):

RP = F(t,τ i
1,τ i

2,Q) − F̂(t,τ i
1,τ i

2,P). (7)

Using the ‘burn-in’ approach of Brix et al. (2005), the futures price is only the historical
average index value, therefore there is no RP since Q = P.

2.1 Data

We have temperature data available from 35 US, 30 German, 159 Chinese and
9 European weather stations. The temperature data were obtained from the National
Climatic Data Center (NCDC), the Deutscher Wetterdienst (DWD), Bloomberg
Professional Service, the Japanese Meteorological Agency (JMA) and the China
Meteorological Administration (CMA). The temperature data contain the minimum,
maximum and average daily temperatures measured in degree Fahrenheit for US cities
and degree Celsius for other cities. The data set period is, in most of the cities, from
19470101 to 20091231.

The WD data traded at CME were provided by Bloomberg Professional Service. We
use daily closing prices from 20000101 to 20091231. The measurement periods for the
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64 W. K. Härdle and B. López Cabrera

different temperature indices are standardized to be as each month of the year or as
seasonal strips (minimum of 2 and maximum of 7 consecutive calendar months). The
futures and options at the CME are cash settled, that is, the owner of a futures contract
receives 20 times the index at the end of the measurement period, in return for a fixed
price. The currency is British pounds for the European futures contracts, US dollars for
the US contracts and Japanese Yen for the Asian cities. The minimum price increment
is 1 index point. The degree day metric is Celsius or Fahrenheit and the termination of
the trading is two calendar days following the expiration of the contract month. The
accumulation period of each CAT/CDD/HDD/C24AT index futures contract begins
with the first calendar day of the contract month and ends with the calendar day of the
contract month. Earth Satellite Corporation (ESC) reports to CME the daily average
temperature. Traders bet that the temperature will not exceed the estimates from ESC.

3. Temperature Dynamics

In order to derive explicitly no arbitrage prices for temperature derivatives, we need
first to describe the dynamics of the underlying under the physical measure. This article
studies the average daily temperature data (because most of the temperature derivative
trading is based on this quantity) for US, European and Asian cities. In particular,
we analyse the weather dynamics for Atlanta, Portland, Houston, New York, Berlin,
Essen, Tokyo, Osaka, Beijing and Taipei (Table 1). Our interest in these cities is because
all of them with the exception of the latter two are traded at CME and because a casual
examination of the trading statistics on the CME website reveals that the Atlanta
HDD, Houston CDD and Portland CDD temperature contracts have relatively more
liquidity.

Most of the literature that discuss models for daily average temperature and cap-
ture a linear trend (due to global warming and urbanization), seasonality (peaks in
cooler winter and warmer summers), mean reversion, seasonal volatility (a variation
that varies seasonally) and strong correlations (long memory); see, for example, Alaton
et al. (2002), Cao and Wei (2004), Campbell and Diebold (2005) and Benth et al.
(2007). They differ from their definition of temperature variations, which is exactly
the component that characterizes weather risk. Here we show that an autoregres-
sive (AR) model AR of high order (p) for the detrended daily average temperatures
(rather than the underlying temperature itself) is enough to capture the stylized facts
of temperature.

We first need to remove the seasonality in mean �t from the daily temperature
series Tt, check intertemporal correlations and remove the seasonality in variance to
deal with a stationary process. The deterministic seasonal mean component can be
approximated with Fourier-truncated series (FTS):

�t = a+ bt+
L∑

l=1

clcos
{

2π (t− dl)
l · 365

}
, (8)

where the coefficients a and b indicate the average daily temperature and global warm-
ing, respectively. We observe low temperatures in winter times and high temperatures
in summer for different locations. The temperature data sets do not deviate from its
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66 W. K. Härdle and B. López Cabrera

mean level and in most of the cases a linear trend at 1% significance level is detectable
as it is displayed in Table 1.

Our findings are similar to Alaton et al. (2002) and Benth et al. (2007) for Sweden;
Benth et al. (2007) for Lithuania; Campbell and Diebold (2005) for the United States;
and Papazian and Skiadopoulos (2010) for Barcelona, London, Paris and Rome. In
our empirical results, the number of periodic terms of the FTS series varies from city
to city, sometimes from 4 to 21 or more terms. We notice that the series expansion
in Equation (8) with more and more periodic terms provides a fine tuning, but this
will increase the number of parameters. Here we propose a different way to correct for
seasonality. We show that a local smoothing approach does that job instead, but with
less technical expression. Asymptotically they can be approximated by FTS estimators.
For a fixed time point s ∈ [1, 365], we smooth�s with a Local Linear Regression (LLR)
estimator:

�s = arg min
e, f

365∑
t=1

{
T̄t − es − fs(t− s)

}2
K
(

t− s
h

)
, (9)

where T̄t is the mean of average daily temperature in J years, h is the smoothing
parameter and K(·) denotes a kernel. This estimator, using Epanechnikov Kernel,
incorporates an asymmetry term since high temperatures in winter are more pro-
nounced than in summer as Figure 1 displays in a stretch of 8 years plot of the average
daily temperatures over the FTS estimates.

After removing the LLR-seasonal mean (Equation (9)) from the daily average tem-
peratures (Xt = Tt −�t), we apply the Augmented Dickey–Fuller (ADF) and the
Kwaitkowski–Phillips–Schmidt–Shin (KPSS) tests to check whether Xt is a station-
ary process. We then plot the Partial Autocorrelation Function (PACF) of Xt to detect
possible intertemporal correlations. This suggests that persistence of daily average is
captured by AR processes of higher order p:

Xt+p =
p∑

i=1

βiXt−i + εt, εt = σtet, et ∼ N(0, 1), (10)

with residuals εt. Under the stationarity hypothesis of the coefficients βs and the mean
zero of residuals εt, the mean temperature E [Tt] = �t. This is different to the approach
of Campbell and Diebold (2005), who suggested to regress deseasonalized tempera-
tures on original temperatures. The analysis of the PACFs and Akaike’s information
criterion (AIC) suggests that the AR(3) model in Benth et al. (2007) explains the tem-
perature evolution well and holds for many cities. The results of the stationarity tests
and the coefficients of the fitted AR(3) are given in Table 2. Figure 2 illustrates that the
ACFs of the residuals εt are close to 0 and according to Box-Ljung statistic the first
few lags are insignificant, whereas the ACFs of the squared residuals ε2

t show a high
seasonal pattern.

We calibrate the deterministic seasonal variance function σ 2
t with FTS and an

additional generalized autoregressive conditional heteroskedasticity (GARCH) (p, q)
term:
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Figure 1. A stretch of 8 years plot of the average daily temperatures (black line), the seasonal
component modelled with a Fourier-truncated series (dashed line) and the local linear regres-
sion (grey line) using Epanechnikov Kernel. (a) Atlanta, (b) Beijing, (c) Berlin, (d) Essen, (e)
Houston, (f) New York, (g) Osaka, (h) Portland, (i) Taipei and (j) Tokyo.

σ̂ 2
t = c+

L∑
l=1

{
c2l cos

(
2lπ t
365

)
+ c2l+1 sin

(
2lπ t
365

)}
+ α1(σt−1ηt−1)2 + β1σ

2
t−1, ηt

∼ iid N(0, 1).

(11)
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68 W. K. Härdle and B. López Cabrera

Table 2. Result of the stationary tests and the coefficients of the fitted AR(3).

ADF–KPSS AR(3) CAR(3)

City τ̂ k̂ β1 β2 β3 α1 α2 α3 λ1 λ2,3

Atlanta −55.55+ 0.21∗∗∗ 0.96 −0.38 0.13 2.03 1.46 0.28 −0.30 −0.86
Beijing −30.75+ 0.16∗∗∗ 0.72 −0.07 0.05 2.27 1.63 0.29 −0.27 −1.00
Berlin −40.94+ 0.13∗∗ 0.91 −0.20 0.07 2.08 1.37 0.20 −0.21 −0.93
Essen −23.87+ 0.11∗ 0.93 −0.21 0.11 2.06 1.34 0.16 −0.16 −0.95
Houston −38.17+ 0.05∗ 0.90 −0.39 0.15 2.09 1.57 0.33 −0.33 −0.87
New York −56.88+ 0.08∗ 0.76 −0.23 0.11 2.23 1.69 0.34 −0.32 −0.95
Osaka −18.65+ 0.09∗ 0.73 −0.14 0.06 2.26 1.68 0.34 −0.33 −0.96
Portland −45.13+ 0.05∗ 0.86 −0.22 0.08 2.13 1.48 0.26 −0.27 −0.93
Taipei −32.82+ 0.09∗ 0.79 −0.22 0.06 2.20 1.63 0.36 −0.40 −0.90
Tokyo −25.93+ 0.06∗ 0.64 −0.07 0.06 2.35 1.79 0.37 −0.33 −1.01

Notes: ADF, augmented Dickey–Fuller; KPSS, Kwiatkowski–Phillips–Schmidt–Shin; AR, autoregressive
process; CAR, continuous autoregressive model.
ADF and KPSS statistics, coefficients of the AR(3), CAR(3) and eigenvalues λ1,2,3, of the matrix A of the
CAR(3) model for the detrended daily average temperatures for different cities.
+0.01 critical values, ∗0.1 critical value, ∗∗0.05 critical value, ∗∗∗0.01 critical value.

The Fourier part in Equation (11) captures the seasonality in volatility, whereas
the GARCH part captures the remaining non-seasonal volatility. Note again that
more and more periodic terms in Equation (11) provide a good fitting but this
will increase the number of parameters. To avoid this and in order to achieve pos-
itivity of the variance, Gaussian risk factors and volatility model flexibility in a
continuous time, we propose the calibration of the seasonal variance in terms of
an LLR:

arg min
g,h

365∑
t=1

{
ε̂2

t − gs − hs(t− s)
}2

K
(

t− s
h

)
, (12)

where ε̂2
t is the mean of squared residuals in J years and K(·) is a kernel. Figure 3

shows the daily empirical variance (the average of squared residuals for each day of
the year), the fittings using the FTS-GARCH(1,1) and the LLR (with Epanechnikov
kernel) estimators. Here we obtain the Campbell and Diebold’s (2005) effect for differ-
ent temperature data, high variance in winter to earlier summer and low variance in
spring to late summer. The effects of non-seasonal GARCH volatility component are
small.

Figure 4 displays the ACFs of temperature residuals εt and squared residuals ε2
t

after dividing out the deterministic LLR seasonal variance. The ACF plots of the
standardized residuals remain unchanged but now the squared residuals presents a
non-seasonal pattern. The LLR seasonal variance creates almost normal residuals and
captures the peak seasons as Figure 5 in a log Kernel smoothing density plot shows
against a Normal Kernel evaluated at 100 equally spaced points. Table 3 presents
the calibrated coefficients of the FTS-GARCH seasonal variance estimates and the
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Figure 2. The ACF of residuals εt (left panels) and squared residuals ε2
t (right panels) of

detrended daily temperatures for different cities.

descriptive statistics for the residuals after correcting by the FTS-GARCH and LLR
seasonal variance. We observe that independently of the chosen location, the driving
stochastics are close to a Wiener process. This will allow us to apply the pricing tools
of financial mathematics.
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Figure 3. The daily empirical variance (black line), the Fourier-truncated (dashed line) and
the local linear smoother seasonal variation using Epanechnikov kernel (grey line) for differ-
ent cities. (a) Atlanta, (b) Beijing, (c) Berlin, (d) Essen, (e) Houston, (f) New York, (g) Osaka,
(h) Portland, (i) Taipei and (j) Tokyo.

4. Stochastic Pricing Model

Temperatures are naturally evolving continuously over time, so it is very convenient
to model the dynamics of temperature with continuous-time stochastic processes,
although the data may be on a daily scale. We therefore need the reformulation of the
underlying process in continuous time to be more convenient with market definitions.
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Figure 4. The ACF of residuals εt (left panels) and squared residuals ε2
t (right panels) of

detrended daily temperatures after dividing out the local linear seasonal variance for different
cities.

We show that the AR(p) (Equation (10)) estimated in Section 3 for the detrended tem-
perature can be therefore seen as a discretely sampled continuous-time autoregressive
(CAR) process (CAR(p)) driven by a one-dimensional Brownian motion Bt (though
the continuous-time process is Markov in higher dimension) (Benth et al., 2007):

dXt = AXtdt+ epσtdBt, (13)
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Figure 5. The log of Normal Kernel (∗) and log of Kernel smoothing density estimate of residuals
after correcting FTS (+) and locar linear (o) seasonal variance for different cities (a) Atlanta,
(b) Beijing, (c) Berlin, (d) Essen, (e) Houston, (f) New York, (g) Osaka, (h) Portland, (i) Taipei
and (j) Tokyo.

where the state vector X t ∈ R
p for p ≥ 1 is a vectorial Ornstein–Uhlenbeck process,

namely, the temperatures after removing seasonality at times t, t− 1, t− 2, t− 3, . . . ;
ek denotes the kth unit vector in R

p for k = 1, . . . , p; σt > 0 is a deterministic volatility
(real-valued and square integrable function); and A is a p× p matrix:

A =

⎛⎜⎜⎜⎜⎝
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . . 0
...

0 . . . . . . 0 0 1
−αp −αp−1 . . . 0 −α1

⎞⎟⎟⎟⎟⎠ , (14)

with positive constants αk. Following this nomenclature, Xq(t) with q = 1, . . . , p is
the qth coordinate of Xt and by setting q = 1 is equivalent to the detrended tem-
perature time series X1(t) = Tt −�t. The proof is derived by an analytical link
between X1(t), X2(t) and X3(t) and the lagged temperatures up to time t− 3. X1(t+3) is
approximated by Euler discretization. Thus for p = 1, Xt = X1(t) and Equation (13)
becomes

dX1(t) = −α1X1(t)dt+ σtdBt, (15)

which is the continuous version of an AR(1) process. Similarly for p = 2, assume a time
step of length 1 dt = 1 and substitute X2(t) iteratively to get

X1(t+2) ≈ (2− α1)X1(t+1) + (α1 − α2 − 1)X1(t) + σtet, (16)
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where et = Bt+1 − Bt. For p = 3, we have:

X1(t+1) − X1(t) = X2(t)dt,

X2(t+1) − X2(t) = X3(t)dt,

X3(t+1) − X3(t) = −α3X1(t)dt− α2X2(t)dt− α1X3(t)dt+ σtet,

. . . ,

X1(t+3) − X1(t+2) = X2(t+2)dt,

X2(t+3) − X2(t+2) = X3(t+2)dt,

X3(t+3) − X3(t+2) = −α3X1(t+2)dt− α2X2(t+2)dt− α1X3(t+2)dt+ σtet,

(17)

substituting into the X1(t+3) dynamics and setting dt = 1:

X1(t+3) ≈ (3− α1)︸ ︷︷ ︸
β1

X1(t+2) + (2α1 − α2 − 3)︸ ︷︷ ︸
β2

X1(t+1) + (−α1 + α2 − α3 + 1)︸ ︷︷ ︸
β3

X1(t). (18)

Please note that this corrects the derivation in Benth et al. (2007) and Equation (18)
leads to Equation (10) (with p = 3). The approximation of Equation (18) is required to
compute the eigenvalues of matrix A. The last columns of Table 2 display the CAR(3)-
parameters and the eigenvalues of the matrix A for the studied temperature data. The
stationarity condition is fulfilled since the eigenvalues of A have negative real parts and
the variance matrix

∫ t
0 σ

2
t−s exp {A(s)} epe	p exp

{
A	(s)

}
ds converges as t→∞.

By applying the multidimensional Itô Formula, the process in Equation (13) with
Xt = x ∈ R

p has the explicit form Xs = exp {A(s− t)} x+ ∫ s
t exp {A(s− u)} epσudBu for

s ≥ t ≥ 0.
Since dynamics of temperature futures prices must be free of arbitrage under the

pricing equivalent measure Qθ , the temperature dynamics of Equation (13) becomes
for s ≥ t ≥ 0:

dXt = (AXt + epσtθt)dt+ epσtdBθt ,

Xs = exp {A(s− t)} x+
∫ s

t
exp {A(s− u)} epσuθudu+

∫ s

t
exp {A(s− u)} epσudBθu .

(19)

By inserting Equations (1)–(3) into Equation (6), Benths et al. (2007) explicity calcu-
lated the risk neutral prices for HDD/CDD/CAT futures (and options) for contracts
traded before the temperature measurement period, that is 0 ≤ t ≤ τ1 < τ2:
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The Implied Market Price of Weather Risk 75

FHDD(t,τ1,τ2) =
∫ τ2

τ1

υt,sψ

[c−m{t,s,e	1 exp{A(s−t)}Xt}
υt,s

]
ds,

FCDD(t,τ1,τ2) =
∫ τ2

τ1

υt,sψ

[m{t,s,e	1 exp{A(s−t)}Xt} − c

υt,s

]
ds,

FCAT(t,τ1,τ2) =
∫ τ2

τ1

�udu+ at,τ1,τ2 Xt +
∫ τ1

t
θuσuat,τ1,τ2 epdu

+
∫ τ2

τ1

θuσue	1 A−1 [exp {A(τ2 − u)} − Ip
]

epdu,

(20)

with at,τ1,τ2 = e	1 A−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}]; Ip is a p× p identity matrix;
ψ(x) = x�(x)+ ϕ(x) (� denotes the standard normal cumulative distribution
function (cdf)) with x = e	1 exp {A(s− t)}Xt; υ2

t,s =
∫ s

t σ
2
u

[
e	1 exp {A(s− t)} ep

]2
du;

and m{t,s,x} = �s +
∫ s

t σuθue	1 exp {A(s− t)} epdu+ x. The solution to Equation (20)
depends on the assumed specification for the MPR θ . In the next section, it is shown
that different assumed risk specifications can lead into different derivative prices.

The model in Benth et al. (2007) nests a number of previous models (Alaton et al.,
2002; Benth, 2003; Benth and Saltyte-Benth, 2005; Brody et al., 2002); it general-
izes the Benth and Saltyte-Benth (2007) and Dornier and Querel (2007) approaches
and is a very well studied methodology in the literature (Benth et al., 2011; Papazian
and Skiadopoulos, 2010; Zapranis and Alexandridis, 2008). Besides it gives a clear
connection between the discrete- and continuous-time versions, it provides closed-
form non-arbitrage pricing formulas and it requires only a one-time estimation for
the price dynamics. With the time series approach (Campbell and Diebold, 2005), the
continuous-time approaches (Alaton et al., 2002; Huang-Hsi et al., 2008), neural net-
works (Zapranis and Alexandridis, 2008, 2009) or the principal component analysis
approach (Papazian and Skiadopoulos, 2010) are not easy to compute price dynamics
of CAT/CDD/HDD futures and one needs to use numerical approaches or simu-
lations in order to calculate conditional expectations in Equation (6). In that case,
partial differential equations or Monte Carlo simulations are being used. For option
pricing, this would mean to simulate scenarios from futures prices. This translates into
intensive computer simulation procedures.

5. The Implied Market Price of Weather Risk

For pricing and hedging non-tradable assets, one essentially needs to incorporate the
MPR θ which is an important parameter of the associated EMM and it measures the
additional return for bearing more risk. This section deals exactly with the differences
between ‘historical’ (P) and ‘risk-neutral’ (Q) behaviours of temperature. Using statis-
tical modelling and given that liquid-derivative contracts based on daily temperatures
are traded on the CME, one might infer the MPR (the change of drift) from traded
(CAT/CDD/HDD/C24AT) futures–options-type contracts.
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76 W. K. Härdle and B. López Cabrera

Our study is a calibration procedure for financial engineering purposes. In the cali-
bration exercise, a single date (but different time horizons and calibrated instruments
are used) is required, since the model is recalibrated daily to detect intertemporal
effects. Moreover, we use an economic and statistical testing approach, where we
start from a specification of the MPR and check consistency with the data. By giving
assumptions about the MPR, we implicitly make an assumption about the aggregate
risk aversion of the market. The risk parameter θ can then be inferred by finding the
value that satisfies Equation (20) for each specification. Once we know the MPR for
temperature futures, then we know the MPR for options and thus one can price new
‘non-standard maturities’ or OTC derivatives. The concept of implied MPR is similar
to that used in extracting implied volatilities (Fengler et al., 2007) or the market price
of oil risk (Gibson and Schwartz, 1990).

To value temperature derivatives, the following specifications of the MPR are inves-
tigated: a constant, a piecewise linear function, a two-piecewise linear function, a
time-deterministic function and a ‘financial-bootstrapping’ MPR. The statistical point
of view is to beat this as an inverse problem with different degrees of smoothness
expressed through the penalty parameter of a smoothing spline. The economic point
of view is to detect possible time dependencies that can be explained by investor’s
preferences in order to hedge weather risk.

In this article we concentrate on contracts with monthly measurement length peri-
ods, but similar implications apply for seasonal strip contracts. We observe different
temperature futures contracts i = 1, . . . , I with measurement periods t ≤ τ i

1 < τ i
2 and

τ i
2 ≤ τ i+1

1 traded at time t, meaning that contracts expire at some point in time and roll
over to another contract. Therefore, i = 1 denotes contract types with measurement
period in 30 days, i = 2 denotes contract types in 60 days and so on. For example,
a contract with i = 7 is six months ahead from the trading day t. For United States
and Europe, the number of temperature futures contracts is I = 7 (April–October or
October–April), while for Asia I = 12 (January–December). The details of the temper-
ature futures data are displayed in Table 4. To simplify notation, dates are written in
yyyymmdd format.

5.1 Constant MPR for Each Contract per Trading Date

Given observed temperature futures market prices and by inverting Equation (20), we
imply the MPR θu for i = 1, . . . , I futures contracts with different measurement time
horizon periods [τ i

1, τ i
2], t ≤ τ i

1 < τ i
2 and τ i

2 ≤ τ i+1
1 traded at date t. Our first assumption

is to set, for the ith contract, a constant MPR over [t, τ i
2], that is, we have that θu = θ i

t :

θ̂ i
t,CAT = arg min

θ i
t

(
FCAT(t,τ i

1,τ i
2) −

∫ τ i
2

τ i
1

�̂udu− at,τ i
1,τ i

2
Xt − θ i

t

{∫ τ1

t
σ̂uat,τ i

1,τ i
2
epdu

+
∫ τ i

2

τ i
1

σ̂ue	1 A−1 [exp
{
A(τ i

2 − u)
}− Ip

]
epdu

})2

,
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78 W. K. Härdle and B. López Cabrera

θ̂ i
t,HDD = arg min

θ i
t

⎛⎝FHDD(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

υt,sψ

⎡⎣c− m̂1{t,s,e	1 exp{A(s−t)}X t}
υt,s

⎤⎦ ds

⎞⎠2

, (21)

with m̂1
{t,s,x} = �s + θ i

t

∫ s
t σue	1 exp {A(s− t)} epdu+ x, υ2

t,s,ψ(x) and x defined as in

Equation (20). The MPR for CDD futures θ̂ i
t,CDD is equivalent to the HDD case in

Equation (21) and we will therefore omit CDD parameterizations. Note that this spec-
ification can be seen as a deterministic time-varying MPR θ i

t that varies with date for
any given contract i, but it is constant over [t, τ i

2].

5.2 One Piecewise Constant MPR

A simpler MPR parameterization is to assume that it is constant across all time hori-
zon contracts priced in a particular date (θt). We therefore estimate this constant MPR
for all contract types traded at t ≤ τ i

1 < τ i
2, i = 1, . . . , I as follows:

θ̂t,CAT = arg min
θt

I∑
i=1

(
FCAT(t,τ i

1,τ i
2) −

∫ τ i
2

τ i
1

�̂udu− ât,τ i
1,τ i

2
X t − θt

{∫ τ i
1

t
σ̂uât,τ i

1,τ i
2
epdu

+
∫ τ i

2

τ i
1

σ̂ue	1 A−1 [exp
{
A(τ i

2 − u)
}− Ip

]
epdu

})2

,

θ̂t,HDD = arg min
θt

I∑
i=1

⎛⎝FHDD(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

υt,sψ

⎡⎣c− m̂2{t,s,e	1 exp{A(s−t)}X t}
υt,s

⎤⎦ ds

⎞⎠2

,

(22)

with m̂2
{t,s,x} = �s + θt

∫ s
t σue	1 exp {A(s− t)} epdu+ x and υ2

t,s,ψ(x) and x as defined in
Equation (20). This ‘one piecewise constant’ MPR specification (θt) is solved by means
of the ordinary least squares (OLS) minimization procedure and differs from θ i

t in
Equation (21) because for all traded contracts at date t, we get only one MPR estimate
(instead of i estimates) at time t, that is, θt is constant over [t, τ I

2 ].

5.3 Two Piecewise Constant MPR

Assuming now that, instead of one constant MPR per trading day, we have a step
function with a given jump point ξ (take e.g. the first 150 days before the beginning
of the measurement period), so we have that θ̂t = I (u ≤ ξ) θ1

t + I (u > ξ) θ2
t . The two

piecewise constant function θ̂t with t ≤ τ i
1 < τ i

2 is estimated with the OLS minimization
procedure as follows:
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The Implied Market Price of Weather Risk 79

fCAT (ξ ) = arg min
θ1

t,CAT ,θ2
t,CAT

I∑
i=1

(
FCAT(t,τ i

1,τ i
2) −

∫ τ i
2

τ i
1

�̂udu− ât,τ i
1,τ i

2
X t

− θ1
t,CAT

{∫ τ i
1

t
I (u ≤ ξ) σ̂uât,τ i

1,τ i
2
epdu

+
∫ τ i

2

τ i
1

I (u ≤ ξ) σ̂ue	1 A−1 [exp
{
A(τ i

2 − u)
}− Ip

]
epdu

}

− θ2
t,CAT

{∫ τ i
1

t
I (u > ξ) σ̂uât,τ i

1,τ i
2
epdu

+
∫ τ i

2

τ i
1

I (u > ξ) σ̂ue	1 A−1 [exp
{
A(τ i

2 − u)
}− Ip

]
epdu

})2

,

(23)

fHDD(ξ ) = arg min
θ1

t,HDD,θ2
t,HDD

I∑
i=1

⎛⎝FHDD(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

υt,sψ

⎡⎣c− m̂3{t,s,e	1 exp{A(s−t)}X t}
υt,s

⎤⎦ ds

⎞⎠2

,

m̂3
{t,s,x} = �s + θ1

t,HDD

{∫ s

t
I (u ≤ ξ) σue	1 exp {A(s− t)} epdu+ x

}

+ θ2
t,HDD

{∫ s

t
I (u > ξ) σue	1 exp {A(s− t)} epdu+ x

}
,

and υ2
t,s, ψ(x) and x as defined in Equation (20). In the next step, we optimized the

value of ξ such as fCAT (ξ ) or fHDD(ξ ) is minimized. This MPR specification will vary
according to the unknown ξ . This would mean that the market does a risk adjustment
for contracts traded close or far from the measurement period.

5.4 General Form of the MPR per Trading Day

Generalizing the piecewise continuous function given in the previous subsection, the
(inverse) problem of determining θt with t ≤ τ i

1 < τ i
2, i = 1, . . . , I , can be formulated

via a series expansion for θt:

arg min
γk

I∑
i=1

(
FCAT(t,τ i

1,τ i
2) −

∫ τ i
2

τ i
1

�̂udu− ât,τ i
1,τ i

2
X̂t −

∫ τ i
1

t

K∑
k=1

γkhk(ui)σ̂ui ât,τ i
1,τ i

2
epdui

−
∫ τ i

2

τ i
1

K∑
k=1

γkhk(ui)σ̂ui e
	
1 A−1 [exp

{
A(τ i

2 − ui)
}− Ip

]
epdui

)2

,
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80 W. K. Härdle and B. López Cabrera

arg min
ak

I∑
i=1

⎛⎝FHDD(t,τ i
1,τ i

2) −
∫ τ i

2

τ i
1

υt,sψ

⎡⎣c− m̂4{t,s,e	1 exp{A(s−t)}X t}
υt,s

⎤⎦ ds

⎞⎠2

, (24)

with m̂4
{t,s,x} = �s +

∫ s
t

∑K
k= 1 aklk(ui)σ̂ui e

	
1 exp {A(s− t)} epdui + x and υ2

t,s,ψ(x) and x
as defined in Equation (20). hk(ui) and lk(ui) are vectors of known basis functions and
may denote a B-spline basis for example. γ k and ak define the coefficients and K is the
number of knots. This means that the inferred MPR is going to be a solution for an
inverse problem with different degrees of smoothness expressed through the penalty
parameter of a smoothing spline. The degrees of smoothness will allow for a term
structure of risk. In other words, a time-dependent risk factor offers the possibility to
have different risk adjustments for different times of the year.

5.5 Bootstrapping the MPR

In this section we propose a bootstrapping technique to detect possible MPR time-
dependent paths of temperature futures contracts. More importantly, since these
futures contract types have different measurement periods [τ i

1, τ i
2] with τ i

1 < τ i+1
1 ≤

τ i
2 < τ i+1

2 , i = 1, . . . , I , and they roll over to another contracts when they expire at
some point in time, it makes sense to construct MPR estimates from which we can price
contracts with any maturity, without the need of external information. This ‘financial’
bootstrapping idea consists of estimating by forward substitution the MPR θ i

t of the
futures price contracts with the closest measurement period and placing it into the esti-
mation for the next MPR θ i+1

t . We implement the estimation for CAT contracts, but
the idea applies also for HDD/CDD contract types. First, for the first contract i = 1
and t ∈ [τ 1

1 , τ 1
2 ], θ̂1

t,CAT is estimated from Equation (21):

θ̂1
t,CAT = arg min

θ1
t

(
FCAT(t,τ 1

1 ,τ 1
2 ) −

∫ τ 1
2

τ 1
1

�̂udu− ât,τ 1
1 ,τ 1

2
X̂t − θ1

t

{∫ τ 1
1

t
σ̂uât,τ 1

1 ,τ 1
2
epdu

+
∫ τ 1

2

τ 1
1

σ̂ue	1 A−1 [exp
{
A(τ 1

2 − u)
}− Ip

]
epdu

})2

. (25)

Second, the estimated θ̂1
t,CAT is substituted in the period [τ 1

1 , τ 1
2 ] to get an estimate of

θ̂2
t,CAT :

θ̂2
t,CAT = arg min

θ2
t,CAT

(
FCAT(t,τ 2

1 ,τ 2
2 ) −

∫ τ 2
2

τ 2
1

�̂udu− ât,τ 2
1 ,τ 2

2
X̂t −

∫ τ 1
1

t
θ̂1

t,CAT σ̂uât,τ 2
1 ,τ 2

2
epdu

−
∫ τ 2

2

τ 2
1

θ2
t,CAT σ̂ue	1 A−1 [exp

{
A(τ 2

2 − u)
}− Ip

]
epdu

)2

. (26)
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The Implied Market Price of Weather Risk 81

Then substitute θ̂1
t,CAT in the period [τ 1

1 , τ 1
2 ] and θ̂2

t,CAT in the period [τ 2
1 , τ 2

2 ] to estimate

θ̂3
t,CAT :

θ̂3
t,CAT = arg min

θ̂3
t,CAT

(
FCAT(t,τ 3

1 ,τ 3
2 ) −

∫ τ 3
2

τ 3
1

�̂udu− ât,τ 3
1 ,τ 3

2
X t −

∫ τ 1
1

t
θ̂1

t,CAT σ̂uât,τ 3
1 ,τ 3

2
epdu

−
∫ τ 2

2

τ 2
1

θ̂2
t,CAT σ̂uât,τ 3

1 ,τ 3
2
epdu−

∫ τ 3
2

τ 3
1

θ3
t,CAT σ̂ue	1 A−1 [exp

{
A(τ 3

2 − u)
}− Ip

]
epdu

)2

.

In a similar way, one obtains the estimation of θ̂4
t,CAT , . . . , θ̂ I

t,CAT .

5.6 Smoothing the MPR over Time

Since smoothing individual estimates is different from estimating a deterministic func-
tion, we also assure our results by fitting a parametric function to all available contract
prices (calendar year estimation). After computing the MPR θ̂t,CAT , θ̂t,HDD and θ̂t,CDD

for each of the previous specification and for each of the nth trading days t for different
ith contracts, the MPR time series can be smoothed with the inverse problem points to
find an MPR θ̂u for every calendar day u and with that being able to price temperature
derivatives for any date:

arg min
f∈Fj

n∑
t=1

{
θ̂t − f (ut)

}2 = arg min
αj

n∑
t=1

⎧⎨⎩θ̂t −
J∑

j=1

αj�j(ut)

⎫⎬⎭
2

, (27)

where �j(ut) is a vector of known basis functions, αj defines the coefficients, J is the
number of knots, ut = t−�+ 1 with increment � and n is the number of days to be
smoothed. In our case, ut = 1 day and �j(ut) is estimated using cubic splines.

Alternatively, one can first do the smoothing with basis functions of all available
futures contracts:

arg min
βj

n∑
t=1

I∑
i=1

⎧⎨⎩F(t,τ i
1,τ i

2) −
J∑

j=1

βj�j(ut)

⎫⎬⎭
2

, (28)

and then estimate the time series of θ̂ s
t s with the obtained smoothed futures prices

Fs
(t,τ 1

1 ,τ I
2 )

.

For example, for a constant MPR for all CAT futures contracts type traded over all
ts with t ≤ τ i

1 < τ i
2 and τ i

2 ≤ τ i+1
1 , we have:
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82 W. K. Härdle and B. López Cabrera

θ̂ s
t,CAT = arg min

θ s
t,CAT

(
Fs

CAT(t,τ 1
1 ,τ I

2 ) −
∫ τ I

2

τ 1
1

�̂udu− ât,τ 1
1 ,τ I

2
X t − θ s

t,CAT

{∫ τ 1
1

t
σ̂uât,τ 1

1 ,τ I
2
epdu

+
∫ τ I

2

τ 1
1

σ̂ue	1 A−1 [exp
{
A(τ I

2 − u)
}− Ip

]
epdu

})2

. (29)

5.7 Statistical and Economical Insights of the Implied MPR

In this section, using the previous specifications, we imply the MPR (the change
of drift) for CME (CAT/CDD/HDD/C24AT) futures contracts traded for different
cities. Note that one might also infer the MPR from options data and compare the
findings with prices in the futures market.

Table 5 presents the descriptive statistics of different MPR specifications for Berlin-
CAT, Essen-CAT and Tokyo-C24AT daily futures contracts with t ≤ τ i

1 < τ i
2 traded

during 20031006–20080527 (5102 contracts in 1067 trading days with 29 different mea-
surement periods), 20050617–20090731 (3530 contracts in 926 trading dates with 28
measurement periods) and 20040723–20090831 (2611 contracts in 640 trading dates
with 27 measurement periods). The MPR ranges vary between [–10.71, 10.25], [31.05,
5.73] and [–82.62, 52.17] for Berlin-CAT, Essen-CAT and Tokyo-C24AT futures con-
tracts, respectively, whereas the MPR averages are 0.04, 0.00 and –3.08 for constant
MPR for different contracts; –0.08, –0.38 and 0.73 for one piecewise constant; –0.22,
–0.43 and –3.50 for two piecewise constant; 0.04, 0.00 and –3.08 for spline; and 0.07,
0.00 and –0.11 when bootstrapping the MPR. We observe that the two piecewise con-
stant MPR function is a robust least square estimation, since its values are sensitive
to the choice of ξ . Figure 6 shows the MPR estimates for Berlin-CAT futures prices
traded on 20060530 with ξ = 62, 93, 123 and 154 and sum of squared errors equal to
2759, 14,794, 15,191 and 15,526. The line displays a discontinuity indicating that trad-
ing was not taking place (CAT futures are only traded from April to November and
MPR estimates cannot be computed since there are no market prices). When the jump
ξ is getting far from the measurement period, the value of the MPR θ̂1

t decreases and
θ̂2

t increases, yielding a θ̂t around 0. Table 5 also displays the estimates of the time-
dependent MPR (or spline MPR) from the bootstrapping technique. The spline MPR
smooths the estimates over time and it is estimated using cubic polynomials with k
equal to the number of traded contracts I at date t. The performance of the boost-
rapped MPR is similar to the constant MPR for different contracts per trading date
estimates, suggesting that the only risk which the statistical model might imply is that
the MPR will be equal at any trading date across all temperature contract types.

The first panel in Figure 7 displays the Berlin-CAT, Essen-CAT and Tokyo-
C24AT futures contracts traded at 20060530, 20060530 and 20050531, respectively.
The second, third and fourth panels of Figure 7 show the MPR when it is
assumed to be constant for different contracts per trading date, a two piecewise
constant and the spline MPR. In the case of the constant MPR for different
contracts per trading date, the lines overlap because the MPR for every contract
i = 1, . . . , 12 is supposed to be constant over the period [t, τ i

2] at trading date t.
The two piecewise constant function adjusts the risk according to the choice of ξ
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Figure 6. Two piecewise constant MPR with jumps ξ = (a) 62, (b) 93, (c) 123 and (d) 154 days for
Berlin-CAT contracts traded on 20060530. The corresponding sum of squared errors are 2759,
14794, 15191 and 15526. When the jump ξ is getting far from the measurement period, the value
of the MPR θ̂ 1

t decreases and θ̂ 2
t increases, yielding a θ̂t around 0.

(in this case ξ = 150 days). The spline MPR smooths over time and for days without
trading (see the case of Berlin-CAT or Essen-CAT futures), it displays a maximum, for
example, in winter. A penalizing term in Equation (24) might correct for this.

In all the specifications, we verified the discussion that MPR is different from 0 (as
Cao and Wei (2004), Huang-Hsi et al. (2008), Richards et al. (2004) and Alaton et al.
(2002) do) varies in time and moves from a negative to a positive domain according
to the changes in the seasonal variation. The MPR specifications change signs when
a contract expires and rolls over to another contract (e.g. from 210 to 180, 150, 120,
90, 60, 30 days before measurement period); they react negatively to the fast changes
in seasonal variance σt within the measurement period (Figure 3) and to the changes
in CAT futures volatility σtat,τ1,τ2 ep. Figure 8 shows the Berlin-CAT volatility paths for
contracts issued before and within the measurement periods 2004–2008. We observed
the Samuelson effect for mean-reverting futures: for contracts traded within the mea-
surement period, CAT volatility is close to 0 when the time to measurement is large
and it decreases up to the end of the measurement period. For contracts traded before
the measurement period, CAT volatility is also close to 0 when the time to measure-
ment is large, but increases up to the start of the measurement period. In Figure 9,
two Berlin-CAT contracts issued on 20060517 but with different measurement peri-
ods are plotted: the longest the measurement period, the largest the volatility. Besides
this, one observes the effect of the CAR(3) in both contracts when the volatility decays
just before maturity of the contracts. These two effects are comparable with the study
for Stockholm CAT futures in Benth et al. (2007); however, the deviations are less
smoothed for Berlin.
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Figure 7. Futures CAT prices (1 row panel) and MPR specifications: constant MPR for different
contracts per trading day, two piecewise constant and spline (2, 3 and 4 row panel) for Berlin-
CAT (left), Essen-CAT (middle), Tokyo-AAT (right) of futures traded on 20060530, 20060530
and 20060531, respectively.

We investigate the proposition that the MPR derived from CAT/HDD/CDD
futures is different from 0. We conduct the Wald statistical test to check whether this
effect exists by testing the true value of the parameter based on the sample estimate. In
the multivariate case, the Wald statistic for

{
θt ∈ R

i
}n

t=1 is

(θ̂t − θ0)	�(θ̂t − θ0) ∼ χ2
p ,�

1
2 (θ̂t − θ0) ∼ N (0, Ii),

where � is the variance matrix and the estimate θ̂t is compared with the proposed
value θ0 = 0. Using a sample size of n trading dates of contracts with t ≤ τ i

1 < τ i
2,

i = 1, . . . , I , we illustrate in Table 5 the Wald statistics for all previous MPR specifica-
tions. We reject H0 : θ̂t = 0 under the Wald statistic

{
θt ∈ R

i
}n

t=1 for all cases. Although
the constant per trading day and general MPR specifications smooth deviations over
time, the Wald statistic confirms that the MPR differs significantly from 0. Our results
are robust to all specifications.

Figure 10 shows the smoothing of MPR individuals (Equation (27)) for different
specifications in 1 (20060530), 5 (20060522–20060530) and 30 trading days (20060417–
20060530) of Berlin-CAT futures, while the last panel in Figure 10 gives the results
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Figure 8. The Samuelson effect for Berlin-CAT futures explained by the CAT volatility σtat,τ1,τ2 ep

(black line) and the volatility σt of Berlin-CAT futures (dash line) from 2004 to 2008 and 2006
for contracts traded before (a) and (b) and within (c) and (d) the measurement period.

when MPR estimates are obtained from smoothed prices using the calendar year esti-
mation (Equation (29)). Both smoothing procedures lead to similar outcomes: notable
changes in sign, MPR deviations are smoothed over time and the higher the number of
calendar days, the closer the fit of Equations (27) and (29). This indicates that sample
size does not influence the stochastic behaviour of the MPR.

To interpret the economic meaning of the previous MPR results, recall, for example,
the relationship between the RP (the market price minus the implied futures price with
MPR equal to 0) and the MPR for CAT temperature futures:

RPCAT =
∫ τ i

1

t
θuσuat,τ i

1,τ i
2
epdu+

∫ τ i
2

τ i
1

θuσue	1 A−1 [exp
{
A(τ i

2 − u)
}− Ip

]
epdu, (30)

which can be interpreted as the aggregated MPR times the amount of temperature risk
σt over [t, τ i

1] (first integral) and [τ i
1, τ i

2] (second integral). By adjusting the MPR value,
these two terms contribute to the CAT futures price. For temperature futures with
values that are positive related to weather changes in the short term, this implies a
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Figure 9. (a) The CAT term structure of volatility and (b) the autoregressive effect of two con-
tracts issued on 20060517: one with whole June as measurement period (straight line) and the
other one with only the 1st week of June (dotted line).

negative RP meaning that buyers of temperature derivatives expect to pay lower prices
to hedge weather risk (insurance RP). In this case, θt must be negative for CAT futures,
since σt and X t are both positive. Negative MPRs translate into premiums for bear-
ing risk, implying that investor will accept a reduction in the return of the derivative
equal to the right-hand side of Equation (30) in exchange for eliminating the effects
of the seasonal variance on pay-offs. On the other side, positive RP indicates the exis-
tence of consumers, who consider temperature derivatives for speculation purposes.
In this case, θt must be positive and implies discounts for taking additional (weather)
risk. This rules out the ‘burn-in’ analysis of Brix et al. (2005), which seems to popular
among practitioners since it uses the historical average index value as the price for the
futures. The sign of MPR–RP reflects the risk attitude and time horizon perspectives
of market participants in the diversification process to hedge weather risk in peak sea-
sons. By understanding the MPR, market participants might earn money (by shorting
or longing, according to the sign). The investors impute value to the weather prod-
ucts, although they are non-marketable. This might suggest some possible relationships
between risk aversion and the MPR.

The non-stationarity behaviour of the MPR (sign changes) is also possible because
it is capturing all the non-fundamental information affecting the futures pricing:
investors preferences, transaction costs, market illiquidity or other fractions like effects
on the demand function. When the trading is illiquid the observed prices may contain
some liquidity premium, which can contaminate the estimation of the MPR.

Figure 11 illustrates the RP of Berlin-CAT futures for monthly contracts traded on
20031006–20080527. We observe RPs different from 0, time dependent, where positive
(negative) MPR contributes positively (negatively) to futures prices. The mean for the
constant MPR for the i = 1, . . . , 7th Berlin-CAT futures contracts per trading date
is of size 0.02, 0.05, 0.02, 0.01, 0.10, 0.02 and 0.04, thus the terms in Equation (30)
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Figure 10. Smoothing the MPR parameterization for Berlin-CAT futures traded on 20060530:
the calendar year smoothing (black line) for 1 day (left), 5 days (middle) and 30 days (right). The
last row gives MPR estimates obtained from smoothed prices.

contribute little to the prices compared to the seasonal mean �t. The RPs are very
small for all contract types, and they behave constant within the measurement month
but fluctuate with σt and θt, leading to higher RPs during volatile months (winters
or early summers). This suggests that the temperature market does the risk adjustment
according to the seasonal effect, where low levels of mean reversion mean that volatility
plays a greater role in determining the prices.

Our data extracted MPR results can be comparable with Cao and Wei (2004),
Richards et al. (2004) and Huang-Hsi et al. (2008), who showed that the MPR is not
only different from 0 for temperature derivatives, but also significant and economically
large as well. However, the results in Cao and Wei (2004) and Richards et al. (2004)
rely on the specification of the dividend process and the risk aversion level, while the
approach of Huang-Hsi et al. (2008) depends on the studied Stock index to compute
the proxy estimate of the MPR. Alaton et al. (2002) concluded that the MPR impact
is likely to be small. Our findings can also be compared with the MPR of other non-
tradable assets, for example, in commodities markets; the MPR may be either positive
or negative depending on the time horizon considered. In Schwartz (1997), the cal-
ibration of futures prices of oil and copper delivered negative MPR in both cases.
For electricity, Cartea and Figueroa (2005) estimated a negative MPR. Cartea and
Williams (2008) found a positive MPR for gas long-term contracts and for short-term

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] 

at
 0

6:
53

 2
5 

A
pr

il 
20

12
 



90 W. K. Härdle and B. López Cabrera

20040101 20050101 20060101 20070101 20080101
−80
−60
−40
−20

0
20
40

(a)

(e)

(f)

(g)

(b)

(c)

(d)

Time

C
A

T
−

R
P

20040101 20050101 20060101 20070101 20080101

−100

0

100

Time

C
A

T
−

R
P

20040101 20050101 20060101 20070101 20080101

−100

0

100

Time

C
A

T
−

R
P

20040101 20050101 20060101 20070101 20080101

−100

0

100

Time

C
A

T
−

R
P

20040101 20050101 20060101 20070101 20080101

−100

0

100

Time

C
A

T
−

R
P

20040101 20050101 20060101 20070101 20080101

−100

0

100

Time

C
A

T
−

R
P

20040101 20050101 20060101 20070101 20080101

−100

0

100

Time

C
A

T
−

R
P

Figure 11. Risk premiums (RPs) of Berlin-CAT monthly futures prices traded during (20031006–
20080527) with t ≤ τ i

1 < τ i
2 and contracts i = 1 (30 days), i = 2 (60 days),. . ., i = I (210 days)

traded before measurement period. RPs of Berlin CAT futures for (a) 30 days, (b) 60 days, (c)
90 days, (d) 120 days, (e) 150 days, (f) 180 days and (g) 210 days.

contracts the MPR changes signs across time. Doran and Ronn (2008) demonstrated
the need of a negative market price of volatility risk in both equity and commodity-
energy markets (gas, heating oil and crude oil). Similar to weather, electricity, natural
gas and heating oil markets show seasonal patterns, where winter months have higher
RP. The only difference is that in temperature markets, the spot–futures relation is not
clear since the underlying is not storable (Benth et al., 2008).

5.8 Pricing CAT–HDD–CDD and OTC Futures

Once that market prices of traded derivatives are used to back out the MPR for tem-
perature futures, the MPR for options is also known and thus one can price other
temperature contract types with different maturity (weekly, daily or seasonal contracts)
and over the counter OTC derivatives (e.g. Berlin-CDD futures or for cities without
formal WD market). This method seems to be popular among practitioners in other
markets.

This section tests the MPR specifications to fit market prices in sample. The implied
MPR (under multiple specifications) from monthly CAT futures in Section 5.7 are used
to calculate theoretical CDD prices Equation (20) for Berlin, Essen and Tokyo. We
then compute HDD futures prices from the HDD–CDD parity in Equation (4) and
compare them with market data (in sample performance). Table 4 shows the CME
futures prices (Column 5), the estimated risk-neutral prices with P = Q (MPR= 0),
the estimated futures prices with constant MPR for different contracts per trading
date and the index values computed from the realized temperature data I(τ1,τ2). While
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The Implied Market Price of Weather Risk 91

the inferred prices with constant MPR replicate market prices, the estimated prices
with P = Q are close to the realized temperatures, meaning that the history is likely a
good prediction of the future. Table 6 describes the root mean squared errors (RMSEs)
of the differences between the market prices and the estimated futures prices, with
MPR values implied directly from specific futures contract types and with MPR values
extracted from the HDD/CDD/CAT parity method, over different periods and cities.
The RMSE is defined as

RMSE =
√√√√n−1

n∑
t=1

(Ft,τ i
1,τ i

2
− F̂t,τ i

1,τ i
2
)2,

where F̂t,τ i
1,τ i

2
are the estimated futures prices and small RMSE values denote good mea-

sure of precision. The RMSE estimates in the case of the constant MPR for different
CAT futures contracts are statistically significant enough to know CAT futures prices,
but fail for HDD futures. Since temperature futures are written on different indices, the
implied MPR will be then contract-specific hence requiring a separate estimation pro-
cedure. We argue that this inequality in prices results from additional premiums that
the market incorporates to the HDD estimation, due to possible temperature market
probability predictions operating under a more general equilibrium rather than non-
arbitrage conditions (Horst and Mueller, 2007) or due to the incorporation of weather
forecast models in the pricing model that influence the risk attitude of market partici-
pants in the diversification process of hedging weather risk (Benth and Meyer-Brandis,
2009; Dorfleitner and Wimmer, 2010; Papazian and Skiadopoulos, 2010).

We investigate the pricing algorithm for cities without formal WD market. In this
context, the stylized facts of temperature data (�t, σt) are the only risk factors. Hence,
a natural way to infer the MPR for emerging regions is by knowing the MPR depen-
dency on seasonal variation of the closest geographical location with formal WD
market. For example, for pricing Taipei weather futures derivatives, one could take
the WD market in Tokyo and learn the dependence structure by simply regressing the
average MPR of Tokyo-C24AT futures contracts i over the trading period against the
seasonal variation in period [τ1, τ2]:

θ̂ i
τ1,τ2
= 1
τ1 − t

τ1∑
t

θ̂ i
t ,

σ̂ 2
τ1,τ2
= 1
τ2 − τ1

τ2∑
t=τ1

σ̂ 2
t .

In this case, the quadratic function that parameterizes the dependence is θt = 4.08−
2.19σ̂ 2

τ1,τ2
+ 0.28σ̂ 4

τ1,τ2
, with R2

adj = 0.71 and MPR increases by increasing the drift and
volatility values (Figure 12). The dependencies of the MPR on time and temperature
seasonal variation indicate that for regions with homogeneous weather risk there is
some common market price of weather risk (as we expect in equilibrium).

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] 

at
 0

6:
53

 2
5 

A
pr

il 
20

12
 



92 W. K. Härdle and B. López Cabrera
T

ab
le

6.
R

M
SE

of
th

e
di

ff
er

en
ce

s
be

tw
ee

n
ob

se
rv

ed
C

A
T
/
H

D
D
/
C

D
D

.

M
ea

su
re

m
en

t
pe

ri
od

R
M

SE
be

tw
ee

n
es

ti
m

at
ed

w
it

h
M

P
R

(θ
t)

an
d

C
M

E
pr

ic
es

C
on

tr
ac

t
ty

pe
τ 1

τ 2
N

o.
of

co
nt

ra
ct

s
M

P
R
=

0
C

on
st

an
t

1
pi

ec
ew

is
e

2
pi

ec
ew

is
e

B
oo

ts
tr

ap
Sp

lin
e

A
tl

an
ta

-C
D

D
+

20
07

04
01

20
07

04
30

23
0

15
.1

2
20

.1
2

15
0.

54
15

0.
54

20
.1

5
27

.3
4

A
tl

an
ta

-C
D

D
+

20
07

05
01

20
07

05
31

22
8

20
.5

6
53

.5
1

10
7.

86
10

7.
86

53
.5

2
28

.5
6

A
tl

an
ta

-C
D

D
+

20
07

06
01

20
07

06
30

23
0

18
.5

2
43

.5
8

97
.8

6
97

.8
6

44
.5

4
35

.5
6

A
tl

an
ta

-C
D

D
+

20
07

07
01

20
07

07
31

22
9

11
.5

6
39

.5
8

77
.7

8
77

.7
8

39
.5

9
38

.5
6

A
tl

an
ta

-C
D

D
+

20
07

08
01

20
07

08
31

22
9

21
.5

6
33

.5
8

47
.8

6
47

.8
6

33
.5

9
38

.5
6

A
tl

an
ta

-C
D

D
+

20
07

09
01

20
07

09
30

23
0

17
.5

6
53

.5
8

77
.8

6
77

.8
6

53
.5

4
18

.5
6

B
er

lin
-H

D
D
∗

20
06

11
01

20
06

11
30

22
12

9.
94

16
4.

52
19

9.
59

19
9.

59
18

0.
00

16
9.

76
B

er
lin

-H
D

D
∗

20
06

12
01

20
06

12
31

43
14

7.
89

13
8.

45
16

9.
11

16
9.

11
14

0.
00

16
7.

49
B

er
lin

-H
D

D
+

20
06

11
01

20
06

11
30

22
39

.9
8

74
.7

3
89

.5
9

89
.5

9
74

.7
4

79
.8

6
B

er
lin

-H
D

D
+

20
06

12
01

20
06

12
31

43
57

.8
9

58
.4

5
99

.1
1

99
.1

1
58

.4
5

88
.4

9
B

er
lin

-C
A

T
+

20
07

04
01

20
07

04
30

23
0

18
.4

7
40

.2
6

13
4.

83
13

4.
83

40
.2

6
18

.4
4

B
er

lin
-C

A
T
+

20
07

05
01

20
07

05
31

38
40

.3
8

47
.0

3
10

7.
34

2
10

7.
34

47
.0

3
40

.3
8

B
er

lin
-C

A
T
+

20
07

06
01

20
07

06
30

58
10

.0
2

26
.1

9
78

.1
8

78
.1

8
26

.2
0

10
.0

2
B

er
lin

-C
A

T
+

20
07

07
01

20
07

07
31

79
26

.5
5

16
.4

1
10

0.
22

10
0.

22
16

.4
1

26
.5

5
B

er
lin

-C
A

T
+

20
07

08
01

20
07

08
31

10
1

34
.3

1
12

.2
2

99
.5

9
99

.5
9

12
.2

2
34

.3
1

B
er

lin
-C

A
T
+

20
07

09
01

20
07

09
30

12
2

32
.4

8
17

.9
6

70
.4

5
70

.4
5

17
.9

6
32

.4
8

E
ss

en
-C

A
T
+

20
07

04
01

20
07

04
30

23
0

13
.8

8
33

.9
4

19
5.

98
19

5.
98

33
.9

4
13

.8
7

E
ss

en
-C

A
T
+

20
07

05
01

20
07

05
31

39
52

.6
6

52
.9

5
19

8.
18

19
8.

18
8

52
.9

5
52

.6
6

E
ss

en
-C

A
T
+

20
07

06
01

20
07

06
30

59
15

.8
6

21
.3

5
18

9.
45

18
9.

45
21

.3
8

15
.8

6
E

ss
en

-C
A

T
+

20
07

07
01

20
07

07
31

80
16

.7
1

44
.1

4
15

5.
82

15
5.

82
44

.1
4

16
.7

1
E

ss
en

-C
A

T
+

20
07

08
01

20
07

08
31

10
2

31
.8

4
22

.6
6

56
.9

3
56

.9
2

22
.6

6
31

.8
4

E
ss

en
-C

A
T
+

20
07

09
01

20
07

09
30

12
3

36
.9

3
14

.2
8

11
1.

58
11

1.
58

14
.2

8
33

.9
3

To
ky

o-
C

24
A

T
+

20
09

03
01

20
09

03
31

57
16

1.
81

14
8.

21
21

8.
99

21
8.

99
14

8.
21

15
8.

16
To

ky
o-

C
24

A
T
+

20
09

04
01

20
09

04
30

11
6

11
2.

65
99

.5
5

15
6.

15
15

6.
15

99
.5

5
10

9.
78

To
ky

o-
C

24
A

T
+

20
09

05
01

20
09

05
31

14
1

81
.6

4
70

.8
1

11
1.

21
11

1.
21

70
.8

1
79

.6
8

To
ky

o-
C

24
A

T
+

20
09

06
01

20
09

06
30

14
1

11
3.

12
92

.6
6

10
4.

75
11

0.
68

92
.6

6
11

1.
20

To
ky

o-
C

24
A

T
+

20
09

07
01

20
09

07
31

14
1

78
.6

5
74

.9
5

11
6.

34
36

58
.3

9
74

.9
5

77
.0

7

N
ot

es
:R

M
SE

,r
oo

t
m

ea
n

sq
ua

re
d

er
ro

r;
M

P
R

,m
ar

ke
t

pr
ic

e
of

ri
sk

;C
M

E
,C

hi
ca

go
M

er
ca

nt
ile

E
xc

ha
ng

e.
F

ut
ur

es
pr

ic
es

w
it

h
t
≤
τ

i 1
<
τ

i 2
an

d
th

e
es

ti
m

at
ed

fu
tu

re
s

w
it

h
im

pl
ie

d
M

P
R

un
de

r
di

ff
er

en
t

M
P

R
pa

ra
m

et
er

iz
at

io
ns

(M
P

R
=

0,
co

ns
ta

nt
M

P
R

fo
r

di
ff

er
en

t
co

nt
ra

ct
s

(C
on

st
an

t)
,1

pi
ec

ew
is

e
co

ns
ta

nt
M

P
R

,2
pi

ec
ew

is
e

co
ns

ta
nt

M
P

R
,b

oo
ts

tr
ap

M
P

R
an

d
sp

lin
e

M
P

R
).

+ C
om

pu
ta

ti
on

s
w

it
h

M
P

R
im

pl
ie

d
di

re
ct

ly
fr

om
sp

ec
ifi

c
fu

tu
re

s
co

nt
ra

ct
ty

pe
s

(+
)

an
d
∗ t

hr
ou

gh
th

e
pa

ri
ty

H
D

D
/
C

D
D
/
C

A
T

pa
ri

ty
m

et
ho

d(
∗ )

.

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
itt

 z
u 

B
er

lin
 U

ni
ve

rs
itt

sb
ib

lio
th

ek
] 

at
 0

6:
53

 2
5 

A
pr

il 
20

12
 



The Implied Market Price of Weather Risk 93

2.5 3 3.5 4 4.5 5 5.5
−0.4

−0.2

0

0.2

0.4

0.6

Average temperature variation in measurement month

M
P

R
Apr

May

Jun

Jul

Aug

Sep

Oct
Nov

Figure 12. The calibrated MPR as a deterministic function of the monthly temperature variation
of Tokyo-C24AT futures from November 2008 to November 2009 (prices for 8 contracts were
available).

6. Conclusions and Further Research

This article deals with the differences between ‘historical’ and ‘risk-neutral’ behaviours
of temperature and gives insights into the MPR, a drift adjustment in the dynamics of
the temperature process to reflect how investors are compensated for bearing risk when
holding the derivative. Our empirical work shows that independently of the chosen
location, the temperature-driving stochastics are close to the Gaussian risk factors
that allow us to work under the financial mathematical context.

Using statistical modelling, we imply the MPR from daily temperature futures-type
contracts (CAT, CDD, HDD, C24AT) traded at the CME under the EMM framework.
Different specifications of the MPR are investigated. It can be parameterized, given its
dependencies on time and seasonal variation. We also establish connections between
the RP and the MPR. The results show that the MPRs–RPs are significantly different
from 0, changing over time. This contradicts with the assumption made earlier in the
literature that MPR is 0 or constant and rules out the ‘burn-in’ analysis, which is pop-
ular among practitioners. This brings significant challenges to the statistical branch of
the pricing literature, suggesting that for regions with homogeneous weather risk there
is a common market price of weather risk. In particular, using a relationship of the
MPR with a utility function, one may link the sign changes of the MPR with risk atti-
tude and time horizon perspectives of market participants in the diversification process
to hedge weather risk.

A further research on the explicit relationship between the RP and the MPR should
be carried out to explain possible connections between modelled futures prices and
their deviations from the futures market. An important issue for our results is that the
econometric part in Section 2 is carried out with estimates rather than true values. One
thus deals with noisy observations, which are likely to alter the subsequent estimations
and test procedures. An alternative to this is to use an adaptive local parametric estima-
tion procedure, for example, in Mercurio and Spokoiny (2004) or Härdle et al. (2011).
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94 W. K. Härdle and B. López Cabrera

Finally, a different methodology, but related to this article, would be to imply the
pricing kernel of option prices.
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Arabic language e-learning course in statistics. Under discussion are problems con-
cerning e-learning in Arab countries with special focus on the difficulties of the appli-
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1 Introduction

Due to the proliferation of the Internet, e-learning has become a significant aspect of
education and many universities and educational institutions have created their own
web sites and e-learning systems. Future trends predict that e-learning will significantly
complement classic learning. Statistics show that the size of the worldwide e-learning
market is estimated to be 52.6 billion US dollars yearly, with the ratio at 65–75% for
the United States and Europe. Statistics also indicate that 30% of the education was
delivered electronically. In comparison the e-learning market in Arab countries with
a size around 15 million US dollars yearly is very weak. The gap between Europe and
the United States and the Arab countries is very large.

The reasons for this gap is briefly summarised below:

– According to the latest figures available on Internet World Statistics 2010 (de
Argaez 2011), Internet world usage still varies widely across the world and across
languages as shown in Table 1. The diffusion of Internet services in the most Arab
countries is weak compared to other regions of the world. This is mainly due to the
government monopolies over the telecommunications sector, resulting in higher
prices. As a consequence only 3.3% of Internet users come from the Arabic region,
even though the Arabic population is 5% of world population. Another example
for this gap is that the percentage of web users in the Arabic world is 18.8%
compared with 58.4% in Europe, 77.4% in the USA and 28.7% on average in the
whole world. Arabic users have much less experience with e-learning platforms,
telecourses and educational courses.

– English is the most common language in the e-learning platforms, but most Arabic
users have difficulties in understanding and speaking English.

– General educational problems: A high level of illiteracy can be found in the Arabic
world which varies between 25 and 45% (Clayton 2007; Al-Fadhli 2008).

– There is only a limited number of specialised cadres and scientific expertise in the
area of e-learning in Arab countries (Maegaard et al. 2005).

Due to the above mentioned problems Arab countries need more time to acquire
the advantage of e-learning. The dissemination of the culture of e-learning in schools
and universities needs a new generation of qualified professionals who can deal suc-
cessfully with modern technology and the experiences of e-learning.

In fact, our Internet research showed that only a few Arabic e-learning platforms
exists, especially for statistics we could not find a single one. For this reason we find
the creation of a platform that would aid Arabic students in learning statistics highly
necessary. The platform should cover the basic statistical topics, and is supported by
multiple examples and ease-of-use will be adapted for Arabic students.

From the perspective described above we developed an Arabic e-learning platform
in statistics (Arabic MM*Stat), which might become an important reference point in
the study of statistics in Arabic through the Internet.

Around about 2000 a system known as MM*Stat was developed at the School
for Business and Economics of Humboldt-Universität zu Berlin (Müller et al. 2000).
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Table 1 World internet users for 10 languages by June 2010 (de Argaez 2011)

Top 10
languages in
the internet

Internet
users
(Mio.)

Internet
penetration,
(%)

Growth in
internet
(2000–2010),
(%)

Internet users
% of total,
(%)

World
population
(2010
estimate)

English 537 42.0 281 27.3 1,278

Chinese 445 32.6 1,277 22.6 1,278

Spanish 153 36.5 742 7.8 420

Japanese 99 78.2 111 5.0 127

Portuguese 83 33.0 990 4.2 250

German 75 78.6 173 3.8 96

Arabic 65 18.8 2,501 3.3 347

French 60 17.2 389 3.0 348

Russian 60 42.8 1,826 3.0 139

Korean 39 55.2 107 2.0 71

Top 10 languages 1,615 36.4 421 82.2 4,442

Other languages 351 14.6 588 17.8 2,403

World total 1,966 28.7 444 100.0 6,846

MM*Stat is a platform for e-learning statistics and is an HTML based multimedia
environment to support teaching and learning statistics via CD or Internet.

A MM*Stat course consists of lectures of specific topics in basic statistics, see Fig. 1
for the hypergeometric distribution. Each lecture gives the basic concepts of general
statistical theory, definitions, formulae and mathematical proofs. At the bottom is a
set of buttons, on the left-hand side three buttons for navigation (go to the previous
lecture, jump to the table of contents, go to the next lecture) and on the right-hand side
a number of buttons which link to pages with additional information. Four types of
additional information are provided, these are:

Explained examples which require only knowledge of the current lecture to under-
stand them.

Enhanced examples which require knowledge from different lectures than the current
one to understand them.

Interactive examples which allow the user, via an embedded statistical software, to
run them. For example, to plot the probability density function or the cumulative
distribution function for different parameters of n and p) or apply tests.

More information which contain for example historical information or mathematical
derivations which are not necessary for first-hand understanding.

Each chapter with lectures is finished with a lecture containing multiple-choice ques-
tions such that a user can evaluate his/her learning progress.

Students or anyone interested in statistics can interactively learn about the basic
concepts of statistics at anytime and anywhere and consequently we based Arabic
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Fig. 1 The graphical user interface of MM*Stat, as an example the lecture entitled hypergeometric dis-
tribution. Note the navigation button (bottom left) and buttons to examples and more information (bottom
right). The tabs at the top reflect the user history and allow for a fast change between lectures

MM*Stat on the existing MM*Stat, which already existed in various languages: Czech,
German, English, Spanish, French, Indonesian, Italian, Polish and Portuguese.

2 Difficulties to design Arabic platforms

There are some problems, however, associated with the making of an Arabic platform,
these relate to language as well as technology. We summarise these problems below:

Language problems

There are some items related to translation, some words and scientific terms are
similar in Arabic and could create a problem when translated. For example, see
Table 2. The Arabic language makes no distinction between “administration” and
“management” or “calculate” and “compute”. The reader must recognise from the
context which meaning is correct. This makes a text more difficult to understand.

Technical problems

1. User interface
The different language versions of MM*Stat were based on two different sys-
tems:
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Table 2 Some similar words in Arabic

– The German version was written in HTML and the user interface was
developed with JavaScript for Internet Explorer 5. The problem was that
neither later Internet Explorer versions nor browsers other than the Internet
Explorer were able to run the JavaScript code.

– The English version was written in LaTEX for a variety of reasons, for
example, translating MM*Stat into a new language just required a change
to the LaTEX text which is much easier to handle than translating from a
HTML page with a lot of embedded JavaScript codes. We used a soft-
ware based on LaTeX2HTML to create the HTML/JavaScript version of
MM*Stat with the same user interface as before (Witzel and Klinke 2002).

2. Writing from left to right
Arabic script runs from right to left as opposed to most other languages, there-
fore all lists, paragraphs, statistical forms, tables and graphics also run from
right to left. In some cases however Arabic text may contain information that
needs to run in the opposite direction (from left to right) such as numbers
and Latin texts. Any program that supports the Arabic language should pro-
vide the possibility of changing the direction when needed. A solution would
be to use ArabTeX (Lagally 2004), but with ArabTeX the Arabic texts are
written in English with special character combinations and not in Arabic, see
Fig. 2. Obviously this is unfamiliar to most Arabic speaking people. Addition-
ally LaTeX2HTML supports neither text from right to left, Arabic or Arab-
TeX.

3. Interactive examples
MM*Stat contained a set of interactive examples, which are important since
they allow the user to practice repeatedly with various variables or data
sets, and with alternate sample sizes or parameters of the statistical meth-
ods applied. In this manner, the student obtains a better understanding of how
the statistical method works. However, the client-server technology imple-
mented by Lehmann (2004) for MM*Stat worked only with the statisti-
cal software XploRe. The development and support of the XploRe software
has unfortunately ceased, so the question arises how one should include the
interactive examples in Arabic MM*Stat such that they will be runnable in
future.

The language problem can only be solved by adapting the texts. To solve the tech-
nical problems we decided to use another technology, the so called “wiki technology”.
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Fig. 2 Sample Arabtex input in LaTEX, see examples/guha.tex in Arabtex

3 Wiki technology

3.1 What is a wiki?

Wiki is a system that allows users to collaborate in forming the content of a web site.
The first wiki web site, “WikiWikiWeb”, was designed by Cunningham and Leuf in
1995 (Leuf and Cunnigham 2001). They describe the wiki system as a simple database
that can operate on the World Wide Web. The goal is to simplify the process of partic-
ipation and cooperation in the development of web content with maximum flexibility.
The main advantages of a wiki are:

– Wiki simplifies the process of content editing. Each web page contains a link to
change content within the web browser. After saving a modified page it can be
viewed immediately.

– It uses simple markup to coordinate content, and it is suitable for users with
little experience with computers or web site development, as no HTML language
knowledge is required.

– Wiki sites keep a record of the page history and therefore makes the comparison
of older and newer web pages an easy task. If a mistake is made, one can revert
to the older version of the page.

– Wiki sites can be publicly open and therefore allow any user to improve the content.
– Wiki simplifies the organisation of a site: Wiki sites create hypertext databases

and can regulate the content in any manner desired; many content management
systems require the planning of the organization of the content before anything is
written. This allows for flexibility which is not available in content management
systems.

3.2 Application of wiki

The flexibility of the wiki concept makes it an ideal knowledge transfer tool, at universi-
ties, educational institutes, in companies and with specialised web sites. For example,
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Fig. 3 Entry page of Arabeyes wiki (http://wiki.arabeyes.org)

a teacher could write his course using a wiki and offer it to his students as useful
material for study, see e.g., Klinke (2011).

Nowadays, we have many more examples of web sites using wikis as a tool for
the development of content, like Wikipedia (2011). The Wikipedia project started 15
January 2001 and today there are more than 10 million articles in the encyclopedia
in all languages, more than 3.7 million articles in the English encyclopedia alone.
Millions of volunteers around the world modify and add to the contents daily and
new articles are created. The Arabic version of the free encyclopedia was launched in
July 2003 and currently contains approximately 160 thousand articles as the Arabic
encyclopedia is in the content-building phase.

The Arabic wiki platform “Arabeyes” (Afifi et al. 2011) provides a good envi-
ronment for discussion and exchange of experience and knowledge about the Arabic
language. Arabeyes offers the translation into Arabic for free open-source programs.
In addition Arabeyes provides a technical dictionary that aims to translate and stan-
dardise the technical terms used in translating the software to the Arabic user. Arabeyes
is a solution for the language problem, see Fig. 3.

3.3 Implementation of Arabic MM*Stat

Arabic MM*Stat is directed at students and Arabic users that serve the e-learning
issues in the Arabic region. The content of Arabic MM*Stat is a translation of the
content of the former CD’s into Arabic.
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Fig. 4 Graphical user interface (GUI) of Arabic MM*Stat. Note that the interface language (English) is
different from the content language (Arabic) due to user settings

Wikimatrix (2011) offers an overview of the available wiki software and their capa-
bilities. A useful wiki should support:

– LaTEX to provide the possibility to write a statistical formula in “mathemati-
cal” language rather than integrate it as a graphic, generated for example by
LaTeX2HTML.

– Arabic as a language for the content and the interface.
– Integration of statistical software, preferably R, to recreate interactive examples.
– Multiple choice questions to test students knowledge.

As wiki software we finally decided to use the Mediawiki, the software behind the
(Arabic) Wikipedia. It solves all possible technical problems (see Figs. 4 and 5):

– User interface
It is able to have the content and the user interface in the Arabic language as the
Arabic Wikipedia shows.

– Writing from left to right
To some extent, it can change the writing direction for formulas, list etc.

– Interactive examples
Through Mediawiki extensions we are able to transfer the functionality of the
MM*Stat CD to the new system:
– The R extension allows to embed (interactive) tables and graphics generated

by R into wiki page as well as interactive examples.
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Fig. 5 An interactive example of a graphic of a probability density function and a table of a cdf of a
binomial distribution (p = 0.6)

Fig. 6 The wiki source code for the page shown in Fig. 5. On top the Arabic text and within the RForm
tags the input parameters and within the R tags the R program
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– The Quiz extension provided multiple choice questions (Babé 2007).
– The Math extension allows formulas written in LaTEX to be embedded into

the wiki page (Wegrzanowski and Vibber 2011).

3.4 Integration of R program into Arabic MM*Stat

R is a language and environment for statistical computing and graphics (R Develop-
ment Core Team 2011). Arabic MM*Stat uses R programs to create tables and graphics
which can be incorporated in courses notes. For the Mediawiki software an extension
to embed R into the wiki page exists.

They enable the students and learners, for example to visualise statistics distribu-
tions and probability tables via the Internet. See Fig. 5 as an example of a graphic of
a probability density function and a table of a cdf function of a binomial distribution.
Choosing other input values will lead to different tables or graphics.

Figure 6 shows the wiki source code for the example shown in Fig. 5. The inter-
active example consists of two tags Rform und R which share a common attribute
name.

<Rform name=’’binom’’>
... Input parameters...
</Rform>

<R output=’’display’’ name=’’binom’’>
... R program...
</R>

Between the opening and closing Rform tags are the input parameters as defined
in an HTML form. The following opening and closing R tag contain the R program
which produces a graphic. For more detail see Klinke and Zlatkin-Troitschanskaia
(2007).

There are in Arabic MM*Stat other examples, e.g., for other distributions like nor-
mal, Poisson and exponential distribution.

4 Conclusion

Using E-learning/e-teaching tools to offer effective learning of statistics is a necessity
for students. There is the possibility of creating an e-learning system with Arabic
MM*Stat through the application of wiki technology. Some of the specific charac-
teristics we have discussed earlier for developing an Arabic platform already exist in
the wiki. We see that embedding of R is an solution for the interactive examples in
Arabic MM*Stat. We hope that the Arabic MM*Stat platform for e-learning of statis-
tics will be a significant help for the Arabic user as it clearly overcomes weaknesses
in developing such electronic platforms in Arabic.

This research was supported by the Deutsche Forschungsgemeinschaft through the
CRC 649 ‘Economic Risk’.
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ABSTRACT
Several empirical studies reported that pricing kernels exhibit a
common pattern across different markets. The main interest in pricing
kernels lies in validating the presence of the peaks and their variability
in location among curves. Motivated by this observation we investigate
the problem of estimating pricing kernels based on the shape invariant
model, a semi-parametric approach used for multiple curves with
shape-related nonlinear variation. This approach allows us to capture
the common features contained in the shape of the functions and at the
same time characterize the nonlinear variability with a few interpretable
parameters. These parameters provide an informative summary of the
curves and can be used to make a further analysis with macroeconomic
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1 METHODOLOGY

1.1 Pricing Kernel and Risk Aversion

Risk analysis and management drew much attention in quantitative finance
recently. Understanding the basic principles of financial economics is a challenging
task in particular in a dynamic context. With the formulation of utility maximization
theory, individuals’ preferences are explained through the shape of the underlying
utility functions. Namely, a concave, convex, or linear utility function is associated
with risk averse, risk seeking, or risk neutral behavior, respectively. The comparison
is often made through the Arrow-Pratt measure of absolute risk aversion (ARA), as
a summary of aggregate investor’s risk-averseness. The quantity is originated from
the expected utility theory and is defined by

ARA(u)=−U′′(u)
U′(u)

,

where U is the individual utility as a function of wealth.
With an economic consideration that one unit gain and loss does not carry

the same value for every individual, understanding state-dependent risk behavior
becomes an increasingly important issue. The fundamental problem is that
individual agents are not directly observable but it is assumed that the prices of
goods traded in the market reflect the dynamics of their risk behavior. Several
efforts have been made to relate the price processes of assets and options traded in
a market to risk behavior of investors, since options are securities guarding against
losses in risky assets.

A standard option pricing model in a complete market assumes a risk neutral
distribution of returns, which gives the fair price under no arbitrage assumptions.
If markets are not complete, there are more risk neutral distributions and the fair
price depends on the hedging problem. The subjective or historical distribution of
observed returns reflects a risk-adaptive behavior of investors based on subjective
assessment of the future market. Then the equilibrium price is the arbitrage free
price and the transition from risk neutral pricing to subjective rule is achieved
through the pricing kernel. Assuming those densities exist, write q for the risk
neutral density and p for the historical density. The pricing kernel K is defined by
the ratio of those densities:

K(u)= q(u)
p(u)

.

Through the intermediation of these densities, there exists a link between the
pricing kernel and ARA, see for example Leland (1980)

ARA(u)= p′(u)
p(u)
− q′(u)

q(u)
=−dlogK(u)

du
.
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Figure 1 Examples of inter-temporal pricing kernels for various maturities in January–February
2006 (left) and monthly pricing kernels from the first six months in 2006 for maturity one month
(right).

In this way, rather than specifying a priori preferences of agents (risk neutral, averse,
or risk seeking) and implicitly the monotonicity of the pricing kernel, we can infer
the risk patterns from the shape of the pricing kernel.

1.2 Dynamics of Empirical Pricing Kernels (EPKs)

With increasing availability of large market data, several approaches to recovering
pricing kernels from empirical data have been proposed. As many of them estimate
p and q separately to recover K, potentially relevant are studies focusing on
recovering risk neutral density, see e.g. Jackwerth (1999), and Bondarenko (2003) for
comparison of different approaches. For the estimation of p nonparametric kernel
methods or parametric models such as GARCH or Heston models are popular
choices.

Examples of empirical pricing kernels obtained from European options data
on the German stock index DAX (Deutscher Aktien index) in 2006 are shown in
Figure 1, based on separate estimation of p and q. A detailed account of estimation
is given in Section 3.4. To make these comparable, they are shown on a continuously
compounded returns scale. Throughout the article, the pricing kernel is considered
as a function of this common scale of returns. Figure 1 depicts inter-temporal pricing
kernels with various maturities in January–February 2006 (left), and monthly
pricing kernels with fixed maturity one month in 2006 (right). The sample of
curves appears to have a bump around 1 and has convexity followed by concavity
in all cases. The location as well as the magnitude of the bump vary among
curves, which reflects individual variability on different dates or under different
investment horizons. Some features that are of particular economic interest include
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the maximum of the bump, the spread or duration of the bump and the location of
the bump.

From a statistical perspective, properties of the pricing kernel are intrinsically
related to assumptions about the data generation process. A very restrictive model,
with normal marginal distributions, is the Black–Scholes model. This results in an
overall decreasing pricing kernel in wealth, which is consistent with overall risk-
averse behavior. These preferences are often assumed in the classical economic
theory of utility-maximizing agent and correspond to a concave indirect von
Neumann and Morgenstern utility function. However, under richer parametric
specifications or nonparametric models monotonicity of the pricing kernel has
been rejected in practice (Rosenberg and Engle, 2002; Giacomini and Härdle, 2008).
The phenomenon of locally nondecreasing pricing kernel is referred to as the
pricing kernel puzzle in the literature. There have been many attempts to reconcile
the underlying economic theory with the empirical findings. A recent solution
suggested by Hens and Reichlin (2012) relates the puzzle to the violation of the
fundamental assumptions in the equilibrium model framework.

Most of earlier works adopt a static viewpoint, showing a snapshot of markets
on selected dates but report that there is a common pattern across different
markets. The first dynamic viewpoint appears in Jackwerth (2000), who recovers
a series of pricing kernels in consecutive times and claims that these do not
correspond to the basic assumptions of asset pricing theory. In a similar framework
Giacomini and Härdle (2008) perform a factor analysis based on the so-called
dynamic semiparametric factor models, while Giacomini, Härdle and Handel
(2008) introduce time series analysis of daily summary measures of pricing kernels
to examine variability between curves.

Chabi-Yo, Garcia, and Renault (2008) explain the observed dynamics or the
puzzles by means of latent variables in the asset pricing models. Effectively, they
propose to build conditional models of the pricing kernels given the state variables
reflecting preferences, economic fundamentals, or beliefs. Within this framework
they are able to reproduce the puzzles, in conjunction with some joint parametric
specifications for the pricing kernel and the asset return processes.

Due to evolution of markets over time under different circumstances, the
pricing kernels are intrinsically time varying. Thus, approaches that do not take
into account the changing market make limited use of information available in the
current data. On the other hand, changes over time may not be completely arbitrary,
as there are common rules and underlying laws that assure some consistency
across different market system. Moreover, variability observed in pricing kernels,
as shown in Figures 1, is not necessarily linear, and thus factors constructed from a
linear combination of observations are only meaningful for explaining aggregated
effects.

Considering the pricing kernels as an object of curves, we approach the
problem of estimating the pricing kernels and implied risk aversion functions
from a functional data analysis viewpoint (Ramsay and Silverman, 2002). The main
interest in pricing kernels lies in validating the presence of the peaks and their

 at H
um

boldt-U
niversitaet zu B

erlin on M
ay 17, 2013

http://jfec.oxfordjournals.org/
D

ow
nloaded from

 

http://jfec.oxfordjournals.org/


[11:47 22/2/2013 nbs019.tex] JFINEC: Journal of Financial Econometrics Page: 374 370–399

374 Journal of Financial Econometrics

variability in location among curves. Motivated by this observation we investigate
the estimation method based on the shape invariant model, which will be formally
introduced in Section 2. This is chosen over the commonly adopted functional
principal component analysis to accommodate the nonlinear features such as
variation of peak locations, which encapsulate quantities amenable to economic
interpretation. The shape invariant model allows us to capture the common
characteristics, reported across different studies on different markets. We then
explain individual variability as a deviation from the common curve or a reference.

Our contribution is three-fold. Firstly, we analyze the phenomenon of pricing
kernel puzzle from a dynamic viewpoint using shape invariant modeling approach.
The starting question was how to compare the empirical evidence. By taking into
account variability among curves, we quantify a trend of the puzzle in the series
of the pricing kernels by a few interpretable parameters. Secondly, we provide a
unified framework for estimation and interpretation of ARA and utility functions
consistent with the underlying pricing kernels with the same set of parameters. The
ARA corresponding to the reference pricing kernel could be viewed as a typical
pattern of risk behavior for the period under consideration. Due to nonlinear
transformation involved in deriving ARA from the pricing kernel function, this
common ARA function does not necessarily coincide with the simple average ARA
functions. Thirdly, the output of the analysis provides a summary measure to study
the relationship with macroeconomic variables. Through real data example we have
related the changes in risk behavior to some macroeconomic variables of interest
and found that local risk loving behavior is procyclical. We acknowledge that we
do not provide an economic explanation to the puzzle but rather try to understand
the nature of the phenomenon by means of statistical analysis.

The paper is organized as follows. Section 2 motivates common shape modeling
approach and Section 3 reviews the shape invariant model and describes it in
detail in the context of pricing kernel estimation. This section serves the basis of
our analysis. Numerical studies based on simulation are found in Section 4. An
application to real data example is summarized in Section 5.

2 COMMON SHAPE MODELING

2.1 Shape Invariant Model for Pricing Kernel

We consider a common shape modeling approach for the series of pricing kernels
with explicit components of location and scale. To represent varying pricing kernels,
we introduce the time index t in the pricing kernel as Kt and consider a general
regression model:

Yt=Kt+εt ,

where εt represents an error with mean 0 and variance σ 2
t . We begin with a working

assumption of independent error as in Kneip and Engel (1995). The effect of
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dependent error is investigated in simulation studies in Section 4.2. The relationship
among Kts is specified as

Kt(u)=θt1g
(

u−θt3

θt2

)
+θt4 , (1)

with some unknown constants θ t= (θt1,θt2,θt3,θt4) and an unknown function g. The
common shape function g can be interpreted as a reference curve. Deviation from
the reference curve is described by four parameters θ t= (θt1,θt2,θt3,θt4) that capture
scale changes and a shift in horizontal and vertical direction. This parametrization
in (1) is commonly known as a shape invariant model (SIM), originally introduced
by Lawton, Sylvestre and Maggio (1972) and studied by Kneip and Engel (1995).
Note that the model includes as a special case complete parametric models with
known g.

In contrast to standard applications of SIM as a regression model, the SIM
application to pricing kernel estimation does not, strictly speaking, satisfy the
model assumption. There is no realization of the pricing kernels available and thus
our formulation of regression model should be viewed as an approximation. The
original data used would be intraday options data and daily returns data, which are
collected from separate sources with sample sizes of different orders of magnitude
but estimation of p and q can be effectively done independently of each other. It may
be possible to elaborate our approach to incorporate simultaneous estimation with
a two-step state-dependent dynamic model formulation whereby the dynamics of
the observed return processes are specified and the unobserved pricing kernel
processes enter as a state variable. However, with current advancement in the
methodology, this is only possible with limited parametric model choices, see for
example Chabi-Yo et al. (2008), and extension to a flexible shape invariant model is
left for future work.

Instead we exploit the fact that preliminary estimates of pricing kernels based
on separate estimation of p and q are readily available from market data and this can
easily substitute Y. From now on, we treat the estimates as something observable
and denote by Yt, similar to the regression formulation with direct measurements
Yt and state the asymptotic result without further complication of pre-processing
steps. After all, these estimates of curves are available from the beginning and the
SIM aims to characterize a structural relationship among these curves. This however
may impact the parametric rate of convergence attainable (Kneip and Engel, 1995)
because our observations are already contaminated by a nonparametric error of
estimation. As is shown in Section 3.6, the dominating error comes from the
estimation of q, which involves second derivative estimation. The optimal rate of
convergence for estimating second derivative is known to be O(N−2/9), where N
is the sample size used (Stone, 1982). This implies that σ 2

t =αN,tv2 where αN,t is
a constant of order O(N−2/9), which should be understood as the multiplication
factor for the parametric rate of convergence.

A particular choice of estimates of individual pricing kernels is not part of
the model formulation but affects the starting values for the estimation of shape
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Figure 2 Example of location and scale shift family of pricing kernels (left) and corresponding
utility functions (right). Solid line in each plot represents reference curves of g(u)=u−γ and U0(u)=
u1−γ /(1−γ ) with γ =0.7, respectively. Parameters are θt1=1.1,θt2=1,θt3=1−θ

(1/γ )
t1 , and θt4=0 for

dot-dashed (red) and θt4=−0.5 for dashed (blue) lines.

invariant model. Our choice of initial estimates will be explained in Section 3.4.
Our main interest lies in quantifying the variation among the pricing kernels given
those estimates.

The new message here is an analysis of a sequence of pricing kernels through
shape invariant models. Although we start with different motivation, our approach
is in line with that of Chabi-Yo et al. (2008). In contrast to their approach, we impose
a structural constraint that is related to the shape of the function. This way we strike
a balance between flexibility much desired in parametric model specification and
interpretability of the results lacking in full nonparametric models.

2.2 SIM and Black–Scholes Model

To appreciate the model formulation, given in the Equation (1), it is instructive to
consider utility functions implied by this family of pricing kernels together. The
utility function can be derived from

Ut(u)=α

∫ u

0
Kt(x)dx,

for a constant α. Figure 2 shows an example based on a power utility function,
which corresponds to risk averse behavior. Pricing kernels Kt are shown on the
left and the corresponding utility functions Ut are on the right. The solid lines
represent reference curves and the dashed and dot-dashed lines represent Kt and
Ut with appropriate parameters θ t in the Equation (1). Depending on the choice of
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parameters, the utility function can increase quickly or slowly. As an illustration, we
consider the Black–Scholes model with power utility function. The Black–Scholes
model assumes that the stock price follows a geometric Brownian motion

dSt/St=μdt+σdWt ,

which gives rise to a log normal distribution for the historical density p. Under the
risk neutral measure, the drift μ is replaced by the riskless rate r but the density q
is still log normal. The pricing kernel can be written as a power function

K(u)=λu−γ ,0<γ <1,

with appropriate constants λ and γ . The corresponding utility function is a power
utility

U(u)=λ
u1−γ

1−γ
.

Assume that λ=1 and suppose that g is a power function, say u−γ . Then the class
of pricing kernels implied by (1) is given by

Kt(u) = θt1

(u−θt3

θt2

)−γ +θt4

= θ∗t1(u−θt3)−γ +θt4 ,

where θ∗t1=θt1θ
γ

t2. Notice that with this family of functions θt1 and θt2 are not
identifiable and Kt is defined for u>θt3. For the sake of argument we set θt2=1
for the moment. The corresponding utility function is

Ut(u) =
∫ u

θt3

Kt(x)dx

= θt1

1−γ
(u−θt3)(1−γ )+θt4(u−θt3)

def= θ∗∗t1 (u−θt3)(1−γ )+θt4(u−θt3).

When θt4=0, this produces again a transformed power utility. When θt4 �=0, there
is additional linear term in the function. See Figure 2 for comparison.

2.3 Identifiability Condition for SIM

The previous section illustrates two aspects of applicability of the shape invariant
models. The class of functions that can be generated by the relation (1) is rich, but
in order to uniquely identify the model parameters, some restriction is necessary.
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For example, we have seen that the two scale parameters in the pricing kernel
functions corresponding to the Black–Scholes model are not separable. Basically,
unless there exist some qualitatively distinct common characteristics for each curve,
the model is not identifiable (Kneip and Gasser, 1988). In the case of no prior
structural information available as in the case of pricing kernels, it is sufficient
to consider a few landmarks such as peaks and inflection points.

Even with a unique g, some translation and scaling of parameters lead to
multiple representations of the models. For uniqueness of parameters, we will
impose normalizing conditions suggested in Kneip and Engel (1995):

T−1
T∑

t=1

θt1=1, T−1
T∑

t=1

θt2=1, T−1
T∑

t=1

θt3=0, T−1
T∑

t=1

θt4=0

in the sense that there exists an average curve. These conditions are not restriction
at all and can be replaced by any appropriate combination of parameters.
Alternatively, we could consider the first curve as a reference, as done in
Härdle and Marron (1990), which implies the restriction θ1= (1,1,0,0). Generally,
an application-driven normalization scheme can be devised and examples are
found in Lawton, Sylvestre and Maggio (1972).

2.4 SIM Implied Risk Aversion and Utility Function

The utility function corresponding to Kt is given by

Ut(u) = θt1θt2

{
G
(

u−θt3

θt2

)
−G

(
−θt3

θt2

)}
+θt4u

≡ θ∗t1G
(

u−θt3

θt2

)
+θ∗t4+θt4u,

where G(t)=∫ t
0 g(u)du. The utility function Ut is a combination of a SIM class of the

common utility function and a linear utility function.
The ARA measure is given by

ARAt(u)=
− θt1

θt2
g′
(

u−θt3
θt2

)
θt1g

(
u−θt3

θt2

)
+θt4

. (2)

For example, assuming g(u)=u−γ with θt2=1 gives

ARAt(u)=γ
{
(u−θt3)+(θt4/θt1)(u−θt3)

γ+1
}−1

.

When θt4=0, this function is monotonically decreasing but in general this is not
the case. Note the common ARA function corresponding to g is γ u−1 compared to
the mean ARA function computed by taking the sample average T−1∑T

t=1ARAt(u).
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Figure 3 Effect of parameters on pricing kernel (top), ARA (middle), and utility function (bottom)
compared to the baseline model θ0= (1,1,0,0) (black). Dot-dashed lines are used for increasing
direction and dashed lines for decreasing direction.

In order to gain some insights, we take a closer look at the changes in
relation to individual scale and shift parameters. These individual effects are
demonstrated in Figure 3. We vary each θi with respect to a baseline model and
then we show how these modifications translate into changes of the risk attitudes
and the corresponding utility functions. The parameters used in Figure 3 are
θ= (0.5,0.7,−0.025,−0.25) in dashed line and θ= (1.5,1.3,0.025,0.25) in dot-dashed
line.

For this exercise we first standardize the common curve that we have estimated
via the shape invariant model so that the peak occurs at the value 0 on the abscissa
and the effect of the scale and shift parameters is separately captured. But we
added the peak coordinates back for visualization so that they are comparable
to other figures shown on returns scale. We observe that an increase in θ1 marks
the bump of the pricing kernel more distinctive while the shape of ARA remains
unchanged compared to the baseline model because, as we can see from (2), ARA
does not depend on θ1 when θ4=0. Yet, the effect of θ1 on ARA can be analyzed by
considering two distinct cases: θ4 >0 and θ4 <0. These specifications are important
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because the direction of change in the slope of ARA is dictated by the sign of θ4. In
the present case—after normalization—θ1 varies around 0 and its effect on ARA is
almost nil.

A larger value in the parameter θ2 as compared to a benchmark value stretches
the x-axis, which implies larger spread of the bump. When we vary θ2 alone the

slope of ARA(θ2u) is 1/θ2
2

[{
g′2(u)−g′′(u)/g(u)

}
/g2(u)

]
. The term in brackets does

not depend on θ2; it is equal to the slope of ARA(u). Therefore, there is an inverse
relationship between the direction of change in the parameter and that of the
absolute value of the slope. These changes in slope occur around an inflection
point that corresponds to the peak of the pricing kernel.

A positive increment in θ3 shifts both curves to the left without any modification
in the shape. θ4 simply translates pricing kernel curves above or below the reference
curve following a sign rule. Similarly to θ2, the shape of ARA modifies around
the fixed inflection point that marks the change from risk proclivity (negative
ARA) to risk aversion (positive ARA). The effect of θ4 on the values of ARA is
straightforward: since θ4 adds to the g in the denominator its increase will diminish
the absolute ARA level and the other way around. Insulating the effects of a change
in θ4 on the slope of ARA(u) analytically proves to be a more complicated task than
in the case of θ2 because the change in the slope depends jointly on the change in θ4
and on the pricing kernel values and its first two derivatives. In our case, the slope
around the inflection point increases when θ4 decreases.

As for the utility function, positive changes in θ1 and θ4 increases its absolute
slope. In the horizontal direction, θ3 translates the curve to the left or right similarly
to the pricing kernel and ARA while θ2 shrinks or expands its domain.

With this information at hand we can characterize the changes in risk patterns
in relation to economic variables of interest, see Section 5.4.

3 FITTING SHAPE INVARIANT MODELS

3.1 Estimation of SIM

The model in (1) is equivalently written as

Kt(θt2u+θt3)=θt1g(u)+θt4 , θt1 >0, θt2 >0. (3)

The estimation procedure is developed using the least squares criterion based
on nonparametric estimates of individual curves. If there are only two curves,
parameter estimates are obtained by minimizing

∫
{K̂2(θ2u+θ3)−θ1K̂1(u)−θ4}2w(u)du, (4)
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where K̂i are nonparametric estimates of the curves. Härdle and Marron (1990)
studied comparison of two curves and Kneip and Engel (1995) extended to multiple
curves with an iterative algorithm. We consider an adaption of such algorithm here.

The weight function w is introduced to ensure that the functions are compared
in a domain where the common features are defined. We assume that there is an
interval [a,b]∈ J where boundary effects are eliminated and then define

w(u)=
∏

t

1[a,b]
{
(u−θt3)/θt2

}
.

The parameter estimates are compared only in the common region defined by w
but the individual curve estimates are defined on the whole interval. Weights can
be extended to account for additional variability.

The normalization leads to:

T−1
T∑

t=1

Kt(θt2u+θt3)=g(u). (5)

Formula (5) was exploited in the algorithm proposed by Kneip and Engel (1995).
We adopt a similar strategy here.

• Initialize

– Let K̂t=Yt and set starting values
(
θ

(0)
t2 ,θ

(0)
t3

)
for t=1,2,··· ,T.

– Construct an initial estimate g(0) by

g(0) (u)=T−1
T∑

t=1

K̂t

(
θ

(0)
t2 u+θ

(0)
t3

)
.

• For r-th step, r=1,2,··· ,R,

– Determine parameters θ (r) separately for t=1,2,··· ,T by minimizing∫ {
K̂t (θt2u+θt3)−θt1g(r−1) (u)−θt4

}2
w(u)du.

– Normalize parameters: for j= (1,2) and k= (3,4)

θ
(r)
tj ←

θ
(r)
tj∑
tθ

(r)
tj

, θ
(r)
tk ←θ

(r)
tk −T−1

∑
t

θ
(r)
tk .

– Update g(r−1) to

g(r) (u)=T−1
T∑

t=1

K̂t

(
θ

(r)
t2 u+θ

(r)
t3

)
.
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• Determine final estimates:

θ̃ t = θ
(R)
t ,

g̃(u) = T−1
T∑

t=1

K̂t

(
θ̃t2u+ θ̃t3

)
.

Kneip and Engel (1995) proved consistency of the estimator. In particular
despite nonparametric initial curve estimates, the parameters are shown to be

√
T

consistent. In their analysis it is noted that the initial estimates of the curves are of
minor importance compared to the final estimate of g. So the original algorithm
includes the final updating of each curve. This improves precision of the estimates
because the pooled sample estimate reduces the variance of g̃, which allows
undersmoothing at the final stage to reduce bias. However, this final updating step
is not practical for our situation with indirect measurements and is not implemented
here for pricing kernel estimation. On the other hand, we can take advantage
of having smooth curves evaluated at finite grid points as data. It is easier to
improve the initialization step, explained in Section 3.2. This leads to simplification
of the estimating procedure with little compromise of the quality of the fit. In
fact, the number of iterations required is very small and often 3 or 4 is sufficient in
practical terms. We found that when the initial estimates are determined sufficiently
accurate, the iteration is not necessary.

As a working model we have assumed an independent error. If there is a
reasonable dependence structure available, this could be incorporated easily in
the estimation algorithm with weighted least squares estimation in (4). The effect
of independence assumption mainly appears in the standard error estimation and
a correction can be made with a sandwich variance–covariance estimator. To assess
the effect of model misspecification, we also carried out some simulation studies
with dependent errors and reported the results in Section 4.

3.2 Starting Values

If there is no scale change in horizontal direction, due to prominent peaks in each
curve, the parameter θ3 can be identified easily by the location of the individual
peak. If the models hold true, and there are two unique landmarks identifiable for
each curve, simple linear regression between the individual mark and the average
mark provides an estimate of the slope parameter θ2. Suppose that the peak is
identified by u satisfying K′t(u)=0. Then we have

0=K′t(u)= θt1

θt2
g′
(

u−θt3

θt2

)
.

Writing u∗t for K′t and u∗0 for g′ leads to a simple linear relation:

u∗t =θt2u∗0+θt3 . (6)
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Figure 4 Initial estimates Kt(u) (left) and final estimates Kt(θt2u+θt3) from SIM (right) with g
overlayed. Marked in the left plot are two landmarks identified for estimation of the starting values
of (θt2,θt3).

If an inflection point is used, we would have

0=K′′t (u)= θt1

θ2
t2

g′′
(

u−θt3

θt2

)
,

which gives rise to the same relation as (6), with the corresponding u∗∗t and u∗∗0
substituted. The coefficients of intercept and slope estimates are used for starting
values of θt3 and θt2, respectively.

We used the peak and the inflection points around 1 as landmarks, marked
in Figure 4. The location of the landmarks is defined by the zero crossings of the
first and second derivatives. Because the initial observations Kt are a smoothed
curve, we find that additional smoothing procedure is not required at this stage:
a finite difference operation is sufficient to apply mean value theorem with linear
interpolation.

The slope between any two points did not vary much, which is consistent with
the model specification. This step is also used as an informal check and should
there be any nonlinearity detected, the model needs to be extended to include a
nonlinear transformation. With our example, this was not the case.

3.3 Nonlinear Optimization

Given the estimates of (θt2,θt3), the nonlinear least squares optimization uses (4),
which is approximated by

∑
j

{
K̂t
(
θt2uj+θt3

)−θt1ĝ
(
uj
)−θt4

}2
w
(
uj
)
. (7)
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When the initial values of (θt2,θt3) are sufficiently accurate, this step is simplified
to a linear regression. Conditional on θt2,θt3 and ĝ, the solutions to the least square
regression with response variable K̂t(θt2uj+θt3) and explanatory variable ĝ(uj)
provide (θt1,θt4). When a further optimization routine is employed to improve the
estimates, these numbers serve as initial values for (θt1,θt4).

3.4 Initial Estimates of K
To start the algorithm the initial estimates of K should be supplied. An example of
initial estimates of K is shown in Figure 4 on the scale of continuously compounded
returns. These are obtained from separate estimation of p and q, which are described
below. Individual smoothing parameter choice is discussed in Section 5 with real
data example.

3.4.1 Estimation of the historical density p. We use the nonparametric
kernel density estimates similar to Ait-Sahalia and Lo (2000) based on the past
observations of returns for a fixed maturity τ . With this approach the returns
of the stock prices are assumed to vary slowly and thus the process can be
assumed stationary for a short period of time. Alternatively, if additional modeling
assumption is made for the evolution of the stock price such as GARCH, a
simulation-based approach could be employed.

At given time t and T= t+τ we obtain realizations of future return values from
a window of historical return values of length J:

rk
T= log

(
St−(k−1)/St−τ−k+1

)
and Sk

T=Sterk
T , k=1,...,J .

The probability density of rT is obtained by the kernel density estimator

p̂hp (r)= 1
Jhp

J∑
k=1

K

(
rk

T−r
hp

)
,

where K is a kernel weight function and hp is the bandwidth. Some variations are
also explored such as overlapping and nonoverlapping windows with a real data
example in Section 5.

3.5 Estimation of the Risk Neutral Density q

We begin with the call price option formula that links the call prices to the
risk neutral density estimation. The European call price option formula is given
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by (Ait-Sahalia and Duarte, 2003)

C
(
X,τ,rt,τ ,δt,τ ,St

)=e−rt,τ τ

∫ ∞
0

max(ST−X,0)q
(
ST |τ,rt,τ ,δt,τ ,St

)
dST

where

• St: the underlying asset price at time t,
• X: the strike price,
• τ : the time to maturity,
• T= t+τ : the expiration date,
• rt,τ : the deterministic risk free interest rate for that maturity,
• δt,τ : the corresponding dividend yield of the asset.

Write q(ST) for q(ST |τ,rt,τ ,δt,τ ,St). For fixed t and τ , assume rt,τ =r and δt,τ =δ,
the risk neutral density is expressed as

q(u)=erτ ∂2C
∂X2 |X=u .

The relation is due to Breeden and Litzenberger (1978) and serves the basis of
many current semi-parametric and nonparametric approaches. We employ the
semiparametric estimates of Rookley (1997), where the parametric Black–Scholes
formula is assumed except that the volatility parameterσ is a function of the option’s
moneyness and the time to maturity τ . In this work, we fix the maturity and consider
it as one dimensional regression problem.

Define F=Ste(r−δ)τ and m=X/F is moneyness. Write � and φ for the
cumulative distribution function and its density of standard normal random
variable, respectively. The Black–Scholes model assumes

CBS(X,τ ) = Ste−δτ�(d1)−e−rτ X�(d2)

= e−rτ F
{
�
(
d1
)−m�

(
d2
)}

.

In a semiparametric call price function, the volatility parameter σ is expressed as a
function of the option’s moneynes and the time to maturity τ :

C(X,τ,r,δ,St)=CBS(X,τ,F,σ (m,τ )) .

To derive the second derivative of C, it is simpler to work with a standardized
call price function c(m,τ )=erτ C(X,τ,r,δ,σ )/F=�(d1)−m�(d2). The derivatives of
C and c are related as

∂C
∂X
= e−rτ F

∂c
∂m

∂m
∂X
=e−rτ ∂c

∂m
,

∂2C
∂X2 = e−rτ ∂c2

∂m2
∂m
∂X
= e−rτ

F
∂c2

∂m2 .
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With some manipulation we obtain the following expressions, which are only
functions of (σ,σ ′,σ ′′):

∂c
∂m
= φ

(
d1
) ∂d1

∂m
−�

(
d2
)−mφ

(
d2
) ∂d2

∂m

∂2c
∂m2 = −d1φ

(
d1
)(∂d1

∂m

)2
+φ

(
d1
) ∂2d1

∂m2 −φ
(
d2
) ∂d2

∂m
−φ

(
d2
) ∂d2

∂m

+md2φ
(
d2
)(∂d2

∂m

)2
−mφ

(
d2
) ∂2d2

∂m2 ,

where

∂d1

∂m
= − 1√

τ

1
mσ (m,τ )

+ 1√
τ

ln(m)
σ ′(m,τ )

σ 2(m,τ )
+
√

τ

2
σ ′(m,τ )

∂d2

∂m
= ∂d1

∂m
−√τσ ′(m,τ )

∂2d1

∂m2 =
1

m2√τσ (m,τ )
+ 2√

τ

σ ′(m,τ )

σ 2(m,τ )

{
1
m
−ln(m)

σ ′(m,τ )

σ (m,τ )

}
+σ ′′(m,τ )

{
ln(m)

σ 2(m,τ )
√

τ
+
√

τ

2

}
∂2d2

∂m2 =
∂2d1

∂m2 −
√

τσ ′′(m,τ ) .

Note that this leads to a slightly different derivation from Rookley (1997), albeit
using the same principle.

In order to compute the derivatives of σ , we used the local polynomial
smoothing on implied volatility. Let σi be the implied volatility corresponding to
the call price Ci with moneyness mi. The local polynomial smoothing estimates are
obtained by minimizing

∑
i

⎧⎨⎩σi−
3∑

j=0

βj (m)(mi−m)j

⎫⎬⎭
2

W
(
(mi−m)/hq

)
,

where W(·) is a weight function. The estimates are computed as σ̂ (m)=
β̂0(m),σ̂ ′(m)= β̂1(m) and σ̂ ′′(m)=2β̂2(m). Substituting the estimates to the above
expressions gives an estimate of q. The density estimates are defined on the scale
of ST . To define the density on the same returns scale rT= log(ST/St) as p, a simple
transformation can be applied:

q(rT)=q(ST)ST .

Notice that all results are shown on a continuously compounded 1-month period
returns RT=1+rT=1+log(ST/St).
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3.6 Word on Asymptotics

There are two layers of estimation involved. The first step deals with individual
curve estimation and the second step introduces shape invariant modeling. The
shape invariant modeling is largely robust to how the data are prepared before
entering the iterative algorithm and the resulting estimates are interpreted as
conditional on the individual curves. Therefore, the main estimation error arises in
the first stage where p and q are separately estimated with possibly different sample
sizes and separately chosen bandwidths.

In practical terms, the sample size used in estimating p is normally of smaller
order, say n compared to N=nM for q for a constant M. This is due to the
difference between the daily observations available for estimating p and the
intraday observations available for estimating q. Thus it might be expected that
the estimation error will be dominated by the estimation error of p. On the other
hand, the underlying function p for which simple kernel estimation is used is much
simpler and more stable compared to q for which nonparametric second derivative
estimation is required.

Because the estimates of ratios are constructed from the ratio of the estimates,
we can decompose the error as

K̂(u)−K(u) = q̂(u)
p̂(u)
− q(u)

p(u)


 q̂(u)−q(u)
p(u)

− q(u)
p(u)

p̂(u)−p(u)
p(u)

.

Numerical instability might occur in the region where p̂≈0 however this is not of
theoretical concern. In fact, the pricing kernel is the Radon-Nikodym derivative of
an absolutely continuous measure, and thus p and q are equivalent measures, that
is, the null set of p is the same as the null set of q. So we can limit our attention to
the case where p(u)>ε for some constant ε. Provided that p(u)>ε and q(u)>ε, the
asymptotic approximation is straightforward and asymptotic bias and variance can
be computed from

E
[
K̂(u)−K(u)

]

 E

[
q̂(u)−q(u)

]
p(u)

− q(u)

p(u)

E
[
p̂(u)−p(u)

]
p(u)

= O
(

h4
q

)
+O

(
h2

p

)
+O

(
h2

p+h4
q

)
,

Var
[
K̂(u)−K(u)

]

 K2(u)

{
Var

[
q̂(u)

]
q2(u)

+ Var
[
p̂(u)

]
p2(u)

}

= O{(Nhq
)−1}+O{(nhp

)−1}+O
{(

Nhq
)−1+(nhp

)−1}
.

Since q̂ involves estimation of second derivative of a regression function, the error is
dominated by the estimation of q. The optimal rate of convergence for q is O(N−2/9)
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while that for p is O(n−2/5). These will be equivalent when M=O(n39/15)>O(n2). In
practice M is of much smaller order and therefore the leading error terms come from
the estimation of q. Ait-Sahalia and Lo (2000) showed in a similar framework that
the error is dominated by the estimation of q and for the purpose of asymptotics
p can be regarded as a fixed quantity. For this reason we actually implement a
semiparametric estimator for q to stabilize the estimator.

Consistency and asymptotic normality of the parameter estimates are shown
in Härdle and Marron (1990) for two curves and in Kneip and Engel (1995) for
multiple curves. We write the approximate distribution for θ̂ t as

θ̂ t≈N(θ t,�t).

Due to the iterative algorithm, the asymptotic covariance matrix is more
complicated for multiple curves but Kneip and Engel (1995) show that, as the
number of curves increases, the additional terms arising in the covariance matrix is
of lower order than the standard error term due to nonlinear least square methods.
There is no suggested estimate for the asymptotic covariance matrix but a consistent
estimate can be constructed as in standard nonlinear least square methods. Define
the residual êtj= K̂t(uj)−K̃t(uj) where K̂ is the initial estimates and K̃ is the SIM
estimates and let

σ̂ 2
t =

1
n

n∑
j=1

ê2
tj .

The covariance matrix can be estimated as

�̂t= σ̂ 2
t

⎡⎣n−1
n∑

j=1

{
�θ K̃t

(
uj;θ̃

)}{
�θ K̃t

(
uj;θ̃

)}⎤⎦−1

,

where �θK(u;θ ) is the first derivative of the function, given by

∂K(u)

∂θ1
= g

(
u−θ3

θ2

)
,

∂K(u)

∂θ2
= −θ1

θ2

(
u−θ3

θ2

)
g′
(

u−θ3

θ2

)
,

∂K(u)

∂θ3
= −θ1

θ2
g′
(

u−θ3

θ2

)
,

∂K(u)

∂θ4
= 1.

To see whether the location or scale parameters are different between any pair of
curves, we can compute the standard errors of the estimates to make a comparison.
A formal hypothesis testing also appears in Härdle and Marron (1990) for kernel-
based estimates and in Ke and Wang (2001) for spline-based estimates. For example
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Table 1 Parameter values of θ

Distribution Mean Standard deviation
θ1 Log-normal 1 0.33
θ2 Log-normal 1 0.28
θ3 Normal 0 0.27
θ4 Normal 0 0.35

we might be interested in testing whether a location or a scale parameter can be
removed.

Although these results are practically relevant, we note that the methods
mentioned all assume direct observations of the underlying function of interest,
with one smoothing parameter selection involved. Obtaining comparable rigorous
results for our estimator is complicated in the present situation due to the
nonstandard nature of the estimator being a ratio of two separate nonparametric
estimates with independent bandwidths. We consider this out of scope of this paper
and leave it for separate work.

4 NUMERICAL STUDIES OF SIM ESTIMATION

Applying the SIM to pricing kernels involves two rather separate estimation steps,
the initial estimation of the pricing kernels and the SIM estimation given the pre-
estimates. The former has been studied extensively and in particular the properties
of the nonparametric methods that we have used are well established in the
literature. This section mainly concerns the latter.

We identify the two main factors that could affect the performance of SIM
estimation to be error misspecification and smoothing parameter selection for the
individual curves. Their effects are evaluated in the following simulation studies.
The effects on pricing kernel estimation are separately studied in Section 5.4, in
comparison to the standard nonparametric approach used in Jackwerth (2000).

4.1 Generating Curves

In each simulation 50 curves are generated at 50 (random uniform) grid points. In
order to mimic the common shape of the observed pricing kernel, we generated
the common curve by a ratio of two densities

g(u)=q0(u)/p0(u),

where p0 is density of Gamma(0.8,1) distribution and q0 is density of mixture w∗
Gamma(0.2,1)+(1−w)∗N(0.91,0.32) distribution with w=0.3. In accordance with
the normalization scheme, the θ values are set as in Table 1. The values of the
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Table 2 Parameter values for error specification

Error 1 Error 2 Error3

Case 1 σ 0.02 0.05 0.10
Case 2 φ 0.75 0.75 0.75

σu 0.02 0.03 0.09
Case 3 α −3.69 −2.99 −2.30

β 0.75 0.52 0.53
σv 0.01 0.02 0.02

Case 4 α −2.41 −1.89 −1.39
β 0.45 0.40 0.42
φ 0.75 0.45 0.45
σv 0.10 0.25 0.25

standard deviation were chosen to be similar to the observed ones in the real data
example.

4.2 Error Specification

For the error specification, we have included dependent errors in time as well as in
moneyness as following.

• Case 1: Independent error: εt,j∼N
(
0,σ 2)

• Case 2: Dependent error in moneyness:

εt,j=φεt,j−1+ut,j , the set of the ut,j∼N
(

0,σ 2
u

)
• Case 3: Dependent error in time: εt,j∼N

(
0,σ 2

t
)

log(σt)=α+β log(σt−1)+vt , vt∼N
(

0,σ 2
v

)
• Case 4: Dependent error in moneyness and time:

εt,j = φεt,j−1+ut,j , ut,j∼N
(

0,σ 2
ut

)
,

log(σut) = α+β log
(
σu,t−1

)+vt , vt∼N
(

0,σ 2
v

)
Cases 1 and 2 are commonly assumed but Cases 3 and 4 were rarely used in
the literature with SIM estimation. Table 2 lists the parameter values used for
simulation. These values are chosen to be comparable in terms of overall variability
among cases.
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4.3 Smoothing Parameter Selection

We consider three versions of the least squares cross-validation (CV) based criteria
for bandwidth selection:

CVt(h)=
n∑

i=1

{
Yt,i−K̂−(i)

t,h (ui)
}2

,

where K̂−(i)
t,h is the local linear fit without using the i-th observation. For each

observed curve we find the optimal bandwidth h∗t =argminCVt(h). Due to
considerable variability in the x-dimension we standardize the optimal bandwidths
(h̃∗t =h∗t /st), where st is the empirical standard deviation of ui, and we choose the
common bandwidth as follows:

hopt,1=max(h̃∗t ) hopt,2=average(h̃∗t ) or hopt,3=argmin
∑

t

CVt(h).

Finally, we multiply hopt by st and use these values to perform smoothing of each
curve.

4.4 Results of Simulation

We considered various simulation scenarios based on the combinations of the case
of errors and bandwidth selection methods. Table 3 summarizes the results of the
goodness of fit measured by MSE for the case σ =0.05. For comparison we added in
the last row the MSE for the standard nonparametric estimates based on individual
optimal bandwidths to their advantage. For larger error (σ =0.1, not shown) we also
observed some dramatic deterioration with Case 4. Nevertheless, the simulation
studies suggest that the overall error is in the same order of magnitude and we
suspect that the impact of these factors is limited. The fit was however best with
smoothing parameters selected by h1.

5 REAL DATA EXAMPLE

We use intraday European options data on the Deutscher Aktien index (DAX),
provided by European Exchange EUREX and maintained by the CASE, RDC SFB
649 (http://sfb649.wiwi.hu-berlin.de) in Berlin. We have identified options data
with maturity one month (31 working days/23 trading days) from June 2003 to
June 2006 from DAX 30 Index European options, which adds up to 37 days.

We obtain the initial estimates for p and q as described in Section 3.4. For the
choice of kernel functions, we have used quartic function for both p and q.
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Table 3 Comparison of SIM estimation with respect to error misspecification and
smoothing parameter selection

σ =0.05

methods parms. case 1 case 2 case 3 case 4

h1 θ1 31 32 67 65
θ2 60 70 84 77
θ3 54 62 81 76
θ4 32 32 77 75
Kis 1.2 1.6 1.5 1.5

h2 θ1 67 68 80 69
θ2 115 115 110 99
θ3 111 110 105 103
θ4 70 72 99 85
Kis 1.1 1.6 1.9 1.9

h3 θ1 67 71 67 73
θ2 115 108 91 82
θ3 111 100 88 84
θ4 70 74 83 88
Kis 1.1 1.6 1.8 1.8

npK 3.5 2.0 4.2 3.6

Numbers are MSE multiplied by 10000. Kis computes the average MSE for all curves from SIM and npK
without SIM but using individual optimal bandwidths for each curve.

5.1 Estimation of the Risk Neutral Density q

The stock index price varies within one day and we would need to identify the
price at which a certain transaction has taken place. However, several authors (e.g.
Jackwerth, 2000) report that the intraday change of the index price is stale and we
use instead the prices of futures contracts closest to the time of the registered pair
of the option and strike prices to derive the corresponding stock price, corrected for
dividends and difference in taxation following a methodology described in Fengler
(2005).

The data contains the actually traded call prices, the implied stock index price
corrected for the dividends from the futures derivatives on the DAX, the strike
prices, the interest rates (linearly interpolated based on EURIBOR to approximate
a riskless interest rate for the specific option’s time to maturity), the maturity, the
type of the options, calculated moneyness, calculated Black and Scholes implied
volatility, the volume, and the date. For each day, we use only at-the-money and
out-of-the-money call options and in-the-money puts to compute the Black–Scholes
implied volatilities. This guarantees that unreliable observations (high volatility)
will be removed from our estimation samples. Since the intraday stock price varies,
we use its median (St) to compute the risk neutral density and correct the strike
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price to preserve the ratio relative to the underlying stock price. For this price, we
verify if our observations satisfy the no arbitrage condition:

St≥Ci≥max(St−Xie−rτ ,0),

where Xi is the adjusted strike price and Ci is the corresponding call price. For the
remaining observations (Xi,Ci) we compute the (mi,σi) counterparts for the fixed
St by implicitly assuming that the volatility does not depend on the changes in the
intraday stock price. The estimates are computed based on these pairs (mi,σi).

5.2 Estimation of the Historical Density p

We compute the nonparametric kernel density estimates as described earlier.
Jackwerth (2000) argues that some discrepancies between the nonparametric
estimates are attributed to overlapping and nonoverlapping windows of the past
observations selected. For comparison to the earlier works, we also experimented
with a choice of time varying equity premium and constant equity premium (we
demean the densities and supplant it with the risk free rate on the estimation
day plus 8% equity premium per annum as in Jackwerth (2000) adjusted for
the corresponding maturity), overlapping and nonoverlapping returns, window
lengths of 2, 4, and 6 years, respectively. The estimates for different choices of
parameters are then compared subsequently in terms of pricing kernel, implied
risk aversion and implied utility function estimation. We find that with varying
degrees of assumptions on the model, common characteristics such as peaks and
skewness are reportedly observed in a wide range of estimates.

5.3 Smoothing Parameter Selection

In contrast to the simulation studies, the effect of smoothing parameter is less
transparent with real data when we estimate p and q separately. At first glance,
the bandwidth selection for q seems more influential than that of p in gauging
performance of the estimates, as it involves derivative estimation. Figure 5 examines
the effect of the bandwidth choices on q̂. Top left panel shows the implied volatility
estimates overlayed, the top right shows the first derivative estimates and bottom
left shows the second derivative estimates, respectively, which are used as inputs to
create the estimates of q on bottom right panel. The bandwidths used are (0.05, 0.10,
0.15, 0.20). With the apparent undersmoothing at the smallest bandwidth, there is
notable variability in terms of smoothness in estimation of implied volatility and
its derivatives, however the resulting density estimates demonstrate robustness.
Similar observations are made to other dates. However by smoothing on implied
volatility domain, we find that the estimates are stable with relatively a wide range
of bandwidth choices.
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Figure 5 Example of q estimates with varying bandwidths (0.05, 0.1, 0.15, 0.20). The first three
panels show estimates of implied volatility, its first and second derivative. The corresponding
densities are shown in lower right panel. Estimates are stable for a wide range of bandwidths
choices.

For a systematic choice, we employed a version of CV criteria (hopt,1 defined
in Section 4.3) for p and q estimation. For estimation of q, we have used the least
squares CV for local cubic estimation to include the second derivative of σ :

CV(hq) =
n∑

i=1

n∑
j �=i

{
σi− σ̂

(0)
hq,−i(mi)− σ̂

(1)
hq,−i(mi)(mj−mi)

−1
2
σ̂

(2)
hq,−i(mi)(mj−mi)2

}2
w(mi),

where σ̂
(k)
hq,−i is the k-th derivative estimate without the i-th observation (mi,σi) and

0≤w(mi)≤1 is a weight function. The h1-optimal bandwidth in implied volatility
space turns out to be hq=0.2.

For estimation of p, we have used the likelihood CV for each curve on returns
scale:

logL(hp)=
n∑

i=1

logp̂−(i)
hp

(ri),
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Figure 6 Illustration of SIM with common EPK, ARA, utility function, and mean ARA.

where p̂−(i)
hp

(ri) is the leave-one-out kernel estimator for php (ri). However, we found
that the optimal bandwidth selected tends to systematically oversmooth and thus
we chose a smaller value close to the maximum of individually optimal bandwidths,
which is in our case hp=0.05.

5.4 Estimation of Pricing Kernels, ARA and Utility Function

We have considered in Section 5.2 various options for the parameter choice in
estimating p and have ended up with 12 series of pre-estimates of pricing kernel. We
are interested in seeing how these choices influence the estimated common curves
and θt parameters by SIM. Since, as it turns out, the results are very similar among
specifications we depict graphically only four of them in Figures 6 and 7: those
based on nonoverlapping (solid) and overlapping (dashed) returns over the last
two years, nonoverlapping returns over the last four (dot-dashed) and six (dotted)
years, respectively with varying equity premium. The added lines in Figure 7 are
95% pointwise confidence band for the first series of pre-estimates.

The common curves are represented in Figure 6. All estimates display a
paradoxical feature: pricing kernel has a bump, ARA has a region of negative values
that correspond to the increasing region in the pricing kernel, utility function has a
convex region in the domain around the peak of the pricing kernel. The variability
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Figure 7 Estimated SIM parameters under variations in the choice of the window lengths of returns
values.

among curves is expressed by θt-s. In Figure 7, we observe that the main difference
in the dynamics of different series has to do with the magnitude but less with
the direction of change. In addition, we computed the mean of implied ARA
corresponding to our estimation period by computing the sample average and
found that it was similar to the the mean ARA for S&P500 appearing in Figure
3C—19 March 1991 to 19 August 1993 in Jackwerth (2000), and to a certain extent
to the yearly average from 2003 and 2005 shown in Figure 4 in Chabi-Yo et al.
(2008). It is worth noting that the mean ARA and the common ARA curves differ a
great deal due to the nonlinear transformation involved in deriving ARA from the
pricing kernel, e.g. see Equation (2) in Section 2.4. This is not surprising since the
interpretation of common curve is different from the average curve, in particular
the common curve and the mean curves have different scales of the x-domains—by
means of registration.

5.5 Relation to Macroeconomic Variables

With an aid of the SIM model for EPK, we wish to characterize changes in risk
patterns in relation to economic variables of interest. Before doing this, we should
mention that in the case of nonstandard common curves—in our empirical example
the peak does not occur at 0—both θ1 and θ2 introduce a shift effect in EPK together
with its shape effect. In order to disentangle these effects and improve interpretation
we first standardize the EPK curves by the location of the peak before applying SIM.
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Table 4 Correlation table for the first difference of SIM parametethers and the
selected macro economic variables

θ1 θ2 θ3 θ4 CS DAX YT
θ1 1.00 0.55∗ 0.02 0.78∗ −0.25 0.38∗∗ −0.26
θ2 1.00 0.38∗ −0.04 0.06 −0.12 −0.39∗∗
θ3 1.00 −0.18 0.07 −0.21 −0.28∗∗∗
θ4 1.00 −0.37∗∗ 0.62∗ −0.04

∗, ∗∗, and ∗∗∗ significant at 1%, 5%, and 10% levels, respectively.

This introduces two more parameters, the horizontal and vertical coordinates of the
peaks in the analysis. Since their shift effect is comprised by parameters θ3 and θ4
we will not treat them here separately.

Previous studies trying to link the parameters describing risk attitudes to the
business conditions include Rosenberg and Engle (2002). Based on power pricing
kernel specifications they show that risk aversion is counter-cyclical. Other related
work investigates the relation between equity premiums, (e.g., Fama and French,
1989), smile asymmetry of volatility (Bekaert and Wu, 2000; Drechsler and Yaron,
2010), or market efficiency (Marshall, Cahan, and Cahan, 2008). The advantage
of our approach over Rosenberg and Engle (2002) is that it allows us to identify
how the change in economic variables relates to the shape of a nonparametrically
estimated pricing kernel. Due to limited sample size—37 observations—it is
impossible to estimate a structural model that correctly deals with the simultaneity
of our set of dependent variables. Further research will involve the estimation of
a (S)VAR specification, in order to account for the aforementioned endogeneity.
We instead evaluate the potential univariate correlations between the estimated
θt parameters and macroeconomic variables associated with the business cycle
and interpret our results from the perspective of local EPK and risk aversion
functions. We use the following variables that have a revealed relation with the
state of the economy: credit spread (CS) is the difference between the yield on the
corporate bond, based on the German CORPTOP Bond maturing in 3–5 years, and
the government bond maturing in 5 years; the yield curve slope (YT) refers to the
difference between the 30-year government bond yield and three-months interbank
rate; short-term interest rate (IR) is the three-months interbank rate; and DAX 30
Performance index as a proxy for consumption. Depending on data availability
we collect daily or monthly data. Tests on unit roots failed to reject stationarity
in all parameter series and economic variables; we therefore work with their first
difference. For conciseness we present only the correlation table for nonoverlapping
returns over the past two years with varying equity premium and interpret the
results below in relation to Figure 3.

In Table 4, we read significant positive correlation between changes in θ1 and
DAX and negative one with the credit spread, indicating that the EPK becomes
more pronounced when the economic indicators suggest an expanding economy;
changes in θ2 and YT are negatively correlated, suggesting that risk aversion slope
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becomes locally steeper during economic boom. The same interpretation holds for
the negative correlation between changes in θ3 and YT. The height of the peak
varies with the returns on the index, pointing to an increasing local risk proclivity
in periods of economic expansion. We have not found any significant correlation
between changes in θt and in the short-term interest rate. Finally, we observe a
positive correlation between the increments in θ1 and θ2 that suggests that over
periods of concerted negative evolution of the economic indicators the EPK bump
will shrink in both horizontal and vertical direction, possibly leading to an overall
decreasing EPK.

In summary, the sense of the relations between the indicators of the business
cycle and the parameters that summarize risk preferences indicates that locally risk
loving behavior is procyclical. These findings are also in line with the results found
in Rosenberg and Engle (2002).
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