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1. Introduction

This study proposes an empirical research of a large data set of iTraxx Europe indices and their tranches of Series 2-10.
We investigate around 50 000 observations of iTraxx tranches over 1000 days between the year 2005 and 2009. To the best
of our knowledge, this is the first study on CDOs that considers such an extensive data set. Moreover, the dynamics of the
iTraxx tranches over time has not been investigated in literature so far.

The iTraxx Europe is the most widely traded credit index in Europe. Its reference portfolio consists of 125 equally
weighted, most liquid credit default swaps (CDS) on European companies. For every index five standardized tranches of
different risk profiles are traded. The cash-flows structure of iTraxx tranches is the same as of synthetic CDO tranches.
Because of the regular index roll, every day we find on the market tranches with various times to expiration. By plotting
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Fig. 1. Spreads of all tranches of all series observed on 20080909 (left) and 20090119 (right).

prices (base correlations) of all available tranches at one day as a function of the time to maturity and the tranche seniority,
one gets a two-dimensional surface that represents the entire market information about spreads (base correlations), see
Fig. 1. The tranches with 5 years maturity are the most liquid, unlike those with 3 years maturity that are rarely quoted.
This makes the modelling of the surfaces a challenging task as each day one observes a different number of curves with not
necessarily the same number of points on each curve. When we record these surfaces every day, we can follow how they
change their shape and level. The dynamics over time of such surfaces is the main goal of this paper.

Mainly because of the high dimensionality of the CDO problem the vast majority of papers consider only CDOs of one
particular maturity, see e.g. Hamerle et al. [ 17]. Up to our knowledge, the available literature do not look at the CDO market
as a whole. Since CDOs are quoted for distinct maturities and with different liquidity, we should consider the effect of the
CDO term structure.

From an investor’s point of view, it is desirable to have an insight into the behaviour in the future of spreads and their main
characteristics, namely base correlations. The forecasting has useful applications in hedging and trading CDOs, computation
of risk measures, or construction of investment strategies. One of the simplest solutions would be to consider the classic time
series analysis for each tranche of each series for every maturity. However, there are several reasons why this methodology
is not applicable. Firstly, due to illiquidity of the tranche market we encounter multiple missing observations. Moreover,
many iTraxx series issued during the financial crisis have too short data history. For the same reasons multivariate time
series models could not find their application here. Thus, the major challenge we are facing in the analysis of iTraxx tranches
is that every day only scattered observations of a two-dimensional surface are observable. This study proposes an estimation
and forecasting method for CDO surfaces.

Modelling surfaces is one of the primary goals of the functional data analysis (FDA) where the data are functions, see [6].
Functional data sets naturally appear in many fields of science ranging from finance to genetics. Worth mentioning statistical
approaches for handling complex high-dimensional problems are a structural analysis of curves by Kneip and Gasser [22],
a functional regression with scalar (see [4]) or functional [5] response, a stochastic warping model by Liu and Miiller [24],
penalized splines by Kauermann et al. [21], and a functional principal components approach by Gromenko et al. [15]. For
recent advances in FDA we refer the reader to Ramsay and Silverman [27], Ferraty and Vieu [13], Ferraty and Romain [12],
Horvath and Kokoszka [19] and Bongiorno et al. [3]. One of the most popular methods are factor type models as they ef-
fectively reduce the dimensionality. Factor models assume that the comovements of big number of variables are generated
by a small set of latent factors. When data disclose a dynamic structure then one needs a technique that is able to correctly
detect and describe the observed behaviour, e.g. [16].

In this study we employ a dynamic semiparametric factor model (DSFM). In the DSFM the observed variables are ex-
pressed as linear combinations of the factors. The factors and the factor loadings are estimated from the data. The first ones
represent the spatial, time-invariant component. The latter ones form multidimensional time series that reflect the dynam-
ics. The inference on the original variables reduces to the inference on the factors and the factor loadings. For advances in
semiparametric functional data modelling we refer reader to Goia and Vieu [ 14].

The DSFM was introduced by Fengler et al. [11] for modelling the dynamics of implied volatility surfaces. Further,
Hardle [18] use it for limit order book analysis, Detlefsen and Hdrdle [8] for variance swaps, and van Bémmel [30] for fMRI
images. In this work we study the dynamics of CDO surfaces with the DSFM and propose an application to curve trading
strategies.

The paper is structured as follows. Section 2 discusses the CDOs. Section 3 describes the DSFM. Section 4 shows results
of the empirical modelling. Section 5 presents applications in CDO trading. Section 6 concludes.

2. Collateralized debt obligations

A collateralized debt obligation is a credit derivative used by financial institutions to repackage individual assets into a
product that can be sold to investors on the secondary market. The assets may be mortgages, auto loans, credit card debt,
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corporate debt or credit default swaps (CDS). CDOs were initially constructed for securitization of big portfolios. The entire
portfolio risk is sliced into tranches and then transferred to investors. Prior to the credit crisis, CDOs provided outstanding
investment opportunities to market participants. Tranching made it possible to create new securities of different risk classes
that met the needs of a wide range of clients. The market observed an excess demand for senior CDO tranches because they
were considered as safe and offered unusual high returns. As we know now, the rating agencies underestimated default risk
of CDOs. Consequently, investors were exposed to more risk than the ratings of these CDOs implied. The CDO market has
significantly shrunk since the beginning of the financial crisis. However, the methodology proposed in our study can be used
in modelling and trading other financial instruments, especially non-standardized and bespoke structured products.

Consider a CDO with a maturity of T years, ] tranches and a pool of d entities at the valuation day ty. Atranchej =1, ...,]
absorbs losses between I; percent and u; percent of the total portfolio loss. |; and u; are called an attachment and a detachment
point respectively and [; < u;. For the iTraxx Europe, successive tranches have the following attachment points: 0%, 3%, 6%,
9%, 12%, 22%. The corresponding detachment points are 3%, 6%, 9%, 12%, 22%, 100%.

2.1. Valuation

We assume that there exists a risk-neutral measure P under which the discounted asset prices are martingales. The
expectations in the formulas below are taken with respect to this measure.
The loss of the portfolio of d assets at time ¢ is defined as

LGD ¢
L(t)=T;Fi(t), t € [to, T1,

where LGD is a common loss given default and Ii(t) = 1(t; < t),i =1, ..., d, is a default indicator showing that the credit
i defaults at time t within the period [to, T] if the time of default random variable t; < t. The loss of a tranchej =1, ...,]J
at time ¢ is expressed as L;(t) = L“(t, u;) — L“(t, I;), with L*(t, x) = min{L(t), x}, x € [0, 1]. The outstanding notional of the
tranche jis given by F;(t) = F"(t, uj) —F"(t, [;) with F¥(t, x) = x—L"(t, x),x € [0, 1]. At the predefined datest = t;,..., T,
t1 > to, the protection seller and the protection buyer exchange the payments. The protection buyer pays to the protection
seller a predetermined premium, called a spread on the outstanding tranche notional and is compensated for losses that
occur within the range of the tranche. Each default in the portfolio reduces the outstanding tranche notional. This leads to
a decline in the value of the periodic fee payment. The cash exchange takes place until T or until the portfolio losses exceed
the detachment point.
The protection leg DL; is defined as the present value of all expected payments made upon defaults

T
DLi(to) = Y Blto. DE(Li(t) — Li(t — AD)}, j=1,....]. (1)

t=ty

where § is a discount factor and At is a time between ¢ and the previous payment day. The premium leg PL; is expressed as
the present value of all expected premium payments

T
PLi(to) = ) _ Blto, sj(to) ALE{F (D)}, j=2,....], (2)

t=ty

where s; denotes the spread of tranche j. The first tranche, called the equity is traded with an upfront payment « and a fixed
spread of 500 bp. Its premium leg (2) turns into

T
PLy (to) = a(to) (s — L) + Y _ Blto, £) - 500 - ALE{Fy(t)}.

t=ty

A spread s; is calculated once, at f, so that the marked-to-market value of the tranche is zero, i.e. the value of the premium
leg equals the value of the protection leg

T
Y- B(to, HE{Li(t) — Li(t — At)}

t=tq

sj(to) = forj=2,...,]. 3)

T bl
> Blto, ) AE(Fi(t)}
t=tq
The upfront payment of the equity tranche is computed as

100
up —h

T
a(ty) = Z (B(t, to) [E{L1(t) — Li(t — At)} — 0.05ALE{F1(£)}]) .

t=tp
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For more details we refer to Bluhm and Overbeck [2] and Kakodkar et al. [20].

The main challenge in calculating the fair tranche spread (3) is the correct calculation of the expected losses. This task
requires the analysis of how the portfolio entities are likely to default together. There are two main types of credit risk
models: structural and reduced form models. The structural model is motivated from a Merton style approach where a
default occurs when the value of an asset drops below a certain level. In the reduced form approach a default is modelled
with an intensity process. A third class is based on copula theory and is connected with the first two approaches. For a
comprehensive overview we refer to Bielecki and Rutkowski [1].

There has been a multitude of CDO risk models proposed that apply different dependency concepts. The market standard
for pricing CDOs is the large pool Gaussian copula model that has been introduced to the valuation of multi-name credit
derivatives by Li [23]. The main drawback of the Gaussian copula is that it exhibits no tail dependence and in consequence it
cannot model the extreme events accurately. However, due to its analytical tractability and numerical simplicity, the large
pool Gaussian copula model still remains the benchmark on the market.

2.2. Base correlation

In the Gaussian copula model the main driver of the tranche price is the correlation coefficient. The correlations can be
computed from market data by inverting the pricing formula (3). If we keep the value of other parameters fixed, then the
correlation parameter that matches the quoted tranche spread is called an implied compound correlation. It is observed that
implied compound correlations are not constant across the tranches. This phenomenon is called an implied correlation smile.
Still, the main disadvantage of the compound coefficient is that the mezzanine tranches are not monotonic in correlation
and two parameters might result in the same spread value. The second problem that we might encounter is a nonexistence
of the implied correlation. These disadvantages caused the enhanced popularity of base correlations proposed by McGinty
and Ahluwalia [25].

The main idea behind the concept of the base correlation is that each tranche [I;, u;] can be represented as a difference
of two, equity type tranches that have the lower attachment point zero: [0, u;] and [0, I;]. Here we use a property that the
equity tranche is monotone in correlation. The base correlations can be implied from the market spreads using standard
bootstrapping techniques. One needs the spread value of the tranche [I;, u;] and the base correlation of the tranche [0, /;] in
order to imply the base correlation [0, u;]. In this approach, (3) is calculated as

T
> B(to, ) [Epup (LI (t, 1) — LI(t — At, up)} — Epo ) {LI(E, ) — LIt — At [)}]

t=tq1

Sj(to) = (4)

T
> B(to, )AL [Epoup{FF(t, 1))} — Epo.p {F(t, 1)}]

t=tq

forj = 2,...,]J, where the expected value E p(0,u 1s calculated with respect to the loss distribution determined by the base
correlation p (0, ;) of the tranche [0, y;]. In the Gaussian copula model the base correlations are nondecreasing with respect
to the seniority of tranches and the implied correlation smile turns into a correlation skew.

3. Dynamic semiparametric factor model

Let Y; x be a data point, a tranche spread or a base correlation, observedonaday t,t = 1, ..., T. The index k represents
an intra-day numbering of observations on thatday, k = 1, ..., K;. The observations Y; j are regressed on two-dimensional
covariates X; i that contain the tranche seniority and the remaining time to maturity

L

Yok =moXer) + D ZeimiXex) + &cs (5)
=1

wherem; : R> - R,1 =0, ..., L, are factor loading functions, Z;1 € R are factors, and &, ; are error terms with zero means
and finite variances.

The additive structure of (5) is a typical approach in regression models. Here, the functions m are estimated
nonparametricly and represent the time-invariant, spatial component. The factors Z; drive the dynamics of Y;. The number
of factors L is fixed and should be small relative to the number of observed data points so that we achieve a significant
reduction in the dimension. The investigation of the dynamics of the entire system boils down to the analysis of the factors’
variability. These arguments justify calling (5) a dynamic semiparametric factor model.

Fengler et al. [ 11] estimate m and Z; iteratively using kernel smoothing methods, Hdardle and Ritov [29] apply functional
principal component analysis, Hirdle and Borak [26] estimate m with a series based estimator. For numerical convenience

we follow the last paper and define functions ¥, : R> — R, b = 1, ..., B, B > 1, such that fRZ wlf dx = 1. Then, a tuple
of functions (mo, ..., m;) " may be approximated by Ay, where A is a (L + 1 x B) matrix of coefficients {{al,b},L;1 ’511 and
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¥ = (Y1,...,¥p) . We take {y,}5_, to be a tensor B-spline basis. For a survey over the mathematical foundations of
splines we refer to de Boor [7]. With this parametrization (5) turns into

Yoo =Z ' mXep) + eck = Z AV Xe k) + &k

where Z, = (Z.o, . .. ,Z[*L)T withZ. o =1andm = (mg, ..., my)".
The estimates Z; = (Z.0, ..., Z;) ' and A are obtained similarly to Ramsay and Silverman [27] by
L T K X
(Ze, Ay =arg min Y Y " {Yii = Z Ay (X)) (6)
Zt.A

t=1 k=1

yielding estimated basis functions m = /Aw. The minimization is carried out using an iterative algorithm. However, the
estimates of m and Z; are not uniquely defined. Therefore, the final estimates of m are orthonormalized and Z; are centered.
Park et al. [26] also prove that the difference of the inference based on the estimated Z; ; and the true, unobserved Z,  is
asymptotically negligible. This result justifies fitting an econometric model, like a vector autoregressive to the estimated
factors for further analysis of data.

The number of factors L as well as the numbers of spline knots in both maturity and tranche directions Ry, R,, and the
orders of splines ry, r, have to be chosen in advance. A common approach is to maximize a proportion of the variation
explained by the model among the total variation. We propose a following criterion

p>

Kt
t=1k=1
T

L 2
{Yt,k — > Ze m(Xe ) }

=1

EV(L9R19 r19R2’ r2) =1- K ) (7)
t

[
>3 {Yer— Fﬁo(xt,k)}z

t=1k=1

—_

where

Kt
10 2 Yerl{Xe = Xex)
~ k=
Mo (X)) = = )=, o C=1... Kna, (8)

Kt

=S X = Xexd

k=1

is an empirical mean surface and Ky, is the number of all different X; ; observed during T days. The criterion (7) is a
modified version of the one considered in [ 11] and other literature on the DSFM, where instead of the empirical mean surface,
the overall mean of the observations is used. The mean surface (8) makes more sense, since our data reflect monotonous
behaviour w.r.t. the tranche seniority.

The My factor in (5) is usually interpreted as a mean function of the data. We propose to first subtract the estimate (8)
from the data and then fit the DSFM. The extraction of the empirical mean i, leads to the following model

L

Yoi = Mo(Xei) + D ZeamiXe x) + e = Mo (Xe 1) + ZLAY X 1) + £k 9)
=1

where m; are factor functions, | = 1, ..., L, Z; ; are factor loadings, and A is a (L x B) coefficient matrix. The representation
(9) reduces the number of the factor functions estimated in the iterative algorithm (6). As the model (9) achieved a bit
better performance in the empirical study we present only the results of this approach. For simplicity’s sake the model (9)
is hereafter called the DSFM.

4. Modelling the dynamics of CDO surfaces

4.1. Data description

The data set analysed in this study contains daily spreads of iTraxx tranches of Series 2-10 between 30 March 2005
(hereafter denoted 20050330) and 2 February 2009 (denoted 20090202) obtained from Bloomberg. We have in total

>i_; K; = 49502 data points over T = 1004 days.

Twice a year, every March and September, a new series of iTraxx is issued. Therefore, every day one observes a bunch
of indices from various series and different maturities. Here we analyse tranche spreads and also base correlations, both
denoted Y;, as a function of the tranche seniority & and the remaining time to maturity t,. Each iTraxx index has 3, 5, 7, or
10 years maturity. The seniority of a tranche &; is represented by its corresponding detachment point. The remaining time
to maturity of a tranche is an actual time left till its expiration and takes values between zero and 10.25. For every day a
separate surface representing the entire market information is available. The number of observed every day indices is low
(minimum 4, maximum 17, median 12, see Fig. 2). This results in a string structure in the data. Each string corresponds to
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Fig. 3. Base correlations of all series observed on 20080909 (left) and 20090119 (right).

Table 1
Percentage of missing values during the period 20050330-20090202.
Year 3Y 5Y 7Y 10Y

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2005 100 100 100 100 100 34 34 34 34 48 35 34 35 34 35
2006 78 56 55 100 100 6 7 6 6 8
2007 88 99 99 100 100 3 2 2 3 3
2008 47 99 100 100 100 24 25 25 24 27 24 25 25 25 27 24 27 24 25 24
2009 100 100 100 100 100 42 42 47 42 42 42 43 43 42 42 42 43 42 42 43
All 72 93 93 100 100 16 17 17 16 20 13 14 13 13 14 16 17 16 17 16
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one 7, € [0, 10.25] and is composed out of at most five points. The market quotes five out of six tranches as the most senior
tranche is usually not traded. Figs. 1 and 3 present the curves of market spreads and corresponding implied base correlations
on 20080909 and 20090119. As time passes, the curves move through the space towards expiry and simultaneously change
their skewness and level.

Since the shortest maturity is 3 years and every half a year new four indices are issued, the number of indices present on
the market grows in time. Table 1 outlines a percentage of missing values for every maturity and for every tranche during
the entire period considered and during the annual subperiods. We see that the CDO market was booming in 2006 and
2007. However, since the beginning of the financial crisis in 2008 the demand for credit derivatives had been shrinking
meaningfully. In the first quarter of 2009 the iTraxx tranches became highly illiquid. As mentioned before, many missing
data may create challenges to the econometric analysis. Because tranches with 3 years maturity were rarely traded, this
maturity was excluded from our study.

Sometimes on a particular day, for a particular tranche and a particular remaining time to maturity we observe two
different spreads. As an example consider a day to on which a new series with 3 years maturity is issued. If 5 years earlier
a series with 7 years maturity was issued, then on day t; this series has also 3 years remaining time to maturity. In this
situation we include in our data set the observation that comes from the most actual series (in the example we take the
series issued on ty).
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Fig. 4. Sample mean, estimated factors and loadings (Z; 1 black, Z; , red) in the DSFM for the log-spreads. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

The base correlations (4) are implied from the market spreads using the large pool Gaussian copula model (assuming the
LGD of 60%). The common intensity parameters are derived from iTraxx indices. The discount factors are calculated from
rates of Euribor and Euro Swaps.

The structure of the equity tranche is different from the other tranches. It is quoted as an upfront payment plus 500 bp
spread paid quarterly. In order to include the equity tranche in the joint analysis of all the tranches, we convert its quotes
to standard spreads with zero upfront fee using the large pool Gaussian copula model.

4.2. DSFM estimation results

Since our data are positive and monotone, we convert spreads into log-spreads and for base correlations apply the Fisher’s
Z-transformation defined as

1+u

1—u’

It transforms the empirical Pearson’s correlations between bivariate normal variables to a normally distributed variable. We
will use it for the base correlations as it stabilizes their variance.

Since the design of the data in the tranche seniority dimension is fixed, we choose in this direction quadratic B-splines
and five knots. Table 2 presents a proportion of the explained variation (7) for different numbers of factors, knots and
different orders of splines in the maturity dimension. Similar to Park et al. [26], we find that the order of splines and the
number of knots have a small influence on the proportion of the explained variation. We pick two factors and the quadratic
B-splines placed on 10 knots in T dimension for both types of data. The number of knots is close to the median number of
observed strings every day. Figs. 4 and 5 exhibit m and Z; estimated in the DSFM for the log-spreads and the Z-transformed
base correlations respectively.

In the DSFM for the log-spreads the first and the second factor can be interpreted as a shift function and a slope-curvature
respectively. When we shift Z; ;, the WhOJ? surface shifts along the z-axis. Increasing Z; , results in the enhancement of the
surface’s steepness, whereas, decreasing Z; , inlplies itsA flattening. The interpretation of the DSFM factors of Z-transformed
base correlations is not so clear. When \//:arying Z;qand Z; bgth the slope and the curvature change. The upward shift of the
surface can be a result of a decrease in Z; ; or an increase in Z; ,.

Fig. 6 displays the in-sample fit of the models to data on 20080909 and 20090119. The convergence of the models is
typically reached after 8 cycles. The mean squared error of the in-sample fit over all dates considered in this study is 0.045
for the log-spreads surfaces and equals 0.006 for the Z-transformed base correlations surfaces.

1
7 (u) = arctanh(u) = 3 log
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Fig. 5. Sample mean, estimated factors and loadings (Z; ; black, Z; ; red) in the DSFM for the Z-transformed base correlations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Proportion of the explained variation by the DSFM for L = 1, 2, 3, different numbers of knots and different orders of splines in the maturity dimension. The
values of the selected models marked with italic.

Number of factors Spline Log-spr Z-BC
Order Knots
5 10 15 20 5 10 15 20

1 0.797 0.876 0.897 0.898 0.629 0.640 0.660 0.660
2 0.877 0.896 0.905 0.910 0.633 0.654 0.657 0.664
3 0.867 0.898 0.906 0.908 0.638 0.650 0.662 0.664
4 0.871 0.898 0.907 0.910 0.639 0.653 0.659 0.662
1 0.842 0.925 0.940 0.945 0.730 0.835 0.860 0.869
2 0.926 0.952 0.961 0.954 0.781 0.861 0.876 0.888
3 0911 0.952 0.941 0.950 0.763 0.867 0.883 0.887
4 0.917 0.956 0.947 0.954 0.783 0.870 0.881 0.886
1 0.858 0.940 0.959 0.973 0.746 0.854 0.888 0.898
2 0.941 0.967 0.977 0.982 0.815 0.896 0.907 0.925
3 0.927 0.967 0.975 0.979 0.805 0.901 0.922 0.930
4 0.932 0.972 0.977 0.982 0.817 0.903 0.910 0.927

The covariance structure of the Z time series is investigated by means of VAR analysis. The augmented Dickey-Fuller
test indicates that the first differences of Z; are stationary. The check of the sample partial autocorrelation functions
of the residuals of the estimated VAR(1) models for the factor loadings confirms that the VAR(1) process captures the
autocorrelation structure of the factor loadings. Certainly, one may investigate more complex multivariate time series
models that account for a dynamic structure of the conditional variance-covariance and of the conditional correlation like
the BEKK-GARCH or the DCC-GARCH, see [9]. Since we are interested in the conditional mean process only, the VAR model
appears to be sufficient. Moreover, a relatively simple out-of-sample VAR forecasting can be used in forecasting the evolution
of the surfaces.
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(b) DSFM for the Z-transformed base correlations.

Fig. 6. In-sample fit (black points) of the models to data (red points) on 20080909 (left) and 20090119 (right). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

5. Applications in trading

5.1. Curve trades

The popularity of the iTraxx market led to increased liquidity in its standardized tranches allowing investors to imple-
ment complex credit positions. Here we present curve trades, namely flatteners and steepeners—strategies that combine
tranches of different time to maturity, see also [20].

A flattener is a trade that involves a simultaneous sale of protection on a long-term tranche and a purchase of protection
on a short-term tranche. An example would be: sell 10Y 3%-6% and buy 5Y 6%-9%. In this trade the investor expresses not
only a bullish long-term outlook but also a bearish short-term view on the market. The opposite trade is called a steepener. It
is achieved by selling the short-term protection and buying the long-term protection. Both strategies are popular in trading
CDS, credit indices, and yield curves. Credit curves got a lot of attention in May 2012 when J.P. Morgan announced a loss of
$2 billion on its flattener trade on the CDX IG 9 index. The final loss reached $6.2 billion.

In our study both long and short term tranches have equal notional amounts. However, by adjusting the notionals, a
trade can be structured so that it is risky duration neutral, carry neutral, correlation neutral, or theta (sensitivity to implied
correlation changes) neutral, see [28]. As recommended by Felsenheimer et al. [ 10] we consider trades that generate no or
a positive carry, i.e. the spread of the sold protection does not exceed the spread of the bought protection.

It is important to remark that our trades are exposed to default risk. If one buys 6%-9% and sells 3%-6%, then these
tranches provide protection of different portions of portfolio risk. If there is any default in 3%-6%, then we must deliver a
payment obligation and incur a loss. Since we do not possess data of historical defaults in iTraxx, we cannot include the
default payments in the further analysis. Consequently, in calculating the profit-and-loss (P&L) of the strategy we also do
not account for the positive carry that we cumulate until the both positions are closed.

Felsenheimer et al. [ 10], Kakodkar et al. [20] and Roy [28] consider various scenarios of flattener trades. They also assume
that we do not observe any defaults in the collateral. However, their examples are not based on real data and do not
investigate the performance of the trades over time.

Assume that an investor enters a curve trade and sells protection at a spread of s;(tp) for the period [to, T;] and buys
protection at a spread of s, (ty) for the period [tp, T>]. If the trade is a flattener, then T; > T,. The spreads of the tranches are
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calculated in such a way that on the date of the trade t, the marked-to-market (MTM) values of both positions are zero

T;
MTM(to) = Zﬁ(to, t) [se(t) AtE{F (t)} — E{L¢ () — L(t — AD}] =0, £=1,2.

t=tq1

Since spread values constantly vary over time, immediately after initiation of the trade, f > t;, the market trades the
tranches at sy (t). In consequence, we observe a change in the MTM value of our positions

T,
MTM,(f) = {s:(to) —se(D)} Y BE. DALE[F(1)}, £=1,2, (10)

[ZE]

where f; is the first payment day after .

A positive MTM means that the contract has a positive value to the protection seller. If the protection seller closes the
position £ at time f, then receives from the protection buyer the amount MTM, (t).

The aim of the curve trade investor is to maximize the P&L function that equals the total MTM value

PL(F) = MTM; (f) — MTM,(f). (11)

5.2. Empirical results

The key decision in constructing a curve trade is which tranche to buy and which to sell. If an investor entered a flattener
on 20080909, then the trade incorporated two tranches whose spreads are depicted on the left panel of Fig. 1. If the investor
decided to close the positions on 20090119, then their MTM values (10) were calculated using the spread quotes exhibited
on the right panel of Fig. 1 and using the base correlations (needed for E{F,}) shown on the right panel of Fig. 3. Having
the data displayed on Figs. 1 and 3, we can compute the MTM values of all tranches that were quoted on both days. In
consequence, we can easily recover those two tranches that maximize the P&L function (11). However, it is only possible if
we possess the whole market information from these two points in time.

With an efficient forecasting technique, one can compute, for a given time horizon, a prediction of each point that is
displayed on Figs. 1 and 3. By doing it using standard econometric methods, each tranche from every series has to be traded
as an individual time series. Disregarding the fact that there are many missing values in our data, see Table 1, we have many
series that do not have a long history. If an investor bought a tranche from Series 9 on 20080320, the day of its launch and
decided to sell it a day or a week later, then we might not have enough past observations to fit and forecast the time series
model.

In the DSFM modelling we do not differentiate the indices by their series number but by their remaining time to maturity.
If in the past we already had observations with a very long remaining time to maturity, then we are able to price upcoming
series even before they appear on the market. Moreover, we can forecast them using the DSFM.

We carry out the forecasting of log-spreads and Z-transformed base correlations in moving windows. A moving window
procedure is used when only the most recent data are considered to be relevant for the estimation. We impose a static
window of w = 250 days. Then for every time t, between the day w and the last day T in our data, we analyse

{YeahL, ?):tofwntl' For each such set we estimated the DSFM model (9). As a result, we obtain T — w + 1 times the estimated

factor functions m = (M, ..., m;) ' and the series of the factor loadingsZ = (Zt05--- ,/Z\[,L)T of length w. Since the factor
functions are fixed, the forecasting is performed only on the factor loadings. As discussed in Section 4.2, we apply VAR(1)
models to compute the predictions for a horizon h of one day, one week (five days), and one month (20 days). Due to the fixed
scheme of issuing the iTraxx on the market, for every time t, w+h < t < T we know which indices are traded. Therefore, the
number of points that could be observed K; and the possible remaining times to maturity 7, are known. Thus, the bivariate
vector X; i,k =1, ..., K, does not hgye to be forecasted. The forecast Y; \ is calculated from the Z; forecast. Finally, a proper
inverse transformation is applied to Y;  in order to recover the values of the spreads and the base correlations.

The calculation of the expected tranche losses using the large pool Gaussian copula model needs as an input a
homogeneous default probability. Since the spread predictions are calculated out-of-sample, we also forecast the default
probabilities. All predicted values of spreads and base correlations that lead to an arbitrage in prices, i.e. negative spreads,
default probabilities and base correlations outside [0, 1], were excluded.

Afterwards, for every predicted {S;(t), px(D)}, t =w +h,..., T, k=1, ..., K;, we compute mk(t) according to (10)
where the initial spread is the spread observed on t — h. Consequently, we create a surface of the predicted MTM values, see
Fig. 7. Each surface has its extremes that indicate the tranches recommended for buying and selling.

The empirical analysis of the curve trades’ performance is conducted using tranches 2-5 for all dates and indices
considered in Section 4.2. Since the equity tranche is quoted in percent as an upfront fee, its corresponding spread is
significantly higher than the spreads of other tranches. As it causes a large skew of our spread surfaces, we excluded it
from the study. However, the calculation of the spread and the MTM value of the tranche 2 requires as an input a value of
the base correlation of the equity tranche. Therefore, we first estimate and forecast the DSFM in moving windows using all
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Fig. 7. MTM surfaces on 20080909 (left) and 20090119 (right) calculated using one-day spread and base correlation predictions.

Table 3
Average bid-ask spread excess over the mid spread as a percentage of the mid
spread for tranches of Series 8 during the period 20070920-20090202.

Maturity 1 2 3 4 5

5Y 1.88 1.78 2.52 3.77 6.28
7Y 1.49 1.65 231 2.97 4.87
10Y 1.41 1.66 1.83 2.52 4.09

Table 4
Flatteners. Calculations based on predictions of log-spreads and Z-transformed BCs marked as LZ; based only on Z-transformed BCs marked as Z.
Tranches Maturity Mean of daily gains in % Number of executed trades
1 day 1 week 1 month 1 day 1 week 1 month
Lz Z |74 Z Lz VA |74 Z Lz Z |74 V4

2 All 0.28 0.32 0.12 0.11 0.05 0.04 751 750 744 742 728 729
3 All 0.16 0.20 0.06 0.07 0.02 0.01 754 754 750 750 734 735
4 All 0.10 0.15 0.03 0.04 0.01 0.01 754 754 750 750 735 734
5 All 0.08 0.10 0.03 0.03 0.01 0.01 741 739 733 734 735 733
All 10-5 0.19 0.21 0.06 0.08 0.02 0.02 698 754 700 750 701 727
All 10-7 0.25 0.25 0.08 0.08 0.03 0.03 736 754 730 749 726 730
All 7-5 0.14 0.15 0.04 0.05 0.01 0.00 724 750 714 748 717 733
2 10-5 0.26 0.26 0.12 0.13 0.04 0.04 476 549 483 566 495 622
3 10-5 0.12 0.17 0.05 0.05 0.01 —0.01 576 718 587 705 571 690
4 10-5 0.12 0.11 0.03 0.02 0.01 —0.01 573 731 582 722 582 695
5 10-5 0.07 0.07 0.03 0.02 0.01 0.00 587 696 572 689 577 660
2 10-7 0.34 0.29 0.14 0.12 0.06 0.05 555 542 560 571 545 635
3 10-7 0.17 0.22 0.06 0.05 0.02 0.00 635 704 635 703 616 712
4 10-7 0.12 0.13 0.03 0.03 0.01 0.00 596 721 610 717 602 719
5 10-7 0.08 0.07 0.03 0.02 0.01 0.00 604 707 590 702 595 709
2 7-5 0.17 0.18 0.06 0.06 0.02 0.00 587 721 573 708 587 708
3 7-5 0.09 0.11 0.04 0.03 0.01 —0.01 627 727 616 732 637 718
4 7-5 0.08 0.08 0.02 0.02 0.01 —0.00 592 704 595 724 623 711
5 7-5 0.06 0.05 0.02 0.02 0.01 0.00 650 704 645 718 644 703

tranches 1-5. From this analysis we obtain the forecast of the first tranche’s parameter which we use in calculations of the
final results.

Buying and selling tranches involve transaction charges. However, we do not have information on trading costs neither
the entire history of the bid and ask prices. We only analyse the bid-ask spreads of Series 8. Table 3 shows an average
distance of the bid spread and of the ask spread from the mid spread as a percentage of the mid spread. For the investigation
of the trading strategies, the tranche spread data used in this study are adjusted in the following way. The protection buyer
delivers an ask spread that is calculated as a mid spread increased by a proper percent listed in Table 3. The protection seller
receives a bid spread which is calculated as a mid spread reduced by this percentage.

For every day w < t < T — h we construct a curve trade. Namely, we fit and forecast the DSFM model and calculate
h-day forecasts of the MTM surfaces. From these surfaces we recover which two tranches and from which series optimize
a given strategy. The accuracy of the predictions is evaluated by conducting a backtesting of the trades using the historical
observations. For a given strategy and for tranches selected by the DSFM forecasting procedures we check the corresponding
observed market spreads, calculate the resulting MTM values, and register the realized P&L. Tables 4 and 5 present the
overall means of the daily gains given in percent and the number of executed trades for the flattener and steepener trades
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Table 5

Steepeners. Calculations based on predictions of log-spreads and Z-transformed BCs marked as LZ; based only on Z-transformed BCs marked as Z.
Tranches Maturity Mean of daily gains in % Number of executed trades

1 day 1 week 1 month 1 day 1 week 1 month
Lz V4 Lz V4 Lz V4 Lz V4 Lz V4 Lz V4

2 All 0.45 0.46 0.13 0.16 0.05 0.06 509 507 498 487 473 451
3 All 0.30 0.35 0.09 0.09 0.02 0.02 435 423 427 412 423 401
4 All 0.20 0.24 0.05 0.06 0.01 0.01 439 435 441 445 426 423
5 All 0.12 0.16 0.04 0.04 0.01 0.02 474 455 459 462 472 443
All 5-10 0.16 0.18 0.05 0.08 0.01 0.00 723 744 711 741 708 722
All 7-10 0.21 0.25 0.07 0.09 0.02 0.02 726 748 716 748 717 735
All 5-7 0.12 0.13 0.03 0.03 0.00 —0.01 747 749 740 746 717 727
2 5-10 0.33 0.48 0.13 0.35 0.05 0.12 80 80 76 76 61 61
3 5-10 0.02 0.11 —0.03 0.04 —0.05 —0.04 69 61 65 57 50 50
4 5-10 0.22 0.26 0.09 0.10 0.08 0.09 51 48 49 44 37 30
5 5-10 0.09 0.13 0.07 0.07 0.04 0.05 49 47 48 42 35 28
2 7-10 0.44 0.66 0.21 0.42 0.10 0.11 86 87 82 83 67 68
3 7-10 0.41 0.56 0.09 0.23 0.03 0.04 81 84 77 78 62 61
4 7-10 0.38 0.55 0.11 0.13 0.04 0.04 89 93 85 82 71 68
5 7-10 0.24 0.29 0.12 0.13 0.05 0.05 122 121 119 113 102 95
2 5-7 0.56 0.50 0.27 0.19 0.15 0.02 93 80 89 78 74 63
3 5-7 0.40 0.39 0.16 0.09 0.09 0.03 103 91 99 83 83 64
4 5-7 0.23 0.28 0.08 0.07 0.05 0.04 108 105 105 94 86 73
5 5-7 0.20 0.18 0.07 0.05 0.03 0.02 109 116 108 108 85 78

Table 6

Joint flatteners and steepeners. Calculations based on predictions of log-spreads and Z-transformed BCs marked as LZ; based only on Z-transformed BCs
marked as Z.

Tranches Maturity Mean of daily gains in % Number of executed trades

1 day 1 week 1 month 1 day 1 week 1 month

LZ VA Lz VA Lz VA Lz VA Lz Z LZ VA
All All 0.30 0.30 0.11 0.13 0.04 0.03 754 754 750 750 735 735
2 All 0.33 0.28 0.12 0.13 0.05 0.04 752 753 745 748 729 735
3 All 0.18 0.23 0.07 0.07 0.02 0.02 754 754 750 750 735 735
4 All 0.12 0.18 0.04 0.05 0.01 0.01 754 754 750 750 735 734
5 All 0.08 0.11 0.03 0.04 0.01 0.01 741 744 735 739 735 733

respectively. For every trade the two tranches are selected either from a fixed seniority (e.g. choose always tranche 2) or
always from all seniorities. Moreover, one can restrict the choice to fixed maturities (e.g. always buy 7Y maturity, sell 5Y)
or choose from maturities. We also include a strategy that allows the investor to switch between flatteners and steepeners
every day, see Table 6. If a strategy that combines flatteners and steepeners allows in addition choosing any tranche and any
maturities, then the selected tranches are the maximum and the minimum of the forecasted MTM surface.

If for a particular day there are no tranches that for a given strategy return a positive P&L forecast, we assume that the
investor decides not to take any action and we do not include this date in the overall summary of this strategy.

The spread predictions can alternatively be computed directly from the base correlations predictions by using (4). In
consequence, it is not necessary to apply the DSFM to historical spreads. In Tables 4-6 the columns labelled with Z present
the results obtained by modelling and forecasting the Z-transformed base correlations only.

The results show that the highest daily gains achieve the strategies that invest in tranche 2 and 3. Obviously, these
tranches are quoted at the highest spreads but also carry the greatest risk. The steepeners for a fixed tranche and fixed
maturities reveal a very good performance. However, these strategies were rarely carried out which means that the
conditions of these strategies are difficult to meet. The models based entirely on the predictions of the base correlations
achieve better results for one-day and one-week forecasting horizon. The models that combine the spread predictions and
the base correlations predictions show better results for one-month forecasting horizon. Since the forecasting for the longer
time horizons is less accurate, we observe a significantly better performance of the trades designed for short term periods.

6. Conclusions

This work investigates dynamics of collateralized debt obligations (CDOs) by modelling the evolution of tranche spread
surfaces and base correlation surfaces using a dynamic semiparametric factor model (DSFM). The empirical study is
conducted using an extensive data set of 49,502 observations of iTraxx Europe tranches of Series 2-10 for the time period
between 30 March 2005 and 2 February 2009. The base correlations are implied from spreads using the large pool Gaussian
copula model. The tranche spreads and the base correlations are represented as a function of the tranche seniority and the
remaining time to maturity. Every day data appear in a small number of curves that form a surface in the three-dimensional
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space. As time passes, the surfaces move through the space towards expiry and simultaneously change their shapes. The
DSFM captures their evolution simultaneously in space and time dimensions by a small number of factors. We propose a
modification of the classic DSFM and of the criterion of choosing the number of factors. The results show that the DSFM
successfully reproduces the dynamics in data. The study is completed by presenting an application in trading strategies.
We show how DSFM can be used in constructing the curve trades. Based on the DSFM predictions of the spread and base
correlation surfaces we calculate the predictions of the marked-to-market (MTM) surfaces for different investment horizons.
We analyse the performance of 43 strategies that combine different positions, tranches, and maturities. A backtesting using
historical data shows that the curve trades achieve high daily gains.
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Abstract

Supported by several recent investigations, the empirical pricing kernel (EPK) puzzle might be
considered a stylized fact. Based on an economic model with state dependent preferences for the
financial investors, we want to emphasize a microeconomic view that succeeds in explaining the
puzzle. We retain the expected utility framework in a one period model and illustrate the case when
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1 Introduction

The empirical pricing kernel puzzle emerged as an empirical phenomenon in the financial markets,
particularly with respect to the prices of European options written on the underlying stock index. Sev-
eral authors have investigated if such patterns of the EPK can be justified in a general equilibrium set-
ting and if the observed prices can be the outcome of investors’ optimal behavior. The starting point
for many of the investigations is settled within similar economic models that assume a representative
agent in financial markets whose preferences have classical expected utility representation. Addition-
ally, the risk neutral valuation principle is supposed to be valid for the financial markets by means
of pricing kernels. If the pricing kernels represent state contingent equilibrium prices they might be
identified with the v. Neumann-Morgenstern marginal utility indices of the representative agent.
Starting with Ait-Sahalia and Lo (2000), Jackwerth (2000), Engle and Rosenberg (2002), different econo-
metric methods have been applied to estimate pricing kernels with varying underlying models for the
financial markets. It turned out as a common result, that the estimates, the so called empirical pricing
kernels (EPK), have non-monotonic shape regardless of the used data sets. Typically, we find either a
U-shaped pricing kernel or a hump-shaped pricing kernel. In either cases the empirical kernels fail to
be monotone, contrasting the standard theory of expected utility. This is what we shall call the EPK
puzzle. Based on conditional estimates of the risk neutral and physical densities, it appears that peri-
ods of unusual low and stable realized and risk neutral volatility feature a hump shaped EPK, whereas
during periods of high volatility the estimates look U-shaped. Several studies report the shape of the
pricing kernel as being hump-shaped for most months between 2004 and 2007. This holds for both
the German DAX 30 index Giacomini and Hardle (2008); Grith et al. (2012) and the American S&P 500
index Barone-Adesi et al. (2013); Beare and Schmidt (2012); Polkovnichenko and Zhao (2012).
Monotonicity tests for the EPK have been proposed by Golubev et al. (2008) who construct test for the
local concavity of the utility function and Hérdle et al. (2012) who build uniform confidence bands for
the empirical pricing kernel; they apply the test to DAX 30 index EPK. Beare and Schmidt (2012) test the
concavity of the ordinal dominance curve associated with the risk neutral and physical distributions

associated with S&P 500 index. Typically, the null hypothesis of nonincreasing EPK was rejected.



Recent econometric models point at volatility as a state variable, that help explain the observed non-
monotonicities in the pricing kernel. Chabi-Yo (2012); Song and Xiu (2012) find that, consistent with
economic theory, the pricing kernel decreases in the market index return, conditional on the market
volatility As such, unconditional estimates of the PK may appear U-shaped. Christoffersen et al. (2012),
propose an augmented Heston and Nandi (2000) model that allows for U-shaped pricing kernel in a
one period model by introducing a variance preference parameter.

There is a large body of literature that investigates the mechanisms through which a locally increasing
region in the pricing kernel can occur. Hens and Reichlin (2012) conduct a systematic analysis of the
EPK puzzle by relaxing in turn the assumptions embedded in the standard expected utility models:
complete markets, risk-averse investors and correct beliefs. They calibrate a hump-shaped pricing
kernel and find that incomplete markets can alone explain the puzzle. The authors rule out local risk-
proclivity, that works only as a 'pathological example with a few states. With homogeneous agents,
misestimation of objective probability in isolations misses some essential features of the data. This
finding is in line with Ziegler (2007).

Closely related to the latter interpretation, heterogeneity in beliefs about the future realizations of the
returns occurs in several papers as a possible interpretation for the EPK puzzle. Bakshi and Madan
(2008); Bakshi et al. (2010) consider an equilibrium model with short and long equity investors that
is able to explain U-shaped pricing kernel; in particular, the positively sloped regions in the pricing
kernel occur when some investors are shorting equities. This model is able to explain some features
of the option data: decreasing negative returns in strikes of the OTM calls and the even pronounced
negative returns of put options, increasing in strike prices. However, it cannot capture the positive
returns of call options for high strikes as reported in Bondarenko (2003). Ziegler (2007) considers three
groups of heterogeneous agents with biased beliefs about the physical density but concludes that the
estimates of the mean are not realistic for the pessimistic groups. Optimism and pessimism reflect
biases in the first moment of the objective probabilities; Shefrin (2008) points out that one should
consider higher order biases in order to explain the empirical findings and emphases the bias in the

second moments that leads to risk neutral and physical distribution having different variance.



Some studies argue that modifications of standard preferences are needed to explain the data. Depart-
ing from the expected utility framework, Polkovnichenko and Zhao (2012) propose a rank dependent
utility model and estimate probability weighting function nonparametrically. For most of the years
the estimates are inverse S-shaped, consistent with a U-shaped PK but they become S-shaped in the
years 2004-2007, suggesting a hump-shaped EPK. In line with experimental findings, inverse S-shaped
weighting function imply that investors tend to overweight low-probability events while underweight-
ing the likelihood of high-probability ones. The converse holds for the S-shaped probability weighting
function but the authors do not make further investigations about the differences in these treatments.
Hens and Reichlin (2012) show that a combination of reasonable pessimism and inverse S-shaped
weighting function can explain the hump shaped EPK.

Shefrin (2008) rationalizes the EPK puzzle in a model with mixed expected utility maximizers and
agents endowed with SP/A preferences - security, potential and aspiration theory, proposed by Lopes
(1987) and developed in Lopes and Oden (1999). The idea that investors are endowed with utilities
that mirror their concerns for portfolio maximization also pervades our paper.

Another stream of literature that tries to rationalize the EPK puzzle considers state dependence. State
dependence has been traditionally used to explain the asset pricing puzzles in equilibrium models
mainly based on two utility classes: habit formation, see Constantinides (1990), Campbell and Cochrane
(1999), or recursive utilities, see Epstein and Zin (2001). In these papers, one typically assumes a
Markov switching process for the evolution of states and derive asset related characteristics in a con-
sumption based model. Garcia et al. (2003) investigate recursive utility functions with state depen-
dency in the fundamentals. Melino and Yang (2003) disentangle the roles played by state dependent
intertemporal substitution and time preference in explaining the risk aversion puzzle in a model with
state dependent recursive preferences. Veronesi (2004) extends the state dependent utility by assum-
ing that the agents possess a probability distribution over their state and introduces the concept of
'belief-dependent preferences’. A first explanation for the empirical pricing kernel puzzle via state de-
pendence has been offered by Chabi-Yo et al. (2008), who generalize the setup of Melino and Yang

(2003). The crucial idea of the authors is to suppose that regime switches are inherent of the price



process of the stock market. More specifically, within a discrete time period {0, 1,..., T}, there are two
butions, and constitute separately together with the riskless bond arbitrage free financial markets in
the sense of section 2. Furthermore, they assume a latent regime switching variables in terms of an
unobservable Markov-chain (Uy)se(o,1,.., 7} of Bernoulli-distributed random variables. The observable
price process (Sy)teqo,1,.., 73 is then modeled by S; = UtS% +(1-Uyp) S? for t € {0, ..., T}. Assuming the risk
neutral valuation principle for the latent two basic financial markets and for the observable one, the
authors drew a comparison of the associated pricing kernels via a simulation study. Indeed it turned
out that the empirical pricing kernels in the separated financial market were nonincreasing whereas
the empirical pricing kernel in the integrated financial market failed to have the property of mono-
tonicity. Therefore the empirical pricing kernel might be explained by a switch of the price processes
of the underlying in the financial market. The authors also investigate what type of conditioning - in
preferences, economic fundamentals or beliefs - are more likely to explain the EPK puzzle over time.
The time variant shape of the EPK is explained in Barone-Adesi et al. (2013) through optimism/pessimism
and overconfidence/underconfidence defined as the difference in the first and second moments of the
physical and risk neutral distribution. In this sense the authors find that the hump-shaped pricing ker-
nel stems from a mix of optimistic overconfident and pessimistic underconfident agents.

Grith et al. (2012) use the shape invariant model, a semi-parametric approach for multiple curves
with shape-related nonlinear variation, to model the dynamics of the empirical pricing kernel (EPK)
based on the hump feature. The approach allows to summarize the nonlinear variability with a few
interpretable parameters that can be used to conduct a further analysis that links the shape of the
pricing kernel to the business condition. They find that over periods of concerted negative evolution
of the economic indicators, the EPK hump will move to the right in the returns space, increase its
spread and shrink in vertical direction.

Based on the initializing thought that regime switching is caused by changes of the investors’ prefer-
ences our aim is to make the influence of these changes on the shape of the pricing kernels more ex-

plicit. We conjecture that the existing models with variance dependent component can be improved



by exploiting the time varying and possible nonmonotone relationship between returns and volatil-
ity. We apply the concept of reference points in a different context that it has been previously used in
prospect theory, underlying another type of behavior that is not focused on loss aversion but perfor-
mance comparative to a benchmark.

We propose a model that can accommodate both shapes of the EPK observed in the empirical liter-
ature while retaining the expected utility framework in a one period model and endow the financial
investors with preferences that might be state sensitive. More technically, investors switch between
two utility indexes - over terminal wealth sets - at a point that projected on the market index space we
call 'reference point. As a consequence, while the individual utility indices are concave, the market
utility may have jumps in the aggregate wealth space. In equilibrium, this renders pricing kernel non-
monotonic. Agents’ heterogeneity with respect to their reference point’ is summarized in the model
by a distribution of the reference points. This, together with preference parameters will characterize

the shape of PK.

2 Financial Market and Preferences

We consider a simple one period two-dates exchange economy model. Let [0, T] be the time interval
of investment in the financial market, where ¢ = 0 denotes the present time and ¢t = T €]0,c0[ the time
of maturity. It is assumed that a riskless bond and a risky asset are traded in the financial market as
basic securities. The price process of the riskless bond (B;)sc(o,7); is defined by B; = exp(— fot ry dx) via
a deterministic Riemannian-integrable interest process () c0,77- The price process of the risky asset
(Sy)rejo, ) is taken to be a nonnegative semimartingale with continuously distributed marginals S;.
Discrete time models may be also subsumed to this setting. Let us further suppose that the financial
market is arbitrage free in the sense that there exists an equivalent martingale measure. We further
assume that the risk neutral valuation principle is valid for nonnegative payoffs y(St). Hence there is
an unknown Radon-Nikodym density 7 of a martingale measure such that the price of any random

payoffs ¢ (S7) is characterized by



E By w(Spn]. )

By factorization with some Borel-measurable %, that we call %7 pricing kernel (w.r.t. x) with E[n|St] =
J(ST) we obtain
(o.0]
f By (0) Az (%) ps,; () dax, 2)
0

where ps, denotes a density function of the distribution of S7.

We will consider a portfolio choice problem that links risk attitudes of investors to the pricing rule of
the financial markets. Within the classical framework, that assumes a representative agent, investor
preferences may be represented by expected utilities E[u{w(ST)}] depending on the aggregate final
wealth w(St), with v. Neumann-Morgenstern utility index u. Under some further technical conditions

one can show that there is some positive § such that

du
E |x:u'1(sr): ﬁ‘]“/” (sT)

for every realization st of St. Within this framework the pricing kernel has to be nonincreasing due to
concavity of the utility index u. We shall provide a simple economic model where the pricing kernel
need not to be nonincreasing. The key idea is to consider the investors preferences representable by
state dependent utilities. An axiomatic justification for this concept of state dependent preferences is

provided by Karni et al. (1983).

3 A Microeconomic View on the EPK puzzle

3.1 State Dependent Preferences

Let us assume that we have m investors who have exogenous initial wealth wy, ..., wy,0 > 0 and stochas-
tic financial wealth in form of nonnegative random variables e; (S7), ..., ,,,(S7). Without loss of gener-
ality we assume that the numeraire bond equals one. This means that all the prices are discounted.

The terminal wealth w;(S7) fulfills the individual budget constraint:



fo Wi (X) Az (X)ps,(x) dx < wl-o+f0 e (X)Az () ps,;(x) dx, i=1,...,m. (3)

Financial wealth e;(St) at t = T depends on the initial holdings of securities and the investment choice
at t = 0. If we denote by §; the fraction of the portfolio invested in the risky asset, e; (St) =6;(St—1)+1

and 0; expresses the risk exposure given initial wealth w;.

The consumers are assumed to have state dependent utilities in terms of extended expected utility
preferences within the terminology of Mas-Colell et al. (1995). In particular, this means that consumer

i has numerical representation of her preferences as:
i
u{St, wisr)}

where 1! : R, x R, — RU{—oo} denotes a state dependent v. Neumann-Morgenstern utility index sat-

isfying:

ui(x,y)e[RfoerO, y>0, 4)
u'(x,-) is strictly increasing and strictly concave for any x = 0, (5)
u'(, y) is Borel-measurable for every y = 0. (6)

If ul(x,-) is continuously differentiable the usual Inada conditions are assumed to hold fori = 1,...,m

lim du'(x,) | lim du'(x,) |
[EE——— :OO, —_—
y=0 dy VY y—oo dy VY

=0. (7)
Investors choose their optimal wealth (w;(St), ..., W (ST)) such that the following properties are ful-
filled.

(ii) individual optimization: For each consumer i, w;(St) solves

max E |u'{Sy, w;(S7)} 8)
w;(ST)

s.t. w;(St) satisfies individual budget constraint (3).



(i) market clearing:
> Wi(St) = w(Sy). 9)
i=1

The conditions (8) and (9) describe a weak version of a contingent Arrow Debreu equilibrium (Dana and
Jeanblanc (2003), sect. 7.1). As a by product w;(S7), ..., W, (St) are Pareto optimum too, i.e. there are
no w; (S7), ..., wn (St) with U {w;(S7)} = U {w;(St)} for every i and such that U’ {w; (S7)} > U {w;(S7)}
for at least one i. By Negeishi method cf. Dana and Jeanblanc (2003) we may find nonnegative weight

vector « s.t. the aggregate preferences have extended expected utility representation

E [ua {ST) lI/(ST)}] )

for the aggregate state dependent utility u, : R2 — RU {—00, 00} defined by
def u i u
Ug(X,y) = sup 3 Y a;iu' (6, ¥) | Y1,0 ym =0, Y yi<yp.
L, li=1 i=1
These can be concluded from Lemma B.1, B.2 (cf. Appendix B). We impose a further condition on
the asymptotic elasticity of the utilities that represents a minimal requirement to describe the optimal
investment in terms of the marginal utilities and a pricing kernel.

du(x,-

limsup ) |y< 1 foranyx=0andeveryie({l,..., m}. (10)

y—o0 dy
The condition follows the guidelines of Kramkov and Schachermayer (1999); a similar condition ap-
pears in Dana and Jeanblanc (2003), Duffie (1996), Karatzas and Shreve (1998). We find this formula-

tion more convenient to establish the following theorem.

Theorem 3.1 In addition to (4) - (10) let u'(x, "), ..., u™(x,) be twice continuously differentiable for x =
0. Then uq(x,-) is continuously differentiable for every realization st of St. Furthermore for any a; >0

there exists some B; > 0 such that

dugy(st,) ’ .dui(ST,')

dy v=atn =TT g |y=iisp) = @iBiRn(s1) = PRn(s7)

for every realization st.



The proof of Theorem 3.1 is delegated to the end of Appendix A.

Theorem 3.1 is the corner stone for linking aggregated individual preferences to the market pricing
kernel with its potential nonmonotonicities. If we assume that the initial aggregate wealth sums up
to zero it is reasonable to conclude that market final wealth specializes to w(St) = St if the bond is
. St . .

in zero net supply. Let Ry = 3 be the return at maturity. Theorem 3.1 reads as follows in terms of

0
relative price.

Corollary 3.2 Let w(Ry) = Ry and let u'(x,),...,u™(x,-) be twice continuously differentiable for x = 0.
Then under (4) — (10), uq(x,-) is continuously differentiable for every realization rr, of Rt and for any

a; > 0 there exists some (; > 0 such that

dug(rr,”) du'(rr,”)

def ==
dy |y:rT = ald—y |y:wi(rT) = AR (rr) = Hx(rr),

for w(Rt) = R7. Without loss of generality we can assume that = 1.

3.2 Reference Dependent Preferences

The framework of state dependent utilities of the investors allows us to describe a switching behavior
of them when facing a threshold or a reference. We will consider a simple case when the reference
is with respect to the future realization of the market return Ry. In more detail, let us assume that
each investor i is disposed of two basic continuous, strictly increasing and strictly concave utility in-
dices u?, u} : [0,00[— R U {—oo} with u?(y), u} (y) € R for y > 0. She is changing between these indices

dependent on a threshold x; > 0 in the space of future returns i.e.
u' {re, wi (rp)} = uf Qw; rp)}Hrr € [0, %70} + uj {w; (rp)} Ty € (x;, 00)} (1n

for every realization r7 of Rr. The reader may think of u?, ul1 as utility indices representing bearish
and bullish risk attitudes of investor i, and that her revealed attitudes are adapted to the prices of the
financial market.

In order to simplify notations, let us assume that the thresholds are ordered by x; < ... < x,;,. There
exist different competing potential representative agent groups in the market with representations of

aggregate utility indices defined by

10



ul (w (Rp) = Y aeud (ox ROk = j} + Y agul (o Rk < j} (12)
k=1 k=1

In view of Lemma B.1, B.2 in Appendix B they have expected utility representations

E

ul (i (R},
j=1,...,m+ 1. Itis now a routine exercise to verify that

m-1
Ug(x,y) = up MUHxe0,x1]}+ Y ui,“(y)l{x € (xj, xjr1]} + ult (1) Hx € (xn,00)} for x,y = 0.
i=1
As a consequence the aggregate utility index might be interpreted as expressing the hegemony of dif-
ferent potential representative agents. Moreover, via Corollary 3.2 we obtain for some > 0 and any

realisation r1 of Rt the expresion for j{/;,(rT) is

dul(y) m=L dul (y)

Hrrel0,xi]}+ )

du™1(y)
dy |y=rr = dy |y=rr

dy |y:rT

I{rr e (xj, xjnl} + I{ry € (X,00)}

From this observation it becomes clear that the pricing kernel is nonincreasing separately on the in-

tervals [0, x1[,1x1, X2[, ..., 1 X, col, but it might fail to be monotone just at the switching points xj, ..., Xs,.

3.3 Reference Points and Pricing Kernel

To illustrate this point let us assume that the distribution of Ry has [0,00[ as support, and that the
investors have an identical switching point say x;; the market pricing kernel has the following repre-

sentation

dul(y) dul"(y)
(;y |y, HrTE [o,x1]}+“d—y

for every realization r7 of Rr.

|y, 1T € (x1,00)} = A (1) (13)

From (12) one can show that u}, inherits the properties of utility indices u‘i) and u‘i): it is continuous,
strictly increasing and strictly concave and fulfills the Inada conditions. Its first derivative has an in-
verse Fé that is continuously differentiable and strictly decreasing. The application of Lemma B.1 and

Proposition B.3 in Appendix B yields

dug(y) me [dug ()
S ) = [ e

=F!
& ( dy dy

11



for any positive realization rr,. '
, l—y].
For example, let us suppose that each investor i switches between CRRA utilities u'l’ (y) = J{—; with

. 1
y > 0 and Arrow-Pratt coefficients of relative risk aversion 7’1]' (j=011> y? > y} > 0). It follows that
u?, ..., ud, represent more risk averse attitudes than u}, ..., u},. In particular for stock returns lower or
equal x; we have a bullish market, whereas we obtain a bearish market when stock returns exceed x;.

For this parametrization of the utility indices, the mappings F/ : [0,00) — [0,00) are defined

1

. m+1 z _]
Ff(z):Z(—)Yi (j=01)
i=1 \&j
a;>0

If x; is larger than the intersection of F! and F"**! then

rl dug(y) | =y = pHl dug*'(y) | >l dug™'(y) |
dy y=x1] 1= dy y=x1 dy y=x1]*

for any realization r7 = x;. Therefore

du™(y) ’ dul(y) |
dy y=x1 > dy y=x1

That means that %, is not monotone at x;.

We illustrate the case of a single reference point for the following cases.
Example 1. Market utility indexes have u), and u/"*! have power representation with different aggre-

gate constant coefficients of relative risk aversion yY and y}.

_ A0 Al —_~
re “Hrr € [0,x]} + .  I{ry € (x1,00)} = Ax(r7)

Example 2. Market utility indexes u) and u/"*! have power representation with equal aggregate con-

stant coefficients of relative risk aversion y, but differ by a multiplicative constant b > 1.

r “Hrr €(0,x1]} + br * I{ry € (x1,00)} = Az(rr)

12



Returns Returns

du (rT)

Figure 1: d”"‘(m (solid), du“(m (dotted), £« (dashed-dotted) and e 1) dr ") (dashed)
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A graphical illustration for these example is in figure 1: left panel top for Y% = 0.75 and y, = 0.25 and
x1 = 1.2; ajump of similar size is depicted in the right upper panel of the same figure for the case when

utilities differ just by a constant ul1 = bu? with b=1.2 and y4 = 0.75.

Next, we exemplify the case of investors with heterogeneous reference points x;. For exposition pur-
poses we will assume that the investors are equally important, thatisa; =a» =+ = @, = a. In a sim-
ple case, we assume that all agents switch between the same two utility indices u'l’ W =u ), ({i=01)
foralli=1,---,m. Let us denote

1 m

Y I{rre(0,x;]}

i=1

F(rr) =

the cumulative distribution function of the reference points; F is basically the share of agents that have
preferences described by u! at the realization r7. The interpretation of the ordered reference points is
the following: for x; < x, we will say the investor 1 is more optimistic than the agent 2. The degree of
heterogeneity of the agents with respect to their reference points is an indicator for market uncertainty.
This point will be extended upon in section 6.

Example 3. We exemplify with the individual utility functions u/, j =0, 1.

1-y
Y
bjl—
Y

) ify>0 andy#1
ul (y) =

bjlog(y) ify=1
The positive constants by < b; retain the relationship between u° and u! in the previous example; in

that sense b; represent bullish attitudes. Given our parametric specifications for the utility indices and

F we can rewrite the formulas for %, (r7) developed in section 3.2 as

Y

T , (14)

H(ry) =

1 1
{1-F(rp)}b] +F(rr)b]

14



for every possible realization rr of Ry. We illustrate the results in Figure 1 for y° = y! = 0.5, by = 1,

by = 1.2 and m =2 (lower panel left) and m = 5 respectively (lower panel right).

Example 4. If agents have homogeneous, state dependent CRRA preferences

1—yJ
yY

) _ify/ >0 and y/ #1
w (y)=41-7/

log(y) ifyj =1

the market pricing kernel can be written as a power function

Hn(rr) = br)ry e

with non-constant coefficient of relative risk aversion y,(r7)

-0 -11-1

Yalrp) = rr | (1= F(rp)) % +E7)

and

Ya(rr)

1) .50 1 .51
b(rp) = {1 — F(rp)b]® } =+ Frp)b]' =)
T T

for w/ the optimal wealth path in state j, j =0,1.

(15)

Example 5. Introducing state dependence in both b and y results in a pricing kernel of the form (15)

with b(r7) = [{1 - Frp)} 2 + F(rp) &

1. 1Ya(rr)
rT _T)] :

A further generalization of the previous examples is possible if we consider heterogeneity of agents in

CRRA, y{ and/or constants b{ . However, then the link to F is lost. We will use notations £y r = Z,(rT)

for the models described in Examples 3 through 5, for 8 = (b,y) T a parameters vector describing pref-

erences.
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4 Investors’ Portfolio Choice

From Corrolary 3.2 and Appendix A we can establish the relationship between the optimal terminal

wealth of investor i and the market pricing kernel

1 —
w;(rr) = Li{rr, a—an(rT)} fori=1,...,m (16)
i

More explicitly, given the reference dependent utility specification in equation (11)

1 —
Iifrr, —An(rp)} = W) (rr) Lrr € [0, x;1} + ; (rr) Lirr € (x;,00)} (17)

where w{ (rp) = Ilj {aiij’;(rT)}, for Ilj () continuously differentiable, strictly decreasing on ]0,00[, the
du(y)

inverse functions of ,j=0,1.

At the same time, the optimal wealth w;(rr) also satisfies

wi(rr) = wijo+0;(rr—1)+1. (18)
for every realization rr of Rr. Equating the right hand side of equations (16) and (18), and taking

expectations we can derive the optimal weight invested in the risky asset

5 E[w)(rp)ry €10, x;1}] + E [w] (rp) 1{ry € (x;,00)}] — wio—1
- E(rp) -1

(19)
For u? denoting bearish and ul1 bullish attitudes, in the sense that there exists a threshold x so that for
du;(y) N dul(y)

dy dy

the investors invest a higher fraction of wealth in the risky assets when x; = x is small.

for y = x,

This is because LI/} (rr) > LD?(rT) for rr = x. The risk attitudes induced by a relatively smaller reference
point x; we will call 'optimism’. Obviously, the higher 67 is the higher is investors’s expected wealth
E[w;(r7)]. These are typically the agents that will take a long position in the risky assets, while short

selling might occur for agents that have their reference points further to the right. Bakshi et al. (2010)

16
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Figure 2: Market pricing kernel and (scaled) final wealth of three type of agents: mixed agent (upper

right); optimistic agent (lower left) and pessimistic agents (lower right); mw; (rr) (solid), mLD?(rT) and
mw} (rr) (dotted)
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suggest that investors shorting equities possibly generate a positively sloped region in the pricing ker-
nel.

Terminal wealth for three types of agents is illustrated in figure 2. The 45 degree line depicts the wealth
of the aggregate agent contrasting to the optimal wealth allocated to the individual investors. The port-
folio of an ’optimistic’ investor 'beats’ the market for realizations of rr at the right of its reference point
for the increasing region of the pricing kernel, whereas the portfolio of a pessimistic agents underper-

forms compared to the benchmark at the left of the reference points for the mixed and pessimistic

type.

5 Simulation Study

5.1 Comparative Statics

According to section 2, the price of the risky asset at ¢ = 0 is given by
0 —~
So Zf ST A7 (S1) Py (ST) dST. (20)
0

For a fixed probability density function ps, the pricing kernel £ has a direct effect on the price at
t = 0 through the way it weights the possible realizations of s7. For % r = .#, we analyze the effects
that the model’s F and 6 have on the price Sy. The baseline model given by equation (14) for b = b,/ by

and by = 1 is marked with solid line in figure (3).

We parametrize F to be N(1,0.05) and we investigate the effect that the change in the mean and vari-
ance of the distribution has on the price in the upper panels of figure (3). A decrease in the mean results
in higher weights associated with higher realizations for nonzero values of dF(-), while a decrease in
the variance makes the hump more pronounced by simultaneously lowering the weights of lower re-
alizations and increasing those of higher realizations around the nonzero values of dF(:). In the first
case this is due to the prevalence of optimistic investors that tilt their portfolios towards the risky asset,

triggering an increase in price Sp; in the second case, the heterogeneity of investorsreference points
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Figure 3: Impact of model parameters on the shape of PK: baseline model (solid): y =0.5, b=1.2, F =
N(1,0.05); comparative models (dashed) left panel up F = N(1.2,0.05); right panel up F = N(1,0.15);
left panel middle b = 1.4; right panel middle y = 0.25;; left panel down y; = 0.25; right panel down
F=1/2N(1,0.05)
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x;-s is lower; this increases the slope of the upward region without significant effects on the price. We
also observe that for small mean and large variance of F the humped feature disappears.

The next two panels depict the shape of the pricing kernel under various b-s and y-s. We notice that
for higher b the weights associated with higher returns are higher and hence large price Sy. In this
example, varying y makes pricing kernel rotate’ around the value of r corresponding to the mean of
F. Lower CRRA results in higher weights for higher returns and lower rates for lower returns realiza-
tions, over all domain of r7. The overall effect is an increase in the price in a similar fashion it produces
in state independent preferences case, by reducing the price per unit of probability of bad states and
conversely for the good states. If we let CRRA to vary between the two states and apply pricing kernel
specification in equation (15) we can see how the divergence between y; and y, affect the shape of the
pricing kernel and consequently the price Sy.

Finally, in the lower panel right, we allow for a ratio of investors to have state independent preferences
of type u°(as specified in the baseline model). These influence the price Sy in a negative and this effect
is more pronounced the higher the ratio of agents with preferences u° is. Obviously, the predictions

for the change in Sy will be in the opposite direction for state independent preferences of type u'.

5.2 Identifiability

In this subsection, we discuss some aspects related to the applicability of the model proposed in the
previous section in practice, when we try to fit it to empirical pricing kernel .. If we denote % (s =Y

the estimates of the pricing kernel at observation points s, for j =1,..., n and assume that

ijLng’F+€j, With€j~(0,02) (21)

the fitting problem involves finding 6* and F* that minimize

{yi— Ho.r (s;)} 22)

n
=1

J
or a weighted version of it. We demonstrate the inverse problem in a simulation exercise, for £y ¢
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given by (14) and zero error term. The pricing kernel in figure 4 was generated for parameters y° =
y! =0.5, b=1.2 and F a ed f of 400 random reference points from a normal distribution N(1,1.2). The
two panels on the left depict the pricing kernel and F; the dashed line marks the regions where F takes
values 0 or 1. These are the regions that allow us to identify parameters b and y, and consequently
F. However, if the probability density function associated with F doesn’t have compact support on
the observed domain, these components can not be identified without further restrictions. The right
panel up in figure 4 zooms in the pricing kernel at its left side so that the dashed lines are no more
visible. This allows us to illustrate the case of non-identifiably of the model; underneath this panel
we plot different combinations for y, b and F that give a perfect fit of the PK above. For instance, the
top fascicle of dotted curves depicts F for b = 1.2 and y = (0.46,0.47,0.48,0.49,0.50,0.52), and for the
next two bundles of curves we vary b to 1.3 and 1.5 respectively. Obviously, these combinations of
parameters will determine the shape of the pricing kernel in the tails, where they diverge from the true
pricing kernel in various degrees.

This exercise is relevant in practice;in particular, observations in the tails are sparse and the pointwise
confidence intervals (or confidence bands) for the EPK are wider in the tails regions. This means that
when trying to fit the model to the real data there will be a set of possible solutions that minimize the
objective function (22). The characterization of these solutions are beyond the scope of this paper and

constitutes the object of future work.

6 Real Data Analysis

Due to the identification problems explained in section 5.2, a quantitative analysis in terms of 0 and
F over time is not feasible due to the multiplicity of solutions. The authors are investigating possible
solutions under suitable constraints in a concurring study. However, the comparative statics analysis
in subsection 5.1 allows us to make a qualitative evaluation of the model for dynamically estimated PK.
Further on, we refer to the results of Grith et al. (2012), GHP as of now. Their EPK estimates relate to

the European call and put options written on the German DAX 30 index, between June 2003 and May
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2006, at a monthly frequency. The authors assume that the conditional physical density is stationary,
that s, ps, evolves slowly and most of the variation in the pricing kernel is due to gs,. If we extend the
equation 20 to the contingent claims, we can explain the time variable patterns of the option prices
through the changes in the pricing kernel. GHP relate the time variability of the pricing kernel hump
to the economic conditions; in table 4 they report significant correlations between the changes in the
shape of the EPK and the business indicators.

The changes in the height of the hump varies positively with the return on the index. The increase in
the 'peak’ in our model can be induced either via F or through a larger b (b,) or lower y (y;). The later
causes an increase in the hump’s spread, which is at odds with another finding of the GHP paper that
suggests that the spread and the height of the peak are negatively related. It means, that in terms of our
model, the mechanism that triggers an increase in the peak works through b and/or F. This suggestion
is supported in the model proposed by Basak and Pavlova (2012), who add to the utility function of
their institutional investors a state dependent component that is directly related to the performance of
the index; while the retail investors have standard preferences. The fraction of institutional investors is
a key parameter in their model and its increase exercises pressure on the stock index pushing it up; the
same effect is present in our model by increasing the number of agents that have u! type of preferences
(or have reference dependent preferences).

The hight of the EPK hump might respond to the business conditions as well, as suggested by the
correlations with the credit spread - the difference between the yield on the corporate bond, based on
the German CORPTOP Bond maturing in 3-5 years, and the government bond maturing in 5 years. Its
countercyclical relation to the economic conditions and the negative relation to the height of the peak
imply that its decrease pushes up the level of the peak. It is not yet clear how co-movements between b
and F happen in the dynamics but the evidence so far seems to suggest that b may be interpreted as a
magnitude parameter, that is increasing in S; over time, while the overall economic conditions impact
F.

The scale and shape parameters that modify the PK in the horizontal direction respond to changes in

the yield term slope. The slope, computed as the difference between the 30-year government bond

23



yield and three-month interbank rate, has been shown to be pro-cyclical in Estrella and Hardouvelis
(1991). A smaller slope shifts the increasing region of the PK to the right and widens its spread. These
effects become effective in our model through the positive changes in the first two moments of F,
meaning an increase in the pessimism and diversion of investors’ reference points on the domain of
future returns.

The arguments above suggest that our model delivers sensible mechanisms of PK’s dynamics. We ob-
serve that at least what the changes in the EPK shape are concerned, they do not necessarily involve .
It is possible that through this parameter, models that mimic other features of the pricing kernels, that
are not consistent with the PK puzzle - e.g. generalized disappointment aversion model in Routledge
and Zin (2010) - be reproduced; such generalizations necessitate further efforts and constitute material
for new studies. On the other hand, it is possible that the mechanism that we suggest only manifests in
certain circumstances while agents have permanent structural biases; explanation of inverse S-shaped
weighting function Polkovnichenko and Zhao (2012) may practically hold for all periods but cease to
capture some features in the data during some economic conditions. We do not rule out the possibility
that the asset prices depend on investors’ subjective beliefs regarding future realizations of St and our
model can incorporate such extensions. Based on our analysis, we find that the investors incorporate
information from the other part of the economy when making investment decisions. Our explanation
of reference dependent preferences seems a plausible explanation for the time varying shape of the

EPK.

7 Conclusions

Based on our specification for the marginal investors’ preferences, the v. Neumann-Morgenstern util-
ity index of the aggregate agent might switch between different 'regimes’, meaning possible jumps in
the pricing kernel. We empirically investigate its switching behavior in a simulation study and inter-
pret the time varying patterns of real data in connection to our model. The theoretical model encom-

passes a fixed investment horizon, since we are only taking a snapshot of the market and try to explain
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the observed shape in the pricing kernel. The natural extension for building a dynamic equilibrium
model, starting from the static approach is to endogenize the formation of reference points. 'Keep-
ing up with the Joneses’ or status concerns Hong et al. (2012), the history of previous gains and losses
Barberis et al. (2001), learning Benzoni et al. (2011), performance relative to a benchmark Basak and
Pavlova (2012); Tang and Xiong (2012) are further possible explanations and extensions that need to
be investigated and that come close to our approach. The model can be extended to other markets:

commodities, interest rate and credit derivatives, in order to investigate if similar behavior occurs.

A Appendix

The aim of this section is to provide a proof for Theorem 3.1. We continue with the model of sec-
tion 3, retaking all assumptions and notations. Firstly, we characterize the optimal terminal wealth
w1 (ST), ..., Wiy (ST) of the individual investor.

The Inada conditions together with (5) imply that for any i € {1,..., m} and every x > 0 the mapping
du'(x,)
dy
I;(x,-). This enables us to apply the dominated convergence theorem to show

|]0, ool is injective onto ]0,00[ with continuously differentiable, strictly decreasing inverse say

(A1) continuity of mappings
gL, 10,00[— R,y — Ii{sr, y K (sp)} Hn(s7) (572 0,i € {1,..., m}).
(A2) lin}) gﬁT (y) =coand ylim géT (y»)=0.
y—> — 00

We are now ready to extend the classical characterization of the optimal terminal wealth to the case of

extended expected utility preferences.

Theorem A.1 Assuming (4) — (10), there exists y; > 0 such that

w;(St) = Ii{ST, yi £7(ST)} foreveryi=1,...,m
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Proof:
Let us fix i € {1,..., m} and denote z; def wé + Ele; (ST)#£%(ST)]. Since z; > 0 we may find in view of (A1),
(A2) some y; > 0 with g(y;) = x;.

Let w(St) be a nonnegative random variable with E[w(S;) . £ (ST)] < z;. Then

Elu{St, w(STN + yi{zi —Elw(ST) A7 (ST)1} = yizi + Elu{ST, w(ST)} — yi w(ST) A7 (ST)] <

yizi +sup E[u(St, x) — yix A7 (ST)] =

x=0

Vizi + E[ulST, Ii{ST, yi K0 (STH — yili{lST, i n (ST A7 (ST)] = E[wd{ST, I; (ST, ¥i K2 (ST}

Therefore I;(St, y; £7(ST)) solves the optimization problem of investor i. Moreover, the numerical
representation U; of investor’s i preferences is strictly concave in view of strict concavity of u(x, -) for

every x = 0. In particular [;(St, y;£7(St)) is the unique solution, hence being identical with w;(St). J

Before starting with the proof of Theorem 3.1 let us consider for purposes of reference the classical
case of the investor being expected utility maximizer. Indeed as an additional corollary of Theorem
3.1, we may retain the folk result concerning the risk neutral price valuation and the v. Neumann-
Morgenstern utility index of the representative agent. More precisely, let us assume that there exist

mappings ui, ..., u, from R, into R U {—oo} satisfying ul(x,) = uy, ..., u™(x,-) = Uy, for x =0, and
(A3) u1(),..., um(y) eRfor y>0,
(A4) u,,..., uy are continuous, strictly increasing as well as strictly concave.

Then
def uz uu
u(y) = sup{Zaiui(y,') | Y1) Ym =0, Zyi Sy} =uq(x,y) for x,y = 0.

i=1 i=1
We shall impose the so called Inada conditions on the state independent utility indices uy, ..., U, i.e.
(A5) u11]10,00l, ..., u;n110,00[ are assumed to be continuously differentiable satisfying

dlﬁ _ ]
el_l”l’(l) dy |y:e_oo' e—co dy |y:e_




(A6) E[L(yAR(STN), ..., ElLn(yA7(ST))] < oo for any y > 0, where I,..., I, denote the inverses of
du du,,
4y dy

respectively.

We may conclude immediately from Theorem 3.1 the announced result.
Proof of Theorem 3.1:

Without loss of generality let us set {1, ..., r} def

{i €{l,..,m}| a; > 0}. Then, defining g; d:efaiui, we have
Uy = i gi, and we may apply Lemma B.1, B.2 and Proposition B.3 (cf. Appendix B). Then, in view of
LernnllzalB.l, B.2 and B.3, we obtain
;
uatsr, wlsp)} = Yt (sr, (s

for every realization st of St.

On one hand by Theorem A.1, there exist yy, ..., ¥ > 0 such that

w;(St)=I1;(St,yi£7(ST)) >0fori=1,...,r.
On the other hand, due to Proposition B.3, u,(s7,-)|10,00[ is differentiable for every realization s,
satisfying

du'(st,) _ dua(st,)
i d—y |y=wf(sr)_ d—y |y=u7(ST)

for i € {1,...,r} and any realization sr. Notice that by construction the random variable w(St) has

strictly positive outcomes only. Now, the statement of Theorem 3.1 is clear.

B Appendix

Throughout this section let the mappings g1, ...g; : R2 — RU {—oo} satisfy the following conditions:
(BO) &¢1(x,9),...,8r(x,y) eRforx=0,y>0;

(B1) gi(x,),..., 8r(x,-) are continuous, strictly increasing and strictly concave for x = 0;

(B2) g1(-,y),..., 8- (, y) are Borel-measurable for y = 0.
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Furthermore, let g : R2 — R U {—o00, 00} be defined by

r r
g(x,y)=SUP{ gi(x,yi)Iyl,...,yrEO,ZyiSy}.
=1 i=1

1

1

,
Indeed g(x,0) = Y gi(x,0) e RU {—oo} for x =0, and
=1

2 8ilx,y) <o

.
—o0<Y g Yy =glry =
i=1 r i=1

for x =0, y > 0 due to (BO), (B1).

,
Lemma B.1 Foranyx,y =0 thereis some uniquep(x,y) = (¢p1(x, ), ..., 0 (x,y)) € RY. such that Y. ¢;(x,y) <
i=1
y and
.
Y gi{xdilx, )} =g, ).
i=1

.
Furthermore, Y ¢;(x,y) =Y.
i=1

Proof:
Let x,y = 0. For y = 0 the statement of Lemma B.1 is obvious. So let y > 0, which means g(x, y) € R.

Due to (B1), the mapping

r r r
Y visy ) 8ilxy) =gy - 1} =R, (Y10 ¥r) = Y &ilX, ¥i)
i=1

i=1 i=1

f: {(yl,...,y,) eR)

is continuous, strictly concave, and defined on a nonvoid convex compact set. Therefore f attains it
r
maximum at a unique ¢(x, y). Obviously, Y. ¢;(x,y) = y because f is strictly increasing too by (B1).
i=1

The proof is complete.

Lemma B.1 defines a mapping ¢ = (¢1, ..., ;) : R2 — R’,. It is Borel-measurable as will be shown now.
Lemma B.2 ¢ is Borel-measurable.

Proof:
It suffices to show that <p‘1 ( ,)r(l [0, ai]) is a Borel-subset of IR_ZP For this purpose define for any (a, ..., a;)
1=

from R/, the mapping gg,. .4, : R+ x Ry — RU{—o0} by
r r r
8ar..a,(6,Y) =sup ) (%, y) | (v, ¥ € X (0,ail, ) yisyy.
i=1 = i=1
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Notice that g4,..4,(x,y) € R for x = 0,y > 0, analogously to g(x,y) € R for x = 0,y > 0. Furthermore

-
g1(x,4),..., 8 (x,-) are continuous for any x = 0. Hence, setting Z4, 4, = ,Xl [0,a;] x Q™
i=

r -1
Sara 200D = | (Zaigi(-,yl—)) (12,001 x (zeR.

()’1 ----- _Vr)a%al...ar i=1

’
Zyl',OO
i=1

Thus g;llm a, (12,00 is a Borel-subset of R? for every z € R by assumption (B2). Then we may conclude

that

-1
¢>—1( X [0, di]) :( SUp  8hy...b, ‘ga1-~~“r) (ion
i=1 (bl ..... br)E@i

is a Borel subset of R2 for any (ay, ..., a,) € R, which completes the proof.
In order to characterize the mapping ¢ in terms of derivatives of the functions g;(x,-), ..., g-(x,), it is

customary to impose the Inada conditions, i.e.
(B3) for any x = 0 the mappings g1 (x,-)|]10,00l, ..., g (x,-)110,00[ are assumed to be continuously differ-
entiable satisfying

. 0g'(x,)
ll_li% ay |y:e =00 =00 6)/ |y:e -

The Inada conditions together with condition (B1) imply that for any i € {1,...,r} and every x = 0 the
agl (x) ')

mapping |]0,oo[ is injective onto ]0,00[ with continuously differentiable, strictly decreasing

inverse say I;(x,-).

Proposition B.3 Let the assumptions (B0) - (B3) be fulfilled, and let g,(x,-)|10,00l, ..., 8 (x,-)]10,00[ be
twice continuously differentiable.
Then for any x = 0 the mapping g(x, ) |]0,oo[ is differentiable satisfying

9g(x,) ag(x,")
P(x,y) = [h{x,g—xly},...,lr{x,g—x|y}

0.
3y 3y fory>

Proof:
-
Let for x = 0 the mapping Fy : ]10,00[x]0,00[— R be defined by Fy(y,z) = X I;(x,z) — .
i=1
Since the mappings gi(x,-)[]10,00], ..., g (x,)[]10,00[ are assumed to be strictly concave and twice con-

tinuously differentiable, their second derivatives are strictly negative. Then by local inverse theorem
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the mappings I (%, ), ..., I+ (x,-) are continuously differentiable, having strictly negative derivatives. In
particular Fy is continuously differentiable, satisfying

or,

5 \(y.z);é 0 for y,z> 0.

Furthermore, since I (x,), ..., I (x,-) are continuous and strictly decreasing mappings onto ]0,c0l[, we
may find for any y > 0 a unique ¢(y) > 0 with F(y, ¢(y)) = 0. Drawing on the implicit function theorem,
¥ — @(y) defines a differentiable mapping ¢ :]0,00[—]0, col.

Moreover, for y >0 and yj, ..., ¥, = 0 with i ¥i <y, we may conclude

i=1

_Z g6,y +e(y— Z yi) = @y+ Z {gi, y) +o(yi} <

i=1 i=1 i=1

P y+ ) sup{gi(x,2) + )z} =

i=12=0

Py + Y Lgilx, Ii(x, ()} + (M Li{x, ()} =

i=1
Y 8ilx, Iilx, (W — Fely, o} = ), gilx, Litx, (1)}
i=1 i=1

This means

g, y) =) gilx, Iifx, (M},
i=1

and hence by Lemma B.1

™ ¢, y)=Uilx, )], ..., I [x, p(P)]).

As a further consequence g(x,-)|]0,00[ is differentiable satisfying

d(i I,-(x,-)ow)
i=1

dLi(x,) o
S o) % =)

dy

dglx,”) |
4 |y—;w(y)

;
For the last equation notice that ) I;(x,-) o ¢ is just the identity on ]0,00[. In view of (*) the proof is
i=1
complete.
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1 Introduction

Generalized additive model (GAM) has gained popularity on addressing the
curse of dimensionality in multivariate nonparametric regressions with non-
Gaussian responses. GAM was developed by Hastie and Tibshirani (1990)
for blending generalized linear model with nonparametric additive regression,
which stipulates that a data set {Y}, XlT}:Lzl consists of iid copies of {Y, XT}
that satisfies

EVIX) =0 {m (X)} ,var(Y|X) = a(¢) V" {m (X)}, (1)
d
m(X)=c+ Zz=1 my(X1),

Y =V {mX) +0(X)e, o0 (X) = {var(V|X)}/?

where the response Y is one of certain types, such as Bernoulli, Poisson
and so forth, the vector X = (Xl,Xg,...,Xd)T consists of the predictors,
my(-),1 < 1 < d are unknown smooth functions, the white noise e satisfies
that E (¢|X) =0 and E (¢ |X) = 1, while c is an unknown constant, a (¢) is a
nuisance parameter that quantifies overdispersion, and the known inverse link
function b’ satisfies that v’ € C%(R),b” (8) > 0,0 € R, see Assumption (A2)
in the Appendix. In particular, if one takes the identity/trivial link, model (1)
becomes a common additive model, see Huang and Yang (2004).
The joint density f (x) of (X7, ..., Xq) is assumed to be continuous and

0 <ep <infyggqge f (%) < supyep e f (%) < Cf < o0,

see Assumption (A4) in the Appendix. Furthermore, for each 1 <1 < d, the
marginal density function f; (x;) of X; has continuous derivatives on [0, 1] and
the same uniform bounds C; and cy. There exists a o-finite measure A on R
such that the distribution of Y; conditional on X; has a probability density
function fyx (y;b' {m (x)}) relative to A whose support for y is a common {2,
and is continuous in both y € £ and z € [0,1]%.

It is often the case that in model (1) the probability density function of Y;
conditional on X; with respect to a fixed o-finite measure forms an exponential
family:

fYilXi,0) = exp [{Yim (Xq) = b{m (Xi)}} fa(é) + h(Yi,9)] . (2)

Nonetheless, such an assumption is not necessary in this paper. Instead, we
only stipulate that the conditional variance and conditional mean are linked
by

var (Y|X =x) = a(¢)d” (b')_1 {E(Y|X = x)}} .
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For identifiability, one needs
E{m (X;)} =0,1<1<d

that leads to unique additive representations of m(x) = ¢ + Zle my (x).
Without loss of generality, x take values in x = [0, 1]d.

Model (1) has numerous applications. In corporate credit rating, for in-
stance, one is interested in modelling how the default or non-default of a given
corporate or company depends on the additive effects of the covariates in
financial statements, i.e., the response Y = 0, 1 with 1 indicating default, 0 in-
dicating non-default, and the predictors are selected from financial statements
with a logit-link (') " (z) = log {z/ (1 — 2)}. Our method has been applied
to 3,472 companies in Japan within a 5-year default horizon (2005-2010), and
it has been discovered that the current liabilities and stock market returns of
current, 3 months and 6 months prior to default are very significant as rating
factors, and the default impact of the selected factors are examined via the
simultaneous confidence corridors (SCCs) in Figure 1 (a)-(c). More details of
this example are contained in Section 6.

The smooth functions {ml(ﬂz:l)};l:1 in (1) can be estimated by, for instance,
kernel methods in Linton and Hérdle (1996), Linton (1997) and Yang, Sper-
lich and Hérdle (2003), B-spline methods in Stone (1986) and Xue and Liang
(2010), and two-stage methods in Horowitz and Mammen (2004). To make
statistical inference on these functions individually and collectively, however,
the proper tools are nonparametric simultaneous confidence corridors (SCC-
s) and consistent variable selection criteria, both of which are absent in the
literature.

Nonparametric SCCs methodology has become increasingly important in
statistical literature, see Xia (1998), Fan and Zhang (2000), Wu and Zhao
(2007), Zhao and Wu (2008), Ma, Yang and Carroll (2012), Wang et al. (2014),
Zheng, Yang and Hérdle (2014), Gu et al. (2014), Cai and Yang (2015) and Gu
and Yang (2015) for recent theoretical works on nonparametric SCCs. Cap-
turing global shape properties by SCCs of the functions {ml(acl)}le in GAM
(1) is of prime importance. A nonparametric component can be replaced by a
parametric one covered entirely within the SCCs, significantly decreasing the
estimation variance, see He, Zhu and Fung (2002), He, Fung and Zhu (2005)
for discussions. As far as we know, SCCs has not been established for functions
{my (a:l)};izl in GAM (1) due to the lack of estimators that fit in Gaussian pro-
cess extreme value theory. Using the spline-backfitted kernel (SBK) smoothing
of Liu, Yang and Héardle (2013), we extend the SCCs works of univariate non-
parametric regression in Bickel and Rosenblatt (1973) and Hérdle (1989) to
those of GAM. The SBK smoothing has been well developed in Wang and
Yang (2007), Wang and Yang (2009), Liu and Yang (2010) and Ma and Yang
(2011) for the much simpler additive model (i.e., GAM with V' () = z) in-
cluding the construction of SCCs, but ours is the first work on SCCs on GAM
with nonlinear link.

While variable selection for nonparametric additive model has been in-
vestigated under different settings, see Wang, Li and Huang (2008), there is
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Confidence Level =0.95 Confidence Level =0.95

(a) Current Liability (b) 3 Months Earlier Return

Confidence Level = 0.95 Cumulative Accuracy Profile

05

Default

0 0s 1 0 05 1
Population

(c) 6 Months Earlier Return (d) The CAP Curves

Fig. 1 Plots of the rating factors in (a)-(c): SBK estimators (thin), 95% CIs (dashed) and
95% SCCs (thick). Plot of the CAPs defined as (24) in (d): Perfect (dashed), GAM (thick
solid), GLM(thin solid), noninformative(dotted).

lack of theoretically-reliable variable selection approach for GAM. To the best
of our knowledge, only Zhang and Lin (2006) proposed a sounding method
named “COSSO”, which stands for components (CO) LASSO using penalized
likelihood method, for selecting components in nonparametric regression with
exponential families, but it leaves the asymptotic distributions and variable
selection consistency to be desired. Instead, we tackle this issue by building
a BIC type criterion based on spline pre-smoothing (first stage in the SBK),
which is asymptotically consistent and easy to compute. Our work extends the
BIC criterion for additive models (trivial link) in Huang and Yang (2004). Such
an extension is challenging since a much more complicated quasi-likelihood is
used in GAM with possibly nonlinear link instead of the log mean squared
error for trivial link, see the Appendix for details.

The rest of paper is organized as follows. The SBK estimator and its o-
racle property are briefly described in Section 2. Asymptotic extreme value
distribution of the SBK estimator is investigated in Section 3, which is used



GAM: SCCs and Variable Selection 5

to construct the SCCs of component functions. Section 4 introduces a BIC
criterion in the GAM setting and provides results on consistent component se-
lection as well as the implementation, followed by the Monte Carlo simulations
in Section 5. Section 6 illustrates the application of our SCCs and BIC meth-
ods to predict default of nearly 3,500 listed companies in Japan. Technical
assumptions and proofs are presented in the Appendix.

2 Spline-backfitted kernel smoothing in GAM

In this section we briefly describe the spline-backfitted kernel (SBK) estimator
for GAM (1) and its oracle properties obtained in Liu, Yang and Hérdle (2013).
Let {X;,Y;};_, be ii.d. observations following model (1). Without loss of
generality, one denotes x 1 = (z2,...,2q4) and m_ (x_1) = c+ 2722 my (z;) and
estimates mq (x1).

As a benchmark of efficiency, we introduce the “oracle smoother” by treat-
ing the constant ¢ and the last d — 1 components {m; (z;)}_, as known,
then the only unknown component m; (1) may be estimated by the follow-
ing procedure. Although the exponential family Equation (2) does not nec-
essarily hold, one still defines, as in Severini and Staniswalis (1994), for each
x1 € [h,1 — h] a local log-likelihood function I (a) =1 (a,x1) as

n

Z(aﬂﬁl) =n! Z Yi{a+my (X 1)} —b{a+m1(X; 1)} Kp (X1 — 1),

i=1
(3)
where a € A, a set whose interior contains ms ([0, 1]). The oracle smoother of
mq (z1) is
M1 (z1) = argmax,c 4 L (a,x1).

Although my 1 (z1) is not a statistic since ¢ and {my (wl)}fzz are actually
unknown, its asymptotic properties serve as a benchmark for estimators of
mq (z1) to achieve.

To define the SBK, we introduce the linear B spline basis for smoothing;:
by(z) = (1 —|z—&§[/H) ,0<J < N+1where 0 =¢, <& < - <
&n <&ny1 =1 are a sequence of equally spaced points, called interior knots,
on interval [0,1]. Denote by H = (N +1)"" the width of each subinterval
[§J,§J+1] ,0 < J < N and the degenerate knots by §_; = 0,5 = 1. The
space of [-empirically centered linear spline functions on [0,1] is

N+1

Goi= {gl cg () = ZJ:O Anby (z1) ,En {g1 (X1)} = 0} 1<i<d, (4)

with empirical expectation E, {g (X;)} = n™*>." ; g1 (X;;). The space of
- . . d .
additive spline functions on x = [0, 1] is

0 _ _ d . 0
G'n - {g (X) =c+ Zl:l g (xl> S Rv g € Gn,l :
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The SBK method is defined in two steps. One first pre-estimates the un-
. d . - .
known functions {my; (x;)},_, and constants ¢ by linear spline smoothing. We

define the log-likelihood function L (g9) as

~

Lig)=n""Y"" [Vig(Xs) = b{g(X)}] g €G3 (5)

According to Lemma 14 of Stone (1986), (5) has a unique maximizer with
probability approaching 1. Therefore, the multivariate function m (x) can be
estimated by an additive spline function:

m (x) = argmax,cgo L(g). (6)

The spline estimator is asymptotically consistent, and can be solved efficiently
via generalized linear models. However, as stated in Wang and Yang (2007) and
Liu, Yang and Hardle (2013), spline methods only provide convergence rates
but no asymptotic distributions, so no measures of confidence can be assigned
to the estimators. To overcome this problem, we adapt the SBK estimator,
which combines the strength of kernel smoothing with regression spline. One
then rewrites m (x) = &+ Zld:1 my (z;) for ¢ € R and my (z;) € G%,l and
defines a univariate quasi-likelihood function similar to I (a,z;) in (3) as

~

l (a,xl) = n_l Z:;l [Y; {a, + 7/7\7,71 (Xi,,l)} — b{a + T/T\lil (Xi771)}} Kh (Xil - xl)

with m_ (x4) =¢c+ 27:2 my (z1) being the pilot spline estimator of m ;1 (x_1).
Consequently, the spline-backfitted kernel (SBK) estimator of my (z1) is

MsBK,1 (T1) = argmax,¢ 4 I (a,z1). (7)

We now introduce some useful results and definitions from Liu, Yang and
Hérdle (2013), under Assumptions (A1)-(A7) in appendix, as n — oo,

sup, (s (21) = i1 (2] = Ous. (n*logn). (8)
x1€[0,1

771}@1 (131) — may (1‘1) = bia51 (1‘1) h2/D1 (331)

7ty K (Xa —21) o (X)ei/Da (@) +rica (1) (9)
in which the higher order remainder 7 1 (x1) satisfies
sup  [rg,1 (z1)| = Ous. (n_1/2h1/2 log n) . (10)
z1€[h,1—h]

The scale function D; (z1) and bias function bias; (1) are defined in Liu,
Yang and Hérdle (2013) as:

o (11) = E[" {m (X)} | X1 = 21], 0® (21) = E{0* (X) | X1 = 21}

Dy (¢1) = fi(21) o} (1) ;0] (21) = | K5 f1 (21) 0% (a1). (11)
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biasy (21) = py (K) X {m (1) Dy (21) +m (z1) f (931)‘75 (xl)/
—{mh @)Y [ @) B {m (X)} X0 = o]

where ||K|2 = [ K2 (u)du, jis (K) = [ K (u) udu. The above equations (8),
(9) and (10) lead one to a simplifying decomposition of the estimation error
mspx,1 (71) —mi (z1)

sup ’m:SBKl(IM) m (z1) 12 K (X — )0 (X;)ei/D1 (21)
z1€[h,1—h] =1

=04 (n_1/2h1/2 logn+n_1/2 logn+h2) . (12)
The decomposition in (12) is fundamental for constructing SCCs in section 3,
and it follows from Theorems 1 and 4 of Liu, Yang and Hérdle (2013), which
were proved under weak dependence. A similar Theorem 2 in Horowitz and
Mammen (2004) for the two-stage estimator was established only for a fixed
x1, not uniformly for z; in the growing interval [h, 1 — k], and exclusively for

iid data, not dependent data, see detailed discussion on page 621 of Liu, Yang
and Hardle (2013).

3 GAM inference via simultaneous confidence corridor

In this section, we propose SCCs for GAM components based on the SBK
smoothing, extending the works for univariate nonparametric function esti-
mation in Bickel and Rosenblatt (1973) and Hardle (1989).

3.1 Main Results

Denote a, = v—2logh,C (K) = |K'|3]|K|;> and for any a € (0,1), the
quantile

Qu(a) = a +a;* [log { V/C(K)/ (2m)} ~log {~log VT —a}].  (13)
Also with Dj (z1) and v? (z;) given in (11), we define
o (z1) =020 20 (20) DT (21) (14)
Theorem 1 Under Assumptions (A1)-(A7), as n — oo

lim P {Supmle[h 1-n) [Mspr (1) —ma (21)] /on (1) < Qn (a)} =l-a

n—oo

A 100 (1 — «) % simultaneous confidence corridor for my (z1) is

msBK,1 (1) £ 0 (21) Qn (@) . (15)

The above SCC for component function m; (z1) resembles the SCCs in

Bickel and Rosenblatt (1973) and Hérdle (1989) for estimating unknown uni-

variate nonparametric function, although it is for multivariate nonparametric
regression.
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3.2 Implementation

To satisfy Assumption (A4), one could use the transformed U;; = Fy; (Xy)
instead of X;; as predictors for each [ = 1,...,d and i = 1,...,n, where F,,; is
the empirical distribution of (X1, ..., X,;). We still use symbol X instead of
U to avoid involving new symbols, but the X variates have been transformed
in simulation study and applications.

To construct the SCC for m; (z1) in (15), one needs to select the bandwidth
h and the number of knots N to evaluate mgpk 1 (z1), @Qn () and o, (z1)
given in (7), (13) and (14).

Assumption (A6) requires that the bandwidth for SCCs be different from
the mean square optimal bandwidth Ay, ~ n~!/® (minimizing AMISE) in
Liu, Yang and Hérdle (2013). This is due to the two conflicting goals in SCCs
construction: coverage of the true curve and narrowness of the corridor, are
not quantifiable in a single measure to minimize, such as the mean integrated
squared error. We therefore take h = hopt(log n)~Y4 as a data-driven under-
smoothing bandwidth for SCCs construction to fulfill Assumption (A6), where
hopt is computed as in Liu, Yang and Hérdle (2013), page 623-624. Recent ar-
ticles on SCCs for time series, such as Wu and Zhao (2007), Zhao and Wu
(2008), have used similar undersmoothing bandwidths.

For a given [ and a chosen bandwidth h, one can easily estimate mgpxk 1 (1)
and Qp, () as in (7), (13). To evaluate o, (z1), one needs to estimate vy (z1)
and Dy' (x1) given in (11), i.e., estimating f (v1),0% (z1) and o2 (1). The
density function f (z1) is estimated by f(xl) =n Y0 Khpor (Xi1 — 1),
where hrot is the rule-of-thumb bandwidth in equation (5.8), page 200 of Fan
and Yao (2003), namely hroT = (&/7?/3)”5 fiy (K) | K||2/° n=1/56, in which
6 is the sample standard deviation of {X;;}; ;. We further illustrate the spline
estimates of o7 (z1) and o2 (z1) below:

One partitions min; X;1 =t10 < -+ < t;, v4+1 = max; X;; where to satisfy
Assumption (A7) in the Appendix, the number of spline interior knots equals

max (1,min(tn1/4logn+1J ,n/4d —1/d] —1)) , (16)

which ensures that the number of parameters in equation (6), 1 + d (N + 2),

. . =3 o~ N+3 ~ 3
does not exceed n. An estimator for o7 (1) is > p_g al,km’f—t—zk; ar k(1 — tl,k—3)+

where {al,k}ﬁ’j minimize
n 3 5 2
z; [b// X )} {Zk_ al szl + Z a1 k tk_3)+}:| , (17)

and o2 (z1) can be estimated as Zk 0 Q1,kTT +Zk a1k (21 — tie— 3) where

{al,k’}kzo minimize

n N+43 2
Z - b {m(X;)} {Z ap X5+ Z ar, (X1 — tk—s)iH . (18)

=1
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The resulted estimate &, (x1) of o, (z1), using (17) and (18) satisfies
SUP,, efn,1-n] |Tn (21) — 0 (21)] = Op (n77) for some v > 0, see Liu, Yang
and Hardle (2013) Section 5 for details. This consistency and Slutsky’s theo-
rem ensure that

P {Supmle[h,lfh] IMsek,1 (z1) —ma (21)] /6n (21) < Qn (a)} —1-a

as n — oo, and therefore mgspk 1 (1) £ 64 (1) Qn (@) is a 100 (1 — ) % si-
multaneous confidence corridor for my (x1). The SCCs constructions of other
components ms (22) , ..., mg (zq) are similar. It is worth while to emphasize
that, based on extensive simulation experiments, the estimators mgpk 1 (1),

Qn (a), f(xl) and &, (x1) remain stable if A and N slightly vary.

4 Variable selection in GAM

In this section, we propose a Bayesian Information Criterion (BIC) for com-
ponent function selection based on spline smoothing in step one of the SBK
estimation for GAM and an efficient implementation follows.

4.1 Main Results

According to Stone (1985), p.693, the space of I-centered square integrable
functions on [0, 1] is defined as

H) ={g:E{g(X))} =0,E{¢* {Xi}} <o0,1 <1 <d}, (19)

and the model space M is
d 0
M={s=c+ ¥} at)ceracniisisal. o

To introduce the proposed BIC, let {1,...,d} denote the complete set of
indices of d tuning variables (X1, ..., X4). For each subset S C {1,...,d}, define
a corresponding model space Mg for S as

Ms={g()=c+> _ alx)iccRgeHles}),

with H given in (19), and the space of the additive spline functions as

Gh g = {g(X) :C+Zlesgz (21);c€R, g €Gy L € 5}7

with G2, given in (4). Following Definition 1 of Huang and Yang (2004), the
set Sy of significant variables is defined as the minimal set S c {1,...,d}
such that m € Mg. According to Lemma 1 of Huang and Yang (2004), the
set Sy is uniquely defined. Standard theory of Hilbert space and subspace
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projection implies that the set Sy is also the minimal set S C {1,...,d} such
that E{m (X)—ms (X)}? = 0 in which the least squares projection of function
m in Mg is
mg = argmin E {m (X) — g (X)}*. (21)
geEMs

To identify Sy, one computes for an index set S the BIC as
-~ N,
BICg = —2L (ng) + — (logn)® (22)
n

where L (-) is given in (5), g (x) € G ¢ is the pilot spline estimator as in
(6), N¢ =14 (N + 1) #(S) with N the number of interior knots as defined
in (16), # (S) the cardinality of S.

Our variable selection rule takes the subset § C {1,...,d} that minimizes
BICg.

Theorem 2 Under Assumptions (A1)-(A5), (A7), lim,_, ., P (§ = So) =1.

According to Theorem 2, the variable selection rule based on the BIC in
(22) is consistent. The nonparametric version BIC was firstly established in
Huang and Yang (2004) for additive autoregression model, and adapted to
additive coefficient model by Xue and Yang (2006), to single index model by
Wang and Yang (2009). Our proposed BIC differs from all of the above as
it is based on quasi-likelihood rather than mean squared error, which makes
the technical proof of consistency much more challenging. To the best of our
knowledge, it is the first theoretically reliable information criterion in this
setting.

4.2 Tmplementation

We have not implemented the BIC variable selection by a greedy search
through all possible subsets. Instead, a forward stepwise procedure is used
with minimizing BIC as the criterion since it is more common that only a few
variables are significant among many variables. We have also experimented
with backward as well as forward-backward stepwise procedures which have
yielded similar outcomes in simulation examples.

5 Simulation

This section studies under simulated setting the performance of the proposed
procedures including the computational cost of the SBK, the consistency of
selecting variables via BIC and the coverage frequency of the SCCs. The data
are generated from

Py =1X =x) = ¥ {c—i— S om (Xl)} W (@) =

ex

1+e”

(23)
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Computing Time Accuracy
d r n BIC COSSO ratio BIC COSSO
250 | 0.17 1.85 10.9 25 441 34 98 327 75
0 500 | 0.41 4.33 10.6 6 476 28 42 414 44
1000 | 0.66 20.14 30.5 2 491 7 26 455 19

10
250 | 0.18 1.91 10.6 | 165 298 37 | 204 221 75
0.5 500 | 0.42 4.43 10.5 11 452 37 89 359 52
1000 | 0.67 20.64 30.8 1 493 6 67 401 32
250 1.00 - - 312 78 110 — — —
0 500 1.43 59.77 41.8 | 106 327 67 124 207 169
1000 | 3.32 268.24 80.8 2 465 33 20 426 54
50

250 1.04 - - 319 65 116 - - —
0.5 500 1.55 60.87 39.2 | 297 174 29 | 203 145 152
1000 | 3.48 274.25 78.8 47 428 25 52 356 92

Table 1 Simulation comparison of the proposed BIC method and COSSO with d = 10, 50.
Computing Time is in seconds and the ratio is the computing time of COSSO over that of
BIC. For d = 50 and n = 250, COSSO becomes unstable to the point of crashing. Accuracy
(the last 6 columns) gives for BIC and COSSO the numbers of underfitting, correct fitting,
and overfitting out of 500 replications.

with d = 10,¢ = 0,mg3 (z) = sin (47x) ,my4 (x) = ms (x) = sin (7zx), mg (z) =
z,myr(x) =e® — (e —e 1) and my (z) = 0 for I = 1,2,8,9,10. The predictors
are generated by

Xy =20(Zy) =1, Zi = (Zi, .., Zia) ~N(0,%),1<i<n,1<1<d,

where @ is the standard normal c.d.f. and ¥ = (1 —7)Igxq + r141%. The
parameter r (0 < r < 1) controls the correlation between Z;; 1 <1 < d. To
examine the computing advantage of BIC for large d, we have also includ-
ed results for d = 50 with ms,...,m7 as above and all the other component
functions are 0.

COSSO is a penalized likelihood method proposed in Zhang and Lin (2006)
for LASSO type component selection and nonparametric regression in expo-
nential families. In what follows, the performance of BIC and COSSO is firstly
compared, followed by a computational comparison between the SBK and a
kernel method in GAM, and it ends with a report on the SCCs coverage fre-
quency for components function (the frequency that SCCs covering the entire
curve on the domain). We have tried numbers of knots different from the one
in (16) with similar results, so our conclusion is that the performance of BIC
is rather insensitive to the number of knots.

Table 1 shows the simulation results from 500 replications, where the out-
come is defined in accuracy as correct fitting, if S = Sp; overfitting, if So C S;
and underfitting, if Sy ¢ S. It is clear that the performance of BIC on selecting
5 significant variables m; (X;),l = 3,...,7, is quite satisfactory. The selection
accuracy becomes higher as the sample size increases and/or the correlation
decreases; it is poorer with higher dimension d (= 50) but still high when sam-
ple size n = 1000. The accuracy and computing time of COSSO are also listed
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r n l
1 2 3 4 5 6 7
0.0 250 0.9305 0.9250 0.9235 0.9250 0.9235 0.9240 0.9230
500 0.9455  0.9475 0.9430 0.9405 0.9425 0.9440 0.9530
1000 0.9515 0.9520 0.9475 0.9455 0.9480 0.9510 0.9485
0.5 250 0.9215 0.9185 0.9120 0.9145 0.9205 0.9210 0.9185
500 0.9420 0.9405 0.9330 0.9325 0.9375 0.9385 0.9415
1000 0.9485 0.9505 0.9420 0.9475 0.9455 0.9430 0.9445

Table 2 The 95% SCCs coverage frequency for m; (), 1 =1,2,...,7 from 2000 replications

for comparison (Platform: R; PC: Intel 3.1 GHz processor and 8 GB RAM).
It is shown in Table 1 that the BIC significantly outperforms the COSSO in
terms of accuracy and computing time, and the advantage in computing time
widens significantly for d = 50.

In addition to the above comparison for model selection, we have also con-
ducted numerical comparison between COSSO and our proposed SBK estima-
tion method in terms of probability prediction. The proposed SBK method
has higher prediction accuracy in almost all cases, see Table 4 in the Supple-
ment. Comparison regarding SCC has not been made against COSSO because
it does not produce one.

The SCCs coverage frequency for my (z;),l = 1,...,7 is reported in Table
2. Among the zero functions, we have omitted the results for mg, mg and miq
because the results are very similar to m; and msy. The empirical coverage
approaches the nominal confidence levels as n increases, and better coverage
occurs when the correlation is lower. The coverage frequencies vary slightly
when d increases, the numerical results of which have not been included for
brevity. We have also compared the coverage frequency of SCC and method
VOT (Volume of Tube) in the same setup of the simulation 1 in Wiesenfarth et
al. (2012), which considered only the case of trivial link function. The perfor-
mance of our proposed SCC is quite similar to the VOT method Wiesenfarth
et al. (2012), see Table 3 in the Supplement.

The above studies evidently indicate the reliability of our methodology,
such as high selection accuracy of the BIC and desired coverage frequency
of the SCCs. It ensures their applications for credit rating modelling in the
following section.

6 Application

We now return to forecast default probabilities of the listed companies in
Japan. The data taken from the Risk Management Institute, National Univer-
sity of Singapore include the comprehensive financial statements and the credit
events (default or bankruptcy) from 2005 to 2010 of 3583 Japanese firms.
Berg (2007) found that the liability status was important to indicate the
creditworthiness of a company, while Bernhardsen (2001) and Ryser and Den-
zler (2009) proposed to consider the “leverage effect” expressed by the financial
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statement ratios. Therefore, we have pooled two situations by considering Xj:
Current liability, Xs: Current stock return, Xs: Long term borrow, X4: Short
term borrow, X5: Total asset, Xg: Non-current liability, X7: 3 months earlier
(stock) return, Xg: 6 months earlier (stock) return, Xg: Current ratio, Xjo:
Net liability to shareholder equity, X71: Shareholder equity to total liability
and equity, X;2: TCE ratio, X13: Total debt to total asset, X14: Quick ratio.

Selecting the rating factors via the BIC given in (22), we have found that
X: Current liabilities, X7: 3 months earlier return, Xg: 6 months earlier re-
turn are significant. Similar rating covariates were also discovered in Shina
and Moore (2003), Berg (2007) and Ryser and Denzler (2009). However, Berg
(2007) selected 23 variables which led to a non-parsimonious GAM. In contrast,
Ryser and Denzler (2009) had found that 3 financial ratios (capital turnover,
long-term debt ratio, return on total capital) were significant based on the
blockwise cross-validation (CV) method which is nonetheless extremely time
consuming in comparison to the proposed BIC.

Figure 1 (a)-(c) depicts the SBK estimator of the factor’s default impact
curve on domain, while a shoal of 95% ClIs and the 95% SCCs present re-
spectively the pointwise and global uncertainty of the whole curve. The SBK
estimators indicate overall monotonicities of each rating factors, and the SCCs
turn out to be fairly narrow to warrant the global nonlinearities of the factors’
curves which reveal the underlying nonlinear features in different segments of
domain.

As for the model evaluations, the Cumulative Accuracy Profile (CAP) is
plotted in Figure 1 (d). For any score function S, one defines its alarm rate
F(s) = P(S < s) and the hit rate Fp (s) = P (S < s|D) where D represents
the conditioning event of “default”. One then defines the CAP curve as

CAP (u) = Fp (F7' () ,u € (0,1), (24)

which is the percentage of default-infected obligators that are found among
the first (according to their scores) 100u% of all obligators. A satisfactory
model’s CAP would be expected to approach to that of the perfect model
(i.e., CAPp (u) = min (u/p, 1) ,,u € (0,1) where p is the unconditional default
probability) and always better than the noinformative. In contrast, a nonin-
formative rating method with zero discriminatory power displays a diagonal
line CAPy (u) = u,u € (0,1). See details of the CAP in Engelmann, Hayden
and Tasche (2003).

The AR is the ratio of two areas agr and ap. The area between the given
CAP curve and the noninformative diagonal CAPy (u) = w is ag, whereas ap
is the area between the perfect CAP curve CAPp (u) and the noninformative
diagonal CAPy (u). Thus

1
AR B _ 2 [ CAP (u) du 1’ (25)
ap 1— P
where CAP (u) is given in (24). The AR takes value in [0, 1], with value 0
corresponding to the noninformative scoring, and 1 the perfect scoring method,
a higher AR indicates an overall higher discriminatory power of a method.
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Using both GAM and GLM obtained from first 2000 companies to predict
the default rate of the rest 1583 companies, the accuracy ratio is 97.56% for
GAM, much higher than the 89.76% for GLM. We have also applied the COS-
SO method to the same data, and the following error message has appeared
“Error in solve.QP(GHSH, GH$H %*% old.theta - GH$G, t(Amat), bvec):
matrix D in quadratic function is not positive definite!”, which once again
has illustrated the advantage of the proposed BIC procedure over the existing
method.
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Appendix

In what follows, we take ||-|| and ||-||,, as the Euclidean and supremum norms,
1/2

respectively, i.e., for any x = (z1,72,...,2q) T € R |x|| = (Zle xlz)

and ||x]|, = max, |z;|. For any interval [a, ], denote the space of p-th order
smooth functioiniby Cc®a,b] = { g ] g € Ca,b] }, and the class of Lipschitz
continuous functions by

Lip ([a, 8], C) = {gllg (z) — g (2")] < Clw — 2’|, Vz,2’ € [a, 1] }
for constant C' > 0. Lastly, define the following latent regression errors

=Y, -V {m(X) =0 (X1 <i<n. (26)

A.1 Technical assumptions

We need the following technical assumptions:

(A1) The additive component functions m; € CM[0,1],1 < [ < d: my €
C®@0,1], mj € Lip ([0,1],Cy,) ,2 <1 < d for some constant Cy, > 0.

(A2) The inverse link function V' satisfies that b’ € C?(R),b" (0) > 0,0 €
R. For a compact interval © whose interior contains m ([O, l]d), Cy >

maxgpeo b’ (0) > mingeg b (8) > ¢ for constants 0 < ¢ < Cp < 00.
(A3) The conditional variance function o2 (x) is continuous and positive for

x € [0, 1}{1. The errors {e;};_, satisfy that E (¢; |X;) =0, E (|€Z_|2+n) <C,
for some n € (1/2,1].
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(A4) The joint density f(x) of (X1,...,X4) s continuous and
0 <cp <infyggqga f(X) < supyep e f (%) < Cp < 0.

For each 1 <1 <d, the marginal density function fi (x;) of X; has contin-
wous deriwatives on [0,1] and the same uniform bounds Cy and cy. There
erists a o-finite measure A on R such that the distribution of Y; condition-
al on X; has a probability density function fyx (y;b {m (x)}) relative to
A whose support for y is a common §2, and is continuous in both y € {2
and x € [0,1]%.

(A5) {Z; = (X7, 51’)}?:1 are independent and identically distributed.

(A6) The kernel function K (x) is a symmetric probability density function sup-
ported on [—1,1] and € C'[—1,1]. The bandwidth h = h,, satisfies that h =

o(n~Y5(logn)~Y%), K"t = 0O (n1/5 (log n)é) for some constant § > 1/5.
(A7) The number of interior knots N satisfies ennt/4 logn < N < Cynlt/4 logn

for some constants c¢n,Cn > 0.

Assumptions (A1)-(A7) are standard in GAM, see Stone (1986), Xue and
Yang (2006). The i.i.d. feature is technically acceptable if the data are collect-
ed across a large number of sections, for instance, our real example in Section
6. Assumptions (A5), (AG) are more restrictive than in Liu, Yang and Héardle
(2013) for the purpose of constructing simultaneous confidence corridor, but
are unnecessary for Theorem 2 on the consistency of BIC. All these assump-
tions are satisfied by the simulation example in Section 5.

A .2 Preliminaries

Throughout this section, C' denotes some generic positive constant unless s-
tated otherwise. Define

1
M () =1 [ K (-0 /Ry W (a) (27)
0
where W (z) is a Wiener process defined on (0, 00) and denote

dp, = (—2log )% + (—21og h) "1/ {\/c (K)/ (271')}
with C (K) given in (13).
Lemma 1 Under Assumption (A6). for any x € R

Tim P [(~2108 1)/ {supyepapy [Ma O/ |KI5 —dn} < 2] =2
Proof One simply applies the same steps in proving Lemma 2.2 of Hardle
(1989).

Denote by T; the random variable ¥’ {m (X;)}, and the Lebesgue measure
on R? as (9. By Assumption (A4), X; has pdf wrt the Lebesgue measure
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p | and Assumptions (A1) and (A2) ensure that functions b’ and m are at
least C!, thus the random vector (T}, X;1) has a joint pdf wrt the Lebesgue
measure u(2)7 which one denotes as fr x, (t,z1).

Lemma 2 Under Assumptions (A1)-(A5), for &, in (26), the distribution of
(&;, Xi1) has joint pdf wrt u as
fex, (z,21) = /ny\x (9 —2) frox, (y — z,21) dX (y) .
Proof The joint pdf of (Y;,T;, X;1) wrt A x u® is fyx (y;t) fr.x, (¢, z1). For
any (z,z1) € R x [0,1], and Az, Azy > 0, one has
P&, Xn) €(z— ALz z+ Lz) X (11 — Az, 21 + Axq)] =
PY; =T, Xin) € (2 — Dz, 24+ Az) x (k1 — Axy,m1 + Axq)] =

/ dA (y)/ dT/ Fyix (s 7) frox, (7,x1) dx;-
2 Yy—T7E(z—ADz,z+ANz) x1€(x1—Azy,x1+Awy)

Applying dominated convergence theorem, one has as max (Az, Azq) — 0,

P&, Xn) € (z— Lz, z4 Az) X (11 — Az, 21 + Axq)]

= {/Q frix (yiy = 2) frx, (y — z,21) dA (y)} x
pP (2= Dz, 2+ A2) x {(x1 — Dz, 1 4+ Azy) N [0,1]}] + o (AzAxy)

hence the joint pdf of (¢;, X;1) wrt u® is [, fyx (y;9 — 2) fr, X1 (y — z,21) dA (y).

For theoretical analysis, we write c¢;; = Eby (X;) = [ by (z1) fi (z1) dz; and
define the centered B spline basis by, (z;) and the standardized B spline basis
By, (x;) respectively as

by (x) =by (1) —

CJ—i,l by (@),
by (1)
1
{193 @) i (@) do

so that EB,; (X;) =0, EB?” (X)) =1.
With slight abuse of notations the log-likelihood L (g) in (5) is

Lig=LN=n"Y" [VA"B(X:) -0 {X"B(X))}],
with g (Xi) = ATB (X;) € G5, A = (Ao, A) < yoyn, asi<d € RN with Ny =
(N+1)d+1,B(x) ={1,B11(x1),.... BN+1.d (z4)}" and By, (z;) as given
n (28). It is straightforward to verify that the gradient and Hessian of L ()
are
—n 'Y VBX) -0 {ATB(X)}B(X)],  (29)

VL) = —n 1> b {ATB (Xi)} B(X,)B(X;)"

B (x1) = S, 1< J<N+1, (28)
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Proposition 1 Under Assumptions (A1)-(A5) and (A7), for m € M with
M given in (20) and m as in (6), as n — oo, |m —ml,,, + [m—ml, =
Oa.s. (N1/2n_1/2 logn) and |[m —m| = Oa.s. (Nn_1/2 logn). With prob-
ability approaching 1, the Hessian matrix VQﬁ(A) satisfies that V2ﬁ()\) <
0,V and V2L (A) < —apey L if ATB (X)) € ©,1 <i <.

Proof See Lemma A.13 of Liu, Yang and Hérdle (2013), Assumption (A2),
equation (29) and Lemma A.11 of Liu, Yang and Hérdle (2013).

A.3 Proof of Theorem 1

Define a stochastic process &, (z1) = n= !> | Ky (X;1 — 1) &,21 € [0,1]
with &; given in (26), then (9) and (10) show that

sup ’ﬁlK,l (x1) —my (z1) — Dyt (21) (x1)| =04 (h2 +nY2p1/? logn> ,
z1€[h,1—h]

which, together with (8), lead to

SUP,, efn1-n [MsBK,1 (w1) —ma (21) — D (21) 8y (1)) (30)

=0, (h2 +n1/2pl/2 logn + n~1/2 logn) = Oy (h2 +n”1/2 logn) .
Using vy (x1) given in (11), one can standardize €, (1) to obtain

Co () = (k)" 01 (1) Bn (1)
=)o @) {n7 Y Kn(Xa-e)& ). (81)
Assumptions (A5), (A8) imply that the following Rosenblatt transforma-
tion to the 2-dimensional sequence {X;1,¢;};—, produces {X;l,gg}f:l with
(X7, &;) uniformly distributed on [0, 1)%:
(X11,8) =T (X, &) = {Fx, (Xa1), Feix, (&1 Xa)}-

Denote Z, (z1,£) = /n{F, (x1,&) — F (z1,£)} where F, (z1,£) is the empir-
ical distribution of {X;1,&,};—,, one can rewrite ¢, (z1) as

~

G (1) = Y207 () / / K {(u— 1) 1} €42, (1,6)

By the strong approximation theorem in Tusnady (1977), there exists a
version of the 2-dimensional Brownian Bridge B, (x'l, f') such that

sup | Zy, (21,€) — Bp {T (21,€)}] = Oy.s. (Tfl/2 log2 n) .

z1,§
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Applying standard techniques used in Bickel and Rosenblatt (1973), Hardle
(1989), one can show that

- 2 —1/2

S (0) = M (8) / |IKI3| = 0, { Clogm) 7}, (32)

sup
te[h,1—h]

for a version of the M}, (t) given in (27). Similar result can be found in Xia
(1998). Furthermore, (30) and (31) imply that

Dy e |7 (1) (s (@1) = ma (21)} = C,y (21)

=045 <n1/2h5/2 + pi/2 log n) , (33)

with o, (x) given in (14). Under Assumption (A6), which entails that (—21log h)l/2
is of the same order as (log n)1/2, (32) and (33) can show that

P, i1 (—210g )72 |07 (1) [ismc 1 (1) = ma ()| = [Mi (1)) / 16
=04 {(logn)l/2 X (n1/2h5/2 + hl/? logn>} +o0,(1)=0,(1).

Finally, Theorem 1 follows from Lemma 1 and Slutsky’s Theorem.

A.4 Proof of Theorem 2

See the Supplement.
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We focus on the construction of confidence corridors for multivariate nonparametric gen-
eralized quantile regression functions. This construction is based on asymptotic results for the
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As a byproduct we also obtain multivariate confidence corridors for the regression function
in the classical mean regression. In order to deal with the problem of slowly decreasing error in
coverage probability of the asymptotic confidence corridors, which results in meager coverage
for small sample sizes, a simple bootstrap procedure is designed based on the leading term of
the Bahadur representation. The finite sample properties of both procedures are investigated by
means of a simulation study and it is demonstrated that the bootstrap procedure considerably
outperforms the asymptotic bands in terms of coverage accuracy. Finally, the bootstrap confi-
dence corridors are used to study the efficacy of the National Supported Work Demonstration,
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1. Introduction

Mean regression analysis is a widely used tool in statistical inference for curves. It focuses
on the center of the conditional distribution, given d-dimensional covariates with d > 1. In a
variety of applications though the interest is more in tail events, or even tail event curves such as
the conditional quantile function. Applications with a specific demand in tail event curve analysis
include finance, climate analysis, labor economics and systemic risk management.

Tail event curves have one thing in common: they describe the likeliness of extreme events
conditional on the covariate X. A traditional way of defining such a tail event curve is by trans-
lating “likeliness” with “’probability” leading to conditional quantile curves. Extreme events may
alternatively be defined through conditional moment behaviour leading to more general tail de-
scriptions as studied by Newey and Powell (1987) and Jones (1994). We employ this more general
definition of generalized quantile regression (GQR), which includes, for instance, expectile curves
and study statistical inference of GQR curves through confidence corridors.

In applications parametric forms are frequently used because of practical numerical reasons.
Efficient algorithms are available for estimating the corresponding curves. However, the “monocu-
lar view” of parametric inference has turned out to be too restrictive. This observation prompts the
necessity of checking the functional form of GQR curves. Such a check may be based on testing
different kinds of variation between a hypothesized (parametric) model and a smooth alternative
GQR. This approach though involves either an explicit estimate of the bias or a pre-smoothing of
the ’null model”. In this paper we pursue the Kolmogorov-Smirnov type of approach, that is, em-
ploying the maximal deviation between the null and the smooth GQR curve as a test statistic. Such
a model check has the advantage that it may be displayed graphically as confidence corridors (CC;
also called “simultaneous confidence band” or “uniform confidence band/region”) but has been
considered so far only for univariate covariates. The basic technique for constructing CC of this

type is extreme value theory for the sup-norm of an appropriately centered nonparametric estimate
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of the quantile curve.

Confidence corridors with one-dimensional predictor were developed under various settings.
Classical one-dimensional results are confidence bands constructed for histogram estimators by
Smirnov (1950) or more general one-dimensional kernel density estimators by Bickel and Rosen-
blatt (1973). The results were extended to a univariate nonparametric mean regression setting
by Johnston (1982), followed by Hardle (1989) who derived CCs for one-dimensional kernel M-
estimators. Claeskens and Van Keilegom (2003) proposed uniform confidence bands and a boot-
strap procedure for regression curves and their derivatives.

In recent years, the growth of the literature body shows no sign of decelerating. In the same
spirit of Hardle (1989), Hardle and Song (2010) and Guo and Hirdle (2012) constructed uniform
confidence bands for local constant quantile and expectile curves. Fan and Liu (2013) proposed an
integrated approach for building simultaneous confidence band that covers semiparametric models.
Giné and Nickl (2010) investigated adaptive density estimation based on linear wavelet and kernel
density estimators and Lounici and Nickl (2011) extended the framework of Bissantz et al. (2007)
to adaptive deconvolution density estimation. Bootstrap procedures are proposed as a remedy for
the poor coverage performance of asymptotic confidence corridors. For example, the bootstrap for
the density estimator is proposed in Hall (1991) and Mojirsheibani (2012), and for local constant
quantile estimators in Song et al. (2012).

However, only recently progress has been achieved in the construction of confidence bands for
regression estimates with a multivariate predictor. Hall and Horowitz (2013) derived an expansion
for the bootstrap bias and established a somewhat different way to construct confidence bands
without the use of extreme value theory. Their bands are uniform with respect to a fixed but
unspecified portion (smaller than one) of points in a possibly multidimensional set in contrast to
the classical approach where uniformity is achieved on the complete set considered. Proksch et al.
(2015) proposed multivariate confidence bands for convolution type inverse regression models with

fixed design.
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To the best of our knowledge, the classical Smirnov-Bickel-Rosenblatt type confidence corri-
dors are not available for multivariate GQR or mean regression with random design.

In this work we go beyond the earlier studies in three aspects. First, we extend the applicability
of the CC to d-dimensional covariates with d > 1. Second, we present a more general approach
covering not only quantile or mean curves but also GQR curves that are defined via a minimum
contrast principle. Third, we propose a bootstrap procedure and we show numerically its improve-
ment in the coverage accuracy as compared to the asymptotic approach.

Our asymptotic results, which describe the maximal absolute deviation of generalized quantile
estimators, can not only be used to derive a goodness-of-fit test in quantile and expectile regres-
sion, but they are also applicable in testing the quantile treatment effect and stochastic dominance.
We apply the new method to test the quantile treatment effect of the National Supported Work
Demonstration program, which is a randomized employment enhancement program launched in
the 1970s. The data associated with the participants of the program have been widely applied
in the field of treatment effect research since the pioneering study of LaLonde (1986). More re-
cently, Delgado and Escanciano (2013) found that the program is beneficial for individuals of over
21 years of age. In our study, we find that the treatment tends to do better at raising the upper
bounds of the earnings growth than raising the lower bounds. In other words, the program tends
to increase the potential for high earnings growth but does not reduce the risk of negative earnings
growth. The finding is particularly evident for those individuals who are older and spent more
years at school. We should note that the tests based on the unconditional distribution cannot unveil
the heterogeneity in the earnings growth quantiles in treatment effects.

The remaining part of this paper is organized as follows. In Section 2 we present our model,
describe the estimators and state our asymptotic results. Section 3 is devoted to the bootstrap and
we discuss its theoretical and practical aspects. The finite sample properties of both methods are
investigated by means of a simulation study in Section 4, where we also compare the numerical

performance of our method with the method proposed in Hall and Horowitz (2013) via simula-
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tions. The application of our new method is illustrated by a real data example in Section 5. The
assumptions for our asymptotic theory are listed and discussed after the references. All detailed

proofs are available in the supplement material.

2. Asymptotic confidence corridors

In Section 2.1 we present the prerequisites such as the precise definition of the model and a
suitable estimate. The results on constructing confidence corridors (CCs) based on the distribution
of the maximal absolute deviation are given in Section 2.2. In Section 2.3 we describe how to
estimate the scaling factors, which appear in the limit theorems, using residual based estimators.
Section 3.1 introduce a new bootstrap method for constructing CCs, while Section 3.2 is devoted
to specific issues related to bootstrap CCs for quantile regression. Assumptions are listed and

discussed after the references.

2.1. Prerequisites

Let (X4, Y1), ..., (X,, Y, be a sequence of independent identically distributed random vectors in

R*! and consider the nonparametric regression model
Yi = GO(Xi)+8i’ i = 1,...,”, (1)

where 6, is an aspect of Y conditional on X, such as the 7-quantile, the T-expectile or the mean
regression curve, and the model errors €y,...,¢, are i.i.d. with T-quantile, T-expectile or mean
equal to 0, respectively, depending on which 6 is in the model. The function 6(x) can be estimated

by:

) = argmin 3" Kix — Xop(Y, - 6), @)
3

OeR
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where K, (1) = h™K (u/h) for some kernel function K : RY — R, and a loss function p, : R — R.
In this paper we are concerned with the construction of uniform confidence corridors for quantile
as well as expectile regression curves when the predictor is multivariate, that is, we focus on the
loss functions

pr(u) = [1(u < 0) = 7llul’,

for k = 1 and 2 associated with quantile and expectile regression. We derive the asymptotic
distribution of the properly scaled maximal deviation sup,.,, 10,,(x) — 6y(x)| for both cases, where
D c R is a compact subset. We use strong approximations of the empirical process, concentration
inequalities for general Gaussian random fields and results from extreme value theory. To be

precise, we show that

P[(zélog n)”z{sug ru(0[0,(x) = BO|/IKIL - du} < a| = exp{ - 2exp(-a)},  (3)

as n — oo, where r,(x) is a scaling factor which depends on x, n and the loss function under

consideration.

2.2. Asymptotic results

In this section we present our main theoretical results on the distribution of the uniform max-
imal deviation of the quantile and expectile estimator. The proofs of the theorems at their full
lengths are deferred to the appendix. Here we only give a brief sketch of proof of Theorem 2.1

which is the limit theorem for the case of quantile regression.

THEOREM 2.1. Let 8,(x) and 6y(x) be the local constant quantile estimator and the true quan-

tile function, respectively and suppose that assumptions (Al )-(A6) in Section A hold. Let further
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vol(D) =1 and
a1
d, = (2d - klogn)'"? + {2dk(log n)} ™" [E(d— 1) loglog n* + log {(2m) "2 Hy(2d)“-""} |,

where d is the dimension of covariate X, h < n™, Hy = (27T||K||§)_d/2 det(2)'?, T = (Zij)lsi,jgd =

( 615(_;“)6‘19(_;;‘) u)lsi,jsd’

ra(x) = \/%fmx{eo(xﬂx},
Then the limit theorem (3) holds.
Sketch of proof. A major technical difficulty is imposed by the fact that the loss function p, is
not smooth which means that standard arguments such as those based on Taylor’s theorem do not
apply. As a consequence the use of a different, extended methodology becomes necessary. In this
context Kong et al. (2010) derived a uniform Bahadur representation for an M-regression function
in a multivariate setting (see appendix). It holds uniformly for x € O, where D is a compact subset
of R%:

1

n - 1 2
) = 00(0) =~ B K = Xl = 0020} + O {( =) } L as. @
o i=1

Here S, 00(x) = f K(uw)g(x + hu) fx(x + hw)ydu, y(u) = 1(u < 0) — 7 is the piecewise derivative of

the loss function p, and

0
g(x) = EEWT(Y_ NIX = x]

=60 (x)

Notice that the error term of the Bahadur expansion does not depend on the design X and it
E
converges to 0 with rate (logn/nh?®)* which is much faster than the convergence rate (nh?)"2 of

the stochastic term.
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Rearranging (4), we obtain

A 1 ¢ 1 3
S w00 GHOD) = (0} = " Ky = XY = 60} +O {( o2 ) } . &)
i=1

nhd

Now we express the leading term on the right hand side of (5) by means of the centered empirical

process

Zn(y’ u) = ’ll/z{FnO’, u) - F()’, U)}, (6)

where F,(y,x) = n”! 2y 1(Y: <y, Xy < x4, ..., Xig < X4). This yields, by Fubini’s theorem,

A e
S n00(OBa(x) = 60(x)} = b(x) = n™'/? f f Ki(x — w)r{y — 60(x)}dZ,(y, w) + O {( Ogn) } ,

nhd

(N

where

1 n
b(x) = ~E [; D Ki(x = XpwY, - 90(-’5)}]

i=1
denotes the bias which is of order O(k*) by Assumption (A3) in the Appendix. The variance of the
first term of the right hand side of (7) can be estimated via a change of variables and Assumption

(AS5), which gives

(nh)*nE[K*{(x — X))/ M {Y; — 6o (x)}]
— "y 2k f f K0y — 6000} frxOlx — hv) f(x — hw)dydy
= iy f f K0y — (O} frx Ol fx(x)dydy + O((nh™))

= (nh)™! fx(0)o* (0)IKl; + Of(nh®)™"'h},

where 0(x) = E[y*{Y — 6y(x)}|X = x]. The standardized version of (5) can therefore be approxi-
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mated by

Vinhd
Vfx(x) 0'(x)||K||2

\/h"’fx(x)d(x)llKllz ff

S 100(X){0,(x) — 6o(x)}

x u

{Y Oo(x)}dZ, (v, w) + O(Nnhdh®) + 0{(1°g")‘§‘}.

(®)

The dominating term is defined by
Y, dﬁf;ffl{ )ty - 60(0))dZ,(y. w). 9
0¥ e | | KTl - bz 00 ©

Involving strong Gaussian approximation and Bernstein-type concentration inequalities, this pro-

cess can be approximated by a stationary Gaussian field:

Y5.(x) = Vi f (10)

where W denotes a Brownian sheet. The supremum of this process is asymptotically Gumbel
distributed, which follows, e.g., by Theorem 2 of Rosenblatt (1976). Since the kernel is symmetric

and of order s, we can estimate the term

Sn00 = frix(Bo(x)x) fx(x) + O(h*)

if (A5) holds. On the other hand, 0>(x) = 7(1 —7) in quantile regression. Therefore, the statements

of the theorem hold.

Corollary 2.2 (CC for multivariate quantile regression). Under the assumptions and notations of
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Theorem 2.1, an approximate (1 — @) X 100% confidence corridor is given by
0,(2) £ (k)™ (1 - T)||K||2/fx(t)}1/2fg|x{0|t}_1{dn + c(a)(2«kd log n)‘l/z},

where a € (0, 1) and c(@) = log2 — log | log(1 — oz)| and fx(t), f;| x{0|t} are consistent estimates for

fx(8), fzx{0l¢} with convergence rate in sup-norm faster than o,((log n)~'/?).

Remark 2.3. Note that under the conditions of Corollary 2.2 we find

Fa(x)(8,(x) — 6o(x))| = Op(~/logn),

sup
xeD

hd
) = | o)l

For kernel estimators f,x(0, -) and fx(-) converging in sup-norm with rate op(log(n)~'/?) to fx(0, -)

where

and fx(-), respectively, the quantity 7,(x), defined by

hd fx(x) A
() = | S fax(0. ),

inherits this rate. Furthermore, since we consider an additive error model, the conditional density
Srix{6o(x)|x} can be replaced by fx(0, x) (see Section 2.3 below for more details and the definition

of suitable estimators). This yields

sup Pa(X)(B(x) — Bo(x))| = 0p(1) + sup ra(X)(Bu(x) — Bo(x))|.

Hence, by Slutsky’s Lemma, the quantities sup,,, ru()(B,(x) —

7u(x)(0(x) = 0(x))| and sup,,,

Qo(x))| have the same asymptotic distribution.
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The expectile confidence corridor can be constructed in an analogous manner as the quantile
confidence corridor. The two cases differ in the form and hence the properties of the loss function.

Therefore we find for expectile regression:

S100(x) = =2[Fyx(0o(x)Ix)27 = 1) = 7] fx(x) + O(h*).

Through similar approximation steps as the quantile regression, we derive the following theorem.

THEOREM 24. Let ,(x) be the the local constant expectile estimator and 0y(x) the true expectile

function. If Assumptions (Al ), (A3)-(A6) and (EA2) of Section A hold with a constant b, satisfying
n*l/6h7d/273d/(b172) — O(I’liy), v>0.
Then the limit theorem (3) holds with a scaling factor

ra(x) = \nh fx(x)o™ () {2[7 = Fyx(6o(x)lx)27 - 1]}

with quantities d, h < n™*, H, and d,, as defined in Theorem 2.1, where o*(x) = E[Y2(Y —6y(x))|X =
x] and Y. (u) = 2(1(u < 0) — 7)|u| is the derivative of the expectile loss function p.(u) = |T -1(u<

0)]luel?.

The proof of this result is deferred to the appendix. In the next corollary, the explicit form of

the CCs for expectiles is given.

Corollary 2.5 (CC for multivariate expectile regression). Under the same assumptions of Theorem

2.4, an approximate (1 — @) X 100% confidence corridor is given by

B.(8) + (nh) A2 (DIIKI/ (D) | - 21 Exl0le}2r - D) =7} {d, + cla)2edTogm) ™),
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where « € (0, 1) c(@) = log?2 — log | log(1 - a)| and fx(t), 62(t) and F€|X(0|x) are consistent esti-

mates for fx(¢),oc*(¢t) and F #x(0]x) with convergence rate in sup-norm faster than o,((log n)~'12).

A further immediate consequence of Theorem 2.4 is a similar limit theorem in the context of

local least squares estimation of the regression curve in classical mean regression.

Corollary 2.6 (CC for multivariate mean regression). Consider the loss function p(u) = u* cor-
responding to ¥(u) = 2u. Under the assumptions and notations of Theorem 2.4, with the same
constants H, and d,, (3) holds for the local constant estimator & and the regression function

6(x) = E[Y| X = x] with scaling factor r(x) = \/nh? fx(x)o~'(x) and o*(x) =Var[Y | X = x].

Remark 2.7. We would like to stress that our purely nonparametric approach offers flexibility
and reasonable results in moderate dimensions d = 2, d = 3, but it is not suitable for inference
in high dimensional models due to the curse of dimensionality. The case of high dimensional
regressors may be handled via a semi-parametric specification of the regression curve, such as,
for instance, a partial linear model. Such a model was considered in Song et al. (2012) with a
one-dimensional nonparametric component. Our approach allows to adapt their ideas and, as an
extension, to consider a nonparametric component which is multivariate. Hence, our approach
then offers higher flexibility in semi-parametric modeling. This semi-parametric approach is not

pursued further in this paper but it clearly deserves future research.

2.3. Estimating the scaling factors

The performance of the confidence bands is greatly influenced by the scaling factors f;| x(v|x),
F.x(v|x) and 6-(x)*. The purpose of this subsection is thus to propose a way to estimate these
factors and investigate their asymptotic properties.

As pointed out by our referee, estimating f;x(0) is not a trivial task. The application of a
rank test described in Chapter 3.5 of Koenker (2005) is an alternative to avoid estimating f;x(0)

in parametric quantile regression. However, it is a challenging task to apply this technique to

ACCEPTED MANUSCRIPT
12



Downloaded by [Humboldt-Universit&auml;t zu Berlin Universit&auml;tsbibliothek] at 00:40 08 February 2016

ACCEPTED MANUSCRIPT

kernel smoothing quantile regression. For pointwise nonparametric inference, it may be possible
to construct a test by adding weights (given by 27! K((x— X;)/h), where h is the bandwidth and K is
the kernel function) in the linear programing problem and therefore its dual can also be computed.
However, a global shape test like the one investigated in this paper cannot be derived from the rank
test. Hence, it seems inevitable to estimate the nuisance parameters and plug them into the test
statistics.
Since we consider the additive error model (1), the conditional distribution function Fyx(6y(x)|x)

and the conditional density fyx(6y(x)|x) can be replaced by F,x(0|x) and f;x(0|x), respectively,

where F,x and f,x are the conditional distribution and density functions of &. Similarly, we have
o?(x) = E[y(Y - 60(x))’|X = x] = E[y-()*|X = x]

where € may depend on X due to heterogeneity. It should be noted that the kernel estimators for
f=x(0lx) and fy)x(6o(x)|x) are asymptotically equivalent, but show different finite sample behavior.
We explore this issue further in the following section.

Introducing the residuals & = Y; — 9n(X i), we propose to estimate Fx, fqx and o?(x) by

N _ & Vv — éi A
Fax(lx)=n' )" G( )L;xx - X))/ fu(x), (11)
i=1 ho
Fox ) = 17" Y gy (v = &) Li(x = X))/ fx(x), (12)
i=1
ADe N o] C 2eaNT. 2
F(x) =17 Y PAELix - X))/ fx(x), (13)
i=1
where fx(x) =n! ", Ly(x—X,), G is a given continuously differentiable cumulative distribution

function and g is its derivative. The construction of estimators in (11) and (12) follows from the
estimator for general conditional distribution and density functions discussed in Chapter 5 and 6

of Li and Racine (2007). The same bandwidth £ is applied to the three estimators, but the choice
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of h will make the convergence rate of (13) sub-optimal. More details on the choice of & are given
in section 3.2 below. Nevertheless, the rate of convergence of (13) is of polynomial order in n.
The theory developed in this subsection can be generalized to the case of different bandwidth for
different direction without much difficulty.

The estimators (11) and (12) belong to the family of residual-based estimators. The consistency
of residual-based density estimators for errors in a regression model are explored in the literature
in various settings. It is possible to obtain an expression for the residual based kernel density
estimator as the sum of the estimator with the true residuals, the partial sum of the true residuals and
a term for the bias of the nonparametrically estimated function, as shown in Muhsal and Neumeyer
(2010), among others. The residual based conditional kernel density case is less considered in the
literature. Kiwitt and Neumeyer (2012) consider the residual based kernel estimator for conditional
distribution function conditioning on a one-dimensional variable.

Below we give consistency results for the estimators defined in (11), (12) and (13). The proof

can be found in the appendix.

Lemma 2.8. Under conditions (A1), (A3)-(AS5), (B1)-(B3) in Section A, we have

1) SUP,¢; SUP e F8|X(V|x) - FsIX(le)| = Op(tn),

2) SUP,¢; SUPyen

Fax(Wx) = fox(01x)| = O, (1),
3) SUP,ep [02(x) — 02(%)| = O, (uy),

where 1, = O{hg + 1+ + (nh?)V 2 logn + (nh?)'?logn} = O(m™), and u, = O{h* + h* +

(nh®)™"2logn + (nh%)~'?log n} = O(n™") for some constants 1, 4; > 0.

The factor logn shown in the convergence rate is the price which we pay for the sup norm
deviation. Since these estimators uniformly converge in a polynomial rate in n, the asymptotic

distributions in Theorem 2.1 and 2.4 remain the same if we plug these estimators into the formulae.
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3. Bootstrap confidence corridors

3.1. Asymptotic theory

In the case of the suitably normed maximum of independent standard normal variables, it is
shown in Hall (1979) that the speed of convergence in limit theorems of the form (3) is of order
1/ logn, that is, the coverage error of the asymptotic CC decays only logarithmically. This leads to
unsatisfactory finite sample performance of the asymptotic methods, especially for small sample
sizes and dimensions d > 1. However, Hall (1991) suggests that the use of a bootstrap method,
based on a proper way of resampling, can increase the speed of shrinking of coverage error to
a polynomial rate of n. In this section we therefore propose a specific bootstrap technique and
construct a confidence corridor for the objects to be analysed.

Given the residuals &; = Y; — @n(X i), the bootstrap observations (X}, &7) are sampled from
A I v .
Fox @00 = =" gn (& = v) Li(x - X)), (14)
i

where g and L are kernel functions with bandwidths A, h satisfying assumptions (B1)-(B3). In
particular, in our simulation study, we choose L to be a product Gaussian kernel. In the following
discussion P* and E* stand for the probability and expectation conditional on the data (X, Y;),
i=1,..,n.

‘We introduce the notation

1 n
THOERDIVICED SIACH
i=1
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and define the so-called “one-step estimator” *(x) from the bootstrap sample by
0" (x) = Bu(x) = §,,0,0(x) {A(x) - E'[A}(0)]}, 15)

where

Sn,o,o(x) _ fs| X(OIJf) Fx(x), A quantile case; 16)
2{t — Fgx(0lx)(27 — 1)} fx(x), expectile case.
note that E*[6*(x) — 6,(x)] = 0, so &*(x) is unbiased for §,(x) under E*. As a remark, we note that
undersmoothing is applied in our procedure for two reasons: first, the theory we developed so far
is based on undersmoothing; secondly, it is suggested in Hall (1992) that undersmoothing is more
effective than oversmoothing given that the goal is to achieve coverage accuracy.

Note that the bootstrap estimate (15) is motivated by the smoothed bootstrap procedure pro-
posed in Claeskens and Van Keilegom (2003). In contrast to these authors we make use of the
leading term of the Bahadur representation. Mammen et al. (2013) also use the leading term of
a Bahadur representation proposed in Guerre and Sabbah (2012) to construct bootstrap samples.
Song et al. (2012) propose a bootstrap for quantile regression based on oversmoothing, which has
the drawback that it requires iterative estimation, and oversmoothing is in general less effective in
terms of coverage accuracy.

For the following discussion define

Y (x) = ff (V)dZ; (v, u) (17)
hdfx(x)v*(x)
as the bootstrap analogue of the process (9), where
Zivowy = n' P {Frvw) = Fo,w)},  0u(0) = \JE[u(e)?1x] (18)

ACCEPTED MANUSCRIPT
16



Downloaded by [Humboldt-Universit&auml;t zu Berlin Universit&auml;tsbibliothek] at 00:40 08 February 2016

ACCEPTED MANUSCRIPT

and

1 n
Fiv,u) = — 1{e <v, X <up, ... X5 <uyl.
n( ) I’l; {l 1 1 d d}

The process Y* serves as an approximation of a standardized version of 8 — 8,,, and similar to the
previous sections the process Y, is approximated by a stationary Gaussian field Y 5 under P* with

probability one, that is,

N 1 X—u )
Y:,(x) = Wf[(( - )dW ().

Finally, sup, ., |Y 5*ﬂ(x)| is asymptotically Gumbel distributed conditional on samples.

THEOREM 3.1. Suppose that assumptions (Al )-(A6), (C1) in Section A hold, and vol(D) = 1,

let

nhd

Ao "0

r,(x) =
where § 100(X) is defined in (16) and o*(x) is defined in (18). Then

p* {(2d -klogn)'/? (Sup [72()16"(x) = 0,(x)I]/ 11Kl — d,,) < a} —exp|-2exp(-a)}, a.s. (19)
xeD

as n — oo for the local constant quantile regression estimate, with quantities d, h < n™, H, and d,

as defined in Theorem 2.1. If (Al)-(A6) and (EC1) hold with a constant b > 4 satisfying
w2 0m™), v 0,

then (19) also holds for expectile regression with corresponding o>(x).

The proof can be found in the appendix. The following lemma suggests that we can replace

0.(x) in the limiting theorem by &(x).
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Lemma 3.2. If assumptions (B1)-(B3), and (EC1) in Section A are satisfied with b > 2(2s" + d +
1)/(2s" + 3), then

lo3(x) = ()l = 0 ((logm)™?),  a.s.
The following corollary is a consequence of Theorem 3.1.

Corollary 3.3. Under the same conditions as stated in Theorem 3.1, the (asymptotic) bootstrap

confidence set of level 1 — « is given by

S,
6 : sup 000

<D\ fr(x)02(x)

[0,(x) - 0] < &1, (20)
where & satisfies

S,
lim P* [ sup —’O’O(x)

TP VA @)

[0'(x) -0, <& |=1-a, as. 1)

where § .0 is defined in (16).

Note that it does not create much difference to standardize the 8,(x) — 6y(x) in (19) with fX and
&*(x) constructed from original samples or fy and 6(x) from the bootstrap samples. The simula-
tion results of Claeskens and Van Keilegom (2003) show that the two ways of standardization give

similar coverage probabilities for confidence corridors of kernel ML estimators.

3.2. Implementation

In this section, we discuss issues related to the implementation of the bootstrap for quantile
regression.
Note that the width of the CC is determined by the variance and the location is affected by

the bias of the quantile function estimator, and both depend on the bandwidth used for estimation.
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Hence, the choice of bandwidth needs to balance the bias (location) and the variance (size). It is
chosen such that the bias is only just negligible after normalization, that is, slightly smaller than
the L?-optimal bandwidth. Therefore, it is enough to take an undersmoothed & = O(n~!/s*9-9),
given that s > d and 6 > 0, where s is the order of Holder continuity of the function 6, and ¢

is the degree of undersmoothing. We may use the methods proposed by Yu and Jones (1998) for

nonparametric quantile regression to choose the bandwidth before undersmoothing, namely
hej = h it =D)/¢@7 @), =12, (22)

where h; ; is chosen by common methods like the rule-of-thumb or cross-validation for mean re-
gression or density estimation and @ is the CDF of the standard Gaussian distribution. In our
simulation study, we select 4 ; in (22) by the rule-of-thumb, implemented with the np package in
R. In our application analysis, /, ; in (22) is chosen by the cross-validated bandwidth for the con-
ditional distribution smoother of Y given X, implemented with the np package in R. This package
is based on the paper of Li et al. (2013).

For expectile regression, we use the rule-of-thumb bandwidth for the conditional distribution
smoother of ¥ given X, chosen with the np package in R.

The choice of hy and h for estimating the scaling factors in Section 2.3 should minimize the
uniform convergence rate of the residual based estimators. Hence, observing that the terms related
to ho and A are similar to those in usual (d + 1)-dimensional density estimators, it is reasonable
to choose hy ~ h ~ n~'/6*9 given that L, g are second order kernels. We choose the rule-of-
thumb bandwidths for conditional densities with the R package np in our simulation and application
studies.

The one-step estimator for quantile regression defined in (15) depends sensitively on the esti-
mator of $ 200(x). Unlike in the expectile case, the function ¥(-) in the quantile case is bounded,

and, as a result, the bootstrapped density based on (20) is very easily influenced by the factor
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S‘n,o,o(x); in particular, f€|X(O|x). As pointed out by Feng et al. (2011), the residual of quantile
regression tends to be less dispersed than the model error; thus fd x(0|x) tends to over-estimate the
true f;x(0|x) for each x.

The way of getting around this problem is based on the following observation: An additive
error model implies the equality fyx{v + 6o(x)|x} = fyx(v|x), but this property does not hold for

the kernel estimators

FaxOle) = n™" > g, (&) Litx = X/ fx(x), (23)
i=1

Frx@u(olx) = n7 > g, (¥ = 0(20) Lix = X))/ fa(), (24)
i=1

of the conditional density functions. In general fd x(0]x) # fy| x(@,(x)|x) in x although both esti-
mates are asymptotically equivalent. In applications the two estimators can differ substantially due
to the bandwidth selection because we usually have Ay # h; when they are chosen based on data.
For example, if a common method for bandwidth selection such as a rule-of-thumb is used, /; will
tend to be larger than A since the sample variance of Y; tends to be larger than that of &;. Given
that the same kernels are applied, it happens often that fy| x(0,(x)|x) > Jrix(6o(x)|x), even if B,(x)
is usually very close to 6y(x). To correct such abnormality, we are motivated to set h; = hy which
is the rule-of-thumb bandwidth of fs‘x(le) in (24). As the result, it leads to a more rough estimate
for fY|X(9n(x)|x)-

In order to exploit the roughness of fy| x(8,(x)|x) while making the CC as narrow as possible,

we develop a trick depending on

FrxtBu()lx}  ho ic1 8 ({¥: = Bu()} /1) Ly(x - X))
fxOlx) — h S gn (&ilho) Li(x — X))

(25)

As n — oo, (25) converges to 1. If we impose hy = hy, as the multiple hy/h, vanishes, (25)

captures the deviation of the two estimators without the difference of the bandwidth in the way.
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In particular, the bandwidth hy = h, is selected as the rule-of-thumb bandwidth for fd x(y|x). This
makes fg| x(y|x) larger and thus leads to a narrower CC, as will be more clear below.

We propose the alternative bootstrap confidence corridor for quantile estimator:

{0  sup |y (0 frx(0,(0)|x}[6,(x) — 6(0)]| < g;} :

xeD

where & satisfies

1/2 leX{@n(x)lx}

o)

[A;(x) — E"A;(x)]

n

p* (Sup < g;) =1-a. (26)

xeD

Note that the probability on the left-hand side of (26) can again be approximated by a Gumbel

distribution function asymptotically, which follows by Theorem 3.1.

4. A simulation study

In this section we investigate the methods described in the previous sections by means of a
simulation study. We construct confidence corridors for quantiles and expectiles for different lev-
els 7 and use the quartic (product) kernel. The performance of our methods is compared to the
performance of the method proposed by Hall and Horowitz (2013) at the end of this section. For
the confidence based on asymptotic distribution theory, we use the rule of thumb bandwidth chosen
from the R package np, and then rescale it as described in Yu and Jones (1998), finally multiply
it by n7%% for undersmoothing. The sample sizes are given by n = 100,300 and 500, so the un-
dersmoothing multiples are 0.794, 0.752 and 0.733 respectively. We take 20 X 20 equally distant
grids in the square [0.1,0.9]* and estimate quantile or expectile functions pointwisely on this set
of grids. In the quantile regression bootstrap CC, the bandwidth £, used for estimating fy| x(y|x)
is chosen to be the rule-of-thumb bandwidth of fg| x(0|x) and multiplied by a multiple 1.5. This

would give slightly wider CCs.
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The data are generated from the normal regression model
Vi = f(X1:, Xo0) + 0(X1, X0 )€, i=1,....n (27)

where the independent variables (X;, X,) follow a joint uniform distribution taking values on [0, 1]?,
Cov(Xy,X5) = 0.2876, f(X1,X2) = sin(2nX;) + X,, and ¢; are independent standard Gaussian
random variables. For both quantile and expectile, we look at three quantiles of the distribution,
namely 7 = 0.2,0.5,0.8. The set of grid point is H X H where H is the set of 20 equidistant grids
on univariate interval [0.1,0.9]. Thus, the grid size is |H x H| = 400.

In the homogeneous model, we take o(X;, X;) = oy, for oy = 0.2,0.5,0.7. In the heteroge-
neous model, we take o°(X;, X5) = 09 + 0.8X;(1 — X7)X,(1 — X5). 2000 simulation runs are carried
out to estimate the coverage probability.

The upper part of Table 1 shows the coverage probability of the asymptotic CC for nonpara-
metric quantile regression functions. It can be immediately seen that the asymptotic CC performs
very poorly, especially when 7z is small. A comparison of the results with those of one-dimensional
asymptotic simultaneous confidence bands derived in Claeskens and Van Keilegom (2003) or Fan
and Liu (2013), shows that the accuracy in the two-dimensional case is much worse. Much to our
surprise, the asymptotic CC performs better in the case of 7 = 0.2,0.8 than in the case of 7 = 0.5.
On the other hand, it is perhaps not so amazing to see that asymptotic CCs behave similarly under
both homogeneous and heterogeneous models. As a final remark about the asymptotic CC we
mention that it is highly sensitive with respect to 0. Increasing values of o7 yields larger CC, and
this may lead to greater coverage probability.

The lower part of Table 1 shows that the bootstrap CCs for nonparametric quantile regression
functions yield a remarkable improvement in comparison to the asymptotic CC. For the bootstrap
CC, the coverage probabilities are in general close to the nominal coverage of 95%. The boot-

strap CCs are usually wider, and getting narrower when »n increases. Such phenomenon can also
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be found in the simulation study of Claeskens and Van Keilegom (2003). Bootstrap CCs are less
sensitive than asymptotic CCs with respect to the choice o, which is also considered as an advan-
tage. Finally, we note that the performance of bootstrap CCs does not depend on which variance
specification is used too.

The upper part of Table 2 shows the coverage probabiltiy of the CC for nonparametric expectile
regression functions. The results are similar to the case of quantile regression. The asymptotic CCs
do not give accurate coverage probabilities. For example in some cases like 7 = 0.2 and oy = 0.2,
not a single simulation in the 2000 iterations yields a case where surface is completely covered by
the asymptotic CC.

The lower part of Table 2 shows that bootstrap CCs for expectile regression give more accurate
approximates to the nominal coverage than the asymptotic CCs. One can see in the parenthesis
that the volumes of the bootstrap CCs are significantly larger than those of the asymptotic CCs,
especially for small n.

Table 3 presents the proportion in the 2000 iterations which covers 95% of the 400 grid points,
using the bootstrap method proposed in Hall and Horowitz (2013)(abbreviated as HH) for nonpara-
metric mean regression at d = 2. HH derived an expansion for the bootstrap bias and established
a somewhat different way to construct confidence bands without the use of extreme value theory.
It is worth noting that their bands are uniform with respect to a fixed but unspecified portion of
(1-£)-100% (smaller than 100%) of grid points, while in our approach the uniformity is achieved
on the whole set of grids.

The simulation model is (27) with the same homogeneous and heterogeneous variance specifi-
cations as before. We choose three levels ¢ = 0.005,0.05 and 0.1. It is suggested in HH that & = 0.1
is usually sufficient in univariate nonparametric mean regression d = 1. Note that & = 0.005 cor-
responds to the second smallest pointwise quantile B(x, 0.05) in the notation of HH, given that our
grid size is 400. This is close to the uniform CC in our sense. The simulation model associated

with the Table 3 is the same with that of the case 7 = 0.5 in the bootstrap part of Table 1 and Table
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2, because in case of the normal distribution the median equals the mean and 7 = 0.5 expectile is
exactly the mean. However, one should be aware that our coverage probabilities are more stringent
because we check the coverage at every point in the set of grids, rather than only 95% of the points
(we refer it as complete coverage). Hence, the complete coverage probability of HH will be lower
than the proportion of 95% coverage shown in Table 3. The proportion of 95% coverage should
therefore be viewed as an upper bound for the complete coverage.

We summarize our findings as follows. Firstly the proportion of 95% coverage in general
present similar patterns as shown in Table 1 and 2. The coverage improves when n and o get
larger, and the volume of the band decreases as n increases and increases when o increases. The
homogeneous and heterogeneous model yield similar performance. Comparing with the univariate
result in HH, it is found that the proportion of coverage tends to perform worse than that in HH
under the same sample size. This is due to the curse of dimensionality, the estimation of a bivariate
function is less accurate than that of an univariate function. As the result, a more conservative &
has to be applied. If we compare Table 3 to the bootstrap part of Table 1 with 7 = 0.5, it can be
seen that our complete coverage probabilities are comparable to the proportion of 95% coverage at
the case & = 0.005, though in the case of op = 0.2 our CC does not perform very well. However,
the volumes of our CC are much less than that of HH in the cases of small » and moderate and
large 0. This suggests that our CC is more efficient. Finally, the proportion of 95% coverage at
& = 0.005 in Table 3 is similar to the complete coverage probability in bootstrap part of Table 2

with 7 = 0.5, but when sample size is small, the volume of our CC is smaller.

5. Application: a treatment effect study

The classical application of the proposed method is testing the hypothetical functional form
of the regression function. Nevertheless, the proposed method can also be applied to test for a

quantile treatment effect (see Koenker; 2005) or to test for conditional stochastic dominance (CSD)
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as investigated in Delgado and Escanciano (2013). In this section we shall apply the new method
to test these hypotheses for data collected from a real government intervention.

The estimation of the quantile treatment effect (QTE) recovers the heterogeneous impact of
intervention on various points of the response distribution. To define QTE, given vector-valued
exogenous variables X € X where X c R, suppose Y, and Y, are response variables associated
with the control group and treatment group, and let Fx and Fx be the conditional distribution

for Yy and Y7, the QTE at level 7 is defined by

A0 € Qux(tle) - Qox(tlr), xeX, (28)

where Qg x(y|x) and Qyx(y|x) are the conditional quantile of ¥, given X and Y, given X, respec-
tively. This definition corresponds to the idea of horizontal distance between the treatment and
control distribution functions appearing in Doksum (1974) and Lehmann (1975).

A related concept in measuring the efficiency of a treatment is the so called “conditional

stochastic dominance”. Y; conditionally stochastically dominates Y if
Fix(lx) < Fox(ylx) as. for all (y, x) € (M, X), (29)

where Y, X are domains of ¥ and X. For example, if Y, and Y; stand for the income of two groups
of people Gy and G, (29) means that the distribution of Y; lies on the right of that of Y;, which is
equivalent to saying that at a given O < 7 < 1, the T-quantile of Y; is greater than that of ¥;. Hence,

we could replace the testing problem (29) by
Oy x(t]x) = Qox(tlx) forall0 <7< 1andxeX. (30)

Comparing (30) and (28), one would find that (30) is just a uniform version of the test A (x) > 0

over0 <7< 1.
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The method that we introduced in this paper is suitable for testing a hypothesis like A.(x) =0
where A.(x) is defined in (28). One can construct CCs for Qjx(7|x) and Qo x(7|x) respectively, and
then check if there is overlap between the two confidence regions. One can also extend this idea to
test (30) by building CCs for several selected levels 7.

We use our method to test the effectiveness of the National Supported Work (NSW) demon-
stration program, which was a randomized, temporary employment program initiated in 1975 with
the goal to provide work experience for individuals who face economic and social problems prior
to entering the program. The data have been widely applied to examine techniques which estimate
the treatment effect in a nonexperimental setting. In a pioneer study, Lal.onde (1986) compares
the treatment effect estimated from the experimental NSW data with that implied by nonexper-
imental techniques. Dehejia and Wahba (1999) analyse a subset of Lalonde’s data and propose
a new estimation procedure for nonexperimental treatment effect giving more accurate estimates
than Lalonde’s estimates. The paper that is most related to our study is Delgado and Escanciano
(2013). These authors propose a test for hypothesis (29) and apply it to Lalonde’s data, in which
they choose ”age” as the only conditional covariate and the response variable being the increment
of earnings from 1975 to 1978. They cannot reject the null hypothesis of nonnegative treatment
effect on the earnings growth.

The previous literature, however, has not addressed an important question. We shall depict this
question by two pictures. In Figure 1, it is obvious that Y; stochastically dominates Y, in both
pictures, but significant differences can be seen between the two scenarios. For the left one, the
0.1 quantile improves more dramatically than the 0.9 quantile, as the distance between A and A’ is
greater than that between B and B’. In usual words, the gain of the 90% lower bound of the earnings
growth is more than that of the 90% upper bound of the earnings growth after the treatment. ”90%
lower bound of the earnings growth” means the probability that the earnings growth is above the
bound is 90%. This suggests that the treatment induces greater reduction in downside risk but less

increase in the upside potential in the earnings growth. For the right picture the interpretation is
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just the opposite.

To see which type of stochastic dominance the NSW demonstration program belongs to, we ap-
ply the same data as Delgado and Escanciano (2013) for testing the hypothesis of positive quantile
treatment effect for several quantile levels 7. The data consist of 297 treatment group observa-
tions and 423 control group observations. The response variable Yy (Y;) denotes the difference
in earnings of control (treatment) group between 1978 (year of postintervention) and 1975 (year
of preintervention). We first apply common statistical procedures to describe the distribution of
these two variables. Figure 2 shows the unconditional densities and distribution function. The
cross-validated bandwidth for fo(y) is 2.273 and 2.935 for fi(y). The left figure of Figure 2 shows
the unconditional densities of the income difference for treatment group and control group. The
density of the treatment group has heavier tails while the density of the control group is more con-
centrated around zero. The right figure shows that the two unconditional distribution functions are
very close on the left of the 50% percentile, and slight deviation appears when the two distribu-
tions are getting closer to 1. Table 4 shows that, though the differences are small, but the quantiles
of the unconditional cdf of treatment group are mildly greater than that of the control group for
each chosen 7. The two-sample Kolmogorov-Smirnov and Cramér-von Mises tests, however, yield
results shown in the Table 5 which cannot reject the null hypothesis that the empirical cdfs for the
two groups are the same with confidence levels 1% or 5%.

Next we apply our test on quantile regression to evaluate the treatment effect. In order to
compare with Delgado and Escanciano (2013), we first focus on the case of a one-dimensional
covariate. The first covariate X;; is the age. The second covariate X,; is the number of years of
schooling. The sample values of schooling years lie in the range of [3, 16] and age lies between
[17,55]. In order to avoid boundary effect and sparsity of the samples, we look at the ranges
[7,13] for schooling years and [19,31] for age. We apply the bootstrap CC method for quantiles
7=0.1,0.2,0.3,0.5,0.7,0.8 and 0.9. We apply the quartic kernel. The cross-validated bandwidths

are chosen in the same way as for conditional densities with the R package np. The resulting band-
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widths are (2.2691,2.5016) for the treatment group and (2.7204, 5.9408) for the control group. In
particular, for smoothing the data of the treatment group, for 7 = 0.1 and 0.9, we enlarge the cross-
validated bandwidths by a constant of 1.7; for 7 = 0.2,0.3,0.7,0.8, the cross-validated bandwidths
are enlarged by constant factor 1.3. These inflated bandwidths are used to handle violent roughness
in extreme quantile levels. The bootstrap CCs are computed with 10,000 repetitions. The level of
the testis @ = 5%.

The results of the two quantile regressions with one-dimensional covariate, and their CCs for
various quantile levels are presented in Figure 3 and 4. We observe that for all chosen quantile
levels the quantile estimates associated to the treatment group lie above that of the control group
when age is over certain levels, and particularly for 7 = 10%, 50%, 80% and 90%, the quantile
estimates for treatment group exceeds the upper CCs for the quantile estimates of the control
group. On the other hand, at T = 10%, the quantile estimates for the control group drop below the
CC for treatment group for age greater than 27. Hence, the results here show a tendency that both
the downside risk reduction and the upside potential enhancement of earnings growth are achieved,
as the older individuals benefit the most from the treatment. Note that we observe a heterogeneous
treatment effect in age and the weak dominance of the conditional quantiles of the treatment group
with respect to those of the control group, i.e., (30) holds for the chosen quantile levels, which are
in line with the findings of Delgado and Escanciano (2013).

We now turn to Figure 4, where the covariate is the years of schooling. The treatment effect
is not significant for conditional quantiles at levels 7 = 10%,20% and 30%. This suggests that
the treatment does little to reduce the downside risk of the earnings growth for individuals with
various degrees of education. Nonetheless, we constantly observe that the regression curves of the
treatment group rise above that of the control group after a certain level of the years of schooling
for quantile levels 7 = 50%, 70%, 80% and 90%. Notice that for T = 50% and 80% the regression
curves associated to the treatment group reach the upper boundary of the CC of the control group.

This suggests that the treatment effect tends to raise the upside potential of the earnings growth, in
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particular for those individuals who spent more years in the school. It is worth noting that we also
see a heterogeneous treatment effect in schooling years, although the heterogeneity in education is
less strong than the heterogeneity in age.

The previous regression analyses separately conditioning on covariates age and schooling years
only give a limited view on the performance of the program, we now proceed to the analysis
conditioning on the two covariates (X;, X5;) jointly. The estimation settings are similar to the case
of univariate covariate. Figure 5 shows the quantile regression CCs. From a first glance of the
pictures, the T7-quantile CC of the treatment group and that of the control group overlap extensively
for all 7. We could not find sufficient evidence to reject the null hypothesis that the conditional
distribution of treatment group and control group are equivalent.

The second observation obtained from comparing subfigures in Figure 6, we find that the treat-
ment has larger impact in raising the upper bound of the earnings growth than improving the lower
bound. For lower quantile levels 7 = 10%,20% and 30% the solid surfaces uniformly lie inside
the CC of the control group, while for 7 = 50%, 70%, 80% and 90%, we see several positive ex-
ceedances over the upper boundary of the CC of the control group. Hence, the program tends to
do better at raising the upper bound of the earnings growth but does worse at improving the lower
bound of the earnings growth. In other words, the program tends to increase the potential for high
earnings growth but does little in reducing the risk of negative earnings growth.

Our last conclusion comes from inspecting the shape of the surfaces: conditioning on dif-
ferent levels of years of schooling (age), the treatment effect is heterogeneous in age (years of
schooling). The most interesting cases occur when conditioning on high age and high years of
schooling. Indeed, when considering the cases of 7 = 80% and 90%, when conditioning on the
years of schooling at 12 (corresponding to finishing the high school), the earnings increment of
the treatment group rises above the upper boundary of the CC of the control group. This suggests
that the individuals who are older and have more years of schooling tend to benefit more from the

treatment.
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Supplementary Materials

Section A contains the detailed proofs of Theorems 2.1, 2.3, 3.1 and Lemmas 2.6 and 3.2, as
well as intermediate results. Section B contains some results obtained by other authors, which we

use in our study. We incorporate them here for the sake of completeness.
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Appendices

A. Assumptions

(A1) K is of order s — 1 (see (A3)), has bounded support [—-A, A]¢ for A > 0 a positive real scalar,
and is continuously differentiable up to order d with bounded derivatives, i.e. 3K € L'(R?)

exists and is continuous for all multi-indices @ € {0, 1}¢

(A2) Let a, be an increasing sequence, a, — oo as n — oo, and the marginal density fy be such
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that

Gogmn™ [ fyoy = o G1)
[y>an
and
(logn)h™ f Ffrix(lx)dy = O(1), forall x € D
[yl>an
as n — oo hold.
(A3) The function 6y(x) is continuously differentiable and is in Holder class with order s > d.

(A4) fx(x) is bounded, continuously differentiable and its gradient is uniformly bounded. More-

over, inf e fy(x) > 0.

(AS) The joint probability density function f(y, u) is bounded, positive and continuously differen-

tiable up to sth order (needed for Rosenblatt transform). The conditional density fyx(y|x) ex-

ists and is boudned and continuouly differentiable with respect to x. Moreover, inf xep fyx(6o(x)|x) >

0.
(A6) h satisfies Vnhih* \llogn — 0 (undersmoothing), and nh*¥(log n)~2 — co.
(EA2) sup, .y, | [ V" fux(v[x)dv| < oo, for some b > 0.

(B1) L is a Lipschitz, bounded, symmetric kernel. G is Lipschitz continuous cdf, and g is the
derivative of G and is also a density, which is Lipschitz continuous, bounded, symmetric and

five times continuously differentiable kernel.

(B2) F.x(vlx)isin s’ + 1 order Holder class with respect to v and continuous in x, s > max{2, d}.
fx(x) is in second order Holder class with respect to x and v. E[i)?(g;)|x] is second order

continuously differentiable with respect to x € D.

(B3) nhoh? — oo, hy,h = O(n™), where v > 0.
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(C1) There exist an increasing sequence ¢,, ¢, — ©o as n — oo such that

(log n)*(nkh*!)”! Je(W)dv = O(1), (32)

I>en/2

asn — oo,

(EC1) sup,.p |f vbf8|X(v|x)dv| < o0, for some b > 0.

The assumptions (A1)-(A5) are assumptions frequently seen in the papers of confidence corridors,
such as Hirdle (1989), Hirdle and Song (2010) and Guo and Hardle (2012). (EA2) and (EC1) es-
sentially give the uniform bound on the 2nd order tail variation, which is crucial in the sequence of
approximations for expectile regression. (B1)-(B3) are similar to the assumptions listed in chapter
6.1 of Li and Racine (2007). (A6) characterizes the two conflicting conditions: the undersmooth-
ing of our estimator and the convergence of the strong approximation. To make the condition hold
for large d, sometimes we need large s, which is the smoothness of the true function. (C1) and
(EC1) are relevant to the theory of bootstrap, where we need bounds on the tail probability and 2nd

order variation.
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Homogeneous Heterogeneous
Method n T=05 T=02 7=038 T=05 T=02 =038
Op = 0.2
100 .000(0.366) .109(0.720) .104(0.718) .000(0.403) .120(0.739) .122(0.744)
300 .000(0.304) .130(0.518) .133(0.519) .002(0.349) .136(0.535) .153(0.537)
500 .000(0.262) .117(0.437) .142(0.437) .008(0.296) .156(0.450) .138(0.450)
o) = 0.5
100 .070(0.890) .269(1.155) .281(1.155) .078(0.932) .300(1.193) .302(1.192)
Asympt. 300 .276(0.735) .369(0.837) .361(0.835) .325(0.782) .380(0.876) .394(0.877)
500 .364(0.636) .392(0.711) 412(0.712) .381(0.669) .418(0.743) .417(0.742)
gy = 0.7
100 .160(1.260) .381(1.522) .373(1.519) .155(1.295) .364(1.561) .373(1.566)
300 438(1.026) .450(1.109) .448(1.110) 481(1.073) 457(1.155) .472(1.152)
500 .533(0.888) .470(0.950) .480(0.949) .564(0.924) .490(0.984) .502(0.986)
gp = 0.2
100 .325(0.676) .784(0.954) .783(0.954) .409(0.717) .779(0.983) .778(0.985)
300 .442(0.457) .896(0.609) .894(0.610) .580(0.504) .929(0.650) .922(0.649)
500 .743(0411) .922(0.502) .921(0.502) .839(0.451) .950(0.535) .952(0.536)
gy = 0.5
100 .929(1.341) .804(1.591) .818(1.589) .938(1.387) .799(1.645) .773(1.640)
Bootst. 300 .950(0.920) .918(1.093) .923(1.091) .958(0.973) .919(1.155) .923(1.153)
500 .988(0.861) .968(0.943) .962(0.942) .990(0.902) .962(0.986) .969(0.987)
gy = 0.7
100 976(1.811) .817(2.112) .808(2.116) .981(1.866) .826(2.178) .809(2.176)
300 .986(1.253) .919(1.478) .934(1.474) 983(1.308) .930(1.537) .920(1.535)
500 .996(1.181) .973(1.280) .968(1.278) .997(1.225) .969(1.325) .962(1.325)
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Table 1: Nonparametric quantile model coverage probabilities. The nominal coverage is 95%. The
number in the parentheses is the volume of the confidence corridor. The asymptotic method cor-
responds to the asymptotic quantile regression CC and bootstrap method corresponds to quantile
regression bootstrap CC.
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Method n

=05

Homogeneous

=02

=038

=05

Heterogeneous

=02

=038

100
300
500

100
Asympt. 300
500

100
300
500

000(0.428)
049(0.341)
168(0.297)

007(0.953)
341(0.814)
647(0.721)

012(1.324)
445(1.134)
1730(1.006)

000(0.333)
000(0.273)
000(0.243)

000(0.776)
019(0.708)
067(0.645)

000(1.107)
021(1.013)
062(0.928)

o) = 0.2

.000(0.333)
000(0.273)
.000(0.243)
gy = 0.5

000(0.781)
017(0.709)
065(0.647)
gp = 0.7

.000(1.107)
013(1.016)
078(0.929)

000(0.463)
079(0.389)
238(0.336)

007(0.997)
355(0.862)
654(0.759)

010(1.367)
445(1.182)
1728(1.045)

000(0.362)
001(0.316)
003(0.278)

000(0.818)
017(0.755)
061(0.684)

000(1.145)
017(1.062)
068(0.966)

000(0.361)
002(0.316)
002(0.278)

000(0.818)
018(0.754)
068(0.684)

000(1.145)
016(1.060)
066(0.968)

100
300
500

100
Bootst. 300
500

100
300
500

686(2.191)
1762(0.584)
771(0.430)

886(5.666)
956(1.508)
968(1.063)

913(7.629)
969(2.095)
978(1.525)

781(2.608)
860(0.716)
870(0.533)

906(6.425)
958(1.847)
972(1.322)

922(8.846)
969(2.589)
976(1.881)

gy = 0.2

787(2.546)
876(0.722)
875(0.531)
gy = 0.5

915(6.722)
967(1.913)
972(1.332)
gp = 0.7

935(8.643)
971(2.612)
967(1.937)

706(2.513)
1788(0.654)
825(0.516)

899(5.882)
965(1.512)
972(1.115)

929(8.039)
974(2.061)
981(1.654)

810(2.986)
877(0.807)
907(0.609)

927(6.667)
962(1.866)
971(1.397)

935(9.057)
972(2.566)
978(1.979)

801(2.943)
.887(0.805)
904(0.615)

913(6.571)
969(1.877)
974(1.391)

932(9.152)
979(2.604)
974(2.089)

Table 2: Nonparametric expectile model coverage probability. The nominal coverage is 95%. The
number in the parentheses is the volume of the confidence corridor. The asymptotic method corre-
sponds to the asymptotic expectile regression CC and bootstrap method corresponds to expectile

regression bootstrap CC.
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Homogeneous Heterogeneous
n ¢ = 0.005 £ =0.05 £=0.1 & = 0.005 £ =0.05 £=0.1
o) = 0.2
100 .693(3.027)  .529(1.740) .319(1.040) .680(3.452)  .546(2.051) .332(1.224)
300 .891(0.580)  .748(0.365) .642(0.323) .907(0.667)  .798(0.414) .698(0.364)
500 .886(0.335) .770(0.265) .678(0.244) .896(0.379)  .789(0.298) .699(0.274)
oy = 0.5
100 .720(7.264)  .611(4.489) .394(2.686) .729(7.594) .616(4.676) .414(2.829)
300 .945(1.423)  .849(0.859) .755(0.746) .940(1.511)  .854(0.912) .760(0.791)
500 .944(0.795)  .846(0.600) .750(0.548) .937(0.833)  .839(0.632) .751(0.577)
g = 0.7
100 .730(10.183) .634(6411) 430(3.853) .752(10.657) .658(6.577) .441(3.923)
300 936(1.995)  .854(1.197) .751(1.037) .951(2.091)  .875(1.256) .772(1.086)
500 .933(1.098)  .854(0.831) .774(0.758) .938(1.145) .853(0.865) .770(0.789)

Table 3: Proportion in 2000 iteration that the coverage of > 95% grid points for nonparametric
mean model, using the bootstrap method of Hall and Horowitz (2013). The nominal coverage is
95%. The number in the parentheses is the volume of the confidence corridor.

(%) 10 20 30 50 70 80 90
Treatment -438 -1.55 000 140 548 850 11.15
Control -491 -173 -0.17 0.74 444 7.16 10.56

Table 4: The unconditional sample quantiles of treatment and control groups.

Type of test Statistics  p-value
Kolmogorov-Smirnov 0.0686 0.3835
Cramér-von Mises 02236  0.7739

Table 5: The two sample empirical cdf tests results for treatment and control groups.

ACCEPTED MANUSCRIPT
39



Downloaded by [Humboldt-Universit&auml;t zu Berlin Universit&auml;tsbibliothek] at 00:40 08 February 2016

ACCEPTED MANUSCRIPT

Type I: Risk reduction CSD

tau

0.1

Earnings growth

tau

Type lI: Potential enhancement CSD

0.1

Earnings growth

Figure 1: The illustrations for the two possible types of stochastic dominance. In the left figure, the
0.1 quantile improves (downside risk reduction) more dramatically than the 0.9 quantile (upside
potential increase), as the distance between A and A’ is greater than that between B and B’. For the
right picture the interpretation is just the opposite.

Density
0.06 0.08
| |

0.04
1
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0.00
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Earnings in 78-75 (in thousand dollars)

Fn(y)

T T T T T T
-40 -20 0 20 40 60

Earnings in 78-75 (in thousand dollars)

Figure 2: Unconditional empirical density function (left) and distribution function (right) of the
difference of earnings from 1975 to 1978. The dashed line is associated with the control group and
the solid line is associated with the treatment group.
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Figure 3: Nonparametric quantile regression estimates and CCs for the changes in earnings be-
tween 1975-1978 as a function of age. The solid dark lines correspond to the conditional quantile
of the treatment group and the solid light lines sandwich its CC, and the dashed dark lines cor-
respond to the conditional quantiles of the control group and the solid light lines sandwich its
CC.
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Figure 4: Nonparametric quantile regression estimates and CCs for the changes in earnings be-
tween 1975-1978 as a function of years of schooling. The solid dark lines correspond to the condi-
tional quantile of the treatment group and the solid light lines sandwich its CC, and the dashed dark
lines correspond to the conditional quantiles of the control group and the solid light lines sandwich
its CC.
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Figure 5: The CCs for the treatment group and the control group. The net surface corresponds to
the control group quantile CC and the solid surface corresponds to the treatment group quantile
CC.
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Figure 6: The conditional quantiles (solid surfaces) for the treatment group and the CCs (net
surfaces) for the control group.
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SUMMARY

We propose a local adaptive multiplicative error model (MEM) accommodating time-varying parameters. MEM
parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local
windows is selected, yielding adaptive forecasts at each point in time. Analysing 1-minute cumulative trading
volumes of five large NASDAQ stocks in 2008, we show that local windows of approximately 3 to 4 hours
are reasonable to capture parameter variations while balancing modelling bias and estimation (in)efficiency. In
forecasting, the proposed adaptive approach significantly outperforms a MEM where local estimation windows
are fixed on an ad hoc basis. Copyright © 2014 John Wiley & Sons, Ltd.

1. INTRODUCTION

Recent research in econometrics and statistics shows that modelling and forecasting of high-frequency
financial data is a challenging task. Researchers strive to understand the dynamics of processes when
all single events are recorded while accounting for external shocks as well as structural shifts on
financial markets. The fact that high-frequency dynamics are not stable over time but are subject to
regime shifts is hard to capture by standard time series models. This is particularly true whenever it
is unclear where the time-varying nature of the data actually comes from and how many underlying
regimes there might be.

This paper addresses the phenomenon of time-varying dynamics in high-frequency data, such as
(cumulative) trading volumes, trade durations, market depth or bid—ask spreads. The aim is to adapt
and to implement a local parametric framework for multiplicative error processes and to illustrate
its usefulness when it comes to out-of-sample forecasting under possibly non-stable market condi-
tions. We propose a flexible statistical approach allowing adaptive selection of a data window over
which a local constant-parameter model is estimated and forecasts are computed. The procedure
requires (re-)estimating models on windows of evolving lengths and yields an optimal local estima-
tion window. As a result, we provide insights into the time-varying nature of parameters and of local
window lengths.

The so-called multiplicative error model (MEM), introduced by Engle (2002), serves as a workhorse
for the modelling of positive-valued, serially dependent high-frequency data. It is successfully applied
to financial duration data, where it was originally introduced by Engle and Russell (1998) in the con-
text of an autoregressive conditional duration (ACD) model. Likewise, it is applied to model intra-day
trading volumes, see, among others, Manganelli (2005); Brownlees ez al. (2011); Hautsch ez al. (2014).
MEM parameters are typically estimated over long estimation windows in order to increase estimation
efficiency. However, empirical evidence makes parameter constancy in high-frequency models over
long time intervals questionable. Possible structural breaks in MEM parameters have been addressed,
for instance, by Zhang et al. (2001), who identify regime shifts in trade durations and suggest a thresh-

* Correspondence to: Andrija Mihoci, CASE—Center for Applied Statistics and Economics, Humboldt-Universitit zu Berlin,
Spandauer Str. 1, 10178 Berlin, Germany. E-mail: mihociax @cms.hu-berlin.de

Copyright © 2014 John Wiley & Sons, Ltd.
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old ACD (TACD) specification in the spirit of threshold ARMA models, see, for example, Tong (1990).
To capture smooth transitions of parameters between different states, Meitz and Terésvirta (2006) pro-
pose a smooth transition ACD (STACD) model. Whereas in STACD models parameter transitions are
driven by observable variables, Hujer et al. (2002) allow for an underlying (hidden) Markov process
governing the underlying state of the process.

Regime-switching MEM approaches have the advantage of allowing for changing parameters on
possibly high frequencies (in the extreme case from observation to observation) but require imposition
of a priori structures on the form of the transition, the number of underlying regimes and (in the case
of transition models) on the type of the transition variable. Moreover, beyond short-term fluctuations,
parameters might also reveal transitions on lower frequencies governed by the general (unobservable)
state of the market. Such regime changes might be captured by adaptively estimating a MEM based
on a window of varying length and thus providing updated parameter estimates at each point in time.
The main challenge of the latter approach, however, is the selection of the estimation window. From a
theoretical perspective, the length of the window should, on the one hand, be maximal to increase the
precision of parameter estimates and, on the other, sufficiently short to capture structural changes. This
observation is also reflected in the well-known result that aggregations over structural breaks (caused
by too long estimation windows) can induce spurious persistence and long range dependence.

This paper suggests a data-driven length of (local) estimation windows. The key idea is to implement
a sequential testing procedure to search for the longest time interval with given right end for which
constancy of model parameters cannot be rejected. This mechanism is carried out by re-estimating
(local) MEMs based on data windows of increasing lengths and sequentially testing for a change in
parameter estimates. By controlling the risk of false alarm, the algorithm selects the longest possible
window for which parameter constancy cannot be rejected at a given significance level. Based on this
data interval, forecasts for the next period are computed. By repeating these steps in every period,
variations in parameters are thus automatically captured.

The proposed framework builds on the local parametric approach (LPA) originally proposed by
Spokoiny (1998). The presented methodology has been gradually introduced into the time series liter-
ature; see, for example, Mercurio and Spokoiny (2004) for an application to daily exchange rates and
Cizek et al. (2009) for an adaptation of the approach to generalized autoregressive conditional het-
eroskedasticity (GARCH) models. In realized volatility analysis, LPA has been applied by Chen et al.
(2010) to daily stock index returns.

The contributions of this paper are to introduce local adaptive calibration techniques into the class
of multiplicative error models, to provide valuable empirical insights into the (non-)homogeneity of
high-frequency processes and to show the usefulness of the approach in the context of out-of-sample
forecasting. Though we specifically focus on 1-minute cumulative trading volumes of five highly
liquid stocks traded at NASDAQ, our findings may be carried over to other high-frequency series, as
the stochastic properties of high-frequency volumes are quite similar to those of, e.g., trade counts,
squared midquote returns, market depth or bid—ask spreads.

We aim at answering the following research questions: (i) How strong is the variation of MEM
parameters over time? (ii) What are typical interval lengths of parameter homogeneity implied by
the adaptive approach? (iii) How good are out-of-sample short-term forecasts compared to adaptive
procedures where the length of the estimation windows is fixed on an ad hoc basis?

Implementing the proposed framework requires re-estimating and re-evaluating the model based
on rolling windows of different lengths which are moved forward from minute to minute. This pro-
ceeding yields extensive insights into the time-varying nature of high-frequency trading processes.
Based on NASDAQ trading volumes, we show that parameter estimates and estimation quality clearly
change over time and provide researchers valuable rule of thumbs for the choice of local intervals.
In particular, we show that, on average, precise adaptive estimates require local estimation win-
dows of approximately 3 to 4 hours. Moreover, it turns out that the proposed adaptive method yields

Copyright © 2014 John Wiley & Sons, Ltd. J. Appl. Econ. 30: 529-550 (2015)
DOI: 10.1002/jae
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significantly better short-term forecasts than competing approaches using fixed-length rolling windows
of comparable sizes. Hence it is not only important to use local windows but also to adaptively adjust
their length in accordance with prevailing (market) conditions. This is particularly true in periods of
market distress where forecasts utilizing too much historical information perform clearly worse.

The remainder of the paper is structured as follows. After the data description in Section 2, the
multiplicative error model and the local parametric approach are introduced in Sections 3 and 4,
respectively. Empirical results on forecasts of trading volumes are provided in Section 5. Section 6
concludes.

2. DATA

We use transaction data of five large companies traded at NASDAQ—Apple Inc. (AAPL), Cisco Sys-
tems, Inc. (CSCO), Intel Corporation (INTC), Microsoft Corporation (MSFT) and Oracle Corporation
(ORCL)—which account for approximately one third of the market capitalization within the technol-
ogy sector. Our variable of interest is the 1-minute cumulative trading volume covering the period
from 2 January to 31 December 2008. To remove effects due to market opening, the first 30 minutes of
each trading session are discarded. Hence, at each trading day, we analyse data from 10:00 to 16:00.

Descriptive statistics (not shown in the paper) indicate right-skewed distributions, whereas the
Ljung—Box test statistics show a strong serial dependence as the null hypothesis of no autocorrelation
(among the first 10 lags) is clearly rejected. Autocorrelation functions indicate that high-frequency
volumes are strongly and persistently clustered over time.

Denote the 1-minute cumulative trading volume at time point i by y;. Assuming a multiplicative
impact of intra-day periodicity effects, we compute seasonally adjusted volumes by

yi = Visi! (1

with s; representing the intra-day periodicity component at time point . Seasonality components are
typically assumed to be constant over time. However, to capture slowly moving (‘long-term’) com-
ponents in the spirit of Engle and Rangel (2008), we estimate the periodicity effects on the basis of
30-day rolling windows. Alternatively, seasonal effects could be captured directly within the local
adaptive framework presented below. As our focus is on (pure stochastic) short-term variations in
parameters rather than on deterministic periodicity effects, we decide to remove the former before-
hand. This leaves us with non-homogeneity in the processes, which is not straightforwardly taken into
account and allows us evaluating the potential of a local parametric approach even more convincingly.
The intra-day component s; is specified via a flexible Fourier series approximation as proposed by
Gallant (1981):

M
si=8-T+ Y {8emcos(i-2mm) + g msin (i - 2mm)} (2)

m=1

Here, 8, §.,m and 8 »,, are coefficients to be estimated, and 7 € (0, 1] denotes a normalized intra-day
time trend defined as the number of minutes from opening until i divided by the length of the trading
day, i.e.7 = i/360. The order M is selected according to the Bayes information criterion (BIC) within
each 30-day rolling window. To avoid forward-looking biases, the periodicity component is estimated
using previous data only. The sample of seasonally standardized cumulative 1-minute trading volumes
thus covers the period from 14 February to 31 December 2008. The estimated daily seasonality factors
change mildly in their level, reflecting slight long-term movements.

Figure 1 displays the intra-day periodicity components associated with the lowest and largest
monthly volumes, respectively, observed through the sample period. We observe the well-known
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Figure 1. Estimated intra-day periodicity components for cumulative one-minute trading volumes (in units of
100,000 and plotted against the time of the day) of selected companies at NASDAQ on 2 September (lower, lowest
30-day trading volume) and 30 October 2008 (upper, highest 30-day volume)

(asymmetric) U-shaped intra-day pattern with high volumes at the opening and before market clo-
sure. Particularly before closure, it is evident that traders intend to close their positions, creating high
market activity.

3. LOCAL MULTIPLICATIVE ERROR MODELS

The multiplicative error model (MEM), as discussed by Engle (2002), has become a workhorse
for analysing and forecasting positive valued financial time series, such as trading volumes, trade
durations, bid—ask spreads, price volatilities, market depth or trading costs. The idea of a multiplica-
tive error structure originates from the structure of the autoregressive conditional heteroskedasticity
(ARCH) model introduced by Engle (1982). In high-frequency financial data analysis, a MEM was
first proposed by Engle and Russell (1998) to model the dynamic behaviour of the time between trades
and has been referred to as autoregressive conditional duration (ACD) model. The ACD model is thus
a special type of MEM applied to financial durations. During the remainder of the paper, we use both
labels as synonyms. For a comprehensive literature overview, see Hautsch (2012).

3.1. Model Structure

The principle of a MEM is to model a non-negative valued process y = {y;}/—;, e.g., the trading
volume time series in our context, in terms of the product of its conditional mean process p; and a
positive valued error term &; with unit mean:

yi = pigi, Elg| Fioql =1 3)

conditional on the information set ; up to observation i. The conditional mean process of order (p, q)
is given by an ARMA-type specification:

p q
pi =) =+ a;yij+ Y Bili- “4)

i=1 i=1
with parameters w, & = (a1, .. .,Otp)T and B = (Bi1.... ,ﬂq)T. The model structure resembles

the conditional variance equation of a GARCH(p, ¢) model, as soon as y; denotes the squared
(de-meaned) log return at observation i.

Natural choices for the distribution of ¢; are the (standard) exponential distribution and the Weibull
distribution. The former distribution allows for quasi maximum likelihood estimation and consistent
estimates of EACD parameters even in the case of distributional misspecification. The latter is a simple
but powerful generalization being sufficiently flexible in most applications. Define I = [iy — n, ip]
as a (right-end) fixed interval of (n + 1) observations at observation iy. Then, local ACD models are
given as follows:
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(i) Exponential-ACD model (EACD): &; ~ exp(1), 0 = (w,a, ﬁT)T, with (quasi) log-likelihood
function over I = [ig — n, ip] given ip:

n

b (yibe)= ) (—logui—%)l(iel) (5)

i=max(p,q)+1

(i1) Weibull-ACD model (WACD): &; ~ G(s, 1), O = (a) al BT, s)T, with log-likelihood function
over I = [ip —n,ip] given iy:

Gt = Y [log% + slog U J;j/s)y" - {F(l +/;/s)y,- }S]I(i el) (6

i=max(p,q)+1

Correspondingly, the (quasi-)maximum likelihood estimates ((Q)MLEs) of 8¢ and 6y over the data
interval [ are given by

0 = arg max Li(y;0) @)

3.2. Local Parameter Dynamics

The idea behind the local parametric approach (LPA) is to select at each time point an optimal length
of data window over which a constant parametric model cannot be rejected by a test to be described
below. The resulting interval of homogeneity is used to locally estimate the model and to compute
out-of-sample predictions. Since the approach is implemented on a rolling window basis, it naturally
captures time-varying parameters and allows identifying breakpoints where the length of the locally
optimal estimation window has to be adjusted.

The implementation of the LPA requires estimating the model at each point in time using estima-
tion windows with sequentially varying lengths. We consider data windows with lengths of 1 hour, 2
hours, 3 hours, 1 trading day (6 hours), 2 trading days (12 hours) and 1 trading week (30 hours). As
non-trading periods (i.e. overnight periods, weekends or holidays) are removed, the estimation win-
dows contain data potentially covering several days. Applying (local) EACD(1, 1) and WACD(1, 1)
models based on five stocks, we estimate in total 4,644,000 parameter vectors. It turns out that esti-
mated MEM parameters substantially change over time, with the variations depending on the lengths
of underlying local (rolling) windows. As an illustration, Figure 2 shows EACD parameters employ-
ing 1-day (6 trading hours) and 1-week (30 trading hours) estimation windows for Intel Corporation
(INTC). Note that the first 30 days are used for the estimation of intra-day periodicity effects, whereas
an additional 5 days are required to obtain the first ‘weekly’ estimate (i.e. an estimate using 1 trading
week of data).

We observe that estimated parameters ('d)' o and E) and persistence levels (’5[ + E) clearly vary
over time. As expected, estimates are less volatile if longer estimation windows (such as 1 week of
data) are used. Conversely, estimates based on local windows of 6 hours are less stable. This might be
induced either by high (true) local variations which are smoothed away if the data window becomes
larger, or by an obvious loss of estimation efficiency as fewer data points are employed. These dif-
ferences in estimates’ variations are also reflected in the empirical time series distributions of MEM
parameters. Table I provides quartiles of the estimated persistence (5[ + E) (pooled across all five

stocks) in dependence of the length of the underlying data window. We associate the first quartile (25%
quantile) with a ‘low’ persistence level, whereas the second quartile (50% quantile) and third quartile
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Figure 2. Time series of estimated ‘weekly’ (left panel, rolling windows covering 1800 observations) and ‘daily’

(right panel, rolling windows covering 360 observations) EACD(1, 1) parameters and functions thereof based on

seasonally adjusted 1-minute trading volumes for Intel Corporation (INTC) at each minute from 22 February to
31 December 2008

(75% quantile) are associated with ‘moderate’ and ‘high’ persistence levels, respectively. It is shown
that the estimated persistence increases with the length of the estimation window. Again, this result
might reflect that the ‘true’ persistence of the process can only be reliably estimated over sufficiently
long sampling windows. Alternatively, it might indicate that the revealed persistence is just a spurious
effect caused by aggregations over underlying structural changes.

Summarizing these first pieces of empirical evidence on local variations of MEM parameters, we
can conclude: (i) MEM parameters, their variability and their distribution properties change over time
and are obviously dependent on the length of the underlying estimation window; (ii) longer local
estimation windows increase the estimation precision but also enlarge the risk of misspecifications
(due to averaging over structural breaks) and thus increase the modelling bias. Standard time series
approaches would strive to obtain precise estimates by selecting large estimation windows, inflating,
however, at the same time the bias. Conversely, the LPA aims at finding a balance between parameter
variability and modelling bias. By controlling estimation risk, the procedure accounts for the possible
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Table I. Quartiles of estimated persistence levels (07 + ,3) for all five

stocks at each minute from 22 February to 31 December 2008 (215 trad-

ing days) and six lengths of local estimation windows based on EACD

and WACD specifications. We label the first quartile as ‘low’, the second
quartile as ‘moderate’ and the third quartile as ‘high’

Estimation window EACD(1,1) WACD(1,1)

Low  Moderate High Low Moderate High

1 week 0.85 0.89 093  0.82 0.88 0.92
2 days 0.77 0.86 092 0.74 0.84 0.91
1 day 0.68 0.82 090 0.63 0.79 0.89
3 hours 0.54 0.75 0.88  0.50 0.72 0.87
2 hours 0.45 0.70 086 042 0.67 0.85
1 hour 0.33 0.58 0.80 031 0.57 0.80

Table II. Quartiles of 774,000 estimated ratios B /la+ B (based on estimation

windows covering 1800 observations) for all five stocks at each minute from 22

February to 31 December 2008 (215 trading days) and both model specifications

(EACD and WACD) conditional on the persistence level (low, moderate or high).

We label the first quartile as ‘low’, the second quartile as ‘mid’ and the third
quartile as ‘high’

Model Low persistence Moderate persistence High persistence

Low Mid High Low Mid High Low Mid High

EACD,& 028 022 018 030 023 019 031 024 020

EACD,E 056 062 067 059 066 071 062 0.68 0.73
WACD,@ 028 021 017 030 023 0.8 032 024 0.19

WACD,B 054 060 065 058 065 070 060 0.68 0.74

trade-off between (in)efficiency and the coverage of local variations by finding the longest possible
interval over which parameter homogeneity cannot be rejected.

An important ingredient of the sequential testing procedure in the LPA is a set of critical values.
The critical values have to be calculated for reasonable parameter constellations. Therefore, we aim
at parameters which are most likely to be estimated from the data. As a first criterion we distinguish
between different levels of persistence, @ + B. This is performed by classifying the estimates into
three persistence groups (low, medium or high persistence) according to the first row of Table 1. Then,
within each persistence group, we distinguish between different magnitudes of @ relative to 8. This
naturally results into groups according to the quartiles of the ratio E/ (3[ + E), yielding again three
categories (low, mid or high ratio). As a result, we obtain nine groups of parameter constellations, see
Table II, which are used below to simulate critical values for the sequential testing procedure.

3.3. Estimation Quality

Addressing the inherent trade-off between estimation (in)efficiency and local flexibility requires con-
trolling the estimation quality. In the proposed LPA framework, the so-called pseudo true parameter
changes over time (see, for example, Spokoiny, 2009). The key idea is to approximate this process by
a model with parameters which are constant over an interval with optimized length. Denote the pseudo
true (time-varying) parameter vector by 8* associated with a fixed interval 7, where, for convenience,
we omit the time subscript and only keep an asterisk (*) through the text. The quality of the (QQMLE
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51 of the pseudo true 6* is assessed by the Kullback-Leibler (KL) divergence. In particular, for a fixed
interval /, we consider the (positive) difference £ (51) — £1(6%) with log-likelihood expressions for
the EACD and WACD models given by equations (5) and (6), respectively. Denote the corresponding
loss function by Lj (51, 9*) = ‘61 (51) —£7(0%)

By introducing the rth power of the loss function, i.e. for any r > 0, there is a constant R, (6*)
satisfying

r

Eo+ |L1(07,0%)| <R, (6% (8)

and denoting the (parametric) risk bound depending on r > 0 and 8* (see, for example, Spokoiny
(2009); Cizek et al. (2009)). The risk bound (8) allows the construction of non-asymptotic confidence
sets and testing the validity of the (local) parametric model. For the construction of critical values, we
exploit equation (8) to show that the random set S;(z4) = {9 t Ly (51 9*) < za} is an @-confidence
set in the sense that Py« (6* ¢ Sy(z4)) < a.

The parameter r drives the tightness of the risk bound. Accordingly, different values of r lead to
different risk bounds, critical values and thus adaptive estimates. Higher values of r lead to, ceteris
paribus, a selection of longer intervals of homogeneity and more precise estimates, however, increase
the modelling bias. It might be chosen in a data-driven way, e.g. by minimizing forecasting errors.
Here, we follow Cizek et al. (2009) and consider r = 0.5 and r = 1, a ‘modest risk case’ and a
‘conservative risk case’, respectively.

4. LOCAL PARAMETRIC MODELLING

The local parametric approach requires a time series to be locally, i.e. over short periods of time,
approximated by a parametric model. Though local approximations are obviously more accurate than
global ones, this proceeding raises the question of the optimal size of the local interval.

4.1. Statistical Framework

Including more observations in an estimation window reduces the variability, but obviously enlarges
the bias. The algorithm presented below strikes a balance between bias and parameter variability and
yields an interval of homogeneity. Our goal is to well approximate the ‘true’ model over an interval
I} by the parametric model with constant parameter 6. The quality of approximation is measured by
the KL divergence. Consider the KL divergence K(v, v’) between probability distributions induced
by v and v'. Then, define Ay, (0) = ;s K {i, pi(0)}, where p; (0) denotes the model described
by equation (4) and p; is the true (unknown) data-generating process. The entity Ay, (6) measures
the distance between the underlying process and the assumed parametric model and thus allows us to
control the modelling bias.
Let, for some 6 € O,

E[AL(0)] = A 9

where A > 0 denotes the small modelling bias (SMB) for an interval /. The SMB condition implies
that, for some parameter 6, the random quantity Ay, (8) is bounded by a small constant with a high
probability. Therefore, on the interval I, the ‘true’ model can be well approximated by the parametric
model with parameter 8 while keeping the modelling bias ‘small’ according to equation (9). The best
parametric fit (4) on I is obtained by minimizing E [Aj, (6)] over 8 € ©. Here, the KL concept is
used for theoretical underpinning, but we do not estimate it in practice.
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Cizek et al. (2009) show that under the SMB condition (9), estimation loss scaled by the parametric
risk bound R, (6*) is stochastically bounded. In particular, in the case of (Q)ML estimation with loss

function L (51 9*), the SMB condition implies

E[log{l + ‘L; (’51,9*)‘r/72,(9*)}] <1+A (10)

The proposed framework captures dependent data given a linear specification of the conditional
mean process. The methodology, however, can be generalized to nonlinear structures, assuming that,
locally, a nonlinear model approximates the ‘true’ (unknown) conditional mean process. Then the KL
divergence considers the probability measures induced by the ‘true’ model and that of the nonlinear
data structure, yielding, however, different (and more complex) risk bounds.

Consider (K + 1) nested intervals (with fixed right-end point ig) I = [ig — ng,io] of length ng,
Iy C I} C ... C Ik. Then, the ‘oracle’ (i.e. theoretically optimal) choice I+ of the interval sequence
is defined as the largest interval for which the SMB condition holds:

E[As,.(0)] < A (1n)

This ‘oracle’ choice provides the ’best’ local fit but not necessarily the best out-of-sample forecast.
Optimizing the procedure in terms of out-of-sample forecasting performance, however, is beyond the
scope of this paper. This task may appear infeasible in the case of high-frequency data modelling due to
the increased computational burden, unless very restrictive assumptions are imposed. It is therefore our
major research question to what extent an ‘optimal’ local fit is beneficial for out-of-sample forecasts.

So far, there has been limited attention devoted to the selection of optimal window lengths in the
econometric forecasting literature. As stressed by Cizek er al. (2009), time-varying coefficients are
typically assumed as smooth functions (of time) or, alternatively, as piecewise constant functions. For
instance, Pesaran and Timmermann (2007) consider a linear regression framework subject to struc-
tural breaks under the assumption of the presence of sudden jumps in the parameter values. Clark
and McCracken (2009) extend this work and allow for conditional heteroskedasticity and serial cor-
relation in the regression error terms. The LPA approach, however, includes both scenarios as special
cases: parameters can vary over time as the interval changes with i and, at the same time, can reveal
discontinuities and jumps as a function of time. In both cases, the observed data are described by an
unobserved process which, at each point i, can be described by a historical interval in which the pro-
cess (approximately) follows a parametric specification. This local assumption enables us to apply
well-developed parametric methods to estimate the underlying parameter.

In practice, Ay, is unknown and therefore the oracle choice k* cannot be implemented. Conse-
quently, the aim is to mimic the oracle choice using a sequential testing procedure for the different
intervals k = 1,..., K. The resulting interval 17; is then used to construct the local estimator. Cizek
et al. (2009) and Spokoiny (2009) show that the estimation errors induced by the adaptive estimation
during steps k < k* are not larger than those induced by (Q)ML estimation directly using k*. Hence
the sequential estimation and testing procedure does not incur a larger estimation error compared to
the situation where k* is known; see equation (10).

In applications, the lengths of the underlying intervals evolve on a geometric grid with initial length
no and a multiplier ¢ > 1, ny = [nock]. In the present study, we select ng = 60 observations (i.e.
minutes) and consider two schemes with ¢ = 1.50 and ¢ = 1.25and K = 8 and K = 13, respectively:

(1) ng = 60 min, n; = 90 min, ..., ng = 1 week (9 estimation windows, K = 8); and
(ii) no = 60 min, n; = 75 min, ..., n13 = 1 week (14 estimation windows, K = 13).

The latter scheme bears a slightly finer granulation than the first one.
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Figure 3. Graphical illustration of sequential testing for parameter homogeneity in interval I with length ny =

| I | ending at fixed time point io. Suppose we have not rejected homogeneity in interval Ix_;, we search within

the interval J; = I \ Ix— for a possible change point 7. In the top figure, the dotted region marks interval Ay ,

and the blue region marks interval By . splitting the interval Ix 41 into two parts depending upon the position of
the unknown change point t

4.2. Local Change Point (LCP) Detection Test

Selecting the optimal length of the interval builds on a sequential testing procedure where at each
interval Iy one tests the null hypothesis on parameter homogeneity against the alternative of a change
point at unknown location t within /.

The test statistic is given by

Teork = swp {Cac. (Tac.) + e (Onc) = trr (0111 ) (12)

teJi

where Ji and By denote intervals Jx = Iy \ Ix—1, Ak, = [io —nk+1, 7] and By, = (7, io] utilizing
only a part of the observations within /. As the location of the change point is unknown, the test
statistic considers the supremum of the corresponding likelihood ratio statistics over all T € I.

Figure 3 illustrates the underlying idea graphically: assume that, for a given time point iy, parameter
homogeneity in interval Ix_; has been established. Then, homogeneity in interval Ij is tested by
considering any possible breakpoint t in the interval J; = Iy \ Ir—1. This is performed by computing
the log-likelihood values over the intervals Ag ; = [ip — k41, 7] dotted area and By , = (t, ip] solid
are in the top figure for given . Computing the supremum of these two likelihood values for any t €
Jx and relating it to the log-likelihood associated with /41 ranging from i to ig —ngq results in the
test statistic (12). For instance, in our setting based on (K + 1) = 14 intervals, we test for a breakpoint,
e.g.ininterval /; = 75 min, by searching only within the interval J; = I\ /o, containing observations
from y;,—75 up to y;,—eo. Then, for any observation within this interval, we sum equations (5) and (6)
for the EACD and WACD model, respectively, over A;  and B . and subtract the likelihood over 5.
Then, the test statistic (12) corresponds to the largest obtained likelihood ratio.

Comparing the test statistic (12) for given iy at every step k with the corresponding (simulated)
critical value, we search for the longest interval of homogeneity 17; for which the null is not rejected.

Then, the adaptive estimate 9 is the (Q)MLE at the interval of homogeneity, i.e. 0= 579 If the null is

already rejected at the first step, then 9 equals the (Q)MLE at the shortest interval /o. Conversely, if
no breakpoint can be detected within /g, then 6 equals the (Q)MLE of the longest window /.
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4.3. Critical Values

Under the null hypothesis of parameter homogeneity, the correct choice in the pure parametric situa-
tion is the largest considered interval /. In the case of selecting k < K and thus choosing 8 = 0,

instead of 6 > thelossis Ly, (51 K,/G\) ={r, (51 K) — L1y (5) and is stochastically bounded:

Eg+

Lig (01.8)| = pRr(0%) (13)

Critical values must ensure that the loss associated with ‘false alarm’ (i.e. selecting k < K) is
at most a p-fraction of the parametric risk bound of the ‘oracle’ estimate 6;,. For r — 0, p can
be interpreted as the false alarm probability. We select the minimal critical values ensuring a small
probability of such a false alarm.

Accordingly, an estimate 67, k = 1,..., K, should satisfy

Eg*

(~ o~ r
Li, (01.01,)| = pcRr(6%) (14)
with pr = pk/K < p. Condition (14) is fulfilled with the choice
Zx = aor log (,o_l) +airlog(ng/ng—1) +azlog(ng), k=1,....K (15)

with constants ag, a; and a,. Since the number of selected intervals {/; }le and their corresponding
lengths {nk}f=1 are fixed, Cizek et al. (2009) show that the critical values are of the form z; =
C + Dlog(ng) fork = 1,..., K with some constants C and D. A relevant choice of these constants
has to be selected by Monte Carlo simulation on the basis of the assumed data-generating process
(4) and the assumption of parameter homogeneity over the interval sequence {/ },{;1. The procedure
is run for fixed values C and D using simulated data, allowing to evaluate its performance and to
monitor if the condition (14) is fulfilled. Then, for a fixed value of C, one finds the minimal value
D(C) < 0 ensuring a decreasing pattern (with k) of the critical values. Therefore, a false alarm at an
early stage is more crucial since it is associated with a comparably variable estimate. After fixing the
false alarm probability at the first step, one determines the constant C (see, for example, CiZek et al.,
(2009). The authors note that, alternatively, the constants C and D could be found by minimizing the
related prediction errors.

To simulate the data-generating process, we use the parameter constellations underlying the nine
groups described in Section 3.2. and shown in Table II for nine different parameters 6*. The Weibull
parameter s is set to its median value s’ = 1.57 in all cases. Moreover, we consider two risk levels
(r = 0.5 and r = 1), two interval granulation schemes (K = 8 and K = 13) and two significance
levels (p = 0.25 and p = 0.50) underlying the test.

The resulting critical values satisfying equation (14) for the nine possibilities of ‘true’ parameter
constellations of the EACD(1, 1) model for K = 13, r = 0.5 (‘moderate risk case’) and p = 0.25
are displayed in Figure 4. We observe that the critical values are virtually invariable with respect to
0* across the nine scenarios. The largest difference between all cases appears for interval lengths up
to 90 minutes. Beyond that, the critical values are robust across the range of parameters also for the
conservative risk case (r = 1), other significance levels and interval selection schemes.

In the sequential testing procedure, we employ parameter-specific critical values. In particular, at
each minute iy, we estimate a local MEM over a given interval length and choose the critical values
(for given levels of p and r) simulated for those parameter constellations (according to Table IT) which
are closest to our local estimates. For instance, suppose that at some point iy we have @ = 0.32 and

E = 0.53. Then, we select the curve associated with the low persistence ('07 + :5) and the low ratio
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Figure 4. Simulated critical values of an EACD(1, 1) model for the ‘moderate risk case’ (r = 0.5), p = 0.25,
K = 13 and chosen parameter constellations according to Table II. The low (solid), middle (dashed) and upper
(dotted) curves are associated with the corresponding ratio levels /(& + )

Table III. Summary of the local change point (LCP) detection test and adaptive estimation at fixed observation
ip. Here 7 denotes the unknown change point and n represents the length of the interval I

LCP: step 1
e Select intervals: 1o, Iy, Jy = I \ Io, A1+ = [io —n2, 7] and By ; = (1, io]

e Compute the test statistic (12) at step 1: To,; = sup {KAI B (9A1 T) +45,, (E/Bl ,) —4Lr, (,5/]2)}
ey ’ ’ ’ ’
LCP: step k
o Select intervals: Ixy1, I, Jx = Ix \ Ix—1, Ak = [io — nk+1,7] and B r = (2, i0]
e Compute the test statistic (12) at step k: Tx—1 .k Tk k—1 = sup (€4, . (9Ak L) T, (GBk I) — Z[k+] (91k+] )}
el ' ' ’ ’

Testing procedure
o Select the set of critical values {34 },f=1 according to the ‘persistence’ level

(’5[4—73;) and ‘smoothness’ level F/ (’&/-i- E’) of the ‘weekly’ estimate’gK and the desired tuning parameter constellation
e Compare Ty —1 x with the simulated critical value 34 at step k
® Decision: reject the null of parameter homogeneity if Tx—1 x > 3«
Adaptive estimation

o Interval of homogeneity I/k\: the null has been first rejected at step 7; +1

o Adaptive estimate: 5 = 67‘\ (i.e. (Q)MLE at the interval of homogeneity)

E/ (5[ + E) The key steps of the LCP detection test and the adaptive estimation are for convenience
summarized in Table III.

For illustration, the resulting adaptive choice of intervals at each minute on 22 February 2002 is
shown by Figure 5. Adopting the EACD specification (for p = 0.25 and K = 13) in the modest
risk case (r = 0.5, solid curve), one would select the length of the adaptive estimation interval lying
between 1.5 and 3.5 hours over the course of the selected day. Likewise, in the conservative risk case
(r = 1, dashed curve), the approach would select longer time windows with smaller variability and
thus larger modelling bias.

The time series of the chosen length of the intervals of homogeneity for Intel Corporation is shown
in Figure 6. The length of intervals ranges between 1 and 4 hours in the modest risk case (r = 0.5) and
between 2.5 and 5 hours in the conservative risk case (r = 1). The results indicate a larger variability
over shorter interval lengths in the modest risk case.

4.4. Empirical Findings

We apply the LPA to seasonally adjusted 1-minute aggregated trading volumes for all five stocks at
each minute from 22 February to 31 December 2008 (215 trading days; 77,400 trading minutes). We
use the EACD and WACD models as the two (local) specifications, two risk levels (modest, r = 0.5;
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Figure 5. Estimated length of intervals of homogeneity n (in hours) for seasonally adjusted 1-minute cumulative

trading volumes of selected companies in the case of a modest (r = 0.5, solid line) and conservative (r = 1,

dashed line) modelling risk level. We use the interval scheme with K = 13 and p = 0.25. Underlying model:
EACD(1, 1). NASDAQ trading on 22 February 2008
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Figure 6. Estimated length of intervals of homogeneity n (in hours) for seasonally adjusted 1-minute cumulative

trading volumes for Intel Corporation (INTC) in case of a modest (r = 0.5, upper panel) and conservative

(r = 1, lower panel) modelling risk level. We use the interval scheme with K = 13 and p = 0.25. Underlying

models: EACD(1, 1) (left) and WACD(1, 1) (right). NASDAQ trading from 22 February to 22 December 2008
(210 trading days)

and conservative, r = 1) and two significance levels (p = 0.25 and p = 0.50). Furthermore, interval
length schemes with (i) K = 8 and (ii) K = 13 are employed.

Figure 7 depicts the time series distributions of selected oracle interval lengths. First, as expected,
the chosen intervals are shorter in the modest risk case (» = 0.5) than in the conservative case (r = 1).
Practically, if a trader aims at obtaining more precise volume estimates, it is advisable to select longer
estimation periods, such as 4-5 hours. By doing so, the trader increases the modelling bias, but can
still control it according to equation (8). Hence this risk level allows for more controlled flexibility
in modelling the data. Conversely, setting r = 1 implies a smaller modelling bias and thus lower
estimation precision. Consequently, it yields smaller local intervals ranging between 2 and 3 hours in
most cases.

Secondly, our results provide guidance on how (a priori) to choose the length of a local window
in practice. Interestingly, the procedure never selects the longest possible interval according to our
interval scheme (1 week of data), but chooses a maximum length of 6 hours. This finding suggests
that even a week of data is clearly too long to capture parameter inhomogeneity in high-frequency
variables. As a rough rule of thumb, a horizon of up to 1 trading day seems to be reasonable. This
result is remarkably robust across the individual stocks, suggesting that the stochastic properties of
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Figure 7. Distribution of estimated interval length n; (in hours) for seasonally adjusted trading volumes of

selected companies in the case of modest (r = 0.5, dashed) and conservative modelling risk (r = 1, solid), using

an EACD (upper panel) and a WACD model (lower panel) from 22 February to 31 December 2008 (215 trading
days). We select 13 estimation windows based on significance level p = 0.25

Table IV. Average daily number of changes of the adaptively selected interval of homogeneity for five stocks
at NASDAQ from 22 February to 22 December 2008 (210 trading days) across different tuning parameter
constellations

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

r=20.50=0.25 17.8 272 272 26.7 29.2 39.1 36.4 35.8 37.1 345
r=20.50=0.50 18.1 26.7 27.2 26.6 29.3 39.1 36.4 36.2 37.2 34.7
r=1.0,0=0.25 8.4 9.6 10.3 11.0 9.8 17.5 18.1 17.6 17.1 17.1
r=1.0,0=0.50 8.7 9.7 10.4 10.9 9.7 18.3 17.8 18.0 16.9 17.0

high-frequency trading volumes are quite similar, at least across (heavily traded) blue chip stocks.
Nevertheless, as also illustrated in Figure 5, our findings show that the selected interval lengths clearly
vary across time. Hence a priori fixing the length of a rolling window can be still problematic and
suboptimal—even over the course of a day.

Thirdly, the optimal length of local windows does obviously also depend on the complexity of the
underlying (local) model. In fact, we observe that local EACD specifications seem to better approxi-
mate the data over longer estimation windows than in the case of WACD specifications. This is true
for nearly all stocks. Furthermore, from the average daily number of changes of the ‘optimal’ window,
as reported in Table IV, one observes that the WACD results in roughly twice as many changes as the
EACD model. Hence more complex (local) modelling specifications obviously yield more changes of
the ‘optimal’ window. Interestingly, this (distributional) effect is more pronounced in the conservative
risk approach (r = 1), where one expects around 10 (EACD) or 20 (WACD) changes per day. In the
modest risk case (r = 0.5) we observe more changes with a moderate difference between the underly-
ing models, i.e. between 30 (EACD) and 40 (WACD) changes per day. All stocks reveal quite similar
patterns across the scenarios.

Finally, in Figure 8, we show time series averages of selected interval lengths in dependence of the
time of the day. Even after removing the intra-day seasonality component, we observe slightly shorter
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Figure 8. Average estimated interval length n; (in hours) over the course of a trading day for seasonally adjusted
trading volumes of selected companies in the case of modest (r = 0.5, upper panel) and conservative modelling

risk (r = 1, lower panel), using an EACD model from 22 February to 31 December 2008 (215 trading days). We
select K = 13 windows and set the significance level to p = 0.25

intervals after opening and before closure. This is obviously induced by the fact that the local esti-
mation window during the morning still includes significant information from the previous day. This
effect is strongest at the opening, where estimates are naturally based on previous-day information
solely and becomes weaker as time moves on and the proportion of current-day information is increas-
ing. Consequently, we observe the longest intervals around mid-day, where most information in the
local window stems from the current day. Hence the LPA automatically accounts for the effects aris-
ing from concatenated time series omitting non-trading periods. During the afternoon, interval lengths
further shrink as trading becomes more active (and obviously less time homogeneous) before closure.

4.5. Drivers of the ‘Optimal’ Window Length

To identify potential (observable) determinants influencing the stability of parameter estimates, we
analyse the impact of key market variables on the selected length of the interval of homogeneity. In
particular, we study to what extent the locally selected window length is predictable based on variables
potentially causing inhomogeneity in trading processes, namely market volatility, the occurrence of
outliers and of news announcements.

Analysing the impact of market volatility on the average daily selected ‘optimal’ window length, we
distinguish between three regimes (low, moderate and high) of the daily volatility index (VIX). The
low (high) is defined in terms of VIX realizations lower (higher) than the corresponding first (third)
quartile. We report the correlation between the average daily length of the local estimation window
and the daily VIX series in the different regimes in Table V.

The strongest dependence is observed in the high-volatility regime. Here, abrupt increases of market
volatility significantly change the length of the selected intervals. Focusing on significant coefficients
only, the EACD model reveals positive correlations between the volatility and length of intervals. In
contrast, the WACD specification mostly induces a negative relationship. The results are quite robust
across all five stocks and surprisingly stable for different risk (power) levels. Hence, in summary, we
can conclude that market volatility has some impact on parameter homogeneity in trading volume
models but the direction of this dependence is not clearly identifiable and obviously depends on the
flexibility of the underlying local approximation.

Moreover, we analyse the effect of the occurrence of an outlier on the window length selection.
The latter is defined as a realization of cumulative trading volumes exceeding the 99% percentile. We
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Table V. Correlation coefficients between the average daily length of the interval of homogeneity and the daily
VIX for five stocks at NASDAQ from 22 February to 22 December 2008 (210 trading days) across different tuning
parameter constellations and three volatility regimes (low, moderate and high). The low (high) regime considers
positive changes of the VIX that are lower (higher) than the corresponding first (third) quartile. We set p = 0.25

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL  CSCO INTC MSFT ORCL

r=20.5

Low 0.10 —0.02 0.03 0.01 —0.02 —0.03 —0.07 0.10 0.01 —0.11
Moderate  —0.02 0.03 —0.03 —0.03 0.03 —0.03 —0.01 —0.09 —0.02 —0.02
High 0.26* 0.31%* 0.23%* 0.25% 0.30* 0.19* —0.02 —0.07 —0.17* —0.12
r=1

Low 0.19* —0.07 —0.03 0.01 —0.12 0.04 0.00 0.08 0.01 —0.11
Moderate  —0.02 0.11 0.03 0.01 0.04 —0.08 0.05 —0.01 —0.02 —0.05
High 0.22% 0.26%* 0.26* 0.19* 0.31* 0.19% —0.11 0.09 —0.20* —0.22%

Note: *5% significance.

Table VI. Percentage change of the average length of the interval of

homogeneity after a large outlier has been observed for five stocks at

NASDAQ from 22 February to 22 December 2008 (210 trading days)
across different tuning parameter constellations. We set p = 0.25

AAPL CSCO INTC MSFT ORCL

EACD,r = 0.5 —1.55 —=3.06% —2.78*%  —2.45% —2.09
EACD,r = 1.0 —0.37 —1.12 —1.42*% —1.04 —0.94
WACD, r = 0.5 —4.98*%  —459*%  —=3.04%¥ —4.54* —3.62%
WACD, r = 1.0 —1.88% —1.60 —1.96% —2.09*% —1.92%

Note: *5% significance.

compute the average length of intervals of homogeneity at the time point of an outlier’s appearance
and 5 minutes thereafter.

As shown in Table VI, the selected interval of homogeneity becomes smaller after observing a large
outlier. On average, the estimation window becomes on average shorter by 1% and 5% across all
stocks as well as across the different modelling frameworks. In most cases, the effect is statistically
significant at the 5% level. Interestingly, the changes are more pronounced based on a WACD spec-
ification and based on a modest risk level (r = 0.5). These results confirm our finding that a more
complex modelling approach or less conservative risk level yields a higher variability in ‘optimal’
window lengths.

Finally, we analyse to what extent daily news arrivals cause structural instability and thus changes
of local window lengths. For this purpose we utilize pre-processed company-relevant news data from
a news analytics tool of Reuters: the Reuters NewsScope Sentiment Engine. Here, firm-specific news
is processed based on an automated linguistic analysis of news stories and is classified according to
news direction and relevance; for details, see, for example, Gro-KluBmann and Hautsch (2011). As
reported in Table VII, the number of ‘relevant’ company-specific news per day has only a minor impact
on the lengths of local intervals of parameter homogeneity. In fact, the corresponding correlations
are not significantly different from zero. Only for one stock (Microsoft) we find significant (negative)
relationship in the modest risk case (r = 0.5). Here, the length of the interval of homogeneity varies
stronger if news arrive.
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Table VII. Correlation coefficients between the average daily length of the interval of homogeneity and

the daily number of relevant company-specific news for five stocks at NASDAQ from 22 February to 22

December 2008 (210 trading days). We consider the modest (r = 0.5) and the conservative risk case
r = landsetp =0.25

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT  ORCL

r=205 0.01 0.00 0.01 —0.12%%* 0.03 —0.03 0.01 —-0.10 —0.13* —0.06
r=1.0 0.02 0.06 0.03 —0.03 0.00 —0.05 0.08 0.02 —0.01 —0.06

Note: ¥10% significance; **5% significance.

5. FORECASTING TRADING VOLUMES

Besides providing empirical evidence on the time (in)homogeneity of high-frequency data, our aim
is to analyse the potential of the LPA when it comes to out-of-sample forecasts. The most important
question is whether the proposed adaptive approach yields better predictions than a (rolling window)
approach where the length of the estimation window is fixed on an a priori basis. To set up the fore-
casting framework as realistic as possible, at each trading minute from 22 February to 22 December
2008, we predict the trading volume over all horizons 4 = 1,2, ..., 60 minutes during the next hour.
The predictions are computed using multi-step-ahead forecasts using the currently prevailing MEM
parameters and initialized based on the data from the current local window.

The local window is selected according to the LPA approach using r € {0.5, 1} and p € {0.25,0.5}.
Denoting the corresponding h-step prediction by V; 14, the resulting prediction error is ;45 =
Yieh — Viah, with ¥; 1, denoting the observed trading volume. As a competing approach, we con-
sider predictions based on a fixed estimation window covering 1 hour (i.e. 60 observations), 2 hours
(i.e. 120 observations), 1 day (i.e. 360 observations) and, alternatively, 1 week (i.e. 1800 observations)
yielding predictions y; 1 and prediction errors g; 15 = V; 1+, — Vi+s. To account for the multiplicative
impact of intra-day periodicities according to equation (1), we multiply the corresponding forecasts
by the estimated seasonality component associated with the previous 30 days.

To test for the significance of forecasting superiority, we apply the Diebold and Mariano (1995)
test. Define the loss differential dj, between the squared prediction errors stemming from both meth-
ods given horizon & and n observations as dj, = {d; {4 }/_,, with d;, = ’512 h —’E? - Then, testing
whether one forecasting model yields qualitatively lower prediction errors is performed based on
the statistic

Tsth = {ZI(dHh > 0) —O.Sn} /+/0.25n (16)

i=1

which is approximately N(0, 1) distributed. Our sample covers n = 75, 600 trading minutes (cor-
responding to 210 trading days). To test for quantitative forecasting superiority, we test the null
hypothesis Hy : E [d;] = 0 using the test statistic

Tostn = dn/\/27 7 4,(0)/n 5 N(0.1) (17

Here, dj, denotes the average loss differential dy, = n! Z?Zl d;j+p and ?dh (0) is a consistent
estimate of the spectral density of the loss differential at frequency zero. As shown by Diebold and
Mariano (1995), the latter can be computed by
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n—1

Ta@=e0" 3 (|37 <1)7a0m (18)
m=—(n—1)
Va,(m)y=n"" Z (din — dn) (disn—im) — dn) (19)
i=|m|+1

Figures 9 and 10 display the Diebold-Mariano test statistics Tpy,; against the forecasting horizon
h. The underlying LPA is based on the EACD model with significance level p = 0.25. Negative
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Figure 9. Test statistic Ty, across all 60 forecasting horizons for five large companies traded at NASDAQ from

22 February to 22 December 2008 (210 trading days). The dotted curve depicts the statistic based on a test of the

LPA against a fixed-window scheme using 360 observations (6 trading hours). The solid curve depicts the statistic

based on a test of the LPA against a fixed-window scheme using 1800 observations (30 trading hours). Upper

panel: results for the ‘modest risk case’ (r = 0.5); lower panel: results for the ‘conservative risk case’ (r = 1)
given a significance level of p = 0.25

AAPL CSCO INTC MSFT ORCL
20 20 20 20 20
2
z
= RPN S S R S S R S RN S S JR U R
& O = OL_‘;‘:“__ OL/;-f"f_____ Oty»________ OL_/__,A
K
H
=20 -20 =20 -20 =20
20 40 60 20 40 60 20 40 60 20 40 60 20 40 60
20 20 20 20 20
8
g (V1| O Holoatw off--Zo--om--- (1) | Wit infitubus rlevbuits off--oiccooizoo- [ 0| S it oo
7 R i - RESPEE [ R i
H
-20 -20 -20 -20 -20
20 40 60 20 40 60 20 40 60 20 40 60 20 40 60
Horizon Horizon Horizon Horizon Horizon

Figure 10. Test statistic Tpm,, across all 60 forecasting horizons for five large companies traded at NASDAQ

from 22 February to 22 December 2008 (210 trading days). The dotted curve depicts the statistic based on a

test of the LPA against a fixed-window scheme using 60 observations (1 trading hour). The solid curve depicts

the statistic based on a test of the LPA against a fixed-window scheme using 120 observations (2 trading hours).

Upper panel: results for the ‘modest risk case’ (r = 0.5); lower panel: results for the ‘conservative risk case’
(r = 1) given a significance level of p = 0.25
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statistics indicate that the LPA provides smaller forecasting errors. We observe that, in all cases, the
fixed-window based forecast is worse than the LPA. The fixed-window approach performs particularly
poorly if it utilizes windows covering 1 week or even 1 day of data. These windows seem to be
clearly too long to cover local variations in parameters and thus yield estimates which are too strongly
smoothed. Our results show that these misspecifications of (local) dynamics result in qualitatively
significantly worse predictions. Conversely, shorter (fixed) windows provide clearly better forecasts.
Nevertheless, even in this case, the LPA significantly outperforms the fixed-window setting, reflecting
the importance of time-varying window lengths.

Analysing the prediction performance in dependence of the forecasting horizon, we observe that
LPA-based predictions are particularly powerful over short horizons. The highest LPA overperfor-
mance is achieved at horizons of approximately 3—4 minutes. This is not surprising as the local
adaptive estimates and thus corresponding forecasts are most appropriate in periods close to the local
interval. Conversely, over longer prediction horizons, the advantage of local modelling vanishes as
the occurrence of further breakpoints is more likely. We show that the best forecasting accuracy is
achieved over horizons of up to 20 minutes. Finally, an important finding is that the results are quite
robust with respect to the choice of the modelling risk level r. This makes the method quite general
and not critically dependent on the selection of tuning parameters.

Table VIII summarizes the test statistics Tst . The table reports the correspondingly largest (i.e.
least negative) statistics across 30 forecasting horizons. These results clearly confirm the findings
reported in Figure 9: the LPA produces significantly smaller (squared) forecasting errors in almost
all cases. Moreover, Table VIII confirms the findings above that the forecasting accuracy is widely
unaffected by the selection of LPA tuning parameters.

Table VIII. Largest (in absolute terms) test statistic Tsr 5 across 30 forecasting horizons as well as EACD and

WACD specifications for five companies traded at NASDAQ from 22 February to 22 December 2008 (210 trading

days). We compare LPA-implied forecasts with those based on rolling windows using a priori fixed lengths of 1

week, 1 day, 2 hours and 1 hour, respectively. Negative values indicate lower squared prediction errors resulting

from the LPA. According to the Diebold—Mariano test (17), the average loss differential is significantly negative
in almost all cases (significance level 5%)

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL
1 week
r=0.5p0=025 —-389 —286 —241 —338 314 —226 —257 =202 —26.7 —26.6
r=0.5p0=050 —-387 =287 —242 338 =314 =227 =255 =203 =267 —26.6
r=1.0,p=0.25 —405 -314 —233 —-39.1 -—-328 —279 308 215 —31.3 —29.8
r=1.0,p=050 —404 -31.3 -233 -390 -329 -28.1 308 -—-215 =315 =297
1 day
r=0.50=025 -—108 —6.0 —13.1 —5.7 —15.1 —6.4 —3.5 —6.1 —4.9 —12.6
r=0.50=050 —10.6 —6.0 —12.8 —5.5 —15.0 —6.3 —3.2 —6.2 —4.8 —12.7
r=1.0,p=0.25 —6.9 —8.6 —8.7 —44 —12.9 —4.1 —=5.1 —6.5 —4.2 —11.5
r=1.0,p=0.50 —7.1 —8.6 —8.8 —44 —13.0 —3.9 —5.2 —6.5 —4.1 —11.4
2 hours
r=05p=025 -—113 —34 —141 —11.8 =240 —5.6 —-5.9 —-11.5 =112 =203
r=0.50=050 -—11.2 —3.5 —141 —-11.7 =239 —5.6 —5.8 —114 —-112 =204
r=1.0,p=0.25 —5.9 2.0 —134 50 —224 —5.0 —1.1 —12.5 —=7.6  —20.6
r=1.0,p=0.50 —-5.9 2.1 —13.5 —5.0 —224 —5.1 —1.1 —12.5 —7.6 =205
1 hour
r=20.5pp=0.25 —9.3 —6.6 —10.5 —2.0 —27.2 —4.9 —8.5 —10.4 —0.5 —24.7
r=20.5p0=0.50 —9.2 —6.6 —104 —2.0 —27.1 —4.8 —8.6 —10.4 —0.4 —24.7
r=1.0,p=0.25 —33 —0.9 —8.7 4.5 —27.7 —34 —3.0 —9.4 4.7 —25.1
r=1.0,p=0.50 —-3.3 —0.7 —8.7 4.5 —27.7 —34 —-2.9 —=9.7 4.9 —25.0

Copyright © 2014 John Wiley & Sons, Ltd.

J. Appl. Econ. 30: 529-550 (2015)
DOI: 10.1002/jae



548 W. K. HARDLE, N. HAUTSCH AND A. MIHOCI

By depicting the ratio of root mean squared errors

n n
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In Figure 11, we provide deeper insights into the forecasting performance of the two competing
approaches over time and over the sample. In most cases, the ratio is clearly below one and thus also
indicates a better forecasting performance of the LPA method. This is particularly true during the last
months and thus the height of the financial crisis in 2008. During this period, market uncertainty has
been high and trading activity has been subject to various information shocks. Our results show that
the flexibility offered by the LPA is particularly beneficial in such periods, whereas fixed-window
approaches tend to perform poorly.

Figure 12 shows the ratio of root mean squared errors in dependence of the length of the forecasting
horizon (in minutes). It turns out that the LPA’s overperformance is strongest over horizons between
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Figure 11. Ratio between the RMSPEs of the LPA and of a fixed-window approach (covering 6 trading hours)
over the sample from 22 February to 22 December 2008 (210 trading days). Upper panel: results for the underlying
(local) EACD model; lower panel: results for the underlying (local) WACD model
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Figure 12. Ratio between the RMSPEs of the LPA and of a fixed-window approach (covering 6 trading hours)
over the sample from 22 February to 22 December 2008 (210 trading days). Upper panel: EACD model; lower
panel: WACD model
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2 and 4 minutes. Over these intervals, the effects of superior (local) estimates of MEM parameters
fully pay out. Over longer horizons, differences in prediction performance naturally shrink as forecasts
converge to unconditional averages.

6. CONCLUSIONS

We propose a local adaptive multiplicative error model for financial high-frequency variables. The
approach addresses the inherent inhomogeneity of parameters over time and is based on local window
estimates of MEM parameters. Adapting the local parametric approach (LPA) by Spokoiny (1998)
and Mercurio and Spokoiny (2004), the length of local estimation intervals is chosen by a sequential
testing procedure. Balancing modelling bias and estimation (in)efficiency, the approach provides the
longest interval of parameter homogeneity which is used for modelling and forecasting.

Applying the proposed approach to the high-frequency series of 1-minute cumulative trading vol-
umes based on several NASDAQ blue chip stocks, we can conclude as follows. First, MEM parameters
reveal substantial variations over time. Second, the optimal length of local intervals varies between
1 and 6 hours. Nevertheless, as a rule of thumb, local intervals of around 4 hours are suggested.
Third, the local adaptive approach provides significantly better out-of-sample forecasts than competing
approaches using a priori fixed lengths of estimation intervals. This result demonstrates the impor-
tance of an adaptive approach. Finally, we show that the findings are robust with respect to the choice
of LPA steering parameters controlling modelling risk.

As the stochastic properties of cumulative trading volumes are similar to those of other (persistent)
high-frequency series, our findings are likely to be carried over to, for instance, the time between
trades, trade counts, volatilities, bid—ask spreads and market depth. Adaptive techniques thus constitute
a powerful device to improve high-frequency forecasts and to gain deeper insights into local variations
of model parameters.
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1. Introduction

A State Price Density (SPD) is the density function of a Risk
Neutral (RN) equivalent martingale measure for option pricing,
and it is a measure more tied to uncertainty than to volatility and
it is indispensable for (exotic) option pricing and portfolio risk
management. It does not only reflect a risk-adaptive behavior of
investors based on historical assessment of the futures market, but
it also gives insights about the preferences and risk aversion of a
representative agent, see for example Ait-Sahalia and Lo (2000),
Jackwerth and Rubinstein (1996) and Rosenberg and Engle (2002).

Consider a European call option with maturity date T and strike
price K. Under the non-arbitrage principle, its price at t can be
given as:

C(K)=¢e" / max(x — K, 0)f (x)dx (1)

where 1 is the risk-free interest rate, t time to maturity and f (x)
is the defined SPD. The advantage of extracting the SPD directly
from market prices is that volatility and other moments can easily

* Corresponding author.
E-mail address: venteng@gmail.com (H.-W. Teng).
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0167-6687/© 2015 Elsevier B.V. All rights reserved.

be calculated using this SPD independent of any particular pricing
model.

There are many approaches to calibrate the SPD using financial
options from the bond and equity markets. Assuming a Black and
Scholes (B&S) model implies that the RN measure is a lognormal
distribution which may result in severe bias of the SPD estimation
since certain volatility properties are not correctly reflected. As
observed by Breeden and Litzenberger (1978), the SPD of any risky
asset can be derived as the second derivative with respect to the
strike price of an estimate of the pricing function C. A number
of econometric techniques have been developed to address this
calibration issue. The most notable examples include the stochastic
volatility models and the GARCH models. Derman and Kani (1994),
Dupire (1994) and Rubinstein (1994) implied SPDs using binomial
trees, hence avoiding too strong stochasticity assumption like
e.g., Geometric Brownian motion. Others like Abadir and Rockinger
(2003) use hypergeometric distributions. Although useful in a
variety of contexts, these (parametric) models are still susceptible
to model specification.

Various non-parametric models have been employed to over-
come this problem. Ait-Sahalia and Lo (1998) introduce a semi-
parametric alternative where the volatility of the B&S formulation
is modeled non-parametrically. From a statistical point of view, es-
timating the SPD becomes estimating the second derivative of a



W. Karl Hdrdle et al. / Insurance: Mathematics and Economics 64 (2015) 106-125 107

regression function, but the SPD needs to be a proper density func-
tion (non negative and integrates to one). This dictates that the
price is decreasing and convex in terms of the strike price. How
to impose these constraints presents the main difficulties of direct
applications of nonparametric regression. Ait-Sahalia and Duarte
(2003), Yatchew and Hardle (2006) and Hardle and Hlavka (2009)
stress the importance of enforcing such shape constraints. Fan and
Mancini (2009) use a non-parametric technique to estimate the
state price distribution but not the density because the former is
easier to estimate. Giacomini et al. (2008) use mixtures of scales
and shifted t-distributions, while Yuan (2009) uses a mixture of
lognormals. Curve fitting method have been presented in Rubin-
stein (1994) and Jackwerth and Rubinstein (1996). Liechty and
Teng (2009) introduce the Bayesian quadrature model, where both
the locations and weights of the support points for approximating
the SPD are random variables. Most nonparametric methods re-
quire a rich body of data to achieve desired convergence proper-
ties. The main goal of this paper is to infer the SPD from markets,
where trading activities are less frequently occurred.

For this purpose, we employ a Bayesian quadrature method
as a calibration method for the SPD from option prices, because
it allows us to incorporate prior assumptions on the model
parameters and hence avoids problems with data sparsity. This
approach takes a prior distribution which can be parametric
(e.g. lognormal) or a uniform density. The posterior distribution
of the SPD is calibrated to market data. This method is a special
case of a mixture model, where the component densities are point
measures.

The novelty of the Bayesian quadrature approach relies on the
fact that it uses unequal weights and is in a Bayesian framework.
Approximating the state price density with weighted sum of §-
functions produces good model fitting by using a parsimonious
model. Bayesian inference gives a straightforward probabilistic
framework and provides reasonable credible regions for the
implied state price density, which can be further used for various
purposes such as hedging and pricing.

We show that the proposed method has some advantages over
other nonparametric methods: (1) it considers the locations and
weights of the support points in the finite representation of the SPD
asrandom variables, (2) it is parsimonious and allows for statistical
inference, it enables us to construct credible regions for the current
value of the SPD (3) it is computationally efficient in the sense that
a Markov chain Monte Carlo algorithm with Gibbs sampler can be
adopted, so that no additional tuning procedures are required for
exploring the posterior distribution and (4) it is robust even if the
market faces data sparsity issues. (5) These classes of Risk Neutral
probabilities do not stem from market-risk-price assumptions.

We conduct our empirical analysis based on weather deriva-
tive (WD) data traded at the Chicago Mercantile Exchange (CME).
WDs are newly developed financial instruments. Key features of
weather derivatives are that the underlying process, i.e., temper-
ature or rainfall index is not tradable and cannot be replicated by
other risk factors (Benth et al., 2007; Hardle and Lopez-Cabrera,
2012; Lopez-Cabrera et al., 2013). Consequently, the Black-Scholes
formulais unsuitable since an essential element of it is the tradabil-
ity of the underlying. In addition, the temperature index shows ap-
parent seasonality and it is determined by physical phenomena. An
interesting feature is that weather futures and options are rarely
traded and traded only at a few strike prices compared with other
more frequently traded equity markets. The CME (the official WD
platform) provides closing prices, which are however not the real
trading prices negotiated by the market participants. The SPD en-
ables to price options with complicated payoff functions simply
by numerical integration of the payoff with respect to this den-
sity. However, data sparsity makes the SPD estimation a statisti-
cal challenge. In addition, we study the dynamics of the SPD which

provides useful insight into the economic behavior of agents sen-
sitive to weather conditions and the time inhomogeneity of the
market.

This paper is structured as follows. Section 2 describes the
quadrature approach and its comparison to other popular SPD den-
sity estimation methods. Section 3 conducts the empirical analysis
of SPDs from CME weather option data, studies the dynamics of
the SPD weather type, and gives economic interpretations from the
implied SPD. In Section 4, we address the data sparsity issue by ad-
dressing why other nonparametric methods fail particularly when
options with only a few strike prices are traded. Section 5 con-
cludes the paper. All quotations of currency in this paper will be in
USD and therefore we will omit the explicit notion of the currency.
All the SPDs computations were carried out in Matlab version 7.6.
The option data on temperature indices were obtained from CME
and are also available from the research data center of the CRC 649
“Economic Risk”.

2. The Bayesian quadrature method

Options are contingent claims on an underlying asset. Plain
vanilla option is of either put or call type with a fixed maturity,
i.e., the value of the underlying is compared to a strike price K at
maturity T. Let x denote the underlying asset’s price at maturity (in
our application this will be equivalent to futures prices on weather
indexes). For a call option, one has the payoff max(x — K, 0) and
for a put max(K — x, 0). If we denote a put asi = 1 and a call with
i = 2, and observed strike prices Ej fori = 1,2andj = 1,...,N;
indexing all possible strike prices on any given day t, then the
payoff function at maturity, denoted by ;;(x), can be represented
by one formula,

90 = (=D'(x = Ep{(=1D'(x — Ey) > 0} (),
where I {A} is an indicator function for a set A. Let t be the current

time. The fair option price is given as (1) as the discounted value of
the expected payoff function:

Gy = exp (—r7) E%[p;(¥)],

where T = T —t is the time to maturity and E2[-] is the expectation
operator taken under the risk-neutral measure. The density f (x)
under this risk-neutral measure is the defined SPD. When the SPD
f(x) exists, this equals:

Cj =exp(—r1) / i ()f (x)dx. (2)

The left hand side of (2) is observed on the market for different
payoff types depending on put/call (i = 1, 2), strike price Ej;, and
time to maturity t. The interest of statistical calibration is to infer
the SPD f (x) from a set of observed option prices.

2.1. The quadrature method

The word “quadrature” means a numerical method to approx-
imate an integral either analytically or numerically, see Ueberhu-
ber (1997) for example. In this research, we work the adverse way,
since the interest is to infer the unknown density from the ob-
served integrals (option prices). Define the §-function 8, (-) as a
unit point measure at the location s by

8s(x) =I{s =x}.

The basic idea of the quadrature method is to approximate the
SPD f(x) by fy (x|w, 0), a weighted sum of §-functions:

In&lw, 0) = widg, (X) + - - - + wndgy (X), (3)

with unknown locations 6 = (6;,...,60y)" and weights w =
(w1, ..., wy)". Here, N is a non-negative integer (smoothing)
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parameter. To produce a legitimate probability density, the
locations 0 are constrained to be non-negative quantities, and the
weights w are constrained to be nonnegative quantities and sum
up to one. From a modeling perspective, the quadrature method (3)
can be seen as a finite mixture distribution with the point measure
as the component density. Fig. 1 illustrates (3) for N = 5.

The option price (2) under fy (x|w, 0) is:

N
C(w,0) = exp (=17) ) wagij(6n). (4)
n=1
Note that (4) is an approximation to (2) and the aim of calibration
is to extract (w, #) by matching Ci}v(w, 0) to the observed option
prices. More specifically, a call option price calculated with (3) is:

N
CY(w, 0) = exp{—rt} Y wy max(6, — Ey, 0), (5)
n=1

whereas a put option price under the quadrature method is:

N
Cl(w, 0) = exp{—rt} Y wy max(Ej — 6y, 0). (6)

n=1

2.2. Bayesian modeling and computation

Empirical observations show that options having higher prices
usually have higher price variation, see Ghysels et al. (1995) and
Ghysels et al. (1997). Hence for the calibration task as a variance
stabilizing transformation, we consider the logarithm of option
prices. The observations y;j are perturbations of the model option
price Ci’}’(w, 0):

logyij = log Cff (w, 6) + e 7)
fori = 1,2,j = 1,...,Ni, k = 1,..., Ny, where the error
gk~ N(O, o?). gijk is attributed to market friction and the
approximation discrepancy (Garcia et al., 2010; Renault, 1997). In
Section 3, residual analysis of our empirical studies will support
this error assumption.

These parameters, w, 6, and o2, are estimated in a Bayesian
framework instead of a maximum likelihood method. Following
(7), the likelihood is

L(ylw,@,cr ﬁ

:]J

Ni:

=z

! 1
Q2roH ™2
1

|:_ {logJ’ijk -

1

=
Il

(8)

X exp

log CY (w, 6)}*
202 '

A natural prior distribution for the weights w is the Dirichlet
distribution, which ensures w being positive and summing up to

one. The Dirichlet distribution with parameter y = (y1, ..., va)"
has the density function,

N

fwly) = T ©)
"= By "

forw, >0,n=1,...,N,and w;+- - -+wy = 1.The normalizing
constant B(y) is defined as

N
Ij T (yn)

(E)

where I'(-) is the gamma function (Chen and Shao, 1997).
Let Kiin and Kp.x denote the minimum and maximum of the
observed strike prices Ej, respectively. To avoid label switching

B(y) =

w3
[ |
w2
[ |
w4
wi
w5
t5 4 13 t2 1

Fig. 1. The SPD fy (x|w, 0) from (3) for N = 5.

problems for 6, we assume that the locations are ordered, i.e.,
61 < --- < 6Oy. Moreover, to avoid model option prices in (4)
being zeros, assume a priori that the smallest location, 0, is less
than the minimum of the observed strike price, and that the largest
location, Oy, is larger than the maximum of the observed strike
prices. Therefore, we assume that the distribution of the locations
6 is uniformly distributed over the set {#; < 6, < --- < 0y, 0; <
Kinin> On > Kmax}:

F(O|Knin, Kmax) o< {01 < -+ < Oy, 01 < Kiin, On > Kinax}(6).

(10)

For simplicity, we consider an inverse-gamma distribution with
shape parameter « and scale parameter $ as a prior distribution for
o2, denoted by 62 ~ IG(a, B). The prior density of o2 is

’?a) (C R <—g) . (11)
2

Putting things together allows a conjugate prior for o~,
described in Casella and Berger (2001).

Note that (9)-(11) can be changed in cases where appropriate
information is available. Bayesian inference for the parameters of
interest is based on the posterior distribution of w, 8, and o2:

f@?la, B) =

as

f(wv 0, 02|y1 @, ﬂ’ Vs Kmnin, Kmax)
o L(ylw, 8, 0*)f W]y )f (6 Kmin, Kmax)f (0 |et, B). (12)

Because of the complexity of (12), it is difficult to derive a
closed-form formula for the posterior distribution (Liechty and
Teng, 2009). The Markov chain Monte Carlo (MCMC) simulation is
therefore used to sample w, 6, and 2. Because of the monotonicity
of parameters w and 6 in (4), an MCMC algorithm with slice
samplers can be used to avoid manual tuning procedures in the
MCMC simulation. In the following, we summarize major steps to
run the MCMC algorithm. Let U (A) denote the uniform distribution
on the set A.

1. Start w, 8, and o randomly.
2. At each iteration, repeat the following steps until the samples
appear to converge.

(a) Sample w, ~ U(T,) forn = 1,...,N — 1, where T, is a
properly derived open interval. Set wy = 1 — wq — -+ —
WN-1.

(b) Sample 6§, ~ U(S,) forn=1,...,
derived open interval.

N, where S,, is a properly
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Table 1
The volume for HDD-CDD monthly, seasonal strips and average temperature products in each US city.
Index City Future Option
HDD CDD HDD CDD Avg HDD CDD HDD CDD Avg MS (%) Rank
monthly monthly strips strips monthly monthly strips strips
1 Atlanta 49621 35567 14400 2150 50 56431 11647 117165 71950 0 944 3
2 Baltimore 6633 3545 600 700 0 2600 100 12500 1100 0 073 16
3 Boston 24178 19066 2200 1150 0 11029 550 42174 19450 0 315 13
4 Chicago 90585 54950 3975 2800 0 39676 19300 107616 67725 0 1017 2
5  Cincinnati 50155 38035 2967 1700 455 29280 28910 73255 74975 0 789 4
6  Colorado Springs 1936 1450 0 0 0 15025 8750 0 0 0 071 17
7  Dallas 27206 55540 3700 1961 200 13085 39775 47450 94850 0 747 5
8  Des Moines 40929 30510 3190 1450 50 38631 4460 64790 60900 0 644 6
9 Detroit 2185 351 50 50 0 0 0 0 0 0 007 23
10 Houston 16901 18229 1400 1700 0 3700 5000 52950 33950 0 352 12
11 Jacksonville 100 1600 0 0 0 0 16575 0 0 0 048 19
12 Kansas City 36513 23145 1325 1350 1100 11025 7200 45050 33750 0 422 10
13 LasVegas 12680 26635 325 1650 0 3100 14200 34600 76650 0 447 9
14 Little Rock 120 105 0 0 0 0 12250 0 0 0 033 20
15 Los Angeles 100 400 0 0 0 0 50 0 0 0 0.01 24
16 Minneapolis 50085 27955 2150 1500 0 18206 3850 63350 34000 0 529 8
17 New York 187264 154605 6700 4860 0 90620 35175 141850 136350 0 1993 1
18 Philadelphia 16441 34449 2300 2250 150 6408 18210 56000 76150 0 559 7
19  Portland 10329 10855 725 450 0 1720 450 48200 76450 0 392 11
20  Raleigh Durham 550 1500 0 0 0 23700 0 0 0 o0 068 18
21 Sacramento 6383 23401 550 750 0 2850 1675 16200 48000 0 263 14
22 SaltLake City 739 504 150 0 0 0 0 4500 3500 0 025 22
23 Tucson 7283 16965 350 750 0 2700 3010 28750 27800 0 230 15
24 Washington 550 25 250 0 0 650 1500 6650 2000 0O 031 21
(c) Sample x10°
N; 7
1
a? ~ G Z a+M/2, 8
i=1 j=1
2 NNy
N 2
£35S dogyye — log QY w, 0)) / 2,
i=1 j=1 k=1
N; Ni: .
where M = 21'2:1 > i1 2= 1is the number of observed °
options. E
o
The derivations of open intervals T, and S, are rather lengthy and =
are hence omitted here for brevity. Please refer to Liechty and Teng
(2009) for details.
2.3. Kernel smoothing density estimate of the quadrature method
The density fy (x|w, 0) from (3) is a weighted sum of § functions
and hence is not a continuous density. However, in many cases, it is 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
interesting to visualize the SPD as a smoothed density. The kernel Year
density for a set of M observed points = (¢4, ..., o) T is:
Fig. 2. The volume for US temperature futures (F) and options (O).
M
. ) 1
Foio) = [ gite— wdu = 103" kit 2) (13) . 5
M = appears with probability w,, forn = 1, ..., N. Therefore, we need

where K;(-) = h™'K(-/h) is a kernel function with a bandwidth h
and g(u) the sum §-functions

M
By =M" "8y, (u)
m=1

with locations . Obviously, different values of h will change

the appearance of f (x]1). Silverman’s rule of thumb suggests a
bandwidth

he = 1.066M~1/5 (14)

where ¢ is the sample standard deviation of ¥ and a normal kernel
K = ¢ the pdf of N(0, 1) (Silverman, 1986).

Note that each ¥, for m = 1,...,M appears with equal
probability 1/M. However, in the Bayesian quadrature method, 6,

to adjust the sample size and use g(u) = Z’::] wndg, (1) instead.
The smoothed density version of (3) becomes

N
R&lw,0) =) waky(x = 6,). (15)
n=1

To apply Silverman’s rule in the case of unequal weights in (15),
we round off each w,, to the second decimal and adjust the sample
size to be 100. The smoothed SPD appears to be reasonable. Indeed,
it is possible to consider a more precise approximation: Round off
each w, to the g-th decimal, and set the sample size M to be 107.
In the ith swipe of the MCMC algorithm, we obtain w® and 8¢
and the smoothed SPD £ (x|w®, ™). We then report the posterior
mean and 90% credible regions of the smoothed SPD based on
Fxw®, 69y point-wisely.
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Fig. 3. Star plots representing the volume for US temperature contracts (HDD-CDD monthly, HDD-CDD seasonal strips, and weekly average) futures (upper panel) and
options (lower panel) for each city. Each city is represented as a star whose ith spoke is proportional in length to the volume size of ith product (HDD Monthly, CDD Monthly,

HDD Strips, CDD strips, Average) of the observed city.

As a remark, the bandwidth can be adjusted to other kernels by
a canonical bandwidth, Hardle et al. (2004). For example for the
quartic kernel:

K(u) = %1 —u?)’I{[u] < 1}, (16)

Silverman’s rule of thumb h¢ transforms into:
houa = 2.62 - hg (17)

3. Empirical analysis

This section introduces the weather derivatives (WD) market
and presents an overview on WD data. One major feature of the
WD market is data sparsity, which makes most existing methods
for estimating the SPD challenging and difficult. We then apply the
described Bayesian quadrature technique to estimate the implied
SPD on WD data, conduct an out-of-sample analysis, and study its
dynamics.

3.1. Weather derivatives

WDs are financial contracts designed to hedge weather risk. The
most common contracts traded at CME are based on temperature
indices linked to the temperature at time t, denoted by T;. These are
the Heating Degree Days (HDD), the Cooling Degree Days (CDD),
and the cumulative average temperature (CAT):

]
HDD(zy, Ty) = Z max(c — T;, 0)

t=1

1)
CDD(1y, 1)) = Z max(T; — c, 0)

t=11

CAT (11, T5) = Zrt (18)

t=11

where c is a threshold (usually 65°F or 18 °C) and [1, 7] with
T1 < Ty is the temperature measurement period. The standard is
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that [t, 72] denotes a month of the year or as seasonal strips. The
futures in question are delivering over a period [71, 73], and not at
a fixed delivery time t. The HDD index measures the demand for
heating, while the CDD index measures the demand for cooling.
Consequently, temperature indices are the underlying and not the
temperature by itself.

Financial mathematical tools given in Benth et al. (2007, 2011)
and Hdrdle and Lépez-Cabrera (2012) allow the pricing of the

non-tradable underlying by risk adjusted conditional expectation.
Hereby, the futures temperature contract price on the sum of
temperature I(ty, 7o) = Z?:r] T, with accumulation period
[t1, T2] is given by:

F(t, 71, 72) = EX[I(Ty )| %] (19)

where E?[-] is any equivalent martingale measure and %; is a
filtration information set.
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Table 2

The number of transactions—trading days (TD) and volume (vol) of New York/Atlanta/Chicago/Dallas HDD and CDD monthly and HDD seasonal strip options with respect

to time to maturity () in month and the number of strike prices.

HDD—New York HDD—Atlanta HDD—Chicago
Number of strike prices
T 1 2 3 4 Total 1 2 3 4 5 Total 1 2 3 4 Total
<1 TD 71 23 7 1 102 56 4 1 1 74 50 0 - - 60
vol 17 495 12650 9900 1400 41445 12861 4700 2950 700 1250 22461 10961 4975 - - 15936
(1,2] TD 54 26 3 4 87 39 2 1 - 68 32 13 2 2 49
vol 12450 21700 1075 5400 40625 10245 19825 2800 1000 - 33870 50 2000 - - 2050
(2,3] TD 3 1 - - 4 1 - - - - 1 2 - - - 2
vol 1000 1000 - - 2000 100 - - - - 100 2000 - - - 2000
(3,4 TD 2 1 - - 3 - - - - - - 1 - - - 1
vol 300 2000 - - 2300 - - - - - - 2000 - - - 2000
(4,5] TD 1 1 - - 2 - - - - - 1 - - - 1
vol 250 2000 - - 2250 - - - - - - 2000 - - - 2000
(5,6] TD - 1 - - 1 - - - - - 1 - - - 1
vol - 2000 - - 2000 - - - - - - 2000 - - - 2000
CDD—New York HDD strips—Atlanta CDD—Dallas
Number of strike prices
T 1 2 3 4  Total 1 2 3 5 6 7 8 Total 1 2 3 4  Total
<1 TD 43 3 1 - 47 1 6 - 6 - - - - 13 40 - 90 1 131
vol 17425 2000 600 - 20025 200 3100 - 2700 - - - - 6000 12400 9150 1250 -
(1,2] TD 34 13 2 - 49 6 6 1 - - - - 13 30 - 10 1 41
vol 8200 5750 1200 - 15150 4700 6250 1875 - - - - - 9125 5300 750 -
2,3] TD - - - - - 3 9 - 3 - - - - 15 - 1 - - 1
vol - - - - - 2240 7500 - 5500 - - - - - - 450 - - 450
3,4 ™ - - - - - - 9 - - - - - 9 - 1 - - 1
vol - - - - - - 10400 - - - - - 10400 - 450 - - 450
(4,5] TD - - - - - 1 11 1 4 - 1 1 - 19 - 1 - - 1
vol - - - - - 1750 10500 1000 9500 - 6500 6500 - - 450 - - 450
(5,6] TD - - - - - 1 1 - 3 - - - 1- 16 - - - - -
vol - - - - - 250 11700 - 6750 - - - 4250 - - - - -
6,71 TD - - - - - 10 - - - - - - 1 - - - - -
vol - - - - - 9000 - - - - - - 9000 - - - - -
(7,8] TD - - - - - 3 - - - - - - 3 - - - - -
vol - - - - - 6000 - - - - - - 6000 - - - - -

Consequently, the European temperature call option price

written on the futures price is defined as:
C(K) = exp{—rt}/max {F(t, 1, ) — K, 0} f (x)dx. (20)
In order to compute (19),(20), it is necessary to know the stochastic
properties of the temperature process T; under the “physical
measure” P and then adjust the risk measure Q, see Hardle and
Lopez-Cabrera (2012). In other words, the temperature derivative
price is given by finding a model for the daily weather process
consisting of a trend, a seasonality, an autoregressive part, seasonal
variance and normally distributed residuals. Then one could
specify a class of probability measures using the Radon-Nikodym
derivative determined by the Esscher transform, see Lopez-Cabrera
et al. (2013). Another way is to model the index directly, see
Dorfleitner and Wimmer (2010).

Here we estimate the SPD, different to the afore mentioned
approach, directly under the risk neutral measure Q from real
option data. Note that (20) is exactly (5) for f = fy.

The options at CME are cash settled, i.e., the owner of a
future receives 20 times the Degree Day Index at the end of the
measurement period, in return for a fixed price. At time t, CME
trades contracts with different measurement periodst < 77 < 1,
or different maturities t = 7, — t. The measurement period for
CAT/HDD futures is typically during April-November, while CDD
futures are measured during November-April.

3.2. Overview on the WD data

The WD data was purchased from CME for the study period from
2002/01/02 to 2012/05/11. The reported price is the settlement

price for the future or option contract, and the volume is the
number of contracts traded.

Depending on the measurement period, temperature products
in the US market are further categorized into monthly, seasonal
strips, and average products. HDD monthly products have
seven contract months: October, November, December, January,
February, March, April, and CDD monthly products have seven
contract months: April, May, June, July, August, September, and
October. For HDD seasonal strips, the contract period covers from
October to April, and for CDD seasonal strips, the contract period
covers from April to October. Contract for weekly average products
covers all five weeks. Table 1 gives an overview of the volume of the
temperature market.

Fig. 2 illustrates the volume for US temperature futures and op-
tions in the study period. The trading activity increased dramat-
ically since 2002 but declined after the 2008 financial crisis. This
is surprising since one could expect that these markets are uncor-
related with financial markets. However we believe that the de-
cline is because the temperature market is not yet well known
as a intermediary for diversification of weather risk. Star plots in
Fig. 3 divide the volume into HDD-CDD monthly, HDD-CDD sea-
sonal strips, and weekly average for futures and options for each
US city. A star plot represents each city as a star whose ith spoke
is proportional in length to the volume size of ith product (HDD
Monthly, CDD Monthly, HDD Strips, CDD strips, Average) of the ob-
served city. Clearly, monthly products are the most popular traded
products, followed by seasonal strips. Nevertheless, no weekly av-
erage products are really traded in the US temperature market.

The volumes of HDD, CDD, Average monthly and seasonal strips
futures and options for all US cities are reported in Table 1. New
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Fig. 5. The 90% credible regions (in blue dashed lines) and posterior means (in red lines) of R?> when fitting New York/Atlanta/Chicago/Dallas HDD-CDD monthly options
using the Bayesian quadrature approach against different number of support points N. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

York is to be the biggest temperature market and takes about
20% of the market volume, followed by Chicago (10%), Atlanta
(9%), Cincinnati (8%), and Dallas (7%). The market share of these
five cities exceeds 50% of the US temperature market. Following
this, we took these cities as the most representative cities. Fig. 4
gives time series plots for New York, Atlanta, Chicago and Dallas
monthly HDD, CDD monthly and seasonal strip future prices. The
futures market is more liquid but also more volatile than option
prices. In addition, most HDD and CDD futures are traded only with
time to maturities less than a year. These features of future prices
make the pricing mechanism for weather derivatives unique and
challenging.

We further divide the volume of HDD and CDD monthly and
HDD seasonal strip options with respect to strike prices and time

to maturities, as summarized in Table 2. It is shown that most
options are traded with only a few number of strike prices and of
a short time to maturity (within one month and less than a year).
Because of the fact that options are only traded with a few number
of strike prices, this data sparsity problem makes most existing
nonparametric methods (such as mixture of lognormal models or
kernel methods) very difficult.

3.3. Implementation of the technique

As depicted in Fig. 8, we calibrate the SPD for HDD-CDD
monthly and Seasonal strip options. These four plots present a
typical pattern of option prices of weather options: options were
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traded only with a very few number of strike prices, sometimes
only call options or put options were traded or the both of them.
The Bayesian quadrature method allows us to incorporate prior
assumptions on the model parameters and hence avoid problems
with data sparsity. It is able to compute the SPD of both call and
put options simultaneously, and is particularly robust.

There is a trade-off in the selection of N. When N is larger, one
produces better fit because there exist more free parameters in
the model, but drawbacks of model complexity and computational
demanding come along with. We provide more information on the
sensitivity of the Bayesian quadrature approach with respect to N:
Fig. 5 depicts posterior means and 90% credible regions of R? in
fitting HDD/CDD options using the Bayesian quadrature method
versus different number of support points N from three to ten.
As shown in Fig. 5 that all R*'s are close to one, we conclude
that the Bayesian quadrature approach provides good model fit
with small N. Based on Fig. 5, we select N = 5 in our following

analysis because it gives a simple model yet producing good model
fit.

To calibrate (5) and (6), we implement an MCMC algorithm to
explore the posterior distribution in (12). Because of the employ-
ment of unequal weights and the adoption of a Bayesian frame-
work, inferring these parameters is computationally challenging.
For this reason, we use an MCMC algorithm with slice samplers for
making statistical inference. In our analysis, we discard the first
500 iterates in the MCMC algorithm (the burn-in period), and use
the following 1000 iterates. Trace plots of the loglikelihood in Fig. 6
show that the MCMC algorithm appears to converge very fast, and
autocorrelation plots of the loglikelihood in Fig. 7 indicate that
samples in the MCMC algorithm are efficient.

Fig. 8 imposes model prices of the last swipe of the MCMC
algorithm and demonstrates the fit, because model prices are close
to market prices.



W. Karl Hdrdle et al. / Insurance: Mathematics and Economics 64 (2015) 106-125

New York, HDD, 20060202

0.8
c
S
& |
3 06
5]
3
£ 04
<
)
g 02f
[
4]
02 T ] e ® T . Py hd °
T Te] e &
-02 5 10 15 20
Lag
New York, HDD, 20050121
0.8}
c
S
S 06t
o
5]
3
5 041
<
o
g o02r
[
« L] [)
NERER ST AR Y
[ ®
-0.2
5 10 15 20
Lag
Chicago, HDD, 20081216
0.8
c
S
S o6
[
S
3
£ o4}
<
o
g 02r
®©
RN
0 e, % - PPy
P (3]
-0.2
0 5 10 15 20
Lag

115

New York, HDD, 20071218

0.8
c
Ke]
kS
o 0.6
S
]
£ 04
<
<
g 02
©
3 { .
0 L S Y ) e _ o ! [
[] (3K * hd hd e ® 6
-0.2 : ‘ :
0 5 10 15 20
Lag
Atlanta, HDD, 20060315
0.8
c
Re]
T 06
e
S
S
= 0.4
4
o
g o2
©
[ I L ]
B S P S TS A R
-0.2
0 5 10 15 20
Lag
Dallas, CDD, 20100604
0.8
c
K<)
< 0.6
[
S
]
2 0.4
<
Q@
g 02
©
UJ {
0 9 %e ot o T° oTee
'y 3 .
-0.2
0 5 10 15 20
Lag

Fig. 7. Autocorrelation plots of the log-likelihood in the MCMC algorithm of different HDD/CDD monthly products.

For residual analysis, we calculate the residual at each swipe of
the MCMC algorithm by

rijk = log i — log G (w, ) (21)

and provide kernel smooth density plots of the posterior distribu-
tion of these residuals in Fig. 9. All these four panel plots demon-
strate that the residuals have mean zero, and are symmetric about
zero when comparing with the normal KDE. This visual presen-
tation supports our error assumption as a normal distribution
in (8).

The density (3) approximates the SPD by weighted sum of §
functions and is discontinuous by its nature. As described earlier, to
produce a smoothed SPD for visualization, we round off each w, to
the second decimal, and set the adjusted sample size as 100. Then
we employ the kernel density estimation with a Gaussian kernel

K(-) = ¢(-) and a bandwidth selected using the rule of thumb
in (14) to calculate a smoothed SPD at each swipe in the MCMC
algorithm.

Thus, itis clear that the smoothed density version (15) becomes:

N
fa@lw, 0) =) wiKy(x — 6,)

n=1
XN: 1 (x—06,
W —
2\ h
N
w
n=1

nw(X; On, h)

where ¢ (x; 6, h) is the pdf of N(6,,, h?) distribution.
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Collecting these smoothed SPD, Fig. 10 gives the posterior
mean (red line) and 90% credible regions (blue dotted lines) of
the implied SPD. The right-upper and left-lower pictures show
that the 90% credible regions are tight to the posterior mean of
the smoothed SPD, whereas the other pictures depict that the
90% credible regions are wide. The cluster of star points in the
horizontal axis denotes the future prices.

In Bayesian analysis, the 90% credible region for the smoothed
SPD provides a region where 90% of the posterior distribution of the
smoothed SPD will fall into. In the case of HDD New York options
with maturity in 2 months traded at 20050121 and the case of
CDD Dallas Option one month to maturity traded at 20100604, the
left tail of 90% credible region appears to be extremely wide. This
feature is not surprising though, because the data set for calibration
consists of call options with only two strike prices, namely, 800 and
1000 and 600 and 625 respectively. Indeed, a call option price is

simply the expected future price larger than the strike price under
the SPD. Therefore, an option price only provides information for
the right tail of the SPD. Once a few quadrature points in the
right tail have achieved a high likelihood, points of the quadrature
in the left tail (in this case, smaller than 800) do not affect the
likelihood. As a result, these points are influenced only by its prior
distributions. The prior assumptions in (9) and (10) put simply
vague information for the weights and locations in the quadrature
method. Such an assumption allows points in the left tail of the
quadrature method moving freely, and causes a wider credible
region in the left tail, as demonstrated in the left-upper panel in
Fig. 10.

Similarly, for the right-lower panel, the 90% credible region
is wider around strike 1000 but is tight in two side tails. This
is because the data set consists of one call with strike 970 and
one put with strike 870. As a result, the call option price gives
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information of the right tail of the SPD, whereas the put option
price gives information of the left tail of the SPD. When some points
of both right and left tails in the quadrature method have achieved
a high likelihood, points of the quadrature around 920 would not
affect the likelihood. These points are determined by their prior
assumptions again, and provide a wider credible region around
920.

Selecting prior distributions for the quadrature method is
critical. In this research, we choose vague prior assumptions for
the parameters and the analysis successfully reveals the fact that
the width of the 90% credible region depends highly on the
information provided by option prices and the prior assumptions
on the parameters in the quadrature method. One may adopt
more sophisticated prior distributions based on experience and
knowledge. This flexibility may be considered as a technical
advantage of the Bayesian quadrature method.

3.4. Out-of-sample analysis

Inincomplete markets, no unique martingale measure exists. As
a consequence, this may have a negative effect that the parameters

estimated fit well the in-sample data, but they are inaccurate with
out-of-sample data. In the following, we modify the quadrature
model to forecast out-of-sample data and provide an empirical
analysis confirming that our quadrature model preforms well for
the out-of-sample data.

Recall that t is the current time, 7 is the time to maturity, and
F(t, 71, T2) is the underlying temperature index future price at
time t with accumulation period [77, T2 ]. Let f be the forecast time
and T be the time to maturity from time f to maturity. Similar to
Dumas et al. (1998) and Fan and Mancini (2009), we consider a one-
week-ahead forecast horizon. Both F(t, 71, 72) and F (£, 74, 73) are
known in our out-of-sample analysis.

To begin with, the option prices at time t are used to calibrate
the Bayesian quadrature model, where w and 6 are parameters.
To provide a plausible yet simple quadrature model for forecast
at time f with parameters @ and 0, we first set % = w. Recall
thatr is the risk-free interest rate. To adjust the current underlying
temperature index future price and the discounted factor, define
6 = (64, ..., 0y) asthe normalized location parameters extracted
from the quadrature model by

6 = F(t, 71, ©2)e"" 6,
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fori = 1,...,N. Likewise, 6 is linked to 6 via the normalized
location parameters by

F(E7 71, IZ)
F(t, 71, 12)

fori =1, ..., N.Asaresult, the forecast quadrature model at time
tq is

0 =F({, ©1, 02)e"6; e’ Mg, (22)

w185, (%) + -+~ + wydz, ().

where 8 is given in (22), and can be used to calculate option prices
forecast at time f directly.

In the Bayesian out-of-sample analysis, we report the 90%
Bayesian prediction intervals for option prices at time f and
averaged R? in the MCMC algorithm. Table 3 provides detailed

information on the data used for the out-of-sample analysis: For
each case of weather derivatives, Table 3 lists its current time
t, forecast time f, maturity, underlying temperature index future
prices at time t and £, and averaged R? in the MCMC algorithm.
We remark that because the weather derivatives markets are less
frequently traded, given t, if there is no settlement prices in the
one-week-ahead horizon, we use options traded nearest to the
one-week-ahead horizon as the out-of-sample data.

Fig. 11 depicts the 90% Bayesian prediction intervals for the
forecast and realized market option prices traded at time £. It is
shown that realized market option prices are within or close to
the 90% Bayesian prediction intervals. Together with the numerical
results that the averaged R? in Table 3 ranges from 0.82 to 0.99, we
conclude that our quadrature method empirically performs well in
this out-of-sample analysis.



Table 3

Data and averaged R? in the out-of-sample analysis. This table lists the type of weather derivatives, current time t, forecast time f, maturity,
underlying temperature index future prices at times t and £, and averaged R? in the MCMC algorithm.
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Product t t Maturity F(t, 1y, T2) F(t, 11, 1) Averaged R?
New York, HDD 20060202 20060207 Feb. 2006 875 778 0.91
New York, HDD 20071218 20071224 Jan. 2008 905 910 0.87
New York, HDD 20050121 20050126 Feb. 2005 805 845 0.89
Atlanta, HDD 20060315 20060322 Mar. 2006 320 342 0.82
Chicago, HDD 20081216 20081223 Dec. 2008 1290 1315 0.99
Dallas, CDD 20100604 20100611 Jun. 2010 600 617 0.94
New York, HDD New York, HDD
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Fig. 11. Out-of-sample analysis for different contracts. For realized market prices, a call option is indicated with a blue plus and a put is indicated with a red cross. The 90%
Bayesian prediction intervals of call and put option are in blue and red dashed lines, respectively. Averaged R? is recorded in parentheses in the title of each panel plot. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

data sparsity remains an issue in the biggest weather market, the
New York market. For illustration, we implement (4) for every
trading day in March 2006. For other months, most of the number
of strike in each trading day is simply one, and such case makes
the SPD estimation very difficult in the sense that option price only
provides information for one side of the SPD.

3.5. Dynamics of SPD

Table 4 records the number of trading days with respect to
the number of strike prices and trading months for the New York
HDD/CDD monthly options with time to maturity 7 less than one
month and Atlanta HDD Seasonal Strips with t = 6. Again, the
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Table 4
Number of trading days with respect to the trading month and the number of strike prices for HDD/CDD monthly options with time to maturity less t than one month and
Atlanta HDD Seasonal Strips with 7 = 6 (time of measurement period of 5 months).

Year Type City Month  Nr. of strike prices Year  Type City Month  Nr. of strike prices
t 1 2 3 4 5 Total T 1 2 3 4 5 6 Total
2002 HDD NY 11 1 1 - - - - 1 2006 HDD- Atlanta 10 6 - - 1 1
Strip
2004 HDD NY 1 12 - - - - 2 2007 HDD- Atlanta 10 6 - - 31 2 1 1 8
Strip
2004 HDD NY 2 1 1 - - - - 1 2008 HDD- Atlanta 10 6 - - 4 1 1 1 5
Strip
2004 HDD NY 3 I B 1 2009 HDD- Atlanta 10 6 - - 1 1 3
Strip 1
2005 HDD NY 1 1 1 - - - - 1 2010 HDD- Atlanta 10 6 - - 2 2
Strip
2005 HDD NY 2 12 - - - - 2 2002 HDD Chicago 11 1 1 - 1
2005 HDD NY 3 11 - - - - 1 2002 HDD Chicago 12 1 2 - 2
2005 HDD NY 12 1 1 1 - - - 2 2004 HDD Chicago 2 1 1 - 1
2006 HDD NY 1 1 2 - - - 2 2005 HDD Chicago 2 1 2 - 2
2006 HDD NY 2 1 5 3 1 - - 9 2005 HDD Chicago 12 1 4 - - 4
2006 HDD NY 3 1 3 5 4 - 13 2006 HDD Chicago 3 1 5 2 7
2006 HDD NY 10 1 1 1 - - - 2 2006 HDD Chicago 10 1 2 1 3
2006 HDD NY 11 T 1 2 - - - 3 2006 HDD Chicago 11 1 2 2
2006 HDD NY 12 1 1 - - - 1 2007 HDD Chicago 1 1 3 3
2007 HDD NY 1 1 2 - - - - 2 2007 HDD Chicago 2 1 1 1
2007 HDD NY 2 1 4 - - - - 4 2007 HDD Chicago 3 1 1 1
2007 HDD NY 3 11T - - - - 1 2007 HDD Chicago 12 1 1 1
2007 HDD NY 11 S B 1 2008 HDD Chicago 1 1 1 1
2007 HDD NY 12 11 2 - - - 3 2008 HDD Chicago 2 1 3 3
2008 HDD NY 1 1 6 1 2 - - 9 2008 HDD Chicago 3 1 2 1 3
2008 HDD NY 2 13 - - - - 3 2008 HDD Chicago 12 1 2 2 4
2008 HDD NY 12 12 1 - - - 3 2009 HDD Chicago 1 1 2 2
2009 HDD NY 1 1 4 - - - - 4 2009 HDD Chicago 12 1 1 1
2009 HDD NY 2 1 2 - - - 2 2010 HDD Chicago 3 1 1 1
2009 HDD NY 3 1 I 1 2010 HDD Chicago 11 1 1 1
2009 HDD NY 11 13 - - - - 3 2010 HDD Chicago 12 1 2 2
2009 HDD NY 12 1 1T - - - 1 2011 HDD Chicago 1 1 3 3
2010 HDD NY 3 1 1 - - - - 1 2011 HDD Chicago 2 1 2 2
2010 HDD NY 11 1 5 - - - - 5 2011 HDD Chicago 11 1 2 2
2010 HDD NY 12 12 - - - - 2 2011 HDD Chicago 12 1 2 2
2011 HDD NY 1 14 1 - - - 5 2004 CDD Dallas 9 1 1 1
2011 HDD NY 2 1 5 - - - - 5 2005 CDD Dallas 8 1 1 1
2011 HDD NY 3 1 1 1 - - - 2 2006 CDD Dallas 6 1 1 1
2011 HDD NY 11 S B 1 2006 CDD Dallas 9 1 1 1
2011 HDD NY 12 12 - - - - 2 2007 CDD Dallas 7 1 1 1
2012 HDD NY 2 1 1 - - - - 1 2008 CDD Dallas 5 1 6 6
2004 CDD NY 9 1 - 1 - - 1 2008 CDD Dallas 6 1 1 1
2005 CDD NY 5 1 1T - - - 1 2008 CDD Dallas 7 1 2 2
2005 CDD NY 6 1 8 - - 9 2008 CDD Dallas 8 1 1 1
2005 CDD NY 7 1 - - -1 1 2009 CDD Dallas 5 1 4 1 5
2005 CDD NY 8 1 4 - - - 4 2009 CDD Dallas 6 1 1 1 2
2006 CDD  NY 6 1 4 - - - 4 2009 CDD Dallas 8 1 1 1
2006 CDD  NY 7 1 1T - - - 1 2009 CDD Dallas 9 1 1 1
2006 CDD NY 8 1 3 - - - 3 2010 CDD Dallas 5 1 1 1
2006 CDD NY 9 1 3 - - - 2 2010 CDD Dallas 6 1 2 3 5
2007 CDD NY 7 1 1T - - - 1 2010 CDD Dallas 7 1 2 2
2007 CDD NY 8 1 1T - - - 1 2010 CDD Dallas 8 1 2 2
2007 CDD NY 9 1 1 - - - 1 2010 CDD Dallas 9 1 3 1 4
2008 CDD NY 6 1 5 - - - 5 2011 CDD Dallas 5 1 1 1
2008 CDD NY 7 1 1T - - - 1 2011 CDD Dallas 6 1 3 1 4
2008 CDD NY 8 1 1 - - - 1 2011 CDD Dallas 7 1 3 3
2009 CDD NY 8 1 2 - - - 2 2011 CDD Dallas 8 1 2 2
2010 CDD NY 5 1 2 - - - 2 2012 CDD Dallas 2 1 2 2
2010 CDD NY 5 1 2 - - - 2
2010 CDD  NY 6 1 1T - - - 1
2010 CDD NY 7 1 1 - - - 1
2010 CDD NY 9 1 1T - - - 1
2011  CDD  NY 9 1 1T - - - 1
2011  CDD  NY 6 1 3 - - - 3

Fig. 12 plots give the evolution of New York-HDD, Atlanta HDD- method, and calculate R? in a logarithmic scale:

Seasonal and option prices with time to maturities in one and Ny N; N

six months respectively, against strike prices and trading days in >3y {log Yijk — log C{}’ (w, 0)}2
March 2006 and October 2007. It is clear that options were traded o _ | _ i=li=Tk=!

with very few strike prices (from one to four strike prices) during Ny N; Ny

this month. We used five support points (N = 5) in the quadrature ¥y y logyizjk

i=1j=1k=1
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Fig. 12. New York monthly HDD option prices with time to maturity in one month against strike prices and trading days in March 2006, HDD Atlanta Seasonal option prices

with time to maturity in 6 months and trading days in October 2007.

Recall that N1 and N, are numbers of different strike prices for call
and put options, respectively. N; relies on the given data set. Nj; is
the number of repeated options given a strike price and a type of
option. In our empirical analysis, because we just take one daily
closing price, we set Nj = 1.

When R? is close to one, model prices are close to market
prices and the model produces nice fit. In the Bayesian quadrature
method, we calculate R? at each swipe of the Markov chain Monte
Carlo algorithm, and summarize its posterior mean and quantiles
for inference. Because all the mean, median, and the 2.5% and 97.5%
quantiles of the R? calculated in the MCMC algorithm are close to
one, we conclude that the Bayesian quadrature method produces
an almost perfect fit for all these trading days. Fig. 13 presents
dynamics of the smoothed implied SPD, all of which deviate from
lognormality.

A simple way to investigate the dynamics of the implied SPD at
each trading day is to calculate moments based on the quadrature
method. In each swipe of the Markov chain Monte Carlo algorithm,
we calculate the mean (), volatility (v), skewness (s), and kurtosis
(«) of the quadrature method, by the following formulas,

N
M= Z Wnby
n=1

N
S= Z wn (0 — /,L)3/l)3

n=1
N

K= Z wa(Bn — ) /0"
n=1

Fig. 14 gives the dynamics of the posterior means of the SPDs.
Table 5 shows the posterior means of these four quantities of the
quadrature method. However, skewness and kurtosis of weather
options can be either positively or negatively skewed depending
on futures maturity.

WD-SPD’s tend to be positively skewed for short maturity
contracts indicating that the tail on the right side is longer or fatter
than the left side as the call-options only provide information in the
right tail of the SPD. Conversely, negative skew indicates that the
tail on the left side of the SPD, provided by put-options, is longer
or fatter than the right side.

The heterogeneity beliefs on investors (hedgers versus spec-
ulators), reflected by the weather sensitivity preferences among
agents, lead the SPD spread to the tails and even becomes bi-
modal. As shown in Jackwerth and Rubinstein (1996) and Rubin-
stein (1994), it is common to get in incomplete markets, like the
stock index options, multimodal risk neutral densities. The pres-
ence of severe modes might be caused due to nonlinear relation-
ship between the seasonal variance of the temperature process T;
and the underlying temperature index futures in (19), see Hdr-
dle and Lopez-Cabrera (2012), Benth et al. (2007). Temperature
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Table 5
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Posterior mean of the mean (u), volatility (v), skewness (s), and kurtosis (k) of the quadrature method at each trading day (TD) calibrated from New York HDD monthly
options in March 2006, Atlanta HDD seasonal strip options in October 2007 and Dallas CDD monthly options in June 2010.

TD 2 3 6 7 8 9 10 14 15 16 17 20
HDD 1% 511.16 676.00 618.80 676.31 660.00 645.00 660.00 42278 554.10  708.58 698.31 380.26
NY v 248.98 81.57 57.02 73.88 61.38 59.89 45.07 240.72 217.04 41.54 42.11 205.93
s 0.09 —-0.92 0.25 4.30 0.48 0.21 0.38 0.43 —0.42 1.47 1.65 0.60
K 1.54 2.70 279 56.28 2.26 3.28 2.98 2.16 1.70 5.66 7.59 290
TD 2 3 4 9 12 24 31
HDD " 2225.54 1741.96 1865.99 1630.19 1470.13 2335.12 2340.70
Strips v 324.45 818.35 757.39 751.52 835.64 287.44 258.52
Atlanta s 0.58 —0.05 —0.33 0.21 0.59 0.64 0.07
K 3.44 1.42 173 2.15 2.44 7.59 3.00
TD 4 10 14
CDD n 489.96 390.42 596.63
Dallas v 175.79 195.06 155.40
s —0.83 0.18 —-0.57
K 272 1.98 2.76
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Fig. 13. Quadrature method and smoothed SPDs implied from New York monthly
HDD option prices with time to maturity in one month against strike prices and
trading days in March 2006, HDD Atlanta Seasonal option prices with time to
maturity in 6 months and trading days in October 2007, Dallas monthly CDD options
with time to maturity in one month traded in June 2010.

tends to stay stable during periods with low seasonal variance.
Thus, SPDs are depending on the conditional volatility: the SPD
is wider when the conditional volatility is high. This is different
with what documented on index options market (unimodal den-
sities) (Bakshi et al., 2010), interest rate derivatives market (log-
normal densities) (Li and Zhao, 2007) and temperature markets
(unimodal normal densities) (Benth et al., 2007), but similar
to rainfall markets (skewed densities) (Lopez-Cabrera et al.,
2013). This is also explained by the economic behavior of agents

sensitive to weather conditions. Investors expect that temperature
variations, that affect their cash flows, will occur with high prob-
ability in winter times than in summer times (conversely for WDs
in Australia). Hence some investors will use these option contracts
for hedging purposes in presence of negative expected payoffs to
eliminate their risk, while others will act as speculators from bear-
ing hedgers’ risk. The results show, as expected, that the option
temperature market offers a much greater premium than the fu-
tures temperature market (Hardle and Lopez-Cabrera, 2012).

4. The infeasibility of other nonparametric methods

Here, we compare the feasibility of our method with other
known nonparametric approaches, which are popular tools
avoiding risk of misspecification. Some of these methods estimate
the SPD by differentiating an interpolation of smoothing of option
prices. In this context, data sparsity makes the estimation of the
SPD a statistical challenge. Let us now explain why the kernel
regression method and mixtures of lognormals do not work well
in the context of WD implied SPDs.

The cross-section of the call and put prices is given in Fig. 12.
Different grids correspond to different contracts with different
times to measurement periods and consequently one can argue
that option prices can be extrapolated as a smoothed function of
the strike.

4.1. Kernel regression

The kernel regression method (KRM) takes advantage of
differentiating twice (1):

32
rt

fK)=e e C(K). (23)
In order to employ (23), one needs more observations as the option
price function is treated as a continuous function of strikes and
therefore relies on the put-call parity to transfer put option prices
to call option prices. When the market is rarely traded, it is not
promising to employ the put-call parity though. In our empirical
data analysis most options are traded with only a few strike prices.
Very often, an option was traded only with one or two strike prices.
When the kernel method is applied to a data set of such a case, it
is even difficult to find an option function C(K), not to mention to
find its second derivatives and interpolated version, may not yield
a density estimate that guarantee to be positive and integrate to
one. Consequently, KRM is sensitive to data sparsity.
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Fig. 14. Dynamics of the parameter of the quadrature method implied from New York monthly HDD option prices with time to maturity in one month against strike prices
and trading days in March 2006, HDD Atlanta Seasonal option prices with time to maturity in 6 months and trading days in October 2007, Dallas monthly CDD options with

time to maturity in one month traded in June 2010.
4.2. Mixture of lognormals

When applying the mixture of lognormal methods, it is
necessary to specify the range of the variances of the lognormal
density. The selection is objective and influences the estimated SPD
dramatically. When the data set consists of a few data point, it is
possible to produce two totally different densities (particularly in
terms of variances) which produce the same quality of model fit.

We estimate the SPD using a mixture of lognormal for New York
HDD monthly options, given in Fig. 8. For mixture of lognormals,
we will show that two different SPD using mixture of lognormal

produce the same model fit, but they have quite different higher
moments.
Yuan (2009) proposed a function class:

7= {f(-) FO) = / F (Xl )G, o),

supp(g) C [-M,M] x [g, &]}

where M < ooand 0 < o < & < oo, f(x|i,c?) is the
pdf of the lognormal distribution with location x and scale ¢ and
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G determines the mixing distribution. The corresponding pricing
function in this case is similar to (2):

CX; pu,0%) = exp(—rr)/ i (Of (X)dx
0

€0 6) = [ €0t . 0?61, 0) (24)
as the SPD f(x) is defined in the previous family #. The least
squares estimate of the pricing function can be written as:

n

A N 2
G() = argcmmn ! Z {yii — CX; G}
€4 i=1

(25)

where § is the collection of all probability measures on y and o2.
Note that the minimization is taken over a function space of infinite
dimensions, however the solution can be represented in a finite
dimensional space. In particular, all solutions can be expressed as
aconvex combination of at most n+ 1 Black-Scholes type of pricing
functions.

This model has several nice theoretical properties. For example,
as the sample size n increases, the pricing functions can be
recovered with squared error converging to zero at the rate of
log? n/n, which is close to the parametric rate of convergence
1/n. However, practical difficulties arise when fitting mixtures of
lognormal distributions (or other mixtures models) to real data.
The feature that weather options are traded with a few number of

strike prices make mixture models inapplicable, because mixture
models need to select corresponding scale parameters and the
number of components. For example, when options are traded
with n different strike prices, maximum likelihood suggests to use
n/2 support points. When n is large, this leads a very complicated
model and possible over fitting problem. When n is small, the
resulting model may be inappropriate. In addition, numerical
procedure for searching the maximum likelihood estimate is
particularly difficult for large n.

We apply mixture of lognormals by Yuan (2009) to the New
York monthly HDD call options traded on 2006/02/02, with two
different manually selected variances. Fig. 15 shows that these two
estimated SPD are quite different in shapes, although they produce
similar quality of model fit. Therefore, this illustration shows that
the estimated SPD is very sensitive to the selection of ¢. In practical
implementation, Yuan (2009) suggests to determine ¢ by cross-
validation. This however is very computationally demanding.

5. Conclusions

We estimate SPDs for WDs using the Bayesian quadrature
method. The WD market is characterized by its incompleteness
and less frequently traded activities. This makes the estimation of
the SPD a statistical challenge. However, the quadrature method,
in advantage to the parametric and other non-semiparametric
techniques, avoids model miss-specification and allows the
SPD estimation by a parsimonious model. The technique is
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computationally fast and robust. The obtained SPD do not stem
from market-risk-price assumptions. We present empirical results
on real CME temperature derivatives data, which help us to
understand the dynamics of SPD. The results suggest that the SPD
of weather derivatives exhibits a non-normal behavior type.
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Abstract

The gargantuan plethora of opinions, facts and tweets on financial business offers
the opportunity to test and analyze the influence of such text sources on future direc-
tions of stocks. It also creates though the necessity to distill via statistical technology
the informative elements of this prodigious and indeed colossal data source. Using
mixed text sources from professional platforms, blog fora and stock message boards
we distill via different lexica sentiment variables. These are employed for an analysis
of stock reactions: volatility, volume and returns. An increased sentiment, especially
for those with negative prospection, will influence volatility as well as volume. This
influence is contingent on the lexical projection and different across Global Industry
Classification Standard (GICS) sectors. Based on review articles on 100 S&P 500
constituents for the period of October 20, 2009 to October 13, 2014, we project into
BL, MPQA, LM lexica and use the distilled sentiment variables to forecast individual
stock indicators in a panel context. Exploiting different lexical projections to test dif-
ferent stock reaction indicators we aim at answering the following research questions:
(i) Are the lexica consistent in their analytic ability?

(ii) To which degree is there an asymmetric response given the sentiment scales (pos-
itive v.s. negative)?

(iii) Are the news of high attention firms diffusing faster and result in more timely
and efficient stock reaction?

(iv) Is there a sector specific reaction from the distilled sentiment measures?

We find there is significant incremental information in the distilled news flow and
the sentiment effect is characterized as an asymmetric, attention-specific and sector-
specific response of stock reactions.

Keywords: Investor Sentiment, Attention Analysis, Sector Analysis, Volatility Simulation,
Trading Volume, Returns
JEL Classifications: C81, G14, G17
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1 Introduction

News are driving financial markets. News are nowadays massively available on a variety
of modern digital platforms with a wide spectrum of granularity scales. It is exactly this
combination of granularity and massiveness that makes it virtually impossible to process
all the news relevant to certain financial assets. How to distinguish between “noise” and
“signal” is also here the relevant question. With a few exceptions the majority of empirical
studies on news impact work has therefore been concentrated on specific identifiable events
like scheduled macroeconomic announcements, political decisions, or asset specific news.
Recent studies have looked at continuous news flow from an automated sentiment machine
and it has been discovered to be relevant to high frequency return, volatility and trading
volume. Both approaches have limitations since they concentrate on identifiable indicators
(events) or use specific automated linguistic algorithms.

This paper uses text data of different granularity from blog fora, news platforms and
stock message boards. Using several lexical projections, we define pessimistic (optimistic)
sentiment with specific meaning as the average proportions of negative (positive) words
in articles published in specific time windows before the focal trading day, and examine
their impacts on stock trading volume, volatility and return. We analyze those effects in
a panel data context and study their influence on stock reactions. These reactions might
be interesting since large institutions, more sophisticated investors, usually express their
views on stock prospective or prediction through published analyst forecasts. However, an-
alysts’ recommendations may be contaminated by their career concerns and compensation
scheme; they may also be in alliance with other financial institutions such as investment
banks, brokerage houses or target companies (Hong and Kubik, 2003; Liu, 2012). Due to
the possible conflicts of interest from analysts and their powerful influence on naive small
investors, the opinions from individual small investors may be trustworthy since their per-
sonal opinions hardly create any manipulation that governs stock reactions. The advent
of social media such as Seeking Alpha enables small investors to share and express their
opinions frequently, real time and responsively.

We show that small investors’ opinions contribute to stock markets and create a “news-

driven” stock reaction. The conversation in the internet or social media is valuable since the
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introduction of conversation among a subset of market participants may have large effects
on the stock price equilibrium (Cao et al., 2001). Other literature such as Antweiler and
Frank (2004), Das and Chen (2007), Chen et al. (2014) demonstrate the value of individual
opinions on financial market. They show that small investor opinions predict future stock
returns and earnings surprises even after controlling the financial analyst recommendation.
The projections (of a text into sentiment variables) we employ are based on three senti-
ment lexica: the BL, LM and MPQA lexica. They are used to construct sentiment variables
that feed into the stock reaction analysis. Exploiting different lexical projections, and using
different stock reaction indicators we aim at answering the following research questions:
(1) Are the lexica consistent in their analytic ability to produce stock reaction indicators,
including volatility, detrended log trading volume and return?
(ii) To which degree is there an asymmetric response given the sentiment scales (positive
v.s. negative)?
(iii) Are the news of high attention firms diffusing faster and result in more timely and
efficient stock reaction?

(iv) Is there a sector specific reaction from the distilled sentiment measures?

Question (i) addresses the variation of news content across different granularity and
lexica. Whereas earlier literature focuses on numerisized input indices like ReutersNews-
Content or Google Search Volume Index, we would like to investigate the usefulness of
automated news inputs for e.g. statistical arbitrage algorithms. Question (ii) examines
the effect of different sentiment scales on stock reactions like volatility, trading volume and
returns. Three lexica are employed that are producing different numerical values and thus
raise the concern of how much structure is captured in the resulting sentiment measure.
An answer to this question will give us insight into whether the well known asymmetric
response (bad vs. good news) is appropriately reflected in the lexical projections. Question
(iii) and (iv) finally analyze whether stylized facts play a role in our study. This is answered
via a panel data scheme using GICS sector indicators and attention ratios.

Grof-KluBmann and Hautsch (2011) analyze in a high frequency context market reac-

tions to the intraday stock specific “Reuters NewsScope Sentiment” engine. Their findings
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support the hypothesis of news influence on volatility and trading volume, but are in con-
trast to our study since they are based on a single news source and confined to a limited
number of assets for which high frequency data are available.

Antweiler and Frank (2004) analyze text contributions from stock message boards and
find that the amount and bullishness of messages have predictive value for trading volume
and volatility. On message boards, the self-disclosed sentiment to hold a stock position is
not bias free, as indicated in Zhang and Swanson (2010). Tetlock (2007) concludes that
negative sentiment in a Wall Street Journal column has explanatory power for downward
movement of the Dow Jones. Bollen et al. (2011) classify messages from the micro-blogging
platform Twitter in six different mood states and find that public mood helps to predict
changes in daily Dow Jones values. Zhang et al. (2012) extends this by filtering the Twitter
messages (tweets) for keywords indicating a financial context and they consider different
markets such as commodities and currencies. Si et al. (2013) use a refined filtering process
to obtain stock specific tweets and conclude that topic based Twitter sentiment improves
day-to-day stock forecast accuracy. Sprenger et al. (2014) also use tweets on stock level
and conclude that the number of retweets and followers may be used to assess the quality
of investment advice. Chen et al. (2014) use articles and corresponding comments on
Seeking Alpha, a social media platform for investment research, and show predictive value
of negative sentiment for stock returns and earnings surprises. According to Wang et al.
(2014), the correlation of Seeking Alpha sentiment and returns is higher than between
returns and sentiment in Stocktwits, messages from a micro-blogging platform specialized
in finance.

Using either individual lexical projections or a sentiment index comprising the com-
mon component of the three lexical projections, we find that the text sentiment shows
an incremental influence on the stocks collected from S&P 500 constituents. An asym-
metric response of the stock reaction indicators to the negative and positive sentiments is
confirmed and supports the leverage effect, that is, the stocks react to negative sentiment
more. The reaction to the distilled sentiment measures is attention-specific and sector-
specific as well. Due to the advent of social media, the opinions of small traders that have

been ignored from past till now, do shed some light on stock market activity. The rest of
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the paper is organized as follows. Section 2 describes the data gathering process, summa-
rizes definitions of variables and introduces the different sentiment lexica. In Section 3, we
present the regression and simulation results using the entire sample and samples grouped

by attention ratio and sectors. The conclusion follows in Section 4.

2 Data

2.1 Text Sources and Stock Data

While there are many possible sources of financial articles on the web, there are also le-
gal and practical obstacles to clear before obtaining the data. The text source Seeking
Alpha, as used in Chen et al. (2014), prohibits any application of automatic programs to
download parts of the website (web scraper) in their Terms of Use (TOS). While the usage
of web scrapers for non-commerical academic research is principally legal, these TOS are
still binding as stated in Truyens and Eecke (2014). For messages on Yahoo! Finance,
another popular source of financial text data used in Antweiler and Frank (2004); Zhang
and Swanson (2010), the TOS are not a hindrance but only limited message history is pro-
vided. As of December 2014, only the last 10,000 messages are shown in each stock specific
message board and this roughly corresponds to a two-month-period for stocks that people
talk frequently about like Apple. In opposition to these two examples, NASDAQ offers a
platform for financial articles by selected contributors including social media websites such
as Seeking Alpha and Motley Fool, investment research firms such as Zacks. Neither do the
TOS prohibit web scraping nor is the history of shown articles limited. We have collected
116,691 articles and corresponding stock symbols, spanning roughly five years from October
20, 2009 to October 13, 2014. The data is downloaded by using a self-written web scraper
to automate the downloading process.

The process of gathering and processing the article data and producing the sentiment
scores can be seen in Figure 1. Firstly, the URLs of all articles on NASDAQ are gath-
ered and every webpage containing an article is downloaded. Each URL can be used in
the next steps as unique identifier of individual articles to ensure that one article is not

used twice due to real-time updates of the NASDAQ webpage. In the pre-processing step,
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Figure 1: Flowchart of data gathering process

the page navigation and design elements of NASDAQ are removed. The specifics of each
article, namely contributor, publication date, mentioned stock symbols, title and article
text, are identified and read out. In case of the article text, the results are stored in in-
dividual text files. This database is available for research purposes at RDC, CRC 649,
Humboldt-Universitat zu Berlin.

Furthermore, we collected stock specific financial data. Daily prices and trading volume,
defined as number of shares traded, of all stock symbols that are S&P 500 constituents are
collected from Datastream while Compustat is used to gather the GICS sector for these
stocks.

We consider three stock reaction indicators: log volatility, detrended log trading volume
and return. For stock symbol ¢ and trading day ¢, we first compute the Garman and Klass

(1980) range-based measure of volatility defined as:

07y = 0.511(u — d)* — 0.019 {c(u + d) — 2ud} — 0.383¢? (1)
with u = log(Pig) — log(Pig),
d = log(P},) — log(P{),
¢ = log(P) — log(P3),
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with Pf{ ) PZLt, Pi% PZC; as the daily highest, lowest, opening and closing stock prices,
respectively. Chen et al. (2006) and Shu and Zhang (2006) show that the Garman and Klass
range-based measure of volatility essentially provides equivalent results to high-frequency
realized volatility. For example, Shu and Zhang (2006) find that an empirical test with
S&P 500 index return data shows that the range-based variances are quite close to the
high-frequency realized variance computed using the sum of 15-minute squared returns.
Andersen and Bollerslev (1997) show that the high-frequency realized volatility is very
sensitive to the selected interval. In addition, it is also affected by the bid/ask spread.
The range-based measure of volatility, on the other hand, avoids the problems caused by
microstructure effects. However, Alizadeh et al. (2002) argue that range based measures
such as the Garman-Klass estimator do not make use of the log-normality of volatility. As
shown by Andersen et al. (2001), log realized volatility is less skewed and less leptokurtic in
comparison to raw realized volatility. Therefore, we use logo;; instead, which also avoids
regressing on a strictly positive variable in the subsequent analysis.

Following Girard and Biswas (2007), we estimate the detrended log trading volume for

each stock by using a quadratic time trend equation:
Vii=a+ Bi(t —to) + Balt — to)? + Vig, (2)

where {y is the starting point of the time window in consideration, V;% is the raw daily
log trading volume and the residual V;; is the detrended log trading volume. In order to
avoid imposing a look-ahead bias, for each trading day ¢, we use a rolling window of past
120 observations, V', 159, ..., V%1 with g =t — 120, to estimate the coefficients and get a
one-step ahead out-of-sample forecast ‘A/Z-j“t, and then calculate V;; = V%, — ‘A/Z"‘t Furthermore,
we calculate the returns as I;; = log PFt — log Pg_l.

We focus on 100 stock symbols that are S&P 500 constituents on all 1,255 trading days
between October 20, 2009 and October 14, 2014, that belong to one of nine major GICS
sectors for stock symbols that are S&P 500 constituents on at least one trading day during
this period, and that have the most trading days with articles. The distribution of GICS
sectors among these 100 symbols are given in Table 1. Out of the 116,691 articles collected,
there are 43,459 articles associated with these 100 stock symbols; the number of articles

for these stocks range from 340 to 5,435, and the number of trading days with articles

8
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ranges from 271 to 1,039. Most of the articles are not about one single symbol but contain

references to several stocks.

GICS Sector No. Stocks
Consumer Discretionary 21
Consumer Staples 9
Energy 6
Financials 12
Health Care 15
Industrials 10
Information Technology 21
Materials 4
Telecommunication Services 2

Table 1: Distribution of GICS sectors among the 100 stock symbols

2.2 Sentiment Lexica and Sentiment Variables

To distill sentiment variables from each article, we use and compare three sentiment lexica.
The first lexicon (BL) is a list of 6,789 sentiment words (2,006 positive and 4,783 negative)
compiled over many years starting from Hu and Liu (2004) and maintained by Bing Liu
at University of Chicago, Illinois. We filter each article with this lexicon and calculate the
proportions of positive and negative words. The second lexicon (LM) is based on Loughran
and McDonald (2011) which is specifically designed for financial applications, and contains
354 positive words, 2,329 negative words, 297 uncertainty words, 886 litigious words, 19
strong modal words and 26 weak modal words. To be consistent with the usage of the
other lexica, we only consider the list of positive and negative words and calculate the
proportions of positive and negative words for each article.

The third lexicon is the MPQA (Multi-Perspective Question Answering) Subjectivity
Lexicon by Wilson et al. (2005) which we later refer to as the MPQA lexicon. This lexicon
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contains 8,222 entries. In order to show the rather tedious distillation process let us look

at six example entries:

type=weaksubj len=1 wordl=abandoned posl=adj stemmedl=n priorpolarity=negative
type=weaksubj len=1 wordl=abandonment posl=noun stemmedl=n priorpolarity=negative
type=weaksubj len=1 wordl=abandon posl=verb stemmedl=y priorpolarity=negative
type=strongsubj 1len=1 wordl=abase posl=verb stemmedl=y priorpolarity=negative
type=strongsubj 1len=1 wordl=abasement posl=anypos stemmedl=y priorpolarity=negative

type=strongsubj 1len=1 wordl=abash posl=verb stemmedl=y priorpolarity=negative

Here type refers to whether the word is classified as strongly subjective, indicating that the
word is subjective in most contexts, or weakly subjective, indicating that the word only has
certain subjective usages; len denotes the length of the word; word1 is the spelling of the
word; pos1 is part-of-speech tag of the word, which could take values adj (adjective), noun,
verb, adverb, or anypos (any part-of-speech tag); stemmed1 is an indicator for whether this
word is stemmed, where stemming refers to the process of reducing inflected (or sometimes
derived) words to their word stem, base or root form; and priorpolarity refers to polarity
of the word, which could take values negative, positive, neutral, or both (both negative and
positive). The MPQA lexicon contains 4913 entries with negative polarity, 2718 entries with
positive polarity, 570 entries with neutral polarity, and 21 entries with both polarity. To
be consistent with the usage of the other two lexica, we only consider positive and negative
polarity.

We first use the NLTK package in Python to tokenize sentences and (un-stemmed)
words in each article, and derive the part-of-speech tagging for each word. We filter each
tokenized article with the list of entries with stemmedi=n in the MPQA lexicon to count
the number of positive and negative word. We then use the Porter Stemmer in the NLTK
package to stem each word and filter each article with the list of entries with stemmedl=y
in the MPQA lexicon. If a word has been assigned polarity in the first filtering step, it will
no longer be counted in the second filtering step. For each article, we can thus count the
numbers of negative and positive words, and divide them by the length of the article to get
the proportions of negative and positive words.

Regardless of which lexicon is used, we use a variation of the approach in Hu and Liu
(2004) to account for sentiment negation. If the word distance between a negation word

[43 b 43 7

(“not”, “never”, “no”, “neither”, “nor”, “none”, “n’t”) and the sentiment word is no larger

10



Downloaded by [Humboldt-Universit&auml;t zu Berlin Universit&auml;tsbibliothek] at 00:57 08 February 2016

than 5, the positive or negative polarity of the word is changed to be the opposite of its
original polarity.

Among the words that appear at least three times in our list of articles, there are 470
positive and 918 negative words that are unique to the BL lexicon, 267 positive and 916
negative words that are unique to the LM lexicon, and 512 positive and 181 negative words
that are unique to the MPQA lexicon. The LM lexicon contains less unique positive words
than the other two lexica, and the MPQA lexicon contains less unique negative words than
the other two lexica. Table 2 presents the lists of ten most frequent positive words and
ten most frequent negative words that are unique to these three lexica. Since the BL and
MPQA lexica are designed for general purpose and the LM lexicon is designed specifically
for financial applications, the unique words under the BL and MPQA lexica indeed look
more general.

Words in the general-purpose lexica may be misclassified for financial applications; for

)

example, the word “proprietary” in the negative list of the BL lexicon may refer to things
like “a secure proprietary operating system that no other competitor can breach” and hence
have a positive tone in financial applications, and the word “division” in the negative list
of the MPQA lexicon may only refer to divisions of companies. However, financial analysis
using textual information is unavoidably noisy, and words in the LM lexicon can also be
misclassified; for example, the word “closing” in the negative list of the LM lexicon may
actually refer to a positive event of closing a profitable deal. Also, the LM lexicon does not
take into account financial words such as “debt” and “risks” in the BL lexicon.

We next investigate the pairwise relationship among the above three lexica. Among
the words that appear at least three times in our list of articles, there are 131 positive and
322 negative words that are shared only by the BL and LM lexica, 971 positive and 1,164
negative words that are shared only by the BL. and MPQA lexica, and 32 positive and 30
negative words that are shared only by the LM and MPQA lexica. It is not surprising
that the two general-purpose lexica, BL and MPQA, share the most positive and negative
words. Out of the two general-purpose lexica, BL lexicon shares more positive and negative

words with the special-purpose LM lexicon. Table 3 presents the lists of ten most frequent

positive words and ten most frequent negative words that are shared only by two of these

11
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BL LM MPQA
Positive (470) Negative (918) | Positive (267) Negative (916) | Positive (512) Negative (181)
Available Debt Opportunities Declined Just Low
(5,836) (12,540) (4,720) (9,809) (17,769) (12,739)
Led Fell Strength Dropped Help Division
(5,774) (9,274) (4,393) (4,894) (17,334) (5,594)
Lead Fool Profitability Late Profit Least
(4,711) (5,473) (4,174) (4,565) (15,253) (5,568)
Recovery Issues Highest Claims Even Stake
(4,357) (3,945) (3,409) (3,785) (13,780) (4,445)
Work Risks Greater Closing Deal Slightly
(3,808) (2,850) (3,321) (3,604) (13,032) (3,628)
Helped Issue Surpassed Closed Interest Close
(3,631) (2,821) (2,464) (3,378) (12,237) (3,105)
Enough Falling Enable Challenges Above Trial
(3,380) (2,768) (2,199) (2,574) (12,203) (2,544)
Pros Aggressive Strengthen Force Accord Decrease
(2,841) (1,796) (2,157) (2,157) (11,760) (2,205)
Integrated Hedge Alliance Unemployment Natural Disease
(2,652) (1,640) (1,842) (2,062) (10,135) (2,001)
Savings Proprietary Boosted Question Potential Little
(2,517) (1,560) (1,831) (1,891) (9,905) (1,775)

Table 2: Lists of ten most frequent positive words and ten most frequent negative words
that are unique to the BL, MPQA or LM lexica, along with their frequencies given in

parentheses.

three lexica. Words shared by the two general-purpose lexica (BL and MPQA) may be
misclassified for financial applications; for example, the word “gross” shared by the negative
lists of these two lexica may refer to “the annual gross domestic product” and have a neutral
tone. However, words shared by the LM lexicon and one of the general-purpose lexica may
also be misclassified; for example, the word “critical” shared by the negative lists of the
BL and LM lexica may appear in sentences such as “mobile devices are becoming critical
tools in the worlds of advertising and market research” and have a positive tone.

The above discussion shows that projections using the three lexica are all noisy, therefore

it is worthwhile to compare results from these projections. For each stock symbol ¢ and

12
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BL and LM BL and MPQA LM and MPQA
Positive (131) Negative (322) | Positive (971)  Negative (1164) | Positive (32) Negative (30)
Gains Losses Free Gross Despite Against
(7,604) (5,938) (133,395) (8,228) (7,413) (8,877)
Gained Missed Well Risk Able Cut
(7,493) (3,165) (3,0270) (7,471) (5,246) (3,401)
Improved Declining Like Limited Opportunity Challenge
(7,407) (3,053) (24,617) (5,884) (4,398) (1,042)
Improve Failed Top Motley Profitable Serious
(5,726) (2,421) (14,899) (5,165) (3,580) (1,022)
Restructuring Concerned Guidance Crude Efficiency Contrary
(3,210) (1,991) (11,715) (5,109) (2,615) (401)
Gaining Declines Significant Cloud Popularity Severely
(3,150) (1,654) (10,576) (4,906) (1,588) (348)
Enhance Suffered Worth Fall Exclusive Despite
(2,753) (1,435) (10,503) (4,732) (1,225) (342)
Outperform Weaker Gold Mar Tremendous Argument
(2,518) (1,288) (9,303) (3,190) (611) (324)
Stronger Critical Support Hard Dream Seriously
(1,657) (1,131) (9,120) (2,957) (581) (240)
Win Drag Recommendation Cancer Satisfaction Staggering
(1,491) (1,095) (8,993) (2,521) (410) (209)

Table 3: Lists of ten most frequent positive words and ten most frequent negative words
that are shared only by BL and LM lexica, only by BL, and MPQA lexica, or only by LM

and MPQA lexica, along with their frequencies given in parentheses.

each trading day t, we derive the sentiment variables listed in Table 4 based on articles
associated with symbol ¢ and published on or after trading day ¢ and before trading day
t+ 1

13
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Sentiment Variable | Description

Ly Indicator for whether there is an article.

Pos;; (BL) The average proportion of positive words using the BL lexicon.
Neg;; (BL) The average proportion of negative words using the BL lexicon.
Pos;; (LM) The average proportion of positive words using the LM lexicon.
Neg;, (LM) The average proportion of negative words using the LM lexicon.
Pos;; (MPQA) The average proportion of positive words using the MPQA lexicon.
Neg;: (MPQA) The average proportion of negative words using the MPQA lexicon.

Table 4: Sentiment variables for articles published on or after trading day ¢ and before

trading day t + 1.
3 Empirical Results

3.1 Entire Sample Results
3.1.1 Descriptive Statistics and Comparison of the Lexical Projections

Table 5 presents summary statistics of the sentiment variables derived using the BL, LM
and MPQA lexical projections for 43,569 symbol-day combinations with [;; = 1, where
I;; is defined in Table 4 and indicates whether there is an article associated with symbol
1 and published on or after trading day ¢ and before trading day ¢ + 1. This number
is slightly different from the number of articles associated with the 100 selected symbols
(43,459), since an article can be associated with multiple symbols. The positive proportion
is the largest under the MPQA projection, and the smallest under the LM projection. The
negative proportions under the three projections are similar. Polarity in Table 5 measures
the relative dominance between positive sentiment and negative sentiment. For example,
the situation, Pos;; (BL)> Neg;; (BL), accounts for 88.04% of the 43,569 observations.
Note that under each projection, there are a small percentage of the observations for which
Pos;; = Neg;y. Under both the BL and MPQA projections, positive sentiment is more
dominant and widespread than negative sentiment. The LM projection, however, results
in a relative balance between positive and negative sentiment.

To check whether the sentiment polarity actually reflects the sentiment of the articles,
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Variable m o Max Q1 Q2 Q3 Polarity

Pos;; (BL) 0.033 0.012 0.134 0.025 0.032 0.040 88.04%
Neg;; (BL) 0.015 0.010 0.091 0.008 0.014 0.020 10.51%
Pos;; (LM) 0.014 0.007 0.074 0.009 0.013 0.018 55.70%
Neg;: (LM) 0.012 0.009 0.085 0.006 0.011 0.016 40.17%
Pos;; (MPQA) | 0.038 0.012 0.134 0.031 0.038 0.045 96.26%
Neg;; (MPQA) | 0.013 0.008 0.133 0.007 0.012 0.017 2.87%

Note: Sample mean, sample standard deviation, maximum value, 1st, 2nd and 3rd quartiles,

and polarity. These descriptive statistics are conditional on I; ; = 1.

Table 5: Summary Statistics for Text Sentiment Variables

Manual BL Label LM Label MPQA Label

Label Pos Neg Neu Pos Neg Neu Pos Neg Neu | Total
Pos 56 4 1 41 12 8 61 0 0 61
Neg 9 2 1 0 9 3 9 2 1 12
Neu 22 5 0 10 15 2 26 0 1 27
Total 87 11 2 51 36 13 96 2 2 100

Table 6: Sentiment Classification Results for 100 Randomly Selected Articles

we actually carefully checked and read the contents of 100 randomly selected articles and
manually classified their polarity (positive, negative and neutral), and also use the lexical
projections to automatically classify these articles as follows. If the proportion of positive
words for an article is larger than (or small than, or equal to) the proportion of negative
words for the same article, then this article is automatically classified as positive (or nega-
tive, or neutral). Table 6 reports the results. It appears that the BL and MPQA projections
put too much weight on positive sentiment, and are not powerful in detecting negative sen-
timent. In contrast, the LM sentiment is powerful in detecting negative sentiment, but is
not so good in detecting positive sentiment.

Figure 2 and 3 respectively show the monthly correlation between positive and negative

proportions under two of the three projections. In general, the negative proportions are
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more correlated than positive proportions. Also, the correlation between the BL and LM
projections and that between the BL and MPQA projections are larger than the correlation
between the LM and MPQA projections, which is consistent with the discussion about the
list of words shared by two of the three projections (see Table 3).

Correlation
02 04 06 0.8

2012-01 2013-01 2014-01

Date

2010-01 2011-01

Figure 2: Monthly Correlation between Positive Sentiment: BL and LM (solid), BL and
MPQA (dashed), LM and MPQA (dotted)

Correlation
02 04 06 0.8

2012-01 2013-01 2014-01

Date

2010-01 2011-01

Figure 3: Monthly Correlation between Negative Sentiment: BL and LM (solid), BL and
MPQA (dashed), LM and MPQA (dotted)
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3.1.2 Main Results

Recall from Section 2.1 that we focus on three stock reaction indicators: log volatility
log g, where 07, is defined in (1), detrended log trading volume V;; as in (2) and returns
R; ;. We first consider analyzing these three indicators with one trading day into the future,

and use the following (separate) panel regressions.

logoiiy1 = a4 Biliy+ PaPos;y + BsNegir + @IXi,t + Vi + €, (3)
Vies1 = a+ Biliy + BoPos;y + BsNeg; . + ﬁIXi,t + Y + €, (4)
Rivyn = a+ Bl + PoPosiy + BsNeg; + BIXi,t + Vi + Eig- (5)

where ; is the fixed effect for stock symbol ¢ satisfying > . v; = 0. X, is a vector of control
variables that includes a set of market variables to control for systematic risk such as (1)
S&P 500 index return (Ry) to control for general market returns; (2) the CBOE VIX index
on date t to measure the generalized risk aversion (VIX;); and a set of firm idiosyncratic
variables such as (3) the lagged log volatility (logo;,); (4) the lagged return (R;;); (5) the
lagged detrended log trading volume (V;;), where the lagged dependent variable is used to
capture the persistence and omitted variables. These three indicators essentially have a
triple dynamic correlation, and they have been modeled as a trivariate vector autoregressive
(VAR) model, see Chen et al. (2001) and Chen et al. (2002). Our indicators in Eqs.(4)
to (5) not only have themselves dynamic relationship with their lagged values, but also
are impacted by the other lagged indicators. We incorporate clustered standard errors by
Arellano (1987) as they allow for both time and cross-sectional dependence in the residuals.
Petersen (2009) concludes that standard errors clustered on both dimensions are unbiased
and achieve correctly sized confidence intervals while ordinary least squares standard errors
might be biased in a panel data setting.

To answer our research question (i), if the three lexica are not consistent in their an-
alytic ability to produce stock reaction indicators, we would expect that the value and
the significance of 51, By or P53 varies across three lexical projections. For question (ii), if
the positive and negative sentiments have asymmetric impacts, we would expect that [,
and (3 have different signs or significance. To address question (iii), we would expect that

the value and the significance of 31, 8o or B3 varies with different attention levels and in
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Variable BL LM MPQA PCA
Panel A: Future Log Volatility log 0; ;11
Iy —0.005 (0.009) —0.019*** (0.007) —0.004 (0.010) —0.014 (0.010)
Pos; ¢ —0.396* (0.228) 0.156 (0.378) —0.517* (0.217) —0.210 (0.201)
Negis 0.905"** (0.257) 0.942%* (0.271) 1.464** (0.325) 1.041%+* (0.247)
Ry —1.507"* (0.217) —1.501*** (0.216) —1.500%* (0.216) —1.505"** (0.216)
VIX, 2.329" (0.085) 2.335%* (0.085) 2.331% (0.086) 2.330"** (0.085)
log o 0.242% (0.010) 0.242%* (0.010) 0.242"* (0.010) 0.242% (0.010)
R;, 1.652%** (0.196) 1.653** (0.196) 1.651%* (0.196) 1.653*** (0.196)
Vit 0.065"** (0.006) 0.065*** (0.006) 0.065* (0.006) 0.065"** (0.006)
Panel B: Future Detrended Log Trading Volume V; 44
Iy 0.040™ (0.008) 0.027** (0.005) 0.046™* (0.009) 0.035"** (0.008)
Pos; —0.496™* (0.188) 0.051 (0.275) —0.483* (0.194) —0.274* (0.166)
Negis 0.726™* (0.257) 0.563** (0.251) 0.548* (0.290) 0.590** (0.232)
Ry —3.625" (0.181) —3.620"* (0.181) —3.617* (0.181) —3.622"* (0.181)
VIX, —0.492" (0.027) —0.487*** (0.027) —0.487* (0.027) —0.489*** (0.027)
log o, 0.132** (0.004) 0.132%** (0.004) 0.132"* (0.004) 0.132%* (0.004)
R, 1.164*** (0.126) 1.166** (0.126) 1.164** (0.126) 1.166*** (0.126)
Panel C: Future Returns R; ;41

Iy 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) —0.000 (0.000)
Pos; ¢ 0.019*** (0.007) 0.030*** (0.011) 0.014* (0.008) 0.018"** (0.006)
Neg;+ —0.004 (0.008) —0.000 (0.010) —0.009 (0.010) —0.003 (0.008)
Ry —0.050"* (0.006) —0.050"** (0.006) —0.050*** (0.006 ) —0.050"** (0.006)
VIX, 0.011* (0.001) 0.011** (0.001) 0.011** (0.001) 0.011** (0.001)
log ;4 —0.001** (0.000) —0.001*** (0.000) —0.001*** (0.000) —0.001*** (0.000)
R, —0.018"* (0.007) —0.018"** (0.007) —0.018*** (0.007) —0.018"** (0.007)
Vi 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

“** refers to a p value less than 0.01, ** refers to a p value more than or equal to 0.01 and smaller than 0.05, and

* refers to a p value more than or equal to 0.05 and less than 0.1. Values in parentheses are clustered standard

€rrors.

Table 7: Entire Panel Regression Results

particular that the coefficient size is larger for higher attention firms. As to question (iv),
we would expect that the coefficients of sentiment variables are sector-specific.

We will discuss the analysis of different attention levels and different sectors respectively
in Sections 3.2 and 3.3, and focus now on the entire sample. The regression results are
given in Table 7. Results in Panel A indicate that the arrival of articles (/;;) distilled using
the LM method is strongly negatively related to future log volatility, and that contingent

on arriving articles, the negative sentiment distilled using the three methods is significantly

18



Downloaded by [Humboldt-Universit&auml;t zu Berlin Universit&auml;tsbibliothek] at 00:57 08 February 2016

positively related to future log volatility, whereas the positive sentiment distilled using the
BL and MPQA methods is significantly negatived related to future log volatility. Results in
Panel B show that contingent on arriving articles, the positive and negative sentiment have
asymmetric strong impacts on future detrended log trading volume: the negative sentiment
across three lexica strongly drives up future detrended log trading volume, whereas the
positive sentiment distilled using the BL and MPQA methods is strongly negatively related
to future detrended log trading volume. The arrival of articles also strongly drives up future
detrended log trading volume across three lexica. These findings support the mixture
of distribution hypothesis originated by Clark (1973). As to future returns in Panel C,
across three lexica and contingent on arriving articles, the positive sentiments are strongly
positively related to future returns whereas the negative sentiment is unrelated to future
returns. This finding sheds light on case against one unpleasant finding from Antweiler
and Frank (2004) in which bullishness is not statistically significant for future return. It is
interesting to note that the coefficients for the control variables do not vary much across
lexical projections, which indicates that the sentiment measures are not so much correlated
with the control variables and indeed provide incremental information.

It is difficult to diagnose a consensual performance from Table 7 because each lexicon
may not fully reflect the complete sentiment and may have its own idiosyncratic nature as
being evident from Table 2. To overcome this problem that none of the lexica is perfectly
complete, we design an artificial sentiment index: the first principal component, to capture
a common component of three lexica and to take into account the fact from Figures 2 and
3 that they reveal the shared sentiment. The positive (negative) sentiment index explains
94.14% (92.33%) of the total sample variance. As seen in the last column of Table 7, these
general positive and negative sentiment indices are beneficial to achieve more consistent
and interpretable results. The negative sentiment index spurs the future stock volatility
and trading volume. However, the positive sentiment index has very restrictive influence

on future volatility, and suppresses the trading volume but increases stock returns.
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3.1.3 Sentiment Effect with Larger Lags and Neutral Sentiment

Based on the sequential arrival of information hypothesis (hereafter SATH, Copeland, 1976,
1977), information arrives to traders at different times and hence relationship with lags
larger than one can exist. Hence, we extend the length of lag under investigation to be two
to five trading days and run regressions using the entire sample. From Table 8, volatility
still reacts to the news in lagged two days but no more earlier than it: lagged two day
negative sentiment extracted by BL and LM are influential, indicating that the SAIH has
been observed here but lagged relationship is restricted to past one and two day while article
was posting. In this sense, the market seems efficient to incorporate information no longer
than two days. Likewise, we find the negative sentiment in lagged two day still has an
influence on future return. The coefficients across three lexicon projections are significant
but positive. The coefficients of negative sentiment projected by the BL. and LM methods
are significant but positive. The negative sign, even insignificant, in lagged one day turns
positive in lagged two day to reflect that stock returns revert to mean value, which is
consistent with Antweiler and Frank (2004). Although not significant, the coefficients’ sign
for lag one indicates a slight negative influence on tomorrow’s stock returns, but return will
revert to its mean value in two days later shown by positive sign as negative news vanish.
The sooner reversion is the more efficient market is. For the detrended log trading volume,
the lagged effect is relatively insignificant.

Financial market is characterized by the clustering of information (news) arrival, so that
we will see the volatility clustering (Engle, 2004). The clustering of arrival of sentimental
information motivates us to accumulate the sentiment variables from past trading days.
Let I y.(44n—1), P0Sit(t4n—1) and Neg; .q+n—1) denote the indicator of arrival of articles, the
average proportion of positive words and the average proportion of negative words based
on articles published on or after trading day ¢ and before trading day ¢t + h. Strikingly,
the accumulated sentiment effect projected by BL and LM method on future volatility
shown in Table 9 is very clear and keeps asymmetric, that is, only reacts to negative not to
positive sentiment. Sometimes the sentiment news arrive consecutively and its accumulated
influence lasts up to five trading days (one week). The accumulative sentiment effect can

be also observed on the detrended log trading volume while accumulating to lagged four
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and five days, and on the future return while accumulating to lagged two days.

We also tried to consider the proportion of neutral words and examine its impact. Based

on the neutral proportion defined by MPQA method, in general we find the neutral words

have no influence in stock indicators. The results can be provided upon the request.

BL LM MPQA
Lag h Iy Pos;; Neg;, Iy Pos;, Neg;, Iy Pos; Neg;,
Panel A: Future Volatility log o 4p
h=2 1] —0.000 0.000 0.005* —0.000 0.001 0.005* —0.000 0.001 0.004
(0.000) (0.002) (0.003) (0.000) (0.003) (0.003) (0.000) (0.002) (0.003)
h=3 ] —0.000 —0.001 0.003 —0.000 0.001 0.004 —0.000 0.000 0.003
(0.000) (0.002) (0.003) (0.000) (0.003) (0.003) (0.000) (0.002) (0.003)
h=4 1] —0.000 0.000 0.002 —0.000 0.002 0.004 —0.000 0.001 0.000
(0.000) (0.002) (0.003) (0.000) (0.003) (0.003) (0.000) (0.002) (0.003)
h=5 0.000 —0.002 0.002 0.000 —0.002 0.003 —0.000 —0.000 0.001
(0.000) (0.002) (0.003) (0.000) (0.003) (0.003) (0.000) (0.002) (0.003)
Panel B: Future Detrended Log Trading Volume V; ;4
h=2 0.003 0.112 —0.198 0.004 0.079 —0.158 0.003 0.006 —0.414
(0.006) (0.140) (0.174) (0.005) (0.227) (0.183) (0.007) (0.140) (0.219)
h=3 0.001 —0.011 —0.082 0.001 —0.003 —0.125 0.002 —0.170 —0.188
(0.006) (0.140) (0.174) (0.005) (0.227) (0.183) (0.007) (0.140) (0.219)
h=41] —0.001 0.064 —0.539 0.004 —0.324 —0.556 0.001 —0.020 —0.811
(0.006) (0.140) (0.488) (0.005) (0.227) (0.536) (0.007) (0.140) (0.479)
h=5 0.008 —0.208 —0.410 —0.004 —0.022 —0.096 0.001 —0.069 —0.416
(0.006) (0.140) (0.301) (0.005) (0.227) (0.183) (0.007) (0.140) (0.278)
Panel C: Future Returns R; .5,
h=21] —0.000 0.000 0.016* —0.000 —0.003 0.024** —0.000 0.001 0.026**
(0.000) (0.007) (0.009) (0.000) (0.012) (0.010) (0.000) (0.008) (0.012)
h=3 0.000 —0.001 —0.001 0.000 —0.010 0.005 0.001 —0.011 0.003
(0.000) (0.008) (0.009) (0.000) (0.012) (0.010) (0.000) (0.008) (0.012)
h=4 1] —0.000 0.001 0.016* —0.000 0.010 0.006 —0.000 —0.003 0.011
(0.000) (0.007) (0.009) (0.000) (0.012) (0.010) (0.000) (0.008) (0.012)
h=5 0.000 —0.011 0.009 0.000 —0.018 0.002 0.000 —0.013 0.014
(0.000) (0.007) (0.009) (0.000) (0.012) (0.010) (0.000) (0.009) (0.012)

ok

more than or equal to 0.05 and less than 0.1. Values in parentheses are standard errors.

Table 8: Entire Panel Regression Results with Larger Lags (Noncumulative Articles)
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BL LM MPQA

Lag h | Lisgrn-1y  Posivgrn-1y Negingin-1)  Lingin-1y  Posinesn-1)y NeGivern-1)  lisgrn-1)  Posit@rn-1) NeGin(rn-1)

Panel A: Future Volatility log o 1p

h=2| —0.000 —0.001 0.006  —0.000 —0.001 0.007* —0.000 —0.001 0.004
(0.000) (0.002) (0.002) (0.000) (0.003) (0.003) (0.000) (0.002) (0.003)
h=3| —0.000 —0.002 0.006™*  —0.000" —0.001 0.008*  —0.000 —0.001 0.005
(0.000) (0.002) (0.002) (0.000) (0.003) (0.003) (0.000) (0.002) (0.003)
h=4| —0.000 —0.001 0.006™*  —0.000  —0.000 0.008*  —0.000 —0.001 0.003
(0.000) (0.002) (0.002) (0.000) (0.003) (0.003) (0.000) (0.002) (0.003)
h=5| 0.000 —0.003 0.006  —0.000 —0.002 0.008*  —0.000 —0.002 0.003

(0.000) (0.002) (0.002) (0.000) (0.003) (0.003) (0.000) (0.002) (0.003)

Panel B: Future Detrended Log Trading Volume V; 1,

h=2 0.006 —0.016 —0.133 0.008* —0.148 —0.187 0.002 0.006 —0.253
(0.006) (0.125) (0.156) (0.004) (0.203) (0.169) (0.006) (0.126) (0.198)
h=3 0.006 —0.072 —0.111 0.005 —0.189 —0.078 0.001 —0.063 —0.174
(0.005) (0.123) (0.153) (0.004) (0.198) (0.167) (0.006) (0.124) (0.193)
h=4 0.008 —0.310* —0.096 0.010** —0.486** —0.293* 0.004 —0.138 —0.473
(0.005) (0.152) (0.124) (0.004) (0.200) (0.168) (0.006) (0.125) (0.327)
h=5 0.014s% —0.242* —0.408* 0.008* —0.428** —0.228 0.009 —0.193 —0.646
(0.006) (0.126) (0.246) (0.004) (0.202) (0.171) (0.007) (0.126) (0.493)
Panel C: Future Returns R; .5,
h=2| —0.001* 0.013** 0.009 —0.000 0.019* 0.010 —0.001** 0.013* 0.009
(0.000) (0.007) (0.008) (0.000) (0.011) (0.009) (0.000) (0.007) (0.010)
h=3 1| —0.000 0.009 0.004 —0.000 0.013 0.007 —0.000 0.004 0.007
(0.000) (0.007) (0.008) (0.000) (0.011) (0.009) (0.000) (0.007) (0.010)
h=41| —0.000 0.008 0.012 —0.000 0.017 0.009 —0.001 0.005 0.016
(0.000) (0.007) (0.008) (0.000) (0.011) (0.009) (0.000) (0.007) (0.010)
h=5 | —0.000 0.000 0.010 —0.000 0.004 0.006 —0.000 —0.003 0.019
(0.000) (0.007) (0.008) (0.000) (0.011) (0.009) (0.000) (0.007) (0.010)

ok

refers to a p value less than 0.01, ** refers to a p value more than or equal to 0.01 and smaller than 0.05, and * refers to a p value

more than or equal to 0.05 and less than 0.1. Values in parentheses are standard errors.

Table 9: Entire Panel Regression Results with Larger Lags (Cumulative Articles)

3.1.4 Monte Carlo Simulation based on Entire Sample Results

The text sentiment effects, as reported in Table 7, allow us deeper insights and analysis.
More precisely we may address the important question of asymmetric reactions to the
given sentiment scales. In order to do so we employ Monte Carlo techniques to investigate
different facets of the sentiment effects. The components of this Monte Carlo study are: (1)
to simulate the appearance of articles with presumed probabilities; (2) to provide a realistic
set of scenarios regarding the frequency and content (positive v.s. negative) of articles; (3)
to obtain volatility induced by the generated article (using Table 7); (4) to demonstrate

the impact of synthetic text on future volatility; (5) to visualize and test an asymmetry

22



Downloaded by [Humboldt-Universit&auml;t zu Berlin Universit&auml;tsbibliothek] at 00:57 08 February 2016

effect as formulated in research question (ii).

The simulation scenarios (for each variable involved) are summarized briefly as follows.
We employ a Bernoulli random variable I;, indicating that articles arrive at a specific
frequency p;, where for each individual stock symbol i, p; is estimated by the fraction of days
with at least one relevant article. Given the outcome of this article indicator, we generate
the corresponding positive and negative proportions through a copula approach using the
conditional inversion method as described in Frees and Valdez (1998). We follow the two-
step approach that is widely mentioned in literature such as Patton (2006), Hotta et al.
(2006) and Di Clemente and Romano (2004). In the first step, the marginal distributions
are modeled by their corresponding empirical distribution function (edf) to avoid imposing
a parametric distribution; in the second step, a Gaussian copula is estimated to take
the inherent dependence among variables into account. For the sentiment variables, this
approach is applied to each firm separately since each firm has a different p; and only
days with at least one article relevant to the firm are included in the estimation. To
simulate market returns Ry, and individual returns R;; for all 100 symbols, we first filter
these variables by estimated MA(1)-GARCH(1,1) processes and standardize the residuals
by dividing them by estimated standard deviations. We then apply the copula approach
to the standardized residuals, and the simulated standardized residuals are transformed
into simulated values of Ry, or R;; by multiplying them by the median of the priorly
estimated standard deviations for the market or the specific firm ¢. The company specific
fixed effects ; are not incorporated as the simulated volatility for different firms is otherwise
not graphically comparable. For the other control variables, CBOE VIX index VI X is fixed
at its mean value over the sample period, and past log volatility and past detrended log
trading volume are not used in the simulation.

Figure 4 demonstrates, for one simulation, the association between the negative and
positive proportions as distilled via our three projection methods and their simulated fu-
ture volatility outcomes. We estimate a local linear regression model (solid line) and
corresponding 95% uniform confidence bands based on Sun and Loader (1994). Both are
estimated using Locfit by Loader (1999) in the R environment. Loader and Sun (1997)

discuss the robustness of this approach and conclude that the results are conservative but
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reasonable for heavy tailed error distributions. The bandwidth is automatically chosen
by using the plug-in selector according to Ruppert et al. (1995). We limit the the visible
area to sentiment values between 0 and 0.04 as well as volatility values between 1.45 and
1.65 to make the different lexica visually comparable. Nevertheless, all simulated values
are utilized in the estimation of the regression curve and confidence bands. The clustered
points lying on the vertical axis indicate that there is absence of articles. The range of this
cluster from 0.77 to 2.57 is caused by the impact from the simulated control variables as
well as the idiosyncratic impact captured by the residual term.

Apparently, an asymmetry effect becomes visible. One observes that the slopes of the
volatility curves given negative sentiment is mainly positive while the curves for positive
sentiment seem to be rather flat and even go down in the case of BL and MPQA meth-
ods. One can also compare the confidence bands to address the question whether negative
sentiment has a significantly higher effect on the volatility than positive sentiment. The
confidence bands of Pos and Neg do not overlap for sentiment values between 0.023 and
0.056 for BL, between 0.017 and 0.039 for LM and between 0.023 and 0.05 for MPQA.

This asymmetry effect parallels the well known imbalance of future volatility given good
v.s. bad news. The leverage effect depicts a negative relation between the lagged return and
the risk resulting from bad news that causes higher volatility. Black (1976) and Christie
(1982) find that bad news in the financial market produce such an asymmetric effect on
future volatility relative to good news. This leverage effect has also been shown by Bekaert
and Wu (2000) and Feunou and Tédongap (2012). In the same vein, Glosten et al. (1993)
introduce GARCH with differing effects of negative and positive shocks taking into account

the leverage effect.

3.2 Does Attention Ratio matter?

While people post their text to express their opinions, or the comments to other articles,
they are undoubtedly paying attention to the firm mentioned by their articles. In this
respect article posting is a revealed attention measure. In fact, in our collected 43,459
articles across 100 stocks, it is obvious that not every firm shares the attention equivalently.

To reflect these differences, we define the attention ratio for a symbol as the number of
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Figure 4: Monte Carlo Simulation based on Entire Sample Results

days with articles divided by the total number of days in the sample period, 1,255. The
symbol “AAPL” (Apple Computer Inc.) attracts the most attention with an attention
ratio of 0.818. Articles involving AAPL arrive in social media almost every day (81.8
days over 100 days). However, the symbol “TRV” (Travelers Companies, Inc.) has the
lowest attention ratio, 0.204, which means that one finds a related article every five trading
days, i.e. one week. Different from the “indirect” attention measures from stock indicators
such as trading volumes, extreme returns or price limits, this attention measure is a kind of
“direct” measure of investor attention, and shares the same idea as the Search Volume Index
(SVI) constructed by Google. Beyond the SVI, our attention can be further projected to
“Positive” or “Negative” attention. In our main research question (ii), we are interested in
whether the well known asymmetric response (bad vs. good news) is appropriately reflected
in the lexical projections. Assuming that investors are more risk-averse, they should be
more aware of negative articles and pay more attention to them.

Attention is one of the basic elements in traditional asset pricing models. The conven-

tional asset pricing models assume that information is instantaneously incorporated into
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asset prices when it arrives. The basic assumption behind this argument is that investors
pay “sufficient” attention to the asset. Under this condition, the market price of asset
should be very efficient in incorporating any relevant news. In this aspect, the high atten-
tion firms should be more responsive to the text sentiment distilled from the articles, and
their market prices should reflect this efficiency. As such, the high attention samples stand
on the side of the traditional asset pricing models, and the findings from them are expected
to support the efficient market hypothesis. However, attention in reality is a scarce cog-
nitive resource, and investors have limited attention instead (Kahneman, 1973). Further
research on this topic from Merton (1987), Sims (2003) and Peng and Xiong (2006) con-
firms that the limited attention can affect asset pricing. The low attention firms with very
limited attention may ineffectively or insufficiently reflect the text sentiment information,
so that their corresponding stock reactions could be greatly bounded. This argument is in
accordance with the fact that the limited attention causes stock prices to deviate from the

fundamental values (Hong and Stein, 1999), implying a potential arbitrage opportunity.

3.2.1 Descriptive Statistics for the Firms with different Attention Ratios

Grouping the samples by their attention ratios and examining the responses from different
attention groups may offer a clue to the aforementioned conjectures. The criterion used
to group the sample firms is based on the quantiles of the attention ratio. Firms whose
attention ratios are above the 75% quantile (0.3693) are grouped as “extremely high”, be-
tween 50% (0.3026) and 75% quantiles as “high”, between 25% (0.2455) and 50% quantiles
as “median”, and lower than 25% quantile as “low”. For each attention group, Table 10
reports across lexical projections the mean values of positive (upos) and negative (fineg)
sentiment proportions, calculated by averaging Pos;, or Neg; ; over all relevant symbol-day
combinations, the proportion of relevant symbol-day combinations with Neg;, > Pos;+, the
average attention ratio, and the average number of days with articles, calculated by averag-
ing the number of days with articles over all relevant symbols. The “extreme high” groups
receive an average attention ratio of 55.14%, indicating on average these firms have been
looked at every two days. By contrast, the low attention group with an average attention

ratio of 21.97% receives attention at weekly frequency (5 trading days). By comparing the
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magnitude of fixneq, one observes that investors are inclined to express negative sentiments
in the “extreme high” group. One may conclude therefore that higher attention is coming
with a “negative text”, or inversely speaking: the negative article creates higher attention.
This is evident for example in the case of the LM method, where the proportion of symbol-
day combinations with dominance of negative sentiment is 46% in the “extremely high”
group. For the constituents in this particular attention group, we find on average 691 days
with articles observed over a total of 1255 sample days (5 years), which is almost three

times the average number of days with articles for the low attention group.

BL LM MPQA Attention Number of Days
Attention I Pos lineg Neg > Pos  fipos fineg  Neg > Pos  fipos lneg Neg > Pos Ratio with Articles
Extremely high | 0.032  0.016 0.119 0.013  0.014 0.460 0.038  0.013 0.027 0.551 691
High 0.032  0.015 0.113 0.013  0.012 0.403 0.038  0.013 0.031 0.343 430
Median 0.035  0.014 0.083 0.014  0.011 0.339 0.039  0.012 0.027 0.273 356
Low 0.036  0.014 0.086 0.015  0.011 0.333 0.040  0.012 0.031 0.220 264

Table 10: The Summary Statistics for different Attention Ratio Groups

3.2.2 The Results of Attention Analysis

The central interest of this research focuses on understanding to which extent distilled news
flow and its derived parameters (like attention) impacts the relation between text sentiment
and stock reactions. We employ panel regression designed for the given attention groups,
and therefore each panel regression equally comprises of 25 sample firms. The results are
displayed in Table 11. For the “extremely high” group, the text sentiment carries a major
and highly significant influence on future volatility consistently across the three lexical
projections. As a caveat though please note that the sentiment effect on volatility shown in
Panel A is exclusive for negative news contingent on arriving articles, the stock volatility
rarely reacts to positive or optimistic news. Panel B summarizes the attention analysis
on the detrended log trading volume. For the “extremely high” group, in the LM and
MPQA projection methods, arrival of articles (I;;) brings relevant information, and creates
a growing trading volume, especially when it comes with negative news. The corresponding
analysis for stock returns are also reasonable. The stock returns of “high” group react

clearly to the sentiments, contingent on arriving articles, they rise for optimistic news
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and decline for pessimistic consensus. In the case of LM method, the significant positive
coefficient of Neg; ; for the “extremely high” group suggests that the market participants act
according to the uncertain market hypothesis developed by Brown et al. (1988) and based
on the overreaction hypothesis by Bondt and Thaler (1985). Here, the market participants
set new prices before the full range of the news content is resolved. In case of unfavorable
news, the investors set stock prices significantly below their conditional expected values
and thus, react risk-averse. On the subsequent day, the mispriced stock price will revert to
its true value.

The collected empirical evidence so far suggests that the distilled news of high attention
firms effectively drive their stock volatilities, trading volumes and returns. They are highly

responsive to the sentiment across lexical projections.
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BL LM MPQA

Attention Iy Pos;, Neg;, Ly Pos;, Neg;, m Pos;, Neg;,
Panel A: Future Volatility log o ;41
Low 0.020 —0.736 —0.074 0.010 —1.027 —0.195 0.016 —0.655 0.275
(0.025) (0.666) (0.766 ) (0.016) (1.027) (0.788) (0.029) (0.633) (0.866 )
Median 0.004 —0.690 1.107 —0.012 —0.308 1.126* 0.008 —0.872* 1.767
(0.016) (0.449) (0.446) (0.016) (0.778) (0.630) (0.019) (0.515) (0.707)
High —0.016 —0.460 1.324™  —0.046™* 0.967 1.806**  —0.019 —0.636** 2.548**
(0.017) (0.442) (0.475) (0.013) (0.724) (0.615) (0.016) (0.315) (0.662)
Extremely | —0.010 0.027 0.784** —0.013 0.483 0.747* —0.002 —0.182 0.909**
High (0.014) (0.257) (0.371) (0.013) (0.457) (0.300) (0.017) (0.284) (0.433)
Panel B: Future Detrended Log Trading Volume V; ;4
Low 0.054** —0.817 0.312 0.044**  —0.923 —0.109 0.049* —0.433 —0.197
(0.024) (0.502) (0.665) (0.014) (0.657) (0.556) (0.029) (0.567) (0.796)
Median 0.052**  —0.851** 1.116* 0.032**  —0.199 0.861 0.062**  —0.754** 0.449
(0.014) (0.398) (0.600) (0.010) (0.535) (0.601) (0.013) (0.342) (0.689)
High 0.036**  —0.198 0.554 0.021* 0.815* 0.447 0.046*  —0.358 0.419
(0.009) (0.299) (0.459) (0.011) (0.487) (0.451) (0.016) (0.385) (0.559)
Extremely 0.023 —0.242 0.958** 0.017* 0.299 0.796* 0.032** —0.408 1.084*
High (0.014) (0.336) (0.416) (0.008) (0.521) (0.429) (0.014) (0.299) (0.427)
Panel C: Future Returns R; ;11
Low 0.000 0.012 0.009 0.000 0.021 —0.001 0.000 0.010 —0.016
(0.001) (0.022) (0.023) (0.000) (0.030) (0.023) (0.001) (0.021) (0.032)
Median —0.001 0.024* 0.009 0.000 0.035* —0.022 —0.001 0.034* 0.007
(0.001) (0.012) (0.018) (0.000) (0.019) (0.024) (0.001) (0.018) (0.024)
High 0.000 0.028"** —0.034*** 0.001** 0.038* —0.046** 0.000 0.024** —0.044***
(0.000) (0.012) (0.011) (0.000) (0.022) (0.018) (0.001) (0.011) (0.016)
Extremely 0.000 0.017 0.004 —0.000 0.031 0.033** 0.001* —0.006 0.009
High (0.000) (0.012) (0.012) (0.000) (0.021) (0.013) (0.000) (0.011) (0.016)

ok

refers to a p value less than 0.01, ** refers to a p value more than or equal to 0.01 and smaller than 0.05, and * refers to a p value

more than or equal to 0.05 and less than 0.1. Values in parentheses are clustered standard errors.
Table 11: Attention Analysis: The Impact on future Volatility, Trading Volume and Re-

turns

Given the high attention received, any relevant information including the articles made
by individual traders has been fully incorporated into their asset prices and dynamics.
Due to their efficiency, the article posting and discussing today can predict stock reactions
tomorrow. For lower attention firms, one cannot make such a strong claim. Investors may
think those firms are negligible and may therefore underreact to the available information.
The underreaction from limited attention is likely to cause stock prices to deviate from
the fundamental values, and an arbitrage opportunity may emerge. Our evidence is in line

with Da et al. (2011) in which they support the attention-induced price pressure hypothesis.
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By using the SVI from Google as attention measure, they find stronger attention-induced
price pressure among stocks in which individual investor attention matters most. Beyond
their study, we find that high attention is usually accompanied with negative articles, and
negative articles contribute more to attention and cause more stock reactions, supporting
an asymmetric response.

It is interesting to note that the coefficients for the control variables do not vary much
across lexical projections in each attention group (results not shown here), which indicates
that for each attention group, the sentiment measures are not so much correlated with the

control variables and provide incremental information.

3.2.3 Monte Carlo Simulation based on Attention Analysis

Like Section 3.1.4, we present a realistic Monte Carlo scenario for different attention groups
using the results from Table 11. We keep the parameter settings of the data generation
and the calculation of confidence bands as before. Figure 5 summarizes the associations
between the negative proportions and the simulated future volatilities across different at-
tention groups. The scatter plots of the high attention panel are quite dense, whereas those
of the low attention group are sparser due to its lower frequency of articles. Interestingly,
the higher volatilities of high attention firms are prominently driven by negative text sen-
timent, but have an inverse relationship with positive sentiment. Through comparison of
the confidence bands we can conclude for all three lexica that the effect of negative sen-
timent significantly differs from that of positive sentiment. The regions where the bands
do not overlap are quite large for BL (0.022 - 0.056) and MPQA (0.020 - 0.053) but much
smaller for LM (0.019 - 0.024). The associations in the low attention panel are somewhat
ambiguous. Indeed, we can note that the confidence bands for positive and negative sen-
timent overlap over the whole range of sentiment value and across all three lexica. These
simulations support the estimations in Table 11 with a strong link found in the “extremely
high” and “high” attention groups and a preeminent asymmetric response. The firms that
have been paid high attentions are more sensitive to the text sentiment than negligible
firms. The sentiment effect together with the observable asymmetry are highly influen-

tial on stock returns, volatilities and trading volumes. In this sense, their stock reactions
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are more responsive to the opinions in social media. In other words, they are also more

vulnerable to signals from small investors.

3.3 Sector Analysis

The stock reactions that we analyze in relation to text sentiment can be further segmented
into sector specific responses. Given a growing body of literature that has suggested that
industry plays a role in stock reactions (see Fama and French (1997), Chen et al. (2007),
Hong et al. (2007)), we investigate whether this relation is industry-specific in nature. A
detailed analysis of sector specific reactions would go far beyond the scope of this paper and
is in fact the subject of research by Chen et al. (2015). We therefore only highlight a few
insights from lexical sentiment for the business sectors. We ignore the “Telecommuication
Services” sector since it only contains two stock symbols. Descriptive statistics for the
other 8 sectors are displayed in Table 12 across the three lexical projections. It is of
interest to study the variation of the proportion of negative over positive sentiments across
the 8 sectors. One observes that consistently over all lexical projections the financial sector
has the highest average discrepancy in negative and positive proportion. By contrast the
health care sector has (except for MPQA) the lowest average discrepancy. Investors show
their discrepant opinions or disagreement in a very extreme case of Neg > Pos = 0.5,
implying that 50% of investors stand on one side and the rest of 50% stand on the opposite
side. Table 12 indicates that the financial sector related texts are more divergent in opinions
than others and that apparently the health care sector does not receive such adverse opinion
positions as the other sectors do. The investors who invest the stocks in health care sector

are more likely to reach their shared concensus or convergent agreement.
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Figure 5: Monte Carlo Simulation based on Attention Analysis Results
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BL LM MPQA Attention
Sector [tPos  fineg INeg > Pos  |ipos fineg Neg > Pos  |ipos fineg Neg > Pos Ratio
Consumer Discretionary | 0.034 0.014 0.088 0.014 0.011 0.346 0.038 0.012 0.030 0.332
Consumer Staples 0.034 0.014 0.099 0.014 0.012 0.365 0.037 0.013 0.025 0.324
Energy 0.028 0.015 0.152 0.011 0.011 0.467 0.038 0.014 0.033 0.370
Financials 0.032 0.019 0.195 0.013 0.018 0.594 0.038 0.015 0.045 0.413
Health Care 0.035 0.014 0.059 0.014 0.011 0.344 0.039 0.014 0.031 0.287
Industrials 0.035 0.012 0.069 0.013 0.011 0.355 0.041 0.011 0.018 0.336
Information Technology | 0.033 0.015 0.101 0.014 0.012 0.373 0.038 0.023 0.012 0.364
Materials 0.034 0.014 0.097 0.013 0.013 0.498 0.039 0.031 0.013 0.287

Note: This table reports, for the BL, LM and MPQA methods, the mean values of positive (ipos) and (ne,) negative
sentiment proportions as well as the proportion of relevant symbol-day combinations with dominance of negative sen-
timent. For each sector, an article is accumulated only if a firm appeared in this article belongs to this sector. The
attention ratio for each sector is calculated as the number of days with articles related to this sector divided by the total

number of days in the sample period.

Table 12: Summary statistics in each sector

The attention also vary with the sectors. The evidence that financials sector has at-
tracted the highest attention with an attention ratio of 0.413 may be attributed to (1) the
investors’ widespread involvement in this industry because we all need to keep a relation-
ship with banks to deposit our money, trade for securities or some financial reasons; (2) the
outbreak of the US subprime crisis and the European sovereign debt crisis have brought the
highest attention to this sector; (3) their sensitivity on changes in the economy, monetary
policy and regulatory policy. The health care sector, however, is much less attractive and
this could be explained by a stable demand and reduced sensitivity to economic cycles.
Given these observations we will now continue our analysis of stock reactions for these two
sectors only, and leave a bundle of interesting issues to further research.

To address the important question of whether there is a sector dependent stock reac-
tions, we further analyze how the text sentiment affects, as reported in Table 13, the future
volatility, trading volume and return. In order to do so we employ the panel regression
(as described in (4)-(5)) and report the results in Table 13. The variable I;; was used to
indicate arrival of articles on this sector. Contingent on arriving articles, the three senti-
ment projections in financial sectors yielded significant and positive effects on future log
volatility from negative proportions, meaning that increasing the negative text sentiments

will result in higher volatility. The exclusive response to negative sentiment in financial
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sector indeed is in line with our entire panel evidence. However, the finding in the health
care sector is too insignificant to claim it. Potentially, investor inattention for the health
care sector may cause a significant mispricing on the stocks. Investors possibly neglect the
news of this sector posted on social media, or this sector has a slow information diffusion

that could lead to a delayed reaction.

BL LM MPQA
Sector Iy Pos;; Negiy Iiy Pos;; Negiy Iiy Pos; Neg;
Panel A: Future Volatility log o; 441
Financials —0.023 —0.052 1.075 —0.025 0.275 1.027*  —0.025 —0.143 1.816***
(0.026) (0.319) (0.435) (0.027) (0.924) (0.259) (0.029) (0.503) (0.586)
Health Care 0.031 —0.426 —0.509 0.009 0.052 —0.130 0.001 —0.118 0.854

(0.026) (0.522) (0.891) (0.023) (1.138) (0.921) (0.024) (0.595) (0.783)

Panel B: Future Detrended Log Trading Volume V; ;14

Financials 0.037* —0.334 0.015 0.017 1.110 —0.313 0.054**  —0.747 0.049
(0.020) (0.494) (0.527) (0.015) (0.766 ) (0.476) (0.015) (0.305) (0.536)

Health Care 0.031 0.110 —0.314 0.022 0.603 —0.042 0.037 —0.104 —0.211
(0.023) (0.436) (0.846) (0.018) (0.863) (0.837) (0.025) (0.443) (0.873)

Panel C: Future Returns R; ;41

Financials —0.001 0.034* 0.028* —0.000 0.030 0.042* 0.001 0.003 0.013
(0.001) (0.017) (0.014) (0.001) (0.033) (0.016) (0.001) (0.020) (0.019)

Health Care 0.000 —0.000 0.008 0.000 0.006 0.015 0.000 0.006 —0.011

(0.000) (0.008) (0.018) (0.000) (0.019) (0.018) (0.001) (0.012) (0.022)

Aok

refers to a p value less than 0.01, ** refers to a p value more than or equal to 0.01 and smaller than 0.05, and * refers to a p value

more than or equal to 0.05 and less than 0.1. Values in parentheses are standard errors.

Table 13: Sector analysis: The Impact on future Volatility, Trading Volume and Returns

The trading volume is another stock reaction we may attribute to text sentiments. Us-
ing the BL and the MPQA projection method, we find that the arrival of article brings
relevant information and therefore stimulates the trading volume. It is interesting to note
that contingent on arriving articles, the negative sentiment distilled using the BL. and LM
methods is significantly positively related to stock returns on the next trading day. To
investigate the reason for this, we also run a contemporaneous regression for the finan-
cials sector (results not shown) and found a significantly negative impact of the negative
sentiment distilled using the BL and MPQA methods on contemporaneous returns R, ¢,
and the size of the coefficients is about twice of that in lagged regression in Table 13. This
might suggest that the market participants monitor financial companies quite carefully and

overreact in case of bad news. On the next day, the participants fully recognize the scope
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of the news and reverse part of their prior decisions, and hence the negative sentiment on
trading day ¢ has positive impact on returns on trading day ¢ + 1. This is also in line with
the finding in Kuhnen (2015) which suggests that that being in a negative domain leads
people to form overly pessimistic beliefs about stocks. After the 2008 financial crisis and
the bankruptcy of some major financial companies, this might be the case for the financials
sector.

From these analysis, we know that investors indeed pay different attentions to sectors
they are of interest, and their attentions effectively govern the equity’s variation. Attention
constraints in some sectors may affect investors’ trading decisions and the speed of price

adjustments.

4 Conclusion

In this paper, to analyze the reaction of stocks’ future log volatility, future detrended log
trading volume and future returns to social media news, we distill sentiment measures
from news using two general-purpose lexica (BL and MPQA) and a lexicon specifically
designed for financial applications (LM). We demonstrate that these sentiment measures
carry incremental information for future stock reactions. Such information varies across
lexical projections, across groups of stocks that attract different level of attention, and
across different sectors. The positive and negative sentiments also have asymmetric impact
on future stock reaction indicators. A detailed summary of the results is given in Table 14
in the Supplementary Material. There is no definite picture for which lexicon is the best.
This is an important contribution of our paper to the line of research on textual analysis
for financial market. Besides, the advanced statistical tools that we have utilized, including

panel regression and confidence bands, are novel contributions to this line of research.
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5 Supplementary Material

Table 14 summarizes all the results from entire panel sample analysis, attention analysis
and sector analysis. Take the “BL” row in Panel A as an example. Arrival of articles (I; ;)
and the positive sentiment distilled using the BL method (Pos; ;) has no significant impact
on future volatility log 0; .11 in entire sample analysis, attention analysis or sector analysis;
the negative sentiment distilled using the BL method (Neg;,) is significantly positively
related to future volatility in entire sample analysis and for the “Extremely High” group in
attention analysis, and is significantly negatively related to future volatility for the “Health

Care” sector in sector analysis.

Lexicon ‘ Type of Analysis ‘ Liy Posiy Neg;,
Panel A: Future Volatility ;41
Entire Sample / Negative Positive
BL Attention Analysis / / Positive for “Median”, “High” and “Extremely High”
Sector Analysis / / Positive for “Financials”
Entire Sample Negative / Positive
LM Attention Analysis Negative for “High” / Positive for “Median”, “High” and “Extremely High”
Sector Analysis / / Positive for “Financials”
Entire Sample / Negative Positive
MPQA | Attention Analysis / Negative for “Median” and “High” | Positive for “Median”, “High” and “Extremely High”
Sector Analysis / / Positive for “Financials”
Panel B: Future Detrended Log Trading Volume V; ;1
Entire Sample Positive Negative Positive
BL Attention Analysis | Positive for “low”, “Median” and “High” Negative for “Median” Positive for “Median” and “Extremely High”
Sector Analysis Positive for “Financials” / /
Entire Sample Positive / Positive
LM Attention Analysis Positive for all groups Positive for “High” Positive for “Extremely High”
Sector Analysis / / /
Entire Sample Positive Negative Positive
MPQA | Attention Analysis Positive for all groups Negative for “Median” Positive for “Extremely High”
Sector Analysis Positive for “Financials” Negative for “Financials” /

Panel C: Future Returns R; 44

Entire Sample / Positive /
BL Attention Analysis / Positive for “Median” and “High” Negative for “High”
Sector Analysis / Positive for “Financials” Positive for “Financials”
Entire Sample / Positive /
LM Attention Analysis Positive for “High” Positive for “Median” and “High” Negative for “High”, positive for “Extremely High”
Sector Analysis / / Positive for “Financials”
Entire Sample / Positive /
MPQA | Attention Analysis Positive for “Extremely High” Positive for “Median” and “High” Negative for “High”
Sector Analysis / / /
The signs of the significant coefficients are given, with a significance level of 0.1.

Table 14: Summary of the Results
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been observed more recently. This raises the question whether there are common fac-
tors determining systematic credit risk across different entities, different credit ratings,
different countries and different maturities. In fact, an increase in systematic credit
risk will harm the benefit from a well-diversified bond portfolio. An examination into
common credit risk factors explores the nature of correlated defaults. Several illustra-
tions for correlated defaults were proposed by Das et al. (2007). Firstly, firms may be
exposed to common or correlated risk factors. Secondly, the event of default by one
firm may be contagious. Thirdly, learning from default may generate default corre-
lation. This study examines what are the common factors that determine systematic
credit risk, and estimates and interprets the common risk factors. In further steps, we
estimate the market prices of risk factors and test their significance. Based on factor
models, we propose various time series properties for common factors and idiosyn-
cratic components, and examine which one can produce the best forecasting to the
dynamics of credit default swap (CDS) spreads.

Understanding how corporate defaults are correlated is particularly important for
the risk management of corporate debt portfolio, since banks have to retain greater
capital to survive default losses if defaults are heavily clustered in time. An investiga-
tion of the sources and degree of default clustering is also crucial for the rating and risk
analysis of structured credit products, such as collateralized debt obligations (CDOs)
and options on portfolios of default swaps that are exposed to correlated default.
Several attempts have been made in the literature to address this issue. The first one
incorporates correlated default into the reduce-form credit risk modeling (Das et al.
2006, 2007). The second research stream assumes that default probabilities depend on
firm-specific and market-wide factors. Typically, portfolio loss distributions are based
on the correlating influence from such observable market-wide factors. A number of
potentially observable factors from macroeconomic fundamentals have been proposed
to analyze correlated defaults (Collin-Dufresne et al. 2001; Benkert 2004; Ericsson
et al. 2009). The third research stream, however, extracts some latent/unobservable
factors mainly from the principal components analysis (PCA) method to avoid a possi-
ble downward bias from estimating tail loss (Duffie et al. 2009; Cesare and Guazzarotti
2010; Anderson 2008). As we know, not all relevant risk factors are potentially observ-
able by econometricians (Dutffie et al. 2009).

Recent research claims that common latent factors increasingly and apparently
explain the time-variation of credit risk, especially during the financial crisis. Ander-
son (2008) finds that a very high fraction of weekly variations in the implied default
intensity is explained by a single common factor. Cesare and Guazzarotti (2010) found
that CDS spread changes were increasingly driven by a common factor during the US
subprime crisis. This paper goes beyond these two studies by additionally interpreting
the common latent factors and modelling their time-variation patterns. We demon-
strate this by using a very extensive CDS data set, encompassing different maturities,
different credit ratings, different entities and different countries, and produce robust
common factors with a convincing interpretation.

We compare the contributions of common factors in explaining the CDS spreads
changes during the pre-crisis, the crisis and the post-crisis period. We find that the
fraction of CDS variation explained by the first principal component increases from
58.7 to 72.3 % during the crisis period, and then declines to 47 % after the crisis. The
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Common factors in credit defaults swap markets 847

results suggest that during the crisis, the changes of CDS spreads are increasingly
driven by common factors and less by idiosyncratic components. Furthermore, the
eigenstructures across three sub-periods are distinct based on the result of a likeli-
hood ratio test that compares the common principal components model against the
unrestricted model indicates. To interpret the estimated factors, we investigate the
association between the latent factors and the observed economic variables.

Having applied the factor model to CDS spreads, we model the time-variation of
common factors to examine the predictability of CDS spreads. This prediction will
certainly benefit investors to hedge, speculate and arbitrage in the credit markets. We
propose various factor models and compare their out-of-sample forecasting perfor-
mance. Testing their equal predictive ability is also required to show whether relatively
outperformance is statistically significant.

The remainder of this research is organized as follows. The next section describes
the data we have used. Section 3 presents the factor models used in this study, and
provides an economic interpretation for the estimated factors. In Sect. 4, we propose
several factor specifications to predict the times-variation of CDS spreads; evaluating
their out-of-sample forecasting performances and testing their equal predicting ability
are both conducted in this section.

2 Data description

Credit default swap data are collectable from Markit, an aggregator of CDS pricing
data from the leading broker-dealers. In terms of our focus on the commonality of CDS
spreads, we are interested in the CDS indices rather than single name reference entity
CDS contracts to mitigate the idiosyncratic components and liquidity risk. Our concern
coincides with Driessen et al. (2003) in studying the common factors in international
bond returns. They suggest that bond portfolio data is the preferred method to clear
idiosyncratic risk embedded in individual bonds. Markit provides a detailed CDS index
series, for example, the Markit CDX indices comprise the most liquid baskets of names
covering North American Investment Grade and High Yield single name credit default
swaps with various maturities, while the Markit iTraxx indices comprise of the most
liquid names in the rest of regions such as Europe, Asia, Australia and Japan. Each
index rolls biannually in March and September. Credit events that trigger settlement for
individual components are bankruptcy and failure to pay, and are subsequently settled
via credit event auctions. For traders, trading CDS indices is more attractive since they
are allowed to trade large sizes and confirm all trades electronically. Stronger support
from dealers and industry participants has prominently enhanced liquidity in all market
conditions. The transparency of CDS markets has gradually improved since the default
of Lehman (Avellaneda and Cont 2010). Central clearing and increased reporting of
CDS trades to data repositories are important steps towards increased transparency,
which regulators intend to use for monitoring and enhancing market stability. As such,
they are quite acceptable as a representative benchmark of the overall market credit
risk.

The indices quoted on a spread basis are selected by its regions: North Amer-
ican (CDX), Europe (iTraxx EU), by maturities: 5 and 10-year, by credit ratings:
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Table 1 Summary statistics for entire sample period, pre-, during and post-crisis period

Entire Pre-crisis Crisis Post-crisis

Mean SD Mean SD Mean SD Mean SD
CDX.IG.5Y 0.47 18.68 —0.21 2.51 1.71 16.65 —0.01 32.43
CDX.IG.10Y 0.17 7.02 —0.16 2.64 0.83 11.58 —0.15 2.98
CDX.HY.5Y 0.46 53.34 —1.06 10.62 3.54 83.20 —1.05 46.44
CDX.HY.10Y 0.56 60.96 —0.49 11.90 1.25 98.24 —0.60 4491
EU.IG.5Y 0.17 10.21 —0.19 1.63 0.42 15.14 0.48 10.74
EU.IG.10Y 0.35 8.62 —0.11 2.06 1.02 13.22 0.24 7.86
EU.HY.5Y 0.86 38.60 —1.65 11.86 4.43 58.11 0.43 36.13
EU.HY.10Y 1.06 29.35 —1.08 13.15 4.93 43.30 —0.44 26.18

The entire sample period covers from Oct 2004 to June 2011. The indices are selected by its regions: North
American (CDX), Europe (iTraxx EU), by maturities: 5- and 10-year, by credit rating: investment-grade
(IG) and high-yield grade (HY). We have 134 weekly observations in the pre-crisis period (from Oct 2004
to May 2007), 104 observations in the crisis period (from June 2007 to July 2009) and 76 observations in
the post-crisis period (from Aug 2009 to June 2011). The changes of CDS indices are quoted as basis points
and their mean and standard deviation are reported

investment-grade (IG) and high-yield grade (HY). From October 2004 to June 2011,
these eight indices with different regions, maturities and credit ratings will be ana-
lyzed in the subsequent sections. The US subprime crisis period is emphasized since
the function of money markets in the U.S. was severely impaired in the summer of
2007, and then even further following the collapse of Bear Sterns in mid-March 2008
and the bankruptcy of Lehman Brother in September 2008. The turmoil from June
2007 to July 2009 is referred to a crisis period. After mapping the trading date among
eight CDS indices, each index has 315 weekly observations: 134 in the pre-crisis
period (from October 2004 to May 2007), 104 in the crisis period (from June 2007 to
July 2009) and 76 in the post-crisis period (from August 2009 to June 2011). Table 1
summarizes the descriptive statistics for the entire sample period, the pre-crisis, the
crisis and the post-crisis period. During the crisis period, the average changes of CDS
spreads are all apparently positive, and are extremely volatile.

The time-variations of CDS indices as displayed in Fig. 1 exhibit a changing
dynamic. One noticeable feature is a high level of comovement across various matu-
rities and credit ratings, which motivates the study of common factors. Specially, in
Fig. 1 the apparent spike during the outbreak of the U.S. subprime crisis shows an
inversion of the risk structure. For a given maturity, a high-yield (HY) index should
be higher than an investment-grade (IG) one to compensate for a higher default risk
taken by investors. The default risk premium between a HY and an IG may expand
during the financial crisis to reflect a shift in investor risk appetite. Due to this chang-
ing risk attitude in a distressed time, risk-averse investors require a higher default risk
premium. Pan and Singleton (2008) claimed that a comovement effect in the CDS
markets is partly caused by a shift in investor risk appetite, especially for the turbulent
period.
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Fig. 1 Time series plots of CDX index and iTraxx EU index

Figure 1 also shows the term structure of CDS markets. Normally, the slope of CDS
term structure is upward in which the longer-term CDS spreads are higher than the
respective shorter-term ones due to a greater risk-taking in longer maturity contracts.
In this regard, the term structure should never be inverted. But, the term structure did
occasionally invert, especially during the financial crisis (Pan and Singleton 2008). For
an upcoming crisis, the demand for short-term CDS contracts is appealing. To cover
a higher hedging cost faced by protection sellers, the bid-ask spreads of short-term
contracts should be comparable to those of longer-dated contracts. As shown in Fig. 1,
we have consistent evidence in the CDS term structure of an inverted slope in the crisis
period and an upward slope in the rest of periods.

3 Factor representation of CDS spreads change
3.1 Model specifications

Let S;; be the observed change of CDS spreads for the ith cross-section unit at time 7,
fori =1,...,N,and ¢ =1, ..., T. The factor model for given ith unit is:
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Sit = FiA; + eir (1)

where F; is a vector of common factors and is not observable, A; is a vector of factor
loadings associated with F;, and e;;, is the idiosyncratic component of §;;. Itis assumed
that factors and idiosyncratic disturbances are mutually uncorrelated, E (Fy, ej;) = 0.
Obviously, Eq. (1) is the static factor representation of the change of the CDS spreads.
For the forecasting exercise in subsequent sections, we will invoke the assumptions
about the cross-sectional and temporal dependence in the idiosyncratic components.

The asymptotic principal components technique established by Stock and Watson
(2002) and Bai and Ng (2002) can be used to consistently estimate the common factors.
One starts with an arbitrary number of factors k (k < min {N, T'}) and estimates Ak
and F* by solving:

N T 2

(xk, Fk> = arg min, NS (Sl-t _ fof) )

i=1t=l1

subject to the normalization of either AF Ak /N = I with A* = [)Jf .. .)J]‘V]T or
N ~k
F*' F* /T = Ii. One solution of this optimization is given by (Ak , Fk ), where A is

+/ N times the eigenvectors corresponding to the k largest eigenvalues of the N x N
matrix TS where S is a 7 by N dimension matrix comprising N units until time 7,

A ~k
and I = SA“/N.

3.2 Common principal components in the different sub-periods

In Table 2 we present the results for the factor model using the CDS index data, and
find that a four-factor model in general explains up to 90.5 % of the variance in the
changes of CDS spreads. The first factor explains 63 % of the variance of the change
of CDS spreads, the explained variance of the second, third and fourth factors are 12.1,
8, and 7.4 %. When turning to three sub-periods, the first factor explains 58.7 % of the
variance in the pre-crisis period, 72.3 % of the variance in the crisis period and 47 % of
the variance in the post-crisis period. The fraction of CDS variation explained by the

Table 2 Explained variance by principal component analysis

% variance explained Total variance
explained (%)
Factor 1 (%) Factor 2 (%) Factor 3 (%) Factor 4 (%)
Entire 63.0 12.0 8.0 7.5 90.5
Pre-crisis 58.7 13.3 9.0 7.6 88.6
Crisis 72.3 12.4 5.4 4.0 94.1
Post-crisis 47.0 16.5 12.6 10.2 86.5

For entire sample period and three sub-periods, this table presents the proportion of the total variance of
the changes of CDS spreads explained by the variation of a given factor
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first principal component increases from 58.7 % before the crisis to 72.3 % during the
crisis period, but declines to 47 % after the crisis. The CDS spreads during the crisis are
increasingly driven by common factors and less by idiosyncratic components, which
is evident by an increased explanatory power up to 94.1 %.

To formally test whether the eigenstructures across three sub-periods are distinct,
we perform a likelihood ratio test comparing a restricted (the Common Principal Com-
ponents (CPC) model) against the unrestricted model (the model where all covariances
are treated separately). The likelihood ratio statistic is given by

T & g 3)

(n1,na,..., n;ﬂ:—ZlOg%
where X; = FA,-FT,i = 1,..., h, is a positive definite N x N covariance matrix
for every i, ' = (y1, ..., yn) 1s an orthogonal N x N transformation matrix and
A; = diag (91, ..., ¥;y) is the matrix of eigenvalues where all %; are assumed to

be distinct. The CPC is motivated by the similarity of the covariance matrices in the
h-sample problem. The basic assumption of CPC is that the space spanned by the
eigenvectors is identical across several groups, whereas variances associated with the
components are allowed to vary (Flury 1988).

Let S be the sample covariance matrix of an underlying N-variate normal distribu-
tion with sample size n. Then the distribution of nS has n — 1 degree of freedom and
is known as the Wishart distribution.

nS~Wy(&,n—-1)

Hence, for Wishart covariance matrices S;,i = 1,...,h with sample size n;, the
likelihood function can be expressed as

h
1
L(Z1,...., 5 = CHexp H‘z (ni — 1>2,-‘151” |z 720D @)

where C is a constant independent of the parameters ;. See Hiardle and Simar (2011),
inserting (4) to (3), the likelihood ratio statistic is obtained and has a x? distribution
as min(n;) tends to infinity with

h[%N(N—l)H]—[%N(N—l)ﬂzN] :%(h—l)N(N—l)

degree of freedom. Using & = 3 sub-periods sample covariance matrix data, the
calculation yields 897.54 for the likelihood ratio statistic, which corresponds to a zero
p-value for the x2 (56) distribution. Hence, the CPC model is rejected against the
unrestricted model, where the PCA model is applied to each sub-period separately.
The finding indicates that the eigenstructures across three sub-periods, pre-, during
and post-crisis, are dramatically distinct. There is no common eigenstructures (e.g. of
CPC type) for these periods. Indeed, the outbreak of subprime credit crisis has led to
a structure change in the commonality of CDS markets.
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3.3 Interpreting the factor loadings

To get a better feel from the estimated factor loadings in Table 3, we plot the estimated
factor loadings against credit rating and maturity in Fig. 2. The characteristics of factors
seem intuitive and interpretable. For factor 1, the factor loadings all have the same sign
and same magnitude across maturities and ratings. It can therefore be interpreted as
a level effect. The CDS spreads, resembled in bond spreads, are sensitive to the level
and movement of the interest rate. As pointed out by Longstaff and Schwartz (1995),
the static effect of a higher spot rate increases the risk-neutral drift of the firm value
process, which reduces the probability of default and in turn, reduces the CDS spreads.
Further empirical evidence is supported by Duffie (1998) and the above references.
Factor 2 can be interpreted as a region effect. The factor loadings of CDX series
are higher than those of iTraxx Europe family. Since the PCA technology joins the
U.S. and European CDS indices, at least one factor should capture the fundamental

Table 3 Estimated factor loadings

Entire Crisis
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
CDX.IG5Y 0.337 0.921 0.353 —0.079 0.267 0.666 0.481 0.148

CDX.IG10Y 0.308 0.278  —0.697 0.431 0.305 0.518  —0.391 —0.581
CDX.HY5Y 0379 —-0.039 —-0.178 —0.522 0384 —-0.127 —0.389 0.153
CDX.HY10Y 0.389  —0.066 0.002 0.221 0376  —0.136  —0.454 0.118

EU.IG5Y 0372  —-0.025 —0.208  —0.585 0.377 0.032  —0.004 0.590
EU.IGI0Y 0.401 —0.063 0.017 0.251 0.382 0.014 0.207 0.086
EUHYS5Y 0385  —0.175 0.406  —0.003 0362  —0.360 0.339  —0.148
EU.HY10Y 0380 —0.184 0.387 0.285 0.351 —0.347 0.315  —0.475

This table reports the estimated factor loadings for the entire sample and for the crisis period

Fig. 2 The association between factor loadings, credit ratings and maturities
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or economic differences between the regions. It is not so straightforward to interpret
factor 3 in the CDX case, but factor 3 in the iTraxx Europe case may be related to a
volatility effect. In Table 3 and Fig. 2, we find that for iTraxx Europe, the factor loadings
of HY are higher than those of IG. The evidence that the HY spreads are more sensitive
to volatility than IG ones is well documented in the literature. The contingent—claims
approach implies that the debt claim has features similar to a short position in a put
option. Since option values increase with volatility, increased volatility increases the
probability of default. Finally, we interpret factor 4 as a term structure effect. This is
certainly clear because in Table 3 and Fig. 2, the sign of loading of 5-year CDS spreads
is always negative while that of 10-year CDS spreads is positive. This is in accordance
with Pan and Singleton (2008) who found that the term structure of CDS spreads is
associated with a default risk premium. An increase in the default risk premium pushes
up the long-term CDS spreads more than the short-term CDS spreads, leading to a
steeper term structure of CDS spreads.

We admit that the information from Fig. 2 is insufficient to label the latent factors,
therefore we have regressed the latent factors on the economic variables and find that
it’s not easy to label the factors by the chosen economic variables.! The difficulty is
attributable to that the chosen economic variables such as the change of interest rate, the
change of yield curve, the credit spread change and the change of VIX level generally
exhibit the indistinguishable contributions or explanatory powers for the latent factors.
In our findings, the latent factors are linear combination of the economic variables.
These economic variables are highly correlated since they are governed by the same
latent factors. Applying them together into the regression may result in a collinearity
problem and bias our interpretation. For instance, in our case the change of VIX level
almost dominates across the four factors. Eichengreen et al. (2012) claim that the exact
association of a economic variable with any one of the latent factors is hard to define
due to non-uniqueness of the factor estimates. Although our interpretation for Fig. 2.
is not testable, the information from Fig. 2 helps to propose the observed economic
variables in the subsequent analysis.

3.4 Connecting latent factors with observed variables

To realize the degree of association between the unobservable factors and observable
economic variables, and to answer the question of interest; whether some of the observ-
ables are in fact underlying latent factors, we apply the method developed by Bai and
Ng (2006) to determine if the observed and the latent are identical. The observed indi-
cator with a stronger coherence with the latent factors is a good proxy. Two statistical
criteria, the R? and the noise-to-signal ratio, are used to examine whether any of the
economic series yields the same information that is contained in the factors.

Let G; be an J-dimensional vector of observed economic variables. The basic idea
behind the test developed by Bai and Ng (2000) is to investigate whether any of the
economic series can be represented as a linear combination of the latent factors by

I we appreciate the suggestion from the reviewer and the editor.

@ Springer



854 C. Y.-H. Chen, W. K. Hirdle

permitting a limited degree of noise in this association, thus
T
Gji=BTE + ¢ (5)

where B; is estimated by the OLS regression, and g, is denoted as the error term.
The above equation yields the predicted value G jr = B]Tls, R? (j) is designed to

measure the association between G ;; and G ;, and defined as:

)
R (j)= ———=
v

ar (G)) ©

where var () denotes the sample variance and var (G) is computed by using the sample

analog of the factors’ asymptotic covariance matrix. R? (j) is bounded between zero

and one. It is equal to one if they have a high association, and is close to zero in the

absence of correlation. A second measure NS(j), called the noise-to-signal ratio, is

constructed as: ( )
. var (gj

NS(j) = —7=~

var (Gj) @

A larger NS(j) thus indicates an important departure of G ; from the latent factors.
Normally, the magnitude of R? (j) is reverse to that of N'S () since the sum of R? (j)
and NS (j) should be equal to one.

As further observed economic variables in Eq. (5), one may include the change
of the interest rate level, change of the credit spread, change of the interest rate term
structure and the change of the stock index volatility. These variables are suggested by
Collin-Dufresne et al. (2001), Benkert (2004) and Ericsson et al. (2009) since they are
important determinants of credit assets. We limit our attention to the U.S. variables
because the corresponding European variables are highly correlated with the U.S.
series. The 1-year Treasury bond rate represents the level of the risk-free interest rate
in the U.S. The difference between the 10-year Treasury bond rate and the 1-year
Treasury bond rate is used to evaluate the slope of the yield curve in the U.S. The
credit spread in the U.S. is the difference between the average Moody’s Baa yield and
the average Moody’s Aaa yield of U.S. corporate bonds. We also employ the CBOE
VIX index to measure generalized risk aversion.

Table 4 shows the association of the first four factors with the chosen economic
variables. For the entire sample period, the R criterion gives a value of 0.3 and 0.375
on the credit spread and VIX index, respectively. The four factors are more correlated
with the credit spread and VIX, and less correlated with the level and the term structure
of the interest rate. This finding is accordance with Cao et al. (2010), Cremers et al.
(2008) and Collin-Dufresne et al. (2001). The implication is that perceptions of credit
risk were shaped by the common factors that are best summarized by credit spread
and a generalized risk aversion. In other words, the result suggests that a higher credit
spread or a higher generalized risk aversion does actually translate into systematic
credit risk. Analogically, the sub-period analysis reports that credit spread and VIX
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Table 4 The association between the latent factors and the economic variables

Entire Pre-crisis During crisis Post-crisis
Level 0.156 0.082 0.252 0.122
Credit spread 0.300 0.294 0.418 0.286
Yield curve 0.132 0.009 0.160 0.245
VIX 0.375 0.267 0.350 0.590

The R? criterion defined in Eq. (5) is calculated and reported. The observed economic variables include
the 1-year Treasury bond rate that represents level of the risk-free interest rate in U.S., the credit spread
measured as the difference between the average Moody’s Baa yield and the average Moody’s Aaa yield of
U.S. corporate bonds, the slope of the yield curve as the difference between the 10-year treasury bond rate
and the 1-year treasury bond rate, CBOE VIX index to measure the generalized risk aversion

are relatively correlated with the latent factors prior to the crisis. During the crisis,
the R? criterion even gives a value of 0.418 on credit spread, implying that the latent
factors are best summarized by credit spread. The post-crisis analysis reveals that
a generalized risk aversion with 0.59 R? criterion is highly associated to common
factors.

3.5 Factor risk prices

How the market prices the factor risk inherent in the CDS spreads is of interest,
since one can deduce how the market compensates investors, often referred to as the
protection sellers, for bearing credit risk. If we fit the factor model into the framework
of the arbitrage pricing theory (Ross 1976), the factor model for an N-dimensional
returns on CDS indices of different credit ratings, maturities and regions, R;, at time
t can be presented as

R =AY +AF; + ¢ (®)

The arbitrage pricing theory states that the cross-section returns, R;, are determined by
K common factors F; through the N x K factor loading matrix A. Given the assumption
that the unobservable common factor F; and error term e; are i.i.d. distributed, the
elements of the K-dimensional vector 7" can be interpreted as the market prices of
factor risk. Eq. (8) implies that the expected CDS returns satisfy

E(R;) = AT )

Given the estimated factor loadings A, we can estimate the prices of factor risk 7" by the
generalized methods of moments (GMM) (Hansen 1982) on the moment restrictions
in Eq. (9). This is equivalent to a GLS regression of the average changes of CDS
indices on the factor loading matrix A. Since we adopted a four-factor model in the
previous sections, the GMM method enables us to estimate the prices of factor risk
in this model and test their significance. As shown in Table 5, the market prices of a
four-factor model are all significant, and the first two factors exhibit a promising size
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Table 5 Estimation of factor risk prices

Four-factor model Five-factor model
Factor 1 —0.0521 (—3.873) —0.0498 (—4.957)
Factor 2 0.0121 (4.023) 0.0156 (4.940)
Factor 3 0.0055 (2.902) 0.0052 (4.393)
Factor 4 0.0009 (2.575) 0.0009 (4.240)
Factor 5 0.0005 (0.895)
J -statistic 1.206 (0.876) 1.445 (0.842)
R? of GLS 95.42 % 95.89 %

The market price of factor risk is estimated using the GMM, and the value in parentheses is ¢-statistic. The
GMM J -statistics and the associated p values in parentheses are also presented to test the over identifying
restrictions. The R% of GLS regression evaluates the goodness-of-fit of the factor models

in their risk prices. If we consider a five-factor model, the risk prices are significant
in the first four factors but insignificant in the fifth factor.

Table 5 also contains the GMM J -statistic, a test statistic for testing the over iden-
tifying restrictions in Eq. (9), and the corresponding p value. The J-statistic acts as
an omnibus test statistic for model miss-specification. In a well specified over identi-
fying model with valid moment conditions, the J-statistic behaves like a Chi-square
random variable with degrees of freedom equal to the number of over identifying
restrictions. Typically, a large J-statistic indicates a miss-specified model. In Table 5,
the J-statistics in the both four- and five-factor models cannot reject the null hypothe-
sis, implying that both models are well-specified. Furthermore, the four- and five-factor
models provide a good fit, as measured by the R? of the GLS regression, which is equal
to 95.42 and 95.89 %, respectively. The results from J-statistic, R? of the GLS and
the significance of factor prices suggest that the four-factor model is efficient enough
to measure the CDS returns.

4 Method of asymptotic principal components and forecast performance
4.1 Competing factor models

According to this study and previous literature, the common latent factors extracted
from factor models have proven their representative ability for systematic credit risk.
This motivates us to examine whether modelling the time series properties of the factors
can improve our ability to forecast the time-variation of CDS index changes. Acting
as the benchmark model, the static model in Eq. (1) is too restricted to accommodate
the realistic time-variation. The latent factors it produces can only follow one of
the few plausible, realistic patterns that do actually appear in the credit markets. The
generalized models in which the factors could be defined in a general way are developed
to minimize the gap, and should entail less restrictions.

The dynamic factor model, a simple vector autoregressive (VAR) specification, is
the first shown to achieve a remarkable fit of the factors’ dynamics. By permitting a
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VAR specification in the factors with autoregressive parameters B, this model captures
the common dynamics in the cross-sectional analysis. Additionally, the error term,
u;, from a VAR equation in Eq. (10) is conditionally heteroscedastic and follows a
GARCH(p, ¢q) process.

Sit = FiAir + eir

(I—BlL—---—Bth) F,=u, (10)
1/2
u, = H,'y, (11)

4q P
vech (Hy) = ¢+ ZAjvech (u,_jutT_j) + z D jvech (H,_j) (12)
j=1 j=1

wherei =1,...,N,t=1,..., T, F;isT x k and A;; is k x 1. 5, is white noise.

To take into account the possibility that the idiosyncratic errors in Eq. (1) may entail
serial and cross-section correlation, the dynamic factor with dependent error model is
built with additional assumptions on the idiosyncratic components shown in Egs. (13),
(14) and (15).

Sit = Filir +ej4
(I—BIL—---—Bth) F,=u,

1/2
u,:H,/ n;

q p
vech (Hy) = ¢ + ZAjvech (u,_jutT_j) + ZDjvech (H,—j)

j=1 j=1
(1 —aL)e; = vit +01Vi41,1 + O2vi—1 (13)
Vit = 0t Nit (14)
off =80+ 8107, + 807, (15)

The idiosyncratic components, e;;, in Eq. (13) are serially correlated, with an AR(1)
coefficient ¢, and weakly cross-section correlated with the coefficients 6 and 6,. The
innovations v;; are conditionally heteroscedastic and follow a GARCH(1,1) process
with parameters &, §1, and &2 in Eq. (15).

In practice, when factors are constructed over along period, some degree of temporal
instability is inevitable. Following Stock and Watson (2002), we model this instability
as stochastic drift in the factor loadings, and the factor loading evolves through time
with a serial correlation p; shown in Eq. (16).

Ait = pikii—1+ (c/T) it (16)

where ¢;; is white noise. Equation (16) implies that factor loadings for the ith variable
shift by an amount, (¢/T) s, in time period 7. In addition, it keeps a relationship
with its previous level which is measured by p;. The time-varying factor loading
model ideally incorporates all of the features covering from Eqgs. (10) to (16). Whether
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this model is more superior due to its abundant generalization will be examined with
respect to its predictive ability, and will be analyzed in the subsequent section.

4.2 Out-of-sample forecasting performance

Having proposed the competing models developed by more general ways, we take an
explicit out-of-sample forecasting approach to evaluate their predicting performance
regarding the CDS dynamics. Using the previous 1-year weekly data, we estimate
the parameters and produce a 1-week ahead forecast. After estimation, we find that
the dynamic of the CDS index captured by these factor models exhibits significant
time-variation and persistence, and we summarize their forecasting performance in
Table 6. The most outperformed one can be potentially applied to price credit risk
accurately and achieve a better credit risk management.

To assess an out-of-sample forecasting performance, for each proposed model we
compute each day ¢, the following four measures (a) mean squared error (MSE)
between the observed change of CDS spreads and the predicted change of CDS spreads
from the competing factor models; (b) mean absolute error (MAE); (c) mean correct
prediction (MCP) of the direction of change in CDS spreads. The MCP exhibits the
average numbers from N CDS indices are correctly forecast based on their signs of
changes; (d) the trace of R? of the multivariate regression of S onto S,

R = E | P8I /E NS = Eur (STPSS')/Etr (STS) (17)

where S isa T x N matrix comprising N units until time 7, E denotes the expectation

estimated by averaging the relevant statistic and Pg = S (STS) -1 ST. As shown in
Table 6, the time-varying factor loading model exhibits the best 1-week ahead point-
forecast performance with the lowest MSE, MAE and the highest MCP, trace of R2.
For each model, we measure the forecasting performances under different numbers
of factors that range from one to seven. Table 6 indicates that the dynamic factor
model and the time-varying factor loading model constitute a promising improvement
over the static factor model. A poorest forecast performance in the static factor model
implies that the factors exhibit persistency, predictability and temporal instability, and
these characteristics contribute to the prediction on the changes of CDS spreads. We
further conduct a test for their equal predictive ability against the static factor model
in Sect. 4.3.

Determining the number of factors can be regarded as a model selection problem,
which is a trade-off between goodness-of-fit and parsimony. Following Bai and Ng
(2002), the number of factors is estimated by an information criteria function (/C):

k = argmino<k<kmax I C (k) (18)

where 1C (6) = log (V (k, 7)) + ke V. 1) v (k. F') = 2L 20, (i

Y AT : . .
—F, Af) is simply the average residual variance, and g (N, T') is a penalty func-
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Table 6 Forecasting performance

MSE MAE MCP Trace R 1Cp ICpo 1Cp3

A. Static factor model

k=1 837.196 14.479 4.184 0.079 7.014 7.041 6.989
k=2 935.015 15.225 4.113 0.090 7.409 7.464 7.360
k=3 980.284 15.649 4.113 0.095 7.741 7.823 7.667
k=4 994.165 15.797 4.067 0.096 8.040 8.149 7.941
k=5 1011.411 15.915 4.166 0.098 8.341 8.478 8.218
k=6 1011.353 16.002 4.083 0.098 8.626 8.790 8.478
k=17 1014.162 16.074 4.067 0.098 8.913 9.105 8.741
B. Dynamic factor model

k=1 512.226 11.061 4.127 0.123 6.523 6.550 6.498
k=2 515.263 11.387 4.109 0.108 6.813 6.876 6.812
k=3 521.053 11.530 4.072 0.106 7.109 7.191 7.035
k=4 527.623 11.547 3.949 0.105 7.406 7.516 7.308
k=5 518.325 11.604 4.040 0.109 7.673 7.810 7.550
k=6 521.404 11.634 4.149 0.112 7.963 8.128 7.816
k=17 521.863 11.618 4.189 0.110 8.249 8.440 8.076
C. Dynamic factor with dependent errors model

k=1 725.655 13.458 4.069 0.082 6.871 6.898 6.847
k=2 540.526 12.439 4.125 0.098 6.861 6.876 6.812
k=3 534.201 11.844 4.127 0.110 7.134 7.721 7.060
k=4 526.395 11.672 4.109 0.115 7.404 7.513 7.305
k=5 524.747 11.628 4.021 0.113 7.685 7.822 7.562
k=6 527.945 11.575 4.076 0.105 7.976 8.140 7.828
k=17 521.499 11.568 4.123 0.110 8.248 8.440 8.076
D. Time-varying factor loading model

k=1 784.773 13.293 3.985 0.036 6.949 6.977 6.925
k=2 509.891 12.079 4.101 0.129 6.803 6.858 6.754
k=3 493.244 11.744 4.090 0.114 7.054 7.136 6.980
k=4 479.815 11.443 4.105 0.151 7.311 7.421 7.213
k=5 479.944 11.415 4.061 0.155 7.596 7.733 7.473
k=6 481.839 11.384 4.130 0.148 7.885 8.049 7.737
k=17 479.683 11.383 4.185 0.156 8.165 8.356 7.992

The information criteria function /C 1, IC 3 and IC 3 can be referred to (20), (21) and (22) in the text

tion for overfitting. Bai and Ng (2002) have proposed three specific formulations of
g (N, T) that depend on both N and T'.

1C,1 (k) =1log (V (k. 7)) + (NN+TT) log (NN+TT) (19)
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1C2 (k) =log (V (k. 7)) + (NN+TT) log (min (N.T})  (20)

R 1 in{N, T
cpw=e(v (6 F) e (ERTT) @

Table 6 summarizes the results of the /C function and shows that for both the static
factor model and the dynamic factor model, the one-factor model with the minimized
information criteria is the best one to model the common factors in the changes of
CDS spreads. However, for both the dynamic factor with dependent errors model and
for the time-varying factor loading model, the two-factor model is relatively adequate.

4.3 Testing equal predictive ability

To formally assess the statistical significance of the superior out-of-sample perfor-
mance of the dynamic factor models over the static factor model, we employ the equal
predictive ability test of Diebold and Mariano (1995) and report the testing results in
Table 7. Diebold and Mariano (1995) propose a method for measuring and assessing the
significance of divergences between two competing forecasts, and allow for forecast
errors that are potentially non-Gaussian, serially correlated and contemporaneously
correlated.

To be specific, let d; be the loss differential between two forecast errors. The null
hypothesis is no difference in the accuracy of two forecasts, that is Ed; = 0. The
asymptotic distribution of the sample mean loss differential is:

VT (d = ) ~ N (0,27 f4 (0) (22)

where f; (0) is the spectral density of the loss differential at frequency 0.

The statistical significance of the difference in forecast errors between the models
is summarized in Table 7. The tabulated p values indicate that we can reject the null
hypothesis of equal forecasting ability between the static factor model and the time-
varying factor model. We also reject the equal predicting ability between the static
factor model and the dynamic factor with dependent errors model. With the exception
in CDX 5-year IG and 10-year HY indices, the equal predictive ability between the
static factor model and the dynamic factor model is rejected. Furthermore, to claim
that the time-varying factor model is the best one, we compare its forecast ability with
the dynamic factor model, and the dynamic factor with dependent errors model. We
find that significant differences exist in their predicting ability in both cases.

In summary, the results in Table 6 together with Table 7 indicate that the time-
varying factor model reveals a statistically significant outperformance for most of the
cases, suggesting that common factors drive the time-variation of CDS spreads and
that the dynamics in the factors exhibit moderate predictability in the short-run. As
evident, the temporal instability in the common factors is inevitable and contributes to
forecasting. However, the serial or cross correlation in the idiosyncratic components
only have little effect on the forecasts, implying that the common factors dominate the
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predicting performance. The predictability of CDS spreads changes, certainly benefits
the hedging, speculating and arbitraging activities in the credit markets.

5 Conclusion

The commonalities in CDS spreads and their factor loadings are analyzed in this study.
We collect CDS indices in North American and Europe with 5- and 10-year maturities,
and with different credit ratings (IG and HY) from October 2004 to June 2011. The
estimated risk factors can be interpreted as the level, the region, the volatility and the
term structure effect. By conducting a test if there are common principal components,
we find that the eigenstructures are distinct for the pre-, during and post-crisis periods.
The first factor explains 58.7 % of the variance in the pre-crisis period, 72.3 % of
the variance in the crisis period and 47 % of the variance in the post-crisis period,
indicating that during the crisis, CDS spreads are increasingly driven by common
factors and less by idiosyncratic components. We also find that during the crisis the
latent factors are more correlated with the credit spread and VIX, and less correlated
with the level and the term structure of the interest rate.

The time-variation of CDS spreads changes is modelled via various dynamic fac-
tor models. We apply the asymptotic principal component technique to extract the
common factors, and then determine the number of factors by information criteria
functions. The out-of-sample forecasting performance and the results of equal predic-
tive ability indicate that the common factors drive the time-variation of CDS spreads
and the dynamics in the factors exhibit moderate predictability in the short-run. In
addition, the temporal instability in the common factors is inevitable and contributes
to forecasting, but the serial or cross correlation in the idiosyncratic components have
little effect on the forecasts.
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ABSTRACT  Principal component analysis (PCA) denotes a popular algorithmic technique to
dimension reduction and factor extraction. Spatial variants have been proposed to account for the
particularities of spatial data, namely spatial heterogeneity and spatial autocorrelation, and we present a
novel approach which transfers PCA into the spatio-temporal realm. Our approach, named spatio-
temporal principal component analysis (stPCA), allows for dimension reduction in the attribute space
while striving to preserve much of the data’s variance and maintaining the data’s original structure in
the spatio-temporal domain. Additionally to spatial autocorrelation stPCA exploits any serial
correlation present in the data and consequently takes advantage of all particular features of spatial-
temporal data. A simulation study underlines the superior performance of stPCA if compared to the
original PCA or its spatial variants and an application on indicators of economic deprivation and
urbanism demonstrates its suitability for practical use.

Une application de I’Analyse de Composante principale sur des données spatio-
temporelles a temps stationnaire multivarié

RESUME L’analyse en composante principale (ACP) dénote une technique algorithmique populaire
pour la réduction de dimensions et I'extraction de facteurs. Des variantes spatiales ont été proposées
pour tenir compte des particularités des données spatiales, a savoir I'hétérogénéité spatiale et
Iautocorrélation spatiale, et nous présentons une nouvelle méthode transférant I’analyse en composante
principale dans le contexte spatio-temporel. Notre méthode, dénommée ACPst, tient compte de la
réduction des dimensions dans I’ attribut espace, tout en s’efforcant de conserver une grande partie de la
variance des données et en maintenant la structure originale des données dans le contexte spatio-
temporel. En plus de I’autocorrélation spatiale, I’ ACPst exploite toute corrélation série présente dans
les données, et tient compte, en conséquence, de toutes les particularités des données spatio-temporelles.
Une étude de simulation souligne le rendement supérieur de I’ ACPst lorsqu’on le compare a I’ ACP
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original ou ses variantes spatiales, et une application sur les indicateurs du dénuement économique et de
Purbanisme démontre sa convenance pour des applications pratiques.

Una aplicacidn del analisis de componentes principales sobre datos multivariables
espacio-temporales y estacionarios en el tiempo

RESUMEN el andlisis de componentes principales indica una técnica algoritmica conocida para la
reduccion dimensional 'y la extraccién factorial. Se han propuesto variables espaciales para tener en
cuenta las particularidades de los datos espaciales, especificamente la heterogeneidad espacial y la
autocorrelacién espacial, 'y presentamos un nuevo enfoque que transfiere el analisis de componentes
principales al dominio espaciotemporal. Nuestro enfoque, que se denomina stPCA, da cabida a la
reduccion dimensional en el espacio de los atributos, ademds de preservar una gran parte de la varianza
de los datos y de mantener la estructura original de los datos en el dominio espaciotemporal. Ademas de
la autocorrelacion espacial, el método stPCA explota cualquier correlacién serial presente en los datos y,
en consecuencia, aprovecha todas las caracteristicas particulares de los datos espaciotemporales. Un
estudio de simulacién destaca el rendimiento superior del método stPCA si se compara con el PCA o
sus variantes espaciales y una aplicacion sobre los indicadores de privacion econdmica y urbanismo,
demuestra su idoneidad para el uso practico.
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1. Introduction

Factor extraction refers to the process of concentrating several variables into a set of
factors with lower cardinality and has been applied in virtually any field of statistical
analysis. It denotes a dimension reduction technique, as well as a vehicle to disclose
latent factors. Because of the reduction factor, extraction relieves the computational
burden in any subsequent analysis, might help to avoid the curse of dimensionality
and most importantly presents measurements of theoretical interest which would
otherwise remain hidden due to incomplete knowledge on the subject matter or
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due to the latent nature of the variable of interest. Consequently, factor extraction
might be understood as an analysis tool, which helps to identity the relevant factors
of interest.

Principal component analysis (PCA; Pearson, 1901; Hotelling, 1933), which is
also known as discrete Karhunen—Loéve transformation (Karhunen, 1947; Loéve,
1948), Hotelling transformation (Hotelling, 1933) or the method of empirical
orthogonal functions (Lorenz, 1956) among others, is frequently applied to extract
factors from a set of variables (e.g. Jolliffe, 2002, chap. 4). It is in fact based on a
transformation of the data, in which the orthogonal coordinates are rotated in order
to load as much variance as possible on the first components and less and less variance
on subsequent components. Consequently the first components, formed by a linear
combination of the original variables, represent an essential information content of
the data and might be understood as factors. By contrast the final components,
presenting little residual variance, might be ignored in the analysis and allow thus for
dimension reduction. In a strict implementation without any additional rotation and
based on standardized variables, PCA resembles more an algorithm than a model and
restricts the researcher’s influence on choosing the appropriate number of latent
factors. This feature distinguishes PCA from other factor extraction techniques, most
notably the model-based factor analysis (Spearman, 1904).

However, the application of the PCA algorithm 1s not exclusively restricted to
the attribute subspace, but in case of spatio-temporal data might also be used on the
geographical or temporal subspace and consequently reduce either the geographical
or the temporal dimension. DemSar et al. (2013) review the application of PCA in
the context of spatial data and Richman (1986) proposes a classification of PCA for
spatio-temporal data into six modes, where each mode describes exclusive
combinations of two subspaces. For example, the application of PCA on multivariate
spatial entities is labelled R-mode and several spatial PCA variants have been proposed
(Wartenberg, 1985; Thioulouse et al., 1995; Fotheringham et al., 2002; Jombart
et al., 2008). Contrary to the original PCA, these techniques incorporate either
spatial autocorrelation or spatial heterogeneity into the PCA approach to factor
extraction and the authors demonstrate the superior performance of these spatial
PCA variants to disclose any spatial factor if compared to the original PCA.

On the other hand, these spatial PCA variants only address spatial cross-
sectional data and do not apply to spatio-temporal data. In order to allow for a
truly spatio-temporal analysis, we propose a novel PCA approach, that not only
accounts for the spatial peculiarities, but also incorporates serial correlation over
time. This spatio-temporal PCA variant (henceforth spatio-temporal principal
component analysis [stPCA]) allows for dimension reduction on the attribute space,
while preserving the geographical and temporal space, that is, it extracts spatio-
temporal factors from several spatio-temporal variables while maintaining the
geographical and temporal structure of the original variables.

In the framework of Richman (1986) stPCA can be understood as the
combined PR-mode of PCA on spatio-temporal data and the technique describes
a transfer of the original PCA to the spatio-temporal realm of geographical and
serial correlation. Consequently the proposed technique shares some features with
the three-mode PCA of Kroonenberg & de Leeuw (1980), which however relies
on independent and identically distributed (i.i.d.) observations and has not been
studied for correlated observations. Furthermore three-mode PCA includes a
dimension reduction in every subspace, whereas stPCA focuses exclusively on the
attribute subspace.
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The inclusion of latent factors in models for spatio-temporal data is also
facilitated by Bayesian hierarchical models (Gelman & Hill, 2006). Recent
examples include Tzala & Best (2007), Lawson et al. (2008) and Choi et al.
(2012) in public health studies and Hogan & Tchernis (2004) in economics. These
models rely on latent factors to regress some explanatory variables on a dependent
variable and the latent factors consequently serve as an intermediate step and are
not of particular interest in the respective analysis. stPCA consequently represents a
novel attempt to incorporate spatial and temporal correlation into a PCA
framework and hence facilitates the inclusion of latent factors into spatio-temporal
models.

In order to illustrate the performance of stPCA, we present a simulation study
and apply stPCA to a data-set of economic deprivation and urbanism indicators in
Germany. In the Monte Carlo simulation, stPCA improves the ordinary and spatial
PCA approaches if a non-negligible spatial structure is present in the spatio-
temporal data. The reported difference is substantial and significant. A large gain is
made on small n, high ¢ samples, whereas the additional value for large n data seems
less pronounced.

The application of stPCA on the indicators of economic deprivation and
urbanism in Germany illustrates the additional value of a combined spatio-temporal
approach if compared with a cross-sectional spatial approach. Only stPCA allows
for time specific projections, which highlight the west—east and internal north—
south divide in economic deprivation and reliably indicates the big German
metropolitan areas.

The following Section 2 presents the proposed stPCA approach, which is
afterwards evaluated via a simulation in Section 3. An actual implementation of
stPCA 1is presented in Section 4 and Section 5 concludes with a discussion.

2. The stPCA

The original PCA of Pearson (1901) and Hotelling (1933) describes a rotation of
the p-dimensional coordinate system. The rotated coordinates present the best
orthogonal fit of the data, in which the first coordinate is aligned in the direction of
the data’s maximum variance. Any subsequent coordinate is afterwards orientated
to contain as much of the residual variance as possible conditioned on being
orthogonal to all former coordinates.

In this new coordinate system, the coordinates possessing much variance
contain most of the data’s information, whereas coordinates with a relative small
amount of variance contribute little additional information and consequently can
be ignored at little cost. This advantage of PCA 1s facilitated by the orthogonal
rotation and allows for dimension reduction in multivariate data while preserving
the general structure of the individual data points.

Upon obtaining the new coordinates the p-dimensional and centred random
variables X € R are projected onto this new coordinates system via a linear
combination. The projections ¢ onto the first coordinate are obtained via ¢ = Xu,
where u denotes a weight vector which can be identified via the aforementioned
variance characteristics of the rotated coordinates. In detail, PCA maximizes the
variance in the rotated coordinates, that is, the variance of the projected data
points ¢:

max, Var(¢) = max, Var(Xu) = max, u' n X' Xu = max, u' Zu (1)
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where X denotes the covariance matrix of the centred X and the maximization is
subject to some identification restriction, like ||u|| = 1.

An eigendecomposition of X resolves the maximization requirement (1), as the
eigenvector corresponding to the largest eigenvalue constitutes the optimal u
(Hardle & Simar, 2012). Likewise the projection onto subordinate components is
conducted via the remaining eigenvectors, where the corresponding eigenvalues
describe the variance explained by this component, and consequently its rank.

The just described original PCA does not address the particularities of spatial
data, like spatial autocorrelation or spatial heterogeneity. Spatial extensions to PCA
have been proposed, which explicitly account for either heterogeneity (Fothering-
ham et al., 2002) or autocorrelation (Wartenberg, 1985; Thioulouse et al., 1995;
Jombeart et al., 2008). In this paper we concentrate on the second type, but would
like to note that the suggested spatio-temporal approach might also be adapted to
the spatial heterogeneity case.

The suggested extensions amplify the maximization criterion by incorporating
the spatial autocorrelation of the projected data points ¢. Consequently, the
proposed methods seek to project the observations onto a new coordinate system,
while preserving the spatial relation between the observations and this second
objective differentiates the spatial approaches from the ordinary PCA.

Moran’s I describes a frequently used statistic of spatial autocorrelation (Moran,
1950) which defines the spatial autocorrelation for some random variable X with
mean X as

gjjl iwij(xi -X)(X; - X)
— : (2)
(X —X)°

M=

M=z
S

=

—_

i
=1

i=1j

where w;;, drawn from a spatial weight matrix W, describes the spatial weight
imposed by observation j onto observation i. Choosing an appropriate spatial
weight matrix for either point or areal data and a suitable standardization is up to
the subject-matter researcher and might simplify the computation (2).

Indeed the difterences of the above-mentioned spatial PCA approaches can be
attributed to the particular spatial weight matrix and specific transformation of the
original variables X chosen by the authors. In detail, Multivariate Spatial
Correlation (MSC) (Wartenberg, 1985) standardizes the original variables and the
distance based spatial weight matrix, whereas the Global Structure by Thioulouse
et al. (1995) relies on a standardized binary connection matrix and transforms the
original data by a mean which is based on assigning weights according to the
number of individual neighbours. Finally, spatial principal component analysis
(sSPCA) (Jombart et al., 2008) applies a row standardization on the binary
connection matrix and, because of its specific application to alleles does not
standardize the data, but subtracts only the mean.

All these spatial extensions to PCA seek to maximize the product of the
variance and spatial autocorrelation of ¢:

max, Var(¢)I(¢) = max, Var(Xv)[(Xv) = max, v' n'X" WXv = max, v' Qv

where Q = n~ !XT WX denotes a spatial correlation matrix and the optimal v are
found via an eigendecomposition of . Wartenberg (1985) and Thioulouse et al.
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(1995) point out, that £ might not be positive definite and state that the resulting
negative eigenvalues represent local structure. In case of a non-symmetrical spatial
weight matrix W, Jombart et al. (2008) observe, that the optimal v is given by the
eigenvector corresponding to the largest eigenvalue of (2n)_1XT(W +WX.

Spatio-temporal data add another subspace to the attribute and geographical
space of spatial data and present measurements of the same multivariate spatial
entities over time. Consequently, PCA or any spatial PCA variant could be applied
at every t, and T eigendecompositions of the time dependent (spatial) covariance
matrix could be computed. Hence any serial correlation over time would be
ignored and at every t we would have a separate cross-sectional analysis.

Contrarily, stPCA forms a truly spatio-temporal technique. Instead of
conducting an analysis at every ¢ separately stPCA proposes to calculate a time
average of the spatial covariance matrix and apply an eigendecomposition on this
average. Consequently, stPCA exploits any serial correlation and makes use of the
fact that the repeated measurements on the time stable spatial entities represent the
same information content, whereas any additional noise might vary over time.
Hence the time-averaged spatial covariance matrix will include a higher signal-to-
noise ratio and present time stable eigenvectors.

This feature of stPCA, contrary to the repeated application of PCA or its spatial
variants, will result in consistent signs and order of the components across ¢ and
consequently facilitates the interpretation and further use of the findings. Finally,
stPCA 1s faster, as a function of ¢, than any repeated application of its non-temporal
siblings, as the time-consuming eigendecomposition has to be conducted only
once instead of f times.

In detail stPCA maximizes the time average of the product between the
variance and spatial autocorrelation of the projected data points ¢:

T

T
max, T~ ZVar(q{)t)I(qﬁt) = max, T~ ZVar(X,,u)I(Xt,u)
=1 t=1

T
= max,u" TflnflzX,TVVXt U (3)
=1

= maxﬂ,uT(*Du,

T
where @ = T~ 'n' 3" X WX, denotes a time average of the spatial correlation
matrix. If W is symnietric, the optimal weight vector u may be extracted as before
from a direct eigendecomposition of A. Otherwise, and along the reasoning of
Jombeart et al. (2008), the optimal u may be found by the eigendecomposition of

T
(2 Tn)_1 S X (W + WT)X,. As in the ordinary PCA and its spatial variants the
=1

projections ¢, of stPCA are obtained via multiplying the original data X, with the
time stable principal eigenvectors u.

3. Simulation

We present two simulations which compare the performance of the original PCA,
its spatial variants and the novel stPCA approach to detect spatio-temporal factors.
In a first step, we apply the distinct PCA variants to an artificial data-set of a single,
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hidden and stable spatio-temporal factor, which is observed via three noisy
variables and is obscured by three additional random noise variables. As in
Wartenberg (1985) a ratio between the first eigenvalue and the sum of the absolute
value of all eigenvalues is presented to reveal the sensitivity of these techniques in
detecting the spatio-temporal factor. Obviously, a high ratio indicates that the
respective PCA procedure correctly identifies the single predetermined factor
present in the simulated data.

In a second simulation we apply PCA, its spatial variants and the stPCA
approach to a data-set with two different spatio-temporal factors in order to learn
the accuracy of these principal component approaches. Each factor exhibits a
distinct and stable spatial-temporal pattern, which affects three noisy variables each
and is furthermore masked by six additional random noise variables. We check
whether the PCA variants identify the correct number of factors, how the PCA
variants weigh the original variables in the computation of the projections and
compare to what extent the diverse projections match the original factors.

We start the first simulation by generating a spatial structure S(!) which takes

(1)
Sie{l,...m
normal distribution with a mean depending on the grid’s column index ¢

the form of a square grid of size y/n X y/n. The n observations ) follow a

c C
81(1() "'N(O, 1)a for ¢ S E Sl(l) ~N(5, 1), for ¢ > E,

where 6 defines an increment and C = y/n denotes the number of columns.
Consequently we simulate a patch, which difterentiates between the left and right

side of the grid by the expectation E [Si(7lc)|c < %} =0and E [Si(i) lc > %} = 0. This

spatial structure is standardized and subsequently introduced as a constant in the

)

. 1 _ .
AR(1) process of the spatio-temporal factor Fl-(, . Switching to vector notation, the

factor Ffl) = vec(F%t), cees Fl(il,t))is generated via
FS]) - S(l) + OSFE],)l + 3r> (4)

where we define the error vector by & ~N(0,,0.751,). This simulated factor
produces n X t observations, which exhibit a stable spatial pattern over time
defined by the size of the increment 6. A high value of 6 will result in a more
pronounced spatial pattern and, due to the standardization, will not automatically
increase the factor’s variance, which is instead defined by the coefficient and error
vector in the AR(1) process (4).

In our simulation the standardized spatial factor aftects p; =3 dependent

)

variables X, (1,3}, which are defined by the sum of the factor Fgl and an

individual AR (1) noise process Z;, :

1
X, =F)+7,,.

P1

The noise process Z,;, differentiates the three variables X,, via its error
component:

th = O-Sthl,pl + €71

where &7 ~N (04,0.751,) denotes white noise. Consequently, we separate the
variables by their specific errors drawn from the same normal distribution.
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Apart from the dependent variables X, , we also add p, = 3 random noise
variables X, , c(4..6}, Which are independent of the factors and follow an ordinary
AR(1) process:

Xt‘,pz — O.SthLpz + SX’“

where &x, ~N(0,,0.75],) denotes white noise. Hence these three variables possess
the same mean and variance as the spatio-temporal factor and interfere with its
disclosure.

We run this simulation in two settings to cover small and large n applications.
At first we set n; =49 and f; € {5,50,100}. This specification allows for all
possible combinations of n and f: t < n, t & n and t > n. The same holds for the
second setting, where n,-400 and 1, € {40,400,800}. In order to observe the
impact of the variable scale in X and the specific weight matrix I, we apply three
different combinations of X and I which the authors of the spatial PCA variants
have proposed in their original paper described above. The spatial increment is
evaluated by increasing 6 gradually via steps of 0.4 in the interval [0,8] for all
combinations of #n and f. At 6=0 obviously no spatial factor is produced, as this
particular parametrization describes an 1i.d. scenario. Finally, we run each
combination of the parameters 1,000 times and present the respective mean ratio
between the first eigenvalue and the sum of all eigenvalues in Figure 1.
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Figure 1. Mean ratio (with standard deviation for temporal sSPCA) of the first eigenvalue

to the sum of all eigenvalues as assigned by PCA (thick solid grey line), sSPCA (solid grey

line), MSC (dashed grey line), Global Structure PCA (dotted grey line), temporal sSPCA

(solid black line), temporal MSC (dashed black line) and temporal Global Structure PCA

(dotted black line) for ny=49 (first row) with t;=5 (left graph), t;=50 (middle graph) and

t;=100 (right graph), and n,=400 (second row) with t,=40 (left graph), t,=400 (middle
graph) and t,=800 (right graph).
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We observe that PCA present a constant ratio between the largest eigenvalue and
the sum of all eigenvalues. This ratio remains unaftected by an increase in the spatial
increment 6 and hence PCA fails to clearly identify the increasingly pronounced
spatio-temporal factor. On the other hand all spatial PCA variants, and especially the
MSC approach, gain strongly from an increase in 6. The initial ratio at 6=0 is
increased more than twofold at 6=8 and the spatial PCA variants cause higher ratios
than the original PCA for 6 > 1.2(n; = 49), respectively ¢ > 0.4(n,-400). Conse-
quently we can verify the results of Wartenberg (1985), Thioulouse et al. (1995) and
Jombart et al. (2008), and observe that extending PCA by a spatial component
improves the sensibility of the spatial PCA variants to identify a spatial factor.

However, as can be observed in Figure 1, the general stPCA approach is even more
responsive to an increase in O than the spatial PCA varants. For example at
0 > 0.8(n;=49), respectively 0 > 0.4(n,=400) the ratio reported by the temporal
sPCA variant is larger than the ratio of any other PCA variant including the purely
spatial PCA variants. In detail, all stPCA implementations not only reports larger ratios
for any given n and ¢ than the spatial PCA varnants at non-negligible levels of 6, but also
exploit an increase in n much stronger. Furthermore, only the stPCA implementations
makes use of the time dimension and reports higher ratios for an increase in t.
Unsurprisingly the solely spatial PCA variants do not gain on such an increase in f, but
only on an increase in # and this superior performance of the stPCA variants also holds
if the spatio-temporal factor consists of a spatial trend instead of a patch.

As stated before, any spatial principal component approach will also try to
identify local structure and report this structure as a negative eigenvalue. In the
current simulation, which does not explicitly include local structure, this feature
appears twice. At first, the stPCA and the purely spatial PCA variants perform
worse than the original PCA on non-spatial or only slightly spatial data, as can be
observed by ratio which correspond to 6=0. Second, this search for local structure
causes the stPCA approach to possess a pronounced standard deviation as depicted
in Figure 1, which however disappears as the spatial increment grows.

In a second simulation we apply PCA, its spatial and stPCA variants to a data-
set with two different spatio-temporal factors in order to learn the accuracy of these
principal component approaches. Hence, we extend the preceding simulation by
an additional spatio-temporal factor, which is based on the spatial structure S

R R
S? ~N(0,1), for r < Esfj) ~N(3, 1), for r > =,

where § describes the spatial increment, r denotes a row indicator and R = /n
indicates the number of rows. Consequently the spatial structure S describes a
spatial patch, which difterentiates between the upper and lower half of the grid.
The resulting structure defines the spatial distribution of the second spatio-
temporal factor Fi(f) by serving as a constant in the respective AR (1) process:

F” =s® 4 0587 44,

where ¢; is defined as above. As in the preceding simulation, the hidden spatio-

temporal factor FE ) is observed via three noisy variables, which difter, as before, in
their error components. In this context, we set the white noise of variables affected

by the first factor to 82);N(On,0.3751n) and the error vector of the variables
defined by the second factor to S(ZZ’)fN(On, 1.1251,).
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Furthermore, we add three additional i.i.d. noise processes and consequently
observe three variables affected by the s&aatio—temporal factor FE”, three variables
influenced by spatio-temporal factor FEZ and six additional noise variables, which
complicate the disclosure of the two spatio-temporal factors.

As before we run this simulation in two settings to account for small (n;=49)
and large (n,=400) data-sets and allow for varying time dimensions: t; €
{5,50,100} and 1, € {40,400,800}. We increase the spatial increment gradually
in the interval [0,8] to observe its effect, make use of the aforementioned spatial
weight matrices and transformations of X, and run each combination of parameters
1,000 times.

We begin our inspection of the simulation results by assessing the power of the
diverse principal component approaches to identify the correct number of factors.
Figures 2 and 3 present modified scree plots for PCA, sPCA and temporal sPCA in

0
e
o
N
w
e |
[{e]
&1
T T T T T T
2 4 6 8 10 12
© g
™ -
e
o o
< -
| [t}
— o
e |
- o
=
['e}
S 0
S
]
T T T T T T
2 4 6 8 10 12
©
© -
e
o o
~ -
0 | [t}
— =
e |
- o
=
0
S [{e]
CI,'_
T T T T T T T T T T T T T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

Figure 2. Scree plots for PCA (first column), sPCA (second column) and temporal sPCA
(third column) depicted for n;=49, the time frame t;=5 (first row), t;=50 (second row),
t;=100 (third row) and the spatial increments ¢ € [0,8] indicated by an increase in the grey
strength.
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which the mean eigenvalues are interpolated to allow for several spatial increments
0 to be shown in the same graph.

At first, we observe that the distinct principal component approaches return
different eigenvalues. The original PCA does not react to an increase in &, as this
non-spatial approach presents nearly the same eigenvalues for all levels of 6. On the
other hand, sPCA and the temporal sPCA do respond to an increase in the spatial
increment. Especially, the two largest and the smallest eigenvalues increase with o
and their reaction is amplified by more observations.

At n=49 the scree plot of PCA presents a slight decrease in the gradient
starting at the third eigenvalue and consequently indicates the presence of two
factors. These factors arise due to the constant in the simulation’s AR (1) process. At
n,=400, PCA presents three obvious changes in the gradient resulting in two or
more factors and consequently the scree plot does not clearly indicate the correct
number of factors.

In contrast SPCA and temporal sPCA react explicitly to an increase in 6. At
0 < 0.8, the eigenvalues returned by sPCA do not indicate any obvious change in
the gradient, but rather suggest a smooth curve. Only at & > 0.8 one can make out
a clear change in the curvature after the second eigenvalue and consequently sPCA
identifies the two spatio-temporal factors. This finding is even more apparent as o
and n are increased. However, sPCA also returns large negative eigenvalues, which
erroneously indicate a high level of local structure.

The application of temporal sSPCA results in eigenvalues, which possess a similar
structure as sPCA, but which is much more pronounced. At the low level of
0 < 0.8 the respective eigenvalues also suggest a smooth curve without any clear
indication of the number of factors. At 0 > 0.8 stPCA increasingly indicates the
presence of the two factors. However, the difference between the second and third
eigenvalue is much wider in the case of temporal sPCA than ordinary sPCA, e.g.
the ratio at 0=4, n,=400 and t,=400 for temporal sPCA (1:151.071) surpasses the
ratio of sPCA (1:7.163) more than 20-fold and consequently temporal sPCA
indicates the two factors more evidently than sPCA. Furthermore, temporal sPCA
indicates the presence of local structure only at very low levels of 6 and the clarity
of its scree plot is not only amplified by an increase in the spatia