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Abstract: Equity basket correlation can be estimated both using the physical measure from stock prices, and
also using the risk neutral measure from option prices. The difference between the two estimates motivates
a so-called “dispersion strategy”. We study the performance of this strategy on the German market and pro-
pose several profitability improvement schemes based on implied correlation (IC) forecasts. Modelling IC
conceals several challenges. Firstly the number of correlation coefficients would grow with the size of the
basket. Secondly, IC is not constant over maturities and strikes. Finally, IC changes over time. We reduce the
dimensionality of the problem by assuming equicorrelation. The IC surface (ICS) is then approximated from
the implied volatilities of stocks and the implied volatility of the basket. To analyze the dynamics of the ICS
we employ a dynamic semiparametric factor model.

Keywords: Correlation risk, dimension reduction, dispersion strategy, dynamic factor models

MSC 2010: 62H25, 62H15, 62H20

1 Introduction

Equity basket correlation is an important risk factor. It characterizes the strength of linear dependence be-
tween assets and thusmeasures the degree of portfolio diversification. It is an input for many pricingmodels,
plays a key role in portfolio optimization and risk management. The concept of a time-varying correlation is
frequently used in studies that describe the joint dynamics of assets, see [8, 21]. However, the idea of consid-
ering the correlation as an asset, on its own, is relatively newandhas recently gainedpopularity togetherwith
the emergence of such derivative instruments as variance, volatility, correlation swaps and trading strategies
with them, see [9, 19]. In this context being able to predict correlation patternsmight help to reveal profitable
trading opportunities. One of themost commonways of obtaining a correlation exposure is to replicate it with
variance swaps. In this paper we study the behavior of a particular vehicle for trading correlation known as a
“dispersion strategy”, in which one sells a stock index volatility and buys individual volatilities, see [1]. We
propose several ways of improving the profitability of the strategy by extracting information from a dynamic
model of implied correlation.

Unlike asset prices, correlations are not directly observed in the market and need to be estimated in the
context of a particular model. Obtaining a well-conditioned and invertible estimate of an empirical correla-
tion matrix is often a complicated task, in particular when the dimensionality of basket elements N is higher
than the time series length T. Here some work has been done in the field of random matrix theory (RMT),
in which the case “large N, small T” is studied in an asymptotic setting, see [2, 31, 36]. A further segment
of research has moved in the direction of developing various regularization methods for sample covariance
and correlation matrices, such as a shrinkage technique proposed in [32], regularization via thresholding in
[5], bending in [6], factor models in [23] and many others. There are some studies that propose a dynamic
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model for return correlation such as a DCC model (see [21]) and in a high-dimensional setting (see [22]).
The common feature of all these studies is that the empirical correlation matrix is estimated under the phys-
ical measure from the time series of asset returns. Alternatively, instead of relying on historical data, one
can infer correlation from the current snapshot of the option market. Option prices reflect the expectations
of market participants about the future price (volatility) and disclose their perceptions of market risk, see
[3, 12]. Some recent studies have shown that the implied volatility (IV), that equates the model option price
and the one taken from the market, contains incremental information beyond the historical estimate and
outperforms it in forecasting future volatility, see [7, 16, 25]. Yet only a few papers have studied the predic-
tive content of the correlation, implied by option prices. Some work has been done for foreign exchange (FX)
options (see [13, 33]), which showed that correlations implied from FX options are useful for forecasting fu-
ture currency correlations. Skintzi and Refenes [38] investigated the average correlation implied by equity
options and introduced the Implied Correlation index (ICX). They showed that ICX, computed from current
option prices, is a useful proxy for the future realized correlation. Driessen et al. [20] investigated the power of
options-implied correlation to explain the future realized correlation and conclude that its predictive power
is quite high.

Here we model the implied correlation (IC), which is an object of very high dimensionality. Similarly to
the IV, every day one recovers an IC surface. We model the IC with a dynamic semiparametric factor model
(DSFM) (see [24, 35, 39]) and find that it yields a low-dimensional representation as a linear combination
of a small number of time-invariant basis functions (surfaces), whose time evolution is driven by a series
of coefficients; technical aspects are also described in [40]. We produce an IC forecast and use it in several
hedging schemes for a dispersion strategy. For the empirical analysis we chose the German market repre-
sented by the DAX portfolio over the 2-years sample period from 20100802 to 20120801 (dates are written
as YYYYMMDD). Backtesting shows that the hedge allows to the reduction of potential losses and increases
the average profitability of the strategy.

The paper is structured as follows. In Section 2 we introduce the notions of realized, model-implied and
model-free-implied volatility and correlation and describe the basic setup of a dispersion strategy with vari-
ance swaps. TheDSFMmodel for IC is introduced in Section 3 startingwith general description in Section 3.1,
followed by the description of the functional principal component analysis (FPCA) approach to find the basis
functions in Section 3.2 and the estimation procedure for both factors and factor loadings in Section 3.3.
Section 4 presents the dataset taken for the empirical study, followed by a description of the estimation re-
sults in Section 5. First, in Section 5.1 we interpret the obtained factors and factor loadings and propose a
time series model for low-dimensional factors. Finally, in Section 5.2 we propose and compare alternative
dispersion strategy setups: a no hedge, a naïve approach and an advanced hedge. Section 6 concludes.

2 Correlation trading

2.1 Average basket correlation

In a basket of N assets, correlation ρi,j measures linear dependence between the i-th and the j-th asset return,
i, j ∈ {1, . . . , N}. Standard statistical analysis yields that the basket variance σ2B can be decomposed as

σ2B = ∑
i
w2
i σ

2
i +∑

i
∑
j ̸=i
wiwjσiσjρij , (2.1)

where σ2i denotes the variance of the i-th asset return and wi its weight in the basket. Now, assuming that ρij
is constant for every pair (i, j), one can imply the equicorrelation ρ from (2.1):

ρ =
σ2B −∑i w2

i σ
2
i

∑i ∑j ̸=i wiwjσiσj
. (2.2)

Later we call ρ a basket correlation or simply a correlation. The corresponding correlation matrix has all
the off-diagonal elements equal to ρ and thus offers several advantages. Firstly, plugging ρi,j = ρ into (2.1)
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Figure 1. Left panel: DAX correlation (2.2) (dashed), DAX volatility (2.8) (solid black), volatility of DAX constituents Adidas,
BMW, Siemens, Daimler, E.ON, Lufthansa volatilities (2.8) (color), the stock market fall 2011 (shaded area). Right panel:
Scatter plot DAX volatility vs. correlation. Estimation period: from 20100104 till 20121228; estimation window: 3 months.

reproduces the basket variance σ2B. Secondly, if −
1
N−1 < ρ < 1 then the correlation matrix is positive semi-

definite, see [29]. This property becomes particularly important if N is large. A closer look also reveals that
(2.2) is in fact a nonlinear weighted average over all ρi,j in the basket:

ρ = ∑
i
∑
j ̸=i
ci,jρi,j

with weights ci,j defined by
ci,j =

wiwjσiσj
∑i ∑j ̸=i wiwjσiσj

.

Bourgoin [10] showed that if a correlation matrix is positive semi-definite, for sufficiently large baskets it
holds that 0 ≤ ρ ≤ 1. Using this property, minimum and maximum variances of a basket, σ2B,min and σ

2
B,max

respectively, are defined as follows:

σ2B,min = ∑
i
w2
i σ

2
i and σ2B,max = ∑

i
w2
i σ

2
i +∑

i
∑
j ̸=i
wiwjσiσj . (2.3)

The minimum variance σ2B,min is achieved when ρ = 0 that is when the assets in a basket are fully diversified.
In the case of no diversification, one observes the maximal possible basket variance σ2B,max corresponding to
ρ = 1.

Further we can rewrite ρ by substituting (2.3) to (2.2):

ρ =
σ2B − σ2B,min

σ2B,max − σ
2
B,min

(2.4)

and obtain an additional interpretation as a measure for the degree of diversification, see [38]. In fact, (2.4)
shows how far σ2B is from its minimal value σ2B,min relative to the possible value range σ

2
B,max − σ

2
B,min, or in

other words, how far the basket is from the perfect diversification. A high value of ρ is the sign of a poorly
diversified portfolio,which is typical for themarket downturn,when asset prices simultaneously drop driving
σ2B up. It means diversification benefits disappear in times when they are needed most. To hedge against
correlation risk investors look for derivative securities that offer higher payoffs (premia) when the correlation
decreases.

If a basket is constructed from the constituents of an equity index with weights equal to index weights,
then the corresponding basket correlation would serve as a benchmark for a sector, an industry or a whole
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market average correlation. Figure 1 shows an example of the DAX correlation together with the volatility of
DAX and some of its components. Firstly, we see that the correlation and the volatility vary over time. Sec-
ondly, the volatility of the basket (DAX) is smaller than almost any individual volatility of its constituents,
which illustrates the impact of the diversification effect on the portfolio risk. Finally, there is a clear linear de-
pendence of the correlation of the basket and its volatility. However the strength of this dependence changes
when the volatility exceeds a certain threshold. We investigate this phenomenon and propose a dataset cor-
rection scheme in Section 4.

2.2 Implied versus realized correlation

Based on (2.2) we conclude that the exposure to the basket correlation ρ can be achieved by exposures to the
variances of a basket σ2B and its constituents, σ

2
i . Such trades can be realized via a combination of variance

swaps. A variance swap is an over-the-counter contract opened at t, which at t + τ pays the difference between
the variance cumulated over the life time of the swap σ2t+τ and the fixed pre-defined strike σ̃2t (τ):

{σ2t+τ − σ̃2t (τ)}Nvar, (2.5)

where Nvar is the notional amount. Here and later t and τ are given in fractions of a year.
The strike of a variance swap is the risk-neutral expectation at t of the integrated variance from t to t + τ. It

is also known as the model-free-implied variance (MFIV), where “model-free” indicates that the expectation
does not depend on the specification of the underlying price process, see [12]. MFIV can be approximated by
a function of current option prices (see [11, 12, 14]) which has the following form:

σ̃2t (τ) = EQt [
t+τ

∫
t

σ2(s)ds] =
2erτ
τ {

St

∫
0

Pt(K, τ)dK
K2

+
∞

∫
St

Ct(K, τ)dK
K2

}, (2.6)

where EQt is the expected value at t under the risk-neutral measure Q, Pt(K, τ) {Ct(K, τ)} is the price at t of
put {call} with exercise price K and time to maturity τ, St is the price of the asset in t, and r is the annualized
continuously compounded risk-free interest rate.

MFIV can be opposed to the implied variance σ̂2t (κ, τ), the square of the implied volatility (IV), which is
obtained by solving

Vt(σ̂, κ, τ) − V̆t(κ, τ) = 0, (2.7)

whereVt is the theoretical (model) optionprice, V̆t is the optionprice taken from themarket, and κ = K/(Sterτ)
is themoneyness of the option. IV, in comparison toMFIV, is a function of both κ and τ,meaning that at every t
one recovers a cloud of points, which can be approximated by a surface, see [17, 24].

The floating leg of the variance swap, the realized variance (RV) of an asset from t to t + τ, can be com-
puted from the time series of daily asset returns in different ways, depending on the contract specification.
Here we use the most common form

σ2t+τ = τ−1
252(t+τ)
∑

i=252t
(log Si

Si−1
)
2
. (2.8)

In [15], σ2t+τ − σ̃2t (τ) is referred to as the variance risk premium (VRP), which is shown to be strongly neg-
ative for major US stock indexes over the sample period from January 1996 to December 2003. The negative
sign indicates that investors are willing to pay extra to hedge themselves against possible future market tur-
moil. Bakshi et al. [4], who investigated the S&P100 index and its largest constituents from 1991 to 1995,
also found significant negative difference between realized and option-implied volatilities for the average of
25 stocks and stressed that this difference is less pronounced than for the index. Driessen et al. [20] studied
each S&P100 constituent individually. Their t-test for H0, that the sample means of RV and MFIV are equal,
was not rejected for the majority of stocks in the sample from January 1996 to December 2003.
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We check the same hypothesis on the Germanmarket for the sample period from20100104 to 20121228
using the dataset described in Section 4. Table 1 summarizes the results of a t-test for the null hypothesis that
RV andMFIV are on average equal against the alternative RV<MFIV.H0 is strongly rejected for theDAX index.
For the DAX constituents the rejection rate decreases with the options’ maturity τ: with τ = 0.25 (3 months)
and τ = 0.5 (6months)H0 cannot be rejected at a 5% significance level for 8 out of 30 DAX constituents, with
τ = 1 (1 year) for 13 constituents. Table 1 reports the t-test results for these 13 stocks. In addition, Table 2
reports sample averages of RV andMFIV and their differences for all 30DAX constituents. The latter are found
to be negative for most of the stocks and for the DAX index.

Driessen et al. [20] interpreted their t-test results as indirect evidence that a negative correlation risk
premium (CRP) exists. To identify the existence of CRP in the DAXdataset we compute themodel-free-implied
correlation (MFIC) ρ̃t(τ) from theMFIVs ofDAXand its constituents and the realized correlation (RC) ρt+τ from
the corresponding RV by applying (2.2):

ρ̃t(τ) =
σ̃2t,DAX(τ) −∑i w2

i σ̃
2
t,i(τ)

∑i ∑j ̸=i wiwj σ̃t,i(τ)σ̃t,j(τ)
, (2.9)

ρt+τ =
σ2t+τ,DAX −∑i w2

i σ
2
t+τ,i

∑i ∑j ̸=i wiwjσt+τ,iσt+τ,j
. (2.10)

Figure2plots theMFICand theRCofDAXcomputedover the3-monthwindowandwith3monthmaturity
respectively (τ = 0.25). The hypothesis H0: RC =MFIC of the t-test is strongly rejected. Using this finding and
taking into account results in the literature, we would expect ρt+τ − ρ̃t(τ) (CRP) to be negative most of the
time. One of the ways of exploiting this observation is to make a bet on the market correlation by entering a
dispersion strategy.

2.3 Dispersion strategy with variance swaps

We study one of the variations of the dispersion strategy, which consists of selling the variance of the basket
(DAX) and buying variances of basket constituents.

The dispersion strategy can be implemented by taking a short position in the variance swap (2.5) on an
index and long positions in variance swaps on its constituents with notional amounts proportional to index
weights. The payoff of a dispersion strategy at t + τ is then defined by

Dt+τ = −{σ2t+τ,B − σ̃2t,B(τ)} +
N
∑
i=1
w2
i {σ

2
t+τ,i − σ̃

2
t,i(τ)}. (2.11)

Then we apply (2.2) and rewrite (2.11) in the following form:

Dt+τ = ρ̃t(τ)∑
i
∑
j ̸=i
wiwj σ̃t,i(τ)σ̃t,j(τ) − ρt+τ∑

i
∑
j ̸=i
wiwjσt+τ,iσt+τ,j . (2.12)

Based on empirical findings described in Section 2.2 we assume σ̃t,i(τ) ≈ σt+τ,i for each constituent stock
and simplify the payoff (2.12) as follows:

Dt+τ ≈ ∑
i
∑
j ̸=i
wiwj σ̃t,i(τ)σ̃t,j(τ){ρ̃t(τ) − ρt+τ},

which illustrates that by entering the dispersion strategy one obtains exposure to ρt+τ − ρ̃t(τ), where the
floating leg ρt+τ is computed with (2.8) and (2.2) at expiry, and the fixed leg ρ̃t(τ) is a function of vari-
ance swap strikes (2.6). The test results described in Section 2.2 suggest that we should, on average, expect
ρt+τ − ρ̃t(τ) < 0. It also means the dispersion strategy with payoff Dt+τ on average would have a profit. How-
ever, as one can see in Figure 2, there might be days when ρt+τ − ρ̃t(τ) ≥ 0. In order to hedge against these
potential losses one needs a forecast of the floating leg of the dispersion strategy.

Another possible modification of the dispersion trading strategy does not involve trading on the OTC
market and can be implemented with standardizedmarket instruments, puts and calls. The strategy consists

Brought to you by | Humboldt-Universität zu Berlin
Authenticated

Download Date | 4/17/19 3:37 PM



6 | W.K. Härdle and E. Silyakova, Implied basket correlation dynamics

τ = 0.25 τ = 0.5 τ = 1

BASF 0.00000 0.00000 0.15298∗
Commerzbank 0.00000 0.00005 0.66073∗
Continental AG 0.99998∗ 0.99998∗ 0.99998∗
Deutsche Bank 0.00001 0.00000 0.06985∗
Deutsche Börse 0.95674∗ 0.95064∗ 0.96357∗
Fresenius Medical Care 0.45640∗ 0.27716∗ 0.81540∗
Henkel 0.90404∗ 0.99997∗ 0.99680∗
K+S 0.00000 0.00000 0.99981∗
Lanxess 0.27625∗ 0.05776∗ 0.99989∗
Linde 0.76162∗ 0.87214∗ 1.00000∗
RWE 0.40725∗ 0.21673∗ 0.05305∗
ThyssenKrupp 0.01733 0.00272 0.69073∗
Volkswagen 0.99998∗ 0.99998∗ 0.99998∗

Table 1. The results of t-test for the equality of sample
averages with H0: RV =MFIV against the alternative
RV <MFIV of DAX constituents for which H0 is not
rejected at 5% significance level at least for one τ. Test
results which cannot reject H0 are marked with ∗. The test
was performed for the volatilities of the DAX index and its
30 constituent stocks computed over the time period
20100104–20121228 for three different maturities/
estimation windows: τ = 0.25, 0.5, 1. The test results are
presented for the subsample of 13 DAX constituents, for
which H0 cannot be rejected at least for one τ.

τ = 0.25 τ = 0.5 τ = 1

σ σ̃ σ − σ̃ σ σ̃ σ − σ̃ σ σ̃ σ − σ̃

Adidas 27.56 30.06 −2.50 28.35 31.07 −2.71 29.72 31.45 −1.73
Allianz 29.38 31.93 −2.55 30.44 33.03 −2.58 32.72 33.94 −1.22
BASF 28.95 31.08 −2.13 29.73 31.62 −1.89 31.32 31.58 −0.26
Bayer 27.39 30.74 −3.35 27.93 31.23 −3.31 28.85 31.17 −2.31
Beiersdorf 33.90 37.09 −3.20 34.53 37.96 −3.43 35.95 37.94 −1.99
BMW 19.57 23.95 −4.38 19.79 24.17 −4.38 20.26 23.90 −3.64
Commerzbank 46.47 52.77 −6.30 47.40 52.54 −5.14 51.02 51.70 −0.68
Continental AG 41.45 39.82 1.63∗ 43.84 40.55 3.29∗ 48.28 41.60 6.69∗
Daimler 34.18 37.55 −3.36 34.93 38.45 −3.52 36.93 38.85 −1.93
Deutsche Bank 39.26 43.56 −4.30 39.76 43.93 −4.18 42.52 43.51 −1.00
Deutsche Börse 30.03 30.40 −0.37 31.09 31.10 0.00∗ 32.90 31.48 1.43∗
Deutsche Post 31.61 33.63 −2.02 32.05 34.18 −2.13 33.13 34.67 −1.54
Deutsche Telekom 25.50 27.54 −2.04 26.20 28.26 −2.06 27.66 29.12 −1.46
E.ON 23.62 26.26 −2.64 24.11 26.53 −2.41 24.67 27.48 −2.81
Fresenius Medical Care 28.12 29.21 −1.09 28.67 29.68 −1.01 30.19 30.04 0.16∗
Fresenius SE 19.01 22.44 −3.43 19.21 23.17 −3.96 19.89 23.62 −3.73
HeidelbergCement 21.16 23.56 −2.40 21.61 23.69 −2.08 22.77 24.08 −1.31
Henkel 39.04 39.00 0.05∗ 40.96 39.49 1.46∗ 45.03 39.99 5.04∗
Infineon 23.15 26.08 −2.94 23.57 26.70 −3.13 24.30 27.05 −2.75
K+S 40.78 43.75 −2.98 41.75 45.03 −3.27 45.88 45.08 0.80∗
Lanxess 29.99 30.84 −0.85 30.86 31.78 −0.92 33.51 32.52 1.00∗
Linde 39.90 39.92 −0.02 41.02 40.55 0.47∗ 42.83 41.07 1.76∗
Lufthansa 22.18 25.18 −2.99 22.72 26.32 −3.61 23.47 26.77 −3.30
Merck 23.83 26.06 −2.23 24.43 26.40 −1.97 25.51 26.39 −0.89
Munich Re 23.35 26.54 −3.19 23.88 27.91 −4.03 25.28 29.10 −3.82
RWE 27.43 29.15 −1.72 27.93 29.71 −1.78 28.75 30.38 −1.63
SAP 21.45 23.67 −2.22 21.73 25.14 −3.42 22.00 26.82 −4.82
Siemens 25.94 28.53 −2.59 26.82 29.78 −2.95 28.63 30.35 −1.72
ThyssenKrupp 36.32 38.37 −2.04 36.78 38.71 −1.93 38.80 38.90 −0.10
Volkswagen 37.91 36.31 1.61∗ 39.48 36.90 2.59∗ 41.94 36.91 5.03∗
DAX Index 21.72 25.38 −3.66 22.30 26.67 −4.37 23.40 27.81 −4.41

Table 2.Mean of√RV (σ) and√MFIV (σ̃) and their difference√RV −√MFIV (σ − σ̃), for DAX index and its 30 constituent stocks
computed over the time period 20100104–20121228 for three different maturities/estimation windows: τ = 0.25, 0.5, 1.
σ − σ̃ ≥ 0 are marked with ∗.
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Figure 2. Left panel: DAX ρt,τ (blue), ρ̃t(τ) (red). Right panel: Scatter plot of DAX ρt,τ (horizontal axis) vs. ρ̃t(τ) (vertical axis), for
t + 0.25 from 20100802 till 20120801.

in selling index option straddles and purchasing straddles in options on index components. The forecast of
the implied correlation surface can provide the insight into the relative cost of index options compared to
the price of options on individual stocks that comprise the index. In comparison to the single historical or
implied volatility forecast, usually used for this purpose, the correlation surface can provide information for
trading options on the whole maturity spectrum. Which means one can buy straddles with different strikes,
depending on the implied correlation forecast.

3 Modeling and forecasting correlation dynamics

To determine the amount of hedge for Dt+τ we model the implied correlation (IC) and use the forecast to
approximate the floating leg of the dispersion strategy ρt+τ. By applying (2.2) to IV of a basket σ̂t,B(κ, τ) and
its N constituents σ̂t,i(κ, τ), i ∈ {1, . . . , N}, for every t we obtain the IC surface (ICS)

ρ̂t(κ, τ) =
σ̂2t,B(κ, τ) −∑i w2

i σ̂
2
t,i(κ, τ)

∑i ∑j ̸=i wiwj σ̂t,i(κ, τ)σ̂t,j(κ, τ)
. (3.1)

Figure 3 displays ρ̂t(κ, τ) in different trading days: 20111209, 20120710. Due to the specific option data
structure, every day one observes a “cloud of strings” that visually resembles a surface and can be recovered
by applying nonparametric smoothing. One can clearly see that surfaces have shape similarities, but vary in
levels, slopes and curvatures. Thus theymay be treated as daily realizations of a random function. In addition
one can observe that the strings do not have fixed spacial locations. In order to model the dynamics of such
a complicated multi-dimensional object we apply the DSFM that reduces the dimensionality of the problem
and allows the ICS to be studied in a conventional time-series context.

3.1 Model characterization

At every day t one observes ICs ρ̂(κt,j , τt,j), t = 1, . . . , T, j = 1, . . . , Jt, where j is the index of observations
and Jt the total number of observations at day t. Prior to introducing the model we exclude the case of a fully
undiversified basket, with ρ̂ = 1, from the analysis and apply a variance stabilizing transformation. Fisher’s
Z-transformation [29] gives

T(u) := 1
2 log 1 + u

1 − u
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8 | W.K. Härdle and E. Silyakova, Implied basket correlation dynamics

Figure 3. ICS implied by prices of DAX options traded on 20111209 (left) and 20120710 (right); surfaces recovered by the
Nadaraya–Watson smoothing.

with Yt,j := T{ρ̂(κt,j , τt,j)}.
Our aim is to model the dynamics of {(Yt,j , Xt,j), 1 ≤ t ≤ T, 1 ≤ j ≤ Jt}, where Xt,j = (κt,j , τt,j). The tech-

nique we employ allows us to reduce the dimensionality and to simultaneously study the dynamics of Yt by
approximation through an L-dimensional object with L ≪ J. The DSFM, first introduced by Fengler et al. [24]
in an application to IV surface dynamics, and then extended by Park et al. [35] and Song et al. [39], has these
desired properties.

The basic idea is to approximate E(Yt|Xt) by the sumof L + 1 smooth basis functionsm := {m0, . . . ,mL}⊤

(factor loadings) weighted by time-dependent coefficients Zt := (1, Zt,1, . . . , Zt,L)⊤ (factors):

Yt,j = m0(Xt,j) +
L
∑
l=1
Zt,lml(Xt,j) + εt,j . (3.2)

In representation (3.2), m are chosen data-driven and do not have a particular (parametric) form.
Here two important remarks are appropriate. Firstly, the unknown basis functions mmust be estimated.

Fengler et al. [24] estimated both m and Zt iteratively using kernel smoothing techniques, Park et al. [35]
approximated m by tensor B-splines basis functions weighted by a coefficients matrix. Here we employ a
functional principal component analysis (FPCA) approach that will be described in Section 3.2. The non-
parametric estimation procedure that we use is introduced in Section 3.3; the basics of this technique can be
found in [39].

The second issue is the estimation of the latent factors Zt. Having the data-driven basis m̂l in hand, we
can estimate daily factors by the ordinary least squares (OLS) method. Afterwards one fits the econometric
model to Ẑt, as it was done by Cont and Da Fonseca [17] and Hafner [26], who fitted AR(1) to every Zt,l,
l ∈ {1, . . . , L}, or by Fengler et al. [24] who considered a multivariate VAR(2) process.

3.2 Correlation surface with FPCA

We approximate the ICS by the sum of orthogonal functions. By doing so we involve the FPCA theory by
looking at the ICS as a stationary random function f : ℝ2 → ℝ.

Let J = [κmin, κmax] × [τmin, τmax] be the range of possible values of κt,j and τt,j. We introduce (ρt),
t ∈ {1, . . . , T}, the sample of i.i.d. smooth random functions (surfaces). Every ρt is a smooth map ρt : J → ℝ
and satisfies ∫

J
E(ρ2t ) < ∞. Also for every ρt we assume a well-definedmean function μ(u) = E{ρt(u)} and the
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existence of a covariance function ψ(u, v) = E[{ρt(u) − μ(u)}{ρt(v) − μ(v)}]. With ϕ(u, v) = E{ρt(u)ρt(v)} the
covariance function can be expressed as

ψ(u, v) = ϕ(u, v) − μ(u)μ(v), (3.3)

which can be also interpreted as a covariance coefficient of two points on the surface with coordinates u and
v ∈ J. Since (3.3) is a symmetric positive definite function,we can use it as a nucleus of the integral transform,
performed by the linear operator. Define the covariance operator Γ that transforms f into (Γf):

(Γf)(u) = ∫
J

ψ(u, v)f(v)dv.

Γ is a symmetric positive operator with orthonormal eigenfunctions {γj}∞j=1, γj : J → ℝ, and associated eigen-
values {λj}∞j=1 with λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ 0. Now we can express (3.3) in terms of eigenfunctions and eigenvalues of
the covariance operator Γ by applying Mercer’s theorem (see, e.g., [30]):

ψ(u, v) =
∞

∑
j=1
λjγj(u)γj(v).

Taking eigenfunctions {γj}∞j=1 as a basis, we represent ρt(u) − μ(u) as a generalized Fourier series with
coefficients given by

ζtj = ∫
J

{ρt(u) − μ(u)}γj(u)du,

called the j-th principal component score with E(ζtj) = 0, E(ζ 2tj) = λj and E(ζtjζik) = 0 for j ̸= k, see [37]. Thus
one may rewrite ρt(u) − μ(u) in the Karhunen–Loève form:

ρt(u) − μ(u) =
∞

∑
j=1
ζtjγj(u). (3.4)

Here ζtj indicates how strong the influence of the j-th basis function on the shape of the t-th surface is. The
higher the score, the closer the shape of ρt resembles the shape of the j-th eigenfunction.

In practice one needs to take L eigenfunctions to replace the infinite sum in (3.4) by the finite sum of L
basis functions, corresponding to the highest eigenvalues. One calls {γj}Lj=1 the empirical orthonormal basis,
see [37]. In the next subsection we discuss the estimation procedure for {γj}Lj=1 as well as criteria for the L
selection.

3.3 Estimation algorithm

In model (3.2) both Zt and m must be estimated. We do that in two steps.
At the first step, we estimate the covariance operator introduced in Section 3.2 and take μ̂ as m̂0 and γ̂l

as m̂l, l ∈ {1, . . . , L}.
The covariance function (3.3) is estimated as described in [27, 41]. The procedure consists in least-

squares fitting of two local linear models, for μ̂ and ψ̂.
Given u ∈ J we choose (âμ , b̂μ) = (aμ , bμ) to minimize

T
∑
t=1

Jt
∑
j=1

{Yt,j − aμ − bμ(u − Xt,j)}2Khμ (Xt,j − u), (3.5)

and take μ̂(u) = âμ. Then, given u, v ∈ J we choose (âϕ , b̂ϕ,1, b̂ϕ,2) = (aϕ , bϕ,1, bϕ,2) to minimize

T
∑
t=1

∑
j,k:1≤j ̸=k≤Jt

{Yt,jYt,k − aϕ − bϕ,1(u − Xt,j) − bϕ,2(v − Xt,k)}2Khϕ (Xt,j − u)Khϕ (Xt,k − v), (3.6)
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10 | W.K. Härdle and E. Silyakova, Implied basket correlation dynamics

Figure 4.Mean function μ̂(u) of the DAX ICS with corresponding data points,
estimated from 20100802 till 20110801 with hμ = (hμ,1 , hμ,2)⊤ = (0.12, 0.17)⊤.

and take ϕ̂(u, v) = âϕ. Here Kh denotes the two-dimensional product kernel, Kh(q̄) = kh1 (q̄1) × kh2 (q̄2),
h = (h1, h2)⊤, based on one-dimensional kh(q̄) = h−1k(h−1 q̄). For our application we selected the quartic
kernel, where k(q̄) = 15/16(1 − q̄2)2 for |q̄| < 1 and 0 otherwise. For both (3.5) and (3.6) kernel bandwidths
hμ = (hμ,1, hμ,2)⊤ and hϕ = (hϕ,1, hϕ,2)⊤ are to be selected. The procedure is described in Appendix B. Fig-
ure 4 shows an example of μ̂(u) estimated using the dataset described in Section 4 for a sub-sample from
20100802 to 20110801.

Finally, having estimates μ̂(u) and ϕ̂(u, v), we compute ψ̂(u, v) using (3.3) and take its L eigenfunctions
corresponding to the largest eigenvalues as m̂l, l ∈ {1, . . . , L}. Parameter L is chosen in such a way that the
selected eigenfunctions explain the large share of variability in the original data. It is also necessary to men-
tion that ψ̂(u, v) is a matrix of a very large dimensionality. To obtain its consistent estimator, suitable for
further spectral decomposition, various matrix regularization techniques can be used, e.g. banding as in [6],
thresholding as in [5], eigenvalues cleaning as in [31] and factor models described in [23]. We use the latter
in this step.

In the second step, using m̂, we obtain the estimates Ẑt = (1, Ẑt,1, . . . , Ẑt,L)⊤ asminimizers of the follow-
ing least squares criterion:

Ẑt = arg min
Zt

T
∑
t=1

Jt
∑
j=1

{Yt,j − Z⊤t m̂(Xt,j)}2.

4 Data

We study the dispersion strategy over the 2-year sample period from 20100802 to 20120801 on the German
market represented by the DAX basket. The basket is composed of 23 stocks, constituents of DAX, with the
most liquidly traded options and weights proportional to the current market capitalization. To model the
dynamics of the IC and to construct the dispersion trade we operate with three main variables representing
different correlation estimates: MFIC, RC, and IC. The datasets are described in Table 3.

TheMFIC dataset contains daily series of MFICs with maturities 0.083, 0.25, 0.5 and 1 years computed
via (2.9) from variance swap rates given by Bloomberg as a discrete approximation of (2.6).

The RC dataset contains daily series of RCs computed with (2.8) and (2.10) from the Bloomberg end-of-
day stock prices over estimation windows 0.083, 0.25, 0.5 and 1 years.

The IC dataset is constructed using out-of-the-money (OTM) DAX and single stock options from the
EUREX database. To estimate the DSFM model and produce forecasts for the sample period the dataset cov-
ers one additional year from 20090803 to 20100730. The dataset is transaction-based, meaning every trade
is registered with the date it occurred, expiry date, underlying ticker, exercise price (strike) and settlement
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Min. Max. Mean Median Stdd. Skew. Kurt.

IC κ 0.8000 1.2000 0.9825 0.9825 0.0986 0.0690 2.0661
τ 0.0274 0.9671 0.2442 0.1753 0.1979 1.3717 4.3941
ρ̂t(κ, τ) 0.0587 0.9998 0.6150 0.6290 0.1566 −0.2739 2.6115

MFIC ρ̃t(0.083) 0.3895 0.4860 0.6061 0.6193 0.0834 0.0696 0.1957
ρ̃t(0.25) 0.4446 0.9795 0.6549 0.6573 0.0850 0.0613 0.1631
ρ̃t(0.5) 0.4997 1.4730 0.7037 0.6953 0.0866 1.8188 0.1305
ρ̃t(1) 0.5611 1.0851 0.7496 0.7422 0.0905 0.7764 0.6788

RC ρt+0.083 0.1754 0.8955 0.5373 0.5013 0.1331 0.5221 −0.2154
ρt+0.25 0.2774 0.8149 0.5566 0.5363 0.1192 0.2489 −0.8083
ρt+0.5 0.3794 0.7343 0.5759 0.5713 0.1053 −0.0243 −1.4012
ρt+1 0.4312 0.6581 0.5924 0.6050 0.0522 −1.2443 0.9875

Table 3. Summary statistics: IC data computed from the DAX index and constituents options over the period from 20090803 till
20120801 including the 1 year estimation period (3 years, 770 trading days, 135 obs./day). MFIC computed from daily variance
swaps rates. RC computed from daily stock returns from 20100802 till 20120801 (2 years, 515 trading days). The figures are
given after filtering and data preparation.

price. To obtain IV from option prices via (2.7) we distinguish between index and single stock options. For
index options, which have the European type of option payoff, the Black–Sholes (BS) model is used. To ac-
count for dividends and early execution in options on single stocks (American payoff) we use binomial trees
(see [18]) and the bisection algorithm. Other necessary model parameters, such as stock prices, index levels,
dividend amounts for constituent stocks, interest rates and stock market capitalization, are taken from the
Bloomberg database. As a risk-free rate proxy we take daily values of EURIBOR (Euro Interbank Offered Rate)
with 1week up to 1 yearmaturities and use linear interpolation to obtain values for required option τ. We use
the most liquid segment of data with κ ranging from 0.8 to 1.2 and τ from 10 days to 1 year. Options outside
of this range are excluded from the data set due to the poor data quality, which does not allow to recover
implied volatility surfaces for the DAX and all constituents and to compute implied correlation on a daily
basis. Figure 3 shows an example of the ICS plotted using the entire available option data, including options
outside of the τ-range from 0.8 to 1.2, for two selected “rich with data” days (20111209 and 2012071).
As one can see, some correlations observed in Figure 3 are more extreme in comparison to the values in
Table 3. The plots show the nature of the implied correlation estimate, which is not necessarily observed in
a range from 0 to 1. Those days reveal the possibility of a so-called “volatility arbitrage”. Having in mind
the empirical findings described in Section 2.2, stating that the VRP of an index is much more pronounced
than of constituents, one might take a short position in a too expensive delta-hedged index option, when the
implied correlation is considerably higher than 1.

Options from the original EUREX dataset are not given on a regular (κ, τ)-grid, required in (3.1). In the
τ-dimension, maturities are standardized by market regulation, so for every t one can find several τt, sim-
ilarly for the index and for all constituents. However, in κ-dimension one needs to interpolate. At every t
we use the original (κt , τt) grid of the index and linearly interpolate IVs of all constituents to obtain values
corresponding to this grid. To avoid computational problems with a highly skewed empirical distribution of
(κt , τt), we transform the initial space [0.8, 1.2] × [0.03, 1] to [0, 1]2 using an empirical distribution func-
tion. Also, we remove optionswith extremely high IVs (larger than 50%) considering them to be themisprints
in trade registration and finally use (3.1) to obtain IC, which produces, on average, 135 observations per day.

Figure 1 shows a linear dependence between basket correlation and volatility. We check this finding in
the RC dataset for different estimation windows and in IC dataset for different maturities. The RC data allows
for the identification of a breakpoint, a threshold, after which the strength of the dependence changes, see
Figures 5 and 6. This phenomenon is persistent over different estimation windows. The IC dataset does not
show any clear change in correlation/volatility dependence. Since the IC is used to obtain a forecast of a
floating leg of the dispersion strategy, which is RC, we propose making a regime dependent correction of the
IC dataset as described in Appendix A.
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12 | W.K. Härdle and E. Silyakova, Implied basket correlation dynamics

Figure 5. DAX σB,t,τ (solid line) vs. ρt,τ (dashed line), scatter plot σB,t,τ vs. ρt,τ , for t, τ from 20100104 till 20121228, estimated
with (2.8) and (2.2) over 1 month (τ = 0.083), 3 months (τ = 0.25) and 6 months (τ = 0.5) window. Shaded area: Aug 2011
market fall. The switch point for two regression lines is defined as described in Section 4.
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Figure 6. DAX σ̂t,B(1, τ) (solid line) vs. ρ̂t(1, τ) (dashed line), scatter plot σ̂t,B(1, τ) and ρ̂t(1, τ), for t, τ from 20100104 till
20121228, estimated from IVs with (3.1) for option with 1 month (τ = 0.083), 3 months (τ = 0.25) and 6 months (τ = 0.5)
maturity. Shaded area: Aug 2011 market fall.
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Figure 7. Factor loadings m̂0 , m̂1 , m̂2 , m̂3 estimated from 20090803 till 20100730.

Figure 8. Driving factors of the DAX ICS Ẑt,1 , Ẑt,2 , Ẑt,3 and ACF up to the 20th lag from 20090803 till 20100730.

5 Empirical results

5.1 Estimation results and factor modeling

Using the IC dataset described in Section 4, we estimate the DSFM model for three non-overlapping sub-
samples 20090803–20100730 (the 1st year), 20100802–20110729 (the 2nd year), 20110802–20120801
(the 3rd year), and for the entire sample 20090803–20120801. All sub-samples include particularly volatile
periods caused by the stock market falls in May 2010, “Flash Crash 2010”, and a more pronounced drop in
August 2011.

An example of an estimation over the 1st sample year common factor loadings m̂0, m̂1, m̂2, m̂3 and the
daily time series of factors Ẑt,1, Ẑt,2, Ẑt,3 is given in Figures 7 and 8. Now the modeling task is simplified
to the low-dimensional analysis of factor series. We fit the VAR model of order p for Ẑt,1, Ẑt,2, Ẑt,3. Before
proposing a proper VAR specification, we check if Ẑt has characteristics that violate assumptions for linear
multiple time seriesmodels.We perform the augmentedDickey–Fuller (ADF) test to check each Ẑt,1, Ẑt,2, Ẑt,3
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Ẑt,1 Ẑt,2 Ẑt,3

20090803–20100730 (the 1st year) −2.991 (1) −6.982 (1) −5.710 (3)
20100802–20110729 (the 2nd year) −1.666∗ (3) −3.090 (2) −4.480 (1)
20110802–20120801 (the 3rd year) −3.511 (2) −3.796 (3) −3.480 (2)
20090803–20120801 (the entire sample) −4.025 (1) −6.912 (3) −8.979 (1)

Table 4. Augmented Dickey–Fuller (ADF) test on Ẑt,1 , Ẑt,2 , Ẑt,3. The number of lags included in the ADF regression
(in brackets) is chosen by starting with three lags and subsequently deleting lag terms, until the last one is significant
at 5% level. Test statistics that do not reject the hypothesis of a unit root at 5% level are denoted by ∗.

AIC HQIC SBIC

20090803–20100730 (the 1st year) 1 1.923 2.061 2.162
2 1.839∗ 1.975∗ 2.152∗
3 1.856 2.052 2.304
4 1.882 2.060 2.389

20100802–20110729 (the 2nd year) 1 −2.868 −2.800 −2.699
2 −3.075∗ −2.932∗ −2.755∗
3 −3.068 −2.898 −2.645
4 −3.051 −2.854 −2.525

20110802–20120801 (the 3rd year) 1 −0.118 −0.051 0.048
2 −0.355 −0.238∗ −0.064∗
3 0.361∗ −0.193 0.055
4 −0.360 −0.144 0.179

20090803–20120801 (the entire sample) 1 0.745 0.773 0.818
2 0.384∗ 0.461∗ 0.539∗
3 0.397 0.467 0.579
4 0.412 0.475 0.621

Table 5. Akaike’s information criterion (AIC), Schwarz’ Bayesian information criterion (SBIC), and the Hannan and Quinn
information criterion (HQIC) for defining the optimal lag order p of a VAR model for DAX and S&P100 ICS factors Ẑt,1 , Ẑt,2 , Ẑt,3.
The symbol ∗ appearing next to the test statistics indicates the optimal lag at 5% significance level.

for stationarity, see Table 4. For Ẑt,2 in sub-sample 20100802–20110729 we cannot reject the hypothesis of
a unit root, so we use its first differences instead. Then we define the appropriate number of lags, or order
p, by computing Akaike’s information criterion (AIC), Schwarz’ Bayesian information criterion (SBIC), and
the Hannan and Quinn information criterion (HQIC) values, see Table 5. The symbol ∗ appearing next to the
test statistics indicates the optimal lag. Except for the sub-sample 20110802–20120801, the test statistics
suggest p = 2, so we make a choice in favor of this specification. The estimation results are summarized in
Table 6. We also conducted a portmanteau (Q) test for the null hypothesis that a series of residuals exhibits
no autocorrelation. The test does not indicate the presence of a serial correlation.

Based on the results, we can distinguish the influence of each factor on the time evolution of the ICS.
The first factor can be interpreted as level, the second as maturity and the third as a moneyness effect. The
relative sizes of the largest eigenvalues of (3.3) suggests that m̂1 is capable of capturing the biggest share
of the surface variability. The variation captured by the second m̂2 has a smaller influence, since it is only
responsible for the surface shape transformation in the τ-dimension. Finally, since the variation of the ICS in
the κ-dimension is relatively small, the m̂3 has a smaller impact, which is also reflected in the Ẑt,3 series.

The forecast of Ẑt,1, Ẑt,2, Ẑt,3 modeled with VAR(2) together with estimated fixed m̂0, m̂1, m̂2, m̂3 gives
a forecast of the ICS.
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20090803–20120801 20090803–20100730
(the entire sample) (the 1st year)

Z1,t Z2,t Z3,t Z1,t Z2,t Z3,t

Z1,t−1 0.645∗ −0.012 −0.019 0.630∗ −0.032 0.029
Z1,t−2 0.310∗ 0.008 0.029 0.276∗ 0.013 −0.060∗
Z2,t−1 −0.104∗ 0.259∗ 0.156 −0.036 0.047 0.036
Z2,t−2 0.057∗ 0.406∗ −0.014 −0.039 0.339 −0.104∗
Z3,t−1 −0.07 0.140∗ 0.471∗ −0.091 −0.494∗ 0.525∗
Z3,t−2 0.149∗ 0.118∗ 0.251∗ 0.046 0.181 −0.208∗
c 0.004 0.006 −0.003 −0.004 −0.001 0.001

20100802–20110729 20110802–20120801
(the 2nd year) (the 3rd year)

Z1,t Z2,t Z3,t Z1,t Z2,t Z3,t

Z1,t−1 0.809∗ 0.048 −0.202∗ 0.339∗ 0.191∗ −0.001
Z1,t−2 0.254∗ −0.029 0.112∗ 0.351∗ 0.041 −0.036
Z2,t−1 0.188∗ 0.687∗ −0.223∗ 0.355∗ 0.264∗ 0.132∗
Z2,t−2 0.091 0.262∗ 0.018 0.084 0.302∗ −0.045
Z3,t−1 0.453∗ 0.051 0.162∗ −0.197 −0.008 0.623∗
Z3,t−2 0.118 0.118 0.275∗ 0.044 0.240∗ 0.204∗
c −0.004 0.001 −0.002 0.003 −0.001 −0.002

Table 6. The estimated parameters for the VAR(2) model for DAX ICS factors.
Estimates which are not significant at 5% level are marked with ∗.

τ Min. Max. Mean Median Stdd. Skew. Kurt.

0.083 −108.04 72.30 −1.14 −0.71 8.00 −6.61 100.49
0.25 −255.48 49.53 −1.20 −0.41 11.49 −17.58 372.33
0.5 −216.04 32.78 −0.74 −0.30 9.37 −18.66 425.86
1 −64.84 76.59 −0.01 −0.38 7.47 2.74 46.85

Table 7. Performance of naïve hedge, summary statistics for εht+τ from 20100101 till 20120801.

5.2 Backtesting the dispersion strategy

Here we show that using the correlation forecast, one can improve the original dispersion strategy (2.11)
and test it empirically over the 2-years sample period 20100801–20120802. We compare the payoff of the
strategywithout hedgingwith thenaïve hedging strategy andpropose its improvement, theadvanced strategy.

To obtain the value of the naïve hedge position to be held over ∆t days from t + τ − ∆t till t + τ, wemake a
∆t-days ahead DSFM forecast ρ̂t+τ(1, t + τ) and use it as ρt+τ in (2.11). Thus the size of the position is defined
by

Dht+τ = ∑
i
∑
j ̸=i
wiwj σ̃t,i(τ)σ̃t,j(τ){ρ̃t(τ) − ρ̂t+τ(1, t + τ)}. (5.1)

The corresponding relative hedging error is given by

εht+τ =
Dht+τ − Dt+τ

Dt+τ
= −

ρ̂t+τ(1, t + τ) − ρt+τ
ρ̃t(τ) − ρt+τ

, (5.2)

where εht+τ < 0 (> 0) means that the hedge (5.1) underestimates (overestimates) the actual position (2.11).
Table 7 gives summary statistics for (5.2) over the studied sample period for three trades with four different
maturities: 0.083, 0.25, 0.5 and 1 years. The statistic includes 515 trades originated every day and expired
over the given 2-year sample period, ∆t is one day.
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Strategy τ Min. Max. Mean Stdd.

Dt+τ 0.083 −1502.58 1080.23 87.09 356.94
(no hedge) 0.25 −1531.94 1282.31 101.92 440.54

0.5 −1270.90 1301.28 136.91 456.75
1 −872.76 760.92 134.26 299.01

Dt+τ − Dht+τ 0.083 −3237.72 617.40 15.35 203.09
(naïve hedge) 0.25 −1726.53 413.28 35.90 110.14

0.5 −1301.47 344.91 41.13 91.91
1 −914.27 327.03 79.62 93.14

Dadvt+τ 0.083 −1375.99 1011.38 100.93 256.50
(advanced hedge) 0.25 −1137.79 1282.31 195.09 248.41

0.5 −760.85 1301.28 231.35 281.66
1 −367.89 623.38 123.04 190.80

Table 8. Summary statistics for payoffs Dt+τ (no hedge), Dt+τ − Dht+τ (naïve hedge), D
adv
t+τ (advanced hedge) from 20100101

till 20120801. ∆t is one day. Best results (highest min, max, mean and smallest stdd.) are given in bold.

The improved version of the strategy uses the DSFM forecast ρ̂t+τ(1, t + τ) as a trigger which defines
whether one should hedge or not. If ρ̂t+τ(1, t + τ) ≥ ρ̃t(τ) (DSFM predicts loss in dispersion strategy), an in-
vestor takes an offsetting (with negative sign) position in (5.1); if ρ̂t+τ(1, t + τ) < ρ̃t(τ) (DSFM predicts gain
in dispersion strategy), then no hedge is necessary. Thus we can write the payoff of the advanced strategy at
t + τ as follows:

Dadv
t+τ =

{
{
{

Dt+τ − Dht+τ if ρ̂t+τ(1, t + τ) ≥ ρ̃t(τ),
Dt+τ if ρ̂t+τ(1, t + τ) < ρ̃t(τ).

Since a variance swap contract costs nothing to initiate (we ignore transactions costs), the presented
series of daily payoffs corresponds to daily P&L of the hypothetical trade where swaps expire daily over the
whole period from 20100801 to 20120802. We compare the cash flows from three strategies. As one can see
in Table 8, the advanced strategy outperforms the other two by having the smallest maximal losses, highest
maximal gains (τ = 0.25, 0.5) and the highest (second highest for τ = 1) average payoff over the studied
sample period.

In this simplified setting the financing costs are not taken into account for both strategies.

6 Conclusions

In this study we investigated the implied correlation (IC) of the DAX index basket and introduced a hedging
approach for the dispersion trading strategy using the IC forecast. We applied the dynamic semiparametric
factor model (DSFM) to the IC dataset from January 2010 to August 2012, recovered four basis functions and
three time series of factors and used them to forecast the IC. The advanced dispersion strategy we employed
using the IC forecast shows the smallest maximal losses, the highest maximal gains and the highest average
payoff over the studied sample period in comparison to the alternative strategies. So, we conclude that our
modeling approach can be of potential use in equity dispersion trading.

The choice of DSFM as amodel for the IC surface (ICS) dynamics is motivated by the degenerated dataset
design, which has to be modeled nonparametrically. On the other hand we were driven by the necessity to
reduce the dimensionality of the problem and facilitate the forecasting. DSFM satisfies both requirements.
It captures the form of the ICS by its nonparametric part well, and allows a simple parametric model for
dynamics to be used. At the later modeling stage we fit the three-dimensional VAR(2) model, which is a good
choice to carry out the forecasting exercise. In addition,we found that it is possible to separate the influence of
each recovered basis function on the ICS shape. The functions allow their interpretation as level, moneyness
andmaturity effects. The strength of these effects is defined by the time series of corresponding factors, which
can be characterized as drivers of the correlation risk. An interesting task would be to study the presence,
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τ σB,t+τ ρt+τ Slope 1 Slope 2

0.083 20.24 0.5917 0.0361 0.0085
0.25 20.34 0.5728 0.0336 0.0093
0.5 22.42 0.6008 0.0286 0.0094
Average 21.00 0.5884 0.0328 0.0091

Table 9. Segmented linear regression of ρt+τ on σB,t+τ with one break point,
τ = 0083, 0.25, 0.5 for t + τ, from 20100104 till 20120801.

size and magnitude of the correlation risk premia, captured by these factors. We consider this findings to be
important topics for further research.

A Switch point selection for correlation regimes

The dependence of ρ and σB observed in RV and RC is not pronounced in case of ATM IV and IC, see Figures
5 and 6. Therefore we propose a market regime correction scheme for the IC dataset. The idea is to find a
breakpoint between two segments of a piecewise linear regression of ρt+τ on σB,t+τ. Using the procedure
described in [34], we fit a segmented linear regression with one break point. Based on results summarized
in Table 9 we make the following state-dependent correction: if σ̂B,t(1, τ) > 21 (high volatility regime), then
ρ̂t(κ, τ) = 0.0091σ̂B,t(κ, τ).

B Smoothing parameters selection

For both (3.5) and (3.6) kernel bandwidths hμ = (hμ,1, hμ,2)⊤ and hϕ = (hϕ,1, hϕ,2)⊤ are to be selected. As
suggested in [28] we use the penalizing function approach to select optimal hoptμ , minimizing the mean inte-
grated squared error (MISE):

1
T

T
∑
t=1

1
Jt

Jt
∑
j=1

{Yt,j −
L
∑
l=1
Ẑt,lm̂l(Xt,j)}

2
wh∗ ,t(Xt,j)ΞAIC{

Wh∗ ,t,j(Xt,j)
TJt

}, (B.1)

with the Akaike (1970) information criterion (AIC) as penalizing function ΞAIC(q) = exp(2q) andWh∗ ,t,j(Xt,j)
defined by

Wh∗ ,t,j(Xt,j) =
Kh(0)

J−1t ∑Jt
k=1Kh(Xt,k − Xt,j)

for every Xt,j, 1 ≤ t ≤ T, 1 ≤ j ≤ Jt.
Since the distribution of the observations is very uneven,weuse theweighted version of the criterionwith

weights wh∗ ,t(ū) := p−1h∗ ,t(ū), where ph∗ ,t(ū) is the average design density. For every Xt,j, 1 ≤ t ≤ T, 1 ≤ j ≤ Jt
it is defined by

ph∗ ,t(Xt,j) = J−1t
Jt
∑
k=1

Kh(Xt,k − Xt,j).

The bandwidth hoptμAIC = (hμ1, hμ2)⊤ corresponding to the minimal criterion (B.1) is taken as optimal. The
bandwidth h∗ of the weighting function is constant and does not depend on the choice of hμ.
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a b s t r a c t

CoVaR is a measure for systemic risk of the networked financial system conditional on institutions being
under distress. The analysis of systemic risk is the focus of recent econometric analyses and uses tail
event and network based techniques. Here, in this paper we bring tail event and network dynamics
together into one context. In order to pursue such joint efforts, we propose a semiparametric measure to
estimate systemic interconnectedness across financial institutions based on tail-driven spillover effects in
a high dimensional framework. The systemically important institutions are identified conditional to their
interconnectedness structure. Methodologically, a variable selection technique in a time series setting is
applied in the context of a single-indexmodel for a generalized quantile regression framework. We could
thus include more financial institutions into the analysis to measure their tail event interdependencies
and, at the same time, be sensitive to non-linear relationships between them. Network analysis, its
behaviour and dynamics, allows us to characterize the role of each financial industry group in 2007–2012:
the depositories received and transmitted more risk among other groups, the insurers were less affected
by the financial crisis. The proposed TENET - Tail Event driven NETwork technique allows us to rank the
Systemic Risk Receivers and Systemic Risk Emitters in the US financial market.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Systemic risk endangers the stability of the financial market,
the failure of one institution may harm the whole financial
system. The sources of risk are complex, as both exogenous
and endogenous factors are involved. This calls for a study on
a financial network which accounts for interaction between the
agents in the financial market. Although the notion systemic risk
is not novel in academic literature (see, e.g., Minsky (1977)), it
had been neglected both in academia and in the financial risk
industry until the outbreak of the financial crisis in 2008. Some
financial institutions collapsed, even somemajor ones like Lehman
Brothers, Federal Home LoanMortgage Corporation (FreddieMac),
and Federal National Mortgage Association (Fannie Mae). The
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magnitude of repercussions caused by this financial crisis and its
complexity revealed a significant flaw in financial regulations. As
in the past, regulations had been focused primarily on stability
of a single financial institution. The detailed actions involved the
establishment of Financial Stability Board (FSB) after G-20 London
summit in 2009, integration of systemic risk agenda into Basel III
in 2010 prior to the G-20 meeting in Seoul, and enacting the Dodd
Frank Wall Street Reform and Consumer Protection Act (‘Dodd
Frank Act’) in the US in 2010, which is said to have bought the
most radical changes into the US financial system since the Great
Depression.

In this context, the focus is on systemically important financial in-
stitutions (SIFIs) whose failuremay not only impair the functioning
of the financial systembut also have adverse effects on the real sec-
tors of the economy. Therefore, we face several challenges such as
identifying SIFIs, studying the propagation mechanism of a shock
in a system, or in a network formed by financial institutions, in-
vestigating the response of a system to a shock as a whole network
and establishing a theoretical framework for systemic risk.

Although systemic risk is a relatively straightforward concept
aimed at measuring risk stemming from interaction between the
agents, the variety of systemic risk measures and diversity of

http://dx.doi.org/10.1016/j.jeconom.2016.02.013
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methods to model interaction effects lead to the fact that the
literature on this topic is highly heterogeneous. The relevant
literature in this field can be broadly divided into two groups:
economic modelling of systemic risk and financial intermediation
including microeconomic (e.g. Beale et al. (2011), Eisenberg and
Noe (2001)) and macroeconomic approaches (e.g. Gertler and
Kiyotaki (2010)) with the emphasis on theoretical, structural
frameworks, and quantitative modelling with the emphasis on
empirical analysis. The quantitative literature can be further
classified by statistical methodology into quantile regression
based modelling such as linear bivariate model by Adrian and
Brunnermeier (2011), Acharya et al. (2012), Brownlees and Engle
(2015), high-dimensional linear model by Hautsch et al. (2015)
and Betz et al. (2016), partial quantile regression by Giglio
et al. (2012) and by Chao et al. (2015). Further approaches
include principal-component-based analysis, e.g. by Bisias et al.
(2012), Rodriguez-Moreno and Peña (2013) and others; statistical
modelling based on default probabilities by Lehar (2005), Huang
et al. (2009), and others; graph theory and network topology,
e.g. Boss et al. (2006), Chan-Lau et al. (2009), and Diebold and
Yilmaz (2014).

Our paper belongs to the quantitative group of the aforemen-
tioned literature, namely, modelling the tail event driven network
risk based on quantile regressions augmented with non-linearity
and variable selection in ahighdimensional time series setting. Our
method is in nature different fromAcharya et al. (2012) andBrown-
lees and Engle (2015)’smethod. Acharya et al. (2012) hasmeasured
the systemic risk relevance without capturing the network effects
of liquidity exposure, and Brownlees and Engle (2015) analyse the
risk of a specific asset given the distress of thewhole system,which
is a reverse of our systemat institutional analysis, and theirmethod
would capture little spillover effects. Therefore, we believe, that
our method is a good addition to the literature of systemic risk
measures. Also compared to Diebold and Yilmaz (2014), we focus
more on the tail event driven interconnectedness, which cannot be
captured by conditional correlation. As a starting point of our re-
searchwe take co-Value-at-Risk, or CoVaR, modeled by Adrian and
Brunnermeier (2011) (fromhere on abbreviation as AB), where ‘co-
’ stands for ‘conditional’, ‘contagion’, ‘comovement’. To capture the
tail interconnectedness between the financial institutions in the
system AB evaluate bivariate linear quantile regressions for pub-
licly traded financial companies in the US.

Whereas AB focus on bivariate measurement of tail risk, we
aim at assessing the systemic risk contribution of each institution
conditional on its tail interconnectedness with the relevant
institutions. Thus, the primary challenge is selecting the set of
relevant risk drivers for each financial institution. Statistically we
address this issue by employing a variable selection method in
the context of single-index model (SIM) for generalized quantile
regressions, i.e. for quantiles and expectiles. We further extend it
to a time series variable selection context in high dimensions. The
semi-parametric framework due to the SIMallowsus to investigate
possible non-linearities in tail interconnectedness. Based on
identified relevant risk drivers we construct a financial network
consisting of spillover effects across financial institutions. Further
we define two indices: Systemic Risk Receiver and Systemic
Risk Emitter, which combine network structure and market
capitalization to identify the systemically important financial
institutions.

The assumption of non-linear relationship between returns
of financial companies is motivated by previous work by Chao
et al. (2015), who find that the dependency between any pair
of financial assets is often non-linear, especially in periods of
economic downturn. Moreover, non-linearity assumption is more
flexible especially in a high dimensional setting where the system
becomes too complex to support the belief of linear relationships.
From the 2012 US financial company list from NASDAQ, we
select 100 financial institutions consisting of the top 25 financial
institutions from each industry group: Depositories, Insurance
companies, Broker–Dealers and Others. These four groups are
divided by Standard Industrial Classification (SIC) codes. Ourmodel
is evaluated, based on weekly log returns of these 100 publicly
traded US financial institutions. Firm specific characteristics from
balance sheet information such as leverage, maturity mismatch,
market to book and size are added into the model as well.
Furthermore, the macro state variables are also involved. The time
period from5 January, 2007 to 4 January, 2013 covers one recession
(from December 2007 to June 2009) and several documented
financial crises (2008 and 2011). Dividing companies by industry
groups and including several market perturbations allows not only
to select the key players for each time period, but also additionally
to highlight the connections between financial industries, which
can in turn provide additional information on the nature of
market dislocations. In application we find out that there are more
interconnectedness between2008 and2010.While the bank sector
plays a major role in the financial crisis, the insurance companies,
however, play more passive roles in terms of risk transmission
and risk reception. The most connected financial institutions with
respect to incoming and outgoing links are ranked based on our
network analysis. The new insight of our finding is that the non-
linear relationships between financial firms are stronger during
the financial crisis than the stable periods. In addition, to identify
the systemically important firms, we weight the connections by
firms’ market capitalization. The empirical findings suggest that
ourmethod can effectively identify the systemic risk relevant firms
similar to the literature. Moreover, we can discover the asymmetry
and non linearity of the firms’ dependency structure, which leads
to more accurate measures in terms of backtesting performance.
All the R programs for this paper can be found onwww.quantlet.de
or www.quantlet.de/d3/ia/.

The rest of the paper is organized as follows. In Section 2 our
approach of systemic risk modelling is outlined. Section 3 illus-
trates the empirical application. Section 4 concludes. Appendix A
presents the statisticalmethodology and the related theorems. Ap-
pendix B contains proofs.

2. Systemic risk modelling

In this section, we lay down the background and the basic setup
of our systemic risk analysis, which can be divided into three steps.

2.1. Basic concepts

Traditional measures assessing riskiness of a financial institu-
tion such as Value at Risk (VaR), or expected shortfall (ES) are based
either on company characteristics or integrated macro state vari-
ables which account for the general state of the economy. Thus, for
example, the VaR of a financial institution i at τ ∈ (0, 1) is defined
as:

P(Xi,t ≤ VaRi,t,τ )
def
= τ , (1)

where τ is the quantile level, Xi,t represents the log return of
financial institution i at time t . AB propose, the riskmeasure CoVaR
(Conditional Value at Risk) which takes spillover effects and the
macro state of the economy into account. The CoVaR of a financial
institution j given Xi at level τ ∈ (0, 1) at time t is defined as:

P

Xj,t ≤ CoVaRj|i,t,τ |Ri,t

 def
= τ , (2)

where Ri,t denotes the information set which includes the event of
Xi,t = VaRi,t,τ and Mt−1. Note that Mt−1 is a vector of macro state

http://www.quantlet.de
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variables reflecting the general state of the economy (see Section 3
for details of macro state variables).

We start with the concept of CoVaR, which is estimated in two
steps of linear quantile regression:

Xi,t = αi + γiMt−1 + εi,t , (3)
Xj,t = αj|i + γj|iMt−1 + βj|iXi,t + εj|i,t , (4)

F−1
εi,t
(τ |Mt−1) = 0 and F−1

εj|i,t
(τ |Mt−1, Xi,t) = 0 are assumed. AB

propose, in the first step, to determine VaR of an institution i by
applying quantile (tail event) regression of log return of company
i on macro state variables. The βj|i in (4) has standard linear
regression interpretation, i.e. it determines the sensitivity of log
return of an institution j to changes in tail event log return of an
institution i. In the second step the CoVaR is calculated by plugging
in VaR of company i at level τ estimated in (5) into the equation (6):VaRi,t,τ = α̂i + γ̂iMt−1, (5)

CoVaR
AB
j|i,t,τ = α̂j|i + γ̂j|iMt−1 + β̂j|iVaRi,t,τ . (6)

Thus, the risk of a financial institution j is calculated via a
macro state and a VaR of an institution i. Here the coefficient βj|i
of (6) reflects the degree of interconnectedness. By setting j to be
the return of a system, e.g. value-weighted average return on a
financial index, and i to be the return of a financial company i, we
obtain the contribution CoVaRwhich characterizes how a company
i influences the rest of the financial system. By doing the reverse,
i.e. by setting j equal to a financial institution and i to a financial
system, one obtains exposure CoVaR, i.e. the extent to which a
single institution is exposed to the overall risk of a system.

This approach allows us to identify the key elements of systemic
risk, namely, network effects, a single institution’s contribution
to systemic risk and a single institution’s exposure to systemic
risk. In our models, we expand AB’s method in three aspects.
First of all, AB perform pairwise quantile regression, since two
companies are not interacting in an isolated environment, all other
interaction effects need to be considered. This motivates us to
extend this bivariate model to a (ultra)high dimensional setting
by including more variables into the analysis, hence a variable
selection should be carried out. Secondly, a linear relationship
between system return and a single institution’s return is assumed
by AB. Hautsch et al. (2015) apply a linear LASSO based variable
selection to select variables to estimate the VaR of the system. We
enhance their methodologies by employing the nonlinear models
because of the complexity of the financial system. The flexible
SIM will be implemented to allow the nonlinear relationship in
this case. Thirdly, AB use average market valued asset returns
weighted by lagged market valued total assets to calculate the
system return, as they point out it may create mechanical
correlation between a single financial institution and the value-
weighted financial index. Instead of the regression on system
return, we proposed two market capitalization weighted indices
which combine the connectedness structure of the companies: the
index of Systemic Risk Receiver and the index of Systemic Risk
Emitter, to measure the systemic risk contributions, and further to
identify the systemically important financial institutions.

2.2. Step 1 VaR estimation

TENET can be illustrated by three steps. In the first step we
estimate VaR for each financial institution by using linear quantile
regression as in AB:

Xi,t = αi + γiMt−1 + εi,t , (7)VaRi,t,τ = α̂i + γ̂iMt−1, (8)
Xi,t and Mt−1 are defined as in Section 2.1. Note that the VaR is
estimated by the linear quantile regression (7) of log return of
an institution i on macro state variables. This is justified by the
analysis of Chao et al. (2015), who found evidence of linear effects
in regressing Xi,t onMt−1.

2.3. Step 2 network analysis

2.3.1. Connectedness analysis
In this step, TENET builds up a risk interdependence network

based on SIM for quantile regression with variable selection. Note
that our model can be easily extended to the case of expectiles,
which provide coherent risk measures. First the basic element
of the network: CoVaR calculation has to be determined. As
in Eq. (2), Xj represents a single institution, and the CoVaR of
institution j is estimated by conditioning on its information set.
This information set will not only include the asset returns of other
firms estimated and the macro variables used in the previous step,
but also uses control variables on internal factors of institution j,
i.e. the company specific characteristics such as leverage, maturity
mismatch, market-to-book and size. This setting will allow us
to model the risk spillover channels among institutions mostly
caused by liquidity or risk exposure. Our choice of information
set is more comprehensive than AB, and a similar motivation
can be found in Hautsch et al. (2015). Further, a systemic risk
network is built motivated by Diebold and Yilmaz (2014). TENET
captures nonlinear dependency as it is based on a SIM quantile
variable selection technique. See Appendix A for more details of
the statistical methodology. More precisely:

Xj,t = g(β⊤

j|RjRj,t)+ εj,t , (9)

CoVaR
TENET
j|Rj,t,τ def

= g(β⊤

j|RjRj,t), (10)

Dj|Rj def
=

∂g(β⊤

j|Rj
Rj,t)

∂Rj,t
|Rj,t=Rj,t = g ′(β⊤

j|RjRj,t)βj|Rj . (11)

Here Rj,t
def
= {X−j,t ,Mt−1, Bj,t−1} is the information set which in-

cludes p variables, X−j,t
def
= {X1,t , X2,t , · · · , Xk,t} are the explana-

tory variables including the log returns of all financial institutions
except for a financial institution j, k represents the number of fi-
nancial institutions. Bj,t−1 are the firm characteristics calculated
from their balance sheet information. Define the parameters as
βj|Rj

def
= {βj|−j, βj|M , βj|Bj}

⊤. Note that there is no time symbol t
in the parameters, since our model is set up based on one fixed
window estimation, we can then apply moving window estima-
tion to estimate all parameters in different windows. We defineRj,t

def
= {VaR−j,t,τ ,Mt−1, Bj,t−1}, VaR−j,t,τ as the estimated VaRs

from (8) for financial institutions except for j in step 1, andβj|Rj def
=

{βj|−j,βj|M ,βj|Bj}
⊤. As in equation (10) CoVaR comprises of not only

the influences of financial institutions except for j, but also in-
corporates non-linearity reflected in the shape of a link function
g(·). Therefore, we name it CoVaR

TENET
which stands for Tail-Event

driven NETwork risk with SIMmodel.1Dj|Rj is the gradientmeasur-

ing themarginal effect of covariates evaluated at Rj,t =Rj,t , and the

componentwise expression isDj|Rj def
= {Dj|−j,Dj|M ,Dj|Bj}

⊤. In partic-

ular, Dj|−j allows to measure spillover effects across the financial

1 For simplicitywe omit the subscript j|Rj,t,τ in CoVaR
TENET
j|Rj,t,τ , andwrite CoVaR

TENET
.
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Table 1
A k × k adjacency matrix for financial institutions at the sth window.

As =



I1 I2 I3 ··· Ik

I1 0 |Ds
1|2| |Ds

1|3| · · · |Ds
1|k|

I2 |Ds
2|1| 0 |Ds

2|3| · · · |Ds
2|k|

I3 |Ds
3|1| |Ds

3|2| 0 · · · |Ds
3|k|

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

Ik |Ds
k|1| |Ds

k|2| |Ds
k|3| · · · 0



institutions and to characterize their evolution as a system repre-
sented by a network. Note that in our network analysis we only
include the partial derivatives of institution j with respect to the
other financial institutions (i.e.Dj|−j). The partial derivatives with
respect to institution’s characteristic variablesDj|Bj andmacro state
variablesDj|M are not included. The reason is that we concentrate
on spillover effects among firms in the network analysis.

The term network refers to a (directed) graph with a set of
vertices and a set of links, or edges. We summarize the estimation
results in a form of a weighted adjacency matrix. Let Ds

j|i be one
element in Ds

j|−j at estimation window s, where j represents one
financial institution as before, i stands for another institution
which is one element in the other financial institutions set −j.
Then a weighted adjacency matrix contains absolute values ofDs

j|i

(in upper triangular matrix) and Ds
i|j (in lower triangular matrix),

where Ds
j|i is the impact from firm i to firm j and Ds

i|j means the
impact from firm j to firm i. Table 1 shows the adjacency matrix;
note that in eachwindow of estimation one has only one adjacency
matrix estimated.

The above k × k matrix As in Table 1 represents total
connectedness across variables at window s, and Ii represents the
name of financial institution i. The adjacency matrix, or a total
connectedness matrix, is sparse and off-diagonal since our model
(by construction) does not allow for self-loop effects (namely one
variable cannot be regressed on itself). The rows of this matrix
correspond to incoming edges for a variable in a respective row
and the columns correspond to outgoing edges for a variable in a
respective column.

2.3.2. Spectral clustering
In this section, we apply spectral clustering technique, see Shi

and Malik (2000), to detect the time varying risk clusters. The
weighted adjacency matrix at window s is As, the corresponding
unweighted matrix is defined by Au

s , which means that non-zero
values in As are set to be 1s, and zeros are still 0s. We take
the symmetrized adjacency matrix Au⊤

s Au
s , and the corresponding

degree matrix Γ 2
s (a diagonal matrix with diagonal elements as

row(column) sums). The spectral clustering algorithm is launched
by looking at the eigenvalues and eigenvectors of the normalized
LaplacianmatrixΓ −1

s Au⊤
s Au

sΓ
−1
s .Wewould like to identify for each

window risk clusters of financial institutions.

2.4. Step 3: Identification of systemic risk contributions

In the third step, TENET explains systemic risk measures. We
define two indices to identify systemically important financial
institutions. The idea is thatwewould like tomeasure the systemic
risk relevance of a specific firm by its total in and out connections
weighted by market capitalization.

The Systemic Risk Receiver Index for a firm j is therefore defined
as:

SRRj,s
def
= MCj,s


i∈kINs

(|Ds
j|i| · MCi,s)

 , (12)
the Systemic Risk Emitter Index for a firm j is defined as:

SREj,s
def
= MCj,s

 
i∈kOUTs

(|Ds
i|j| · MCi,s)

 . (13)

where kINs and kOUTs are the sets of firms connected with firm j by
incoming and outgoing links at window s respectively, and MCi,s
represents the market capitalization of firm i at the starting point
of window s. |Ds

j|i| and |Ds
i|j| are absolute partial derivatives derived

from (11) which represent row (incoming) and column (outgoing)
direction connectedness of firm j as in Table 1. Thus both SRRj,s
and SREj,s would take into account the firm j’s and its connected
firms’market capitalization aswell as its connectednesswithin our
network.

3. Results

3.1. Data

Since the SIC code can be applied to classify the industries,
according to the company list 2012 of US financial institutions
from the NASDAQ webpage and the corresponding four-digit SIC
codes from 6000 to 6799 for these financial institutions in COM-
PUSTAT database, we divide the US financial institutions into four
groups: (1) depositories (6000–6099), (2) insurance companies
(6300–6499), (3) broker–dealers (6200–6231), (4) others (the rest
codes). For instance, the Goldman Sachs Group is classified as bro-
ker–dealers based on its SIC code 6211. We select top 25 insti-
tutions in each group according to the ranking of their market
capitalization (like Billio et al. (2012) they apply a similar selec-
tionmethod), so that we can compare the difference among indus-
try groups. Our analysis focuses on the panel of these 100 publicly
traded US financial institutions between 5 January, 2007 and 4 Jan-
uary, 2013, see Table 2 for a complete list. Theweekly price data are
available in Yahoo Finance.2

To capture the company specific characteristics we adopt the
following variables calculated from balance sheet information as
proposed in AB: 1. leverage, defined as total assets/total equity
(in book values); 2. maturity mismatch, calculated by (short term
debt–cash)/total liabilities; 3. market-to-book, defined as the ratio
of the market to the book value of total equity; 4. size, calculated
by the log of total book equity. The quarterly balance sheet
information is available on the COMPUSTAT database, and cubic
interpolation is implemented in order to obtain the weekly data.

Apart from the data on the financial companies we use weekly
observations of macro state variables which characterize the
general state of the economy. These variables are defined as
follows: (i) the implied volatility index, VIX, reported by the
Chicago Board Options Exchange; (ii) short term liquidity spread
denoted as the difference between the three-month repo rate
(available on the Bloomberg database) and the three-month bill
rate (from Federal Reserve Board) to measure short-term liquidity
risk; (iii) the changes in the three-month Treasury bill rate from
the Federal Reserve Board; (iv) the changes in the slope of the
yield curve corresponding to the yield spread between the ten-
year Treasury rate and the three-month bill rate from the Federal
Reserve Board; (v) the changes in the credit spread between BAA-
rated bonds and the Treasury rate from the Federal Reserve Board;
(vi) the weekly S&P500 index returns from Yahoo finance, and
(vii) theweeklyDow JonesUSReal Estate index returns fromYahoo
finance.

2 We appreciate Mr. Lukas Borke, who is a doctoral student in LvB Chair of
Statistics, with the help for optimizing our code and downloading data.
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Table 2
Financial companies with tickers classified by industry: depositories (25), insurance (25), broker–dealers (25) and others (25).

Depositories (25) Insurances (25)

WFC Wells Fargo & Company AIG American International Group, Inc.
JPM J P Morgan Chase & Co MET MetLife, Inc.
BAC Bank of America Corporation TRV The Travelers Companies, Inc.
C Citigroup Inc. AFL Aflac Incorporated
USB US Bancorp PRU Prudential Financial, Inc.
COF Capital One Financial Corporation CB Chubb Corporation (The)
PNC PNC Financial Services Group, Inc. (The) MMC Marsh & McLennan Companies, Inc.
BK Bank Of New York Mellon Corporation (The) ALL Allstate Corporation (The)
STT State Street Corporation AON Aon plc
BBT BB&T Corporation L Loews Corporation
STI SunTrust Banks, Inc. PGR Progressive Corporation (The)
FITB Fifth Third Bancorp HIG Hartford Financial Services Group, Inc. (The)
MTB M&T Bank Corporation PFG Principal Financial Group Inc
NTRS Northern Trust Corporation CNA CNA Financial Corporation
RF Regions Financial Corporation LNC Lincoln National Corporation
KEY KeyCorp CINF Cincinnati Financial Corporation
CMA Comerica Incorporated Y Alleghany Corporation
HBAN Huntington Bancshares Incorporated UNM Unum Group
HCBK Hudson City Bancorp, Inc. WRB W.R. Berkley Corporation
PBCT People’s United Financial, Inc. FNF Fidelity National Financial, Inc.
BOKF BOK Financial Corporation TMK Torchmark Corporation
ZION Zions Bancorporation MKL Markel Corporation
CFR Cullen/Frost Bankers, Inc. AJG Arthur J. Gallagher & Co.
CBSH Commerce Bancshares, Inc. BRO Brown & Brown, Inc.
SBNY Signature Bank HCC HCC Insurance Holdings, Inc.

Broker–Dealers (25) Others (25)

GS Goldman Sachs Group, Inc. (The) AXP American Express Company
BLK BlackRock, Inc. BEN Franklin Resources, Inc.
MS Morgan Stanley CBG CBRE Group, Inc.
CME CME Group Inc. IVZ Invesco Plc
SCHW The Charles Schwab Corporation JLL Jones Lang LaSalle Incorporated
TROW T. Rowe Price Group, Inc. AMG Affiliated Managers Group, Inc.
AMTD TD Ameritrade Holding Corporation OCN Ocwen Financial Corporation
RJF Raymond James Financial, Inc. EV Eaton Vance Corporation
SEIC SEI Investments Company LM Legg Mason, Inc.
NDAQ The NASDAQ OMX Group, Inc. CACC Credit Acceptance Corporation
WDR Waddell & Reed Financial, Inc. FII Federated Investors, Inc.
SF Stifel Financial Corporation AB Alliance Capital Management Holding L.P.
GBL Gamco Investors, Inc. PRAA Portfolio Recovery Associates, Inc.
MKTX MarketAxess Holdings, Inc. JNS Janus Capital Group, Inc
EEFT Euronet Worldwide, Inc. NNI Nelnet, Inc.
WETF WisdomTree Investments, Inc. WRLD World Acceptance Corporation
DLLR DFC Global Corp ECPG Encore Capital Group Inc
BGCP BGC Partners, Inc. NEWS NewStar Financial, Inc.
PJC Piper Jaffray Companies AGM Federal Agricultural Mortgage Corporation
ITG Investment Technology Group, Inc. WHG Westwood Holdings Group Inc
INTL INTL FCStone Inc. AVHI AV Homes, Inc.
GFIG GFI Group Inc. SFE Safeguard Scientifics, Inc.
LTS Ladenburg Thalmann Financial Services Inc ATAX America First Tax Exempt Investors, L.P.
OPY Oppenheimer Holdings, Inc. TAXI Medallion Financial Corp.
CLMS Calamos Asset Management, Inc. NICK Nicholas Financial, Inc.
3.2. Estimation results

We perform the TENET analysis in three steps: Firstly,
the Tail Event VaR of all firms are estimated. Secondly, the
NETwork analysis based on the SIM with variable selection
technique is performed. Finally, the systemically important
financial institutions are identified based on the SRR, SRE indices
defined in Section 2.4.

To estimate VaR as in (7) and (8), we regress weekly log returns
of each institution on macro state variables at the quantile level
τ = 0.05, with the whole period being T = 266, the number
of independent variables is p = 110 (e.g. when JP Morgan
is dependent variable, then the independent variables include 4
firm characteristics of JP Morgan, 99 other firms’ returns and 7
macro state variables), and the rolling window size is set to be
n = 48 corresponding to one year’s weekly data. (We choose a
small window size for the stationarity of the data process, and
our methodology allows to work with the setting p > n. We
acknowledge that by choosing a larger window size, and different
data frequencies, the results may vary. We leave it as a further
research topic to study what is an optimal window size and data
frequency in this context.)

Fig. 1 is an example of estimated VaR (the thinner red line) for
J P Morgan (with the SIC code 6020). In the second step a CoVaR
based risk network is estimated by applying the SIM with variable
selection, see (20) in Appendix A. Fig. 1 shows the CoVaR

TENET
(the

thicker blue line) of J PMorgan. Then the network analysis induced
by the CoVaR

TENET
is shown from Fig. 2 to Fig. 6. Recall that the

adjacency matrix of Table 1 is constructed from |Ds
j|i| and |Ds

i|j|. To
aggregate the results over windows, we take the component-wise
sum of the adjacency matrices. With the aggregation we will be
able to understand the risk channels and the relative role of each
firm or each sector in the whole financial network.

For this propose, we define three levels of connectedness: the
overall level, the group level and the firm level connectedness. The
overall level of risk is characterized by the total connectedness of
the system and the averaged value of the tuning parameter λ. The
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Fig. 1. Log return of J P Morgan (black points), VaR (thinner red line), CoVaR
TENET

(thicker blue line), and CoVaR
L
(thinner green line) for J P Morgan, τ = 0.05,

window size n = 48, T = 266. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Total connectedness (solid blue line) and average lambda (dashed black line)
of 100 financial institutions from 20071207 to 20130105, τ = 0.05, window size
n = 48, T = 266. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. Incoming links for four industry groups. Depositories: solid red line,
Insurances: dashed blue line, Broker–Dealers: dotted green line, Others: dash–dot
violet line. τ = 0.05, window size n = 48, T = 266. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

total connectedness of links is defined as TCs = TC IN
s = TCOUT

s
def
=k

i=1
k

j=1 |Ds
j|i|, where TC IN

s and TCOUT
s are the total incoming and

outgoing links in this matrix respectively. The solid line of Fig. 2
shows the evolution of the total connectedness, and the dashed
line of Fig. 2 shows the averaged λ values of the CoVaR estimations
by using SIM with variable selection, where λ is the estimated
penalization parameter, see Appendix A.

While at the beginning of 2008 there was lower connectedness
and smaller averaged λ, from the second quarter of 2008 both
connectedness and averaged λ began to increase sharply which
corresponds to the bankruptcy of Bear Stearns and Lehman
Brothers. As the crisis was unfolding, the system became more
heavily interconnected and reached its peak at the beginning of
2009, the averaged λ stayed at peak level in the middle of 2009,
which can be seen as the influence of the European sovereign debt
crisis. Then the downward trend dominated the whole market,
and lasted until end of 2010, the financial institutions were most
least connected to each others in second quarter of 2011. From the
third quarter of 2011 the averaged λ began to increase and lasted
until beginning of 2012 which can be attributed to the impact of
the US debt-ceiling crisis in July 2011. Total connectedness series
Fig. 4. Outgoing links for four industry groups. Depositories: solid red line,
Insurances: dashed blue line, Broker–Dealers: dotted green line, Others: dash–dot
violet line. τ = 0.05, window size n = 48, T = 266. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

increased again in secondquarter of 2011. After themiddle of 2012,
both the averaged λ and the total connectedness series decreased.
Since the evolution of averaged λ represents the variation of the
systemic risk, Borke et al. (forthcoming) propose a Financial Risk
Meter (FRM): http://sfb649.wiwi.hu-berlin.de/frm/index.html.

The group connectedness with respect to incoming links is
defined as follows: GC IN

g,s
def
=

k
i=1


j∈g |Ds

j|i|, where g = 1, 2,
3, 4 correspond to the four aforementioned industry groups. The
group connectedness with respect to outgoing links is defined as
GCOUT

g,s
def
=


i∈g

k
j=1 |Ds

j|i|. Fig. 3 shows the incoming links for
these four groups. The patterns of these four groups are almost
identical, i.e. there are more links during the end of 2008 and
beginning of 2010, during the middle of 2011 and the end of 2012.
Only for group ‘‘others’’, there are even more links between 2010
and 2012, this maybe because the heterogeneity of this group:
AXP (American Express Company) is a credit card company, JLL
(Jones Lang LaSalle Incorporated), CBG (CBRE Group, Inc) and AVHI
(AV Homes, Inc.) are real estate firms, BEN (Franklin Resources,
Inc.), IVZ (Invesco Plc) and AMG (Affiliated Managers Group)
are investment management companies, whereas OCN (Ocwen
Financial Corporation) and AGM (Federal Agricultural Mortgage
Corporation) aremortgage loan companies.While the depositories
group (solid line) received on average more risk than the other
three groups, the insurance companies (dashed line) are less
influenced by the financial crisis. This can be seen as evidence
supporting the report of Systemic Risk in Insurance – An analysis of
insurance and financial stability published by Geneva Association
in 2010 stating that losses in the insurance industry have been
only a sixth of those at banks. In contrast to the incoming links
the outgoing links in Fig. 4 are more volatile. It is not surprising
that the depositories sector dominates the others in the outgoing
links, i.e. the bank group emits more risk to the system than the
other groups. Broker–dealers and others fluctuate verymuch in the
whole period, but they send out less risk comparedwith banks. And
the insurers emit averagely less risk over all periods than the other
groups.

Next we turn to analysing firm level interconnectedness. Firstly
we focus on the directional connectedness from firm i to the firm j
which is defined as follows: DC s

j|i
def
= |Ds

j|i|. The network in Fig. 5
shows one example of the firm level directional connectedness
on 12 June 2009 which was in the financial crisis. There are
several links emitted from C (Citigroup) in upper red ellipse and
MS (Morgan Stanley) in lower green ellipse. To make the major
connections more clearly, we apply a hard thresholding to omit
the small values. That is, the values of absolute derivatives smaller
than the average of the 100 largest absolute partial derivatives
are set to be zeros. Fig. 6 is the network after the thresholding.
We see that there are several strong connections, for example, in
left violet ellipse the link from JLL to CBG (as we stated before
they are both real estate companies, the connection induced by

http://sfb649.wiwi.hu-berlin.de/frm/index.html
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Fig. 5. A elliptical network representation of a weighted adjacency matrix without the thresholding. Depositories: clockwise 25 firms from WFC to SBNY (upper red),
Insurance: clockwise 25 firms from AIG to HCC (right blue), Broker–Dealers: clockwise 25 firms from GS to CLMS (lower green), Others: clockwise 25 firms from AXP to NICK
(left violet), date: 20090612, τ = 0.05, window size n = 48. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Fig. 6. A elliptical network representation of a weighted adjacency matrix after the thresholding (the values smaller than average of first 100 largest partial derivatives are
set to be 0s). Depositories: clockwise 25 firms from WFC to SBNY (upper red), Insurance: clockwise 25 firms from AIG to HCC (right blue), Broker–Dealers: clockwise 25
firms from GS to CLMS (lower green), Others: clockwise 25 firms from AXP to NICK (left violet), date: 20090612, τ = 0.05, window size n = 48. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
spillover effects seems reasonable), and in right blue ellipse from
PRU (Prudential Financial, Inc) to HIG (Hartford Financial Services
Group), note that they are both insurances. Moreover there are
also a couple of weak connections fromMS to others. Furthermore,
there are a lot of mutual connections, big banks like BAC (Bank of
America) and C in upper red ellipse, STT (State Street Corporation)
and FITB (Fifth Third Bancorp) in upper red ellipse, insurances:
LNC (Lincoln National Corporation) and HIG in right blue ellipse,
different groups, e.g. MS (a broker dealer) and KEY (KeyCorp, a big
bank). We aggregate the directional connectedness by the sum of
absolute value ofDs

j|i andDs
i|j over T = 266 windows. The results

for individual firm can be found in Table 3. For WFC (Wells Fargo)
the strong incoming links come from STI (SunTrust Banks), C and
BAC, the outgoing links go to USB (US Bancorp), STI and CBSH
(Commerce Bancshares). We also see some pairs of mutual
interacting firms, like BAC and C, AIG (American International
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Table 3
Top 15 firms ranked according to market capitalization (MC) in the 100 company list, the received links from other firms and transmitted links to other firms are shown
correspondingly. Note that only the first three most influential firms are listed for each ticker, n = 48, T = 266.

Rank Ticker τ = .05 τ = 0.95
Received link from Transmitted link to Received link from Transmitted link to

1 WFC STI, C, BAC USB, STI, CBSH C, BAC, HIG SBNY, PNC, USB
2 JPM C, MS, COF C, CFR, MKTX C, MS, BAC MS, BAC, GS
3 BAC C, MS, RF C, JNS, WFC C, ZION, FITB ZION, WFC, JPM
4 C BAC, LNC, MS BAC, AIG, JPM LNC, MS, NEWS AIG, BAC, LNC
5 AXP COF, C, WRLD OCN, WRLD, MMC C, COF, JNS WRLD, MKTX, FNF
6 USB LNC, RF, STI WRLD, JPM, PNC FITB, COF, ZION PNC, JPM, HCBK
7 GS MS, C, JNS WETF, MS, WDR MS, C, CBG MS, WHG, WDR
8 AIG C, LNC, MS C, GFIG, MS C, AGM, LNC AGM, C, NEWS
9 MET LNC, HIG, C LNC, CNA, MKL LNC, HIG, C HIG, PRU, AFL

10 COF C, FITB, ZION AXP, JPM, CBSH FITB, C, LNC AXP, PNC, BAC
11 BLK FNF, MKTX, EEFT CLMS, C, JNS CBG, C, JNS STT, NDAQ, MKTX
12 MS C, KEY, AIG GS, AIG, BAC C, HIG, KEY GS, PJC, C
13 PNC C, HBAN, LNC USB, HCBK, BK C, COF, ZION TROW, BK, USB
14 BK MS, ZION, C MMC, NTRS, WETF C, JNS, LNC STT, WRB, NEWS
15 BEN LNC, JNS, CLMS WRB, WRLD, MMC JNS, CLMS, LNC CLMS, FNF, BRO
Table 4
Top 10 directional connectedness from one financial institution to another. The ranking is calculated by the sum of absolute value of the partial derivatives, τ = 0.05,
window size n = 48, T = 266.

Rank From Ticker To Ticker Sum

1 JLL (Jones Lang LaSalle) CBG (CBRE Group) 140.39
2 CBG (CBRE Group) JLL (Jones Lang LaSalle) 116.86
3 LNC (Lincoln National Corp.) PFG (Principal Financial Group) 96.78
4 PFG (Principal Financial Group) LNC (Lincoln National Corp.) 90.43
5 C (Citigroup) AIG (American International Group) 82.03
6 JNS (Janus Capital Group) WDR (Waddell & Reed Financial) 65.75
7 RF (Regions Financial) HBAN (Huntington Bancshares) 60.86
8 STI (SunTrust Banks) FITB (Fifth Third Bancorp.) 57.95
9 LNC (Lincoln National Corp.) MET (MetLife) 57.35

10 MS (Morgan Stanley) GS (Goldman Sachs Group) 55.98
Table 5
Top 10 financial institutions ranked according to Incoming links calculated by the sum of absolute value of the partial derivatives, and the rank of market capitalization (MC)
in this 100 financial institutions list in 2012 is also shown in this table, τ = 0.05, window size n = 48, T = 266.

Rank Ticker of IN IN-Sum Rank of MC (Value)

1 AGM (Federal Agricultural Mortgage) 235.55 89 (3.52E+08)
2 AIG (American International Group) 230.46 8 (4.82E+10)
3 HIG (Hartford Financial Services Group) 225.46 37 (9.24E+09)
4 CBG (CBRE Group) 221.86 32 (1.28E+10)
5 FITB (Fifth Third Bancorp) 202.00 30 (1.31E+10)
6 STI (SunTrust Banks) 199.85 29 (1.44E+10)
7 HBAN (Huntington Bancshares) 196.29 51 (5.23E+09)
8 BAC (Bank of America Corp.) 192.11 3 (1.05E+11)
9 C (Citigroup) 191.50 3 (1.05E+11)

10 LNC (Lincoln National Corp.) 189.59 43 (6.67E+09)
Table 6
Top 10 financial institutions ranked according to Outgoing links calculated by the sum of absolute value of the partial derivatives, and the rank of market capitalization (MC)
in this 100 financial institutions list in 2012 is also shown in this table, τ = 0.05, window size n = 48, T = 266.

Rank Ticker of OUT OUT-Sum Rank of MC (Value)

1 LNC (Lincoln National Corp.) 1129.38 43 (6.67E+09)
2 C (Citigroup) 1097.93 3 (1.05E+11)
3 MS (Morgan Stanley) 626.12 37 (9.24E+09)
4 CBG (CBRE Group) 597.83 32 (1.28E+10)
5 RF (Regions Financial) 568.71 36 (9.30E+09)
6 JNS (Janus Capital Group) 558.06 76 (1.57E+09)
7 CLMS (Calamos Asset Management) 514.80 99 (1.94E+08)
8 HIG (Hartford Financial Services Group) 499.04 37 (9.24E+09)
9 ZION (Zions Bancorp.) 472.18 63 (3.72E+09)

10 AGM (Federal Agricultural Mortgage) 349.11 90 (3.52E+08)
Group) and MS. We show the directional connection in τ =

0.95 case as well, the selected firms are mostly different from
τ = 0.05 case, which shows that our method can explain the
asymmetric effects on the dependency structure at different price
levels. See Table 3 for more details. The ranking of the directional
connectedness is calculated by the sum of absolute value of Ds
j|i

over windows. The first two strongest mutual connections are
between JLL and CBG, between LNC and PFG (Principal Financial
Group), see Table 4. Secondly, the firm connectedness with respect
to incoming links is defined as FC IN

j,s =
k

i=1 |Ds
j|i|. Finally, the
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Fig. 7. A elliptical network representation of an unweighted adjacencymatrix (1 and 0 representation of this matrix) without thresholding. Green, blue, red, black represent
four different risk clusters, and grey represents unconnected firm. Date: 20090612, τ = 0.05, window size n = 48. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
firm connectedness with respect to outgoing links is: FCOUT
j,s =k

j=1 |Ds
j|i|. From Tables 5 and 6 we have the top 10 firms in

terms of incoming links and outgoing links respectively. The most
connected firm with incoming links is AGM (Federal Agricultural
Mortgage Corporation) and themost connected firmwith outgoing
links is LNC (Lincoln National Corporation) which is a multiple
insurance and investment management company. We have found
out that among the top 10 IN-link and OUT-link companies,
there are several big firms, such as AIG (American International
Group) and BAC (Bank of America Corporation) with IN-link, and
C (Citigroup) and MS (Morgan Stanley) with OUT-link. However,
there are also firms with moderate or small sizes e.g. AGM
and HBAN (Huntington Bancshares Incorporated) with IN-link,
and CLMS (Calamos Asset Management) and JNS (Janus Capital
Group) with OUT-link. This is connected with the Global Financial
Stability Report (GFSR) of April 2009 which states that the crisis
has shown that not only the banks but also other non-bank
financial intermediaries can be systemically important and their
failure can cause destabilizing effects. It also emphasizes that not
only the largest financial institutions but also the smaller but
interconnected financial institutions are systemically important
and need to be regulated. ‘‘Too connected to fail’’ is an important
issue. However, we see that small firms tend to have more
connections with small firms, such as AGM (market cap $0.35
billion), which is with the largest sum of incoming links coming
from GFIG (market cap. $0.29 billion), LTS (market cap. $0.22
billion), NEWS (market cap.$0.62 billion), OPY (market cap.$0.21
billion) and HBAN (market cap. $5.2 billion). Despite the heavy
connections in the system, one would still not consider it as
highly systemic risk relevant. So we try to account the three
factors in the forthcoming systemic risk analysis: (1) a firm is big
enough, (2) a firm is highly connected with other firms, (3) the
connected firms are relative large in size. Therefore to identify the
systemically important financial institutions, we add a weight of
market capitalization in the network.

In addition, based on our network analysis we have the
following findings: (1) the connections between institutions
tend to increase before the financial crisis, (2) the network is
characterized by numerous heavy links at the peak of a crisis,
(3) the connections between institutions reflected by the absolute
value of partial derivatives get weaker as the financial system
stabilizes, (4) the incoming links are far less volatile than the
outgoing links. Whereas banks dominate both incoming and
outgoing links, the insurers are less affected by the financial crisis
and exhibit less contribution in terms of risk transmission. The
broker–dealer and others are highly volatilewith respect to the risk
contribution. (5) Several institutions with moderate or small sizes
and also somenon-bank institutions have higher connectedness, as
they are too connected firms. (6) ‘‘Too connected’’ is not a sufficient
condition to detect the importance of the firm. To identify the
systemically important financial institutions we need a measure
which combines the concepts ‘‘too connected to fail’’ and ‘‘too big
to fail’’.

While in the first part of step 2 we detect connectedness by
applying sum of the absolute derivatives, in the second part of step
2 we classify the risk clusters by using spectral clustering. Figs. 7
and 8 show the risk clusters in window starting on 6 June 2009
(during subprime crisis) and 10 Aug 2012. For Fig. 7, the biggest
clusterwith blue triangle includes some big banks, likeWFC (Wells
Fargo), JPM (J PMorgan), BAC (Bank of America), C (Citigroup), USB
(US Bancorp), some insurances: PFG (Principal Financial Group)
and CINF (Cincinnati Financial Corporation), broker–dealers: CME
(CME Group Inc.), SEIC (SEI Investments Company) and MKTX
(MarketAxess Holdings), and others like AXP (American Express
Company) and IVZ (Invesco Plc). We see that during crisis, WFC
(Wells Fargo), JPM (J P Morgan) and C (Citigroup) are very
frequently classified into the same cluster. For Fig. 8, we see that
the clusters are more widely spreading cross sectors.

In the third step we provide an exact systemic risk measure for
each firm based on their connectedness structure.We consider the
market capitalization of each firm as well as its connected firms
with incoming or outgoing links, see Eqs. (12) and (13). Table 7
shows the ranking of the top 10 calculated Systemic Risk Receivers:
JPM (J P Morgan), C (Citigroup), WFC (Wells Fargo), BAC (Bank
of America), AIG (American International Group), GS (Goldman
Sachs), USB (US Bancorp), MS (Morgan Stanley), AXP (American
Express Company) and COF (Capital One Financial Corp.). As for
the Systemic Risk Emitters, the corresponding ranking is presented
in Table 8. Although the market capitalization of LNC and RF are
moderate, they are still ranked in the top 10 largest systemic risk
emitters list, as they have many strong outgoing links. Compared
with the result of global systemically important banks (G-SIBs)
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Fig. 8. A elliptical network representation of an unweighted adjacencymatrix (1 and 0 representation of this matrix) without thresholding. Green, blue, red, black represent
four different risk clusters, and grey represents unconnected firm. Date: 20120810, τ = 0.05, window size n = 48. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Table 7
Top 10 financial institutions ranked according to the index of Systemic Risk Receiver (SRR), the rank of market capitalization (MC) and their values (in brackets) of this 100
financial institutions in 2012 are also shown in this table.

Rank Ticker SRR Rank of MC (Value)

1 JPM (J P Morgan Chase & Co) 4.63E+21 2 (1.55E+11)
2 C (Citigroup) 3.13E+21 3 (1.05E+11)
3 WFC (Wells Fargo & Company) 3.03E+21 1 (1.75E+11)
4 BAC (Bank of America) 2.90E+21 3 (1.05E+11)
5 AIG (American International Group) 1.15E+21 8 (4.82E+10)
6 GS (Goldman Sachs Group) 1.00E+21 8 (5.53E+10)
7 USB (US Bancorp) 8.57E+20 6 (6.03E+10)
8 MS (Morgan Stanley) 8.29E+20 12 (3.21E+10)
9 AXP (American Express Company) 7.71E+20 5 (6.26E+10)

10 COF (Capital One Financial Corp.) 6.64E+20 10 (3.39E+10)
Table 8
Top 10 financial institutions ranked according to the index of Systemic Risk Emitter (SRE), the rank of market capitalization (MC) and their values (in brackets) of this 100
financial institutions in 2012 are also shown in this table.

Rank Ticker SRE Rank of MC (Value)

1 C (Citigroup) 1.18E+22 3 (1.05E+11)
2 BAC (Bank of America) 3.89E+21 3 (1.05E+11)
3 MS (Morgan Stanley) 2.11E+21 12 (3.21E+10)
4 WFC (Wells Fargo & Company) 1.37E+21 1 (1.75E+11)
5 AIG (American International Group) 7.01E+20 8 (4.82E+10)
6 COF (Capital One Financial Corp.) 6.18E+20 10 (3.39E+10)
7 LNC (Lincoln National Corp.) 5.10E+20 43 (6.67E+09)
8 RF (Regions Financial Corp.) 4.10E+20 36 (9.30E+09)
9 STI (SunTrust Banks, Inc.) 4.03E+20 29 (1.44E+10)

10 CBG (CBRE Group, Inc.) 3.73E+20 32 (1.28E+10)
published by Financial Stability Board 2012, six of our top ten
systemic risk receivers appear in this report: JPM (J P Morgan),
C (Citigroup), WFC (Wells Fargo), BAC (Bank of America), GS
(Goldman Sachs), MS (Morgan Stanley), whereas four of our top
ten systemic risk emitters appear in this report: C (Citigroup), BAC
(Bank of America), WFC (Wells Fargo & Company) andMS (Morgan
Stanley). Also we compare our result with the global systemically
important insurers (G-SIIs) published by the Financial Stability
Board 2013, AIG (American International Group) is present in
their list. We compare with the list of all domestic systemically
important banks (D-SIBs) in US published by Board of Governors
of the Federal Reserve System 2013 as well, USB (US Bancorp), AXP
(American Express), COF (Capital One Financial Corp.), RF (Regions
Financial Corp.) and STI (SunTrust Banks, Inc.) are on that list. In
total all our top 10 Systemic Risk Receivers and 8 of our top 10
Systemic Risk Emitters are identified as systemically important
financial institutions. In this step, we could identify ‘‘too big as
well as too connected’’ firms which need to be well supervised and
regulated.

3.3. Model validation

3.3.1. Comparison with linear models
To evaluate the accuracy of the estimated VaR in the first step,

we count the firms’ VaRs violations, which is meant to be the
situationwhen the stock losses exceed the estimated VaRs. In Fig. 1
there is no violation in the series of estimated VaR (thinner red
line) for J P Morgan. The average violation rate for 100 financial
institutions isτ = 0.0006,which ismuch smaller than the nominal
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Fig. 9. Left: the estimated link function ( CoVaR
TENET

of J P Morgan) (solid line) with h = 0.05, and the estimated index (points), time period: 20081003–20090828. Right:

the estimated link function ( CoVaR
TENET

of J P Morgan) (solid line) with h = 0.03, and estimated the index (points), time period: 20100604–20110506. τ = 0.05, window
size n = 48, 95% confidence bands (dashed lines).
Table 9

The average p-values of CaViaR test in overall and crisis periods for CoVaR
TENET

, and

the CoVaR
L
, the standard deviations are given in the brackets.

Average p-value of CaViaR test CoVaR
TENET CoVaR

L

The overall period 0.63(0.33) 0.37(0.41)
The crisis Period 0.72(0.24) 0.51(0.42)

rate τ = 0.05. Since our observations are T = 266, most of
estimated VaRs do not have violation, the CaViaR test for VaR
cannot be performed.

In step 2 we apply the SIM with variable selection to calculate
CoVaR. We also compare our results with linear quantile LASSO
models in this step to justify the necessity of having a nonlinear
model. The benchmark linear LASSO model is written as follows:

Xj,t = αj|Rj + βL⊤
j|RjRj,t + εj,t , (14)

CoVaR
L
j|Rj,t,τ def

= αj|Rj + βL⊤
j|RjRj,t , (15)

where αj|Rj is a constant term, Rj,t , X−j,t , Bj,t−1,VaR−j,t,τ andRj,t are

defined in Section 2.3. The parameters βL
j|Rj

def
= {βL

j|−j, β
L
j|M , β

L
j|Bj

}
⊤,

andβL
j|Rj

def
= {βL

j|−j,
βL

j|M ,
βL

j|Bj
}
⊤ which are estimated by using linear

quantile regression with variable selection. Then CoVaR
L
can be

simply calculated.3

Recall that we denote our estimated CoVaR in step 2 as
CoVaR

TENET
. Now we compare the performance of CoVaR

TENET
and

CoVaR
L
. In Fig. 1 the thinner green line represents the CoVaR

L
of J

P Morgan, there is 1 violation during the whole time period of T =

266, whereas there are 4 violations in the estimated CoVaR
TENET

series in Fig. 1 (thicker blue line). We apply the CaViaR test pro-
posed by Berkowitz et al. (2011). While the p-values of CoVaR

TENET

in overall period is 0.63, CoVaR
L
is only 0.37. Also in crisis period

(from 15 September 2008 to 26 February 2010) CoVaR
TENET

per-
forms better than CoVaR

L
, see Table 9 for more details.

Further, we examine the shape of the link functions in the crisis
period as well as in the period of relative financial stability. We

3 For simplicity we omit the subscript j|Rj,t,τ in CoVaR
L
j|Rj,t,τ , and write CoVaR

L
.

Table 10
Pre-Crisis analysis. Top 10 financial institutions ranked according to Incoming links
calculated by the sum of absolute value of the partial derivatives, the values of
market capitalization (MC) in 2008 are also shown in this table, τ = 0.05, window
size n = 48, T = 41.

Rank Ticker of IN IN-Sum Value of MC

1 FRE (Freddie Mac) 43.95 2.20E+10
2 OCN (Ocwen Financial Corp.) 40.12 3.87E+08
3 NDAQ (The NASDAQ OMX Group) 39.54 6.69E+09
4 FNM (Fannie Mae) 34.07 3.80E+10
5 CACC (Credit Acceptance Corp.) 32.97 5.39E+08
6 KEY (KeyCorp) 32.49 7.98E+09
7 EV (Eaton Vance Corp.) 30.58 3.73E+09
8 PRAA (Portfolio Recovery Associates) 30.07 5.92E+08
9 HBAN (Huntington Bancshares) 29.92 3.36E+09

10 PJC (Piper Jaffray Companies) 29.66 5.75E+08

find out that for almost all firms in a financial crisis period, the
link functions are in most of the windows, non-linear, while in
a stable period, the link functions tend to be more linear. Take
the CoVaR

TENET
for J P Morgan as an example. The left panel of

Fig. 9 displays the shape of the estimated link function in one
window in crisis time and its 95% confidence bands, see Carroll and
Härdle (1989). In a stable period one observes in some windows
the shape of the link function as on the right panel of Fig. 9. It
confirms Chao et al. (2015)’s results stating that the nonlinear
model performs better especially in a financial crisis period. We
conclude the outperformance of our method over the linear model
conditional on the network effects.

3.3.2. Pre-Crisis analysis
In this part we would like to test whether our model can detect

in advance financial firms which had knock-on effects for the
financial systems. We consider mainly five financial firms: FNM
(Fannie Mae), FRE (Freddie Mac), LEH (Lehman Brothers), MER
(Merrill Lynch) and WB (Wachovia Corp.). The weekly historical
returns of these firms are available on the CRSP database. The
above mentioned exercise has been carried out again with these
five firms (a total of 105 firms in this case). The time period is from
7 December 2007 to 12 September 2008 includes 41 estimates
in moving windows. Firstly we show the results from step 2,
which checks the connectedness of these firms. Table 10 shows the
ranking of total incoming links, where FRE receives most incoming
links from other firms, and FNM is ranked as the 4th. From Table 11
it can be seen that the firm with the strongest outgoing links is
FNM. Moreover FRE is ranked as the third one, and LEH is ranked
in the 7th place. Table 12 presents the direct incoming links and
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Table 11
Pre-Crisis analysis. Top 10 financial institutions ranked according to Outgoing links
calculated by the sum of absolute value of the partial derivatives, the values of
market capitalization (MC) in 2008 are also shown in this table, τ = 0.05, window
size n = 48, T = 41.

Rank Ticker of OUT OUT-Sum Value of MC

1 FNM (Fannie Mae) 252.43 3.80E+10
2 CBG (CBRE Group, Inc.) 157.93 4.04E+09
3 FRE (Freddie Mac) 144.44 2.20E+10
4 WRLD (World Acceptance Corp.) 89.05 5.11E+08
5 CLMS (Calamos Asset Management) 81.13 3.79E+08
6 NEWS (NewStar Financial) 80.71 2.91E+08
7 LEH (Lehman Brothers) 75.73 3.50E+10
8 NNI (Nelnet, Inc.) 70.79 6.03E+08
9 PRAA (Portfolio Recovery Associates) 69.84 5.93E+08

10 C (Citigroup) 68.79 1.03E+11

Table 12
Pre-Crisis analysis. The five defaulted firms are ranked randomly, the received links
from other firms and transmitted links to other firms are shown correspondingly.
Note that only the first three most influential firms are listed for each ticker, τ =

0.05, n = 48, T = 41.

Rank Ticker Received link from Transmitted link to

1 FRE (Freddie Mac) FNM, NS, OCN FNM, FNF, SEIC
2 FNM(Fannie Mae) FRE, CBG, HBAN FRE, LEH, WB
3 LEH (Lehman Brothers) FNM, WRLD, PJC AGM, PJC, KEY
4 MER (Merrill Lynch) FNM, LEH, NEWS AVHI, JPM, MS
5 WB (Wachovia Corp.) FNM, C, CMA CMA, BEN, C

Table 13
Pre-Crisis analysis. Top 12 financial institutions ranked according to the index of
Systemic Risk Receiver, the values of market capitalization (MC) in 2008 are also
shown in this table.

Rank Ticker Value of SRR Value of MC

1 WFC (Wells Fargo & Company) 8.47E+22 1.24E+11
2 C (Citigroup) 8.01E+22 1.03E+11
3 WB (Wachovia Corp.) 6.61E+22 7.30E+10
4 JPM (J P Morgan Chase & Co) 5.26E+22 1.48E+11
5 BAC (Bank of America) 4.20E+22 1.54E+11
6 FRE (Freddie Mac) 3.67E+22 2.20E+10
7 AIG (American International Group) 3.58E+22 3.71E+09
8 MER (Merrill Lynch) 2.81E+22 6.40E+10
9 FNM (Fannie Mae) 2.74E+22 3.80E+10

10 AXP (American Express Company) 2.60E+22 1.79E+10
11 GS (Goldman Sachs Group) 2.41E+22 6.73E+10
12 LEH (Lehman Brothers) 1.80E+22 3.50E+10

outgoing links in terms of other firms. Besides, FRE and FNM is the
most connected pair, they send risk to each other. FNM dominates
the incoming link tables, which can also be confirmed in Table 10.
According to the selected variables in step 2, we perform the
methodology in step 3. Table 13 shows the ranking of the systemic
risk receivers according to our SRR values,whereWB is third largest
risk receiver, FRE is ranked as the sixth, AIG, MER, FNM follow
subsequently, and LEH is ranked as the 12th. The systemic risk
emitters according to our SRE values are presented in Table 14.
We see that FNM is the biggest risk emitter, WB is the third one,
FRE and LEH are 4th and 5th risk transmitters and the ranking
of MER is 8th. In summary, all these five firms are identified as
systemically important institutions which shows the validation of
ourmethodology. Finally, we compare our ranking of systemic risk
emitters in Table 14 with Hautsch et al. (2015) and Brownlees
and Engle (2015). In the pre-crisis results of Hautsch et al. (2015),
they involve five firms in the case study, i.e. AIG, FNM, FRE, LEH
and MER. MER is not in their top ten list, whereas we did not
identify AIG in our top ten list. Compared with the pre-crisis
results with Brownlees and Engle (2015), where the firm Bear
Stearns is also involved in their analysis. Their rankings of the
aforementioned five firms between 2007 and 2008 are relative
similar with ours.
Table 14
Pre-Crisis analysis. Top 10 financial institutions ranked according to the index of
Systemic Risk Emitter, the values of market capitalization (MC) in 2008 are also
shown in this table.

Rank Ticker Value of SRE Value of MC

1 FNM (Fannie Mae) 2.61E+23 3.80E+10
2 C (Citigroup) 1.29E+23 1.03E+11
3 WB (Wachovia Corp.) 9.68E+22 7.30E+10
4 FRE (Freddie Mac) 8.97E+22 2.20E+10
5 LEH (Lehman Brothers) 5.71E+22 3.50E+10
6 CBG (CBRE Group, Inc.) 3.40E+22 4.04E+09
7 COF (Capital One Financial Corp.) 2.85E+20 1.69E+10
8 MER (Merrill Lynch) 2.32E+22 6.40E+10
9 RF (Regions Financial Corp.) 7.37E+21 1.04E+10

10 CMA (Comerica Inc.) 5.29E+21 4.79E+09

4. Conclusion

In this paper we propose TENET based on a semiparametric
quantile regression framework to assess the systemic importance
of financial institutions conditional to their market capitalization
and interconnectedness in tails. The semiparametric model allows
for more flexible modelling of the relationship between the
variables. This is especially justified in a (ultra) high-dimensional
setting when the assumption of linearity is not likely to hold. In
order to face these challenges statistically we estimate a SIM in a
generalized quantile regression framework while simultaneously
performing variable selection. (Ultra) high dimensional setting
allows us to include more variables into the analysis.

Our empirical results show that there is growing interconnect-
edness during the period of a financial crisis, and a network-based
measure reflecting the connectivity. Moreover, by including more
variables into the analysis we can investigate the overall perfor-
mance of different financial sectors, depositories, insurance, bro-
ker–dealers, and others. Estimation results show a relatively high
connectivity of depository industry in the financial crisis. We also
observe strong non-linear relationships between the variables, es-
pecially, in the period of relative financial instability. The Systemic
Risk Receivers and Systemic Risk Emitters can be simply identified
based on their connectedness structure and market capitalization.
We conclude that both the largest systemic risk receivers and the
largest systemic risk emitters are systemically important.

Appendix A. Statistical methodology

Let us denote Xt ∈ Rp as p dimensional variables Rj,t in (9), p
can be very large, namely of an exponential rate. We also drop the
subscripts of the coefficients βj|Rj , as we focus on one regression.
The SIM of (9) is then rewritten as:

Yt = g(X⊤

t β
∗)+ εt , (16)

where {Xt , εt} are strong mixing processes, g(·): R1
→ R1

is an unknown smooth link function, β∗ is the vector of index
parameters. Regressors Xt can be the lagged variables of Yt . For the
identification, we assume that ∥β∗

∥
2

= 1, and the first component
of β∗ is positive. We assume that there are q non-zero components
in β∗.

Note that (16) can be formulated in a location model and
identified in a quasimaximum likelihood framework: the direction
β∗ (for known g(·)) is the solution of

min
β

Eρτ {Yt − g(X⊤

t β)}, (17)

with loss function

ρτ (u) = τu1(u > 0)+ (1 − τ)u1(u < 0), (18)
E[ψτ {Yt − g(X⊤

t β
∗)}|Xt ] = 0 a.s.
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where ψτ (·) is the derivative (a subgradient) of ρτ (·). It can be
reformulated as F−1

εt |Xt (τ ) = 0.
The model is similar to the location scale model considered

in Franke et al. (2014). Note that it may be extended to a quantile
AR-ARCH type of single index model,

Yt = g(X⊤

t β
∗)+ σ(X⊤

t γ
∗)εt . (19)

To estimate the shape of a link function g(·) and β∗, we adopt
minimum average contrast estimation approach (MACE) with
penalization outlined in Fan et al. (in press). The estimation of β∗

and g(·) is as follows:

β̂τ , ĝ(·)
def
= arg min

β,g(·)
−Ln(β, g(·))

= arg min
β,g(·)

n−1
n

j=1

n
t=1

ρτ

Xt − g(β⊤Xj)

− g ′(β⊤Xj)X⊤

tj β

ωtj(β)+

p
l=1

γλ(|βl|), (20)

where ωtj(β)
def
=

Kh(X⊤
tj β)

n
t=1

Kh(X⊤
tj β)

, Kh(·) = h−1K(·/h), K(·) is a kernel

e.g. Gaussian kernel, h is a bandwidth and Ln(β, g(·)) is defined
as −n−1 n

j=1
n

t=1 ρτ

Xt − g(β⊤Xj) − g ′(β⊤Xj)X⊤

tj β

ωtj(β) +p

l=1 γλ(|βl|). Since the data is not equally spaced we choose a
bandwidth h based on k-nearest neighbour procedure (See Härdle
et al. (2004) and Carroll and Härdle (1989)). The optimal k, number
of neighbours, are selected based on a cross-validation criterion.
The implementation involves an iteration between estimating β∗

and g(·), with a consistent initial estimate for β∗, (Wu et al., 2010).
Xtj = Xt − Xj, θ ≥ 0, and γλ(t) is some non-decreasing function
concave for t ∈ [0,+∞)with a continuous derivative on (0,+∞).
Please note that this MACE functional (with respect to g(·)) (20)
is in fact only a finite dimensional optimization problem since
the minimum over g(·) is to be determined at aj = g(β⊤Xj),
bj = g ′(β⊤Xj). There are several approaches for the choice of
the penalty function. These approaches can be classified based on
the properties desired for an optimal penalty function, namely,
unbiasedness, sparsity and continuity. The L1 penalty approach
known as least absolute shrinkage and selection operator (LASSO)
is proposed for mean regression by Tibshirani (1996). Numerous
studies further adapt LASSO to a quantile regression framework, Yu
et al. (2003), Li and Zhu (2008), Belloni and Chernozhukov (2011),
among others. While achieving sparsity the L1-norm penalty
tends to over-penalize the large coefficients as the LASSO penalty
increases linearly in the magnitude of its argument, and, thus,
may introduce bias to estimation. As a remedy to this problem the
adaptive LASSO estimation procedure was proposed (Zou (2006);
Zheng et al. (2013)). Another approach to alleviate the LASSO bias
was proposed by Fan and Li (2001) known as Smoothly Clipped
Absolute Deviation (SCAD):

γλ(t) =


λ|t| for |t| ≤ λ,

−(t2 − 2aλ|t| + λ2)/2(a − 1) for λ < |t| ≤ aλ,
(a + 1)λ2/2 for |t| > aλ,

where λ > 0 and a > 2. Note that for λ = ∞, this is exactly LASSO.
As for selecting λ, there are two common ways: data-driven

generalized cross-validation criterion (GCV) and likelihood-based
Schwartz, or Bayesian information criterion-type criteria (SIC, or
BIC), Schwarz (1978), Koenker et al. (1994), and their further
modifications. Themost commonly used criterion is GCV, however,
it has been shown that it leads to an overfitted model. Therefore,
we employ a modified BIC-type model selection criteria proposed
byWang et al. (2007) and use GCV criterion only to verify whether
GCV and BIC diverge significantly. We need to introduce some
more notation to present our theoretical results.

Define β̂τ
def
= (β̂⊤

τ(1), β̂
⊤

τ(2))
⊤ as the estimator for β∗ def

=

(β∗⊤

(1) , β
∗⊤

(2) )
⊤ attained by the loss in (20). Here β̂τ(1) and β̂τ(2) refer

to the first q components and the remaining p − q components
of β̂τ respectively. The same notional logic applies to β∗. For Xt ,
X(1)t corresponds to β∗⊤

(1) and X(0)t corresponds to β∗⊤

(2) . If in the

iterations, we have the initial estimator β̂(0)(1) as a
√
n/q consistent

one for β∗

(1), we will obtain, with a very high probability, an oracle
estimator of the following type, say β̃τ = (β̃⊤

τ(1), 0
⊤)⊤, since the

oracle knows the true model M∗

def
= {l : β∗

l ≠ 0}. The following
theorem shows that the penalized estimator enjoys the oracle
property. Define β̂0

∈ Rp as the minimizer with the same loss in
(20) but within subspace {β ∈ Rp

: βMc
∗

= 0}.
With all the above definitions and conditions, see Appendix B,

we present the following theorems.

Theorem A.1. Under Conditions 1–7, the estimators β̂0 and β̂τ exist
and coincide on a set with probability tending to 1. Moreover,

P(β̂0
= β̂τ ) ≥ 1 − (p − q) exp(−C ′nα) (21)

for a positive constant C ′, where β̂0 is the ‘‘ideal’’ estimator with non-
zero elements correctly specified.

This theorem implies the sign consistency.

Theorem A.2. Under Conditions 1–7, we have

∥β̂τ(1) − β∗

(1)∥ = Op{(Dn + n−1/2)
√
q}. (22)

For any unit vector b in Rq, we have

b⊤C1/2
0(1)C

−1/2
1(1) C1/2

0(1)

√
n(β̂τ(1) − β∗

(1))
L

−→ N(0, 1) (23)

where C1(1)
def
= E{E{ψ2

τ (εt)|Zt}[g
′(Zt)]2[E(X(1)t |Zt) − X(1)t ][E(X(1)t |

Zt) − X(1)t ]⊤}, and C0(1)
def
= E{∂Eψτ (εt)|Zt}{[g ′(Zt)]2(E(X(1)t |Zt) −

X(1)t)(E(X(1)t |Zt) − X(1)t)}⊤. Note that E(X(1)t |Zt) denotes a p × 1

vector, and Zt
def
= X⊤

t β
∗, ψτ (εt) is a choice of the subgradient of

ρτ (εt) and
σ 2
τ

def
= E[ψτ (εt)]2/[∂Eψτ (εt)]2, where

∂Eψτ (·)|Zt =
∂Eψτ (εt − v)2|Zt

∂v2


v=0
. (24)

Let us now look at the distribution of ĝ(·) and ĝ ′(·), estimators of
g(·), g ′(·).

Theorem A.3. Under Conditions 1–7, for any interior point z =

x⊤β∗, fZ (z) is the density of Zt , t = 1, . . . , n, if nh3
→ ∞ and

h → 0, we have
√
nh


fZ (z)/(ν0σ 2

τ )
g(x⊤β)− g(x⊤β∗)

−
1
2
h2g ′′(x⊤β∗)µ2∂Eψτ


εt

 L
−→ N (0, 1) .

Also, we have
√

nh3


{fZ (z)µ2
2}/(ν2σ

2
τ )

g ′(x⊤β)− g ′(x⊤β∗)
 L

−→ N (0, 1) .

The dependence does not have any impact on the rate of the
convergence of our nonparametric link function. As the degree of
the dependence is measured by the mixing coefficient, it is weak
enough such that Condition 7 is satisfied. In fact we assume an
exponential decaying rate here, which implies the (A.4) in Kong
et al. (2010).
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Appendix B. Proof

Condition 1. The kernel K(·) is a continuous symmetric function.
The link function g(·) ∈ C2, let µj

def
=


ujK(u)du and νj

def
=

ujK 2(u)du, j = 0, 1, 2.

Condition 2. The derivative (or a subgradient) of ρτ (x), satisfies
Eψτ (εt) = 0 and inf|v|≤c ∂Eψτ (εt − v) = C1 where ∂Eψτ (εt − v)
is the partial derivative with respect to v, and C1 is a constant.

Condition 3. The density fZ (z) of Zt = β∗⊤Xt is bounded with
bounded absolute continuous first-order derivatives on its support.
Assume E{ψτ (εt |Xt)} = 0 a.s., which means for a quantile loss we
have F−1

εt |Xt (τ ) = 0. Let X(1)t denote the sub-vector of Xt consisting

of its first q elements. Let Zt
def
= X⊤

t β
∗ and Ztj

def
= Zt − Zj. Define

C1(1)
def
= E{E{ψ2

τ (εt)|Zt}[g
′(Zt)]2[E(X(1)t |Zt) − X(1)t ][E(X(1)t |Zt) −

X(1)t ]⊤}, and C0(1)
def
= E{∂Eψτ (εt)|Zt}{[g ′(Zt)]2(E(X(1)t |Zt) −

X(1)t)(E(X(1)t |Zt)− X(1)t)}⊤, and the matrix C1(1) satisfies 0 < L1 ≤

λmin(C0(1)) ≤ λmax(C0(1)) ≤ L2 < ∞ for positive constants L1 and
L2. A constant c0 > 0 exists such that

n
t=1{∥X(1)t∥/

√
n}2+c0 → 0,

with 0 < c0 < 1. vtj
def
= Yt − aj − bjX⊤

tj β . Also, a constant C3 exists
such that for all β close to β∗ (∥β −β∗

∥ ≤ C3), let X(1)tj denote the
subvector of Xtj consisting of its first q components, X(0)tj denote
the subvector of Xtj consisting of its first p − q components:

t


j

X(0)tjωtjX⊤

(1)tj∂Eψτ (vtj)


2,∞

= Op(n1−α1).

Condition 4. The penalty parameter λ is chosen such that λ =

O(n−1/2), with Dn
def
= max{dl : l ∈ M∗} = O(nα1−α2/2λ) =

O(n−1/2), dl
def
= γλ(|β

∗

l |), M∗ = {l : β∗

l ≠ 0} be the true model.
Furthermore assume qh → 0 and h−1√q/n = O(1) as n goes to
infinity, q = O(nα2), p = O{exp(nδ)}, nh3

→ ∞ and h → 0. Also,
0 < δ < α < α2/2 < 1/2, α2/2 < α1 < 1.

Condition 5. The error term εt satisfies Var(εt) < ∞. Assume that
for any integerm = 1, . . . ,∞

sup
t

E
ψm

τ (εt)/m!
 ≤ s0Mm

sup
t

E
ψm

τ (xtj)/m!
 ≤ s0Mm

where s0 and M are constants, and ψτ (·) is the derivative (a
subgradient) of ρτ (·).

Condition 6. The conditional density function f (εt |Zt = z) is
bounded and absolutely continuously differentiable.

Condition 7. {Xtj, εt}
t=∞
t=−∞

is a strong mixing process for any j.
Moreover, let m1 and m2 be constants, positive constants cm1
and cm2 exists such that the α− mixing coefficient for every j ∈

{1, . . . , p},

α(l) ≤ exp(−cm1lcm2), (25)

where cm2 > 2α.

Recall (20) and β̂0 as the minimizer with the loss

L̃n(β)
def
=

n
j=1

n
t=1

ρτ

Yt − a∗

j − b∗

j X
⊤

tj β

ωtj(β

∗)+ n
p

l=1

dl|βl|,

but within the subspace {β ∈ Rp
: βMc

∗
= 0}, and a∗

j = g(β∗⊤Xj),
b∗

j = g ′(β∗⊤Xj). The following lemma assures the consistency
of β̂0.
Lemma B.1. Under Conditions 1–7, recall dj = γλ

|β∗

j |

, we have

that

∥β̂0
− β∗

∥ = Op


q/n + ∥d(1)∥


(26)

where d(1) is the subvector of d = (d1, . . . , dp)⊤ which contains q
elements corresponding to the non-zero β∗

(1).

Proof. Note that the last p−q elements of both β̂0 and β∗ are zero,
so it is sufficient to prove ∥β̂0

(1) − β∗

(1)∥ = Op
√

q/n + ∥d(1)∥

.

Following Fan et al. (in press), it is not hard to prove that for
γn = O(1):

P


inf
∥u∥=1


L̃n(β∗

(1) + γnu, 0) > L̃n(β∗)


→ 1.

Then a minimizer inside the ball exists {β(1) : ∥β(1) − β∗

(1)∥ ≤ γn}.
Construct γn → 0 so that for a sufficiently large constant B0: γn >
B0 ·

√
q/n+∥d(1)∥


. Then by the local convexity of L̃n(β(1), 0) near

β∗

(1), a uniqueminimizer exists inside the ball {β(1) : ∥β(1)−β
∗

(1)∥ ≤

γn} with probability tending to 1. �

Recall that Xt = (X(1)t , X(0)t) and M∗ = {1, . . . , q} is the set of
indices at which β are non-zero.

Lemma B.1 shows the consistency of β̂0, and we need to show
further that β̂0 is the unique minimizer in Rp on a set with
probability tending to 1.

Lemma B.2. Under Conditions 1–7, minimizing the loss function
L̃n(β) has a unique global minimizer β̂τ = (β̂⊤

τ(1), β̂
⊤

τ(2))
⊤

=

(β̂⊤

τ(1), 0
⊤)⊤, if and only if on a set with probability tending to 1,

n
j=1

n
t=1

ψτ

Yt − âj − b̂jX⊤

tj β̂τ

b̂jX(1)tjωtj(β

∗)

+ nd(1) ◦ sign(β̂τ ) = 0 (27)

∥z(β̂τ )∥∞ ≤ n, (28)

where

z(β̂τ )
def
= d−1

(0) ◦

 n
j=1

n
t=1

b∗

j ψτ

Yt − a∗

j

− b∗

j X
⊤

tj β̂τ

X(0)tjωtj(β̂τ )


(29)

where ◦ stands for multiplication element-wise.

Proof. According to the definition of β̂τ , it is clear that β̂(1) already
satisfies condition (27). Therefore we only need to verify condition
(28). To prove (28), a bound for

n
i=1

n
i=1

b∗

j ψτ

Yi − a∗

j − b∗

j X
⊤

ij β
∗

ωijX(0)ij (30)

is needed, note that to be consistent with notations for U−

statistics we use j instead of t within this proof. Define the
following kernel function

hd(Xi, a∗

j , b
∗

j , Yi, Xj, a∗

i , b
∗

i , Yj)

=
n
2


b∗

j ψτ

Yi − a∗

j − b∗

j X
⊤

ij β
∗

ωijX(0)ij

+ b∗

i ψτ

Yj − a∗

i − b∗

i X
⊤

ij β
∗

ωjiX(0)ji


d
,

where {.}d denotes the dth element of a vector, d = 1, . . . , p − q.
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According to Borisov and Volodko (2009), based on Condition 5:
Define Un,d

def
=

1
n(n−1)


1≤i<j≤n hd(Xi, a∗

j , b
∗

j , Yi, Xj, a∗

i , b
∗

i , Yj) as
the U− statistics for (30). We have, with sufficient large cm2 in
Condition 7.

P{|Un,d − EUn,d| > ε} ≤ cm3 exp(cm5ε/(cm3 + cm4ε
1/2n−1/2))

where cm3, cm4, cm5 are constants. Moreover, let ε = O(n1/2+α)
andm6 be a constant, as α < 1/2, we can further have,

P({|Un,d − EUn,d| > ε}) ≤ cm3 exp(−cm6ε/2),

Define

Fn,d
def
= (n)−1

n
i=1

n
j=1

bjψτ

Yi − a∗

j − b∗

j X
⊤

ij β
∗

ωijX(0)ij,

also it is not hard to derive that Un,d = Fn,dn/(n − 1).
It then follows that

P(|Fn,d − EFn,d| > ε) = P(|Un,d − EUn,d|(n − 1)/n > ε)

≤ 2 exp

−Cnα+1/2.

Define An = {∥Fn − EFn∥∞ ≤ ε}, thus

P(An) ≥ 1 −

p−q
d=1

P(|Fn,d − EFn,d| > ε)

≥ 1 − 2(p − q) exp

−Cnα+1/2.

Finally we get that on the set An,

∥z(β̂0)∥∞ ≤ ∥d−1
Mc

∗
◦ Fn∥∞

+ ∥d−1
Mc

∗
◦

n
i=1

n
j=1

bj

ψτ


Yt − a∗

j − b∗

j X
⊤

ij β̂
0

−ψτ

Yt − a∗

j − b∗

j X
⊤

ij β
∗

ωijX(0)ij∥∞

≤ O(n1/2+α/λ

+ ∥d−1
Mc

∗
◦

n
i=1

n
j=1

∂Eψτ (vij)bjX⊤

(1)ij(β̂(1) − β∗

(1))ωtjX(0)ij∥∞),

where vij is between Yi −a∗

j −b∗

j X
⊤

ij β
∗ and Yi −a∗

j −b∗

j X
⊤

ij β̂
0. From

Lemma B.1,

∥β̂0
− β∗

(1)∥2 = Op


∥d(1)∥ +

√
q/

√
n

.

Choosing ∥


i


j X(0)ijωijX⊤

(1)ij∂Eψτ (vij)∥2,∞ = Op(n1−α1), q =

O(nα2), λ = O(
√
q/n) = n−1/2+α2/2, 0 < α2 < 1, ∥d(1)∥ =

O(
√
qDn) = O(nα2/2Dn)

n−1
∥z(β̂0)∥∞ = O{n−1λ−1(n1/2+α

+ n1−α1
√
q/

√
n + ∥d(1)∥n1−α1)}

= O(n−α2/2+α + n−α1 + n−α1+α2/2Dn/λ),

Condition 4 ensures Dn = O(nα1−α2/2λ), and let 0 < δ < α <
α2/2 < 1/2, α2/2 < α1 < 1, with rate p = O{exp(nδ)}, then
(n)−1

∥z(β̂0)∥∞ = Op(1). �

Proof of Theorem A.1. The results follows from Lemmas B.1 and
B.2. �

Proof of Theorem A.2. By Theorem A.1, β̂τ(1) = β(1) almost
surely. It then follows from Lemma B.2 that

∥β̂τ(1) − β∗

(1)∥ = Op{(Dn + n−1/2)
√
q}.

This completes the first part of the theorem. The other part of proof
follows largely from Fan et al. (in press). �
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ABSTRACT
Conventional methods apply symmetric prior distributions such as
a normal distribution or a Laplace distribution for regression coef-
ficients, which may be suitable for median regression and exhibit
no robustness to outliers. This work develops a quantile regression
on linear panel data model without heterogeneity from a Bayesian
point of view, i.e. upon a location-scalemixture representation of the
asymmetric Laplace error distribution, and provides how the pos-
terior distribution is summarized using Markov chain Monte Carlo
methods. Applying this approach to the 1970 British Cohort Study
(BCS) data, it finds that a different maternal health problem has dif-
ferent influence on child’s worrying status at different quantiles. In
addition, applying stochastic search variable selection for maternal
health problems to the 1970 BCS data, it finds that maternal nervous
breakdown, among the 25 maternal health problems, contributes
most to influence the child’s worrying status.
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1. Introduction

In many applications, conventional regression analysis focuses on the mean effect or opti-
mal forecasting in a mean squared error sense. Since a set of quantiles often provides
more complete description of the response distribution than the mean, or classical mean
regression, quantile regression not only quantifies the relationship between quantiles of
the response distribution and covariates, but also exhibits robustness to outliers and has
a wide application [4,28,51], for example, to calculate value at risk and expected shortfall
for financial risk management [45], to study the relationship between GDP and population
[40,41], to study the correlation of the wage and the level of education [23], and to estimate
the volatility of temperatures [20].

For classical quantile regression, the error distribution is often assumed to have the qth
quantile equal to zero, see, for example, Yu and Stander ( 2007) [53], and classical quantile
regression parameters depend on asymptotic normality which is assumed unbiased and
normal. In addition, confidence intervals depend on the density function of model error
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which is difficult to estimate reliability. On the contrary, credible intervals from Bayesian
inference can avoid these problems, whichever sample sizes. Aside from these, Bayesian
inference can take historical information or expert opinion easily via prior information.
Therefore, Bayesian quantile regression is naturally motivated.

Quantile regression is attempted in Bayesian framework in both theoretical and applied
econometric analyses, for example, Walker andMallick [47], Kottas and Gelfand [29], and
Hanson and Johnson [22] on median regression (one special quantile regression), and Yu
andMoyeed [52], Tsionas [46], andKozumi andKobayashi [31] on general quantile regres-
sion with the asymmetric Laplace density for the errors. In addition, on infinite mixture
model, Kottas and Krnjajic [30] on Bayesian semi-parametric approach, Yu [49], Taddy
and Kottas [44], and Yue and Rue [56] on Bayesian nonparametric approach. However,
few studies have been on Bayesian quantile regression for panel data [37,55].

This paper explores a Bayesian quantile regression for linear panel data without hetero-
geneity. For posterior inference, upon a location-scale mixture representation of the asym-
metric Laplace error distribution, we propose a Gibbs sampling algorithm and develop
Markov chain Monte Carlo (MCMC) methods (see, e.g. [8,18,34]). All posterior densities
are fully tractable and easy to sample, making the Gibbs sampler appealing when several
quantile regressions are required at one time. In addition, the proposed Gibbs sampler can
be applied for the calculation of the marginal likelihood and the variable selection.

For variable selection, several criteria have been proposed (see, e.g. [58]), though no
agreement has emerged in the literature on optimal criterion. Aside from the classical lit-
erature, Bayesian approach focuses on an unknown number of variables [9,17]. Variable
selection in modeling with Bayesian quantile regression is difficult due to the computa-
tional efficiency. This work applies stochastic search variable selection based on MCMC
method.

We apply Bayesian approach to the 1970BritishCohort Study (BCS) to analyze the influ-
ence of maternal health problems on child’s worrying status. This is the first instance, as
we know, in which the influences of the maternal health problems are estimated to account
for child’s worrying status. We find that the different maternal health problems have differ-
ent influence on child’s worrying status at different quantiles, moreover, maternal nervous
breakdown, among the 25 maternal health problems, contributes most to influence the
child’s worrying status. Indeed Bayesian approach may be applied to empirical study of
optimal taxation under prospect theory, or predictive asset return, see, for example, Kan-
bur et al. [27] and Dai [13] for optimal taxation under prospect theory, and Campbell and
Yogo [5] and Dai et al. [15] for predictive asset return.

This paper joins the literature in health economics and personality psychology. While it
is established in psychology on their importance (see, e.g. [21,38,39]), and in economics for
the influence of personality traits on health [9,26] and health-related behaviors [10,11,24],
it is less recognized in economics on the influence of maternal health problems on child’s
worrying status.

Using principal component analysis, a few economic result from the BCS data, for
example, psychological and behavioral development influences education and labor mar-
ket outcomes [16], intergenerational income persistence rises across the 1958 and the
1970 cohorts [3], and the standardized raw scores from the locus of control and self-
esteem scales significantly predict self-reported poor health at age 30 [35]. Other data may
be explored, see, for example [14]. This work goes beyond those studies, since Bayesian
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inference is explored to examine the influence of maternal health problems on child’s
worrying status.

The remainder of the paper is structured as follows. In the next section, we describe the
BCS data. Section 3 outlines the basic model, while Section 4 develops MCMCmethod for
quantile regression model and explains how the MCMC output may be used to compute
the marginal likelihoods and for variable selection. Empirical implementation and results
for our Bayesian approach are shown in Section 5. Section 6 concludes.

2. Data: the BCS

The data, we use in this work, are from the BCS, a survey of all babies born (alive or dead)
after the 24th week of gestation from 0.01 hours on Sunday, 5 April 1970 to 24.00 hours on
Saturday, 11 April 1970 in places including England, Scotland, Wales, and Northern Ire-
land. Seven surveys, in detail, respectively in 1975, 1980, 1986, 1996, 2000, 2004, and 2008,
are followed up so far to trace all members of the birth cohort. In this work, information on
background characteristics is drawn from the survey in 1975 and 1980 on maternal health
problems, and on child’s worrying status from the survey in 1980 and 1986. Samples from
the family of multiple children are excluded, and samples for the respondents with any
missing information on those background characteristics are also excluded. A sample of
size 3426 is left for our analysis in this paper.

2.1. Rutter score-derived variable for child

Applying the Rutter Behavior Scale question ‘Often worried?’ for child, the Rutter score-
derived variable, Y , was derived, where the question was completed by the cohort mem-
ber’s parent (usually themother) in the BCS 1980 and 1986 follow-up data sets. In the BCS,
the Rutter score derived, and thus the response variable, is discrete choice. For our case, the
response results are 1 (does not worry), 2 (somewhat worried), and 3 (certainly worried).

2.2. MotherMalaise score-derived variables

Applying theMalaise Inventory (‘How you feel’) completed by the cohort member’s parent
(usually the mother), the Mother Malaise score-derived variables were derived on behalf
of the cohort member and included in the BCS 1975 and 1980 follow-up data sets. These
25 variables were named in the Mother Malaise data sets as follows:

(1) Do you often have backache? (X1)
(2) Do you feel tired most of the time? (X2)
(3) Do you often feel depressed? (X3)
(4) Do you often have bad headaches? (X4)
(5) Do you often get worried about things? (X5)
(6) Do you usually have great difficulty in falling or staying asleep? (X6)
(7) Do you usually wake unnecessarily early in the morning? (X7)
(8) Do you wear yourself out worrying about your health? (X8)
(9) Do you often get into a violent rage? (X9)
(10) Do people annoy and irritate you? (X10)



2944 X. DAI ET AL.

(11) Have you at times had a twitching of the face, head or shoulders? (X11)
(12) Do you suddenly become scared for no good reason? (X12)
(13) Are you scared to be alone when there are not friends near you? (X13)
(14) Are you easily upset or irritated? (X14)
(15) Are you frightened of going out alone or of meeting people? (X15)
(16) Are you constantly keyed up and jittery? (X16)
(17) Do you suffer from indigestion? (X17)
(18) Do you suffer from an upset stomach? (X18)
(19) Is your appetite poor? (X19)
(20) Does every little thing get on your nerves and wear you out? (X20)
(21) Does your heart often race like mad? (X21)
(22) Do you often have bad pain in eyes? (X22)
(23) Are you troubled with rheumatism or fibrosis? (X23)
(24) Have you ever had a nervous breakdown? (X24)
(25) Do you have other health problems? (X25)

3. Potential outcomemodel

Let Yit+1 be the Rutter score-derived variable for the ith cohort member surveyed at
the (t + 1)th sweep, and X1,it , X2,it , . . . ,X25,it the Mother Malaise score-derived variables
for the ith cohort member’s parent (usually the mother) surveyed at the tth sweep. We
introduce the linear panel data model without heterogeneity as follows:

Yit+1 = β0 +
25∑
j=1

βjXj,it + εit , (1)

for i = 1, 2, . . . , 3426, and t=1,2, where β. is unknown parameter, and εit is an idiosyn-
cratic error term assumed to be independent of the Rutter score-derived variable and
Mother Malaise score-derived variables.

4. Bayesian inference and variable selection

In this study, we consider quantile regression to estimate β from

min
3426∑
i=1

2∑
t=1

ρq

⎛
⎝Yit −

25∑
j=1

βjXj,it − β0

⎞
⎠ , (2)

where ρq(.) in Equation (2) is the check function defined by

ρq(u) ≡ {q − I(u < 0)} · u, (3)

for 0<q<1, where I(.) is the indicator function. Instead of classical approach, a Bayesian
approach and MCMC algorithm will be developed for posterior inference.

4.1. Asymmetric Laplace distribution

For Bayesian inference of Equation (2), an assumption on the data distribution is required
to construct a likelihood function. The error term εit is assumed, following Yu andMoyeed
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[52], to follow the asymmetric Laplace distribution (ALD) with density

fAL(εit) = q(1 − q)
σ

exp
{
−ρq

(εit

σ

)}
, (4)

where σ is the scale parameter. For the properties of this distribution, see, for example
[52,54]. Note that the qth quantile of εit is zero, E(εit) = (1 − 2q)/q(1 − q), andVar(εit) =
(1 − 2q + 2q2)/q2(1 − q)2.

To develop MCMC algorithm for the quantile regression, a location-scale mixture
representation is applied, i.e.

εit = θvit + τ
√

σvituit , (5)

where θ = (1 − 2q)/q(1 − q), τ 2 = 2/q(1 − q), vit ∼ ε(σ ) and uit ∼ N(0, 1) aremutually
independent random variables, and ε(σ ) is the exponential distribution with mean σ [31].
Thus the panel data model without heterogeneity can be represented as follows:

Yit = β0 +
25∑
j=1

βjXj,it + θvit + τ
√

σvituit , (6)

where vit ∼ ε(σ ) and uit ∼ N(0, 1) are mutually independent random variables.
To begin posterior inference, some prior distributions are supposed as follows: (1)

β ∼ N(β0,B0), where β ≡ (β0,β1, . . . ,β25), and β0 and B0 are specified parameters; (2)
σ ∼ IG(n0/2, s0/2), where IG(a, b) is the inverse Gamma distribution with the parameters
a and b, and n0 and s0 are specified parameters. These priors are chosen for computational
reasons, but are flexible enough when analyzing BCS to represent various prior beliefs
about the parameters. Next to construct aMCMC algorithmwith those prior distributions.

4.2. MCMC algorithm

A MCMC algorithm (see, e.g. [8,18,34]) for the quantile regression is constructed by
sampling {vit}, β , and σ from their full conditional distributions applying the data aug-
mentation techniques as [6]. A tractable and efficientGibbs sampler is proposed for general
i = 1, 2, . . . ,N and t=1,T as follows. In the empirical part, N=3426 and T=2.

(1) Sample vit (i = 1, 2, . . . ,N; t=1,T) from GIG( 12 , ĉ
2
it , d̂

2
it), where

ĉ2it = (Yit+1 − β�Xit)
2

τ 2σ
, (7)

d̂2it = θ2

τ 2σ
+ 2

σ
, (8)

and GIG(ν, c, d) is the generalized inverse Gaussian distribution with the probability
density function

fGIG(x | ν, c, d) =
(
d
c

)ν

2Kν(cd)
xν−1 exp

{
−1
2
(c2x−1 + d2x)

}
, (9)

for x>0,−∞ < ν < ∞, and c,d>0, whereKν(.) is a modified Bessel function of the
third kind [2].
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(2) Sample β from N(β̂ , B̂), where

β̂ = B̂

{ N∑
i=1

T∑
t=1

(Yit+1 − θvit)Xit

τ 2σvit
+ B−1

0 β0

}
, (10)

B̂−1 =
N∑
i=1

T∑
t=1

XitX�
it

τ 2σvit
+ B−1

0 . (11)

(3) Sample σ from IG(n̂/2, ŝ/2), where

n̂ = 3NT + n0, (12)

ŝ =
N∑
i=1

T∑
t=1

(Yit+1 − β�Xit − θvit)
2

τ 2vit
+ 2

N∑
i=1

T∑
t=1

vit + s0. (13)

The MCMC algorithm for the quantile regression model is constructed applying the
data augmentation technique as [6]. From Equations (5) and (6) and the assumptions for
some prior distributions, a tractable and efficient Gibbs sampler can be proposed as above.
In addition, the proposed Gibbs sampler sample vit from the generalized inverse Gaus-
sian distribution. Efficient algorithms to simulate from the generalized inverse Gaussian
distribution exist, see, for example, Dagpunar [12] and Hörman et al. [25], but our pro-
posed Gibbs sampler is implemented easily without any further need for tuning. Similar to
Alhamzawi andYu [1], all those similar results and our assumptions can, applyingGhosh et
al. [19] and Sriram et al. [43], guarantee the rationality of theMCMC algorithmmentioned
above.

4.3. Marginal likelihood

The marginal likelihood,m(Y), of the panel data model is defined as

m(Y) =
∫

f (Y | η)π(η) dη, (14)

where f (Y | η) is the sampling density of the data {Y} and π(η) is the prior of the model
specific parameter η.

The marginal likelihood,m(Y), can be reformulated as

m(Y) = f (Y | η)π(η)

π(η |Y)
, (15)

from which Chib [7] suggests to estimate the marginal likelihood as follows:

logm(Y) = log f (Y | η∗) + logπ(η∗) − logπ(η∗ |Y), (16)

where η∗ is a particular high density point, typically the posterior mean or mode.
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For η ≡ {β , σ } and Y ≡ {Yit} in the panel data model, the posterior ordinate π(η∗|Y)

is estimated by the following decomposition:

π(η∗ |Y) = π(σ ∗ |Y)π(β∗ | σ ∗,Y), (17)

marginalized over the latent variable v ≡ {vit}, since the ordinates π(σ ∗ |Y) and
π(β∗ | σ ∗,Y) can be estimated according to [7]. The likelihood ordinate, f (Y | η∗), can
be estimated by Chib method.

4.4. Variable selection

To perform the variable selection for the quantile regression, an indicator vector is defined
as follows. γ ≡ (γ0, γ1, . . . , γ25), where γ0 = 1, and γi = 1 for i ≥ 1 if βi is included in the
model (i.e. βi 	= 0), and γi = 0 for i ≥ 1 if βi is excluded in the model (i.e. βi = 0).

Given the indicator γ , kγ denote the size of the γ th subset model, kγ = γ �1, and βkγ

andXkγ ,it are kγ × 1 vectors corresponding to all the components ofβ andXit such that the
corresponding γi’s are equal to 1. Given γ , the following prior assumptions are supposed.

(1) βkγ
|σ , ν ∼ N(β0, 2σ(X�

kγ
VXkγ

)−1), where p(σ ) ∝ σ−1 and each νi ∼ ε(σ/p(1 − p)).
(2) A prior distribution over model space γ is given by p(γ | π) ∝ πkγ (1 − π)k−kγ .
(3) π ∼ beta(a0, b0).

Given γ and the prior assumptions above, there are several ways to develop, for
examples, (a) a tractable and efficient Gibbs sampler can be proposed applying the data
augmentation technique as [6], similarly to Section 4.2, then compare the posterior model
probabilities for different γ ; (b) following Smith and Kohn [42], Kuo and Mallick [33],
Krishna et al. [32], Zou and Yuan [57], Wu and Liu [48], Alhamzawi and Yu [1], or Yu
et al. [50], an efficient Gibbs sampler can be proposed for computing posterior model
probabilities in quantile regression, which we will follow next.

Under the prior assumptions, a MCMC algorithm can be developed to compute poste-
rior model probabilities in the quantile regression by running the Gibbs sampler, and the
marginal likelihood of Y under model γ can be obtained by integrating out βkγ

and σ

p(Y | γ , ν,X) ∝
∫

p(σ ) dσ
∫

p(Y | βkγ
, γ , σ , ν,X)p(βkγ

| γ , σ , ν)p(ν | σ) dβkγ
. (18)

Integrating out βkγ
and σ as a normal integral and an inverse gamma integral

Y | γ , ν,X ∼ t(2n){Xkγ
β0 + ξν, 12 (V + VXkγ

(X�
kγ
VXkγ

)−1X�
kγ
V)}. (19)

Then, the Gibbs sampler can be implemented [32,42] to generate samples of

p(Y | γ , ν,X) ∝ p(Y , γ , ν,X)p(γ | π). (20)

5. Real data application

In this section, the Bayesian quantile regression is applied to analyze the BCS data. This
data set was extensively investigated for many sorts of topics, but this paper examines the
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influence of maternal health problems on child’s worrying status. There are 3426 observa-
tions, 25 predictor variables, and 1 response variable. We assume the quantile regression
model between the response variable and the 25 covariates, plus an intercept.

In Table 1, upon the Bayesian quantile regression applying the MCMC package in R
[36], the model is evaluated at three different quantiles 0.05, 0.50, and 0.95. The maternal
health problems have different influence on child’s worrying status at different quantiles,
through MCMC quantile regression iteration 50,001 of 51,000, in detail, βi have different
estimates at different quantiles for each i = 0, . . . , 25. β24 and β25 have the biggest absolute
value for the three quantiles, except for β0.

Upon the Bayesian quantile regression applying the MCMC package in R [36],
iterations = 1001 : 50991, thinninginterval = 10, numberofchains = 1, sample size per
chain = 5000. Table 2 summarizes the empirical mean and standard deviation for each
variable Xi (i = 1, . . . , 25), and standard error of the mean for the model at the quan-
tile 0.05. In this case, X24 has the biggest standard deviation, and X25 has the next biggest
standard deviation. Table 3 summarizes the quantiles for each variable Xi (i = 1, . . . , 25).

Tables 4 and 5 summarize the same contents for the quantile 0.50, and Tables 6 and 7
for the quantile 0.95.

Applying the stochastic search variable selection [36], quantreg iteration 50,001 of
51,000, the top models and the posterior model probabilities are summarized in Tables
8–10 for the different quantiles 0.05, 0.50, and 0.95. From the posterior model probabili-
ties applying the stochastic search variable selection, SSVSquantreg, the topmodels picked
have significantly different posterior model probabilities, and, in particular, the maternal
nervous breakdown, X24, and the other health problems, X25, are the first two important

Table 1. β for the quantile q =0.05, 0.50, 0.95 (all figures e–3 units).

q= 0.05 q= 0.50 q= 0.95

β0 1126.80 2909.93 6219.29
β1 5.13 0.56 0.95
β2 −3.30 0.05 −8.85
β3 0.23 −0.41 −0.30
β4 −1.11 0.25 −3.58
β5 −4.88 −0.09 0.93
β6 −0.10 −0.20 −2.80
β7 2.20 −0.55 −3.76
β8 −1.81 2.09 1.86
β9 −0.41 −1.19 −5.94
β10 2.22 0.28 0.06
β11 −14.86 −3.09 −7.68
β12 −13.23 −0.79 −2.01
β13 13.86 0.79 6.21
β14 0.96 0.27 5.51
β15 6.42 1.49 −6.35
β16 2.87 0.41 −5.71
β17 2.75 0.54 3.07
β18 −0.85 −0.38 3.42
β19 −3.20 0.32 2.77
β20 6.24 −1.07 1.86
β21 4.43 0.74 3.21
β22 1.31 0.50 0.54
β23 −3.54 0.10 −5.09
β24 −194.69 63.94 317.94
β25 79.96 −40.22 −289.67
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Table 2. Empirical mean and standard deviation for each variable, and standard error
of the mean for the quantile q= 0.05 (all figures e–3 units).

Mean SD Naive SE Time-series SE

(Intercept) 80,960.000 71,879.300 1017.000 1106.000
X1 261.900 213.400 3.018 3.491
X2 −149.800 237.600 3.360 3.822
X3 185.400 340.400 4.814 5.271
X4 −75.700 245.800 3.476 3.877
X5 −254.900 257.300 3.638 4.211
X6 −157.500 267.900 3.789 3.952
X7 163.800 273.500 3.868 4.166
X8 −186.800 461.000 6.519 7.460
X9 −6554.000 335.300 4.742 5.084
X10 1507.000 290.300 4.106 4.513
X11 −313.300 557.300 7.881 8.479
X12 −329.200 533.100 7.539 8.646
X13 38.260 472.600 6.684 7.343
X14 −4.005 288.400 4.079 4.303
X15 237.800 352.400 4.984 5.331
X16 49.760 423.700 5.992 6.617
X17 −163.300 379.400 5.365 6.031
X18 4.134 425.900 6.023 6.681
X19 188.400 383.400 5.423 5.706
X20 200.100 429.500 6.074 6.698
X21 511.500 445.400 6.298 7.015
X22 −145.200 456.700 6.459 6.873
X23 50.030 266.600 3.771 3.990
X24 8781.000 29,472.100 416.800 449.800
X25 894.100 15,204.000 215.000 225.300

Table 3. Quantiles for each variable when the quantile q= 0.05 (all figures e–3 units).

2.5% 25% 50% 75% 97.5%

X1 −1.34700 1.13700 2.54300 3.98620 6.93500
X2 −6.33800 −3.02200 −1.45200 0.12610 3.02100
X3 −4.75700 −0.49200 1.84600 4.15660 8.71300
X4 −5.81500 −2.35300 −0.73510 0.89110 3.99100
X5 −7.70100 −4.26700 −2.55100 −0.78220 2.43500
X6 −6.94900 −3.34100 −1.56900 0.25070 3.75800
X7 −3.83500 −0.13280 1.64700 3.46200 7.04700
X8 −10.26800 −5.08700 −2.13500 1.18830 7.48600
X9 −7.25500 −2.92700 −0.70160 1.57420 6.00400
X10 −5.59700 −1.81500 0.23440 2.10240 5.73600
X11 −13.57600 −6.94100 −3.33700 0.59920 8.25000
X12 −13.38400 −6.96400 −3.31500 0.28870 7.30000
X13 −8.44000 −2.85800 0.24870 3.44650 10.18400
X14 −5.73800 −1.93200 −0.06721 1.90910 5.67600
X15 −3.93900 −0.09158 2.16200 4.58360 9.75500
X16 −7.83700 −2.42900 0.44340 3.29010 8.77200
X17 −9.35300 −4.09600 −1.53500 0.91150 5.69400
X18 −8.17500 −2.86500 −0.01683 2.89110 8.58500
X19 −5.68900 −0.60500 1.91100 4.39410 9.39800
X20 −6.46200 −0.87610 1.97500 4.88770 10.38500
X21 −3.12100 2.08200 4.94800 7.97480 14.39400
X22 −10.27300 −4.54000 −1.46500 1.52430 7.74900
X23 −4.87600 −1.25900 0.54290 2.24970 5.87200
X24 −475.64400 −100.40000 74.99000 264.89090 698.47500
X25 −292.12600 −91.20000 7.40400 108.54190 310.32500
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Table 4. Empirical mean and standard deviation for each variable, and standard error of
the mean for the quantile q= 0.50 (all figures e–4 units).

Mean SD Naive SE Time-series SE

(Intercept) 29,510.00000 1917.03100 27.11000 27.11000
X1 0.66020 4.70700 0.06656 0.06889
X2 0.42350 4.45500 0.06300 0.06300
X3 2.91500 7.11300 0.10060 0.10060
X4 −1.09500 4.83300 0.06835 0.06898
X5 −1.02500 4.17200 0.05899 0.05899
X6 −0.02617 6.51800 0.09217 0.09471
X7 −1.56800 6.86200 0.09704 0.09704
X8 2.16700 12.10100 0.17110 0.17110
X9 −1.96000 7.36500 0.10420 0.10420
X10 −45.60000 5.74800 0.08129 0.08129
X11 −5.42100 13.93300 0.19700 0.19700
X12 −6.85000 12.46000 0.17620 0.17250
X13 2.50500 12.51200 0.17700 0.17700
X14 −1.28200 6.02300 0.08517 0.08517
X15 1.26500 9.32900 0.13190 0.13190
X16 1.27600 9.62700 0.13610 0.13810
X17 −0.27990 7.54500 0.10670 0.10670
X18 2.56600 9.28200 0.13130 0.13130
X19 1.81300 11.09900 0.15700 0.15350
X20 −4.30400 10.52200 0.14880 0.14880
X21 2.18700 11.71400 0.16570 0.16950
X22 3.21700 9.07700 0.12840 0.11980
X23 1.50600 6.13100 0.08671 0.08671
X24 489.50000 832.31100 0.11770 11.77000
X25 −172.10000 360.37700 5.09600 5.09600

Table 5. Quantiles for each variable when the quantile q= 0.50 (all figures e–4 units).

2.5% 25% 50% 75% 97.5%

(Intercept) 25,445.4100 28,376.7290 29,630.0000 30,743.89190 33,003.4600
X1 −8.6250 −2.4480 0.5838 3.6300 10.1710
X2 −8.5120 −2.4630 0.4258 3.2990 9.3610
X3 −10.8590 −1.7350 2.7430 7.4820 17.5130
X4 −11.0650 −4.2140 −1.1040 2.0350 8.1710
X5 −9.8440 −3.6330 −0.8936 1.6830 7.0560
X6 −12.7880 −4.2380 −0.0366 4.2310 12.7960
X7 −15.3660 −5.8820 −1.4430 3.0750 11.6360
X8 −21.2970 −5.3980 2.0210 9.5740 26.5670
X9 −16.9570 −6.6250 −1.9170 3.0030 12.1740
X10 −12.1040 −4.0950 −0.2667 3.3190 10.6870
X11 −33.8050 −14.5850 −4.8640 3.8510 21.6330
X12 −34.0110 −14.3300 −6.1220 1.5110 16.1080
X13 −22.5280 −5.1120 2.2030 9.8840 27.8070
X14 −13.8990 −5.0690 −1.1530 2.6480 10.1430
X15 −16.8440 −4.6930 1.0780 7.0880 20.4560
X16 −17.3840 −5.0210 1.0840 7.3910 20.8090
X17 −15.8120 −4.9400 −0.2400 4.6070 14.7560
X18 −15.0820 −3.3770 2.3710 8.3070 21.7620
X19 −19.4420 −5.2890 1.5910 8.5320 25.0950
X20 −26.2960 −11.1120 −4.0050 2.6800 15.8220
X21 −21.3700 −5.5090 2.1500 9.5880 25.7640
X22 −14.1720 −2.7470 3.0950 9.0090 21.8540
X23 −10.5890 −2.4880 1.3630 5.4100 13.9490
X24 −968.4610 −48.3330 402.5000 955.8340 2391.5660
X25 −927.5700 −399.4760 −156.6000 68.2750 502.9410
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Table 6. Empirical mean and standard deviation for each variable, and standard error of the mean for
the quantile q= 0.95 (all figures e–5 units).

Mean SD Naive SE Time-series SE

(Intercept) 543,695.460 89,426.900 1265.000 1526.000
X1 −26.660 263.000 3.720 4.410
X2 −315.410 285.900 4.044 5.278
X3 56.890 380.900 5.387 6.252
X4 −272.060 277.500 3.924 4.794
X5 −188.940 267.000 3.776 4.756
X6 209.250 330.700 4.677 5.667
X7 −219.800 321.400 4.546 5.336
X8 114.880 493.900 6.985 7.819
X9 −323.280 383.700 5.426 6.256
X10 −23.130 344.300 4.869 5.876
X11 107.880 587.300 8.305 9.311
X12 −288.510 506.800 7.167 7.714
X13 −182.250 502.800 7.111 7.820
X14 −119.030 348.300 4.925 5.872
X15 −180.200 426.800 6.036 7.686
X16 45.020 449.200 6.353 7.070
X17 46.290 382.700 5.412 6.318
X18 40.220 451.800 6.389 7.439
X19 −283.000 463.500 6.555 7.313
X20 −340.210 457.600 6.472 7.280
X21 5380.900 451.000 6.378 7.051
X22 596.060 476.700 6.742 7.828
X23 −69.550 327.200 4.627 5.620
X24 11,901.210 32,910.100 465.400 526.100
X25 −17,966.530 18,277.500 258.500 324.300

Table 7. Quantiles for each variable when the quantile q= 0.95 (all figures e–3 units).

2.5% 25% 50% 75% 97.5%

(Intercept) 3783.021000 4822.000000 5411.142900 6011.000000 7310.987000
X1 −5.526000 −2.044000 −0.182300 1.547000 4.797000
X2 −8.516000 −5.127000 −3.207600 −1.260000 2.565000
X3 −7.097000 −2.014000 0.679300 3.184000 7.869000
X4 −8.036000 −4.580000 −2.731600 −79.930000 2.706000
X5 −7.234000 −3.644000 −1.910700 −705.400000 3.189000
X6 −4.811000 −0.073560 2.210700 4.391000 8.246000
X7 −8.675000 −4.335000 −2.161400 0.007187 3.938000
X8 −8.859000 −2.114000 1.186400 4.435000 10.403000
X9 −10.886000 −5.801000 −3.227300 −0.648600 4.243000
X10 −7.099000 −2.538000 −0.192100 2.090000 6.376000
X11 −11.012000 −2.672000 1.329400 5.071000 11.764000
X12 −13.181000 −6.219000 −2.721400 0.581100 6.605000
X13 −12.166000 −5.053000 −1.754700 1.648000 7.593000
X14 −8.183000 −3.535000 −1.173300 1.203000 5.571000
X15 −10.492000 −4.647000 −1.685700 1.147000 6.205000
X16 −8.687000 −2.559000 0.555000 3.577000 8.928000
X17 −7.463000 −2.024000 0.643100 3.161000 7.391000
X18 −8.881000 −2.501000 0.658700 3.484000 8.691000
X19 −12.285000 −5.818000 −2.713800 0.417100 5.652000
X20 −12.563000 −6.433000 −3.268300 −0.329300 5.214000
X21 −4.353000 2.590000 5.707900 8.514000 13.439000
X22 −3.864000 2.872000 6.214400 9.278000 14.778000
X23 −7.358000 −2.825000 −0.538400 1.571000 5.350000
X24 −90.350000 −88.010000 147.516800 49.500000 696.594000
X25 −555.750000 −300.300000 −172.533700 −49.340000 153.451000
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Table 8. Variable selection for the quantile q= 0.05.

Models Probability

(Intercept) .9278
X24 .0502
(Intercept), X24 .0142
(Intercept), X25 .0052
(Intercept), X3 .0004

Table 9. Variable selection for the quantile q= 0.50.

Models Probability

(Intercept) .9954
(Intercept), X24 .0040
(Intercept), X25 .0004
(Intercept), X2 .0002

Table 10. Variable selection for the quantile q= 0.95.

Models Probability

(Intercept) .9274
(Intercept), X24 .0486
(Intercept), X25 .0146
(Intercept), X20 .0012
(Intercept), X2 .0010

to influence child’s worrying status. This indicates that the maternal nervous breakdown
and the other health problems need be made enough attention to intervene early for the
influence on child’s worrying status.

6. Conclusions

In this paper, we developed a Bayesian quantile regression for linear panel data model
without heterogeneity, in particular, upon a location-scale mixture representation of the
asymmetric Laplace error distribution, this paper provides how the posterior distribution
can be sampled and summarized by a MCMCmethod.

In addition, the influence of maternal health problems on child’s worrying status was
explored by this method to the 1970 BCS data, and we find that different maternal health
problem has different influence on child’s worrying status at different quantiles, also that
maternal nervous breakdown and the other maternal health problem, by our method, are
the first two important to influence the child’s worrying status.

Our findings have high policy relevance in terms of the importance of the intervention
of maternal nervous breakdown early for the influence on child’s worrying status.
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ABSTRACT. An extended single-index model is considered when responses are missing at ran-
dom. A three-step estimation procedure is developed to define an estimator for the single-index
parameter vector by a joint estimating equation. The proposed estimator is shown to be asymptoti-
cally normal. An algorithm for computing this estimator is proposed. This algorithm only involves
one-dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by
high model dimensionality. Some simulation studies are conducted to investigate the finite sample
performances of the proposed estimators.

Key words: asymptotic normality, estimating equations, missing data, single-index models

1. Introduction

The single-index model has been paid considerable attention recently because it is useful in
several areas of science such as econometrics, biostatistics, finance and so on. The single-index
model, which is investigated extensively, is of the following form:

Y D g
�
ˇ>X

�
C "; (1)

where Y is the univariate response andX is a d -dimensional covariable vector, ˇ is an unknown
index parameter vector of interest, the function g.�/ is an unknown link function and E."jX/ D
0. The single-index model provides dimension reduction in the sense that, if one can estimate
the index ˇ efficiently, the univariate index ˇ>X serves as a covariable to estimate the nonpara-
metric link g.�/. Much effort has been devoted to estimating the index ˇ efficiently. Hall (1989),
Zhu & Fang (1992) considered a projection pursuit framework. Härdle et al. (1993) employed
the kernel smoothing method to study model (1) and gave an empirical rule for bandwidth
selection. Ichimura (1993) studied the properties of a semi-parametric least-squares estimator
in a general single-index model. Ichimura (1987) showed that the parameter vector ˇ can be
estimated root-n consistently. Härdle et al. (1993) and Hristache et al. (2001) obtained a

p
n

consistent estimator of the index vector ˇ using the average derivative method. The technology
of sliced inverse regression can also be used to achieve

p
n consistent estimator (Li, 1991; Zhu

& Fang, 1996). Xue & Zhu (2006) constructed the confidence region of the regression paramet-
ric vector for single-index regression models using the empirical likelihood method and proved
that an estimated empirical log-likelihood ratio is asymptotically a weighted sum of indepen-
dent �2

1
variables with unknown weights. Chang et al. (2010) proposed an asymptotically more
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efficient estimation of the single-index model in terms of transferring restricted least squares
to unrestricted least squares. Zhu et al. (2014) considered estimation and hypothesis testing in
single-index panel data models with individual effects and obtain a double robustness property.

Let .Yi ; Xi / denote the observed values with Yi being the response variable and Xi being
the vector of d explanatory variables. In this paper, we consider an extended single-index
model (ESIM) which specifies the relationship of the mean and variance of Yi as follows

E.Yi jXi / D �
°
g
�
ˇ>Xi

�±
;Var.Yi jXi / D �2V

°
g
�
ˇ>Xi

�±
; (2)

where �.�/ is a known monotonic function, V.�/ is a known covariance function, g.�/ is
an unknown univariate link function and ˇ is an unknown index vector, which belongs to

the parameter space ‚ D
°
ˇ D .ˇ1; : : : ; ˇd /

> W kˇk D 1; ˇ1 > 0; ˇ 2 R
d
±

. Cui et al. (2011)

developed a method of estimating function (EFM) to study the ESIM. They investigated
the efficiency and computation of the estimates for the ESIM and obtained the asymptotic
properties of the EFM. However, the existing work is for the case where data are observed fully.

In practice, some responses may be missing, by design (as in two-stage studies) or by cir-
cumstance. For example, the response Y

0
s may be very expensive to measure, and only part of

Y
0
s are available. Another example is that the Y

0
s represent the responses to a set of questions

and some sampled individuals refuse to supply the desired information. Actually, missing-
ness of responses is very common in opinion polls, market research surveys, mail enquiries,
social-economic investigations, medical studies and other scientific experiments. Missing data
issues have been investigated extensively (e.g. Rosenbaum & Rubin (1983), Robins et al. (1994),
Robins et al. (1995), Wang & Rao (2002), Wang et al. (2004) and among others). To the best of
our knowledge, the literature reduces to just a few recent papers for the single-index models (1)
with �

®
g
�
ˇ>Xi

�¯
D g

�
ˇ>Xi

�
and V

®
g
�
ˇ>Xi

�
D 1 for missing data. For this special case,

Wang et al. (2010) derived semi-parametric nonlinear least squares estimators with complete
case (CC) method by incorporating missing mechanism into the least-squares loss function
suggested by Härdle et al. (1993) and minimizing the loss function with respect to the band-
width and the parameters simultaneously. They obtained the central limit theorem, the law of
the iterated logarithm for the estimator of ˇ and the optimal convergence rate for the estimator
of g.�/. However, the computational burden of solving the minimization problem is very high
when the dimension of explanatory variable vector is large.

In this paper, we extend the EFM due to Cui et al. (2011) to the missing response case for
estimating both ˇ and g.�/ in model (2). That is, we consider the case where some Y -values may
be missing and X is observed completely. The data we observe are

¹.Yi ; ıi ; Xi /º
n
iD1

;

where ıi D 0 if Yi is missing, otherwise ıi D 1. Throughout this paper, it is assumed that Y
is missing at random (MAR). The MAR assumption implies that ı and Y are conditionally
independent given X . That is, P.ı D 1jY;X/ D P.ı D 1jX/. MAR is a common assumption
for statistical analysis with missing data and is reasonable in many practical situations (Little
& Rubin, 1987).

In this paper, we develop a three-step estimating approach for estimating both ˇ and g.�/ by
extending the EFM due to Cui et al. (2011) to the missing response problem. Unlike the two-
step estimating approach of Cui et al. (2011), the three-step estimating approach can define an
estimator of g.�/ in addition to defining an estimator of ˇ. For the estimating approach, the
estimating function system only involves one-dimensional nonparametric smoothers, thereby
avoiding the data sparsity problem caused by high dimensionality. Firstly, unlike the method
proposed by Wang et al. (2010) for the special case of the ESIM where the minimization is

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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difficult to implement when d is large, our method is easy to implement. Secondly, unlike the
method proposed by Wang et al. (2010) where the methodology can only be applied to the case
of homogeneous errors, our method can be applied to the case of heterogeneous errors. Hence,
the proposed methodology based on model (2) has more wide application and much more
flexible framework. Cui et al. (2011) define the estimator of ˇ only when data are observed
fully. However, we define the estimators of both ˇ and g.�/ and investigate their asymptotic
properties with data missing. It is more challenging to investigate the asymptotic properties
because of the estimator of g.�/ and the treatment of missing data.

This paper is organized as follows. In Section 2, we describe the estimating procedures. In
Section 3, we establish the asymptotic theory for the proposed procedure. Some simulation
studies are provided in Section 4. In Section 5, we analyse a real data set to illustrate the
proposed procedures, and all proofs are included in the Supporting Information.

2. Three-step estimation

We develop the following three-step approach to define the estimators of ˇ and g.�/,
respectively.

Step 1: We use the nonparametric fusion-refinement approach to get the initial estimate of ˇ,
denoted by Q̌ with k Q̌k D 1 (Ding & Wang, 2011).

Step 2: Define the estimator of g.�/ and g
0
.�/.

Note that under MAR, we have

�¹g.t/º D E
�
ıY jˇ>X D t

�
=E
�
ıjˇ>X D t

�
:

We then may obtain an initial estimator of �¹g.t/º

� ¹ Qg.t/º D
�Pn

jD1 ıjYjHhn

�
t � Q̌>Xj

��
=
�Pn

jD1 ıjHhn

�
t � Q̌>Xj

��
;

where H.�/ is a kernel function with support on .�1; 1/, hn is a bandwidth sequence
and Hhn.�/ D H.�=hn/.

Denote by ˛0 and ˛1 the values of g.�/ and g
0
.�/ evaluating at ˇ>x, respectively. The

local linear approximation for g
�
ˇ>X

�
in a neighbourhood of ˇ>x is g0

�
ˇ>X

�
D

˛0C˛1
�
ˇ>X�ˇ>x

�
. The estimators G

�
ˇ>x

� def
D
�
g
�
ˇ>x

�
; g
0 �
ˇ>x

��
are obtained

by solving the kernel estimating equations:Pn
jD1Kbn

�
Q̌>Xj � ˇ

>x
�
�
0
°
g0

�
Q̌>Xj

�±
V �1

°
g0

�
Q̌>Xj

�±
�
h
ıjYj C

�
1 � ıj

�
�
°
Qg
�
Q̌>Xj

�±
� �

°
g0

�
Q̌>Xj

�±i
D 0;Pn

jD1

�
Q̌>Xj � ˇ

>x
�
Kbn

�
Q̌>Xj � ˇ

>x
�
�
0
°
g0

�
Q̌>Xj

�±
V �1

°
g0

�
Q̌>Xj

�±
�
h
ıjYj C

�
1 � ıj

�
�
°
Qg
�
Q̌>Xj

�±
� �

°
g0

�
Q̌>Xj

�±i
D 0

;

(3)

where Kbn.�/ is the symmetric kernel density function satisfying Kbn.�/ D

K.�=bn/ and bn is a bandwidth, with respect to ˛0 and ˛1, yielding bG �ˇ>x� D�bg �ˇ>x� ;bg0 �ˇ>x�� D .b̨0; b̨1/.
Step 3: Obtain the estimator of ˇ. Similar to Cui et al. (2011), by eliminating ˇ1, the

parameter space ‚ can be rearranged to the form ‚ D

²�
1�
Pd
rD2 ˇ

2
r

�1=2
;

ˇ2 : : : ; ˇd

�>
W
Pd
rD2 ˇ

2
r < 1

³
.
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We turn to the estimation of ˇ 2 ‚. First, we estimate ˇ.1/ D .ˇ2; : : : ; ˇd /, which can be
obtained by solving the following equation:Pn

jD1

�
@�
®bg �ˇ>Xj �¯ =@ˇ.1/�V �1 ®bg �ˇ>Xj �¯

�
�
ıjYj C

�
1 � ıj

�
�
®
Qg
�
ˇ>Xj

�¯
� �

®bg �ˇ>Xj �¯� D 0: (4)

The solution is defined as Ǒ.1/, and hence, we obtain Ǒ by the transformation.
From Ding & Wang (2011), the fusion-refinement approach performs better than the CC

for estimating ˇ. This is why we select the fusion-refinement estimator as the initial estima-
tor instead of the CC estimator in the step one. Indeed, the simulation results show that the
proposed estimators perform better when the initial value takes the fusion-refinement estima-
tor. However, the fusion-refinement procedure due to Ding & Wang (2011) is a nonparametric
method, and hence, the fusion-refinement estimator does not use the model information. This
means that it is not suitable to use it directly as the final estimator for the model considered
in this paper. However, it is fine to use it as the initial estimator for the three-step estimating
method, which uses model information in Step 2 and Step 3, and hence, it is expected to define
a more efficient estimator of ˇ. One reviewer finds that the fusion-refinement approach in the
paper relies on the assumption that the missing data mechanism model carries information
about the full data model, which may need attention.

3. Asymptotic theory

To establish asymptotic theory, we firstly give some notations. Let �l .´/ D
°
�
0
.´/
±l
V �1.´/,

q1.´; y/ D �
0
.´/V �1.´/¹y ��.´/º, q2.´; y/ D ¹y ��.´/º�

0

1
.´/� �2.´/, �.X/ D P.ı D 1jX/.

Let

�j D
R
tjK.t/dt and �j D

R
tjK2.t/dt; j D 1; 2; : : :

and S D

 
�0 0

0 �2

!
, S� D

 
�0 �1

�1 �2

!
. Denote by ˇ0 D

�
ˇ0
1
; ˇ.1/0>

�>
the true values of

ˇ D
�
ˇ1; ˇ

.1/>
�>

. Denote by J D @ˇ

@ˇ.1/
the Jacobian matrix of size d � .d � 1/ with

J D

 
�ˇ.1/>=

p
1 � kˇ.1/k2

Id�1

!
:

Denote C D .1 � ı/E
®
X jˇ>X

¯
C
�
X � E

®
X jˇ>X

¯�
g
0 ®�
ˇ>X

�¯
. Let

A D J> E
�
�2
®
g
�
ˇ>X

�¯
C>C

�
J;

B D J> E
�
ı�2

®
g
�
ˇ>X

�¯
�2C>C

�
J:

In order to prove the asymptotic normality of the estimators, we also introduce some
regularity conditions.

(a) �.�/, V.�/ and g.�/ have bounded and continuous derivatives order two. V.�/ is uniformly
bounded and bounded away from 0.

(b) Assume that q2.´; y/ < 0 for ´ 2 R and y in the range of the response variable.
(c) Define the block partition of matrix 	 as follows:

	 D

 
	11 	12

	21 	22

!
;
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where 	11 is a positive constant, 	12 is a .d � 1/-dimensional row vector, 	21 is a
.d � 1/-dimensional column vector and 	22 is a .d � 1/� .d � 1/ nonnegative definite
matrix. The largest eigenvalues of 	22 is bounded away from infinity.

(d) The density function of X has a continuous second derivative on its support A. The
density function fˇ>X

�
ˇ>X

�
of random variable ˇ>X is bounded away from 0 on Tˇ

and satisfies the Lipschitz condition of order 1 on Tˇ , where Tˇ D
®
ˇ>X W X 2 T

¯
and

T is the compact support set of X .
(e) The kernelK.�/ is a bounded and symmetric density function with a bounded derivative

and satisfies

RC1
�1

jt j2K.t/dt <1;

H.�/ is a bounded kernel function of order 2 with bounded support.
(f) �.�/ > 0 and �.�/ ¤ 0.

We are ready to present the asymptotic results of the proposed estimators. The proof of the
theorem is provided in the Supporting Information.

Theorem 1. Suppose that conditions .a/�.f / hold, if nb4n ! 0, nh4n ! 0, nh2n= log.1=hn/!1
and nb2nh

2
n ! 0, then

p
n
�b̌.1/ � ˇ.1/0� L

! Nd�1.0;	/;

where 	 D A�1BA�1jˇ.1/Dˇ.1/0 .

Remark 1. When ı D 1, the asymptotic co-variance matrix reduces to that of Cui et al. (2011).
To define a consistent estimator of the asymptotic variance, a natural way is first to define

estimators of h.t/ D E¹X jˇ>X D tº using the local linear estimate as

bh.t/ D nX
iD1

bi .t/Xi=

nX
iD1

bi .t/;

where bi .t/ D Kbn

�b̌>Xi � t� °Sn;2.t/ � �b̌>Xi � t�Sn;1.t/± and Sn;k.t/ D

Kbn

�b̌>Xi � t� �b̌>Xi � t�k ; k D 1; 2. Let bCi D .1 � ıi /J
>bh �b̌>Xi� C

J>
�
Xi �bh �b̌>Xi��bg0 °�b̌>Xi�±. Then, the asymptotic variance 	 can be estimated by

b	 D h
n�1

Pn
iD1 �2

°bg �b̌>Xi�± bCi bC>i i�1
�
°
n�1

Pn
iD1ıiq

2
1

hbg �b̌>Xi�; Yii bCi bC>i ± hn�1Pn
iD1 �2

°bg �b̌>Xi�± bCi bC>i i�1 :
Remark 2. If �

®
g
�
ˇ>X

�¯
D g

�
ˇ>X

�
, �2V

®
g
�
ˇ>X

�¯
D �2, then the matrix 	 in Theorem

3.1 reduces to

A�1BA�1 D E
h°
.1 � ı/ J> E

�
X jˇ>X

�
C J>

�
X � E

�
X>jˇ>X

�� h
g
0 �
ˇ>X

�i±
�
°
.1 � ı/J> E

�
X jˇ>X

�
C J>

�
X � E

�
X>jˇ>X

�� h
g
0 �
ˇ>X

�i±>
�2
�
:
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The asymptotic normality of b̌ D �b̌
1; b̌.1/>�> follows from Theorem 1 with a simple

application of the multivariate delta-method, because b̌1 Dq1 � kb̌.1/>k.
Corollary 1. Under the conditions of Theorem 1, we have

p
n
�b̌� ˇ0� L

! Nd�1
�
0;ƒˇ0

�
;

where ƒˇ0 D J	J
>jˇDˇ0 .

Using the plug in method, the asymptotic variance ƒˇ0 can be estimated by bJb	bJ>, wherebJ is J with ˇ replaced by b̌.
Let Ǒcc be the CC estimator defined by the EFM method due to Cui et al. (2011). Similar

to Cui et al. (2011), it can be shown that Ǒcc is asymptotically normal with mean zero
and variance

ƒcc
ˇ0
D J	ccJ>;

where 	cc D A�1cc with

Acc D J
>E

	
ı
�
X �E

°
ıX jˇ>X

±� �
X �E

°
ıX jˇ>X

±�>�
��2

°
g
�
ˇ>X

�± °
g
0
�
ˇ>X

�±2
=�2

�
J:

Both the asymptotic variances of the proposed estimator and the CC estimator are of com-
plex structure, and hence, it is hard to compare them in terms of their asymptotic variances. We
will compare their finite sample properties in the following simulation section.

Theorem 2. Suppose that conditions of Theorem 1 hold, we have

p
nbn


bg �b̌>x� � g �ˇ0>x� � �.2/¹g.ˇ>x/º
2

e1S
�1Ub2n

�
L
! N.0;ƒ1/;

where U D .�2; �3/, e1 D .1; 0/ and ƒ1 D �2

�.x/�2¹g.ˇ>x/ºfˇ>x.ˇ>x/
e1S
�1S�S�1.

Let Z�
i
D
�
1;

b̌>Xi�x
bn

�>
. The asymptotic variance ƒ1 can be estimated by

bƒ1 D e1 hn�1Pn
iD1 ıiq2

hbg �b̌>Xi� ; YiiZ�i Z�>i Kbn

�b̌>Xi � x�i�1
�n�1

Pn
iD1 ıiq

2
1

hbg �b̌>Xi� ; YiiZ�i Z�>i K2
bn

�b̌>Xi � x/±
�
h
n�1

Pn
iD1 ıiq2

hbg �b̌>Xi� ; YiiZ�i Z�>i Kbn

�b̌>Xi � x�i�1 :
where q1.´; y/ and q2.´; y/ are defined at the beginning of this section.

Remark 3. The choice of bandwidth is a very important topic in nonparametric regression
estimation. The popular method such as cross-validation, generalized cross-validation and the
rule of thumb can be used to select the optimal bandwidth for the estimator of g.�/.
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4. Simulation studies

We conducted some Monte Carlo simulation studies to evaluate the performances of the
proposed estimators for finite samples. In our simulation, kernel functions H.�/ and K.�/ were
taken as Gaussian kernel. The optimal bandwidths for bn and hn were chosen by using the
cross-validation method.

Example 1. To illustrate how the initial estimate of ˇ affects the estimate of ˇ, we consider the
following simple single-index model

Y D 6
�
X>ˇ

�2
C "; (5)

where X is generated from Nd .2; I / for d D 50, " � N.0; 0:2/, the true parameter vector

ˇ D
�p

2=2;
p
2=2; 0; : : : ; 0

�
. Take the missing mechanism:

logit¹P.ı D 1jY;X/º D �>X C c0; (6)

where logit.a/ D log¹a=.1 � a/º, � D
�p

2=4; : : : ;
p
2=4; 0; c1

�>
=

q
1C c2

1
, c0 is a constant

to control missing proportion and c1 is a constant to control the distance between � and ˇ.
The number of replications is 500. The size of the sample was taken to be n D 60, 90 and
120, respectively.

The proposed estimator b̌uses the fusion-refinement estimate as initial estimate in Step 1.
Let Ǒcc be the CC estimator defined by the EFM method due to Cui et al. (2011). When the
initial estimate is taken to be .1; : : : ; 1/=

p
d or Ǒcc , we define the resulting estimators to beb̌.I/ or b̌C . We compare b̌with b̌.I/ and ǑC , respectively, in terms of the average absolute

bias (AB) and the square root of the trace of the standard covariance matrix (SRTSC). The AB
is defined by

AB D
1

500

500X
iD1

 
1

d

dX
sD1

jb̌in;s � ˇs j
!
;

and the SRTSC is defined by

SRTSC D

vuut 1

499

500X
iD1

²
1

d

�b̌i
n �
Nb̌� �b̌i

n �
Nb̌�>³;

where b̌in;s is the sth component of b̌in and b̌i
n is one of b̌, b̌.I/ and ǑC at the i th run and

Nb̌D 1
500

P500
iD1

b̌i
n. The simulation results of AB and SRTSC for b̌, b̌.I/ and b̌.C/ with about

25%, 50% and 75% missing proportions reported in Table 1. From Table 1, we can see that the
initial estimate does not affect the resulting estimators seriously. But, it also can be seen that
the fusion-refinement initial estimate used in this paper is a relatively better choice in terms of
AB and SRTSC of these estimators.

Example 2. To compare the proposed method with Wang et al. (2010), we first consider the
following simple single-index model

Y D
�
X>ˇ

�2
C "; (7)
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Table 1. AB and SRTSC of b̌, b̌I and b̌C with
different MP and different sample sizes

AB

n MP b̌ b̌I b̌C
60

0:25

0:50

0:75

0:0628

0:0947

0:1184

0:0735

0:1086

0:1346

0:0788

0:1123

0:1352

90
0:25

0:50

0:75

0:0569

0:0870

0:1157

0:0620

0:0917

0:1226

0:0699

0:0910

0:1230

120
0:25

0:50

0:75

0:0523

0:0768

0:1070

0:0607

0:0863

0:1147

0:0587

0:0833

0:1112

SRTSC

n p b̌ b̌I b̌C
60

0:25

0:50

0:75

0:0203

0:0347

0:0520

0:0247

0:0446

0:0617

0:0230

0:0406

0:0603

90
0:25

0:50

0:75

0:0137

0:0279

0:0471

0:0231

0:0384

0:0538

0:0169

0:0318

0:0505

120
0:25

0:50

0:75

0:0111

0:0250

0:0429

0:0197

0:0346

0:0483

0:0167

0:0283

0:0472

AB, absolute bias; MP, missing proportions; SRTSC,
square root of the trace of the standard covariance.

where X is generated from Nd .2; I / for d D 50, " � N.0; 0:2/, the true parameter is

ˇ D
�
2=
p
5; 1=
p
5; 0; : : : ; 0

�
and the missing mechanism follows model (6). The number of

replications is 500. The size of the sample was taken to be n D 60, 90,120, respectively.
The proposed estimator b̌ is compared with b̌wang due to Wang et al. (2010) and the CC

estimator b̌cc as mentioned in Example 1 and the full data estimator (denoted by b̌full ) due
to Cui et al. (2011). The estimator b̌full can be served as a gold standard, although it can
not be achievable in practice. We computed AB and SRTSC in Table 2 for b̌, b̌cc , b̌wang andb̌full with about 25%, 50% and 75% missing proportions.

Several observations can be made from Table 2. Firstly, we can see that AB and SRTSC
of all the estimators decrease as the sample size increases or the missing rate decreases, as
expected. Secondly, we also see that b̌ outperforms b̌wang and perform better than b̌cc in
terms of AB and SRTSC. It should be pointed out that the proposed method performs slightly
better only than b̌cc when the sample size is large and the missing proportion is small. The
reason may be that the covariables of the subjects with missing responses provide relatively
more covariable information for the proposed method. Also, the proposed method is a three-
step estimating approach with the fusion-refinement estimator used as the initial estimator.
And the simulation results show that it performs better slightly than the three-step estimat-
ing approach with the CC estimator used as the initial estimator. Hence, it is possible that
the resulting estimator performs better than both the initial estimators because the three-
step estimating method uses more data and model information than the initial ones. When
the missing proportion is small, the proposed estimator is comparable with the full data esti-
mator b̌full , the gold standard, and hence the proposed method performs well in terms of
AB and SRTSC.
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Table 2. AB and SRTSC of b̌full , b̌, b̌cc and b̌wang with
different MP and different sample sizes

AB

n b̌full MP b̌ b̌cc b̌wang
60 0:0742

0:25

0:50

0:75

0:0790

0:1009

0:1214

0:0953

0:1210

0:1396

0:1034

0:1297

0:1388

90 0:0540

0:25

0:50

0:75

0:0584

0:0869

0:1087

0:0744

0:0951

0:1143

0:0773

0:1229

0:1348

120 0:0477

0:25

0:50

0:75

0:0462

0:0679

0:0980

0:0533

0:0755

0:1017

0:0578

0:1038

0:1100

SRTSC

60 0:0230

0:25

0:50

0:75

0:0243

0:0305

0:0572

0:0276

0:0436

0:0684

0:0259

0:0445

0:0659

90 0:0172

0:25

0:50

0:75

0:0187

0:0293

0:0471

0:0199

0:0388

0:0579

0:0200

0:0342

0:0586

120 0:0148

0:25

0:50

0:75

0:0156

0:0227

0:0411

0:0188

0:0254

0:0506

0:0179

0:0307

0:0511

AB, absolute bias; MP, missing proportions; SRTSC, square root
of the trace of the standard covariance.

Example 3. In this study, we consider the following the ESIM:

E.Y jX/ D exp
®
g
�
ˇ>X

�¯
; g

�
ˇ>X

�
D sin

�
X>ˇ

�
Var.Y jX/ D �2; � D 0:2:

(8)

The true parameter is ˇ D
�
2=
p
5; 1=
p
5; 0; : : : ; 0

�
, X is generated from Nd .2; I / for d D 50,

" � N.0; 0:04/ and the missing mechanism follows model (6). We calculated AB and SRTSC
for b̌, b̌full and b̌cc , where �.�/ D exp.�/ in (2). At the same time, AB and SRTSC for b̌wang
were also computed where we treated model (8) as a simple single-index model. For each sample
size of n D 60, 90 and 120, 500 replications were taken. The simulation results are summarized
in Tables 3.

From Table 3, the similar observations to Example 2 can be found. This shows that the
proposed method is attractive for the ESIM (8).

Example 4. To illustrate the adaptivity of our algorithm to heterogeneous errors, we consider
model (9),

E.Y jX/ D
®
g
�
ˇ>X

�¯2
; g
�
ˇ>X

�
D X>ˇ

Var.Y jX/ D �2 exp
°p

5
7
g
�
ˇ>X

�±
; �2 D 1;

(9)

where the true parameter is ˇ D
�
2=
p
5; 1=
p
5; 0; : : : ; 0

�
, X is generated from Nd .2; I / for

d D 50 and the missing mechanism follows model (6). We calculated AB and SRTSC forb̌, b̌full and b̌cc . For each sample size of n D 60, 100, 200 and 300, 500 replications were
calculated. The simulation results are also summarized in Table 4.
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Table 3. AB and SRTSC of b̌full , b̌, b̌cc and b̌wang with
different MP and different sample sizes

AB

n b̌full MP b̌ b̌cc b̌wang
60 0:0922

0:25

0:50

0:75

0:0958

0:1119

0:1298

0:1124

0:1233

0:1321

0:1243

0:1341

0:1398

90 0:0813

0:25

0:50

0:75

0:0858

0:1051

0:1260

0:1099

0:1201

0:1304

0:1184

0:1233

0:1380

120 0:0679

0:25

0:50

0:75

0:0744

0:0889

0:1094

0:0837

0:0993

0:1211

0:0943

0:1109

0:1236

SRTSC

60 0:0239

0:25

0:50

0:75

0:0259

0:0397

0:0608

0:0346

0:0488

0:0706

0:0396

0:0503

0:0718

90 0:0172

0:25

0:50

0:75

0:0184

0:0322

0:0513

0:0305

0:0437

0:0649

0:0327

0:0459

0:0665

120 0:0108

0:25

0:50

0:75

0:0116

0:0230

0:0463

0:0186

0:0268

0:0582

0:0254

0:0396

0:0599

AB, absolute bias; MP, missing proportions; SRTSC, square root
of the trace of the standard covariance.

Table 4. AB and SRTSC of b̌full , b̌ and b̌cc with
different MP and different sample sizes

AB

n b̌full MP b̌ b̌cc
60 0:1005

0:25

0:50

0:75

0:1053

0:1128

0:1293

0:1127

0:1247

0:1306

90 0:0954

0:25

0:50

0:75

0:0937

0:1056

0:1246

0:1055

0:1187

0:1269

120 0:0807

0:25

0:50

0:75

0:0803

0:0944

0:1185

0:0922

0:1050

0:1226

SRTSC

60 0:0648

0:25

0:50

0:75

0:0670

0:0846

0:1019

0:0783

0:0920

0:1123

90 0:0522

0:25

0:50

0:75

0:0567

0:0779

0:0936

0:0689

0:0834

0:1001

120 0:0467

0:25

0:50

0:75

0:0444

0:0623

0:0878

0:0570

0:0695

0:0939

AB, absolute bias; MP, missing proportions; SRTSC,
square root of the trace of the standard covariance.
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For the heteroscedastic setting, b̌wang cannot be calculated because it is for the simple
single-index model. Hence, we compare b̌with b̌full and b̌cc only. From Table 4, the similar
observations to Example 2 can be found. Therefore, our estimation method also implements
well for the heteroscedastic case.

5. Real data analysis

ACTG 175 data have been studied by some authors (e.g. Hammer et al., 1996; Davidian
et al., 2005; Ding and Wang 2011; Hu et al., 2010). In an HIV clinical trial, 2139 HIV positive
patients were involved. The patients were randomized into four arms to receive monotherapy
(zidovudine) or combined therapy (adefovir + didanosine, zidovudine + zalcitabine and didano-
sine). We apply the proposed methods to this data set. The response Y = I (“the CD4 count at
96ś5 weeks” � 300). The predictors X are six baseline characteristics: age, weight, CD4 counts
at baseline and 20 ˙ 5 weeks, CD8 counts at baseline and 20 ˙ 5 weeks. Let T denote the
received therapy, that is, T D 1 if receiving combined therapy, and T D 0 otherwise. Among
the 746 patients, there were 473 patients with observations in Y , including 105 patients receiv-
ing monotherapy and 368 patients receiving other therapies, and due to death and dropout,
there were 273 patients with missing observations in Y , including 74 patients with T D 0 and
199 patients with T D 1. All the patients had predictors X observed.

The single-index model is used to model the relationship between the CD4 count at 96 ˙
5weeks and the relevant 6 predictors X D .X1; : : : ; X6/>:

P .the CD4 count at 96˙ 5 weeks � 300jX/Dexp
°
g
�
ˇ>X

�±
=
h
1Cexp

°
g
�
ˇ>X

�±i
;

(10)

where ˇ D .ˇ1; : : : ; ˇ6/
>. We first focused on the subset of data labelled by T D 0. We

obtained the proposed estimator b̌ D .0:1289; 0:9195; 0:0161; 0:3546 and � 0:0677/>. For
the subset of data labelled by T D 1, we obtained b̌ D .0:1927; � 0:9792; � 0:0058; �

0:0079; 0:0582 and 0:0244/>.
As one can see from two estimates, ‘weight’ has the larger positive influence when patients

receive combined therapy. On the contrary, there is a negative influence when patients receive
monotherapy for proposing method. ‘Age’ has the positive influence in the two setting; this is
true because resistance become more and more weak with increasing age.

−6 −5 −4 −3 −2 −1 0 1 2 3
0.52

0.525

0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

0.57

−4 −3 −2 −1 0 1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Left: the estimated curve bg �b̌>X� against b̌>X for the setting of T D 0. Right: the estimated

curve bg �b̌>X� against b̌>X for the setting of T D 1.
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We also plot the scatter plot of the estimated single-index bg �b̌>X� against b̌>X in the

setting of T D 0 and T D 1, respectively. The scatter plot suggests a curvature relationship
between the response and covariates. The pattern is displayed‘ in Fig. 1.

It is seen that there is a nonlinear trend. Therefore, using model (10) in the regression is
perhaps more appropriate than using the internally linear model (11):

P .the CD4 count at 96˙ 5 weeks � 300jX/ D exp
�
ˇ>X

�
=
®
1C exp

�
ˇ>X

�¯
: (11)
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ABSTRACT
On the temperature derivative market, modeling temperature volatility is an important issue for pricing
and hedging. To apply the pricing tools of financial mathematics, one needs to isolate a Gaussian risk fac-
tor. A conventional model for temperature dynamics is a stochastic model with seasonality and intertem-
poral autocorrelation. Empirical work based on seasonality and autocorrelation correction reveals that the
obtained residuals are heteroscedastic with a periodic pattern. The object of this research is to estimate this
heteroscedastic function so that, after scale normalization, a pure standardized Gaussian variable appears.
Earlier works investigated temperature risk in different locations and showed that neither parametric com-
ponent functions nor a local linear smoother with constant smoothing parameter are flexible enough to
generally describe the variance process well. Therefore, we consider a local adaptive modeling approach
to find, at each time point, an optimal smoothing parameter to locally estimate the seasonality and volatil-
ity. Our approach provides a more flexible and accurate fitting procedure for localized temperature risk by
achieving nearly normal risk factors.We also employ ourmodel to forecast the temperaturein different cities
and compare it to a model developed in 2005 by Campbell and Diebold. Supplementary materials for this
article are available online.

1. Introduction

The pricing of contingent claims based on stochastic dynam-
ics, for example, stocks or FX rates, is well known in finan-
cial engineering. An elegant approach to such a pricing task
is based on self-financing replication arguments. An essential
element of this approach is the tradeability of the underlying.
This, however, does not apply to weather derivatives, contin-
gent on temperature or rain, since the underlying is not trade-
able. In this context, the proposed pricing techniques are based
on either equilibrium ideas (Horst and Mueller 2007) or econo-
metric modeling of the underlying dynamics (Campbell and
Diebold 2005; Benth, Benth, and Koekebakker 2007) followed
by risk neutral pricing.

The equilibrium approach relies on assumptions about pref-
erences (with explicitly known functional forms) though. In this
study we prefer a phenomenological approach since the under-
lying (temperature) we consider is of a varying local nature
and our analysis aims at understanding the pricing at different
locations and different time points around the world. A time
series approach has been taken by Benth, Benth, and Koeke-
bakker (2007), who corrects for seasonality (in mean), then
for intertemporal correlation and finally as in Campbell and
Diebold (2005), for seasonal variations. After these manipula-
tions, a Gaussian risk factor needs to be isolated to apply con-
tinuous time pricing techniques (Karatzas and Shreve 2001).

Empirical studies following this econometrical route show
evidence that the resulting temperature risk factor deviates

CONTACT Weining Wang wangwein@cms.hu-berlin.de Ladislaus von Bortkiewicz Chair of Statistics, Humboldt-Universität zu Berlin, Spandauer Straße , 
Berlin, Germany.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

severely from Gaussianity, which in turn challenges the pricing
tools (Benth, Härdle, and López Cabrera 2011). In particular, for
Asian cities, like, for example, Kaohsiung (Taiwan), one observes
very distinctive nonnormality in the formof clearly visible heavy
tails caused by extended volatility in peak seasons. This is vis-
ible from Figure 1 where a log density plot reveals a nonnor-
mal shoulder structure (kurtosis = 3.22, skewness = −0.08,
JB = 128.74).

The econometric analysis we apply, follows Benth, Benth, and
Koekebakker (2007) where temperature is decomposed into a
seasonality term and a stochastic part with seasonal variance.
The fitted seasonality trend and seasonal variance are approxi-
mated with truncated Fourier series (and an additional GARCH
term).

The upper panel of Figure 2 displays the seasonality and
deseasonalized residuals over two years inKaohsiung. The lower
panel RHS displays the empirical and smoothed seasonal vari-
ance function, while the lower panel LHS shows the smoothed
seasonal variance function over years. The Fourier series expan-
sion fails, though in the volatility peak seasons. Even incorporat-
ing an asymmetry term for the dip of temperature in winter does
not improve the closeness to normality. One may of course pur-
sue fine tuning the Fourier method with more and more peri-
odic terms but this will increase the number of parameters; we,
therefore, propose a local parametric approach. The mean and
the seasonality function estimated with local linear regression
using the quartic kernel are also shown in Figure 2. We observe

©  American Statistical Association
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1492 W. K. HÄRDLE ET AL.

Figure . Kernel density estimates (left panel), log kernel density estimates (middle panel), and QQ-plots (right panel) of normal densities (gray lines) and Kaohsiung
standardized residuals (black line).

high variance in winter and early summer and low variance in
spring and late summer.

The scale correction of the obtained residuals (after seasonal
and intertemporal fitting) is apparently not identical over a year.
A very structured volatility pattern up to April is followed by a
moderately constant period until an increasing peak starting in
September. This motivates our research to localize temperature
risk. The local smoothness of the seasonal variance function is
of course not only a matter of one location (here Kaohsiung)
but varies also over the different cities around the world that we
are analyzing in this study. Our study is local in a double sense:
local in time and space. We use adaptive methods to localise
the underlying dynamics and with that being able to achieve
Gaussian risk factors. This will justify the pricing via standard

tools that are based on Gaussian risk drivers. The localization in
time is based on adjusting the smoothing parameter. For a gen-
eral framework on local parametric approximation we refer to
Spokoiny (2009). As a result, we obtain better approximations
to normality and, therefore, less biased prices.

This article is structured as follows. Section 2 describes the
localizing approach. In Section 3, we present the data and con-
duct the analysis to different cities. Section 4 presents a forecast-
ing exercise and Section 5 is devoted to an application where
the pricing of weather derivative contract types is presented.
Section 6 concludes the article. All quotations of currency in
this article will be in USD unless otherwise stated and, there-
fore, we will omit the explicit notion of the currency. All the
computations were carried out in Matlab version 7.6 and R. The

Figure . Upper panel: Kaohsiung daily average temperature (gray line), Fourier truncated (dotted gray line) and local linear seasonality function (black line), residuals in
lower part. Lower left panel: Truncated Fourier seasonal variation, (σ̂ 2

t ) over years. Lower right panel: Kaohsiung empirical (black line), truncated Fourier (dotted gray line),
and local linear (gray line) seasonal variance (σ̂ 2

t ) function.
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Table . Seasonality estimates �̂t of daily average temperature.

City Period â b̂ ĉ1 d̂1 ĉ2 d̂2 ĉ3 d̂3

Berlin (–) . . . − . . . . − .
(–) . . . − . . − . − . − .
(–) . . . − . . − . − . − .
(–) . . . − . . − . . .
(–) . . . − . . − . . .
(–) . . . − . . − . . .

Kaohsiung (–) . . . − . − . − . − . .
(–) . . . − . − . − . − . .
(–) . . . − . − . − . − . .
(–) . . . − . − . − . − . .

New York (–) . . . − . − . . − . − .
(–) . . . − . − . . − . − .
(–) . − . . − . − . . − . − .
(–) . − . . − . − . . − . − .
(–) . . . − . − . . . − .
(–) . . . − . − . . − . − .

Tokyo (–) . . . − . − . − . − . − .
(–) . . . − . − . − . − . − .
(–) . . . − . − . − . − . − .
(–) . . . − . − . − . − . − .
(–) . . . − . − . − . − . − .

NOTE: All coefficients are nonzero at % significance level.

Figure . The empirical (gray line), the Fourier truncated (dotted gray line), and the local linear (black line) seasonalmean (left panel) and variance component (right panel)
using quartic kernel and bandwidth h = 4.49.
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Table . ADF and KPSS-Statistics for the detrended daily average temperature time
series for different cities.

City Period ADF KPSS

Atlanta – − .+ .***
Beijing – − .+ .***
Berlin – − .+ .**
Essen – − .+ .*
Houston – − .+ .*
Kaohsiung – − .+ .*
New York – − .+ .*
Osaka – − .+ .*
Portland – − .+ .*
Taipei – − .+ .*
Tokyo – − .+ .*

NOTE: ’+’corresponds to a significance level of . for ADF test, and ’*’, ’**’and ’***’
corresponds to significance levels of ., . and ., respectively, for KPSS test.

temperature data for different cities in the U.S., Europe, and
Asia were obtained from the National Climatic Data Cen-
ter (NCDC), the Deutscher Wetterdienst (DWD), Bloomberg
Professional Service, and the Japanese Meteorological Agency
(JMA). All data is converted to Celsius degrees. Weather
derivative data from CME was extracted from Bloomberg.
To simplify notation, dates are denoted using a yyyymmdd
format.

2. Model

Although the temperature data are usually given in a discrete
scale, temperature itself develops continuously over time. Thus,
a continuousmodel for the futures price dynamics can be clearly
formulated. We propose, as also suggested in Benth, Benth,
and Koekebakker (2007) and Härdle and López Cabrera (2012),
a mean reverted Ornstein-Uhlenbeck process for the model-
ing of detrended temperature variations in continuous time
CAR(L):

dXt = AXtdt + eLσtdBt , (1)

where σ 2
t > 0 is a bounded deterministic seasonal variation,

Xt ∈ R
L(detrended temperature) for L ≥ 1 denotes a vectorial

Ornstein-Uhlenbeck process, ek a kth unit vector in R
L for k =

1, . . . , L, Bt a Brownian motion, and an L × L-matrix A:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

. . . 0
...

0 · · · · · · 0 0 1

−αL −αL−1 · · · −α2 −α1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

To bring the continuous time model in (1) to data, we con-
sider a discretized version of it. The details of the discretization
can be found in the Appendix. Let us first refine our notation
from t to (t, j), with t = 1, . . . , τ = 365 days, j = 0, . . . , J
years. The discrete time series model for calibration is given as:

X365 j+t = Tt, j − �t ,

X365 j+t =
L∑

l=1

βl jX365 j+t−l + εt, j,

εt, j = σt et, j,

et, j ∼ N(0, 1),

ε̂t, j = X365 j+t −
L∑

l=1

β̂l jX365 j+t−l, (2)

where Tt, j is the temperature at day t in year j, �t denotes the
seasonality effect and σt the seasonal variance. We adopt the
model in (2) and estimate�t , σt nonparametricly using adaptive
methods proposed later in Section 2.1. Motivation for using this
model can be found in Campbell and Diebold (2005) (CD), who
proposes the model, see their Equations (1), (1a), (1b), (1c).

Tt = Trendt + Seasonalityt +
L∑

l=1

ρt−lTt−l + σtεt ,

Trendt =
M∑

m=0

βmtm,

Seasonalityt =
P∑

p=1

[
δc,p cos

{
2π p

d(t )
365

}
+ δs,p sin

{
2π p

d(t )
365

}]
,

Figure . Simulated Critical Values for likelihood of seasonal variance () with θ∗ = 1, r = 0.5, number of simulation runs = , with α = 0.3 (dotted), . (dashed),
. (solid) for the bandwidth sequence (3, 5, 8, 12, 17, 23, 30) on the left plot and with α = 0.3 and for sequences (3, 5, 7, 9, 11, 13, 15) (solid), (3, 5, 8, 12, 17, 23, 30)

(dashed), (5, 7, 10, 14, 19, 25, 32) (dotted), and (7, 9, 11, 14, 17, 10, 24) (dot-dashed) on the right plot.
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Figure . Estimation ofmean and variance for Berlin. In both figure sequence of bandwidths (upper panel), averaged observations (solid gray line), nonparametric function
estimation with fixed bandwidth (dashed gray line), adaptive bandwidth (solid black line) and truncated Fourier (dotted line) (bottom panel of each figure). Circles and
triangles in each bottom panel for variance represents the  smallest and the  largest outliers respectively.

σ 2
t =

Q∑
q=1

[
γc,q cos

{
2πq

d(t )
365

}
+ γs,q sin

{
2πq

d(t )
365

}]

+
R∑

r=1

{
αr(σt−rεt−r)

2 +
S∑

s=1

βsσ
2
t−s

}
.

In all the comparisons below, we follow the setting proposed
by Campbell and Diebold (2005) with L = 25,M = 1,P =
3,Q = 3,R = 1, and S = 1. The CD model is also based on a
seasonal autoregressive process, but it is quite different from our
model in (2). Instead of regressing the deseasonalized temper-
ature on the lagged deseasonalized temperature as in (2), CD
model regresses the present’s deseasonalized temperature on the

temperature in previous days. The trend function thus cannot
be interpreted as “seasonal function” but a seasonal component.
Also CD model suggests an additive structure instead of a
multiplicative one for the seasonality and GARCH effect in the
temperature volatility. Please refer to Benth and Benth (2012)
for a detailed discussion of the differences between those two
models.

We will use the CD model as a benchmark model for fur-
ther analysis. Later studies, for example, Benth, Benth, and
Koekebakker (2007) and Härdle and López Cabrera (2012),
have provided evidence that the parameters βl j are likely to be
j independent and hence estimated consistently from a global
autoregressive process model AR(Lj) with Lj = L. Also, Benth,
Benth, and Koekebakker (2007) adopt the parameterization of
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1496 W. K. HÄRDLE ET AL.

Figure . Estimation of mean and variance for Kaohsiung. In both figure sequence of bandwidths (upper panel), averaged observations (solid gray line), nonparametric
function estimationwith fixed bandwidth (dashed gray line), adaptive bandwidth (solid black line) and truncated Fourier (dotted line) (bottompanel of each figure). Circles
and triangles in each bottom panel for variance represents the  smallest and the  largest outliers respectively.

�t and σt as follows:

�t = a + bt +
L1∑
l=1

cl cos
{
2π(t − dl )
l · 365

}
, (3)

σ 2
t,FTSG = c10 +

L2∑
l=1

{
c2l cos

(
2lπt
365

)
+ c2l+1 sin

(
2lπt
365

)}

+ α1(σt−1ηt−1)
2 + β1σ

2
t−1,

ηt ∼ iid(0, 1). (4)

An alternative path to model �t and σt is to use a nonparamet-
ric method: the local linear regression, where the seasonality

�s and σs are approximated with a local linear regression (LLR)
estimator:

argmin
e, f

365∑
t=1

{
T̄t − es − fs(t − s)

}2 K(
t − s
h

)
, (5)

argmin
g,v

365∑
t=1

{
ε̂2t − gs − vs(t − s)

}2 K(
t − s
h

)
, (6)

where T̄t is themean (over years) of daily averages temperatures,
ε̂2t the squared residual process (after seasonal and intertempo-
ral fitting), h the bandwidth and K(·) is a kernel. Note, that due
to the spherical character of the data, the kernel weights in (5)
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Figure . Estimation of mean and variance for New York. In both figure sequence of bandwidths (upper panel), averaged observations (solid gray line), nonparametric
function estimation with fixed bandwidth (dashed gray line), adaptive bandwidth (solid black line) and truncated Fourier (dotted line) (bottom panel of each figure).
Circles and triangles in each bottom panel for variance represents the  smallest and the  largest outliers, respectively.

and (6) may be calculated from “wrapped around observations”
thereby avoiding boundary bias. The estimates �̂s, σ̂ 2

s are given
by the minimisers ês, ĝs of (5) and (6).

The seasonal trend function �t and the seasonal variance
function σ 2

t affect, of course, the Gaussianity of the result-
ing normalized residuals. The commonly used approaches 1.
truncated Fourier series, and 2. local polynomial regression
(with fixed bandwidth) are rather restrictive and do not fit
the data well since they do not necessarily yield normal risk
factors. These observations motivated us to consider a more
flexible approach. The main idea is to fit a local paramet-
ric model for the trend and variance with adaptively cho-
sen window sizes. Specifically, we use kernel smoothing and

employ an adaptive technique to choose the bandwidth over
days. Other examples of this technique can be found in Cízek,
Härdle, and Spokoiny (2009) and Chen, Härdle, and Pigorsch
(2010).

It is worth noting that when we bring our model to the
data, one can choose to estimate the mean function year by
year as �̂t, j or take the average over years as �̂t , this is later
referred as the separately estimated mean and the jointly esti-
mated mean methods, respectively. Regarding the estimate σ̂t ,
an aggregated approach is developed to tackle the problem of
losing information when considering estimates at the individ-
ual level or averaging mean (variance) functions over time.
This approach considers the minimum variance between the
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1498 W. K. HÄRDLE ET AL.

Figure . Estimation ofmean and variance for Tokyo. In both figure sequence of bandwidths (upper panel), averaged observations (solid gray line), nonparametric function
estimation with fixed bandwidth (dashed gray line), adaptive bandwidth (solid black line) and truncated Fourier (dotted line) (bottom panel of each figure). Circles and
triangles in each bottom panel for variance represents the  smallest and the  largest outliers respectively.

aggregation of yearly local function estimates and an optimal
local estimate θ o. Once the sets of local functions have been
identified, the aggregated local function can be defined as the
weighted average of all the observations in a given time set. For-
mally, if θ̂ j(t ) is the localized estimation of the variance func-
tion σ 2 at time t of year j, the aggregated local function is given
by:

θ̂ω(t ) =
J∑

j=1

ω j θ̂
j(t ). (7)

With this aggregation step across J, we give the same weight to
all observations, even to observations that were unimportant at

the yearly level. Then a reasonable optimised estimate will be:

argmin
ω

J∑
j=1

365∑
t=1

{θ̂ω(t ) − θ̂ o
j (t )}2

subject to �J
j=1ω j = 1;ω j > 0, j = 1, . . . , J, (8)

where theweights are assumed to be exogenous and nonstochas-
tic, and θ̂ o

j is defined as one of the following: 1 (Locave), θ̂ o
j (t ) =

J−1 ∑J
j=1 σ̂ 2

j (t ), the average of seasonal empirical variances over
years, 2, (Locsep) θ̂ o

j (t ) = σ̂ 2
j (t ), the yearly empirical variances,

3, one of above two approaches with maximised p-values over a
year. Onemay interpret this normalization of weights as an opti-
mization with respect to different frequencies (yearly, daily). In
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Table . Summary of methods.

Method Explanation

JoMe adMe adVa Jointly estimated mean, adaptive bandwidth mean
adaptive bandwidth variance

JoMe fiMe fiVa Jointly estimated mean, fixed bandwidth mean fixed
bandwidth variance

SeMe adMe adVa Separately estimated mean, adaptive bandwidth mean
adaptive bandwidth variance

SeMe fiMe fiVa Separately estimated mean, fixed bandwidth mean fixed
bandwidth variance

Locave Aggregated approach with average of yearly empirical
variance as the target

Locsep Aggregated approach with each year’s empirical variance
as the target

Locmax The optimal between Locave and Locsep (minimize the
p-value)

Fourier Method with Fourier series fitting for mean and variance
CD Method adopted by Campbell and Diebold ()

the next subsection we describe the localization procedures for
�t and σt , which are going to be elements of estimation meth-
ods applied to the temperature data (our summary of the final
estimation methods can be found in Table 3).

2.1. Adaptive Estimation

In this section we introduce adaptive procedures adopted for
flexible estimation of�t and σt . The time series Tt, j are approx-
imated at a fixed time point s ∈ [1, 365]. Our goal is to find a
local window that possesses certain optimality properties, to
be defined below. Specifically, for a specified weight sequence,
we conduct a sequential likelihood ratio test (LRT) to choose
an appropriate bandwidth. Different procedures of estimating
seasonality and volatility are studied. Suppose that the object
to be approximated is the seasonal variance θ (t ) = {σ 2

t } (�t
can be estimated similarly). A weighted maximum likelihood
approach is given by:

θ̃k(s)
def= argmax

θ

L{Wk(s), θ}

= argmin
θ

365∑
t=1

J∑
j=0

{log(2πθ )/2

+ ε̂2t, j/2θ}w(s, t, hk), (9)

with the “localizing scheme”Wk(s) = {w(s, 1, hk),w(s, 2, hk),
. . . ,w(s, 365, hk)}�, where w(s, t, hk) = h−1

k K{(s − t )/hk},
k = 1, . . . ,K, h1 < h2 < h3 < · · · < hK a prescribed sequence
of bandwidths, and K(u) = 15/16(1 − u2)2I(|u| ≤ 1) (quartic
kernel).

Define confidence sets with critical values (Critical Values) zk
to level α:

Eα,k = {θ : L(Wk, θ̃k, θ ) ≤ zk}, (10)

where the likelihood ratio is defined as

L(W �, θ̃k, θ )
def= L(W �, θ̃k) − L(W �, θ ). (11)

Equipped with confidence sets (10), we launch the local model
selection (LMS) algorithm:

Step 1. Fix a point s ∈ {1, 2, . . . , 365}.
Step 2. Start with the smallest interval h1: θ̂1 = θ̃1

Step 3. For k ≥ 2, θ̃k is accepted and θ̂k = θ̃k if θ̃k−1 was
accepted and θ̃k ∈ Eα,l,∀� = 1, . . . , k − 1, that is,

L(Wk, θ̃�, θ̃k) ≤ z�,∀� = 1, . . . , k − 1.

Otherwise, set θ̂k = θ̂k−1, where θ̂k is the latest
accepted after first k steps.

Step 4. Define k̂ as the kth step we stopped, and θ̂� = θ̃k̂, � ≥
k.

The critical values z� used in the sequential test above are
computed based on the following algorithm:.

Step 1. Consider first z1 and let z2 = z3 = · · · = zK−1 = ∞.
This leads to the estimates θ̂k(z1) and the value z1 is
selected as the minimal one for which

sup
θ∗

E θ∗ |L{Wk, θ̃k, θ̂k(z1)}|r ≤ αrr

K − 1
, k = 2, . . . ,K.

(12)

Step 2. Suppose z1, . . . , zk−1 have been fixed, and set zk =
· · · = zK−1 = ∞. With estimate θ̂m(z1, . . . , zk) for
m = k + 1, . . . ,K. select zk as the minimal value
which fulfills

sup
θ∗

E θ∗ |L{Wm, θ̃m, θ̂m(z1, . . . , zk)}|r ≤ kαrr
K − 1

(13)

form = k + 1, . . . ,K.

Inequality (12) describes the impact of the k Critical Value
to the risk, while the factor kα

K−1 in (13) ensures that every zk
has the same impact. The values of (α, r, h1, . . . , hK) are pre-
specified hyper parameters for which robustness and sensitivity
issues will be discussed in Section 3.

To be more specific, the explicit solution of (9) is in fact a
Nadaraya-Watson estimator:

θ̃k(s) =
∑
t, j

ε̂2t, jw(s, t, hk)

/∑
t, j

w(s, t, hk)

=
∑
t

ε̂2t w(s, t, hk)

/∑
t

w(s, t, hk),

with

ε̂2t
def= (J + 1)−1

J∑
j=0

ε̂2t, j.

From a smoothing perspective we are in a comfortable situ-
ation here since the boundary bias is not an issue, as we are
dealing with a periodic function θ (t ) = θ (t + 365). We use
mirrored observations: assume hK < 365/2, then the observa-
tion set, for example for the seasonal variance, is extended to
ε̂2−364, ε̂

2
−363, . . . , ε̂

2
0, ε̂

2
1, . . . , ε̂

2
730, where

ε̂2t
def= ε̂2365+t ,−364 ≤ t ≤ 0,

ε̂2t
def= ε̂2t−365, 366 ≤ t ≤ 730.

Since the location s is fixed, we drop s for simplicity of notation.
The theoretical background for the adaptation procedure can

be found in the Appendix.
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1500 W. K. HÄRDLE ET AL.

Figure . QQ-plot for standardized residuals from Berlin using different methods for the data from – ( years). Please see Table  for a summary of methods.

3. Empirical Analysis

We conduct an empirical analysis of temperature patterns for
different cities. Themain dataset contains the daily average tem-
peratures for different cities in Europe, Asia, and the U.S. for
the period 1900–2011: Atlanta, Beijing, Berlin, Essen, Houston,
Kaohsiung,NewYork,Osaka, Portland, Taipei, andTokyo.How-
ever as different cities have different data history, for a wider
study composed of 1000 cities, a history longer than five years
cannot be fulfilled. Moreover, the normality results and forecast
performance would be worse for longer histories. We therefore
use only up to five years’ subsamples. For the sake of brevity, we
present, from now on, only the results from four cities: Berlin,
Kaohsiung, New York, Tokyo, and detail the other results in the

online supplementary material. The four cities are from differ-
ent countries and are quite representative of different types of
weather relevant to the interest of weather derivative analysis.
Berlin, New York, and Tokyo are cities with weather derivatives
that are frequently traded, and Kaohsiung is a coasted city with
atypical temperature patterns.

Wefirst check seasonality, intertemporal correlation, and sea-
sonal variation. Table 1 provides the coefficients of the Fourier
truncated seasonal function (3) for some cities for different time
periods. The coefficient a can be seen as the average tempera-
ture, the coefficient b as an indicator for a possible trend within
a year. The latter coefficients are stable evenwhen the estimation
is done in a window length of 10 years. In the sense of capturing
volatility peak seasons, the right panel of Figure 3 visualises the
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power of capturing volatility peak seasons by the seasonal local
smoother (5) using the quartic kernel over the estimates mod-
eled under Fourier truncated series (3).

After removing the local linear seasonal mean (5) from the
daily average temperatures (Xt = Tt − �t,LLR), we check that
Xt is a stationary process with the augmented Dickey-Fuller
(ADF) and the KPSS tests. The analysis of the partial autocor-
relations and the Akaike information criterion (AIC) suggest
that an AR(3)model fits the temperature evolution well. Table 2
presents the results of the stationarity tests. The temperature
data and the smoothed seasonal functions are plotted on the left
panel in Figure 3. To show the pattern of the squared residuals
after seasonal and intertemporal fitting (ε̂2t, j), we plot the aver-
aged square residuals over years and show the empirical curves
on the right panel in Figure 3. Besides, we have also plotted in
Figure 3 the smoothed curves by using the Fourier method and
the fixed bandwidth local linearmethod. Furthermore, we check
the normality of the final residuals and present the results in the
online supplementarymaterial Tables 1– 3 (see there the Fourier
method). All seasonal variance estimators lead to residuals that
are far frombeing normally distributed. These facts are of course
not an ideal platform for risk neutral pricing (based on stan-
dard stochastic financial models). The heavytailedness, as seen
in Figure 1, may be attributed to an unsatisfactory extraction
of the heteroscedasticity (or mean) function. As a solution we
employ a localization scheme.

The adjustment in the smoothing parameter h
will provide the localization in time. The band-
width sequences are selected from six candidates:
(1, 2, 3, 4, 5, 6, 7), (1, 2, 3, 5, 7, 10, 13), (3, 5, 7, 9, 11, 13,
15), (3, 5, 8, 12, 17, 23, 30), (5, 7, 10, 14, 19, 25, 32), and
(7, 9, 11, 14, 17, 10, 24). These candidates are chosen accord-
ing to the lowest Anderson–Darling (AD) statistic. The best
candidate for the bandwidth sequence is the one which yields
a residual distribution closest to the normal one. Smoothing
the selected bandwidths gives another adaptive estimator,
implemented, but not discussed here, due to space limitations.

The critical values as calibrated from (12) and (13) are given
in Figure 4. The left hand side provides Critical Values simulated
from a sample of 10,000 observations for a quartic kernel for
both mean with θ∗ = 0 and variance with θ∗ = 1, r = 0.5 and
different values of significance level α. The Critical Values for
different bandwidth sequences are displayed on the right hand
side of Figure 4. The critical values, as one observes, are relatively
robust to the choice of r and α.

A one year period is considered in the first place for
demonstration purposes, while later we show how the results
change with different time periods. Figures 5, 6, 7, and 8
present the general results for the different cities under dif-
ferent adaptive localizing schemes for seasonal mean (Me)
and seasonal variance (Va): with fixed bandwidth curve
(fi), adaptive bandwidth curve (ad), and truncated Fourier
(Fourier) for different time intervals. The seasonal mean is esti-
mated jointly over the years, using α = 0.7 and power level
r = 0.5.

The upper panel of each variance plot in Figures 5–8 shows
the sequence of bandwidths; the bottom panel displays vari-
ance estimation with fixed bandwidth (dashed line), the Fourier
truncated method (dotted line), and adaptive bandwidth (solid

black line). In all countries, one observes significant differ-
ences between the estimates. In particular, in cities like Kaoh-
siung and New York, one observes more variation of the sea-
sonal variance curves during peak seasons (winter and sum-
mer times). The triangles and circles in the bottom panel of
each variance plot help us trace the source of the nonnormal-
ity over time, since they correspond to ten dots of the upper
and lower tails of the QQ-plots of square residuals respectively
(see Figure 9 for the Berlin results). The top plots of Figures 5–
8 show the mean case. Unlike the seasonal variance function,
we do not observe a big variation of smoothness in the mean
function. One can see that in all cities, the bandwidths vary
over the yearly cycle with a slight degree of nonhomogeneity for
Kaoshiung.

An approach to cope with the nonnormality brought in by
more observations is to estimate mean functions year by year
(SeMe), and then aggregate the residuals for variance estima-
tion. We, therefore, estimate the joint/separate seasonal mean
(JoMe/SeMe) and seasonal variance (Va) curves with a fixed
bandwidth curve (fi) and an adaptive bandwidth curve (ad). (A
summary of the estimation methods can be found in Table 3.)
The average over years acts as a smoother when we consider
more years. The estimated AR(L) parameters for different cities
using a joint/separate mean (JoMe/SeMe) with different band-
width curves are illustrated in Table 4. The results again show
that an AR(3) fits the stylised facts of temperature well.

Kolmogorov–Smirnov (KS), Jarques–Bera (JB), and AD
normality tests are taken to test the normality of the corrected
residuals (after seasonal mean and variance). For each city, a
rejection at 0.05 level is counted as 1 (else 0). The rejection
rates over all the cities under different estimation techniques are
displayed in Table 5. The results compare different periods (1–5
years) for the robustness of our methods. (Considering data
histories longer than 5 years would not give us a better forecast
performance and normality test results.) A higher rejection rate
would indicate a poorer performance of the relevant method.
To make our conclusion more general, we add 988 more cities,
which are selected all around the world resulting in a total
of 1000 cities, see Figures 10 and 11. The additional data are
taken from NCDC Climate Data Online from 2007 to 2012.
We observe a superior performance of adaptive methods over
the CD method and a truncated Fourier. The JoMe adMe adVa
method with one year of history leads to the rejection rate up
to of 0.174 which is more than twice smaller than using other
methods. Considering more years of history, the rejection rate
of the CD method comes close to 1.0 based on all tests and the
rejection rate for the truncated Fourier based on the KS test is
around 0.25 and based on two other tests, approaches 0.8. In
contrary to CD and the truncated Fourier, rejection rates from
all the adaptive methods are below 0.2 for all three tests. More-
over, one observes the rejection rate below 0.01 for the KS test
for all years of history using the Locave and Locsep methods.
SeMe adMe adVa method keeps the rejection rate for 3–5 years
of history and JB and AD tests below 0.13. The Locmax proce-
dure has a very stable performance over all the tests and all the
history, with rejection rates being bounded by 0.16. Maps with
marked locations on which the analysis has been performed
using the period of five years of history and most conservative
tests namely JB and AD are presented in Figures 10 and 11.
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Table . Rejection rates of the normality at % level for  cities with different
history, methods of estimation, and normality tests.

Method KS JB AD

 Year JoMe adMe adVa . . .
JoMe fiMe fiVa . . .
Fourier . . .
CD . . . KS JB AD

 Years JoMe adMe adVa . . .  Years . . .
JoMe fiMe fiVa . . . . . .
SeMe adMe adVa . . . . . .
SeMe fiMe fiVa . . . . . .
Locave . . . . . .
Locsep . . . . . .
Locmax . . . . . .
Fourier . . . . . .
CD . . . . . .

 Years JoMe adMe adVa . . .  Years . . .
JoMe fiMe fiVa . . . . . .
SeMe adMe adVa . . . . . .
SeMe fiMe fiVa . . . . . .
Locave . . . . . .
Locsep . . . . . .
Locmax . . . . . .
Fourier . . . . . .
CD . . . . . .

NOTE: Tests for normality are Kolmogorov–Smirnov (KS), Jarque–Bera (JB) and
AD. Methods used: joint/separate mean (JoMe/SeMe) with fixed/adaptive (fi/ad)
bandwidth for the mean/variance (Me/Va), Locave, Locsep, Locmax, truncated
Fourier (Fourier) and CDmodel. Highlighted in italic aremodels with the smallest
rejection rate for each goodness-of-fit (GoF) test and each history.

Cities marked in blue are those, where the normality at a 5%
level cannot be rejected using JB (Figure 10) and AD (Figure 11)
tests, otherwise cities are marked in red. One clearly sees dom-
inance of blue marked cities in the Locmax method (in both
figures top left map) and the dominance of red marked cities
in the other subplots. More detailed results for only 12 original
cities can be found in the online supplementary material.

4. Forecast and Comparison

In this section, we compare the forecasting accuracy of the pro-
posed models to the CD model. CD mentions that their point
forecasts are always at least as good as the persistence and cli-
matological forecasts, although not so good as the judgmentally
adjusted NWP forecast produced by EarthSat for a horizon of
eight days. Therefore, a good performance of the technique pre-
sented here could potentially suggest that our time series model
is relevant for weather derivatives. and

In Figures 12 and 13 we compare the out-of-sample forecast
performance between five methods, namely SeMe adMe adVo,
Locmax, JoMe adMe adVo, truncated Fourier, and CD. The
comparison is provided at different time horizons (1, . . . , 150
days) for Berlin, Kaohsiung, New York and Tokyo using 2
(Figure 12) and 3 (Figure 13) years of history. These figures
contain information both on point forecast and interval fore-
cast. The top panel of each plot shows the absolute deviation
of the forecasted temperature from the true one, averaged over
10,000 simulation paths. This may be considered as the quality
of the point forecast. In these terms, as we see in most cities and
over all time horizons, we have at least one localizing method
better than the CD method. The lower panel of each plot shows
the averaged width of the point-wise confidence interval based

on 10,000 sample paths. These curves represent the efficiency of
the models. Although the truncated Fourier series method also
looks quite competitive in the point forecast, it usually has a very
wide confidence interval, which is a sign of low efficiency. Other
methods in this context are strictly better. The middle panel
shows the coverage of the true temperature by the confidence
interval, where larger values represent higher quality. In terms of
interval forecast, we can see that from Figure 12 and 13 for most
cities, we have at least onemodel which has better coverage with
moderate width of confidence intervals. Moreover, we do not
see outperforming behavior of the CD method over proposed
adaptive techniques in almost all 12 cities. As a conclusion, we
do not claim strict superiority over the CD method in forecast-
ing, but conclude, that both methods are quite competitive.

5. A Temperature Pricing Example

Based on a model for the daily temperature evolution, futures
and European options written on temperature indices traded
at the Chicago Mercantile Exchange (CME) can be calibrated.
Temperature futures are contracts written on different temper-
ature indices measured over specified periods [τ1, τ2] such as
weeks, months, or quarters of a year. Temperature futures allow
one party to profit if the realized index value is greater than a
predetermined strike level and the other party benefits if the
index value is below. The owner of a call (put) option writ-
ten on futures F(t, τ1, τ2) with exercise time t ≤ τ1 and mea-
surement period [τ1, τ2] will receive max{F(t, τ1, τ2) − K, 0}
(max{K − F(t, τ1, τ2), 0}), where K denotes the strike level. In
other words, in exchange for the payment of the premium,
the call (put) option gives the buyer a payoff based upon
the difference between the realized index value and the strike
level.

Themost common temperature indices I(τ1, τ2) are: Heating
Degree Day (HDD), Cooling Degree Day (CDD), Cumulative
Averages Temperatures (CAT), or Average Accumulative Tem-
peratures (AAT). The CAT index takes the accumulated average
temperature over [τ1, τ2]:

CAT(τ1, τ2) =
∫ τ2

τ1

Tudu,

where Tu = (Tu,max + Tu,min)/2 denotes the daily average tem-
perature. The measurement period is usually defined in months
or season. The HDD index measures the cumulative amount of
average temperature below a threshold (typically 18◦C or 65◦F)
over a period [τ1, τ2]:

∫ τ2
τ1

max(c − Tu, 0)du. Similarly, the CDD
index accumulates max(Tu − c, 0). At CME, CAT/CDD futures
are traded for European cities, CDD/HDD for the U.S., Cana-
dian, and Australian cities, and AAT for Japanese cities. Note
that these temperature indices are the underlying and not the
temperature itself. The options at CME are cash settled, that is,
the owner of a future receives 20 times the Degree Day Index
at the end of the measurement period, in return for a fixed
price. At time t , CME trades different contracts i = 1, . . . ,N
with measurement period 0 ≤ t ≤ τ i

1 < τ i
2 (usually the length

between τ i
1 and τ i

2 is one month). For example, a contract with
i = 7 is six months ahead from the trading day t . For the U.S.
and Europe CAT/CDD/HDD futures, N is usually equal to 7
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1504 W. K. HÄRDLE ET AL.

Figure . Map of locations where temperature are collected over period –. Cities marked in blue do not reject the normality at % using the JB test and cities
marked red do reject the normality hypothesis. In a clockwise direction, used methods are Locmax, truncated Fourier, CD, and JoMe fiMe fiVa.

(April–November or November–April), while for Asia, N = 12
(January–December).

Recall that we adopt the CAR(L) model in (1) for the
detrended temperature time series, and the autoregressive pro-
cess AR(L) in (2) can be seen as a discretely sampled continuous
time process (CAR(L)) (1) driven by one dimensional Brow-
nian motion. The detailed demonstration can be found in the
Appendix A.2.

The fact that temperature’s random factor is close to the
normal distribution, as disclosed in the analysis of the residuals

before, motivates the use of a Brownian motion as the noise
in the Ornstein-Uhlenbeck process. Moreover ACF-plots of
the squared residuals presented in the online supplementary
material demonstrate the success of the localizing method to
explain deterministic variations in temperature data. They do
not show signs of stochastic volatility: the squared residuals
do not have an exponentially decaying ACF. This contradicts
results found in Benth and Benth (2011) and Benth and Benth
(2012) and suggests to us that the non-Gaussian shocks found
in the literature are the result of model mis-specification. The

Figure . Map of locations where temperature are collected over period –. Cities marked in blue do not reject the normality at % using the AD test and cities
marked red do reject the normality hypothesis. In a clockwise direction, used methods are Locmax, truncated Fourier, CD and JoMe fiMe fiVa.
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Figure . h = 1, . . . , 150 days (X axis) ahead forecast for Berlin, Kaohsiung, NewYork and Tokyo (left to right, top to bottom); averaged absolute error (Y axis, upper panel),
averaged coverage days (Y axis, middle panel), averaged width of the confidence 95% intervals (Y axis, lower panel), SeMe adMe adVo (solid black), Locmax (dashed gray),
JoMe adMe adVo (dotted black), truncated Fourier (solid gray), CD (dashed black), fitted using  years of historical data and , samples.

continuous analogue of the CD model is, however, difficult to
estimate. Thus the model in (1) is simpler than CD’s one and
provides a better fit to the data.

The temperature futures price is the risk adjusted index,
given today’s filtration F t

FI(t, τ1, τ2) = E Q [I(τ1, τ2)|Ft ] , (14)

with I(τ1, τ2) being one of the indices CAT, HDD or CDD. The
expectation is computed under a risk neutral pricing probability
Q and is equivalent to the physical measure P under which the
discounted temperature index is a Q-martingale. To evaluate
(14), we need to know the temperature index dynamics under
Q. We restrict the class of pricing probabilities to those that
can be parameterized via Q = Qλ, where equivalent changes
of measures are simply associated with changes of drift. Thus,
in the modeling of the dynamics of futures prices written on
temperature indices, it is natural to define a parameter measur-
ing the market price of risk (MPR) λt , which can be calibrated
from traded (CAT/CDD/HDD) derivative type contracts. The
temperature dynamics in (1) under Qλ become:

dXt = (AXt + eLσtλt )dt + eLσtdBλ
t , (15)

where Bλ
t is a Brownian motion for any time before the end of

the trading time and a martingale under Qλ. Then, for 0 ≤ t ≤
τ1 < τ2, the explicit form of an CAT futures price is given by

FCAT(t, τ1, τ2,�t , σt , λt )

= E Qλ

[∫ τ2

τ1

Tudu|Ft

]
=

∫ τ2

τ1

�udu + at,τ1,τ2Xt

+
∫ τ1

t
λuσuat,τ1,τ2eLdu

+
∫ τ2

τ1

λuσue�
1 A

−1 [
exp {A(τ2 − u)} − IL

]
eLdu,(16)

with at,τ1,τ2 = e�
1 A−1[exp{A(τ2 − t )} − exp{A(τ1 − t )}] and

IL the L × L identity matrix. Similarly one can compute the
price dynamics of CDD and HDD, see (Benth, Benth, and
Koekebakker 2007). The CARmodel (1) provides the analytical
formula (16). Note that all constituents except λt in the left
and right side of (16) are known or estimable (�t and σt are
out-of-sample estimates as in the previous section), hence the
calibration of the MPR from market data turns out to be an
inverse problem in terms of λt .
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1506 W. K. HÄRDLE ET AL.

Figure . h = 1, . . . , 150 days (X axis) ahead forecast for Berlin, Kaohsiung, NewYork and Tokyo (left to right, top to bottom); averaged absolute error (Y axis, upper panel),
averaged coverage days (Y axis, middle panel), averaged width of the confidence 95% intervals (Y axis, lower panel), SeMe adMe adVo (solid black), Locmax (dashed gray),
JoMe adMe adVo (dotted black), truncated Fourier (solid gray), CD (dashed black), fitted using  years of historical data and , samples.

Assuming that the parameterization of the MPR is of a con-
stant form for each observed contract (λu = λt,τ i

1,τ
i
2
in (16) for

u ∈ [τ1, τ2]), one can calibrate the MPR for every combination
of (t, τ i

1, τ
i
2), i = 1, . . . ,N contracts, by inverting the pricing

formulas in (16) with the observed CME market prices at time
t , (Ft,i,CME) with respect to λ as:

λ̂t,τ i
1,τ

i
2
= argmin

λ

|FCAT(t, τ i
1, τ

i
2, �̂t , σ̂t , λ) − Ft,i,CME|. (17)

We name λ̂t,τ i
1,τ

i
2
as impliedMPR. For fixed time t , assuming that

λt remains the same for different contracts with different matu-
rities, to evaluate the estimation of λ̂t for a particular contract i,
the observed price Ft,i,CME for this contract can be excluded for
the estimation. We have then the cross-validated estimation by
leaving one contract out:

λ̂t,τ i
1,τ

i
2,CV = argmin

λ

N∑
j=1; j �=i

{FCAT(t, τ j
1 , τ

j
2 , �̂t , σ̂t , λ)

−Ft, j,CME}2. (18)

Other specifications of the MPR for temperature derivatives
have been explored in Härdle and López Cabrera (2012), where

the authors argue that a constant MPR is sufficient for pric-
ing purposes. This might be compared with complete markets,
where the MPR is minus the Sharp ratio (μt − r)/σ F

t , where
μt and σ F

t denote the mean and standard deviation of traded
futures, and r is the risk free interest rate. From now on, pricing
follows (16) with an MPR from (17), (18) and with �t and σt
estimated via the localization techniques.

Observe that calibrations in (17), (18) are only valid if a
weather derivative market exists, like for example for Berlin
and Tokyo. To price temperature derivatives for regions with
no weather derivative markets, like Kaohsiung, one can use the
implied MPR of traded futures of a neighboring market, for
example, Tokyo AAT futures. Thus, by finding a relationship
between the MPR and the seasonal variance one can use this as
a proxy to price over the counter (OTC) AAT futures for Kaoh-
siung. This is acceptable since the stylized facts of temperature
in Tokyo reveal similarities to that of Kaohsiung. However, gen-
erally we are aware of arbitrage opportunities across the two dif-
ferent markets, therefore this approach cannot be generalized
for every second weather derivative markets. Considering that
the MPR is a risk premium per unit of volatility, one can project
the implied MPR on the state variables related to volatility. An
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Table . RMSE between the weather futures listed at CME and estimated weather
futures FI(t, τ

i
1 , τ

i
2, �̂t , σ̂t , λ̂t−1)with λ̂t−1 = λ̂t−1,CV .

RMSE between models’prices and FCME
λ̂t−1,CV

Type MP n AdaptBW FixedBW Locmax Fourier

Berlin-CAT   . . . .
Berlin-CAT   . . . .
Berlin-CAT   . . . .
Berlin-CAT   . . . .
Berlin-CAT   . . . .
Essen-CAT   . . . .
Essen-CAT   . . . .
Essen-CAT   . . . .
Essen-CAT   . . . .
Essen-CAT   . . . .
Essen-CAT   . . . .
London-CAT   . . . .
London-CAT   . . . .
London-CAT   . . . .
London-CAT   . . . .
London-CAT   . . . .
Tokyo-AAT   . . . .
Tokyo-AAT   . . . .
Tokyo-AAT   . . . .
Tokyo-AAT   . . . .
Tokyo-AAT   . . . .

NOTE: τ i
1 and τ i

2 are the first and the last day of the measurement period (MP,
yyyymm), respectively. Prices are estimated under different estimations schemes
(�̂t , σ̂t under AdaptBW, FixedBW, Locmax, and truncated Fourier). n corresponds
to the number of trading days for a given MP.

insight into Tokyo’s AAT futures, which can be employed for
the Kaohsiung case, can be achieved by regressing the averaged
implied MPR (17) against the variation:

λ̂τ i
1,τ

i
2
= 4.08 − 2.19σ̂ 2

τ i
1,τ

i
2
+ 0.28σ̂ 4

τ i
1,τ

i
2
,

where λ̂τ i
1,τ

i
2

def= (τ i
2 − τ i

1)
−1 ∑τ i

2
t=τ i

1
λ̂t,τ i

1,τ
i
2
, σ̂ 2

τ i
1,τ

i
2

def= (τ i
2 −

τ i
1)

−1 ∑τ i
2
t=τ i

1
σ̂ 2
t , σ̂ 4

τ i
1,τ

i
2

def= (τ i
2 − τ i

1)
−1 ∑τ i

2
t=τ i

1
σ̂ 4
t and R2

ad j =
0.71. Plugging the corresponding σ̂ 2

t , σ̂ 4
t values for Kaohsiung

into this equation let us price such a non-CME traded weather
derivative via (16).

We compare the prices obtainedwith localization procedures
(’localized’ prices) for�t and σt (SeMe adMe adVo (AdaptBW),
Locmax) with prices estimated under fixed bandwidth (SeMe
fiMe fiVo (FixedBW)) and truncated Fourier series.

To judge the performance of themodels, we compute the root
mean squared errors (RMSE) between themarket prices Ft,i,CME
(benchmark) and the estimated out-of-sample model prices

FI(t, τ i
1, τ

i
2, �̂t , σ̂t , λ̂t−1,τ i

1,τ
i
2,CV ) (i = 1, . . . ,N):

RMSE(τ i
1, τ

i
2)

=
√

|T|−1
∑
t∈T

{
FI(t, τ i

1, τ
i
2, �̂t , σ̂t , λ̂t−1,τ i

1,τ
i
2,CV ) − Ft,i,CME

}2
,

in Table 6, where T is the set of days when the contract i with
the measurement period (τ i

1, τ
i
2) was traded. The results show

smaller RMSEwhen futures prices are estimated via localization
techniques, which in general outperforms the prices based on
the truncated Fourier series (Benth). This suggests that our cal-
ibrated MPR embeds information on the risk and uncertainty
in the market, which is helpful in analyzing market risk. Also,

as mentioned before, this information may help to price OTC
derivatives in the same market.

These results provide insight on pricing related to the stylized
facts (seasonal effect, intertemporal correlation, etc.) of weather
data. The role of the terms in the CAT futures price formally
confirms this. To illustrate this point, consider, for example,
the purchase of a May CAT contract for Berlin on 20070427,
which starts measurement at time τ1 = 20, 070, 501 and fin-
ished at τ2 = 20, 070, 531. Setting a constant MPR (for exam-
ple λ = 0.20), the first term of (16) is equal to 431.060, the sec-
ond, third and fourth terms lead to 11.531, 0.8690, and 13.5390,
respectively. The seasonal effect in mean �t plays an important
role in the level of the futures price, as it explains almost 94% of
the pricewhich is 457.Observe that the seasonal volatility σt also
contributes to the CAT futures price since it enters in the second
term (hidden inXt ) and in the last two terms of the CAT pricing
formulas. Therefore, as we get closer to themeasurement period,
temperature variations given by the seasonal variance (σ 2

t ) will
contribute to the futures prices and clearly display the Samuel-
son effect that is typical in mean-reverting markets: at any given
time, seasonal volatility decreases with time to delivery.

6. Conclusions

We show that temperature risk stochastics are closer to Gaus-
sian when applying adaptive statistical methods for seasonal
mean and seasonal variance. This suggests to us that the non-
Gaussian shocks found in the literature are truly a result of mis-
specification. We found that the localization method performs
well, and it is robust to the specification given for �t or σt .
Moreover, intertemporal correlations demonstrate the success
of the localizing methods to explain deterministic variations in
temperature data. We also observed that the proposed method
outperforms the standard estimation methods in most of the
cases. Our results provide important insights into how weather
is priced at the CME and how the observed prices conform with
the stylized facts of weather data. Finally, our adaptive technique
on localizing temperature risk is both an excellent temperature
modeling tool as well as a novel and more market driven pricer.

Supplementary Materials

In the supplementary materials, we provide the estimation, normality tests
and forecast results for the eight cities mentioned but not presented in our
article. Also the technical details are provided in the supplementary mate-
rials.
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incorporation of a state-dependent recovery rate into the conditional factor loading and to
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and recovery rate simultaneously, implicitly creating their association. In accordance with
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1 Introduction

The global economy has repeatedly witnessed clusters of default events, such as the burst

of the dotcom bubble in 2001 and the global financial crisis from 2007 to 2009. Clusters of

default events have been blamed on the role played by systematic risk in leading to default.

To reveal this role, numerous studies emphasize the role of systematic risk by employing a

factor model (Andersen and Sidenius 2004; Pan and Singleton 2008; Rosen and Saunders

2010). The factor model is a common method of capturing obligors’ shared behavior

through a joint common factor and of reducing the dimension of dependence parameters,

which benefits bond portfolio management. However, it is also relatively common to see

certain unrealistic settings in this method, such as constant and linear dependence struc-

tures with thin tails of embedded risk factor distribution.

The factor copula model imposes a dependence structure on common factors and on the

variables of interest. In measuring credit risk using systematic factors, the factor loading

represents the sensitivity of the nth obligor to the systematic factor. All the correlations

between obligors thus arise from their dependence on the common factor, and the common

factor thus plays a major role in determining their joint dependence. By incorporating

factor copula model into credit risk modeling, we can decompose a latent variable into its

systematic and idiosyncratic components, which are independent of one another. A latent

variable typically acts as a proxy for a firms’ assets or liquidation value (Andersen and

Sidenius 2004). Default is triggered by company asset values falling below a threshold that

corresponds to a fraction of company debt (Merton 1974). In this model, credit risk is

measured by a Gaussian random default variable derived from firm asset value that is latent

and modeled by a factor copula framework. The implied firm value from the model ideally

projects the default time we desire; thus, the lower the firm value, the shorter default the

time is.

A constant factor loading assumption embedded in a one-factor Gaussian model is

inconsistent with the fact that the loading on common factors varies over time, which

hampers the measurement of the dependency structures of obligors. In fact, this obser-

vation is at the core of research on the mispricing of structured products (Choroś-Tomczyk

et al. 2013, 2014). Longin and Solnik (2001) and Ang and Chen (2002) argue that a

‘‘correlation breakdown’’ structure acts better in the dependence specification. In partic-

ular, if we set the factor loading to be constant, we may underestimate default risk as the

market turns downward. Our simulation and empirical evidence show that a greater factor

loading in a market downturn leads to a higher contribution of common factors on firm

value.

In addition to the factor-loading specification, the recovery rate is a critical and essential

component in calculating the portfolio loss function. According to Table 1, a state-de-

pendent recovery rate model is suggested since the recovery rate seems to be subject to

market conditions, i.e., higher in a bull market and lower in a bear market. Close obser-

vation reveals a lower average annual recovery rate in the periods from 1999 to 2002

(internet bubble) and from 2008 to 2009 (US subprime crisis) than in the remaining periods

with bullish prospects, as it is assumed that the recovery rate in a bull market should not be

lower than in a bear market. Therefore, the recovery rate is likely to vary with market

conditions, which resembles the behavior of the default rate. Notably, the market condition

is the unique common factor shared by the recovery rate and default rate and causes their

time variations.
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Andersen and Sidenius (2004) address the fact that both default events and recovery

rates are driven by a single factor but with an independence assumption between default

and recovery rate, although there are reasons to doubt this assumption. Chen (2010)

demonstrates that recovery rates are strongly negatively correlated with default rates

(which is given as -0.82). As a consequence, the dependence between them relies on the

common factor, which is represented by the macroeconomic state. We claim that the

common factor (the market) governs the default rate and recovery rate simultaneously,

implicitly creating their association. One of our purposes is to build a tractable model that

can reflect the obligors’ behavior in reacting to the impact from the market. In addition, we

show that systematic risk plays a critical role in credit measurement and prediction, and it

contributes more to a firm’s credit risk during a market downturn than during a tranquil

period. In this sense, the factor loading on the common factor is conditional on market

states. This conditional specification enables risk managers to be alerted regarding the

deteriorating credit risk conditions when the market turns downward, which prevents

underestimating the default probability.

We extend the one-factor Gaussian copula model in two ways. First, to improve the

factor loading of Andersen and Sidenius (2004) given a two-point distribution, we apply

the state-dependent concept from Kim and Finger (2000) with specific distributions to

characterize the correlations in hectic or quiet periods. This concept potentially captures

two typical features of equity index distributions: fat tails and a skew to the left. However,

for a two-point distribution setting, it is difficult to decide on the threshold level of the two-

point distribution and on a time to be chosen arbitrarily. Second, by relaxing the constant

recovery rate that is naively presumed by both scholars and practitioners, our state-de-

pendent recovery rate model allows the systematic risk factor to determine loss given

default (LGD), as suggested by Amraoui et al. (2012). In addition, it restricts the recovery

Table 1 Annual defaulted corporate bond recoveries

Year Bond

Sr. Sec. (%) Sr. Unsec. (%) Sr. Sub. (%) Sub. (%) Jr. Sub. (%) All Bonds (%)

1997 75.5 56.1 44.7 33.1 30.6 48.8

1998 46.8 39.5 45.0 18.2 62.0 38.3

1999 36.0 38.0 26.9 35.6 n.a. 33.8

2000 38.6 24.2 20.8 31.9 7.0 25.1

2001 31.7 21.2 19.8 15.9 47.0 21.6

2002 50.6 29.5 21.4 23.4 n.a. 29.7

2003 69.2 41.9 37.2 12.3 n.a. 41.2

2004 73.3 52.1 42.3 94.0 n.a. 58.5

2005 71.9 54.9 32.8 51.3 n.a. 56.5

2006 74.6 55.0 41.4 56.1 n.a. 55.0

2007 80.6 53.7 56.2 n.a. n.a. 55.1

2008 54.9 33.2 23.3 23.6 n.a. 33.9

2009 37.5 36.9 22.7 45.3 n.a. 33.9

Annual corporate bond recovery rates based on post-default trading price, Moody’s 27th annual default
study. Sr. Sec., Sr. Unsec., Sr. Sub., Sub., and Jr. Sub. represent senior secured, senior unsecured, senior
subordinated, subordinated and junior subordinated, respectively
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rate, as a percentage of the notional is bounded on [0,1] to achieve the tractable and

numerically efficient missions. In summary, our contributions include incorporating the

state-dependent recovery rate into the conditional factor copula model, and we model them

by sharing their unique common factor. The common factor governs the default rate and

recovery rate simultaneously, while creating their association implicitly. Our Monte Carlo

simulation and empirical evidence appropriately reflect this feature.

We propose four competing default models that have been widely applied to measure

credit risk, and we evaluate their performances on the accuracy of forecasting default in the

following year. By mapping the various factor copula models developed in the literature to

the competing models, this comparison fosters a discussion on model performance.

Therefore, to achieve a broader and robust comparison, we group the factor copula models

developed in the literature into four competing models: (1) the FC model, i.e., the standard

one-factor Gaussian copula model with a constant recovery rate (Van der Voort 2007;

Rosen and Saunders 2010); (2) the RFL model, i.e., a one-factor Gaussian copula model in

which the factor loadings are tied to the state of the common factor and the recoveries are

assumed to be constant (Kalemanova et al. 2007; Chen et al. 2014); (3) the RR model, i.e.,

a standard one-factor Gaussian copula model in which the recoveries are related to the

macroeconomic state (Amraoui and Hitier 2008; Elouerkhaoui 2009; Amraoui et al. 2012);

and (4) the RRFL model, i.e., a conditional factor loading specification together with a

state-dependent recovery rate, which is the model that we are developing. If the empirical

results show that it shows superior performance in predicting default, then the outstanding

performance of our refined RRFL model will be clear.

In the FC model, we estimate the Pearson’s correlation coefficient between each obligor

and the common factor and set the recovery rate as constant. This is a conventional model

used to measure capital requirements in the Basel II accord. By relaxing the constant

correlation in the RFL model, we suggest that the conditional factor loading plays a

significant role in capturing an asymmetric systematic impact from the market. The RR

model uses the method proposed by Amraoui et al. (2012) to investigate the effects of the

stochastic recovery rate. It allows the LGD function to be driven by the common factor and

the hazard rate, while maintaining constant factor loadings. In the RRFL model, we

incorporate the conditional factor loading into the state-dependent recovery rate and model

them by sharing the unique common factor. To evaluate whether these two specifications

significantly improve the default prediction, we use the dataset of daily stock indices of the

S&P 500 to represent the market (common factor) and the respective stock prices of the

defaulting companies for the period of five years before the default year from the Datas-

tream database. In theory, stock returns should reflect the credit risk information of each

firm, based on Merton (1974). Moreover, Xiang et al. (2015) document that strong evi-

dence of time-varying credit risk links to equity markets.

Our default data analysis contains 2008 and 2009 data, as collected by Moody’s report.

We use Moody’s Ultimate Recovery Database (URD), which is the ultimate payoff that

obligors can obtain when the defaulting company emerges from bankruptcy or is liquidated

rather than the post-default trading price that is proposed by Carty et al. (1998). These

authors examine whether the trading price represents a rational forecast of actual recovery

and find that it does not. For this period, we employ a state-dependent concept to capture

the asymmetric impact from the common risk factor. As a result, both conditional factor

loading and state-dependent recovery rates improve the calibration of our default predic-

tion. The conventional factor copula underestimates the impact of systematic risk and

portfolio credit loss when the market is in a downturn. We find that incorporating factor

loading into the state-dependent recovery rate improves the accuracy of the default
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prediction. This result is consistent with the goal of Basel III, which emphasizes the role of

systematic risk on overall financial stability and default risk. In our later empirical analysis,

we concentrate on senior unsecured bonds because there is a rich data source available.

The remainder of the study is organized as follows. Section 2 describes the goal of

Basel III. We present a general framework and the standard one-factor Copula in Sect. 3.

Furthermore, we extend the standard one-factor Copula using conditional factor loading

and the state-dependent recovery model. Section 4 describes the dataset. In Sect. 5, we

offer empirical evidence. Section 6 presents our conclusions.

2 Systematic risk in Basel III

As highlighted by Basel III, several aspects of systemic risk are crucial to the financial

markets. First, a bank can trigger a shock throughout a system, and the shock can spill over

to its counterparties (Drehmann and Tarashev 2013). Second, procyclicality can also

destabilize all the systemic risk. Borrowers cannot offer more funding, as their collateral

assets have depreciated due to weak economic conditions. Third, as Basel II focused on

minimizing the default probability of individuals, this accord failed to guarantee a

stable financial system due to its inattention to systemic risk. The new Basel accord is thus

expected to emphasize the role of systemic risk.

The systematic factor is an important driver of systemic risk and likely constitutes a

serious threat to systemic fragility (Schwerter 2011; Uhde and Michalak 2010). Tarashev

et al. (2010) also distinguish between systemic risk and systematic risk. The former refers

to the risk that impedes the financial system, whereas the latter refers to the commonality in

the risk exposures of financial institutions. Their model assumes that systemic risk can

have systematic and idiosyncratic components. Systemic risk is understandably heightened

by systematic risk. A bank is characterized as a systemically important (too-big-to-fail)

financial institution; its default would lead to a dramatic impact on systemic risk. This is

the very outcome that Basel III attempts to regulate and prevent. In our paper, our model

proposes that the contribution of systematic risk is higher than that of the idiosyncratic

component and that this dominance is characterized by a higher factor loading on sys-

tematic risk during a market downturn. We therefore see that the contribution of systematic

risk to credit risk varies with time and market conditions. In this regard, one concern is the

interconnection between credit risk and market risk. Notably – and importantly –the points

discussed above determine the sufficiency of capital requirements in the banking industry.

To obtain sufficient capital requirements, the recovery rate is one of the determinant

variables in the credit risk estimation. Thus, in a recession period, recovery rates tend to

decrease while default rates tend to rise. As such, increasing capital requirements under

this condition seems advisable. Most early academic studies on credit risk assume that

recovery rates are deterministic (Schönbucher 2001; Rosen and Saunders 2010), or they are

stochastic but independent of default probabilities (Jarrow et al. 1997; Andersen and

Sidenius 2004). Neglecting the stochastic nature of the recovery rate and the interdepen-

dence between recovery rates and default rates results in a biased credit risk estimation

(Altman et al. 2005).

To adhere to the spirit of Basel III, our study extends the previous literature in two

ways. First, we highlight that systematic risk is a predominant factor in a recession period

and provide an analysis that measures the proportional contribution of systematic risk

against that of an idiosyncratic component. Second, we propose a methodology in which
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recovery rates and default rates are correlated by sharing a unique factor, both of which are

state-dependent. Our model design, model simulation and empirical results offer several

justifications for the goals of Basel III.

3 Methodology

3.1 Default modeling

Recognizing the importance of systematic risk, one-factor Gaussian models have been

considered an important tool underlying the internal ratings-based approach (Crouhy et al.

2000; Frey and McNeil 2003) and are thus used to price CDOs (Andersen and Sidenius

2004; Hull and White 2004; Choroś-Tomczyk et al. 2013). These one-factor models reduce

the number of correlations estimated from
N N�1ð Þ

2
in a multivariate Gaussian Model to N,

which represents the number of assets. Specifically, we use a non-standardized Gaussian

model to represent the deteriorating market condition by presuming a negative mean value

together with a higher volatility. The model is based on decomposing a latent variable Ui

for obligor i into systematic factor Z and idiosyncratic component ei:

Ui ¼ aiZ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � a2
i

q

ei i ¼ 1; . . .;N ð1Þ

where -1 B ai B 1. Suppose that Z * N(l, r2) and ei have zero-mean unit variance

distributions. In a Gaussian context, Z and ei are orthogonal and ei is mutually uncorrelated.

In an empirical study, Ui is a proxy of respective stock return, which is systematically

related to a common factor, Z (Choi and Jen 1991). The distribution of vector U can be

described by a copula function that joins two marginals, Z and ei. The correlation coef-

ficient qij between Ui and Uj can be described by their ai and aj:

qij ¼
aiajr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
i r2 � 1ð Þ þ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
j r2 � 1ð Þ þ 1

q ð2Þ

where ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
i r2 � 1ð Þ þ 1

p

; rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
j r2 � 1ð Þ þ 1

q

. As a consequence, the number of

correlations describing the dependency structure is smaller because only N parameters ai:
i ¼ 1; . . .;N must be estimated. We express the covariance matrices between Ui and Uj

using a factor model,

X

ij

¼ r2
i r

2
i

1 qij
qji 1

� �

ð3Þ

The one-factor Gaussian copula model we consider is used to model the default indi-

cators to time t, I si � tf g, by projecting Ui into si. Ui here can be viewed as the proxies for

a firm’s asset and liquidation value (Andersen and Sidenius 2004). In this regard, the lower

asset value of the firm is, the shorter the time to default, si. More precisely,

Ui �F�1 Pi tð Þf g leads to si � t, where Pi tð Þ is a hazard rate and marginal probability that

obligor i defaults before t, and F�1(�) donates the inverse cdf of any distribution. The

default indicator then can be written as

I si � tf g ¼ I Ui �F�1 Pi tð Þf g
� �

ð4Þ
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Given the LGD for each i, Gi; i ¼ 1; . . .;N, we aggregate them as total portfolio loss, L,

as follows:

L ¼
X

N

i¼1

GiI si � tf g ¼
X

N

i¼1

GiI Ui �F�1 Pi tð Þf g
� �

: ð5Þ

3.2 Conditional default model

In accordance with the spirit of Basel III, the systematic latent factor, Z, representing the

general economic condition that characterizes the systematic credit risk, influences the

default probability Pi tð Þ and the recovery rate Ri ¼ 1 � Gi. Given Z, the conditional default

probability may be written as Pi ZjS ¼ H;Qð Þ and conditional LGD, Gi ZjS ¼ H;Qð Þ, as a

function of Z, and it is state-dependent, S 2 H;Qf g: H and Q represent the hectic and quiet

periods, respectively.

A higher factor loading, ai in Eq. (1) has been observed during hectic periods (Longin

and Solnik 2001; Ang and Bekaert 2002; Ang and Chen 2002). This observation can be

modeled by a regime-switching mechanism, requiring a globally valid time series structure

for ai from t. Avoiding such a structure that may be too rigid, we assume the two asset

returns, Z (the common factor proxied by USD S&P 500) and Ui (firm stock price), to have

a mixture of bivariate normal distribution (see ‘‘Appendix 1’’) to obtain the estimation of

aHi and aQi . Given the conditional factor loading, aHi ,aQi , the conditional default model is

defined as follows:

UijS¼H ¼ aHi Z þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaHi Þ
2

q

ei ð6Þ

UijS¼Q ¼ aQi Z þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaQi Þ
2

q

ei ð7Þ

By employing the one-factor Gaussian copula, the state-dependent conditional default

probability can be denoted by

P si � tjSð Þ ¼ U
U�1 Pi tð Þf g � aSi Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaSi Þ
2

q

2

6

4

3

7

5

¼ Pi ZjSð Þ S 2 H;Qf g ð8Þ

where Uð�Þ denotes Gaussian distribution. Given Pi tð Þ, if the factor loadings in hectic

periods are greater than those during quiet times, say aHi [ aQi , and if the index return of

S&P 500 is negative in a bad market condition, both conditions will result in a higher

conditional default probability in Eq. (8). From Eq. (8), the systematic risk, Z, and the

corresponding factor loading govern the conditional default probability, which is consistent

with empirical findings (Andersen and Sidenius 2004; Bonti et al. 2006). Notably, aSi is

state-dependent instead of a constant setting in the previous literature (Andersen and

Sidenius 2004; Amraoui et al. 2012). Ang and Chen (2002) set the probability of both

regimes equally (x ¼ 0:5); however, we instead estimate it from the historical data of the

S&P 500 Index return proxied for systematic risk, Z, P(S = H) = x, P(S = Q) = 1 - x
using expectation–maximization (EM) algorithm.

Likewise, recovery rates can be designed in this manner by incorporating market

conditions as the main driver across different states. Based on Das and Hanouna (2009),
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recovery rates are negatively correlated with probabilities of defaults and are also driven by

market conditions. By relaxing constant recovery rates, we follow Amraoui et al. (2012)

and connect recovery rates and default events via a common factor, but we extend their

model to a conditional or state-dependent framework. The recovery rate is governed by the

state of the economy; in addition, we incorporate a conditional correlation structure, aSi ,

into the stochastic recovery rate model, and set Ri ZjS ¼ H;Qð Þ of obligor i, in relation to

the common factor Z and the marginal default probability Pi. The state-dependent LGD is

expressed as

Gi ZjS ¼ Hð Þ ¼ 1 � �Rið Þ
U U�1 �Pið Þ � aHi Z

� �

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaHi Þ
2

q


 �

U U�1 Pið Þ � aHi Z
� �

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaHi Þ
2

q


 � ð9Þ

Gi ZjS ¼ Qð Þ ¼ 1 � �Rið Þ
U U�1 �Pið Þ � aQi Z

� �

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaQi Þ
2

q


 �

U U�1 Pið Þ � aQi Z
� �

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaQi Þ
2

q


 � ð10Þ

In Eqs. (9, 10), 0� �Ri �Ri � 1 indicates a downward shift of �Ri to Ri, such that �Ri ¼
Ri � m and Ri � m[ 0. m is the size of the downward shift. By assuming that the expected

loss in name i remains unchanged, we set 1 � Rið ÞPi ¼ 1 � �Rið Þ�Pi. Please see the proof in

A.1 in Amraoui et al. (2012). Uð�Þ denotes a Gaussian distribution and �Pi is the adjusted

default probability calibrated proposed by Amraoui and Hitier (2008). The LGD function,

Gi ZjS ¼ H;Qð Þ, can essentially be obtained under formula (9,10). Numerous studies show

that recoveries decline during recessions (Altman et al. 2005; Bruche and González-

Aguado 2010). Consistent with the spirit of Eq. (6, 7), we design aHi ,aQi , and the factor

loadings in Eq. (9,10) are therefore conditional and state-dependent. �Ri is a lower bound

for Gi ZjS ¼ H;Qð Þ. Moreover, a partial derivative of the LGD function with respect to Z is

less than zero, as shown by property 3.2 in Amraoui et al. (2012), which means that

Gi ZjS ¼ H;Qð Þ is decreasing in Z. Assuming aHi [ aQi means that a higher factor loading

that is typically accompanied by a bad market condition on Z tends to increase LGD. In this

regard, ‘‘Appendix 2’’ can be referenced for greater detail. The magnitude of LGD is not

only influenced by Z but also sensitive to the factor loading under Z, which is one of our

main findings and contributions to the literature. In addition, recovery rates are also linked

to the probability of default and are negatively correlated (see Altman et al. 2005; Khieu

et al. 2012). With Z, Pi and the estimated conditional factor loading aHi ,aQi , we obtain the

state-dependent recovery rate, Ri ZjS ¼ H;Qð Þ, and state-dependent LGD,

Gi ZjS ¼ H;Qð Þ ¼ 1 � Ri ZjS ¼ H;Qð Þ.
With these two specifications, the conditional default probability Pi ZjS ¼ H;Qð Þ and

conditional LGD, Gi ZjS ¼ H;Qð Þ, conditional expected loss is

E LijZð Þ ¼ xGi ZjS ¼ Hð ÞPi ZjS ¼ Hð Þ þ ð1 � xÞGi ZjS ¼ Qð ÞPi ZjS ¼ Qð Þ ð11Þ

where x = P(S = H), 1-x ¼ P(S = Q). H and Q represent the hectic and quiet periods,

respectively. In this paper, by employing the one-factor Gaussian copula model, Eq. (11) is

written as

E LijZð Þ ¼ xE LijZS¼Hð Þ þ 1 � xð ÞE LijZS¼Qð Þ ð12Þ
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The detail of proof is set forth in ‘‘Appendix 3’’.

3.3 Monte Carlo simulation

In this section, we investigate default prediction performance by establishing a simulation

of realistic scenarios. The default probability and recovery rate functions are governed by

systematic factors produced by different regimes. Indeed, they are crucial elements in

evaluating the accuracy of the default prediction. Our interest is to see whether the designs

of conditional factor loadings and state-dependent recovery rates contribute to the default

prediction.

3.3.1 One-factor non-standardized Gaussian copula

We simulate a one-factor non-standardized Gaussian copula subject to different states. As

described in Eqs. (6) and (7), we generate systematic factor Z by non-standardized

Gaussian distribution with different volatilities and independent e0i s to reflect the nature of

distinct variations exhibited in different market conditions.

Through a mixed bivariate distribution setting in ‘‘Appendix 1’’, the conditional factor

loadings, aHi and aQi are derived, in the one-factor non-standardized Gaussian copula

model. We estimate them from the daily stock returns of the S&P500 and of collected

default companies during the crisis (2008–2009) period. The 3-year period prior to the

crisis period is the estimation period for the conditional factor loadings. The return of the

S&P 500 Index represented as a systematic factor, Z, is presumed to distribute as

N �0:03; 3:05ð Þ estimated in 2008 and 2009, while ei �N 0; 1ð Þ represents idiosyncratic

risk. Z and ei generated 10,000 scenarios. Given any of the generated systematic factor

random variables, Z, and using Bayes’ rule, we calculate the conditional probability that

date t belonged to the hectic is p Z ¼ zð Þ using its counterpart, unconditional probability x,

as a formula (13).

P S ¼ HjZ ¼ zð Þ ¼ p Z ¼ zð Þ ¼
xu zjhH

� 

1 � xð Þu zjhQ
� 

þ xu zjhH
�  ð13Þ

where uH, hQ represent in the hectic (H) and the quiet (Q) periods. u(�) is a normal

distribution. Plugging ai
H, ai

Q shared with the same simulated Z random variables, condi-

tional Ui|S is generated as developed in Eqs. (6, 7). These simulated random variables

together with the published hazard rates Pi (t) ideally produce the simulated default times.

3.3.2 Default time

Projecting Ui simulated from Sect. 3.3.1 to default time, si, as stated in Eq. (4), provides a

clue as to whether the firm defaults before time. We set t = 1, which represents the time

interval of 1 year, so that si\1 is referred to as a default event in the ith obligor. The

hazard rate Pi is the probability of occurrence of the default event within one year. si
represents the default time of the ith obligor. More precisely, the expected value of

Iðsi\1Þ is P ðsi\1Þ and referred to as Pi, see Franke et al. (2011) Chapter 22, which can

be connected to the firm’s stock return or firm’s value, and Ui leads to

Pi ¼ E½IfUi\U�1
i Pið Þg�, where Ui denote the Gaussian cdf of Ui. By applying generated

Ui from the conditional factor model into the definition of the survival rate, we have
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generated the default time, si, derived from 1 � exp �Pisið Þ ¼ U Uið Þ (Hull 2006). To

remain in the state-dependent environment, the conditional default time for each obligor is

generated by formula (14).

sijS ¼ �
log 1 � U UijS

� � �

Pi

ð14Þ

where Pi is the hazard rate or marginal probability that obligor i will default during the first

year, conditional on no earlier default, and is obtained from Moody’s. It is the cumulative

of the default rates during the first year. Equation (14) states that as UijS becomes larger,

sijS will become longer. The larger Ui reduces the tendency of default and postpones the

default time, sijS.

3.3.3 State-dependent recovery rate simulation

In the third step, we consider a more realistic situation by simulating recovery rates, as

described in our settings. The adjusted default probability �Pi is calibrated using hazard rate

Pi from Moody’s report. �Ri is a lower bound for the state-dependent recovery rate [0,1];

therefore, we set �Ri ¼ 0 in the simplest case. With aHi ,aQi , Z, �Pi, the simulated state-

dependent recovery rates are obtained using formula (9, 10).

3.3.4 Loss function

By changing scenarios to quiet and hectic states, we assume the exposure of each obligor is

100 million and calculate the expected loss under the given scenarios corresponding to

formula (11).

E LijZð Þ ¼ p Z ¼ zð ÞGi ZjS ¼ Hð ÞPi ZjS ¼ Hð Þ þ ð1 � pðZ ¼ zÞÞGi ZjS ¼ Qð ÞPi ZjS ¼ Qð Þ
ð15Þ

Given the simulated Z random variables, conditional probability p Z ¼ zð Þ naturally

provides better information than unconditional probability x does. By the given formula

(15), we compare the theoretical loss amounts across four models with the realized loss

values, and evaluate the performance of the default prediction by the mean of square error.

3.3.5 Absolute error

In step 5, the performance of the competing models (FC, RFC, RR, and RRFC) are

evaluated to decide which is the best at predicting the default for the following year.

Absolute Error (AE) here is linked to prediction performance and is defined as

AE ¼ actual portfolio loss� expected portfolio lossð Þ ð16Þ

where the actual portfolio loss is from Moody’s. Expected loss is estimated from Eq. (15),

although in an unconditional default model, it is computed from formula (5). For each

competing model, we generate 10,000 scenarios; then, the mean of the absolute error

(referred to as MAE) is calculated. It can be expected that the best one is also included in

the minimum AE and MAE.
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4 Data

4.1 Financial return data

In this section, we illustrate how to proceed with the financial data. Weiß (2013) proposes

the GARCH(1,1) model to describe marginal time-varying volatility in the presence of

conditional heteroskedasticity in financial returns. Following Krupskii and Joe (2013), we

use the S&P 500 Index and obligors’ stock returns following the AR(1)-GARCH(1,1). The

model is written as follows:

rjt ¼ lj þ kjrj;t�1 þ djt�jt

d2
jt ¼ cj þ ajr

2
j;t�1 þ bjd

2
j;t�1

where rjt are returns and �jt are i.i.d. vectors with Gaussian distribution. By applying the

Gaussian copula, the parameters are computed from the GARCH filtered data.

4.2 Data description

We use the list of default companies for 2008 through 2009 published by Moody’s annual

report since this is a rich source of available data. In total, we obtained 341 defaults with

corporate bond recovery rates from Moody’s URD covering the period from 1987 to 2007.

We focus on senior unsecured bonds because of their wide use in financial contracts,

regulatory rules, and the risks associated with measuring for assets under the standardized

approach of Basel II (Pagratis and Stringa 2009). We also collected the credit rating of

obligors from Moody’s to measure the hazard rate. Although there are 94 and 247

defaulting firms in 2008 and 2009, the observations were reduced due to missing stock

prices and credit ratings of obligors’ bonds. If there were insufficient reported stock prices

of defaulting subsidiary companies, we used the stock prices of parent companies instead.

In all cases, 31 and 64 sampling firms were collected in 2008 and 2009, respectively.

To estimate the conditional factor loadings of sampled firms, we collect the daily USD

S&P 500 return and the respective stock returns of the defaulting companies for a 3-year

period prior to the default year from the Datastream database. The USD S&P 500 Index

here simply represents common systematic risk. By assuming a mixture of bivariate normal

distribution, we estimate the parameters, including factor loadings by EM algorithm.

Table 2 presents the results of the EM algorithm.

Table 2 Estimate mixture of
normal distribution by employing
an EM algorithm

STD standard deviation

Model Probability Mean STD

Period 2003–2007

Unconditional 100.00% -0.01 0.99

Conditional on quiet 21.97% 0.09 0.24

Conditional on hectic 78.03% -0.03 1.12

Period 2004–2008

Unconditional 100.00% 0.04 0.99

Conditional on quiet 24.91% 0.19 0.26

Conditional on hectic 75.09% -0.01 1.14
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As presented in Table 2, the volatility of the hectic distribution is larger than that of the

quiet distribution, and the mean of the hectic distribution is smaller than that of the quiet

distribution, reflecting the fat tails and right skew that are consistent with Kim and Finger

(2000).

5 Empirical result

5.1 Conditional factor loading estimation

Figures 1 and 2 show that most of the correlation coefficients or factor loadings in the

factor copula model during the hectic period are higher than in the quiet period. The

proposed correlation structure leads to more accurate and realistic implementations and

avoids the underestimation of factor loading in a hectic period or the overestimation in a

quiet period. These ideas are well known in statistics and have already been applied to

financial questions (Ang and Chen 2002; Patton 2004).

In our approach, we consider this asymmetric correlation structure under real market

conditions to implement the conditional default model developed in Sect. 3.2. As shown in
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Fig. 1 Conditional and unconditional factor loading comparison in 2008. The estimation of conditional and
unconditional factor loading between S&P 500 and default companies in 2008
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Figs. 1 and 2, the factor loadings ai in state H are higher than those in state Q. As factor

loadings become higher in state H, the correlation coefficient qij between firm i and j de-

fined in Eq. (2) is expected to increase in this market condition. Therefore, obligors tend to

co-move more closely during hectic periods than during quiet periods.
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Fig. 2 Conditional and unconditional factor loading comparison in 2009. The estimation of conditional and
unconditional factor loading between S&P 500 and default companies in 2009
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5.2 State-dependent recovery rate estimation

To demonstrate the impact of market conditions measured by Z on the state-dependent

recovery rate, we use Fig. 3 to depict the relationship between the state-dependent

recovery rate and the S&P 500 (the proxy for systematic factor Z) in blue ‘*’, which

developed in Sect. 3.2. It can be observed that as the effect of the systematic factor on the

recovery rate is positive, the recovery rate gets higher as Z grows. Because the slope of this

curve is influenced by estimated aHi ,aQi corresponds to formula (9, 10), the slopes behave

differently in the four panels but stay monotonically positive. We also depict the stochastic

recovery rates in red ‘?’ estimated and simulated through the Amraoui et al. (2012) model,

in comparison with blue ‘*’, which is simulated in our model. Taking (c) E*TRADE as an

example, compared with the simulated recovery rates based on Eqs. (9) and (10), we note

those generated from Amraoui et al. (2012) by assuming constant factor loadings tend to

produce higher recovery rates in the market downturn and lower rates in the booming

market. This evidence suggests that the recovery rate may be overestimated in a bearish

market but underestimated in a bullish market if constant factor loading is assumed. As a

consequence, it is highly possible to underestimate credit loss in a bearish market and

overestimate it in a bullish market. Similarly, the evidence from (a) Glitnir Banki

(b) Lehman Brothers Holdings, Inc. and (d) Idearc, Inc. are comparable and consistent.

Notably, the impact of the systematic factor on the recovery rate seems nonlinear, as it is

higher in the market downturn but relatively mild in the booming market, and its marginal

slope decreases abruptly when the index return decreases; however, the marginal slope

decelerates when the index return becomes positive. This simulation result is in accordance

with the Moody’s report in Table 1. From 2004 to 2006, the annual recovery rates of senior

unsecured bond increase slowly. As the crisis begins in August 2007, the recovery rate

drops dramatically. By capturing the correlation structure, aHi [ aQi , as shown in (a), (b),

(c) and (d), we find this asymmetric pattern, which is more consistent with reality.

With the simulated recovery rates from Eqs. (9, 10), we are more interested in the

relation between it and conditional default probability from Eq. (8). As Fig. 4 shows, the

simulation result shows the downward trend between default probability and the recovery

rate, which is consistent with Altman et al. (2005) and Das and Hanouna (2009). Moreover,

it shows that the common factor governs the default rate and recovery rate simultaneously

and creates their negative association implicitly. Altman et al. (2005) find that permitting a

dependence between default rates and recovery rates yields approximately 29% in the

value at risk compared with a model that assumes no dependence between default rates and

recovery rates.

5.3 Empirical results of absolute errors

To gauge the conditional factor loading and state-dependent recovery rate approaches for

default prediction, we propose four models: (1) the FC model, i.e., the standard one-factor

Gaussian copula model with a constant recovery rate developed by Van der Voort (2007)

and Rosen and Saunders (2010); (2) the RFL model, i.e., the one-factor Gaussian copula

model in which factor loadings are tied to the state of the common factor and the recoveries

assumed as constant, as proposed by Kalemanova et al. (2007) and Chen et al. (2014); (3)

the RR model, i.e., the standard one-factor Gaussian copula model but with the recoveries

related to the macroeconomic state (Amraoui and Hitier 2008; Elouerkhaoui 2009;

Amraoui et al. 2012); and (4) the RRFL model, i.e., a conditional factor loading
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Fig. 3 The relationship between state-dependent recovery rate and index return of S&P 500, Z. Panel a and b,
‘*’ in blue illustrates the pattern of state-dependent recovery rate of Glitnir banki and Lehman Brothers Holdings,
Inc. which incorporate conditional factor loading in 2008. ‘?’ in red plots the recoveries proposed by Amraoui
et al. (2012). In panel c and d, E*TRADE Financial Corp. and Idearc, Inc. in 2009. a Glitnir Banki: a = 0.183,
aQ = 0.066, aH = 0.196, b Lehman Bro: a = 0.345, aQ = 0.128, aH = 0.370, c E*TRADE: a = 0.071,
aQ = 0.002, aH = 0.082, d Idearc, Inc.: a = 0.222, aQ = 0.082, aH = 0.239 (Color figure online)

Fig. 4 The relationship between state-dependent recovery rates and default probabilities. By simulating
Z�N �0:03; 3:05ð Þ, it plots the relationship between the state-dependent recovery rate and default
probabilities, given the conditional factor loading. By simulating 10,000 observations, we estimate the
default probabilities and state-dependent recovery rate from formula (8) and (9,10). a 2008, b 2009
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specification together with a state-dependent recovery rate. We address the question of

whether the two specifications, conditional factor loading and the state-dependent recovery

rate model, are meaningful and significant in explaining the gap between expected and

actual loss value. To check the predictive ability of the different models, we report the AE

and MAE estimated from Sect. 3.3.5.

Table 3 reports the AE between actual portfolio loss and expected portfolio loss con-

structed by 31 and 64 observations in 2008 and 2009, respectively. A comparison of the

four models shows that the estimate of expected portfolio loss in the RRFL model is

highest and closest to the corresponding actual loss, which means that the expected

portfolio losses may be underestimated by the other three models. In particular, modeling a

recovery rate in a stochastic fashion indeed contributes to difficulties in estimating

downgrades in credit.

We compare the four competing models of each obligor and choose the best model for

achieving the minimum AE and MAE. We find that including the conditional factor

loading (RFL model) instead of the Pearson correlation (FC model) does not significantly

improve the estimations in 2008 and 2009. Table 3 shows that introducing the state-

dependent recovery rate (RR model) leads to a promising improvement over the standard

model the (FC model). We interpret this to mean that the setting of a stochastic recovery

rate seems necessary, which brings a remarkable improvement to the default prediction,

which is consistent with Altman et al. (2005) and Ferreira and Laux (2007). Compared

with the RR model, the RRFL model includes conditional factor loading in default

Table 3 The mean of actual portfolio loss, expected portfolio loss and AE, MAE (in million)

FC RFL RR RRFL

2008

Actual portfolio loss 2035.02 2035.02 2035.02 2035.02

Expected portfolio loss 1070.57 1085.67 1537.46 1567.66

AE 964.45 949.35 497.56 467.36

MAE 31.11 30.62 16.05 15.08

Expected portfolio loss/actual portfolio loss (%) 52.61 53.35 75.55 77.03

2009

Actual portfolio loss 3853.10 3853.10 3853.10 3853.10

Expected portfolio loss 2033.25 2064.47 3318.25 3380.69

AE 1819.85 1788.63 534.85 472.41

MAE 28.43 27.95 8.36 7.38

Expected portfolio loss/actual portfolio loss (%) 52.77 53.58 86.12 87.74

This table reports the AE and MAE by comparing the four models: (1) The FC model, i.e., the standard one-
factor Gaussian copula model with is a constant recovery rate; (2) the RFL model, i.e., the one-factor
Gaussian copula model in which the factor loadings are tied to the state of the common factor and the
recoveries assumed to be constant; (3) the RR model, i.e., the standard one-factor Gaussian copula model in
which the recoveries are related to the state of the macroeconomic state; and (4) the RRFL model, i.e., a
conditional factor loading specification together with a state-dependent recovery rate. This table also pre-
sents the difference between actual portfolio loss and expected portfolio loss, which is referred to as AE;
when AE is divided by 31 and 64 observations in 2008 and 2009, respectively, it becomes MAE. The
percentage represents expected portfolio loss divided by the actual portfolio loss
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probabilities and a state-dependent recovery rates function and produces considerably more

modest improvements.

We propose two specifications on factor loading and recovery rates across four models.

If we assume that default probabilities are a function of two-state correlation constructs but

that recovery rates are not, the specification is only identified as concentrated on factor

loading. In this case, the recovery rates do not contain information about the state of the

business cycle. Conversely, if we assume that recovery rates vary, but factor loading is

fixed, then the refinement occurs only by means of variations in the recovery rate. Since the

RRFL model with both specifications is superior to the other three competing models, and

there is no redundant specification in this study. In this regard, we extend the models

proposed by prior studies (Kalemanova et al. 2007; Van der Voort 2007; Amraoui and

Hitier 2008; Elouerkhaoui 2009; Amraoui et al. 2012; Rosen and Saunders 2010; Chen

et al. 2014), which leads to more accurate default predictions in one year.

5.4 Basel III: relative contribution

Systematic risk has been considered one of the main causes of the 2007–2009 crisis, and

Basel III is proposed to control systematic risk (one systemic risk measure) to achieve the

goal of overall financial stability. In this section, we highlight the role of systematic risk

and its impact on the goals of Basel III. The aim of relative contribution analysis is to

investigate the proportional contribution from systematic risk in comparison with that from

the idiosyncratic component. By measuring systematic risk, aSi Z, and idiosyncratic risk,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaSi Þ
2

q

ei, S 2 H;Qf g from formula (6, 7), we depict a scatter plot for simulated

systematic risk (horizontal axis) and idiosyncratic risk (vertical axis) in Fig. 5. As shown in

the 2D plot for 2008, the 45� line represents the proportion of systematic risk that is equal

to that of idiosyncratic risk. If the scatter points are located in the ‘A, B, C, D’ zones, the

contribution of systematic risk to default risk is greater than that of idiosyncratic risk. On

the other hand, if the scatter points are settled in the ‘a, b, c, d’ areas, the contribution of the

systematic component is less than that of idiosyncratic risk. For example, the effect of

systematic risk on default risk will become larger when point ‘Y’ moves to point ‘X’. Most

studies focus on either systematic (King and Khang 2005; Uhde and Michalak 2010) or

firm-specific components (Goyal and Santa-Clara 2003; Ferreira and Laux 2007), and a

limited number of studies compare the influence of both of them.

By simulating Z�N �0:03; 3:05ð Þ, each simulated Z random variable can therefore be

mapped into a specific conditional probability of being in a hectic state in Eq. (13). We

gather the scatter plots into three groups here. The first group (marked as ‘?’ in red)

includes only the simulated Z r.v. with projecting conditional probabilities above the 75%

quartile, and indicates that they are generated in distress. The second group (marked as ‘*’

in blue) includes the Z r.v. with projecting conditional probabilities below the 25% quartile

to indicate that they are generated in a bullish atmosphere. The third group (marked as ‘x’

in yellow) collects the rest. With regard to the tranquil scenarios (‘blue’ points) in 2008,

most observations were located in the area in which the relative contribution of idiosyn-

cratic risk is larger than that of the economy-wide component, where credit risk was

mainly driven by the idiosyncratic component before the subprime crisis, as reported in

Rodrı́guez-Moreno and Peña (2013), who found that idiosyncratic components were larger

than systematic risk before the subprime crisis and were extracted from the CDX-IG-5y

using high-frequent measures. At the beginning of the financial crisis, systematic risk

skyrocketed. Intuitively, systematic risk increases sharply due to the larger factor loadings
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when the market is in hectic scenarios. Our result shows that systematic risk was higher

than the idiosyncratic component in the hectic scenarios (‘red’ points) in 2008; in the quiet

scenarios, however, firm-specific factors are more important at some points, as noted by

Rodrı́guez-Moreno and Peña (2013). Similarly, it has been shown that the relative con-

tribution of the systematic component explains a higher proportion of obligor asset value in

2009.

More visibly, the 3D plot identifies the relationship among the level of average UijS,

which is referred to as the mean of firms’ value, systematic and idiosyncratic component.

Each observation in Fig. 5 reflects its mean of UijS i ¼ 1; . . .;N in each simulated day in

2008 and 2009, respectively. Figure 5 shows that the points in the hectic period marked as

red ‘?’ indicates a negative shock from systematic risk, which lowers the average asset

value of obligors; specifically, most observations show the negative impact of systematic

shock, which accounts for a substantially larger proportion of firms’ value substantially.

Fig. 5 The 2D and 3D scatters plot of relative contribution. By simulating Z�N �0:03; 3:05ð Þ, the 2D

graphic illustrates the relationship between the mean of systematic risk, aSi Z, and idiosyncratic risk,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðaSi Þ
2

q

ei. Each simulated Z random variable can therefore be mapped into a specific conditional

probability of being in a hectic state in Eq. (13). We depict the scatters in three groups here. The first group
(marked as ‘?’ in red) includes only the simulated Z r.v. with projecting conditional probabilities above the
75% quartile; it indicates that they are generated in distress. The second group (marked as ‘*’ in blue)
includes the Z r.v. with projecting conditional probabilities below the 25% quartile to indicate that they are
generated in a bullish atmosphere. The third group (marked as ‘x’ in yellow) collects the rest. In the 3D plot,
observations in hectic periods are marked in red. Quiet days are marked in blue, otherwise in yellow. a 2008,
b 2009 (Color figure online)

966 M.-J. Lu et al.

123



Note that it is easy to drive the default event since it lowers the firms’ value significantly.

On the other hand, the points in quiet days marked as blue ‘*’ indicate a positive shock

from the systematic component. However, the negative shock from firm-specific factors

may compromise the benefit from economy-wide components that lowers the level of

average UijS at some points.

Our model emphasizes the importance of systematic risk, which explains most obligors’

default behavior, particularly in hectic periods, which is one of the important features of

Basel III (Tarashev et al. 2010; Uhde and Michalak 2010; Schwerter 2011). To be specific,

we measure and demonstrate the contribution of overall systematic risk to each asset, and

identify the impact direction from systematic and idiosyncratic risk. Moreover, this

analysis can be applied to a variety of systematic risk measures. In this sense, portfolio

managers should be aware of the systematic risk that can substantially influence the value

of portfolios. We propose that the regulatory tool of Basel III could be estimated with such

contributions. A related question is how these measures can aid policymakers. The mea-

sures in this paper can be used as a tool to prevent systematic crises, and our model can be

used as an early warning system that will alert regulators when an individual bank is in

trouble and to intervene before a crisis occurs.

5.5 Robustness test

Since Table 3 reports that the expected portfolio loss is far from the actual portfolio loss,

we gauge that using bond credit rates as a measure of hazard rate has the disadvantage that

they are released annually by Moody’s. In this section, we use credit default swap (CDS)

spread data as an alternative market-based measure of a company’s credit risk. A CDS

spread measures a financial swap agreement in which the seller will compensate the buyer

in the event of a loan default. Basically, variation in the CDS spread reflects the dynamics

of risk condition or hazard rate implicitly. The larger the CDS spread is, the riskier the

debtor. Therefore, the hazard rate, �j, for a company can be estimated by the following:

�j ¼ s

1 � R

where s is CDS spread. We consider the latest one-year prior to the default year CDS

quotes of obligors provided from Datastream. We also use a credit spread, which is the

yield on an annual par yield bond issued by the obligors over one-year LIBOR (London

Interbank Offered Rate) if the obligor does not have CDS data. Theoretically, the CDS

spread is close to the credit spread (Hull and White 2000; Hull et al. 2004). By plugging in

the recovery rate, R, obtained from the Moody’s report, we compute the average default

intensity, �j, per year conditional on no earlier default instead of Pi. Compared with Pi from

the Moody’s annual report, a CDS spread with active trading activity reflects the market

assessments of default risk in a timely fashion. In this regard, the proposed models that

incorporate the hazard rate implied in CDS spreads may yield a better prediction.

According to Table 4, the models with a hazard rate implied in a CDS spread seem to

perform better than those with a hazard rate from historical bond credit rates. By com-

paring Tables 3 and 4, generally, a CDS spread as the hazard rate measure reflects more

timely information than the bond credit rate does. Table 4 presents the results from a

robustness test that shows that the RRFL model outperforms in a robustness test. In both

tables, the RRFL model consistently outperforms, which produces the expected portfolio

loss most closely to the actual portfolio loss.
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6 Conclusion

This paper proposes a refined factor copula model to assess and predict credit risk. On the

basis of our estimated model, we find that systematic risk plays a simultaneously critical

role in governing default rates and recovery rates simultaneously. Our simulation results

show that recoveries vary with the returns of the S&P 500 and that the impact of systematic

factors on the recovery rate is asymmetric by finding a higher factor loading in hectic

periods than in tranquil periods. Among the various factor copula models developed in the

past and in the current literature as the competing models, the model with conditional

random factor loading and a state-dependent recovery rate turns out to be the best per-

forming. In other words, our refined model contributes to studies that have been mapped to

three groups of competing models (the FC, RFL, and RR models).

As a response to Basel III, we measure and demonstrate the contribution of overall

systematic risk to each firm’s value, and we also identify the relative roles of both sys-

tematic and idiosyncratic risk. Moreover, this analysis can be applied to a variety of

systematic risk measures, and it aids regulators in preventing a systematic crisis. In

addition, by investigating the effect of state-dependent recovery rates on the loss function,

we suggest that banks should apply this capital requirement issue to ensure its sufficiency.

In further research, we plan to go beyond this study in several ways. First, other copula

functions can be modeled to capture various dependence structures. Second, the marginal

distribution can be considered in a more general way to capture a fat-tail feature. We will

leave these issues for future studies.

Appendix 1: Conditional factor loading

We assume the two asset returns Z (USD S&P 500) and Ui (firm stock price) to have a

mixture of bivariate normal distribution:

Table 4 The actual portfolio loss, expected portfolio loss, AE, and MAE (in million) for robustness

FC RFL RR RRFL

2008

Actual portfolio loss 1489.81 1489.81 1489.81 1489.81

Expected portfolio loss 920.68 930.11 1245.14 1258.17

AE 569.13 559.70 244.67 231.64

MAE 22.76 22.39 9.79 9.27

Expected portfolio loss/actual portfolio loss (%) 61.80 62.43 83.58 84.45

2009

Actual portfolio loss 2707.30 2707.30 2707.30 2707.30

Expected portfolio loss 1776.77 1784.18 2381.91 2402.54

AE 930.52 923.11 325.39 304.76

MAE 22.16 21.98 7.75 7.26

Expected portfolio loss/actual portfolio loss (%) 65.63 65.90 87.98 88.74

This table reports the values of the AE and MAE of four models using the market-based method during 2008
and 2009. This table also shows the actual portfolio loss and the expected portfolio loss of 25 and 42
observations in 2008 and 2009. The percentage represents expected portfolio loss divided by actual portfolio
loss
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where volatility in hectic periods is higher than in quiet periods, ðrHi Þ
2 [ ðrQi Þ

2
. aQ and aH

are the correlation coefficients between each obligor and the S&P 500 in quiet and hectic

period, as proposed by Kim and Finger (2000), respectively. We estimate the unknown

parameters x; lQZ ; r
Q
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H
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Appendix 2

The assumptions of the bounds on the LGD are 0�Gi ZjS ¼ H;Qð Þ� 1 � �Rið Þ. Since

0�Gi ZjS ¼ H;Qð Þ, �Pi �Pi and aHi [ aQi ,
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which yields

Gi ZjS ¼ Hð Þ� 1 � �Rið Þ
Gi ZjS ¼ Qð Þ� 1 � �Rið Þ:

The bounds are strict, which is proven. Moreover, let us assume that 0\Pi\1,

0� �Ri �Ri � 1 and aHi [ aQi , then Gi ZjS ¼ H;Qð Þ decreases as Z decreases, which can be

shown as plugging the aHi [ aQi by following the proof of property 3.2 in Amraoui et al.

(2012).

Appendix 3

We propose that the default probability is conditional on one-factor Z with two states, H

(Hectic) and Q (Quiet), as shown in formula (8). By assuming that Z and Ui follow a

Gaussian distribution and that the default time is within one year, we also derive the

conditional expected loss,
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where x = P(S = H), 1 - x = P(S = Q). U indicates the Gaussian cumulative distri-

bution. E LijZð Þ ¼ 1 � �Rið ÞU U�1 �Pið Þ�aiZf g
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1�a2
i
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 �

has been proven in appendix C.2 of Amraoui

et al. (2012). In the same vein, we derive E LijZS¼Hð Þ ¼ 1 � �Rið ÞU U�1 �Pið Þ�aHi Zf g
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1. Introduction 

A great deal of research in environmental and climate sciences has been dedicated to detecting change points and trends

in various time series, including those related to temperature, precipitation and wind speed. In a typical setting, a scalar time

series X 1 , X 2 , . . . , X N is analyzed. Sometimes several correlated series are considered. Most environmental and climate series

exhibit a pronounced annual periodicity which must be removed, or otherwise accounted for, before statements on change–

points or trends can be inferred. Sometimes, it is difficult to approximate the periodic component by a Fourier expansion

due to the irregular domain and amplitude of observations within a year. The data that motivate this work are tropical storm

wind speed data, examples are shown in Figs. 1 and 2 . By definition, only storms having the wind speed over 63 kilometers

per hour are considered as tropical storms. The onset and end of typhoon and hurricane seasons, as well as their intensity,

can change from year to year. We therefore propose to treat the data available for a whole year as a single high–dimensional

data object and perform the change point and trend analyses on these objects rather than the scalar observations di-

rectly. Such an approach is now relatively well–established in the field of functional data analysis (FDA), the monographs

of Horváth and Kokoszka (2012) or Ferraty and Vieu (2006) contain many examples. Methodological foundations of FDA are

addressed in Ramsay and Silverman (2005) , its mathematical foundations in Hsing and Eubank (2015) . While the amount

of information available in the data is invariably reduced by various smoothing and dimension reduction methods, the most
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Fig. 1. Five consecutive years (2006–2010) of typhoon data. The dots represent the wind speed measurements. Dashed vertical lines separate the years. 
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Fig. 2. Typhoons (left) and hurricanes (right) data in 2005 with expectile curves for τ = 0 . 1 , 0 . 5 and 0.9. The dots represent the wind speed measurements. 

Generally, a vertical streak of dots represents one tropical storm event. The lines are the estimated expectile curves. 

 

 

 

 

 

 

 

 

 

 

important and relevant features of the data come into focus. In the problems we study in this paper, we are interested in

the evolution of the annual pattern of tropical storms strength over several decades, not in specific hourly measurements. 

The data objects that this paper studies have the form X n ( t ), where n refers to year, and t to time within the year. In

the framework of functional data analysis, t is viewed as a continuous argument. The data are observed at a regular or

irregular grid, but are converted to functional objects by means of various basis expansions which are defined for every

t . We consider a sequence of curves X n ( t , τ ) for several expectile levels τ ∈ (0, 1); these are similar to quantile levels.

Examples of expectile curves we study are given in Fig. 2 . 

The index τ ∈ (0, 1) has the following interpretation. If τ = 0 . 5 , the curve X n ( t , τ ) describes the median strength of

tropical storms throughout the year. If τ is close to 1, the curve X n ( t , τ ) captures the annual pattern of highest wind speeds.

If τ is close to zero, it does the same for the lowest wind speeds. We are interested in detecting change points and trends

in the functional time series X 1 (·, τ ) , X 2 (·, τ ) , . . . , X N (·, τ ) . For this purpose, we use the existing change point test of Berkes

et al. (2009) and develop two trend tests. No trend tests have presently been available for the data structure described
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above. These two tests form a methodological contribution to statistics, while the analysis of the expectile curves of tropical

storms provides an insight to climate science. 

We thus focus not only on the average pattern but on change points and trends in annual curves which describe the

behavior at various levels of wind speed. This is illustrated in Fig. 2 . The curves in the middle summarize the pattern

of average wind speed. These curves will exhibit some evolution from year to year. The curves above them summarize

the annual patterns of the highest speeds; they may exhibit a different evolution than the average curves. This issue is

well–known in climate research; typically trends in the averages are contrasted with trends in extremes. In our application,

no modeling of extreme behavior is required, the expectile curves are within the range of the data points. They provide in-

formation of behavior which lies between the typical behavior and the unobservable extreme behavior. Following the work

of Smith (1989) , evaluation of trends in extremes has attracted a great deal of attention, with respect to change point

analysis of extremes, we are aware only of the work of Dierckx and Teugels (2010) . 

The paper is organized as follows. After reviewing the notion of expectile curves in Section 2 , we review in Section 3 the

test of Berkes et al. (2009) and present the two trend tests. Section 4 presents the results of a simulation study. The tests

are applied in Section 5 to the analysis of expectile curves. The last section contains the details of the asymptotic theory

for the trend tests. 

2. Expectile curves 

In this section we provide some background needed to understand how the expectile curves studied in this paper are

constructed. The underlying concept of expectiles was first discussed by Newey and Powell (1987) and further analyzed

in several directions, for example Efron (1991) and Rossi and Harwey (2009) focused on time-varying expectiles. Most

relevant to our setting is the paper by Schnabel and Eilers (2009) , which extended the work of Eilers and Marx (1996) . It

combined the LAWS (least average weighted squares) algorithm with P-splines in order to estimate expectile curves. Recent

applications include Guo and Härdle (2012) , Sobotka et al. (2013) and Guo et al. (2015) or more applicable one in finance

by Taylor (2008) , where Value at risk (VaR) and Expected shortfall (ES) were estimated using expectiles. Expectiles have

a similar interpretation as quantiles, but have some desirable properties outlined in the references cited above. 

Consider a scatter plot of points ( t i , x i ), 1 ≤ i ≤ I . In our applications, the t i correspond to times within a year at which

wind speed is measured and x i to the wind speed. Since the form of the dependence of the x i on the t i is unknown, a

B-spline expansion is used. We thus assume that 

x i ≈ g a (t i ) = 

J ∑ 

j=1 

a j B j (t i ) , 

and find coefficients a = (a 1 , a 2 , . . . , a J ) which minimize 

S τ (a ) = (1 − τ ) S −(a ) + τS + (a ) , 

where 

S −(a ) = 

∑ 

x i ≤g a (t i ) 

{ x i − g a (t i ) } 2 and S + (a ) = 

∑ 

x i >g a (t i ) 

{ x i − g a (t i ) } 2 . 

If τ is close to 1, then S + (a ) must be made small. This means that the curve g a will be above most of the points ( t i , x i ). 

Denote a matrix of B-splines differences as D . In order to control the smoothness of curves we can add penalization and

minimize 

S τ (a ) + λa � D 

� Da, 

with λ as shrinkage parameter chosen by a desired criterion. We chose λ according to AIC criterion. After finding ˆ a j using

penalized spline estimation, the expectile curve is obtained as 
∑ J 

j=1 
ˆ a j B j (t i ) . For our computation we set up J = 20. The

estimation algorithm is implemented in the R package expectreg , see Sobotka et al. (2014) . Further details are presented

in Schnabel (2011) or Schnabel and Eilers (2013) . 

3. Change point and trend tests 

This section presents the significance tests that will be applied to tropical storm data in Section 5 . The change point

test described in Section 3.1 was derived by Berkes et al. (2009) , it is also described in Chapter 6 of Horváth and Kokoszka

(2012) . Trend tests introduced in Section 3.2 are new; their full large sample justification is presented in the last section.

In both inferential settings, we consider as sequence of curves X n (t) , t ∈ [0 , 1] , n = 1 , 2 , . . . N. The index n can be identified

with year, the index t with time within the year normalized to unit interval. The exposition that follows uses now

fairly standard concepts of functional data analysis, including functional principal components (FPC’s) and their empirical

counterparts (EFPC’s), see, for example, Chapter 3 of Horváth and Kokoszka (2012) . 
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Table 1 

Critical values of the distribution of K d , which approximates the distribution of the statistic ̂  S d for large N . 

d 5 6 7 8 9 10 11 12 

10% 1.2797 1.4852 1.6908 1.8974 2.0966 2.2886 2.4966 2.6862 

5% 1.4690 1.6847 1.8956 2.1242 2.3227 2.5268 2.74 4 4 2.9490 

1% 1.8667 2.1260 2.3423 2.5893 2.8098 3.0339 3.2680 3.4911 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Change point test 

In change point tests, the null hypothesis is that the mean function does not change with year: 

H 0 : E X 1 = E X 2 = · · · = E X N . 

The specific value of the mean is not part of the null hypothesis. The alternative is that there is at least one unknown

change point k ∗ such that the equality under H 0 fails. The theory and practice of change points tests have been described

in many textbooks, for example, Brodsky and Darkhovsky (1993) , Csörg ̋o and Horváth (1997) , Chen and Gupta (2011) , so we

do not dwell on the background and move on to the description of the test of Berkes et al. (2009) . 

The test is based on the normalized differences of estimated mean functions: 

P k (t) = 

k (N − k ) 

N 

{ ̂  μk (t) − ˜ μk (t) } , 
where 

ˆ μk (t) = k −1 
k ∑ 

i =1 

X i (t ) , ˜ μk (t ) = (N − k ) −1 
N ∑ 

i = k +1 

X i (t) . 

Next, we compute the estimated functional principal components ˆ v � of the curves X n and calculate the scores 

ˆ ξ j,n = 

∫ 1 

0 

{
X n (t) − X̄ N (t) 

}
ˆ v j (t ) dt , X̄ N (t ) = N 

−1 
N ∑ 

n =1 

X n (t) . (3.1) 

We find the smallest d such that 85% of the variance is explained and calculate the test statistic 

̂ S d = 

1 

N 

2 

d ∑ 

j=1 

1 

ˆ λ j 

N ∑ 

k =1 

( ∑ 

1 ≤i ≤k 

ˆ ξ j,i −
k 

N 

∑ 

1 ≤i ≤k 

ˆ ξ j,i 

) 

. 

As N → ∞ , the statistics ̂ S d converges in distribution to the random variable K d whose critical values are given Table 1 , see

Horváth and Kokoszka (2012) for more details. 

3.2. Trend tests 

Suppose the functions X n ( t ) follow the trend model 

X n (t) = α(t) + β(t) n + ε n (t) . (3.2) 

The testing problem in our setting is 

H 0 : β = 0 , vs . H A : β 	 = 0 . 

The paper thus focuses on a linear trend, which is the most common type of trend considered in atmospheric sciences.

The review paper of Kossin et al. (2013) discusses research on linear trends in the context of tropical storms. The assump-

tion of a linear trend makes the development of significance tests easier and leads to readily interpretable results if the null

is rejected. More general nonlinear trends can often be displayed using various smoothing methods, but the assessment

of their significance and interpretation are difficult due the lack of a simple parameterization. It is however possible to

develop tests based on different approaches. Fraiman et al. (2014) propose a permutation test based on the proportion of

time t the curve X n ( t ) matches the record curve r n (t) = max 1 ≤k ≤n X k (t) . We are however not aware of other approaches to

test the presence of an increasing trend in a sequence of functions. Gromenko and Kokoszka (2013) consider curves X ( s k , t )

defined at spatial locations s k and test H 0 : β = 0 in the model X( s k , t) = α + βt + ε(s k , t) . 

Before proceeding with the description of our testing approach we state the assumptions on the objects appearing

in (3.2) . 

Assumption 3.1. The error curves ε n are iid elements of the Hilbert space of square integrable functions with finite second

moment: E 
∫ 

ε 2 n (t) dt < ∞ . The functions α and β are deterministic elements of that space: ∫ α2 ( t ) dt < ∞ , ∫ β2 ( t ) dt < ∞ . 

Assumption 3.1 holds throughout the paper. 



P. Burdejova et al. / Econometrics and Statistics 1 (2017) 101–117 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A natural approach to testing is based on an estimator of β . If this estimator is small for all t ∈ [0, 1], there is not

enough evidence to reject H 0 . 

Representing trend model (3.2) as the regression ⎡ 

⎣ 

X 1 (t) 
. . . 

X N (t) 

⎤ 

⎦ = 

⎡ 

⎣ 

1 1 

. . . 
. . . 

1 N 

⎤ 

⎦ ·
[
α(t) 
β(t) 

]
+ 

⎡ 

⎣ 

ε 1 (t) 
. . . 

ε N (t) 

⎤ 

⎦ , 

we obtain the least squares estimators 

ˆ α(t) = 

2 

N(N − 1) 

N ∑ 

k =1 

(2 N + 1 − 3 k ) X k (t) (3.3)

and 

ˆ β(t) = 

6 

N(N + 1)(N − 1) 

N ∑ 

k =1 

(2 k − N − 1) X k ( t ) . (3.4)

Our first approach is based on the statistic 
∫ 1 

0 
ˆ β2 (t ) dt . To describe its asymptotic distribution additional notation is needed.

Introduce the covariance function of the errors c ε (t, s ) = E [ ε n (t) ε n (s )] . Denote by λ j , j = 1 , 2 , . . . the eigenvalues of c ε . Next,

define the residuals 

ˆ ε n (t) = X n (t) − ˆ αn (t) − ˆ βn (t) n (3.5)

and denote by ˆ λ j the eigenvalues of the empirical covariance function 

ˆ c ε (t, s ) = 

1 

N 

N ∑ 

n =1 

ˆ ε n (t) ̂  ε n (s ) . (3.6)

Theorem 3.1 describes large sample properties of the suitably normalized statistic 
∫ 1 

0 
ˆ β2 (t ) dt . 

Theorem 3.1. 

(i) Under H 0 , 

̂ 	N = 

N 

3 

12 

∫ 1 

0 

( ̂  β(t)) 2 dt 
L −→ 	∞ 

de f = 

∞ ∑ 

j=1 

λ j Z 
2 
j , (3.7)

where { Z j , j ≥ 1} are independent standard normal variables, and the λj are the eigenvalues of the covariance function c ε .

(ii) Under H A , 

P { ̂  	N > q N (α) } → 1 , as N → ∞ , (3.8)

where q N ( α) is the (1 − α) th quantile of the distribution of 	N = 

∑ N 
j=1 

ˆ λ j Z 
2 
j 
. 

Theorem 3.1 is proven in the last section. 

The distribution of 	∞ 

can be approximated by the distribution of 

	N = 

N ∑ 

j=1 

ˆ λ j Z 
2 
j . (3.9)

This leads to the Monte Carlo test whose consistency is claimed in part (ii) of Theorem 3.1 . To implement the test, we

generate a large number, say R = 10 4 , of independent replications of 	N (the ˆ λ j are estimated only once, from the original

sample). Denote these replications by 	N , r , 1 ≤ r ≤ R . The P -value of the test is computed as the fraction of the 	N , r

which are greater than 

̂ 	N (computed from the data). 

It is also possible to develop a test similar to the test of Berkes et al. (2009) in the sense that a limit distribution

is independent of the distribution of the data. In fact, in the trend model, the limit distribution is the usual chi–square

distribution. This is stated in Theorem 3.2 , in which we use the inner product notation 〈 f, g 〉 = 

∫ 1 
0 f (t) g(t) dt . 

Theorem 3.2. Suppose E|| ε|| 4 < ∞ and 

λ1 > λ2 > . . . > λq > λq +1 > 0 . (3.10)

(i) Under H 0 , 

̂ T N = 

N 

3 

12 

q ∑ 

j=1 

ˆ λ−1 
j 

〈 ̂  β, ̂  v j 〉 2 L −→ χ2 
q . (3.11)
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(ii) If for some 1 ≤ j ≤ q , 
〈
β, v j 

〉
	 = 0 , then the test is consistent, i.e. 

P { ̂  T N > q (α) } → 1 , as N → ∞ , (3.12) 

where q ( α) is the (1 − α) th quantile of the chi–square distribution with q degrees of freedom. 

Theorem 3.2 is proven in the last section. 

Observe that to establish the consistency, it is not enough to assume β 	 = 0 in L 2 . Since the statistic ̂ T N is based on

projections on the first q EFPC’s, we must assume that the slope function β is not orthogonal to the subspace spanned by

the first q FPC’s. 

Under the assumption of iid error curves ε n , cf. Assumption 3.1 , the functional principal components used in this paper

offer an optimal expansion. However, if the Assumption 3.1 is relaxed to allow some form of weak dependence, for example

the approximability introduced in Hörmann and Kokoszka (2010) , then a different data–driven orthonormal system may

offer some advantages. For example, the long–run FPC’s of Horváth et al. (2013) or the dynamic FPC’s of Hörmann et al.

(2015) could be used. These systems however require selections of kernel functions and other tuning parameters, whose

selection and impact would need to be studied. We expect that the test statistics could be formulated in an analogous way

and their asymptotic distribution would have a similar form to those we derived. Some work in relation to change point

tests has been done by Torgovitsky (2016) . Theoretical and practical exploration of similar extensions of trend tests is an

interesting topic for future research. 

4. Finite sample performance of the trend tests 

A simulation study validating the change point test of Section 3.1 is reported in Berkes et al. (2009) . In this section, we

examine the finite sample performance of the trend tests introduced in Section 3.2 . 

We consider two models for the error functions ε n ( t ). The first is a generic Gaussian model in which we take the ε n ( t )
to be Brownian bridges B n ( t ). We represent Brownian bridge as a Fourier series with stochastic coefficients (the Karhunen–

Loéve expansion, see Bosq (20 0 0) ): 

B n (t) = 

√ 

2 

∑ ∞ 

j=1 Z n j 
sin ( jπt) 

jπ ≈
√ 

2 

∑ J 
j=1 

Z n j 
sin ( jπt) 

jπ , 

where { Z j , j ≥ 1} are independent standard normal random variables. We set J = 100 so the trajectories of the B n have

similar smoothness as the typhoon and hurricane expectile curves. 

The second model for the ε n is based more directly on the tropical storm data. We proceed as follows. We consider

τ = 0 . 1 , 0 . 5 , 0 . 9 . For each level τ , we compute the sample mean function and the sample functional principal components

ˆ v j (t; τ ) of the expectile curves X n ( t , τ ). Next we compute the scores ξ jn ( τ ) according to (3.1) . Denote by σ j ( τ ) the standard

deviation of the ξ jn (τ ) , 1 ≤ n ≤ N, (N = 65) . The ε n are generated as independent realizations of the random function 

ε(t; τ ) = 

q ∑ 

j=1 

σ j (τ ) Z j ̂  v j (t; τ ) , Z j ∼ iid N (0 , 1) , 

with q determined from the original expectile curves according to the 85% rule. We thus have four models for the error

curves which we refer to as BB, E1, E5, E9. The errors E1, E5, E9 are different depending on whether hurricane or typhoon

data are used. The empirical rejection rates are however very similar in both cases. We display the results for the errors

based on the hurricane data. 

We generate artificial data according to the specification 

X n (t) = bβ(t) n + ε n (t) . 

To find empirical size, we set β(t) = β0 (t) = 0 . To find empirical power, we use the slope functions 

β1 (t) = −
cos 

(
tπ3 

2 

)
100 

; β2 (t) = 

sin ( tπ20 ) 

100 

, 

which are graphed in Fig. 3 . The constant b is used to adjust the magnitude of the departure from the null hypothesis. For

E1, E5 and E9 error curves we set b = 20 , for BB errors we use b = 1 . The different values are used to ensure similar signal

to noise ratio for both types of errors. 

We consider sample sizes N = 30 , 60 , 120 . Empirical rejection rates are shown in Tables 2 and 3 . The Monte Carlo test,

generally has slightly better size and power, but the pivotal chi–square test performs well too. The chi–square test tends to

overreject under H 0 (for N = 60 and N = 120 ). 

5. Application to typhoon and hurricane data 

In this section we apply the tests of Section 3 to annual expectile curves of wind speed data. The data have the form

X n ( t i ), where the times t i are separated by six hours, and the index n stands for year. The value X n ( t i ) is the wind speed

in knots (1 kn = 0.5144 m/s). We work with two data sets: typhoons in the West Pacific area over the period 1946–2010,
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Fig. 3. Slope functions β1 ( t ) (left) and β2 ( t ) (right) used to assess power. 

Table 2 

Rejection rates of the Monte Carlo test . Columns corresponding to β0 report empirical size, those to β1 and β2 , empirical power. 

BB β0 β1 β2 E1 β0 β1 β2 

N = 30 0.055 0.175 0.136 N = 30 0.060 0.082 0.078 

N = 60 0.056 0.967 1.0 0 0 N = 60 0.045 0.438 0.440 

N = 120 0.064 1.0 0 0 1.0 0 0 N = 120 0.042 1.0 0 0 1.0 0 0 

E5 β0 β1 β2 E9 β0 β1 β2 

N = 30 0.042 0.072 0.060 N = 30 0.069 0.081 0.091 

N = 60 0.047 0.435 0.438 N = 60 0.058 0.435 0.404 

N = 120 0.044 1.0 0 0 1.0 0 0 N = 120 0.042 1.0 0 0 1.0 0 0 

Table 3 

Rejection rates of the Chi–square test . Columns corresponding to β0 report empirical size, those to β1 and β2 , empirical power. 

BB β0 β1 β2 E1 β0 β1 β2 

N = 30 0.064 0.344 0.053 N = 30 0.053 0.071 0.089 

N = 60 0.058 0.995 0.085 N = 60 0.058 0.215 0.220 

N = 120 0.069 1.0 0 0 0.238 N = 120 0.056 0.975 0.971 

E5 β0 β1 β2 E9 β0 β1 β2 

N = 30 0.047 0.065 0.044 N = 30 0.051 0.075 0.085 

N = 60 0.064 0.249 0.193 N = 60 0.065 0.216 0.234 

N = 120 0.049 0.982 0.898 N = 120 0.058 0.929 0.967 

 

 

 

 

 

 

 

 

and hurricanes across the North Atlantic basin over the period 1947–2011. Both datasets are accessible free of charge at the

website of Unisys Weather Information, UNISYS (2015) . 

Since there are about 1,460 time points t i per year, we treat time 0 ≤ t ≤ T within a year as continuous, and the observed

curves as functional data. For each year n , we construct expectile curves X n ( t , τ ), for τ = 0 . 1 , 0 . 2 , . . . , 0 . 9 . Examples of

expectile curves we study are given in Fig. 2 . 

5.1. Change point analysis 

The results of the application of the change–point test of Section 3.1 are shown in Table 4 . For both data sets and at

all levels τ , the test rejects the null hypothesis that the mean pattern does not change. As explained in Section 2 , the

construction of the expectile curves involves the selection of a smoothing parameter λ. Table 4 shows the results for λ
selected by the AIC criterion. To validate our conclusions, we performed the same analysis using λ which is either twice or

half of the λ selected by AIC. In both cases, all empirical significance levels remained under 5%. 

The change point test shows that for all expectile levels τ , there are statistically significant changes in the annual

pattern. It is instructive to complement the above inferential analysis by simple exploratory analysis that reveals some

dependence on the level τ . Consider squared norms 

P k (τ ) = 

∫ T 

P 2 k (t , τ ) dt , 

0 
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Table 4 

Results of the application of the change point test of Section 3.1 to typhoon (upper panel) and hurricane (lower panel) expectile curves. Usual significance 

codes are used: ∗∗ – significant at 5% level, ∗∗∗ − at 1% level. 

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

d 10 11 12 12 12 12 12 12 12 

̂ S d 3.3522 3.2291 3.4317 3.4978 3.6564 3.8554 4.0342 4.2317 4.5084 
∗∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

d 5 5 5 6 6 6 7 7 7 

̂ S d 2.7440 3.3993 3.8759 4.4640 4.7141 4.8680 5.0366 4.9247 4.5740 
∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Table 5 

P -values for the Monte Carlo trend test based on Theorem 3.1 . 

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Typhoons P -value 0.365 0.537 0.545 0.495 0.438 0.381 0.329 0.316 0.269 

Hurricanes P -value 0.439 0.239 0.133 0.081 0.062 0.047 0.038 0.040 0.055 

Table 6 

P -values for the chi–square trend test based on Theorem 3.2 . 

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

q 10 11 12 12 12 12 12 12 12 

Typhoons P -value 0.534 0.705 0.722 0.688 0.587 0.466 0.382 0.371 0.453 

q 5 5 5 6 6 6 7 7 7 

Hurricanes P -value 0.069 0.024 0.015 0.006 0.003 0.003 0.004 0.006 0.035 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where the P k ( t , τ ) are the normalized differences P k ( t ) introduced in Section 3.1 computed for the expectile level τ . The

plot of P k ( τ ) against the year index k shows the magnitude of change of the mean function. We display such plots in Fig. 4 .

They suggest that the largest changes occur for the expectile levels τ close to one, but it must be kept in mind that they

may just reflect the fact that the curves X n ( t ) are “larger” for larger τ . By contract, the statistic ̂ S d contains a normalization

with the variances ˆ λ j , and is scale invariant. 

The change point analysis above shows that the pattern of typhoon and hurricane wind speeds cannot be treated as

stable over the sample periods we study. In the next section, we investigate if this instability can be attributed to systematic

trends. 

5.2. Trend analysis 

We now apply the trend tests introduced in Section 3.2 to typhoon and hurricane expectile curves. In the Monte Carlo

test based on Theorem 3.1 , we use 10 4 replications of the random variable 	N defined by (3.9) . In the chi–square test based

on Theorem 3.2 , we determine q as the smallest number which explains at least 85% of the variance of the residual curves

ˆ ε n defined by (3.5) . The results of the tests are presented in Tables 5 and 6 . 

For the typhoon data, none of the two tests finds evidence of a trend. For the hurricane data, the Monte Carlo test

based on Theorem 3.1 indicates the existence of a trend for expectile levels τ = 0 . 6 − −0 . 9 while the chi–square test of

Theorem 3.2 for all τ except τ = 0 . 1 . Simulations reported in Section 4 show that the chi–square test tends to overreject for

data generating processes (DGP’s) of length and error structure similar to the tropical storm expectile curves. We therefore

conclude that there is evidence for the existence of a trend for upper expectile functions of hurricane data. The estimated

slope functions ˆ β are plotted in Fig. 5 . While general shapes look similar, the curves are different for different values of τ ,

with difference of the order 0.05–0.10 on the same scale as in Figs. 5 and 6 . 

We conclude the trend analysis by showing in Fig. 7 the dependence on τ of the norm ‖ ̂  β‖ = 

√ ∫ 
ˆ β2 (t) dt of the

estimated slope function. Even though there is statistical evidence for nonzero slope function only for the upper expectiles

of hurricane data, the exploratory analysis of the norms indicates that there is a very clear increasing dependence of the

slope on τ . Again, the increasing norms could be attributed to the increasing size of the curve X n ( t ), and the plots can be

used only as an exploratory tool for comparing the hurricane and typhoon data. 

There is not much difference between the size of ˆ β, for typhoon and hurricane data, but the ˆ β for hurricanes show a

clear pattern with positive mass around July and November, and negative mass in early autumn. For the typhoon curves

the pattern of mass accumulation is spread more uniformly throughout the year, with a pronounced negative mass in

November. The significance tests we developed provide a statistical justification for these fairly subtle visual differences. 
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Fig. 4. The squared norms P k ( τ ) showing the magnitude of change in mean annual pattern for expectile curves of typhoons (upper panel) and hurricanes 

(lower panel). The largest changes occur in the expectile curves corresponding to τ = 0 . 9 . 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Main conclusions of data analysis 

The change point tests have shown that the annual pattern of wind speeds for both hurricanes and typhoons cannot

be treated as constant, no matter what expectile level is considered. If there is one or two clear–cut change points, their

location can be found as the years n for which the curves P n shown in Fig. 4 attain local maxima. For the tropical storm

data, these plots show multiple local maxima indicating that either we must assume many change points or a continuous

change, akin to trend. The application of the new trend tests has focused on a question which has however received a

fair deal of attention: is there a trend in the intensity of tropical storms. A review of relevant research is not our aim, the

paper of Kossin et al. (2013) provides background and references. There are two novel aspects to our approach: (1) focus

on the annual curves, (2) separate analysis for each intensity level. Based on sixty years of data, our tests detect a trend

in the upper wind speeds of Atlantic hurricanes. Exploratory analysis suggests a similar conclusion for Pacific typhoons,

but it cannot be supported by low P -value with the amount of available data. These conclusions are similar to the findings

of Kossin et al. (2013) who use different, custom–prepared, data sets. Their P -value for the existence of a trend in North

Atlantic is less that 10 −3 , but for the North–West pacific it is 0.03 (for South Pacific it is 0.09, 0.06 for the South Indian
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Ocean). Their analysis is concerned with the trend in the scalar data, not a trend in the annual pattern. They find all trends

to be positive. In a sense, such trend coefficients can be viewed as averages of the annual curves like those displayed in

Figs. 5 and 6 . The hurricane curves indeed have more positive mass, whereas for the typhoon curves the negative mass

is larger (the typhoon curves are not statistically different from zero, according to our tests). The slope functions of the

hurricanes indicate increasing intensity in summer and late fall, and decreasing intensity in early fall. For typhoons, these

curves indicate decreasing intensity in November. 

The conclusions of this paper which are supported by significance tests and do not contradict existing research are as

follows: 

1. The annual pattern of wind speeds of both hurricanes and typhoons has been changing at all wind speed levels over the

last 60 years. 

2. There is a significant trend in the shape of this pattern for upper wind speed levels of hurricanes. 

6. Proofs of Theorems 3.1 and 3.2 

Before proceeding to the proofs of Theorems 3.1 and 3.2 , we observe that a direct verification shows that 

c β (t, s ) 
def = Cov { ̂  β(t) , ˆ β(s ) } = A N c ε (t, s ) , 

where 

A N = 

12 

N (N + 1) (N − 1) 
. 

The constant A N is repeatedly used in the proofs of Theorems 3.1 and 3.2 . 

6.1. Proof of Theorem 3.1 

Proof of part (i): Under H 0 (β = 0) , 

ˆ β(t) = A N 

N ∑ 

k =1 

kε k (t) − 1 

2 

A N (N + 1) 
N ∑ 

k =1 

ε k (t) . 

Using the identity 

N ∑ 

k =1 

kε k = N 

N ∑ 

n =1 

ε n −
N−1 ∑ 

k =1 

k ∑ 

n =1 

ε n , (6.13) 

we have 

ˆ β(t) = A N 

N ∑ 

k =1 

kε k (t) − 1 

2 

A N (N + 1) 
N ∑ 

k =1 

ε k (t) 

= A N 

(
N 

N ∑ 

n =1 

ε n (t) −
N−1 ∑ 

k =1 

k ∑ 

n =1 

ε n (t) 

)
− 1 

2 

A N (N + 1) 
N ∑ 

n =1 

ε n (t) . (6.14) 

To determine the limit behavior of ˆ β(t) , we thus need an invariance principle for the partial sum process: 

S N (x, t) = 

1 √ 

N 

∑ 

1 ≤n ≤[ Nx ] 

ε n (t) , 0 ≤ x, t ≤ 1 . 

A result of this type has recently been established by Berkes et al. (2013) . It states that 

S N (x, t) 
L −→ (x, t) , (6.15) 

where ( x , t ) is the two parameter Gaussian process which admits the representation 

(x, t) = 

∞ ∑ 

j=1 

√ 

λ j W j (x ) v j (t) , (6.16) 

where { W j ( x ), 0 ≤ x ≤ 1} are independent standard Wiener processes on [0, 1]. The λj and the v j are, respectively,

the eigenvalues and the eigenfunctions of the covariance function c ε (t, s ) = E [ ε n (t) ε n (s )] . In (6.15) , and whenever weak

convergence of two parameter processes is concerned, 
L −→ denotes the convergence in the Skorokhod space D ([0, 1], L 2 ). 

Since A N ∼ 12 N 

−3 , (6.14) implies 

ˆ β(t) = A N N 

3 
2 S N (1 , t) − A N N 

1 
2 

N−1 ∑ 

k =1 

S N 

(
k 

N 

, t 

)
− 1 

2 

A N (N + 1) N 

1 
2 S N (1 , t) 
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Fig. 5. Estimated slope functions, ˆ β, for upper expectile curves of hurricane data. 
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Fig. 6. Estimated slope functions, ˆ β, for upper expectile curves of typhoon data. 
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Fig. 7. Norm of the slope function estimate, ˆ β, as a function of the expectile level τ ; typhoons (left), hurricanes (right). 

 

 

 

∼ 12 N 

− 3 
2 S N (1 , t) − 12 N 

− 3 
2 

{
1 

N 

N−1 ∑ 

k =1 

S N 

(
k 

N 

, t 

)}
− 6 N 

− 3 
2 S N (1 , t) 

= 6 N 

− 3 
2 S N (1 , t) − 12 N 

− 3 
2 

{
1 

N 

N−1 ∑ 

k =1 

S N 

(
k 

N 

, t 

)}
. 

By the continuous mapping theorem and (6.15) 

1 

N 

N−1 ∑ 

k =1 

S N 

(
k 

N 

, t 

)
L −→ 

∫ 1 

0 

(x, t) dx. 

Thus 

N 

3 
2 

6 

ˆ β(t) 
L −→ (1 , t) − 2 

∫ 1 

0 

(x, t) dx. (6.17)

Using the continuous mapping theorem again, we obtain 

N 

3 

36 

∫ 1 

0 

{ ̂  β(t) } 2 dt 
L −→ 

∫ 1 

0 

{
(1 , t) − 2 

∫ 1 

0 

(x, t) dx 

}2 

dt. 

Set 

D j = W j (1) − 2 

∫ 1 

0 

W j (x ) dx, (6.18)

so that, by (6.16) , we have 

(1 , t) − 2 

∫ 1 

0 

(x, t) dx = 

∞ ∑ 

j=1 

√ 

λ j D j v j (t) . 

Then, by Parseval’s identity, 

∫ 1 

0 

{
(1 , t) − 2 

∫ 1 

0 

(x, t) dx 

}2 

dt = 

∥∥∥∥∥
∞ ∑ 

j=1 

√ 

λ j D j v j 

∥∥∥∥∥
2 

= 

∞ ∑ 

j=1 

λ j D 

2 
j . (6.19)

The random variables D j are independent normal with mean zero and variance 

Var [ D j ] = E 

[
W (1) − 2 

∫ 1 

0 

W (x ) dx 

]2 

= E W 

2 (1) − 4 E 

[
W (1) 

∫ 1 

0 

W (x ) dx 

]
+ 4 E 

[∫ 1 

0 

W (x ) dx 

]2 

= 

1 

. 

3 
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We can write D j = 

1 √ 

3 
Z j , where Z j are standard normal variables. By (6.19) 

∫ 1 

0 

{
(1 , t) − 2 

∫ 1 

0 

(x, t) dx 

}2 

dt = 

1 

3 

∞ ∑ 

j=1 

λ j Z 
2 
j . 

Thus (3.7) is proven. 

Proof of part (ii): The proof follows from several lemmas. It is assumed throughout that H A holds, i.e. || β|| > 0. The

argument relies on Lemma 6.1 whose proof follows from the relevant definitions, and so is omitted. 

Lemma 6.1. Suppose { X n } and { q n } are sequences of random variables. Suppose further that { X n } diverges to infinity in probability

and { q n } is bounded in probability, i.e. for each M, lim n →∞ 

P(X n > M) = 1 and for each ε > 0, there are M and n 0 such that P( q n
> M ) < ε, if n > n 0 . Then 

lim 

n →∞ 

P(X n > q n ) = 1 . 

Relation (3.8) now follows from Lemmas 6.2 and 6.3 . 

Lemma 6.2. The statistic ̂ 	N defined by (3.7) satisfies ̂ 	N 
P → ∞ . 

Proof. Decompose ˆ β(t) as 

ˆ β(t) = β(t) + G N (t) , (6.20) 

where 

G N (t) = 

1 

2 

A N 

N ∑ 

k =1 

(2 k − N − 1) ε k (t) . 

Observe that G N ( t ) is equal to the estimator ˆ β(t) under H 0 . Therefore, by (6.17) , 

N 

3 / 2 G N (t) 
L −→ 6 

{
(1 , t) − 2 

∫ 1 

0 

(x, t) dx 

}
de f = U( t) . 

Consequently, as N → ∞ 

N 

3 

∫ 
ˆ β2 (t) dt = 

∫ {
N 

3 / 2 β(t) + N 

3 / 2 G N (t) 
}2 

dt ∼
∫ {

N 

3 / 2 β( t) + U(t) 
}2 

dt 
P → ∞ . 

More precisely, 

N 

−3 ̂ 	N ∼ 1 

12 

∫ {
β(t) + N 

−3 / 2 U(t) 
}2 

d t 
P → 

1 

12 

∫ 
β2 (t) d t. 

�

Lemma 6.3. Under H 0 , the sequence { 	N } defined by (3.9) is bounded in probability. 

Proof. Since the ˆ λ j are fixed in the generation of the replications in the Monte Carlo test, the variables Z j are independent

of the ˆ λ j . Therefore, since E Z 2 
j 

= 1 , 

E 	N = 

N ∑ 

j=1 

E ̂

 λ j . 

The definition of the ˆ λ j as the eigenvalues of the covariance operator with ˆ c ε (·, ·) defined by (3.5) and (3.6) implies that 

N ∑ 

j=1 

ˆ λ j = 

1 

N 

N ∑ 

n =1 

‖ ̂  ε n ‖ 

2 . 

This is the decomposition of functional sample variance, see details Horváth and Kokoszka (2012) , p. 40. Therefore, if we

can show that 

lim sup 

N→∞ 

1 

N 

N ∑ 

n =1 

E ‖ ̂  ε n ‖ 

2 < ∞ , (6.21) 

then we can conclude that lim sup N→∞ 

E 	N < ∞ , which in turn implies that the sequence { 	N } is bounded in probability. 

The decomposition 

ˆ ε n (t) = ε n (t) + { α(t) − ˆ α(t) } + n { β(t) − ˆ β(t) } , (6.22) 
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implies that for some constant C , 

‖ ̂  ε n ‖ 

2 ≤ C(‖ ε n ‖ 

2 + ‖ ̂  α − α‖ 

2 + ‖ n ( ̂  β − β) ‖ 

2 ) . (6.23)

First note that 

1 

N 

N ∑ 

n =1 

E ‖ ε n ‖ 

2 = E 

[ ∫ { 
1 

N 

N ∑ 

n =1 

ε 2 n (t ) 
} 

dt 

] 

= 

∫ { 

E 

[ 

1 

N 

N ∑ 

n =1 

ε 2 n (t) 

] } 

dt 

= 

∫ 
E ε 2 1 (t) dt = E ‖ ε 1 ‖ 

2 < ∞ . 

Next, observe that 

1 

N 

N ∑ 

n =1 

E ‖ ̂  α − α‖ 

2 = E ‖ ̂  α − α‖ 

2 

= 

∫ 
{ E [ ̂  α(t) − α(t)] 2 } dt 

= 

∫ 
E 

[ 

2 

N(N − 1) 

N ∑ 

k =1 

(2 N + 1 − 3 k ) ε k (t) 

] 2 

dt 

= 

2(2 N + 1) 

N(N − 1) 
E ‖ ε 1 ‖ 

2 → 0 . 

Similarly, with H N = 

(N+1)(2 N+1) 
6 , 

1 

N 

N ∑ 

n =1 

E ‖ n ( ̂  β − β) ‖ 

2 = H N E ‖ ̂

 β − β‖ 

2 

= H N 

∫ {
E 

[ 
ˆ β(t) − β(t) 

] 2 }
dt 

= H N 

∫ 
E 

[ 

6 

N(N − 1)(N + 1) 

N ∑ 

k =1 

(2 k − N − 1) ε k (t) 

] 2 

dt 

= 

2(2 N + 1) 

N(N − 1) 
E ‖ ε 1 ‖ 

2 → 0 . 

Thus (6.21) holds. Therefore sup N E 	N =: C 	 < ∞ , and so P(	N > M) ≤ M 

−1 C 	 can be made arbitrarily small by choosing

M sufficiently large. The conclusion follows. �

6.2. Proof of Theorem 3.2 

Proof of part (i): Under H 0 , by (6.14), (6.16) and consistency of estimated eigenfunctions ˆ v j , ( ̂ v j 
P → v j ), 〈

N 

3 
2 

6 

ˆ β, ̂  v j 

〉2 
L −→ 

〈
(1 , ·) − 2 

∫ 1 

0 

(x, ·) dx, v j 

〉2 

= 

〈 
∞ ∑ 

k =1 

√ 

λk W k (1) v k − 2 

∫ 1 

0 

∞ ∑ 

k =1 

√ 

λk W k (x ) v k , v j 

〉 2 

= 

[ 

∞ ∑ 

k =1 

√ 

λk 

{
W k (1) − 2 

∫ 1 

0 

W k (x ) dx 

}〈
v k , v j 

〉] 2 

= λ j 

{
W j (1) − 2 

∫ 1 

0 

W j (x ) dx 

}2 

= λ j D 

2 
j = 

1 

λ j Z 
2 
j , 
3 
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with the random variables D j defined in (6.18) , and Z j standard normal variables. It follows that 

̂ T N = 

N 

3 

12 

q ∑ 

j=1 

ˆ λ−1 
j 

〈 ̂  β, ̂  v j 〉 2 = 3 

q ∑ 

j=1 

ˆ λ−1 
j 

〈
N 

3 
2 

6 

ˆ β, ̂  v j 

〉2 
L −→ 

q ∑ 

j=1 

Z 2 j 

L = χ2 
q . 

Proof of part (ii): We must show that ̂ T N 
P → ∞ , if 〈 β, v j 〉 	 = 0 for some 1 ≤ j ≤ q . It is enough to show that 

q ∑ 

j=1 

ˆ λ−1 
j 

〈 ̂  β, ̂  v j 〉 2 P → 

q ∑ 

j=1 

λ−1 
j 

〈 β, v j 〉 2 , 

because the right–hand side is positive. The verification of the above convergence reduces to 

‖ ̂

 β − β‖ 

P → 0 (6.24) 

and, for 1 ≤ j ≤ q , 

‖ ̂

 v j − v j ‖ 

P → 0 , ˆ λ j 
P → λ j . (6.25) 

To prove relation (6.24) , observe first that by decomposition (6.20) , 

E ‖ ̂

 β − β‖ = E ‖ G N ‖ ≤ { E ‖ G N ‖ 

2 } 1 2 = 

{ 
E 

∫ 
G 

2 
N (t ) dt 

} 1 
2 

. 

To calculate the last expected value, we will use the identity 

1 

4 

A N 

N ∑ 

k =1 

(2 k − N − 1) 2 = 1 , 

which follows from algebraic manipulations. The independence of the ε k thus implies that 

E 

∫ 
G 

2 
N (t) dt = 

1 

4 

A 

2 
N 

N ∑ 

k =1 

(2 k − N − 1) 2 E 

∫ 
ε 2 k (t) dt = A N E ‖ ε‖ 

2 = O(N 

−3 ) . 

By Lemmas 2.2. and 2.3 of Horváth and Kokoszka (2012) , relations (6.25) will follow from ‖ ̂ c ε − c ε ‖ S P → 0 , where the

subscript S denotes the Hilbert–Schmidt norm. Proposition 6.1 states that, in fact, E ‖ ̂ c ε − c ε ‖ 2 S = O(N 

−1 ) . It thus extends a

well–known result, e.g. Theorem 2.5. of Horváth and Kokoszka (2012) , which states that 

E 

∫ ( 

1 

N 

N ∑ 

i =1 

ε i (t) ε i (s ) − E [ ε (t) ε (s ) ] 

) 2 

d td s = O(N 

−1 ) . (6.26) 

The covariance function ˆ c ε is defined in terms of the residuals ˆ ε n , cf. (3.5) and (3.6) . Estimation of the intercept and slope

functions introduces many additional terms which are, however, all asymptotically negligible. This is the content of the

following proposition whose proof is very long as it requires the examination of 16 cross–terms. The proof is therefore not

presented her, but is available upon request. 

Proposition 6.1. Suppose model (3.2) holds and E|| ε|| 4 < ∞ . Then the sample covariance function ˆ c ε , defined by (3.5) and (3.6) ,

satisfies E ‖ ̂ c ε − c ε ‖ 2 S = O(N 

−1 ) . 
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In this study, we develop nonparametric analysis of deviance tools for generalized partially linear models
based on local polynomial fitting. Assuming a canonical link, we propose expressions for both local and
global analysis of deviance, which admit an additivity property that reduces to analysis of variance decom-
positions in the Gaussian case. Chi-square tests based on integrated likelihood functions are proposed to
formally test whether the nonparametric term is significant. Simulation results are shown to illustrate the
proposed chi-square tests and to compare them with an existing procedure based on penalized splines. The
methodology is applied to German Bundesbank Federal Reserve data.

KEY WORDS: ANOVA decomposition; Integrated likelihood; Local polynomial regression.

1. INTRODUCTION

Generalized linear models (McCullagh and Nelder 1989)
are a large class of statistical models for relating a response
variable to linear combinations of predictor variables. The
models allow the response variable to follow probability dis-
tributions in the exponential family such as the Binomial and
Poisson, generalizing the Gaussian distribution in linear mod-
els, though a major limitation is the prespecified linear form
of predictors. Generalized partially linear models (Green and
Silverman 1994; Carroll et al. 1997; Härdle et al. 2004) allow
for a nonparametric component for a continuous covariate
while retaining the ease of linear relationships for the remain-
ing variables. It is more flexible than the conventional linear
approach and is a special case of generalized additive models
(Hastie and Tibshirani 1990; Wood 2006) which include multi-
ple nonparametric components. Härdle, Mammen, and Müller
(1998) applied the generalized partially linear model to 1991
East–West German migration data to model the probability of
migration with a nonlinear relationship to household income
and linear relationships to other covariates such as age, gender,
and employment status.Wood (2006, p. 248) gave an example of
modeling the daily total deaths in Chicago in the period 1987–
2000 as a Poisson distribution with a nonlinear trend of time and
linear effects of daily temperature and daily air-pollution levels
of ozone, sulfur dioxide, and pm10. An illustrating finance
example in Section 6 of this article is on bankruptcy prediction
for firms, known as rating or scoring, from a set of financial
ratio variables. The logistic partially linear model is used to
model the probability of default with a nonlinear relationship to
the account payable turnover ratio, which is a short-term liquid-
ity measure, and linear relationships to some selected financial
ratios.
In applying generalized partially linear models to data,

inference tools to examine whether the nonparametric

term is significant are of interest. For example, in Härdle,
Mammen, and Müller (1998), the nonlinear estimated function
of household income showed a saturation in the intention to
migrate for higher income households and the question was
whether the overall income effect was significant statistically.
As analysis of deviance was developed for generalized linear
models (McCullagh and Nelder 1989), it is natural to ask
whether one can extend it for generalized partially linear
models. Though Hastie and Tibshirani (1990) briefly discussed
analysis of deviance for generalized additive models, they
noted that “the distribution theory, however, is undeveloped”
and “informal deviance tests with some heuristic justification”
were adopted. The present article fills the gap by establishing
local and global analysis of deviance expressions for gener-
alized partially linear models and developing associated tests
for checking whether the nonparametric term is significant.
Li and Liang (2008) addressed assessing the significance of
the nonparametric term in the local polynomial settings by
extending generalized likelihood ratio tests (Fan, Zhang, and
Zhang 2001), which have asymptotic chi-square distributions.
Wood (2013) discussed approximate p-values for testing sig-
nificance of smooth components of semiparametric generalized
additive models by Wald-type tests based on penalized splines.
We remark that testing in the generalized partially linear models
is relatively less developed as compared to the special case of
partially linear models under the Gaussian distribution (Härdle
et al. 2004). Hence, there is a need for developing analysis of
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deviance tools parallel to those in generalized linear models for
applications of generalized partially linear models.
Based on the local polynomial approach (Fan and Gijbels

1996) and assuming a canonical link in generalized partially
linear models, we propose local and global expressions for
analysis of deviance, with the latter obtained by integrating
the corresponding local likelihood quantities. This mimics the
“integrated likelihood” approach discussed by Lehmann (2006)
and Severini (2007). Though the idea of local likelihood has
been around for some time (Hastie and Tibshirani 1987; Loader
1999), we are not aware of using the integrated likelihood
approach to combine the information of local likelihood in
the smoothing literature. Then, integrated likelihood ratio
tests with asymptotic chi-square distributions are proposed to
check whether the nonparametric term is significant. Our work
extends the classic analysis of deviance to generalized partially
linear models with theoretical justifications, and generalizes
the work of Huang and Chen (2008) and Huang and David-
son (2010) in a special case of the Gaussian distribution to
distributions in the canonical exponential family.
The organization of this article is as follows. Section 2

outlines the analysis of deviance for nested hypotheses in
parametric generalized linear models by Simon (1973). In
Section 3, we propose local and global analysis of deviance for
nonparametric models in Theorem 1 for the simpler case with
the nonparametric term as the only predictor. By combining
local likelihood through integration, as a by-product, new
estimators for the canonical parameter and response mean are
given in equation (12), and Theorem 2 shows that the integrated
likelihood quantities are asymptotically global likelihood quan-
tities with the new estimators. Theorem 3 proposes integrated
likelihood ratio tests with asymptotic chi-square distributions
for testing whether the nonparametric term is significant.
Section 4 presents an extension of Theorems 1–3 to generalized
partially linear models as Theorems 4 and 5. In Section 5,
we illustrate the potential usefulness of the new tests with
simulated data and compare with tests by Wood (2013) in the
R package mgcv. Section 6 applies the methodology to 2002
German Bundesbank Federal Reserve data and Section 7 gives
some concluding remarks and directions for future research.

2. PRELIMINARIES

We first describe generalized linear models based on
McCullagh and Nelder (1989). Let (x1, y1), . . . , (xn, yn) be
independent data pairs with the conditional density of Y given
covariate X = x from a one-parameter exponential family:

L(y; θ (x)) = exp

[
yθ (x) − b{θ (x)}

a(φ)
+ c(y, φ)

]
, (1)

where a(·) > 0, b(·), and c(·) are known functions, φ

is known or a nuisance parameter, and θ is the canon-
ical parameter with the conditional mean of response,
E(Y | X = x) = μ(x) = b′{θ (x)}. A transformation of mean
G{μ(x)} may be modeled linearly by G{μ(x)} = b0 + b1x,
where G(·) is called the “link” function and estimates of b0 and
b1 are obtained by maximum likelihood. If G(·) = (b′)−1(·),
then G is the canonical link function that links θ to the linear
predictor. For simplicity, G is the canonical link function

throughout the article and the dependence of θ on covariates is
often suppressed if no ambiguities result.
Let �(y; θ ) = logL(y; θ ), θ̂ = G(μ̂) denote the fitted value

of θ with corresponding μ̂, and θ̃ = G(y) when the fitted
value equals the observed y. The deviance D (McCullagh and
Nelder 1989), measuring the discrepancy between data y =
(y1, . . . , yn)� and fitted μ̂ = (μ̂1, . . . , μ̂n)�, is

D(y, μ̂) = 2
∑
i

{yi(θ̃i − θ̂i) − b(θ̃i) + b(θ̂i)}. (2)

In the Gaussian case, G is the identity link and D = ∑
i(yi −

μ̂i)2, which is the residual sum of squares in linear models.
Let us now turn to testing hypotheses about θ = (θ1, . . . , θn)�.
Assume thatDj = infθ∈� j D, j = 1, 2, with�2 ⊆ �1. The anal-
ysis of deviance usually refers to comparing two nested para-
metric models and inference may be based on the difference
D2 − D1, which is simply the log-likelihood ratio statistic with
an asymptotic χ2 distribution. The conventional analysis of
deviance is generally not parallel to the analysis of variance in
linear models, in the sense that the former does not have all the
sum-of-squares quantities.
An attempt to mimic analysis of variance for (1) can be based

on the Kullback–Leibler (KL) divergence of two probability
distributions with means μ1 and μ2:

KL(μ1,μ2) = 2Eμ1

[
�{y;G(μ1)} − �{y;G(μ2)}

]
,

where μ1 and μ2 are treated as fixed values and Eμ1
is the

conditional expectation with respect to y with μ = μ1. Simon
(1973) showed that for nested hypotheses �2 ⊂ �1 ⊂ R

n with
R
n corresponding to the parameter space for an exact fit of θ̃

and θ parameterized linearly in �1 and �2,

KL(y,μ2) = KL(y,μ1) + KL(μ1,μ2) (3)

when plugging in the values of maximum likelihood estimates
for μ1 and μ2. In other words, (3) shows that the KL divergence
exhibits the Pythagorean property. For the Gaussian distribu-
tion, (3) reduces to the analysis of variance decomposition in
linearmodels whenμ1 andμ2 correspond to the linear fit and the
intercept-only model, respectively, and the terms in (3) becomes
total, residual, and regression sums of squares, respectively.
A linear form of x may be restrictive and one may consider a

nonparametric approach:

G{μ(x)} = m(x). (4)

Fan, Heckman, and Wand (1995) discussed estimating m(·) by
maximizing a locally weighted likelihood with a local poly-
nomial approximation. Based on Taylor’s expansion at x, θi ≈
β0 + β1(xi − x) + · · · + βp(xi − x)p ≡ θi(x). This approxima-
tion is plugged in the locally weighted log-likelihood at x,

�x(y; θx) ≡
∑
i

�{yi; θi(x)}Kh(xi − x), (5)

where θx = (θ1(x), . . . , θn(x))�, K(·) is usually a density
function being symmetric at 0, h is the bandwidth deter-
mining the neighborhood size, and Kh(·) = K(·/h)/h. Then,
β̂ = (β̂0, . . . , β̂p)� maximizing �x(y; θx) is solved and j!β̂ j esti-
mates m( j)(x), j = 0, . . . , p, which is θ ( j)(x) with the canonical
link. Fan, Heckman, andWand (1995) derived asymptotic prop-
erties of β̂ j(x)’s and adoptedG−1{β̂0(x)} as an estimate forμ(x).
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A further extension to generalized partially linear models is

G{μ(z, x)} = z�α + m(x), (6)

where z is a K-dimensional covariate vector. Without loss of
generality, the intercept in (6) is embedded in m(·). When α is
unknown, estimation of α can be done via a two-step maximum
likelihood procedure that updates the linear and nonparametric
estimates iteratively, as discussed byCarroll et al. (1997), p. 479.

3. NONPARAMETRIC ANALYSIS OF DEVIANCE

This section focuses on (4). We start by deriving a local
analysis of deviance expression for model (4) in the follow-
ing by adapting (3) for locally weighted likelihood. Let θ̂i(x) =
β̂0 + · · · + β̂p(xi − x)p, the resulting local polynomial estimate
of θi at x, θ̂x = (θ̂1(x), . . . , θ̂n(x))�, μ̂x(xi) = G−1{θ̂i(x)}, and
μ̂x = (μ̂x(x1), . . . , μ̂x(xn))�. As the β̂ j’s maximize �x(y; θx),
the following equations hold:∑

i

yi(xi − x) jKh(xi − x) =
∑
i

μ̂x(xi)(xi − x) jKh(xi − x),

j = 0, . . . , p,∑
i

yiθ̂i(x)Kh(xi − x) =
∑
i

μ̂x(xi)θ̂i(x)Kh(xi − x). (7)

The last equation indicates that (y − μ̂x) is orthogonal to
θ̂x in the locally weighted inner product space with weights
Kh(xi − x). Hence, the fact of residuals being orthogonal to fitted
values in ordinary linear models now becomes the fact of local
residuals (y − μ̂x) being orthogonal to locally fitted canonical
parameters θ̂x in a kernel-weighted space. For �x(y; θ̂x), an
expression mimicking (2) for local deviance at x is therefore

dx(y, μ̂x) = 2{�x(y; θ̃) − �x(y; θ̂x)}
= 2

∑
i

[yi{θ̃i − θ̂i(x)} − b(θ̃i) + b(θ̂i(x))]Kh(xi − x),

(8)

where θ̃ = (θ̃1, . . . , θ̃n)� with θ̃i = G(yi), same as those defined
around (2). Though (8) is a natural definition for local like-
lihood, we are not aware of a similar quantity to (8) in the
literature. Published work focuses on global deviance by
taking (2) with G−1{β̂0(xi)} as the estimate, and strictly
speaking, the resulting deviance expression is not based
on maximized likelihood as β̂1, . . . , β̂p are ignored. In
comparison, the deviance (8) makes use of all coef-
ficients β̂0, . . . , β̂p from maximizing local likelihood.
Then, (3) is adapted to form a local analysis of deviance
expression, and a global expression may be obtained
by integrating local quantities, as given in the following
theorem.

Theorem 1. Suppose that conditions (A1) and (A2) in the
online Appendix hold. Under model (4), the following results
hold when using local polynomial approximations of pth
order.

(a) For a grid point x in the support of covariate X , a local anal-
ysis of deviance expression is

dx(y, ȳ) = dx(y, μ̂x) + dx(μ̂x, ȳ), (9)

where ȳ is the sample mean of y, dx(y, ȳ) is (8) with μ̂x and
θ̂x replaced by ȳ and G(ȳ) respectively, and

dx(μ̂x, ȳ) ≡ 2Eμ̂x

[
�x

(
y; θ̂x

)
− �x{y;G−1(ȳ)}

]
= 2

[
�x

(
y; θ̂x

)
− �x

{
y;G−1(ȳ)

}]
. (10)

(b) A global analysis of deviance expression is obtained by
integrating the local quantities in (9) over the support of
covariate X :∫

dx(y, ȳ)dx =
∫
dx(y, μ̂x)dx+

∫
dx(μ̂x, ȳ)dx, (11)

where
∫
dx(y, ȳ)dx = KL(y, ȳ) = D(y, ȳ) under a bound-

ary condition in (A1) that the weights
∫
Kh(xi − x)dx = 1,

i = 1, . . . , n.

Theorem 1 provides elegant local and global analysis of
deviance expressions thatmimic the classic case (3) (McCullagh
and Nelder 1989; Simon 1973) and shows that the Pythagorean
property of the KL divergence holds under model (4) with
local polynomial fitting. It is straightforward to show (9) based
on (7) and (10) and hence the proof is omitted. Alternatively,
the proof in Simon (1973) for (3) can be adapted with kernel
weights to show (9). The local expression (9) has an interpre-
tation that the null deviance at point x, dx(y, ȳ), can be decom-
posed into two parts, the residual deviance after fitting a locally
weighted polynomial at x, dx(y, μ̂x), and the model deviance at
x, dx(μ̂x, ȳ). Equality (9) holds in finite-sample cases, similar
to (3). The global analysis of deviance (11) extends the above
interpretation to a fitted curve by local polynomials: the residual
deviance

∫
dx(y, μ̂x)dx is a measure of the lack of fit of fitting

(4), whereas the null deviance
∫
dx(y, ȳ)dx is such a measure for

a reduced model that only includes the intercept. The quantities
in (11) are weighted integrals (see (5)), which may be approx-
imated by the Riemann sum in practice, and an analysis of
deviance table based on (11) is formed, similar to the paramet-
ric framework. For a special case of Normal distribution with
an identity link, (9) and (11) become the local and global analy-
sis of variance decompositions respectively in Huang and Chen
(2008). For the boundary condition in Theorem 1(b), if K(·) has
a support [−1, 1] and {xi, i = 1, . . . , n} has a range of [a, b],
then a boundary-corrected kernel [

∫
Kh(xi − x)dx]−1Kh(xi − x)

may be used for xi in [a, a+ h) and (b− h, b] to ensure that the
integrated kernel weights equals to 1.
As a by-product, the above derivations give rise to new

“global” estimators for θi’s and μi’s:

θ∗
i =

∫
θ̂i(x)Kh(xi − x)dx and μ∗

i = G−1(θ∗
i ).

(12)

They are different from local estimates at xi: β̂0(xi) and
G−1{β̂0(xi)}. The asymptotic properties of θ∗

i and μ∗
i for “inte-

rior” points xi with p = 1 and 3 are discussed in Proposition 1.
The reason p = 1 and 3 only is due to their simpler asymp-
totic bias expressions of β̂0(x) than those of p = 0 and 2; see
Theorems 1a and 1b in Fan, Heckman, and Wand (1995). The
“interior” region is defined as follows. For a kernel function
with support [−1, 1], if the convex support of xis is [a, b],
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then define the interior region as [a+ 2h, b− 2h]. This defi-
nition is narrower than the conventional [a+ h, b− h], since
for xi in [a+ h, a+ 2h)

⋃
(b− 2h, b− h], the corresponding θ∗

i
and μ∗

i in (12) involve β̂ j(x) with x in [a, a+ h)
⋃
(b− h, b],

j = 0, . . . , p.

Proposition 1. Suppose that conditions (A1)–(A5) in the
online Appendix hold. Assume that h → 0 and nh3 → ∞ as
n → ∞. Then for interior points xi with p = 1 and 3,

(a) the order of the asymptotic bias of θ∗
i is smaller than the

conventional order h(p+1); that is, the h(p+1) term of the bias
of θ∗

i is zero;
(b) the asymptotic variance of θ∗

i is of order n−1h−1;
(c) similarly, the order of the bias of μ∗

i is smaller than the con-
ventional order h(p+1) and the asymptotic variance of μ∗

i is
of order n−1h−1.

The proof for the Proposition is given in the online Appendix.
There has been some research aimed at finding new ways of
reducing bias of basic kernel smoothers, for example, Kosmidis
and Firth (2009). In the Gaussian case with an identity link,
Huang and Chan (2014) showed that the bias of θ∗

i for inte-
rior points is of order h2(p+1) for p = 0, 1, 2, 3, which is con-
sistent with intuition that the higher the p, the smaller the order
of the bias. The derivation of explicit bias expressions of θ∗

i in
exponential family is technically challenging, since the second-
order expansions of the bias of β̂ j(x) for (1) with (4) have not
been addressed in the literature. We thus focus on analysis of
deviance, while the issue of bias reduction may be studied in a
future article.
Theorem 1 involves integrating local likelihood quantities to

form a global analysis of deviance expression and hence it is of
interest to explore how integrated local likelihood

∫
�x(y, θ̂x)dx

behaves as a global likelihood function. The following theo-
rem shows that integrated local likelihood is asymptotically
a global likelihood �(y; θ∗) with estimate θ∗ = (θ∗

1 , . . . , θ∗
n )

�

and that the integrated deviance quantities
∫
dx(y, μ̂x)dx and∫

dx(μ̂x, ȳ)dx are asymptotically KL-divergence measures with
estimate μ∗ = (μ∗

1, . . . , μ
∗
n )

�.

Theorem 2. Under model (4), assume that conditions (A1)–
(A5) in the onlineAppendix hold, and h → 0, nh3 → ∞ as n →
∞. For p = 1 and 3,

(a) the integrated likelihood function is asymptotically∫
�x(y; θ̂x)dx = �(y; θ∗) + O (

h(p+1)
)
, (13)

where the elements of θ∗ are defined in (12);
(b) the integrated deviance quantities are asymptotically∫

dx(y, μ̂x)dx = KL(y,μ∗) + O (
h(p+1)

)
and

∫
dx(μ̂x, ȳ)dx = KL(μ∗, ȳ) + O (

h(p+1)
)
, (14)

where the elements of μ∗ are defined in (12);
(c) from (11) and (14),

KL(y, ȳ) = KL (y,μ∗) + KL(μ∗, ȳ) + O (
h(p+1)

)
, (15)

which shows that the classic analysis of deviance holds
asymptotically with μ∗.

The proof of Theorem 2 is given in the online Appendix
and it uses some results stated in the Proposition for p = 1
and 3. Hence Theorem 2 is limited to p = 1 and 3 only for
the same reason described before Proposition 1. The integrated
local likelihood

∫
�x(y, θ̂x)dx in (13) is a weighted integral of

local likelihood with fitted local polynomials. In the literature,
the idea of integrated likelihood was mentioned in Lehmann
(2006), and Severini (2007) discussed integrated likelihood
functions to eliminate nuisance parameters in parametric set-
tings. To our knowledge, (13) and (15) have never been raised
in the nonparametric regression literature. The convention was
to plug in β̂0(xi) in (1) for θi; as β̂0(xi)’s are not maximum
likelihood estimates globally, the KL-type additivity (3) would
not hold. In contrast, (15) shows that the classic analysis of
deviance holds asymptotically by using the local additivity
in (9). Two topics for further investigation are to apply
Theorems 1 and 2 to develop bandwidth selection and residual
diagnostic procedures. For example, bandwidth selection may
be based on cross-validating the deviance or minimizing the cor-
rected Akaike information criterion (AICc; Hurvich, Simonoff,
and Tsai 1998), both with close connection to KL divergence.
In Section 5, we explore adapting the AICc criterion with the
integrated deviance for bandwidth selection empirically.
Based on integrated local likelihood, we next develop an

integrated likelihood ratio test for examining the significance
of a nonparametric fit, parallel to chi-square tests in parametric
settings (McCullagh and Nelder 1989). Under model (4), the
intercept term is embedded in m(·) and hence testing signifi-
cance ofm(·) becomes testing whetherm(·) equals to a constant.
Theorem 3. Under the conditions of Theorem 2, for testing

H0 : m(x) = a0 with a0 a constant versusHa : m(x) is not a con-
stant function, when estimating m(·) by pth order local polyno-
mials with p ≥ 0, the test statistic

2

{∫
�x(y; θ̂x)dx− �(y; â0)

}
(16)

is asymptotically distributed according to a χ2-distribution with
degrees of freedom (df) tr(H∗

p ) − 1, where â0 is the maximum
likelihood estimate under H0 and H∗

p is the smoothing matrix
for local pth order polynomial regression defined in Huang and
Chen (2008) in the case of the Normal distribution.

More explicitly, H∗
p depending on xi’s, bandwidth h, and the

kernel function K(·), is

H∗
p =

∫
WXp

(
X�
p WXp

)−1
X�
p Wdx, (17)

where W is an n-dimensional diagonal matrix with Kh(xi − x)
as its diagonal elements, and Xp is the n× (p+ 1) design
matrix with the ( j + 1)th column ((x1 − x) j, . . . , (xn − x) j )�,
j = 0, . . . , p. The dependence ofW and Xp on x is suppressed
and the integration in (17) is performed element by element in
the resulting matrix product. In Theorem 3, the χ2-distribution
is allowed to have a non integer degree of freedom, since the
χ2-distribution is a special case of the gamma distribution. The
asymptotic order of tr(H∗

1 ) in the case of local linear regression
p = 1 is of order h−1 (Huang and Chen 2008, p. 2093).We name
the χ2-test in Theorem 3 as an integrated likelihood ratio test
since the test statistic can be expressed as integrated likelihood
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Härdle and Huang: Analysis of Deviance for Hypothesis Testing in Generalized Partially Linear Models 5

ratio: ∫
�x(y; θ̂x)dx− �(y; â0)

=
∫ ∑

i

[
�{yi; θ̂i(x)} − �(yi; â0)

]
Kh(xi − x)dx

under the boundary condition in (A1). In other words, under
model (4), the test statistic (16) integrates the differences in local
deviances between a nonparametric fit (8) and an intercept-only
reduced model and it is distributed asymptotically as a chi-
squared distribution with the difference in degrees of freedom
of the two models. This interpretation makes (16) more com-
pelling than the generalized likelihood ratio test in Li and Liang
(2008), since their work does not have a connection to deviance.

4. ANALYSIS OF DEVIANCE FOR PARTIALLY LINEAR
MODELS

We extend the results in Section 3 to generalized partially
linear models (6). Denote μ̆x(xi) = G−1{θ̆i(x)} where θ̆i(x) =
z�
i ᾰ + β̆0 + · · · + β̆p(xi − x)p with estimates ᾰ and β̆ j’s under
(6). To avoid confusion with the notation in Section 3, from
now on μ̆x(xi), θ̆i(x), θ̆x, μ̆x, ᾰ, μ∗∗, and θ∗∗ denote the esti-
mates under (6). Since β̆ j’s maximize the local likelihood, the
equations in (7) continue to hold with θ̆x and μ̆x under (6). The
interpretation that (y − μ̆x) is orthogonal to θ̆x in the locally
weighted inner product space with weights Kh(xi − x) contin-
ues to hold under (6). An additional equation from estimating α

by maximum likelihood is

∑
i

yizik =
∑
i

zik

∫
μ̆x(xi)Kh(xi − x)dx, k = 1, . . . ,K,

(18)
where zik denotes the value of the kth covariate for the ith
observation. From (18), we observe that the column vector with
entries (yi −

∫
μ̆x(xi)Kh(xi − x)dx), i = 1, . . . , n, is orthogonal

to the column space spanned by z. Moreover, it can be shown
that

∫
μ̆x(xi)Kh(xi − x)dx = μ∗∗

i + O(hp+1 + n−1/2) and hence
(y − μ∗∗) is asymptotically orthogonal to the column space
spanned by z.

Theorems 1 and 2 are extended to generalized partially linear
models (6) in the following as Theorem 4(a) and 4(b) respec-
tively when α is estimated by maximum likelihood. We develop
local and global analysis of deviance expressions for (6) in
Theorem 4(a) and Theorem 4(b) shows that the integrated like-
lihood quantities are asymptotically global likelihood quantities
with θ∗∗ and μ∗∗.

Theorem 4. For model (6), assume that Conditions (A) in the
online Appendix hold, and h → 0, nh3 → ∞ as n → ∞.

(a) The local and global analysis of deviance (9) and (11),
respectively, hold with μ̆x(xi) and μ̆x when α is estimated
by maximum likelihood.

(b) Assume that α is estimated with a root-n rate. For p =
1 or 3, the expression in (13) holds with θ̆x and θ∗∗

except the O(hp+1) term replaced by O(hp+1 + n−1/2).
Similarly, (14) and (15) hold with μ̆x and μ∗∗ and the
O(hp+1) terms replaced by O(hp+1 + n−1/2).

(c) When the same kernel function and bandwidth are used
in (4) and (6), the nonparametric model (4) is nested in (6).
Then, the difference in local residual deviance from fitting
(6) to (4) can be expressed as

dx(y, μ̂x) − dx(y, μ̆x) = dx(μ̆x, μ̂x). (19)

The proofs of Theorem 4(a) and 4(b) are analogous to
Theorems 1 and 2, respectively, and are thus omitted. We
briefly outline the proof for Theorem 4(c). Based on (7) under
(6), we have

∑
i yi(xi − x) jKh(xi − x) = ∑

i μ̆x(xi)(xi − x) jKh
(xi − x), j = 0, . . . , p. Then multiplying the jth equation by β̂ j

and summing them up,
∑

i{yi − μ̆x(Xi)}θ̂i(x)Kh(Xi − x) = 0 is
obtained and (19) is proved.
In a special case of the Gaussian distribution with an iden-

tity link, Theorem 4(a) becomes the local and global analysis
of variance for partially linear models, which was discussed in
Huang and Davidson (2010, Sec. 3.1). Theorem 4(c) implies
that the local residual deviance for fitting (6) is the local resid-
ual deviance for fitting (4) minus a term due to the parametric
component. That is, the difference of local residual deviances
between (6) and (4) is a KL-divergence measure dx(μ̆x, μ̂x), and
the local KL-divergence is additive between nested models (6)
and (4). A similar interpretation holds at a global scale after inte-
grating the local contributions of (19):∫

dx(y, μ̆x)dx =
∫
dx(y, μ̂x)dx−

∫
dx(μ̆x, μ̂x)dx.

Analogous to Theorem 3, testing whether m(·) is significant
under model (6) becomes testing whether m(·) is significantly
different from a constant and an integrated likelihood ratio test
is proposed in the following theorem.

Theorem 5. For model (6), assume that Conditions (A) in the
online Appendix hold and the data matrix Z for covariates z is
orthogonal to x = (x1, . . . , xn)� and the intercept column. For
testing H0 : m(x) = a0 with a0 a constant versus Ha : m(x) is
not a constant function, when estimatingm(·) by pth order local
polynomials with p ≥ 0, the test statistic

2

{∫
�x(y; θ̆x)dx− �(y; α̂0)

}
(20)

is asymptotically distributed according to a χ2-distribution with
df tr(H∗

p ) − 1, where α̂0 is the maximum likelihood estimate
under parametric H0.

The assumption that Z is orthogonal to x in Theorem 5 is
required for mathematical convenience, in the sense that the
corresponding off-diagonal elements of the local Fisher infor-
mation is 0, for ease of deriving the asymptotic χ2-distribution
of the test statistic (20). It will be seen in the simulations
that the performance of the proposed tests remain reasonable
when this assumption is violated. The integrated likelihood
ratio tests in Theorems 3 and 5 depend on the bandwidth h, like
the other nonparametric tests. Analogous to Theorem 3, the test
statistic (20) has an interpretation of integrating the differences
in local deviances between a fitted generalized partially linear
model and a parametric reduced model. We remark that the
proposed tests are different from those in Hastie and Tibshirani
(1990) and Li and Liang (2008). The proposed test statistics
use integrated likelihood that combines all maximized local
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likelihoods from fitting local polynomials. Some existing meth-
ods use only G−1(β̂0(xi))’s, and strictly speaking, the resulting
expression is not based on maximizing likelihood as β̂1, . . . , β̂p
are ignored; this fact was mentioned before Theorem 1 as well.
Some work in the literature—for example Härdle, Mammen,

and Müller (1998)—has considered testing whether m in (6) is
significantly different from a linear trend, G(μ) = z�α + a0 +
a1x. The extension of Theorem 5 to testing a linear trend is non-
trivial and will be pursued in future work, since the variance
function of y is allowed to be a function of the mean of y in expo-
nential family (1). In a special case of the Gaussian distribution
with a constant variance, analysis-of-variance F-type tests for
checking linear trends were derived by Huang and Davidson
(2010).

5. SIMULATION RESULTS

We examine the empirical Type I errors and power for the
proposed tests in Theorems 3 and 5. Local linear smoothing
p = 1 with the Epanechnikov kernel is used throughout this
section. We first describe the algorithm for calculating the test
statistic (20) in Theorem 5 for testing H0 : m(x) = a0 under
model (6), while that for (16) under model (4) is similar. The
algorithm adapted from Carroll et al. (1997) is given as fol-
lows:

Step 0 (initialization). Fit a parametric generalized linear
model to obtain initial values ᾰ(0).

Step 1. For a set of grid points on the data range of xi’s, given
a value of h, maximize the local likelihood with ᾰ(r)

to obtain β̆
(r)
0 , . . . , β̆ (r)

p for each grid point. Then with

θ̆
(r)
i (x)’s, calculate a locally weighted average as in (12)
to obtain θ̆∗∗(r)

i , i = 1, . . . , n.

Step 2. Maximize the global likelihood with θ∗∗(r) =
(θ̆∗∗(r)

1 , . . . , θ̆∗∗(r)

n )� to update ᾰ(r+1).
Step 3. Continue Steps 1 and 2 until convergence. The test

statistic (20) is calculated by integrating the final local
likelihoods and taking its difference to the global like-
lihood under H0.

The simulation study focuses on logistic regression in
Examples 1–4 as we wish to evaluate the proposed methods
to analyze the German Bundesbank data in Section 6, while
Example 5 is on Poisson regression. The integrated likelihood
in the test statistics (16) and (20) are approximated discretely
by taking 201 equally-spaced points on [0, 1] in Examples 1
and 2, and 301 equally spaced points on [−0.5, 1] in
Examples 3–5. For xi’s that fall in conventional boundary
regions, analogous approximations are used for calculating∫
Kh(xi − x)dx for boundary correction in condition (A1). In

addition to implementing the proposed tests with a fixed h, we
also try selecting the bandwidth by AICc (Hurvich, Simonoff,
and Tsai 1998) and by the idea of Horowitz and Spokoiny
(2001) (HS). The AICc criterion is adapted with the integrated
deviance:

AICc(h) = log(D∗/n) + 2
(
tr

(
H∗
1

) + 1
)
/
(
n− tr

(
H∗
1

) − 2
)
,

where D∗ denotes the integrated deviance
∫
dx(y, μ̂x)dx in (14)

under model (4) or
∫
dx(y, μ̌x)dx under model (6). The HS

idea is to select the bandwidth that maximizes the test statis-
tic. Critical values for the proposed tests are taken from the
χ2-distribution with 5% significance level and 5000 simulated
datasets are generated. The gam function in the mgcv R pack-
age (Wood 2013) provides a chi-square test of zero effect of a
smooth term and we include it for comparison, with default 10
spline basis functions and the penalty estimated by REML.

Example 1. logit(p) = −1 + a cos(2πx), a = 0, 0.5, 0.75, 1.
We first check the χ2-approximation under H0 when a = 0 for
both a fixed design, x equally-spaced on [0, 1], and a random
design, x ∼ U (0, 1), with sample sizes n =50, 100, and 200.
The values of bandwidth h =0.1, 0.12, 0.15, 0.17, 0.2, 0.25,
and 0.3 are chosen so that they are roughly equally spaced on
a logarithm scale and they correspond to smoothing with about
20%–60% data. For both AICc and HS, the bandwidth among
the 7 values that satisfies the criterion is selected. The results
with h =0.1, 0.15, 0.2, and 0.25, are chosen to present in Table 1,
from under-smoothing slightly to over-smoothing slightly. The
results with varying h by AICc and HS are also given in Table 1.
It appears that when n =50, the χ2-approximation for (16)
under H0 is not good as the empirical Type I errors are all above
0.05 for either a fixed or random design. For this reason, we
do not consider the case of n =50 further. As suggested by two
reviewers, a bootstrap alternative for calculating the sample crit-
ical values for n = 50 may be considered for future research.

When a = 0 and n = 100, the empirical Type I errors are
mostly reasonable except for a small h =0.1, hAICc, and hHS,
with rates ranging about 7–10%. In this case with a random
design, hAICc tends to select the largest bandwidth 0.3, 92.12%
of 5000 simulations, since the true model underH0 is a constant,
and when AICc happens to select a small bandwidth such as 0.1,
it often leads to rejectingH0. For hHS, it behaves differently since
it attempts to optimize the power; when a = 0 and n = 100, the
empirical proportions of hHS on the 7 values of h = 0.1, . . . , 0.3
are 44.58%, 5.8%, 4.96%, 4.08%, 5.04%, 4.84%, and 30.70%,
respectively. Therefore, the inflated Type I errors of hHS are
somewhat expected. In Horowitz and Spokoiny (2001), the criti-
cal values were based on resampling from the finite-sample null
distribution, while we use the asymptotic χ2-distribution. When
n = 200, the empirical type-I errors for the proposed tests are
around 0.05 with a fixed bandwidth, and slightly above 0.05 for
hAICc and hHS. The performance of hAICc when n = 200 is closer
to H0 than that of n = 100. The gam function performs con-
sistently around 0.05 under H0 regardless of the sample sizes.
When n =100 with a fixed design, the df (tr(H∗

1 ) − 1) are 10.29,
6.84, 5.11, and 4.07, respectively, for h =0.1, 0.15, 0.2, and
0.25, respectively, and the average estimated degrees of free-
dom (edf) for gam is 1.33 with a range [1.00, 6.85]. Quantile–
quantile plots (qqplots) of 5000 test statistics (16) for n =100
with a fixed design against theχ2-quantiles with the correspond-
ing df are shown in Figure 1 for h =0.1, 0.15, 0.2, and 0.25, indi-
cating satisfactory approximations of the χ2-distribution. The
qqplots of n =200 with a fixed bandwidth (not shown) are sim-
ilar to those of n =100.
When a =0.5, 0.75, and 1, with a random design, we exam-

ine the performance under alternatives. The percent of rejec-
tion is given in Table 2. For the proposed tests, we observe
that the rejection rate increases as the value of the bandwidth

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
it&

au
m

l;t
 z

u 
B

er
lin

 U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] 

at
 0

2:
34

 1
2 

Ja
nu

ar
y 

20
18

 



Härdle and Huang: Analysis of Deviance for Hypothesis Testing in Generalized Partially Linear Models 7

Table 1. Percent of rejection under H0 in Example 1 with a = 0

h = 0.1 h = 0.15 h = 0.2 h = 0.25 hAICc hHS gam

n = 50 fixed design 12.80 8.74 6.70 6.02 10.02 15.86 3.22
n = 50 random design 14.10 9.34 7.20 6.24 10.38 17.26 3.06
n = 100 fixed design 7.38 5.30 4.80 4.52 7.18 9.96 3.99
n = 100 random design 7.94 5.84 4.70 4.36 7.28 10.48 4.08
n = 200 fixed design 4.96 4.20 4.18 3.96 5.56 7.36 4.62
n = 200 random design 5.22 4.38 4.42 4.20 6.00 7.76 5.04

The empirical Type I errors of the test statistic (16) are close to 0.05 for n = 100 and 200 with a fixed h ≥ 0.15. The performance of hAICc when n = 200 is closer to H0 than that of
n = 100, and hHS has larger Type I errors as it attempts to optimize the power. The gam function performs consistently around 0.05 under H0 regardless of the sample sizes.

increases when a =0.75 and 1, and hAICc and hHS are more pow-
erful than those with a fixed h. Under alternatives, the proposed
tests are more powerful than gam except the case with n = 200
and h =0.1. When n =100, the average dfs for (16) of a = 0.5,
0.75, and 1 are similar to those of a =0, since H∗

1 in (17) does
not involve the response y. When n = 100, the average edf of
gam increases as a increases, 1.80, 2.30, and 2.64 for a =0.5,
0.75, and 1, respectively. The behavior for df and edf of n =200
is similar to that of n = 100.
Example 2. logit(p) = −2 + fk(x), k = 0, 1, 2, where x ∼

U (0, 1) and functions f0(x) = 8x(1 − x), f1(x) = exp(2x), and
f2(x) = 2 × 105x11(1 − x)6 + 104x3(1 − x)10, are taken from
Wood (2013). Wood (2013) considered an additive model with
logit(p) = −5 + f0(x0) + f1(x1) + f2(x2), while we use those

functions in the univariate case separately. The results are shown
in Table 3, with the proportions of rejection nearly 100% for
both tests in cases of f1 and f2. For f0, a quadratic trend, our
test is more powerful than gam except the case with n = 200
and h =0.1.
Example 3. logit(p) = b1z1 + b2z2 + a exp(−16x2), a = 0,

1, 2, 3, where z1 is first generated as binary taking values −1
and 1 with equal probabilities, z2 and x are first generated
from a bivariate normal distribution with mean 0, variances 0.5
and 1 respectively, and correlation 0.3. Then, x is transformed
to have a uniform distribution on (−0.5, 1). To satisfy the
conditions in Theorem 5, z1 and z2 are then made orthogonal to
x and the intercept vector. After the orthogonized z1 and z2 are
obtained, b1 = 0.1, b2 = −0.1. To understand how restrictive

Figure 1. Quantile–quantile plots of 5000 integrated likelihood ratio test statistics (16) under H0 in Example 1 for n = 100 with h =0.1, 0.15,
0.2, and 0.25, against quantiles from χ 2-distribution with df 10.29, 6.84, 5.11, and 4.07, respectively.
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Table 2. Percent of rejection under H1 in Example 1

h = 0.1 h = 0.15 h = 0.2 h = 0.25 hAICc hHS gam

n = 100, a = 0.5 20.12 18.78 19.32 20.38 24.26 28.58 13.96
n = 100, a = 0.75 37.22 38.38 40.96 43.42 47.14 51.26 31.96
n = 100, a = 1 60.56 63.72 67.96 70.60 73.52 75.78 58.86
n = 200, a = 0.5 29.18 33.04 36.30 38.96 42.28 45.08 30.82
n = 200, a = 0.75 61.18 67.40 71.68 75.00 77.66 78.84 66.58
n = 200, a = 1 88.58 92.38 94.28 95.56 96.34 96.64 92.36

The rejection rate for the test statistic (16) increases as the value of the bandwidth increases when a =0.75 and 1, and hAICc and hHS are more powerful than those with a fixed h. The test
statistic (16) is more powerful than gam except the case with n = 200 and h = 0.1.

the orthogonality assumption in Theorem 5 is, we also examine
the performance of (20) with the original non-orthogonalized
values of z1 and z2 and same values of b1 and b2.

The values of bandwidth are 0.15, 0.2, 0.25, 0.3, and 0.4,
so that they are roughly equally-spaced on a logarithm scale.
The percent of rejection is given in Table 4 for h =0.2, 0.25,
0.3, 0.4, hAICc, and hHS, with the nonorthogonalized version
in brackets. The case of h = 0.15 is not presented due to its
inflated Type I errors: when a = 0, n = 100, and h = 0.15, the
percent of rejection is 8.72 and 8.28 for the orthogonalized
and non orthogonalized version respectively. From Table 4, we
observe that when a = 0, the empirical Type I errors are rea-
sonable except hAICc and hHS. Together with the observations in
Example 1 under H0, we may imply that optimizing the band-
width by some criterion may lead to inflated Type I errors for
our test in the case of logistic regression. When a = 1 and 2,
our test is more powerful than the gam test, while for a = 3, the
performance of the two tests are close. Under alternatives, hHS
is the most powerful, while hAICc also performs well, supporting
AICc as a bandwidth-selection criterion. The rejection rates for
(20) are quite close whether Z and x are orthogonal or not, sug-
gesting that this assumption may be relaxed in practice. When
n = 200 and a = 0, the average df (tr(H∗

1 ) − 1) corresponding
to h = 0.2, . . . , 0.4 are 7.69, 6.14, 5.10, and 4.81, respectively,
and again they stay about the same between different values of a.
When n = 200, the average edf for gam is 1.34, 2.22, 3.89, and
4.73 for a =0, 1, 2, 3, respectively. The df and edf of n = 100
are similar to those of n = 200.

Example 4. logit(p) = b1z1 + b2z2 + a cos(2πx), a = 0.5,
1, 1.5, where the data generation scheme of z1, z2, and x is iden-
tical to Example 3, and b1 and b2 are the same as Example 3.
This example adopts a nonlinear function of x similar to that

of Example 1 with a different range of x. The same values of
h as Example 3 are used and hence the dfs are analogous to
Example 3, omitted for brevity. Table 5 shows that (20) is more
powerful than gam when a = 0.5 and 1.0, and our test with hHS
and hAICc continues to perform well in this example. Again, we
observe that for the proposed tests, the rejection rates are quite
close whether Z and x are orthogonal or not.

Example 5.

log(μ) = b1z1 + b2z2 + a exp(−16x2), a = 0, 1, 2, (21)

and

log(μ) = b1z1 + b2z2 + a cos(2πx), a = 0.5, 1.5. (22)

This example is for Poisson regression with the canonical log
link, while the functional form for θ = log(μ) and data gener-
ation scheme follow those of Examples 3 and 4. From Table 6,
we observe that when a = 0 in (21) with n = 100 and h = 0.15,
the Type I error is reasonable, in contrast to the logistic regres-
sion case. The performance of h = 0.4 is close to that of h = 0.3
and therefore not presented in Table 6. We observe that our test
using a fixed h is more powerful with a larger bandwidth when
a = 1 in (21) and a = 0.5 in (22), and the empirical power is
comparable between (20) and gam tests.

6. APPLICATION TO GERMAN BUNDESBANK DATA

Banking throughout the world is based on credit, or on trust
in the debtor’s ability to fulfill his/her debt obligation. However,
facing increasing pressure from markets and regulators, banks
have based their risk analysis, increasingly, on statistical tech-
niques to judge or predict corporate bankruptcy. This is known
as rating or scoring. Its main purpose is to estimate the financial

Table 3. Percent of rejection for Example 2

h = 0.1 h = 0.15 h = 0.2 h = 0.25 hAICc hHS gam

n = 100, f0 47.94 51.26 54.72 57.46 60.20 64.38 38.70
n = 100, f1 99.86 100 100 100 100 100 98.90
n = 100, f2 100 100 100 100 100 100 99.74
n = 200, f0 76.10 82.00 85.38 87.84 89.34 90.18 80.82
n = 200, f1 100 100 100 100 100 100 100
n = 200, f2 100 100 100 100 100 100 100

The rejection rates are nearly 100% for (16) and gam in cases of f1 and f2. For f0, a quadratic trend, (16) is more powerful than gam except the case with n = 200 and h = 0.1.
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Table 4. Percent of rejection for Example 3

h = 0.2 h = 0.25 h = 0.3 h = 0.4 hAICc hHS gam

n = 100, a = 0 6.40 5.78 5.34 4.96 8.10 11.04 4.26
[6.22] [5.64] [4.98] [4.74] [7.70] [10.46] [4.46]

n = 100, a = 1 20.50 20.54 20.64 20.76 23.24 28.40 13.36
[20.98] [20.32] [20.36] [20.12] [22.46] [28.24] [13.04]

n = 100, a = 2 69.14 70.76 72.00 72.30 73.50 77.14 57.72
[68.36] [70.26] [71.54] [71.74] [72.84] [76.62] [57.08]

n = 100, a = 3 96.00 96.92 97.38 97.42 97.54 98.22 92.34
[95.50] [96.56] [96.88] [97.00] [97.16] [97.86] [91.46]

n = 200, a = 0 5.56 5.24 5.20 4.78 6.80 8.88 5.14
[5.62] [5.08] [4.90] [4.62] [6.60] [8.62] [5.00]

n = 200, a = 1 34.86 36.94 38.04 38.46 39.94 44.24 29.26
[34.22] [36.06] [37.58] [38.48] [39.94] [43.76] [29.32]

n = 200, a = 2 95.92 96.58 96.92 97.16 97.36 97.70 93.50
[95.68] [96.56] [97.06] [97.20] [97.32] [97.54] [93.26]

n = 200, a = 3 100 100 100 100 100 100 99.96
[100] [100] [100] [100] [100] [100] [99.98]

When a = 0 with a fixed h >= 0.2, the empirical Type I errors of (20) are close to 0.05. When a = 1 and 2, (20) is more powerful than the gam test, while for a = 3, the performance
of the two tests are close. Under alternatives, hHS is the most powerful, while hAICc also performs well. The rejection rates for (20) are quite close whether Z and x are orthogonal or not
(the non orthogonalized version in brackets).

status of a company and, if possible, to estimate the probabil-
ity of a company default on its debt obligations within a cer-
tain period. Logistic regression is probably the most commonly
used technique to model the probability of default and logistic
partially linear models may also be advantageous because of its
flexibility, in allowing for the possibly nonlinear effects of one
continuous covariate.
We apply the methodology to the German Bundesbank Data

in year 2002. The data provided by CRC 649, Humboldt-
Universität zu Berlin, contained 6123 companies of which 186
were insolvent. Each firm is described by 28 financial ratio vari-
ables, x1, . . . , x28, and those of insolvent firms were collected
two years prior to insolvency. To ensure the value of some vari-
ables as the denominator should not be zero when calculating
the ratios, 2079 firms were retained with 92 insolvent. Though
removing almost two-thirds of the sample may seem exces-
sive, we did not intend to analyze the majority of firms in the
database. The focus was to investigate (i) differences between

the financial ratios of the solvent and insolvent firms, and (ii)
how the nonlinear effects improve parametric logistic fitting.
Based on support vector machines and for a much larger data

sample spanning from 1996 through to 2002, Chen, Härdle, and
Moro (2011) selected x24 (accounts payable/sales) measuring
account payable turnover, as the best predictor, and subse-
quently selected x3 (operating income/total assets) measuring
profitability, x15 ((cash and cash equivalents)/total assets)
measuring liquidity, x12 (total liabilities/total assets) measuring
leverage, x26 (increase (decrease) inventories/inventories)
measuring percentage of incremental inventories, x22 (invento-
ries/sales) measuring inventory turnover, x5 ((earnings before
interest and tax)/total assets) and x2 (net income/sales) mea-
suring net profit margin. For year 2002 data, we found that x3
and x5 have a large sample correlation coefficient 0.95 and thus
x5 is removed from our analysis and we further include x25
(log(total assets)) measuring firm size, as it is shown to be an
important variable on predicting the probability of bankruptcy

Table 5. Percent of rejection for Example 4

h = 0.2 h = 0.25 h = 0.3 h = 0.4 hAICc hHS gam

n = 100, a = 0.5 20.16 19.66 19.62 18.56 22.38 26.78 8.60
[20.02] [19.54] [19.22] [18.60] [22.40] [27.24] [8.98]

n = 100, a = 1 62.76 64.36 65.46 64.68 67.08 71.54 38.86
[61.60] [63.48] [64.08] [63.38] [65.88] [70.58] [38.34]

n = 100, a = 1.5 94.58 95.18 95.60 95.18 95.72 96.48 85.24
[94.00] [94.98] [95.22] [94.72] [95.18] [96.14] [84.90]

n = 200, a = 0.5 30.60 32.36 33.36 32.58 34.90 39.00 18.58
[30.80] [32.24] [32.88] [32.54] [34.94] [38.88] [18.66]

n = 200, a = 1 91.60 93.10 93.92 93.68 94.18 95.04 83.60
[90.94] [92.42] [93.50] [93.04] [93.48] [94.48] [82.84]

n = 200, a = 1.5 100 100 100 100 100 100 99.86
[99.98] [100] [100] [100] [100] [100] [99.88]

The test statistic (20) is more powerful than gam under alternatives. The rejection rates are quite close whether Z and x are orthogonal or not (the non-orthogonalized version in brackets).
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Table 6. Percent of rejection for Example 5

h = 0.15 h = 0.2 h = 0.25 h = 0.3 hAICc hHS gam

n = 100, a = 0 in (21) 5.36 4.80 4.18 3.94 7.06 7.62 4.88
[5.48] [4.64] [4.40] [4.26] [7.14] [7.68] [4.86]

n = 100, a = 1 in (21) 41.26 44.48 47.24 48.42 51.98 54.48 37.58
[41.36] [44.52] [47.12] [48.90] [52.60] [54.98] [37.24]

n = 100, a = 2 in (21) 99.98 99.98 99.98 100 99.98 100 99.94
[99.98] [99.98] [99.98] [100] [99.98] [100] [99.96]

n = 200, a = 0 in (21) 4.98 4.56 4.48 4.32 6.92 7.38 5.14
[5.02] [4.66] [4.74] [4.60] [7.06] [7.62] [5.32]

n = 200, a = 1 in (21) 74.10 78.64 81.48 82.88 85.02 85.86 75.04
[73.62] [78.46] [80.84] [82.04] [84.12] [84.92] [74.14]

n = 200, a = 2 in (21) 100 100 100 100 100 100 100
[100] [100] [100] [100] [100] [100] [100]

n = 100, a = 0.5 in (22) 26.20 28.36 30.02 30.90 34.72 36.58 17.32
[25.72] [27.56] [29.40] [30.18] [34.06] [35.66] [16.96]

n = 100, a = 1.5 in (22) 99.92 100 100 100 100 100 99.98
[99.94] [99.94] [99.98] [100] [100] [100] [99.94]

n = 200, a = 0.5 in (22) 51.86 56.74 60.22 62.24 64.90 65.88 43.94
[51.18] [56.22] [60.18] [61.92] [64.44] [65.38] [43.90]

n = 200, a = 1.5 in (22) 100 100 100 100 100 100 100
[100] [100] [100] [100] [100] [100] [100]

When a = 0, the Type I errors of (20) are reasonable for this Poisson regression example. The test statistic (20) using a fixed h is more powerful with a larger bandwidth when a = 1 in
(21) and a = 0.5 in (22), and the empirical power is comparable between (20) and gam tests.

in the literature (see, e.g., Lopez 2004). In summary, there are
eight predictors, x2, x3, x12, x15, x22, x24, x25, and x26, and a
binary response. See Chen, Härdle, and Moro (2011) for detail
descriptions about the data.
Since x24 was selected as the most important predictor

by Chen, Härdle, and Moro (2011), we model its effects
nonparametrically, while retaining linear trends for the
remaining predictors in a logit model. The variable x24
measuring account payable turnover is a short-term liquid-
ity measure for quantifying the rate at which a firm pays
off its suppliers. Generally speaking, “the firms with higher
account payable turnover will have less ability to convert their
accounts into sales, have lower revenues, and go bankrupt
more readily” (Chen, Härdle, and Moro 2011). However,
this measure is specific to different industries; every indus-
try has a slightly different standard. Further examination
of x24 indicates that most values lie in [0, 0.5] with only
15 observations in (0.5, 20.52). If those 15 observations
are excluded, then the sample size becomes 2064, in which
91 are insolvent. An alternative approach, suggested by a
reviewer, is taking logarithm of (x24 + 0.001) (0.001 is
added since x24 includes 0’s) and retaining the sample size
n = 2079.

Local linear smoothing with the Epanechnikov kernel is
used. The values of bandwidth for x24, 0.125, 0.1, and 0.08,
are equally spaced on a logarithmic scale, corresponding to
df 4.94, 5.92, and 7.17, respectively. The bandwidth that min-
imizes AICc is 0.125 and hHS = 0.1. The curves for m(x24)
with pointwise confidence intervals based on empirical Fisher
information matrices are shown in Figure 2 with h = 0.125
and 0.1, and the proposed test for testing H0 : m(x24) is a
constant, gives highly significant p-values < 10−14 for all three
values of the bandwidth, indicating significance of m(x24)

in predicting probability of default . A linear logistic model
gives a positive slope 10.37 for x24 with a highly significant
p-value < 10−15. Since Chen, Härdle, and Moro (2011) inter-
preted the linear trend as higher default probability with high
turnover, we attempt to interpret the seemingly nonlinear
curves in Figure 2 as follows. Taking the curve with h = 0.1
in Figure 2, when x24 increases from 0.1 to 0.3, the estimate
increases about 1.895, which means the odds ratio for a firm
with x24 = 0.3 to become insolvent is exp(1.895) = 6.653
times relative to that for a firm with x24 = 0.1. On the other
hand, between x24 = 0.3 and 0.4, the estimate decreases by an
amount of −0.607, implying that the odds ratio for a firm with
x24 = 0.4 to become insolvent is exp(−0.607) = 0.545 times
relative to that for a firm with x24 = 0.3. Thus our analysis
gains new insight suggesting that a German firm is likely to
go bankrupt when it has a higher turnover for roughly 97.5%
of firms (0.3 is approximately 97.5-percentile of x24), but

Figure 2. Plot of the nonlinear trends of x24 in predicting the prob-
ability of bankruptcy using bandwidth h = 0.125 (solid line) and h =
0.1 (dashed line) with 95% pointwise confidence intervals for the 2002
German Bundesbank Data.
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Figure 3. Plot of the trends of logx24 in predicting the probability of
bankruptcy using bandwidth h = 6 (solid line) and h = 3.375 (dashed
line) with 95% pointwise confidence intervals for the 2002 German
Bundesbank Data.

for those firms with 0.3 < x24 < 0.4 (approximately 97.5-
to 99-percentile), the default probability decreases as x24
increases.
For smoothing on log(x24 + 0.001) = log x24 with n =

2079, the values of h are 6, 4.5, and 3.375, corresponding to
df 2.32, 2.83, and 3.69, respectively. The bandwidth that mini-
mizes AICc is 3.375 and hHS = 6. The curves for log x24 with
h = 3.375 and 6 shown in Figure 3 have a linear tendency for
log x24 < −0.2 (x24 < 0.8), and the confidence intervals cor-
responding to h = 3.375 imply some uncertainty near the right-
hand end points. The tests forH0 : m(log x24) is a constant, give
highly significant p-values of < 1.5 × 10−12. If using a linear
trend for log x24, the slope is 0.927 with a significant p-value
of 2.0 × 10−12. The analysis using log x24 implies that a Ger-
man firm is likely to go bankrupt when it has a high turnover
in the log scale, but the linear trend is uncertain for those with
x24 > 0.8. Hence, an interpretation in Chen, Härdle, and Moro
(2011) that a German firm is likely to go bankrupt when it has
high turnover may not be entirely correct; the effects of x24 on
the probability of bankruptcy may be nonlinear for those with
large turnovers, as shown in Figures 2 and 3.

7. DISCUSSION

We develop local and global analysis of deviance expressions
and associated integrated likelihood ratio tests for generalized
partially linear models with canonical links based on fitting
local pth order polynomials. Though the idea of nonparametric
analysis of deviance is not new (Hastie and Tibshirani 1990),
the work in this article provides theoretical justifications that
connect to the classic framework. Theorems 2 and 4(b) are
restricted for p = 1 and 3 only, while Theorems 1, 3, 4(a)(c),
and 5 are for a nonnegative integer p. As a by-product, new
estimators for the canonical parameter and response mean are
proposed and Theorems 2 and 4(b) show that the integrated like-
lihood quantities are asymptotically global likelihood quantities
with the new estimators. The new estimator θ̂∗

i or θ̆∗
i for the

canonical parameter is formed by combining locally fitted θ̂i(x)
or θ̆i(x) through weighted integration and thus use all locally
fitted parameters, which is different from the conventional
approach of focusing on β̂0. The integrated likelihood approach
of combining local likelihood appears to be new in the smooth-
ing literature, though it was discussed by Severini (2007) and

Lehmann (2006) in different settings. The numerical results
of n = 100 and 200 show that the test statistics under the null
hypothesis follow the asymptotic χ2-distribution reasonably
well and the performance under alternative hypotheses is some-
times more powerful thanWood (2013) in the R package mgcv.
It has been suggested by a reviewer to investigate the asymptotic
power of the proposed tests. Since there is no simple explicit
expression for Fisher information for generalized linear models
(1), we conjecture that the study of power may be focused on
special cases of logistic and Poisson models, which will be
explored for future research. For a smaller sample size such as
n = 50, two reviewers have suggested to develop a bootstrap
procedure for calculating the sample critical values for further
investigation.
The local analysis of deviance in (9) and in Theorem 4(a)

are derived assuming a fixed value of bandwidth. It is straight-
forward to obtain local analysis of deviance expressions with
varying values of bandwidth at different x, but how to combine
them to form global analysis of deviance will be an interesting
problem. Like all smoothing-based tests, the p-values of the
integrated likelihood ratio tests depend on the values of the
smoothing parameter. We recommend plotting the “significant
trace” (Bowman and Azzalini 1997) to assess the evidence
across a wide range of values of h and looking for some overall
trends. For fitting generalized partially linear models, a prac-
tical problem is how to choose the predictor to be modeled
nonparametrically. One approach may be based on selecting
the most significant predictor based on the smallest p-value
of integrated likelihood ratio tests when using approximately
the same degrees of freedom for smoothing. This idea and the
related model selection problems with a diverging number of
linear covariates (Wang et al. 2014) may be explored for future
research. A topic for further investigation is the problem of
bandwidth selection for models (4) and (6) based on cross-
validating the deviance or minimizing the Akaike information
criterion. Further extension on developing analysis of deviance
for generalized partially linear models with noncanonical links,
for multiplicative bias reduction methods (Kosmidis and Firth
2009), for hazard estimation (Nielsen and Tanggaard 2001) as
the proportional hazards models and Poisson regression are
connected, and for generalized additive models with multiple
nonparametric functions remain to be investigated.
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ABSTRACT

A good description of the dynamic process of interest rates is crucial to price derivatives and to hedge corresponding
risk. An unstable macroeconomic context motivates the stochastic interest rate models with time-varying parameters.
In this paper, the local parameter approach is introduced to adaptively estimate interest rate models. This method can
be generally used in time-varying coefficient parametric models. It is used not only to detect jumps and structural
breaks but also to choose the largest time homogeneous interval for each time point, such that in this interval the
coefficients are statistically constant. We apply this adaptive approach in both simulations and real data analysis. Using
the 3-month Treasury bill rate as a proxy of the short rate, we find that our method can detect the structural breaks as
well as the stable intervals for homogeneously modelling of the interest rate process. The time homogeneous interval
cannot persist in an unstable macroeconomy. Furthermore, our approach performs well in long horizon forecasting.
Copyright © 2016 John Wiley & Sons, Ltd.

KEY WORDS CIR model; local parametric approach; time homogeneous interval; adaptive statistical
techniques

INTRODUCTION

Interest rates are one of the most important factors in financial markets. For hedging purposes, they play an important
role in pricing stocks and the corresponding derivatives. Hence it is crucial to be able to describe the dynamics
of interest rates. Moreover, interest rates are a signal of the macroeconomy. If the macroeconomy is unstable, e.g.
in the wake of a financial shock, we observe that interest rate volatility will be correspondingly larger, and vice
versa. For instance, in 2002 bubbles existed in the stock market, and in 2003 the war in Iraq influenced the world
macroeconomy. In 2007, the world economy fluctuated greatly due to the financial crisis. Along with these shocks,
one finds the interest rate in these periods varying more significantly. In general, changes in business cycle conditions
or macroeconomic shocks will affect the dynamics of interest rates in terms of mean and volatility. Moreover, in
the empirical study described in this paper, we also find stronger fluctuations in the interest rate during the above
mentioned periods. Alternately, changes in business cycle conditions may affect the dynamics of interest rates even
from one period to another, which will also be tested in the paper.

On the other hand, these shocks or news items are dominated by announcements from central banks or government
agencies, which release macroeconomic data at monthly or quarterly intervals. They may contain a large, unantici-
pated component. Moreover, interest rates respond immediately to these unanticipated announcements, which induces
periodic fluctuations in the interest rate. Ultimately, the dynamics of interest rates do not follow a stable process. The
corresponding findings are well documented in Jones et al. (1998) and Johannes (2004). All these factors lead us to
believe that time-varying parameters would be more reasonable for describing interest rate dynamics.

Three main streams of literature exist that capture the instability of the dynamics of the short rate. In one branch
of the literature, the described instability is modelled via structural breaks or jumps and captured by the general
jump diffusion models. For instance, Das (2002) incorporated jumps into the Vasicek (1977) model and found strong
evidence of jumps in the daily federal funds rate. Johannes (2004) used a nonparametric diffusion model to study
secondary 3-month Treasury bills and concluded that jumps are generally generated by the arrival of macroeconomic
news. A general conclusion would be that the dynamics of the short rate vary significantly due to shocks and jumps,
which is also well described in Lettau and Ludvigson (2001), Goyal and Welch (2003) and Paye and Timmermann
(2006). Another strand of literature uses regime switching models to capture the business cycle character of interest
rates; see Ang and Bekaert (2002) and Bansal and Zhou (2002). They found that the interest rate is closely related
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to the business cycle. The short rate has changed significantly, and its volatility performs differently in expansion
regimes and recession regimes. More generally, many studies argue that the process parameters (drift or volatil-
ity) are assumed to be functions of time. This is well documented in numerous studies, such as Hull and White
(1990), Black and Karasinski (1991), Aït-Sahalia (1996), Stanton (1997), Fan et al. (2003) and Arapis and Gao
(2006). As an example, using semi- and nonparametric approaches, Aït-Sahalia (1996) found strong nonlinearity in
the drift function of the interest rate model. Arapis and Gao (2006) applied nonparametric techniques to provide
evidence that the specification of the drift has a considerable impact on the pricing of derivatives through its effect
on the diffusion function. As a conclusion from these findings, one may say that the coefficients in the models,
especially in the one-factor models, such as Vasicek (1977) model and Cox et al. (1985) model, are time-varying.
Based on these studies, we may state that a short-rate model with constant parameters may not be valid for a long
time period.

We introduce the time-varying Cox–Ingersoll–Ross (CIR) model and estimate it using a novel method: the local
parametric approach (LPA). Our aim is to find the longest stable ‘time homogeneous’ interval for each time point
t , where the parameters in the CIR model can be safely approximated as constants. Moreover, using this method,
we can detect jumps and structural break points. Furthermore, this approach includes regime switching models as
a special case, and it can also describe the time variation of the coefficients. Based on the parameters inside the
selected interval, one may distinguish blooming and declining regimes of the economy. Moreover, the LPA has several
attractive properties. First, it can capture the smooth time-varying property of parameters in interest rate models. The
coefficients can be arbitrarily dependent on time: for instance, the smooth time trend. Second, this method allows for
structural breaks and jumps in the parameter values; thus the length of the time homogeneous interval would depend
on the time points of jumps or structure breaks. Third, there is no requirement concerning the number of observations
before or after the break point.

The proposed approach has already been applied to different problems. Giacomini et al. (2009) considered time-
varying copulae estimation, Cížek et al. (2009) applied it to compare the performance of global and time-varying
autoregressive conditional heteroscedasticity (ARCH) and generalized ARCH (GARCH) specifications, and Härdle
et al. (2010) applied this method to hierarchical Archimedean copulae, finding that the LPA can be used to detect
both adaptive copulae parameters and local dependency structures.

To evaluate the performance of the LPA, we conduct both simulations and empirical studies. In the simula-
tion exercise, we show that the proposed LPA is highly capable of detecting structural breaks, and all the true
parameters are located in the pointwise confidence intervals of the estimators. In the empirical study, we use the
3-month Treasury bill rate as a proxy of the short rate and investigate the performance of the LPA compared to
the time-varying CIR model by both in-sample fitting and out-of-sample forecasting via a comparison with moving
window estimators.

The remainder of the paper is organized as follows. In the next section we provide a short review of standard
interest rate models, and then we explain the LPA in detail in the third section. In the fourth section we present our
simulation results. Empirical studies are presented in the fifth section. We conclude in the sixth section.

INTEREST RATE MODELS

In this section, we recall several standard one-factor short-rate models. One-factor short-rate models consider only
one factor of uncertainty in the dynamics of the interest rate rt . The general one-factor model can be written as the
OU process:

drt D �.rt ; �/dt C �.rt ; �/dWt

where �.rt ; �/ is the mean process, and �.rt ; �/ stands for the volatility process, and Wt is a standard Brownian
process. Specifically, we list several classical one-factor models:

Vasicek model (1977):

drt D �¹� � rtºdt C �dWt

where �, � and � are constants. It is consistent with the mean reversion feature with a reversion speed � to the
long-run mean level �. However, rt can be negative in this model.

Cox et al. (CIR) model (1985):

drt D �¹� � rtºdt C �
p
rtdWt (1)
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The drift function a.rt / D �.� � rt / is linear and possesses a mean reverting property, i.e. rt moves in the
direction of its long-run mean � at speed �. The diffusion function �2.rt / D rt�2 is proportional to the interest rate
rt and ensures that the process remains positive. Moreover, here rt has a positive impact on the standard deviation
through equation (1).

Hull–White model (1990):

drt D ¹ı.t/ � �rtºdt C �dWt

This is an extended Vasicek model, where � and � are constant and ı.t/ is a deterministic function of time.
Moreover, this model uses the time-dependent reversion level ı.t/=� for the long-run mean instead of the constant �
used in the Vasicek model.

Black–Karasinski model (1991):

d log rt D ı.t/¹log�.t/ � log rtºdt C �.t/dWt

with ı.t/, �.t/ and �.t/ as a deterministic function of time, where �.t/ is the target interest rate. A drawback is that
no closed-form formula for valuing bonds in terms of rt can be derived by this model.

METHODOLOGY

In the Vasicek model, the interest rate rt can be negative, whereas the CIR model guarantees the interest rate will
be non-negative. In the Hull–White model, the volatility is a constant. The Black–Karasinski model assumes ı.t/
and �.t/ are deterministic functions of time. Inherent to all these dynamics is that the coefficient functions can-
not arbitrarily depend on time. This property may not be reasonable through a long economy developing process.
Thus, in the paper, we introduce a time-varying one-factor model: specifically, the time-varying CIR model. The
LPA allows the coefficients to be arbitrary functions of time, which further can be used to find the longest stable
‘time homogeneous’ interval for each time point, where the parameters in the CIR model can be safely assumed to
be constant.

The time-varying CIR model is expressed as

drt D �t¹�t � rtºdt C �t
p
rtdWt (2)

where Wt is the standard Wiener process. Denote the time-varying parameters as �t D .�t ; �t ; �t />

This CIR model (2) includes all of the aforementioned parametric models, such as jump diffusion models, regime
switching models, and even the nonparametric specified time-varying interest rate models.

For estimation, the discrete version of equation (2) is

rtC1 D at C .1C bt /rt C �t
p
rt´t (3)

where at D �t�t , bt D ��t , and ¹´tº � i.i.d.N.0; 1/. Hence the time-varying parameter set is redefined as �t D
.at ; bt ; �t /

>.

Likelihood function of the CIR process
Define It�1 D ¹rt�1; : : : ; r1º as the information set obtained at t � 1, and � D .a; b; �/; then the conditional
probability density function of rt given It�1 is

p.rt jIt�1I �/ D
1p

2��2rt�1
exp

�
�

1

2�2rt�1
¹rt � .aC .1C b/rt�1/º

2

�
(4)

Further, the log-likelihood function can be written as follows:

L.�/ D

TX
tD2

logp.rt jrt�1I �/ (5)

Now fix t ; the MLE estimator Q�Ik in any interval Ik D Œt �mk ; t � is

Q�Ik D arg maxLIk .�/ D arg max
X
i2Ik

logp.rtiC1 jrti I �;�t/ (6)
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The accuracy of the estimation for a locally constant model with parameter �0 is measured via the log-likelihood
ratio LIk . Q�Ik ; �0/ D LIk . Q�Ik /�LIk .�0/. In Cížek et al. (2009) it is proven that if Yi follows a nonlinear process (2)
then, given Ik for any r > 0, there exists a constant <r.�0/, such that

E�0
ˇ̌̌
LIk

�
Q�Ik ; �0

�ˇ̌̌r
� <r.�0/ (7)

Thus <r .�0/ can be treated as the parametric risk bound. This enables testing the parametric hypothesis on the
basis of the fitted log-likelihood LIk . Q�Ik ; �0/.

Test of homogeneous intervals
Mercurio and Spokoiny (2004), Cížek et al. (2009) and Spokoiny (2009) are informative references for the LPA. The
general idea can be described as follows: suppose we have K (historical) candidate intervals with a starting interval
I0, i.e. I0 � I1 � : : : � IK , Ik D Œt � mk ; t � with 0 < mk < t . We increase the length from mk to mkC1, and
test over the larger interval IkC1 whether Q�kC1 is still consistent with Q�k . To test an interval Ik D Œt �mk; t �, we fix
the null hypothesis with a constant parameter �t � � . The alternative (a non-constant �t ) is given by an unknown
change point 	 in Ik , i.e. Yt 0 follows one process when t 0 2 J D Œ	 C 1; t � with parameter �J , and it follows another
process when t 0 2 J c D Œt �mkC1; 	 � with parameter �J c , where �J ¤ �J c . With this alternative, the log-likelihood

described in equation (5) can be expressed as LJ
�
Q�J

�
C LJ c

�
Q�J c
�

, giving the test statistics

TIkC1;� D LJ

�
Q�J

�
C LJ c

�
Q�J c
�
� LIkC1

�
Q�IkC1

�
(8)

where 	 2 Jk D IknIk�1 (see Figure 1). Because the change point 	 2 Ik is unknown, we consider the maximum of
the test statistics over Jk :

Tk D max
�2Jk

TIkC1;� (9)

These statistics (equation (9)) are compared with critical values ¹zkº; see below for more details.
The selected longest time homogeneous interval I Ok satisfies

Tk � zk; for k � Ok (10)

and T OkC1 > z OkC1. The interval I Ok yields the adaptive estimator O�t D O�I Ok . The event {Ik is rejected} means that
T` > z` for some ` < k, and hence a change point has been detected in the first k steps.

The local parametric approach
For any given t with intervals I0 � I1 � : : : � IK , the algorithm is described in four steps.

1. We estimate Q�I0 using the observations from the smallest interval I0 D Œt �m0; t �, hence Q�I0 is always accepted.

2. We increase the interval to Ik; .k � 1/, find the estimator Q�Ik by MLE, and test homogeneity via equation (9);
i.e. we test whether there is a change point in Ik . If equation (10) is fulfilled, we go on to step 3; otherwise we go
to step 4.

3. Let O�Ik D Q�Ik , then further set k D k C 1, and continue to step 2.
4. Accept as the longest time homogeneous interval I Ok D Ik�1 and define the local adaptive estimator as O�I Ok D
Q�Ik�1 . Additionally, set O�I Ok D

O�Ik D : : : D
O�IK for all k > Ok.

Figure 1. Construction of the test statistics for LPA: the involved interval Ik and Jk
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For a change point 	 in Ik , we obtain Ok D k � 1; therefore I Ok D Ik�1 is the selected longest time homogeneous
interval. We compare the test statistics with the critical value. If they are smaller than the critical value zk for interval
Ik , we accept Ik as the time homogeneous interval, at which point we increase the interval to IkC1 and perform the
test again. We repeat this procedure sequentially until we stop at some k < K or we exhaust all the chosen intervals.
For each time point t , we use the same algorithm, although we do not need to calculate the critical values a second
time because they depend on only the parametric specification and the length of interval mk .

To investigate the performance of the adaptive estimator, we introduce the small modelling bias (SMB). The SMB
for interval Ik is

�Ik .�/ D
X
t2Ik

K¹rt ; rt .�/º (11)

with K the Kullback–Leibler (KL) divergence:

K¹rt ; rt .�/º D E log
p¹rtº

p¹rt .�/º
(12)

where p.�/ and p.�I �/ are the probability density functions of rt and rt .�/ respectively. The SMB measures in terms
of KL divergence the closeness of a constant parametric model with p.�I �/ to a time-varying nonparametric model
with p.�/. Suppose now for a fixed � > 0

E�Ik .�/ � � (13)

Inequality (13) simply means that for some � 2 ‚, �Ik .�/ is bounded by a small constant, implying that the
time-varying model can be well approximated (over Ik) by a model with a fixed parameter � .

Under the SMB condition (equation (13)) for some interval Ik and � 2 ‚, one has with a risk bound Rr .�/:

E log

8̂<̂
:1C

ˇ̌̌
LIk

�
Q�Ik ; �

�ˇ̌̌r
Rr .�/

9>=>; � 1C� (14)

If� is not large, equation (14) extends the parametric risk bound Rr.�/ to the nonparametric situation; for details
see Cížek et al. (2009). An ‘oracle’ choice Ik� from the set I0; : : : ; IK exists, which is defined as the largest interval
satisfying equation (13). We denote the corresponding ‘oracle’ parameter as �Ik� .

Two types of error occur in this algorithm, however: the first type is the rejection of the time homogeneous interval
earlier than the ‘oracle’ step, which means Ok � k�. The other type is the selection of a homogeneous interval larger
than the ‘oracle’, i.e. Ok > k�. The first type of error can be treated as a ‘false alarm’; i.e. the algorithm stops earlier
than the ‘oracle’ interval Ik� , which leads to selecting an estimate with a larger variation than �Ik� . The second type

of error arises if Ok > k�. Outside the oracle interval, we are exploiting data that do not support the SMB condition.
Both errors will be specified in a propagation and stability condition in the next section.

Choice of critical values
The accuracy of the estimator can be measured by the log-likelihood ratio LIk

�
Q�Ik ; �0

�
, which is stochastically

bounded by the exponential moments (equation (14)). In general, Q�Ik differs from O�Ik only if a change point is
detected at the first k steps. A small value of the likelihood ratio means that O�Ik belongs to the confidence set based
on the estimate of Q�Ik ; i.e. statistically we ‘accept’ O�Ik D Q�Ik . If the procedure stops at some k � K by a false
alarm, i.e. a change point is detected in Ik with the adaptive estimator O�Ik , then the accuracy of the estimator can be
expressed via the propagation condition

E�0
ˇ̌̌
LIk

�
Q�Ik ;
O�Ik

�ˇ̌̌r
� 
<r.�0/ (15)

In the parametric situation, we can calculate the left-hand side of equation (15) and choose the critical value zl
based on this inequality. The situation in the first k steps can be distinguished as one of two cases: There is a change
point detected at some step l � k, or there is no change point in the first k intervals. We denote by Bl the event of
rejection at step l , i.e.

Bl D ¹T1 � z1; : : : ; Tl�1 � zl�1; Tl > zlº (16)
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and O�Ik D Q�Il�1 on Bl , l D 1; 2; : : : ; k. Now choose z1 by minimizing the following equation:

max
kD1;:::;K

E�0
ˇ̌̌
L
�
Q�Ik ;
Q�I0

�ˇ̌̌r
1.B1/ D 
Rr.�0/=K (17)

For zl ; l � 2, we use the same algorithm to calculate them. The event Bl depends on z1; : : : ; zl . Because
z1; : : : ; zl�1 have been fixed by previous steps, the event Bl is controlled only by zl . Hence the minimal value of zl
should ensure

max
k�l

E�0
ˇ̌̌
mkK

�
Q�k; Q�l�1

�ˇ̌̌r
1.Bl/ D 
Rr .�0/=K (18)

or we can express the criterion via the log-likelihood ratio:

max
k�l

E�0
ˇ̌̌
L
�
Q�Ik ;
Q�Il�1

�ˇ̌̌r
1.Bl/ D 
Rr.�0/=K (19)

where 
 and r are two global parameters andmk denotes the number of observations in Ik . The role of 
 is similar to
the level of the test in hypothesis testing problems, while r describes the power of the loss function. We apply r D 1=2
in both the simulation and the real data analysis because it makes the procedure more stable and robust against
outliers. We also choose 
 D 0:2; however, other values in the range Œ0:1; 1� lead to similar results, as referenced in
Spokoiny (2009).

The critical value zl that satisfies equation (19) can be found numerically by Monte Carlo simulations from the
parametric model. It is a decreasing function with respect to the log length of interval. When the interval is small, it
is easier to accept it as the time homogeneous interval because there cannot be many jumps due to the short length.
If we increase the length of interval, however, as more observations are included, it will contain more uncertain
information, especially when large jumps or visible structural breaks can exist in the interval. In this case, it therefore
tends to reject the test statistics, and the corresponding critical values will decrease as well.

The length of the tested interval is assumed to increase geometrically withmk D Œm0ak�.m0 is the length of initial
interval I0, which is time homogeneous as default. a can be chosen from 1.1 to 1.3. The experiments reveal, however,
that the estimated results are not sensitive to the choice of a. In the time-varying CIR model, three parameters must be
estimated. To guarantee a reasonable quality of the estimation, a large sample size is required. Therefore, we choose
the length of the initial interval I0 as m0 D 60 and a D 1:25. As already discussed, interest rates are influenced
by macroeconomic structures and may also be subject to regime shifts. Therefore, the longest interval we choose is
supposed to cover one regime, and by initiation at least one change point should exist between the expansion and
recession regimes. Referring to a business cycle of approximately 4 years, we choose the number of intervalsK D 13
so that mK D 1100 is the longest tested time homogeneous interval used in both the simulation and empirical
exercises in this paper.

‘Oracle’ property of the estimators
In this section, we discuss the ‘oracle’ properties of the LPA estimators. Recall that for the ‘oracle’ choice k�

equation (13) holds. It also holds for every k � k� but does not hold for any k � k�. However, the ‘oracle’ choice
Ik� and �Ik� are, of course, unknown. The LPA algorithm works to mimic these oracle values. In Cížek et al. (2009)
it is proven that under the SMB condition, i.e. when equation (13) holds, the ‘oracle’ property of the LPA estimator
O�I Ok satisfies the following property:

For � 2 ‚ and letting maxk�k� E
ˇ̌̌
L
�
Q�Ik� ; �

�ˇ̌̌r
1.B1/ � Rr.�/, we have

E log

8̂<̂
:1C

ˇ̌̌
LIk�

�
Q�Ik� ; �

�ˇ̌̌r
Rr.�/

9>=>; � 1C� (20)

Further, we obtain

E log

8̂<̂
:1C

ˇ̌̌
LIk�

�
Q�Ik� ;

O�I Ok

�ˇ̌̌r
Rr.�/

9>=>; � 
C� (21)

This property tells us that although the false alarm occurs before the ‘oracle’ choice, i.e. Ok � k�, under the SMB
condition, the adaptive estimator O�I Ok does not stray far from the oracle value, which implies the LPA estimator does
not introduce large errors into the estimation.
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However, the SMB condition does not hold if Ok > k�, which means the detected interval is larger than the ‘oracle’
interval; then, the LPA estimator O�I Ok satisfies Theorem 4.3 in Cížek et al. (2009):

Let E�Ik� .�/ � � for k� � K, then LIk�
�
Q�Ik� ;

O�I Ok

�
1
�
Ok � k�

�
� zk� :

E log

8̂<̂
:1C

ˇ̌̌
LIk�

�
Q�Ik� ;

O�I Ok

�ˇ̌̌r
Rr .�/

9>=>; � 
C�C log

²
1C

zr
k�

Rr .�/

³
(22)

This indicates that O�I Ok belongs with a high probability to the confidence interval of the oracle estimate Q�Ik� ; i.e. it
is still a reliable approximation of the oracle value �Ik� .

SIMULATION STUDY

In this section, we first calculate the critical values via simulation. As described in Spokoiny (2009), the critical values
are not sensitive to the parameter setting, although they are crucial to the model setting. Therefore, in the paper,
the parameters used for the calculation of critical values are as follows: r0 D 5:2, a D 0:0024, b D �0:0015 and
� D 0:059; which are estimated from the real data. The performance of the critical values is described in Figure 2.
One can note that the critical value decreases as the length of the intervals increases, which is consistent with the
theory mentioned above. Moreover, we also change the parameter settings for the simulation, while under the null
hypothesis there are no especially significant differences between the critical values in different scenarios.

We also evaluate the performance of the LPA using Monto Carlo simulation. We designed several scenarios with
the structural breaks at different times for the three parameters and find satisfactory results. For brevity, we concen-
trate here on one scenario in which we simultaneously change all three parameters .at ; bt ; �t /> and assume there
are two structural break points for each parameter in the process. We simulate the CIR process with two struc-
tural breaks in � and a total of 2250 observations over 200 simulations, where the parameters are estimated by the
real data samples. Table I summarizes the parameter settings for simulations of the CIR model, the chosen values
located in the range of estimators from the global CIR model with the 3-month Treasury bill rate that is used in the
empirical analysis.

The estimators Oa, Ob, and O� are described in Figures 3–6. In each figure, the blue line depicts the mean of the
corresponding estimators from the 200 simulations, the two dotted red lines are the 5%–95% pointwise confidence
intervals for the estimators, and the black line describes the respective real parameters. We use the first 250 data points
as the training set referring to the moving window estimator, after which we estimate the CIR model using the LPA
from time point 251 to 2250. One can observe that for the parameter a the LPA estimator Oa covers the true parameter a

Figure 2. Critical values with m0 D 60, K D 13 from 500 simulations. [Colour figure can be viewed at wileyonlinelibrary.com]

Table I. Parameter settings for simulations of the CIR process

t a b �

t 2 Œ1; 750� 0.533 �0.103 0.022
t 2 Œ751; 1500� 0.115 �0.073 0.050
t 2 Œ1501; 2250� 0.373 �0.132 0.084
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Figure 3. LPA estimator Oa with simulated CIR paths. The dotted red lines are the 5%–95% pointwise confidence intervals of Oa,
the blue line is the mean of Oa, and the black line indicates the true process of a set in Table I. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 4. LPA estimator Ob with simulated CIR paths. The dotted red lines are the 5%–95% confidence interval of Ob, the
blue line is the mean of Ob, and the black line indicates the true process of b set in Table I. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 5. LPA estimator O� with simulated CIR paths. The dotted red lines are the 5%–95% confidence interval of O� , the blue line is
the mean of O� , and the black line indicates the true process � set in Table I. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 6. The length of time homogeneous intervals for simulated CIR paths. The dotted red lines are the 5–95% confidence
interval and the blue line is the mean of estimated length of time homogeneous intervals.[Colour figure can be viewed at
wileyonlinelibrary.com]
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quite well, which is described in Figure 3. There are clearly two jump points, located around time point 500 and 1250,
respectively, which are the structural break points designed in the simulation. Figure 4 presents the performance of the
LPA estimator Ob. Its performance is quite reasonable. Taking a little delayed time into consideration, the performance
of Ob coincides with the true process, as does the LPA estimator O� , as shown in Figure 5. Briefly, it is worth noting that
the performance here is preferable to that of both Oa and Ob. The structural change points are evident in Figure 5. Both
the mean process and the volatility process of the estimator have the same pattern as the true parameter path, which
indicates the LPA can capture precise information for the stochastic process when structural breaks occur.

Figure 6 depicts the selected longest time homogeneous interval for each time point. The dotted red lines are the
5–95% confidence interval and the blue line is the mean of the estimated length of time homogeneous intervals.
One can compare the selected homogeneous intervals with the LPA estimators in other figures, all of which provide
consistent evidence for its performance. In the initial setting, we have two jumps respectively at 750 and 1500. One
can easily detect in Figure 6 that the two jump points are located close to 500 and 1250, due to some delayed time.
Further, both the 5–95% pointwise confidence intervals and the mean of the length of the selected intervals coincide
with the parameter settings, which coincide with the estimators.

EMPIRICAL STUDY

Data description
We use the 3-month Treasury bill rate from the Federal Reserve Bank of St Louis as a proxy for the short rate. This
rate has been used frequently in the term structure literature. The data range from 2 January 1998 to 31 December
2013, and the summary statistics are shown in Table II.

Table II. Statistical summary of 3-month Treasury bill rate:
2 January 1998 to 31 December 2013

Mean SD Skewness Kurtosis

rt 2.4419 2.0317 0.2441 1.5225
drt �0.0013 0.0574 �0.6699 82.7109

Figure 7. Three-month Treasury bill rate: 2 January 1998 to 31 December 2013. Top panel: daily yields; bottom panel: changes
of daily yields. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table III. Estimated parameters of CIR model by MLE in different time periods

Sample size Oa Ob O�

2 Jan 1998–31 Dec 2013 0.0024 �0.0015 0.0590
2 Jan 1998–31 Jul 2007 0.0012 �0.0004 0.0285
1 Aug 2007–31 Dec 2009 0.0116 �0.0097 0.1273
2 Jan 2010–31 Dec 2013 0.0026 �0.0292 0.0428

Figure 8. Moving window estimator Oa with window sizes 250, 500 and 750 (from left to right). [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 9. Moving window estimator Ob with window sizes 250, 500 and 750 (from left to right).[Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 10. Moving window estimator O� with window sizes 250, 500 and 750 (from left to right). [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 11. Estimated Oa for CIR model using 3-month Treasury bill rate by the LPA. [Colour figure can be viewed at
wileyonlinelibrary.com]
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The short rate and its daily change are displayed in Figure 7. The volatility of the short rate clearly changes over
time, as mentioned above. Moreover, there are several jumps and structural breaks across the entire time period.
Specifically, the short rate from 1999 to 2001 is relatively less volatile; however, from mid 2007 to 2009, the volatility
is much higher than in other periods. One more noticeable phenomenon is that after the financial crisis both the level
and the difference value of the short rate decrease greatly and stay low until the end of the study period and, therefore,
with quite a small volatility. The variation of the short rate is time-varying; after fitting the CIR model separately with
three different time periods, the estimation results are presented in Table III. The first row in the table uses the entire
sample, the second row comprises observations from the beginning of 1998 to the end of July 2007, the third estimate
period is during the financial crisis, and the final row shows the estimation results after the financial crisis. All three

Figure 12. Estimated Ob for CIR model using 3-month Treasury bill rate by the LPA. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 13. Estimated O� for CIR model using 3-month Treasury bill rate by the LPA.[Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 14. The selected longest time homogeneous intervals using 3-month Treasury bill rate with 
 D 0:2, and r D 0:5. The
first reported time is 1999. [Colour figure can be viewed at wileyonlinelibrary.com]
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parameters are significantly different during the three different periods. For instance, Oa grew approximately 10 times
during the financial crisis period, compared with other periods or even the entire period. Ob also performs differently
during each period, as does the estimated volatility O� . It is relatively low from 1998 to 2007, then increases to 0.1273
during the financial crisis. After the crisis, the volatility is also higher than expected, which can also be verified by
Figure 7.

First, we use the moving window estimation to investigate the stability of all three parameters in the CIR model.
We specify three different window sizes as l D 250, l D 500 and l D 750, corresponding to 1-year, 2-year and

Figure 15. In-sample fitting for CIR model using 3-month Treasury bill rate. The black line is the real data; the blue line is
the fitted CIR path with the estimators by LPA; the two red lines are 5%–95% confidence intervals simulated with the global
estimators. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 16. Ratio of the absolute prediction errors between the estimators by LPA (numerator) and moving window esti-
mator (denominator) with window size 250. Top: 1-day horizon; bottom: 10-day horizon. [Colour figure can be viewed at
wileyonlinelibrary.com]
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3-year window size. Figures 8, 9 and 10 separately present the moving window estimators Oa, Ob and O� . Fairly similar
performances are illustrated in both Oa and Ob. One can find that large variations exist in the moving window estimation
process. Oa shows high variation, especially around observation 2000, approximately the financial crisis time period,
while before and after the period Oa performance is relatively stable. Similarly, for Ob, there is clear pattern during
different periods, while across the periods, the variation is still quite high, even though it begins to decrease after the
crisis. Volatility O� , however, performs in a much more stable way. The pattern is quite clear: before the financial crisis
the volatility is relatively low, whereas during the crisis period it jumps to a high level, and then decreases once again
after the crisis.

We then apply the LPA to estimate the time-varying CIR model. The estimation results are displayed in
Figures 11–14. The performance of Oa from the LPA is very similar to that of the moving window estimator Oa. It
retains a relatively stable pattern, with some exceptions; during the financial crisis the variation of Oa increases signifi-
cantly, while after the crisis it performs quite stably. The performance of Ob varies differently in different periods. It is
relatively stable from 1999 to 2008, after which its variation becomes larger from 2008 to the end of the study period,
during which time it also shows a decreasing tendency. O� shows a relatively stable performance compared with the
other two estimators in the CIR model during the entire time series, and it shows a clearer pattern that is consistent
with the behaviour of the length of the selected time homogeneous interval described in Figure 14. Moreover, one
can easily detect the largest structural break points: from 2001 to 2008, the fluctuation of O� is relatively small, while
after 2008 the variation becomes quite large, especially during the financial crisis period.

Figure 14 describes the selected time homogeneous interval for each time point t . Here we evaluate the estimation
starting from year 1999, and treat the first year as a time homogeneous interval. One can note that the interval I Ok can
drop rapidly when the LPA diagnoses a change point. After a drop, the intervals increase slowly as the LPA gains
more confidence in the stability of its parameters. Moreover, the length of the selected time homogeneous interval
is closely correlated with the regimes of the macroeconomy. The recession regime induces shorter homogeneous
intervals, while the length is extended in the expansion periods where the macroeconomy is in a stable state. Let us

Figure 17. Ratio of the absolute prediction errors between the estimators by LPA (numerator) and moving window esti-
mator (denominator) with window size 500. Top: 1-day horizon; bottom: 10-day horizon. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 18. Ratio of the absolute prediction errors between the estimators by LPA (numerator) and moving window esti-
mator (denominator) with window size 750. top: 1-day horizon; bottom: 10-day horizon. [Colour figure can be viewed at
wileyonlinelibrary.com]

first analyse the short rate before 2001. In that period, economic activity continued to expand briskly, and the variation
of the short rate was relatively small. Then, in the period from 2001 to 2003, the US economy went into recession,
influenced by the terrorist attack on 11 September 2001, the 2002 stock market crash and the war in Iraq in 2003.
These events induced a fairly unstable macroeconomy marked by increased oil prices, overstretched investment and
excessively high productivity. Further, these factors led to short selected homogeneous intervals. From 2004 until
2007, the economy headed towards a stable state again. The selected intervals lasted longer than before. In 2008, due
to the financial crisis, the situation reversed itself and another global recession began. Again, it can be confirmed by
the shorter length of the selected intervals and the fact that the interest rate remains quite volatile. After the financial
crisis, however, the economy continued to develop at a very low speed while also remaining in a recession regime,
which indicates that the length of time homogeneous interval still does not hold for very long.

Figure 15 depicts the in-sample fit. The real data are described by the black line, and the two red dashed lines
indicate the 5–95% pointwise confidence intervals from the simulated data, which is the same as that used in calcu-
lating the critical values. The blue line is the in-sample fit path with the values estimated by the LPA. It is clear that
the fitted sample path by the LPA estimator matches the real data quite well; i.e. the LPA has an acceptable perfor-
mance for in-sample fit. The structural break points from the fitted LPA path occur very close to the real data path.
Moreover, there are two periods when both the real data and the fitted value are located outside the confidence inter-
val, which also indicates that the CIR model with constant parameters cannot capture the dynamics of interest rate
particularly well.

We further evaluate the out-of-sample forecasting performance. To compare the forecasting result of the LPA with
the moving window estimation results, we take the absolute prediction error (APE) as the criterion. It is defined
over a prediction period horizon H, APE.t/ D

P
h2H jrtCh � OrtChjt j=jHj, where OrtChjt represents the interest rate

prediction by a particular model. Both 1-day- and 10-day-ahead forecasting are considered. Figures 16–18 show the
comparison results. In each figure, the top panel shows the forecast ratio for the 1-day horizon, while the bottom panel
shows the 10-day horizon. There is no doubt that the LPA performs well, especially for the long horizon forecasting.

Copyright © 2016 John Wiley & Sons, Ltd J. Forecast. 36, 241–256 (2017)



Adaptive Interest Rate Modelling 255

Table IV. Forecast evaluation criteria for 1-day and 10-day
horizons of the short rate based on the LPA and moving
window (MW) estimation

MAPE

Horizon l D 250 l D 500 l D 750

1 day LPA 0.0448 0.0450 0.0450
MW 0.0516 0.0549 0.0553

10 days LPA 0.1971 0.2006 0.2020
MW 0.2640 0.2918 0.2962

Note: The left-hand columns refer to the forecasting horizon; the
right-hand columns represent the mean absolute prediction error
(MAPE) according to different moving window sizes.

First, one can observe that the LPA is generally preferable compared to the moving window estimation in one-step-
ahead prediction. The results are better for the 10-day forecast horizon, when the LPA performs better than the MW
by a large percentage.

Table IV summarizes the prediction performance for the LPA and the moving window (MW) estimations with
forecast horizons of 1 day and 10 days. We compare the mean of absolute prediction errors (MAPE) for each method.
Note that for 1-day-ahead forecasting there is no significant difference between the results from both methods, and
both of their MAPEs are quite small; still, the LPA does perform slightly better than the MW. Over the 10-day horizon,
however, the difference in quality increases, and the accuracy of the MW decreases greatly compared with the LPA.
The larger the size of the window, the larger is the MAPE from the MW estimation method.

CONCLUSION

There is considerable statistical evidence, in addition to economic reasons, indicating that the short-rate process
does not follow stable stochastics. We apply a modern statistical method to describe the changing dynamics of the
short rate. With the simple CIR model and the LPA, we detect structural breaks for the short-rate process, which is
consistent with the conclusion from the existing literature. Our study proves that interest rate dynamics are not stable.
Moreover, We obtain time homogeneous intervals for each time point, which is useful to explain the structural breaks.
We further compare our results with moving window estimators, and the results show that the LPA performs better in
both in-sample fit and out-of-sample forecasting, independent of whether data come from a stable period.
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Abstract

Classical asset allocation methods have assumed that the distribution of
asset returns is smooth, well behaved with stable statistical moments over time.
The distribution is assumed to have constant moments with e.g., Gaussian
distribution that can be conveniently parameterised by the first two moments.
However, with market volatility increasing over time and after recent crises,
asset allocators have cast doubts on the usefulness of such static methods that
registered large drawdown of the portfolio. Others have suggested dynamic or
synthetic strategies as alternatives, which have proven to be costly to implement.
The authors propose and apply a method that focuses on the left tail of the
distribution and does not require the knowledge of the entire distribution, and
may be less costly to implement. The recently introduced TEDAS -Tail Event
Driven ASset allocation approach determines the dependence between assets at
tail measures. TEDAS uses adaptive Lasso based quantile regression in order to
determine an active set of portfolio elements with negative non-zero coefficients.
Based on these active risk factors, an adjustment for intertemporal dependency
is made. The authors extend TEDAS methodology to three gestalts differing in
allocation weights’ determination: a Cornish-Fisher Value-at-Risk minimization,
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Markowitz diversification rule and naive equal weighting. TEDAS strategies
significantly outperform other widely used allocation approaches on two asset
markets: German equity and Global mutual funds.

Key words: adaptive lasso, portfolio optimisation, quantile regression, Value-
at-Risk, tail events

JEL Classification: C00, C14, C50, C58
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Portfolio allocation and selection go hand in hand with risk management, and
are not only important concepts in quantitative finance and applied statistics, but are
important determinants for long term portfolio returns for large funds. Over the past
60 years, several long-term asset allocation methods have been implemented. With
each crisis occurring, more advanced methods were proposed after previous techniques
failed to deliver. Notable approaches are the traditional 60/40-portfolio investment
adopted by pension funds, Transparent Beta Base Model adopted by the Norwegian
Sovereign Wealth Fund (NSWF), the Endowment Model popularised by University
Endowments, the Core-Satellite Strategy introduced in the early 2000’s , Risk Parity
Model originated from the fund management firm Bridgewater, Factor Models/
Insurance and Option Overlay studied by academics and adopted by practitioners
and insurers, Value and Focus Investing Model by Warren Buffett and other value
investors, and ad-hoc Family Office/Real Estate Model that, however, has a notable
bias of real estate in the portfolio although favoured by Asian tycoons, see Swensen
[2009].

Absence of significant correlation among various asset classes is the essential
motivation for traditional portfolio allocation. In reality, some strategies contradicted
this principle, such as the traditional 60 equity/40 bond portfolio approach: the
correlation between the bond market and the stock market was 0.98 in the last
15 years (Geczy [2014]). During the Global Financial Crisis the Endowment
Model underperformed due to increased correlation across assets, Swensen [2009].
The Risk Parity strategy recommended a significant allocation to bonds amidst the
implementation of quantitative easing and performed poorly because of interest rate
volatility (Kazemi [2012] and Nathan [2013]). The Norwegian SWF model, strongly
relied on the CAPM beta, which itself was unclear (Klarman [1991]). Performance
of other models varied among investors, e.g., Factor Models that employed single
or multiple factors, for instance, macroeconomic, risk or market factors, which were
difficult to interpret; the Value Investing Model/ Warren Buffett that underperformed
in recent years, and the Family Office Model that performed well during real asset
bubble, Hamilton [2002].

A pillar in portfolio theory, mean-variance (MV) portfolio optimisation by
Markowitz [1952] proposed to study semi-variance even though the optimisation was
not straightforward given the low computation power at that time. As the computing
capacities increased, later models incorporated optimisation involving higher and time
varying moments. The mean-variance and subsequent refined models did not perform
well during volatile periods and there were technical problems that were not addressed
adequately. When the number of assets (p) is larger than the number of observations
(n), there is a statistical problem, Bai et al. [2009] proved that the asset return estimate
given by the Markowitz MV model was always larger than the theoretical return and
the rate of the difference was related to p/n, the ratio of the dimension to the sample
size. Jobson et al. [1979] and Jobson and Korkie [1980] showed that the Markowitz
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mean-variance efficient portfolios were highly sensitive to p/n. They suggested to
shrink the number of estimators or assets. From this point of view, the Least Absolute
Shrinkage and Selection Operator (LASSO) (Tibshirani [1996]) may provide a feasible
solution.

According to Lee et al. [2006], the inclusion of assets with returns that are
skewed and leptokurtic in the portfolio will enhance returns. These assets provide
the opportunity of downside protection especially during periods of high volatility.
Härdle et al. [2014] introduce a new asset allocation strategy Tail Event Driven Asset
Allocation (TEDAS), which exploits negative co-movement of alternative assets in the
tail to hedge for downside risk. The subset of alternative or satellite assets performs
the role of downside protection. Successful protection of the portfolio by limiting the
downside risk during volatile periods allows the portfolio returns to recover sooner. It
is not surprising that TEDAS, with smaller drawdowns, outperforms more traditional
methods that suffer larger drawdowns during extreme events. Given that a subset of
alternative or satellite assets is chosen from a larger universe of assets, TEDAS can
also be viewed as an application of the Core-Satellite model. For big data, where the
number of possible alternatives is larger than the number of observations, the Adaptive
LASSO quantile regression (ALQR) is introduced to address this issue and is used to
simultaneously pursue variable selection and measure relations between variables at tail
quantiles. In order to deal with changing volatility and correlation structure problem
and to better match the higher moments of the portfolio distribution, one applies
Cornish-Fisher VaR (Value-at Risk) model with Dynamic Conditional Correlation
(DCC) and higher moments, such as skewness and kurtosis, can be used to obtain
optimal asset weights among chosen products. Here, we extend TEDAS by introducing
three modifications, which we call "TEDAS gestalts": TEDAS basic, TEDAS naive,
which places equal weights on every satellite asset, and TEDAS hybrid, which uses the
most common Markowitz variance-covariance rule to select the weights.

In addition, we apply the TEDAS methods to global mutual fund and German
stock market data. First, TEDAS yields robust and consistent results, with various
assets,time periods, parameter frequencies, and in big and small data. Secondly, we
show results that compare different TEDAS methods. Finally, the results are presented
with transaction costs incorporated into our portfolio rebalancing.

The rest of the paper is organised as follows. In section 2, we introduce the
framework of TEDAS. In section 3 and 4, we apply the methods to different markets
and compare the performance between different models. Section 5 will present the
conclusion and discussion. All codes and datasets are available as Quantlets on
Quantnet (Borke and Härdle [2015]) .
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TEDAS - Tail Event Driven Portfolio Allocation

The basic elements of TEDAS are presented in Härdle et al. [2014]. The proposed
tool set has important implications for portfolio risk management and asset allocation
decisions. Along with the basic setup we propose two modifications: TEDAS naive
and TEDAS hybrid.

The TEDAS strategy is based on a simple idea widely used in core-satellite
approach. The core asset is chosen to be e.g., the DAX index or S&P 500. The
strategy is to select satellite assets to complement the core portfolio. The core portfolio
is chosen by the fund manager and the satellite assets are chosen by TEDAS to limit
the downside of the core portfolio during extreme events.

The second step is a selection of satellite portfolio constituents. In TEDAS the
Adaptive Lasso Quantile Regression (ALQR) is applied to pick assets for a new
portfolio Zheng et al. [2013]. This technique allows to simultaneously solve two
challenges for portfolio managers. It shrinks the high dimensional universe of satellite
assets to potential candidates for portfolio’s constituents. ALQR also provides the
information concerning the dependence between core portfolio and satellites at different
quantiles (for various tail events). TEDAS employs 5%, 10%, 25%, 35% and 50% tail
events. Assets with negative ALQR coefficients, i.e. assets adversely moving with the
core for chosen level of a tail event, are constituents of a new rebalanced portfolio. For
the case with only positive ALQR coefficients received, it is supposed, the value of the
portfolio does not change in comparison with the previous period (a portfolio manager
keeps a so-called "stay-in-cash" position). Technical details for the ALQR are provided
in appendix.

The third step is a determination of portfolio weights for assets selected on the
second step. TEDAS proposes three alternative ways to solve this task, we refer to
them as TEDAS gestalts, which is originally a german word to indicate an organised
whole that is perceived as more than the sum of its parts and literally can be translated
as "form, shape" (Oxford Dictionary of English [2010]). Depending on a volatility-
modeling method and the portfolio weights’ optimisation rule three TEDAS gestalts
can be applied. The TEDAS basic gestalt employs the dynamic conditional correlation
model (DCC) is used (Engle [2002], Franke et al. [2015] ) to account for time-varying
covariance structure and correlation shifts in returns’ covariance. The weights of
satellites are defined based on the Cornish-Fischer Value-at-Risk (VaR) minimization
rule, Favre and Galeano [2002] (Technical details are included in appendix).

The TEDAS naive gestalt assigns to every satellite asset the same portfolio weight.
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The TEDAS hybrid after LASSO selection employs the simplest approach to
estimate the covariance structure of assets’ returns, the historical covariance matrix;
portfolio weights are calculated according to classical mean-variance optimisation
procedure (Markowitz diversification rule), Markowitz [1952].

The choice of satellite assets and data description

Small and mid-cap stocks

Banz [1981] found smaller firms (small caps) have had higher risk-adjusted returns, on
average, than larger firms. Reinganum [1981] observed portfolios based on firm size or
earnings/price ratios experienced average returns systematically different from those
predicted by the CAPM. Since these pioneer papers the effect of relation between size
and expected return attracted a significant attention of academics and practitioners.
Research in this area is often referred to as "small cap premium", "size premium", or
"size anomaly" literature. The size premium effect was preserved even after controlling
for market factor and the value effect Fama and French [1993] , the momentum
effect Jegadeesh and Titman [1993] and Carhart [1997], liquidity effects Pastor and
Stambaugh [2003] and Ibbotson et al. [2013], industry factors as well as high leverage,
low liquidity, Menchero et al. [2008]. Moreover, studies of stock returns across many
separate countries and regions also confirmed the size phenomenon, Rizova [2006]
summarised the academic evidence on the international existence of the size effect.

What is the source of the size premium? The traditional theory claimed that
firm size was a proxy for systematic risk, small cap stocks were riskier than large
cap stocks, and, therefore, market forced exert downward pressure on the prices of
small cap stocks to provide investors with higher returns, Fama and French [1993].
Subsequent researchers explored the underlying sources of such risk, but the results
were controversial. For example, Amihud and Mendelson [1986] proposed to link
the size effect with liquidity risk, measured as bid-ask spread, and their results
demonstrated the size premium effect was mostly a liquidity driven. Amihud [2002]
found that smaller firms’ returns were more sensitive to market illiquidity and that
small cap stocks had more liquidity risk than large caps stocks, Liu [2006] also argued
that small caps required higher returns for accepting liquidity risk. Zhang [2006]
proposed another source of risk, namely ’information uncertainty’, which linked small
caps to law quality of the information disclosure and information about a firms’ volatile
fundamentals. Chan and Chen [1991] and Dichev [1998] suggested that size served as
a proxy for financial distress, Vassalou and Xing [2004] stated the size effect was a
default effect and together with value (the book-to-market) effect existed only in market
segments with high default risk. Overall, this group of literature explored reasons, why
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higher risks were linked to small and mid caps. Lakonishok et al. [1994] proposed an
alternative explanation and proved that small caps were mispriced by investors due to
behavioural biases and not because these types of assets were fundamentally riskier.

After first discovering and documentation of size premium in Banz [1981], Fama and
French [1993] also observed a premium of 0.27% per month in the US over the period
1963 to 1991. However, more recent studies documented the size anomaly disappeared
(see, e.g., Amihud [2002] , Dichev [1998]) since 1980 in the US. Furthermore, Fama
and French [2012] observed no size effect across 23 countries from November 1990
to September 2010. At the same time Hou and Dijk [2010] argued that U.S. stocks
of smaller firms had not had higher returns since the early 1980s because of firm
profitability "shocks": smaller firms had negative earnings surprises and larger firms
had positive earnings surprises during this time. Based on this argument, they claimed
that the size effect still existed even it was not so obvious (see also Crain [2011] ).
Three studies on the size anomaly in Germany provided inconsistent results. Namely,
Stehle [1992] found some evidence of a size effect in Germany, especially in January,
whereas Schlag and Wohlschieß [1992] obtained very low t-statistics for size as an
explanatory variable for mean returns. Sauer [1994] too did not detect a size related
anomaly for stock returns in Germany. For an extensive literature review concerning a
size effect we refer to e.g., Crain [2011]. It can be summarised, that the size effect has
been challenged along many fronts. Over the last decade, however, global small caps
and mid caps have been relatively strong again and outperformed large caps (Figure
1). The existence of size effect as well as the benefits of diversification (see, e.g., Bender
et al. [2012]) strongly motivates inclusion of small and mid cap stocks into allocation
strategies. In our research we utilise small and mid cap stocks as satellite assets for
the TEDAS strategy.
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Figure 1: Daily cumulative returns of MSCI World Large Cap index (black) from 1 Jan
2007 to 31 Dec 2014 against MSCI World Mid Cap index (red), MSCI World Small
Cap index (blue) and MSCI World Small and Mid Cap / mixture index (green)

The empirical analysis of TEDAS application to equity market focuses on the
German stock market. As the core-asset DAX index is employed and 125 constituents
of indices SDAX, MDAX and TecDAX construct the universe of hedging assets – small
and mid-cap stocks. The collected data cover the time period from 21 Dec 2012 to
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27 Nov 2014 (Source: Datastream). The performance of TEDAS strategy for German
equity market was analysed on 41 sixty-weeks moving windows.

Mutual funds

The role of Mutual Funds in world economy has increased in the 20 years or so due to
their fast growth (from 52 746 in 1999 they of Mutual Finds has reached 76 200 by 2013)
(Figure 2). The US economy is the market that accounts for about half of the global
mutual fund market of $30 trillion which underlines its importance in the US economy.
In addition mutual fund investment companies account for 88 percent of investment
companies in total. The popularity of mutual funds is due to their perceived safety
compared to alternatives, notably stocks. This perception has resulted in a situation
where almost half specifically, 46.3 percent of US households have participated in
such funds. All this underlines the sheer size and the importance of the US mutual
find market which, therefore, should provide us with an important test case for the
evaluation of the performance of TEDAS strategy and would show whether TEDAS
can handle cases of big data.

Figure 2: Number (upper graph) and Total net Assets (lower graph) of Worldwide
Mutual Funds from 1999 to 2013

The potential of diversification, a major determinant for asset allocation, is a major
and very attractive characteristic of mutual funds. In the 2013 US market, 38 percent
of all industry assets were held by domestic equity funds and an additional 14 percent
by world equity funds. Moreover, it is pointed out that the percentage of mutual fund
assets that were in the form of bond funds is at 22 percent, whereas money market
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funds covered 18 percent and 8 percent, the remaining, was accounted by hybrid funds.
Finally, it has been observed that in the US there has been a tendency towards equity
mutual funds regarding portfolio diversification, which means increased investment
rates in foreign (non-US) markets.

The data for this study come from Datastream and represent the period from
January 1998 to December 2013, i.e. a period of 192 months. The classification of the
data was performed on the basis of three locations in which they originated: United
States, Singapore and the World. At first hand, cross-sectional data from 2616 funds
were retrieved, but only that from funds that had had a life of at least 10 years. Not
surprisingly, the US market had the largest representation in the data set with 2347
cases of mutual funds, whereas Singapore had only 13 and the other markets 256.
To simplify the processing of the data some further reduction of the data set was
applied: inactive cases – the ones which showed no price change for 3 months – were
excluded resulting to a total of 583 remaining cases which provided the dataset for our
calculations. S&P 500 provided the core asset, whereas Bloomberg was the source of
the data from the same time space.

Empirical results

Results for German equity market

The comparison of the three TEDAS gestalts with the core DAX30 index is given
on Figure 3. As is seen, all three TEDAS strategies demonstrate almost equal
results in terms of cumulative return. At the end of the analysed timespan these
strategies yield 41-42 % of cumulative return taking into account 1% of transaction
fees (The cumulative returns reach even 60 % - 70 % without the transaction costs).
The asset allocation decision is twofold: one has to define which assets to buy and
which proportions to use to construct the portfolio (solution of weights’ optimisation
problem). One observes though the main driving factor of the overperformance for
TEDAS strategy comes from the portfolio assets’ selection and not really from weights’
optimisation. A conducted sign test confirms the absence of difference in medians of
returns for the three TEDAS gestalts (on 5% significance level).

TEDAS needs to be benchmarked with three alternative widely used strategies:
Risk-Parity portfolio (Equal risk contribution portfolio), OGARCH mean-variance
strategy, 60/40 portfolio. The mean-variance (MV) portfolio selection has been widely
used by the financial community and is the common benchmark for every newly
introduced asset allocation strategy. The traditional Markowitz portfolio optimisation
approach as has been shown in previous literature has some drawbacks especially for
the case when p>n. The portfolio formed by using the classical mean-variance approach
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Figure 3: Weekly cumulative returns of DAX30 index (black) from 21 Dec 2012 to 27
Nov 2014 against TEDAS basic (red), TEDAS naive (blue) and TEDAS hybrid (green)
strategies applied to German stocks

TEDAS_gestalts

always results in extreme portfolio weights Jorion [1985], that fluctuate substantially
over time and perform poorly in the sample estimation (for example, Frankfurter et al.
[1971], Simaan [1997], Kan and Zhou [2007]) as well as in the out-of-sample forecasting.

Different studies provide different observations and suggestions to investigate
the reasons, why the MV optimisation estimate is so far away from its theoretic
counterpart. So far, all believe that the reason behind this outcome is that the
"optimal" return is formed by a combination of returns from an extremely large number
of assets (see McNamara [1998]). Use of Markowitz optimisation procedure efficiently
depends on whether the expected return and the covariance matrix can be estimated
accurately. Many studies have improved the estimate of the classical Markowitz MV
approach by using different approaches. For our comparative study, the conditional
variance-covariance matrix was estimated with Orthogonal GARCH factors. In our
study we use dynamic Markowitz risk-return optimisation with portfolio covariance
matrix modelled by the basic orthogonal GARCH method. The Orthogonal GARCH
model was first proposed in Alexander [2001], and is based on Principal Components
Analysis (PCA).

60/40 portfolio allocation strategy implies the investing of 60% of the portfolio
value in stocks (often via a broad index such as S& P500) and 40% in government or
other high-quality bonds, with regular rebalancing to keep proportions steady. German
market’s 60/40 portfolio is constructed with DAX and RDAX indices.

Risk-parity portfolio-strategy is based on allocation by risk, not by capital. In this
case, the portfolio manager defines a set of risk budgets and then computes the weights
of the portfolio such that the risk contributions match the risk budgets (for details see
Maillard et al. [2010]).

The comparison of cumulative returns achieved with TEDAS hybrid and alternative
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Figure 4: Weekly cumulative returns of TEDAS Hybrid (green) from 21 Dec 2012 to 27
Nov 2014 against MV OGARCH (magenta), 60/40-portfolio (purple) and Risk Parity
(orange) strategies applied to German stocks
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strategies, demonstrated in Figure 4 , shows that TEDAS performs significantly better
than other considered approaches.

Strategy Cumulative Sharpe Maximum
return ratio drawdown

TEDAS basic 143% 0.3184 0.1069
TEDAS naive 144% 0.3792 0.0564
TEDAS hybrid 143% 0.3079 0.1068
MV OGARCH 108% 0.0687 0.0934
Risk-Parity 95% -0.0693 0.1792
60/40 portfolio 121% 0.0306 0.0718
DAX30 103% 0.0210 0.1264

Table 1: Strategies’ performance overview: German stocks’ sample
TEDAS_perform

The rebalancing of portfolio to hedge the core asset occurred 21 times out of 41
moving-window estimation periods. Table 1 summarises the performance of portfolio
strategies in terms of cumulative returns as well as in terms of risk. We used two
traditional measures to evaluate portfolios’ risk-adjusted returns: Sharpe ratios and
maximum drawdown. As it can be seen from the results, the most attractive strategy
is TEDAS basic, which gives the highest excess return for the extra volatility. At
the same time, TEDAS naive demonstrates the lowest financial risk, measured with
maximum drawdown. In general we can conclude that TEDAS strategies show better
risk-adjusted returns than all other analysed benchmarks and have comparatively the
same level of risk.

Figure 5 shows the frequency of the number of selected variables for different
quantiles. As can be noticed, the number of selected satellites in most of cases is
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Figure 5: Frequency of the number of selected stocks for 4 different quantiles (German
stocks’ sample)

less than five, which is also indicative of this strategy and the simplicity of portfolio
rebalancing. Furthermore, we analyze how frequently certain stocks were selected as
satellites (i.e. how often they have significant ALQR non-positive coefficients) the
results of which are given in figure 6. More frequently small stocks (first 50 stocks on
the graph) and stocks of high-tech companies (last 30 stocks) hedge the core. This
conclusion is also confirmed by table 2, which lists the most frequently used German
stocks for 5 % quantile and most part of them operate in the high technology innovative
industries.
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Figure 6: Frequency of selected stocks for 4 different quantiles (German stocks’ sample)

Top 5 influential stocks Frequency Index Industry
Sartorius Aktiengesellschaft 12 TecDAX Provision of laboratory and process

technologies and equipment
XING AG 8 TecDAX Online business communication

services
Surteco SE 7 SDAX Household Goods & Home

Construction
Kabel Deutschland Holding AG 7 MDAX Cable-based telecommunication

services
Biotest AG 6 SDAX Producing biological medications

Table 2: The selected German Stocks for 5% quantile

All TEDAS gestalts applied to the universe of German stocks outperform
both traditional benchmark strategies such as Markowitz rule or 60/40 and more
sophisticated ones such as the risk-parity model. Our analysis leads us to believe
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that using the ALQR technique delivers good results in reducing the dimensionality of
the asset universe for more effective portfolio allocation.

Results for global mutual funds

Since the number of satellites after filtering (p=583) is very large, the moving window
for Mutual funds’ sample is adjusted to 120. We assume in December 2007 one starts to
allocate 1 unit of money using each strategy and calculated the 73 monthly cumulative
returns until Dec 2013.

Similar to the previous analysis, the outcomes of the three TEDAS strategies are
compared. From 2007 to the end of 2013, the TEDAS Naive yields the highest return,
454%. TEDAS Hybrid and TEDAS Basic setups show similar returns of 433% and
421% respectively (Figure7).
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Figure 7: Monthly cumulative returns of S&P 500 from Dec 2007 to Dec 2013 against
TEDAS basic (red), TEDAS naive (blue) and TEDAS hybrid (green) strategies applied
to Mutual funds

TEDAS_gestalts

In order to check whether TEDAS is significantly better than popular methods that
have been applied in the past years, we employed the same four benchmarks in the case
of German stocks. We constructed a 60/40 portfolio using NASDAQ composite and
the Barclays US treasury index. For the base case, we buy and hold the core asset, S&P
500, during the whole period. By comparing the TEDAS hybrid and the benchmarks,
we can tell that TEDAS is out-performed. 60/40 and Risk-Parity portfolios have high
correlation with the S&P 500 and these three gave similar returns of around 125%
(Figure 8). By Sign Test between TEDAS Hybrid and other four benchmarks, we
could get the p-values, which are all smaller than 5% and therefore, we could conclude
that the return of our strategy is statistically and significantly different from others.
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Figure 8: Monthly cumulative returns of TEDAS Hybrid (green) from Dec 2007 to
Dec 2013 against MV OGARCH (magenta), 60/40-portfolio (purple) and Risk Parity
(orange) strategies applied to Mutual funds
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Strategy Cumulative
return

Sharpe
ratio

Maximum
drawdown

TEDAS basic 421% 0.6393 0.0855
TEDAS naive 454% 0.6974 0.0583
TEDAS hybrid 433% 0.6740 0.0276
MV OGARCH 116% 0.0214 0.4772
Risk-Parity 129% 0.0487 0.4899
60/40 portfolio 121% 0.0252 0.3473
S&P500 113% 0.0132 0.5037

Table 3: Strategies’ performance overview: Mutual funds’ sample
TEDAS_perform
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Figure 9: Frequency of the number of selected variables for 4 different quantiles (Mutual
funds’ sample)

Figure 9 shows the different frequencies of the number of selected variables from 4
quantiles (0.05, 0.15, 0.25 and 0.35). Unexpectedly, the number of selected satellites
is all less than four in all cases, which is similar with the German Stock data.
Compared with the number of selection pool (583 Mutual Funds), 4 is really small.
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One explanation might be that even though Mutual Funds consist of combinations
of many products (different kinds of bonds, domestic and international equities), and
have many different investment ways, there is a huge part of the investment pool has
been allocated into the U.S. stock markets or into related products. As a result of
globalization, the U.S. market strongly affects other markets.

Influential Mutual Funds Frequency Market
Blackrock Eurofund Class I 12 U.S.
Pimco Funds Long Term United States Government Institutional Shares 8 U.S.
Prudential International Value Fund Class Z 4 U.S.
Artisan International Fund Investor Shares 3 U.S.
American Century 2OTH Century International Growth Investor Class 1 U.S.
First Eagle Overseas Fund Class A 1 U.S.

Table 4: The selected Mutual Funds for for 5% quantile

TEDAS does not select many different Mutual Funds, only 6 Mutual funds hedged
the core in extreme events throughout the analysed period. From Table 4 we can see
that all selected Mutual Funds exchanged in U.S. market, but most of them are related
to the products outside the U.S. markets.

Conclusion and Discussion

Asset allocators have difficulties in constructing a portfolio that can sufficiently protect
the downside with acceptable level of drawdown. Each crisis, previously adopted
methods failed to limit the downside as suggested by empirical stress testing based
on historical data. Here, we have proposed a method that focuses on the co-movement
of the core and the universe of satellite assets during extreme events. The degree
of extremeness is defined as the percentage of historical observations in the tail, also
known as quantiles. By selecting and reducing the universe of satellite assets to a
manageable subset and at the same time having the properties of negative or zero
correlation with the core during extreme event is the innovation of this paper.

The main contribution of this paper is to demonstrate the practical significance
of the TEDAS tool set for a wide range of both institutional and private investors
in various settings. We conducted an empirical study on the performance of TEDAS
strategy applied to a broad spectrum of core and satellite configurations. The testing of
TEDAS strategy for Global Mutual funds and German equity data leads to conclusion
TEDAS is meaningful for geographically different markets (global and Germany), using
weekly and monthly returns as well as for different levels of dimensionality of the
universe of potential portfolio constituents. This paper demonstrated the power of
the TEDAS strategy for different asset markets, such as equity, Mutual funds and
Hedge funds. Furthermore, compared with four conventional benchmark allocation
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approaches, TEDAS cumulative returns are significantly higher. Investigation of
TEDAS outperformance in terms of risk measures, such as Sharpe ratio and maximal
drawdown, also demonstrates better results than other benchmark strategies. Finally,
when we relaxed the assumption of zero transaction fees TEDAS still demonstrates
superior performance, significantly different from other traditional approaches.

There are many ways in which we envision the research reported here can be
extended. The results of three modifications of TEDAS adopted in this study are
robust. Theoretically speaking, TEDAS basic, which takes the third and fourth
moments into account, should perform better than the other two. However, we do
not observe it in our empirical study. There are some possible explanations and
directions for further analysis. One is to solve the utility maximization problem with
higher moments or to include time-varying modelling of higher portfolio moments as
in Ghalanos et al. [2015].

Analysing the superior returns of TEDAS strategies, it is necessary to keep in
mind all results were received based on realized returns and not on expected returns.
Therefore, the possible direction for a further development of TEDAS strategy might be
an incorporation of returns’ forecasting and examining of out-of-sample performance.
In conclusion, the results suggest that these TEDAS methods, while still relying on
historical methods, are producing promising results. The caveat remains that history
may not necessarily repeats itself and further studies are needed.

Appendix

Adaptive LASSO Quantile regression (ALQR)

Adaptive Lasso Procedure

Introduced in Bassett and Koenker [1978] quantile regression (QR) estimates
conditional quantile functions–models in which quantiles of the conditional distribution
of the response variable are expressed as functions of observed covariates (see Koenker
and Hallock [2001]).

L1 - penalty is considered to nullify "excessive" coefficients (Belloni and
Chernozhukov [2011]). Simple lasso-penalized QR optimisation problem is:

β̂τ,λ = arg min
β∈Rp

n∑
i=1

ρτ (Yi −X>i β) + λ‖β‖1 (1)

The adaptive Lasso, Zou [2006], yields a sparser solution and is less biased. L1 -
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penalty is replaced by a re-weighted version:

β̂adapt
τ,λn

= arg min
β∈Rp

n∑
i=1

ρτ (Yi −X>i β) + λn‖ω̂>β‖1 (2)

here τ ∈ (0, 1) is a quantile level, ρτ (u) = u{τ − I(u < 0)} piecewise loss function, λn
regularization parameter. Weights ω̂ = 1/|β̂init|, β̂init is obtained from (1). In TEDAS
setup Y ∈ Rn represents core log-returns (DAX or S&P500 indices)and X ∈ Rn×p –
satellites’ log-returns (German stocks or Mutual funds), p > n.

Algorithm for Adaptive Lasso Penalized QR

The optimisation for the adaptive Lasso can be re-formulated as a Lasso problem:

• the covariates are rescaled: X̃ = (X1 ◦ β̂init
1 , . . . , Xp ◦ β̂init

p );

• the lasso problem (1) is solved:

ˆ̃βτ,λ̂ = arg min
β∈Rp

n∑
i=1

ρτ (Yi − X̃>i β) + λ‖β‖1 (3)

• the coefficients are re-weighted as β̂adapt = ˆ̃βτ,λ̂ ◦ β̂init

Cornish-Fisher VaR optimisation

A modification of VaR via the Cornish-Fisher (CF) expansion improves its precision
adjusting estimated quantiles for non-normality. To obtain asset allocation weights
the following VaR-minimization problem is solved (for details see Favre and Galeano
[2002], Härdle et al. [2014]):

minimize
w∈Rd

Wt{−qα(wt) · σp(wt)}

subject to w>t µ = µp, w
>
t 1 = 1, wt,i ≥ 0

(4)

here Wt
def= W0 ·

∏t−1
j=1 w

>
t−j(1 + rt−j), w̃, W0 initial wealth, σ2

p(w) def= w>t Σtwt,

qα(wt) def= zα + (z2
α − 1)Sp(wt)6 + (z3

α − 3zα)Kp(wt)
24 − (2z3

α − 5zα)Sp(wt)
2

36 , (5)

here Sp(wt) skewness,Kp(wt) excess kurtosis, zα is N(0, 1) α-quantile. If Sp(wt),Kp(wt)
are zero, then the problem reduces to the Markowitz case.
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Mean-variance optimisation procedure (Markowitz
diversification rule)

Mean-variance optimisation procedure is based on four inputs: the weights of total
funds invested in each security wi, i = 1, . . . , d, the expected returns µ approximated
as averages r, volatilities (standard deviations) σi associated with each security and
covariances σij, j = 1, . . . , d; i 6= j between returns. Portfolio weights wi are obtained
from the quadratic optimisation problem, see Brandimarte [2006], p. 74

minimize
w∈Rd

σ2
p(wt)

def= w>t Σwt

subject to w>t µ = rT ,
d∑
i=1

wi,t = 1,

wi,t ≥ 0

(6)

where Σ ∈ Rd×d is the covariance matrix for d portfolio asset returns, rT is the "target"
return for the portfolio assigned by the investor. Markowitz optimisation procedure
gives the same result as CF-VaR optimisation in case of skewness and excess kurtosis
are zero (in excess of 3, which corresponds to a Gaussian distribution).
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Systemic risk analysis reveals the interdependencies of risk factors especially in tail event situations. In
applications the focus of interest is on capturing joint tail behavior rather than a variation around the mean.
Quantile and expectile regression are used here as tools of data analysis. When it comes to characterizing
tail event curves one faces a dimensionality problem, which is important for CoVaR (Conditional Value
at Risk) determination. A projection-based single-index model specification may come to the rescue but
for ultrahigh-dimensional regressors one faces yet another dimensionality problem and needs to balance
precision versus dimension. Such a balance is achieved by combining semiparametric ideas with variable
selection techniques. In particular, we propose a projection-based single-index model specification for
very high-dimensional regressors. This model is used for practical CoVaR estimates with a systemically
chosen indicator. In simulations we demonstrate the practical side of the semiparametric CoVaR method.
The application to the U.S. financial sector shows good backtesting results and indicate market coagulation
before the crisis period. Supplementary materials for this article are available online.

KEY WORDS: Composite quasi-maximum likelihood estimation; CoVaR; Lasso; Minimum average
contrast estimation; Model selection; Quantile single-index regression.

1. INTRODUCTION

It is known to be a challenging task to manage financial risk
due to joint extreme events, reflecting the fact that in times of
crisis losses tend to spread across a portfolio. The key interest is
to understand and forecast the risk exposure of, for example, a
financial institution in the market for firm leaders or to identify
and select systemic risk relevant factors for government regula-
tors. There is a large amount of literature on measuring systemic
risk. We focus on the line of research adopting quantile methods
to quantify the tail dependence among financial institutions. In
particular, Adrian and Brunnermeier (2011) proposed a systemic
risk measure, called CoVaR, with balance sheet characteristics
driven individual risk exposure. Furthermore, Hautsch, Schaum-
burg, and Schienle (2014) introduced an applicable measure of
a firm’s systemic relevance, explicitly accounting for the com-
pany’s interconnectedness within the financial sector.

The underlying statistical setting involved is a two-stage lin-
ear quantile regression. Several elements of the existing CoVaR
methodology are, however, based on questionable assumptions:
First, a significant degree of nonlinearity occurs when mod-
eling conditional tail curves. Second, the number of potential

risk factors is large in comparison with the amount of avail-
able observations. Third, the selected factors are difficult to be
interpreted, and need to be summarized to an index. Therefore,
one calls for a data driven technique that combines dimension
reduction, variable selection, and generalized tail events, for
example, expectiles. In this article we address these points and
provide a practical CoVaR estimate together with a systemically
chosen indicator. The systemic indicator is chosen by the single-
index approach, which has a unique feature: the index that yields
interpretability and low dimension simultaneously. However, in
the case of ultrahigh-dimensional regressors X the single-index
approach suffers from singularity problems. Efficient variable
selection is the strategy to employ here. Specifically we consider
composite regression with general weighted loss and possible
ultrahigh-dimensional covariates. Our setup is general, and in-
cludes quantile, expectile (and therefore mean as a special case)
regression. We offer theoretical properties and demonstrate our
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method with applications to firm risk analysis in a CoVaR esti-
mation context.

The basic element of our CoVaR estimation is quantile regres-
sion(QR). In many fields of applications such as quantitative
finance, econometrics, marketing, and also medical and biolog-
ical sciences, QR is a fundamental element for data analysis,
modeling, and inference. An application in finance is the anal-
ysis of time varying value-at-risk (VaR) using the conditional
autoregressive value at risk (CaViaR) model; see Engle and
Manganelli (2004). The QR estimation may be seen as an esti-
mation problem by assuming an asymmetric ALD (asymmetric
Laplace distribution) pseudo likelihood, which not necessarily
return an efficient estimator. Therefore, different flexible loss
functions are considered in the literature to improve the estima-
tion efficiency, such as composite quantile regression (Zou et al.
2008; Kai, Li, and Zou 2010, 2011). Moreover, Bradic, Fan,
and Wang (2011) proposed a general loss function framework
for linear models, with a weighted sum of different kinds of
loss functions, and the weights are selected to be data driven.
Another type of loss considered is in Newey and Powell (1987)
corresponding to expectile regression (ER). This is similar in
spirit to QR but contains mean regression as a special case.
Nonparametric expectile smoothing work with applications to
demography can be found in Schnabel and Eilers (2009). The
ER curves are alternatives to the QR curves and give us an
alternative regression picture.

The difficulty of characterizing an entire distribution partly
arises from the high dimensionality of covariates. This asks to
strike a balance between model flexibility and statistical preci-
sion. To crack this tough nut, dimension reduction techniques
of semiparametric type, such as the single-index model, came
into the focus of statistical modeling. Wu, Yu, and Yu (2010)
and Kong and Xia (2012) considered quantile regression via
a single-index model. However, to our knowledge there is no
further literature on generalized QR for the single-index model.

In addition to the dimension reduction, there is also the prob-
lem (incurred in our CoVaR estimation procedure) of choosing
the right variables for projection. This motivates our second
goal of this research: variable selection. Kong and Xia (2007),
Wang and Yin (2008), and Zeng, He, and Zhu (2012) focused
on variable selection in mean regression for the single-index
model. The set of ideas presented there, however, have never
been applied to a quantile, composite quantile framework, or
to an even more general (composite) quasi-likelihood frame-
work. The semiparametric single-index approach that we con-
sider herein will be a good tool for practitioners, as it combines
flexibility in modeling with applicability for even very high-
dimensional data.

This article is organized as follows: In Section 2, we introduce
the basic setup and the estimation algorithm. In Section 3, we
build up asymptotic theorems for our model. In Section 4, simu-
lations are carried out. In Section 5, we illustrate our methodol-
ogy by estimating CoVaR. All the technical details can be found
in the Appendix.

2. MACE FOR SINGLE-INDEX MODEL

Let X and Y be p dimensional, continuous random variables,
respectively; p can be very large, namely of the rate exp(nδ),
where δ is a constant whose range will be defined in Condition

4 in Section 3. The single-index model (SIM) is defined to be:

Y = g
(
X�β∗) + ε, (2.1)

where g(·) : R1 �−→ R1 is an unknown smooth link function, β∗

is the vector of index parameters, and ε is a continuous variable
with mean zero. The interest here is to simultaneously estimate
β∗ and g(·). The assumptions on error structure can be seen in
Condition 3.

2.1 Quasi-Likelihood for the Single-Index Model

Several estimation techniques exist for (2.1), among which
the average derivative estimator (ADE) method is one of the
oldest ones; see Härdle and Stoker (1989). The semiparametric
SIM (2.1) also permits a one-step projection pursuit interpre-
tation, therefore estimation tools from this stream of literature
might also be employed; see Huber (1985). The minimum aver-
age variance estimation (MAVE) technique aimed at simultane-
ous estimation of (β∗, g(·)) was proposed by Xia et al. (2002).
Here we will apply a minimum average contrast estimation ap-
proach, called MACE. Similar to MAVE, the MACE technique
uses double integration but allows more general loss functions.
Our estimation framework is new in three aspects. First, we
consider a general class of contrast functions that allow us to
identify and estimate conditional quantiles, expectiles, and other
tail-specific objects. Second, we consider the situation where p
might be very large and we add penalty terms that lead to an
automatic model selection framework of, for example, the least
absolute shrinkage and selection operator (Lasso) or smoothly
clipped absolute deviation (SCAD) type. Third, we implement
a composite estimation technique for efficiency improvement.

In our theoretical setup, we identify the parameter via a min-
imum contrast with ρw as the contrast function. It corresponds,
as mentioned above, to a quasi maximum likelihood framework:
the direction β∗ (for known g(·)) is the solution of

min
β

E ρw
{
Y − g

(
X�β

)}
, (2.2)

with the general quasi-likelihood loss function ρw(·) =∑K
k=1 wkρk(·), where ρ1(·) , . . . , ρK (·) are convex loss func-

tions and w1, . . . ,wK are positive weights.
Equivalently, β is the solution to

E
(
ψw

{
Y − g

(
X�β

)} |X) = 0 a.s.

(where ψw(·) is the derivative (a subgradient) of ρw(·) ). This
weighted loss function includes many situations such as ordinary
least square, quantile regression (QR), expectile regression(ER),
composite quantile regression (CQR), and so on. For model
identification, we assume that the L2-norm of β∗, ‖β∗‖2 = 1
and the first component of β∗ is positive.

The standard situation of QR is with K = 1 and the condi-
tional quantile function F−1

ε|X(τ ) = 0. This means to take the loss
function as

ρw(u) = τu1(u ≥ 0) − (1 − τ )u1(u < 0), (2.3)

where 1(A) is equal to 1 if A is true and 0 otherwise. Moreover,
for ER with K = 1, we have:

ρw(u) = τu21(u ≥ 0) + (1 − τ )u21(u < 0). (2.4)

The general form of ρw(·) boils down to CQR when one em-
ploys K different quantiles τ1, τ2, . . . , τK , with wk = 1/K,
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Fan et al.: Single-Index-Based CoVaR With Very High-Dimensional Covariates 3

k = 1, . . . , K and

ρk(u) = τ (u− bk)1(u− bk ≥ 0)

+(1 − τ )(u− bk)1(u− bk < 0), (2.5)

where bk is the τk quantile of the error distribution; see Bradic,
Fan, and Wang (2011).

Let us now launch the MACE. First, we approximate g(X�
i β)

for x�β near X�
i β:

g
(
X�
i β

) ≈ g
(
x�β

) + g′ (x�β
)

(Xi − x)�β. (2.6)

In the context of local linear smoothing, a first-order proxy of β
(given x) can therefore be constructed by minimizing

Lx(β, g(·)) def= E ρw{Y − g
(
x�β

) − g′ (x�β
)

(Xi − x)�β}.
(2.7)

The empirical version of (2.7) requires minimizing, with respect
to β and function g(·):

Ln,x(β, g(·)) def= n−1
n∑
i=1

ρw
{
Yi − g

(
x�β

)
− g′ (x�β

)
(Xi − x)�β

}
×Kh{(Xi − x)�β}, (2.8)

where Kh(·) is a kernel function with Kh(u) = h−1K(u/h) and
h is a bandwidth parameter. We adopt now the double integration
idea of MAVE, that is, we integrate with respect to the empirical
distribution function of the covariates leading to the following
loss function:

Ln(β, g(·)) def= n−2
n∑
j=1

n∑
i=1

ρw
{
Yi − g(X�

j β)

− g′(X�
j β)(Xi −Xj )

�β
}

Kh{(Xi −Xj )
�β}. (2.9)

Minimizing (2.9) with respect to β and g(·) is the basic idea.
For simplicity, from now on we write g(X�

j β) and g′(X�
j β)

as a(Xj ) and b(Xj ) or aj and bj , respectively. The calculation
of the above minimization problem can be decomposed into
two subproblems, motivated by, for example, Leng, Xia, and
Xu (2008):

a. Given β, the estimation of a(·) and b(·) are obtained
through local linear minimization.

b. Given a(·) and b(·), the minimization with respect to β is
carried out by the interior point method.

2.2 Variable Selection for Single-Index Model

The dimension of covariates (p) is large, even one can allow
p = O{exp(nδ)}, so selecting important covariates is a neces-
sary step. Without loss of generality assume that the first q
components of β∗ minimizing (2.2) are nonzero. To point this

out write β∗ = (β∗�
(1) , β

∗�
(0) )� with β∗

(1)
def= (β1, . . . , βq )� 
= 0 and

β∗
(0)

def= (βq+1, . . . , βp)� = 0 element-wise. Accordingly we de-
note X(1) and X(0) as the first q and the last p − q column of
design matrix X, corresponding to β∗�

(1) and β∗�
(0) , respectively.

Suppose {(Xi, Yi)}ni=1 are n independent and identically dis-
tributed (iid) copies of (X, Y ). Consider first estimating the SIM
coefficient β∗ by solving the optimization problem

min
(aj ,bj )′s,β

n−1
n∑
j=1

n∑
i=1

ρw

(
Yi − aj − bjX

�
ij β

)
ωij (β) +

p∑
l=1

γλ(|β̂ (0)
l |)|βl |,

(2.10)

where Xij
def= Xi −Xj , ωij (β)

def= Kh(X�
ij β)/

∑n
i=1Kh(X�

ij β).

Here γλ(t) is some nonnegative function, and β̂(0) is an initial
estimator of β∗ (e.g., linear QR with variable selection). The
penalty term in (2.10) is quite general and it covers the most
popular variable selection criteria as special cases: the Lasso
(Tibshirani 1996) with γλ(x) = λ and the SCAD (Fan and Li
2001) with

γλ(x) = λ

{
1(|x| ≤ λ) − (|x|2 − 2c1λ|x| + λ2)+

|x|(c1 − 1)2λ

× 1(λ < |x| ≤ c1λ) + (c1 + 1)λ

2|x| 1(|x| > c1λ)

}
,

with (c1 > 2) and γλ(x) = λ|x|−c2 for some c2 > 0 correspond-
ing to the adaptive Lasso (Zou 2006).

We propose to estimate β∗ in (2.10) with the MACE iterative
procedure described below. Denote β̂w the final estimate of β∗.
Specifically, for t = 1, 2, . . ., iterate the following two steps.
Denote β̂(t) as the estimate at step t.

a. Given β̂(t), standardize β̂(t) so that β̂(t) has length one and
positive first component. Then compute

(â(t)
j , b̂

(t)
j )

def= arg min
(aj ,bj )′s

n∑
i=1

ρw
(
Yi − aj − bjX

�
ij β̂

(t)
)
ωij (β̂

(t)).

(2.11)

b. Given (â(t)
j , b̂

(t)
j ), solve

β̂(t+1) = arg min
β

n∑
j=1

n∑
i=1

ρw
(
Yi − â

(t)
j − b̂

(t)
j X

�
ij β

)

×ωij (β̂(t)) + n

p∑
l=1

d̂
(t)
l |βl|, (2.12)

where d̂ (t)
l

def= γλ(|β̂(t)
l |). Please note here that the kernel

weights ωij (·) use the β̂(t) from the step before.

When choosing the penalty parameter λ, we adopt a Cp-type
criterion as in Yuan and Lin (2006) instead of the computa-
tionally involved cross-validation method. We choose the op-
timal weights of the convex loss functions ρw by minimizing
the asymptotic variance of the resulting estimator of β∗, and the
bandwidth h by criteria proposed in Yu and Jones (1998) for g(·).

3. MAIN THEOREMS

Define β̂w
def= (β̂�

w(1), β̂
�
w(2))

� as the estimator for β∗ def=
(β∗�

(1) , β
∗�
(2) )� attained by the procedure in (2.11) and (2.12).

Let β̂w(1) and β̂w(2) be the first q components and the remaining
p − q components of β̂w, respectively. If in the iterations, we
have the initial estimator β̂(0)

(1) as a
√
n/q consistent one for β∗

(1)
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(2.12), we will obtain with a very high probability, an oracle
estimator of the following type, say β̂w = (β̂�

w(1), 0�)�, since

the oracle knows the true active set M∗
def= {l : β∗

l 
= 0}. The
following theorem shows that the penalized estimator enjoys
the oracle property. Define β̂0 (note that it is different from the
initial estimator β̂(0)

(1) ) as the minimizer with the same loss in
(2.10) but within subspace {β ∈ Rp : βMc∗ = 0}.

We make the following assumptions for the proofs of the

theorems in this article. Let Zi
def= X�

i β
∗ and Zij

def= Zi − Zj .

Condition 1. The kernel K(·) is a continuous symmetric func-
tion. The link function g(·) ∈ C2, whereC2 is the function space
consisting of functions with second-order continuous deriva-
tives.

Condition 2. Assume that for all k = 1, . . . , K , ρk(x) is con-
vex and not continuous on finite number of points. Suppose
ψk(x), the derivative (or a subgradient of ) of ρk(x), satis-
fies E{ψk(ε)|Zi} would only be a function related to k such

that E{ψw(ε)|Zi} = 0, a.s., E{ψ2
k (ε)|Zi} < ∞. Let Hi(c)

def=
inf|v|≤c ∂ Eψw(εi − v) = C1, where ∂ Eψk(ε − v) is the partial
derivative with respect to v, and c and C1 are positive constants.

Condition 3. {(Xi, Yi)}ni=1 be n iid copies of (X, Y ). The density
of β∗�X is bounded with bounded absolute continuous first-
order derivatives on its support. Let Xi(1) denote the sub-vector
of Xi consisting of its first q elements.

Define

C1(1)
def= E

[
E εi |Ziψ

2
w(εi)

{
[g′(Zi)]2

(
E(Xi(1))

− Xi(1)
) (

E(Xi(1)) −Xi(1)
)�} ]

(3.1)

C0(1)
def= E

[
∂ E εi |Ziψw(εi)

{
[g′(Zi)]2

(
E(Xi(1)|Zi)

− Xi(1)
) (

E(Xi(1)|Zi) −Xi(1)
)�} ]

(3.2)

and the matrix C0(1) satisfies 0 < L1 ≤ λmin(C0(1)) ≤
λmax(C0(1)) ≤ L2 < ∞ for positive constants L1 and L2. There
exists a constant C3 such that for all β ∈ {‖β − β∗‖ ≤ C3},

‖ E
[
∂ E ε|Zi {ψw(ε)}g′(Zi)

{
(X(0)|Zi) −Xi(0)

}
× {

(X(1)|Zi) −Xi(1)
}�]

‖2,∞ = O(1),

where for a matrix B, ‖B‖2,∞ = max‖u‖=1 ‖Bu‖∞.

Condition 4. Let dl
def= γλ(|β∗

l |) with the penalty parame-

ter lim infn→∞ λ ≥ n−1/2+α2/2 and Dn
def= max{dl : l ∈ M∗} =

O(nα1−α2/2λ), where M∗ = {l : β∗
l 
= 0} be the true model. As-

sume that lim infn→∞ minj {dj/λ : j ∈ Mc
∗} > 0. Furthermore,

assume qh → 0 and h−1√q/n = O(1) as n goes to infinity,
q = O(nα2 ), p = O{exp(nδ)}, nh3 → ∞, and h → 0. Also,
0 < δ < α < α2/2 < 1/2, α2/2 < α1 < 1.

Condition 5. The error term εi satisfies var(εi) < ∞. Assume
that for any integer m ≥ 1

E
∣∣ψm

w (εi)/m!
∣∣ ≤ s0M

m (3.3)

where s0 and M are constants, and ψw(·) is the derivative (a
subgradient) of ρw(·).

Condition 6. The conditional density function f (ε|Zi = u) is
bounded and absolutely continuous differentiable.

Condition 1 is commonly used and the standard normal
probability density function is a kernel satisfying this con-
dition. Condition 2 is made on the weighted loss function
so that it admits a quadratic approximation. Condition 2 as-
sumes the dependence structure between errors and the covari-
ates. For the CQR estimation in case of K > 1, it means that
F−1
Y |X(τk) = g(β∗�X) + c(τk) for all τ1 ≤ τk ≤ τK , where c(τk)

is only a constant depending on τk; this is a similar condi-
tion as Wang, Li, and He (2012). For K = 1 the assumption
E{ψw(ε)|X} = 0 a.s. to F−1

ε|X(τ ) = 0. Under Condition 3, the
matrix in the quadratic approximation is nonsingular, so that the
resulting estimate of β has a nondegenerate limiting distribu-
tion. Condition 4 guarantees that the proposed variable selection
and estimation procedure for β is model-consistent. Condition
5 implies a common tail behavior that we employ. Condition 6
is essential for the uniform Bahadur representation, which we
adopt in the proof.

Theorem 1. Under Conditions 1–6, the estimators β̂0 and
β̂w exist and coincide on a set with probability tending to 1.
Moreover,

P(β̂0 = β̂w) ≥ 1 − (p − q) exp(−C ′nα) (3.4)

for a positive constant C ′.

It is worth noting that the above results imply the usual sign
consistency; see, for example, Fan and Lv (2010). In addition,
the theorem requires a relationship between the order of p, q,
and the parameter α; see Condition 4.

Theorem 2. Under Conditions 1–6, we have

‖β̂w(1) − β∗
(1)‖ = Op{(Dn + n−1/2)

√
q}. (3.5)

For any unit vector b in Rq , we have

b�C1/2
0(1)C

−1/2
1(1) C

1/2
0(1)

√
n(β̂w(1) − β∗

(1))
L−→ N(0, 1), (3.6)

where recall that C1(1)
def= E{E{ψ2

w(εi)|Zi}[g′(Zi)]2[E(Xi(1)|Zi)
−Xi(1)][E(Xi(1)|Zi) −Xi(1)]�}, and C0(1)

def= E{∂ Eψw(εi)|Zi}
{[g′(Zi)]2(E(Xi(1)|Zi) −Xi(1))(E(Xi(1)|Zi) −Xi(1))}�. Note

that E(Xi(1)|Zi) denotes a q × 1 dimension vector, and Zi
def=

X�
i β

∗, ψw(ε) is a choice of the subgradient of ρw(ε) and σ 2
w

def=
E{[ψw(εi)]2}/[∂ Eψw(εi)]2, where

∂ E{ψw(·)|Zi} = ∂ E{ψw(εi − v)2|Zi}
∂v

∣∣∣
v=0
. (3.7)

It is worth noting that in the case of quantile regression, σ 2
w =

τ (1 − τ )/fε|Z(0)2.

Let us now look at the distribution of the estimated link func-
tion ĝ(x�β̂w) with the consistent estimate forβ∗ and the estimate
ĝ′(x�β̂w) with the consistent estimate of β∗ plugged in.

Theorem 3. Under conditions 1–6, let μj
def= ∫

ujK(u)du

and νj
def= ∫

ujK2(u)du, j = 0, 1, 2. For any interior point
z = x�β∗, fZ(z) is the density ofZi , i = 1, . . . , n, if nh3 → ∞
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and h → 0, we have
√
nh

√
fZ(z)/(ν0σ 2

w)
{
ĝ(x�β̂w) − g(x�β∗)

− 1

2
h2g′′(x�β∗)μ2∂ Eψw

(
ε
)} L−→ N (0, 1) .

Also, we have
√
nh3

√{
fZ(z)μ2

2

}
/(ν2σ 2

w)
{
ĝ′(x�β̂w)

− g′(x�β∗)
} L−→ N (0, 1) ,

not that
√
fZ(z)/(ν0σ 2

w) and
√
fZ(z)μ2

2/(ν2σ 2
w) are the scaling

according to the standard deviations of the estimates, and recall

σ 2
w

def= E{[ψw(εi)]2}/[∂ Eψw(εi)]2.

All the proofs of the theorems can be found in the online
supplementary materials.

4. SIMULATION

In this section, we evaluate our technique in several settings,
involving different combinations of link functions g(·), distri-
butions of ε, and different choices of (n, p, q, τ )’s, where n is
the sample size, p is the dimension of the true parameter β∗, q is
the number of nonzero components in β∗, and τ represents the
quantile level. The evaluation is first done with a simple quantile
loss function, and then with the compositeL1 − L2 and the com-
posite quantile cases. The weights w1, . . . ,wK are preestimated
by minimizing the object

∑K
l

∑K
k wlwk

∑n
i=1 ψl(ε̂

(0)
i )ψk(ε̂

(0)
i ),

where ε̂(0)
i ’s are residuals for the initial estimator.

4.1 Link Functions

Consider the following nonlinear link functions g(·)s.
Model 1:

Yi = 5 cos (D1 · Zi) + exp
(−D1 · Z2

i

) + εi, (4.1)

where Zi = X�
i β

∗,D1 = 0.01 is a scaling constant, and εi is an
error term. Model 2:

Yi = 10 sin{π (A · Zi − B)} + εi, (4.2)

with the parameters A = 0.3, B = 3. Finally, Model 3 is with
D2 = 0.1:

Yi = 10 sin(D2 · Zi) +
√

| sin(0.5 · Zi) + εi |. (4.3)

4.2 Criteria

For estimation accuracy for β and g(·), we use the following
four criteria to measure:

1. Standardized L2 norm:

Dev
def= ‖β∗ − β̂‖

‖β∗‖ ,

2. Sign consistency:

Acc
def=

p∑
l=1

|1{β∗
l 
= 0} − 1{β̂l 
= 0}|,

3. Least angle:

Angle
def= β∗�β̂

‖β∗‖ · ‖β̂‖ ,

4. Average squared error:

ASE
def= 1

n

n∑
i=1

{
g(Zi) − ĝ(Ẑi)

}2
.

4.3 L 1-Norm Quantile Regression

We adopt the algorithm for the L1-norm quantile regression
developed by Li and Zhu (2008). The initial estimate of β∗ can
be calculated by the L1-norm quantile regression, and then we
perform the two-step iterations mentioned in Section 2. Recall
that X is a p × nmatrix, and q is the number of nonzero compo-
nents in β∗. The jth column of X is an iid sample from N(j/2, 1).
Two error distributions are considered: εi ∼ N(0, 0.1) and t(5).
Note that β∗

(1) is the vector of the nonzero components in β∗. In
the simulation, we consider different β∗

(1): β
∗�
(1) = (5, 5, 5, 5, 5),

β∗�
(1) = (5, 4, 3, 2, 1), and β∗�

(1) = (5, 2, 1, 0.8, 0.2). Here the in-
dices Zi’s are rescaled to [0, 1] for nonparametric estimation.
The bandwidth is selected as in Yu and Jones (1998):

hτ = hmean
[
τ (1 − τ )ϕ{�−1(τ )}−2

]0.2
,

where hmean can be calculated by using the direct plug-in
methodology of a local linear regression described by Ruppert,
Sheather, and Wand (1995). To see the performance of the band-
width selection, we compare the estimated link functions with
different bandwidths. Figure 1 is an example showing the true
link function (gray) and the estimated link function (black). The
left plot in Figure 1 is with the bandwidth (h = 0.68) selected

0.0 0.2 0.4 0.6 0.8 1.0−1
.0

−0
.5

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0−1
.0

−0
.5

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0−1
.0

−0
.5

0.
0

0.
5

1.
0

Figure 1. The true link functions (gray) and the estimated link functions (black) in Model 2 with β∗�
(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1),

n = 100, p = 10, q = 5, τ = 0.05, where h = 0.68 (left), h = 0.068 (middle), and h = 0.8 (right).
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Table 1. Criteria evaluated with different models and quantiles

g(·) ε τ Dev Acc Angle ASE

0.95 1.213 (0.332) 0.949 (0.327) 9.656 (0.086) 0.357 (0.085)
N 0.50 1.132 (0.137) 0.993 (0.244) 9.736 (0.022) 0.247 (0.044)

0.05 1.346 (0.532) 1.335 (0.443) 9.626 (0.116) 0.260 (0.076)
Model 1 0.95 1.736 (0.744) 0.926 (0.478) 9.548 (0.135) 0.809 (0.097)

t 0.50 1.236 (0.246) 1.157 (0.357) 9.667 (0.040) 0.448 (0.093)
0.05 1.536 (0.737) 2.447 (0.446) 9.570 (0.126) 0.923 (0.097)
0.95 4.679 (0.854) 6.579 (0.643) 9.581 (0.658) 1.768 (0.247)

N 0.50 1.489 (0.458) 5.015 (0.436) 9.455 (0.274) 1.156 (0.464)
0.05 1.501 (0.825) 6.858 (0.747) 9.388 (0.658) 2.015 (0.274)

Model 2 0.95 5.325 (0.960) 9.226 (0.758) 9.360 (0.567) 2.467 (0.351)
t 0.50 1.689 (0.557) 7.004 (0.879) 9.409 (0.379) 1.279 (0.473)

0.05 2.065 (0.847) 8.546 (0.951) 9.475 (0.531) 2.639 (0.368)
0.95 0.757 (0.269) 1.702 (0.248) 9.966 (0.013) 0.569 (0.162)

N 0.50 0.618 (0.175) 1.434 (0.186) 9.867 (0.021) 0.695 (0.104)
0.05 0.558 (0.315) 1.845 (0.173) 9.979 (0.024) 0.758 (0.173)

Model 3 0.95 0.625 (0.287) 1.849 (0.284) 9.836 (0.038) 0.736 (0.174)
t 0.50 0.647 (0.135) 1.655 (0.303) 9.758 (0.029) 0.789 (0.115)

0.05 0.918 (0.260) 1.879 (0.334) 9.879 (0.036) 0.847 (0.283)

NOTE: β∗�
(1) = (5, 5, 5, 5, 5), N means the error ε follows a N (0, 0.1) distribution, t means the error ε follows a t(5) distribution. In 10,000 simulations we set n = 100, p = 10, q = 5.

Standard deviations are given in brackets. Dev, Acc, Angle, Error, and their standard deviations are reported in 10−1. ASE and its standard deviations are reported in 10−2.

by applying the aforementioned bandwidth selection. We can
see that the estimated link function curve is relatively smooth.
The middle plot shows the estimated link function with a smaller
bandwidth (h = 0.068). It can be seen that the estimated curve is
wiggly shaped. The right plot shows the estimated link function
with a larger bandwidth (h = 0.8); the deviation between the
estimated link function curve and the true curve is very large.

Table 1 shows the criteria evaluated with different models and
quantile levels. Here β∗�

(1) = (5, 5, 5, 5, 5), the error ε follows a
N (0, 0.1) distribution or follows a t(5) distribution. In 10,000

simulations we setp = 10, q = 5. Standard deviations are given
in brackets. We find that for quantile levels 0.95 and 0.05, the
errors are usually slightly larger than the median. Although the
estimations for Model 2 are not as good as for Models 1 and 3,
the errors are still moderate. Figures 2 and 3 present the plots of
the true link functions against the estimated ones for different
quantile levels.

Table 2 reports on the criteria evaluated under different
β∗

(1) cases. In this table two different β∗
(1) are considered: (a)

β∗�
(1) = (5, 4, 3, 2, 1), (b) β∗�

(1) = (5, 2, 1, 0.8, 0.2), the error ε
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Figure 2. The true link functions (gray) and the estimated link functions (black) with β∗�
(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p =

10, q = 5, τ = 0.95, Model 1 (left) with h = 1.02, Model 2 (middle) with h = 0.15, and Model 3 (right) with h = 0.76.
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Figure 3. The true link functions (gray) and the estimated link functions (black) with β∗�
(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p =

10, q = 5, τ = 0.05, Model 1 (left) with h = 0.78, Model 2 (middle) with h = 0.12, and Model 3 (right) with h = 0.78.
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Table 2. Criteria evaluated with different models

n g(·) β∗
(1) Dev Acc Angle ASE

Model 1 (a) 1.402 (0.351) 1.009 (0.361) 9.735 (0.071) 0.232 (0.094)
(b) 1.718 (0.393) 1.313 (0.391) 9.391 (0.084) 0.353 (0.119)

100 Model 2 (a) 1.849 (0.867) 7.367 (0.944) 9.446 (0.423) 1.451 (0.852)
(b) 2.304 (0.913) 9.505 (0.958) 9.341 (0.556) 1.845 (0.914)

Model 3 (a) 0.406 (0.256) 1.519 (0.243) 9.643 (0.066) 0.857 (0.125)
(b) 0.835 (0.294) 1.781 (0.289) 9.426 (0.073) 0.906 (0.136)

Model 1 (a) 1.318 (0.368) 0.825 (0.221) 9.756 (0.062) 0.179 (0.088)
(b) 1.409 (0.312) 0.956 (0.252) 9.682 (0.079) 0.302 (0.073)

200 Model 2 (a) 1.833 (0.751) 5.126 (0.936) 9.476 (0.392) 1.338 (0.701)
(b) 2.257 (0.887) 7.366 (0.910) 9.385 (0.460) 1.754 (0.843)

Model 3 (a) 0.389 (0.231) 1.597 (0.288) 9.632 (0.052) 0.777 (0.112)
(b) 0.533 (0.281) 1.624 (0.290) 9.538 (0.061) 0.864 (0.129)

Model 1 (a) 1.012 (0.287) 0.714 (0.225) 9.846 (0.061) 0.124 (0.073)
(b) 1.302 (0.301) 0.854 (0.245) 9.797 (0.070) 0.287 (0.061)

500 Model 2 (a) 1.622 (0.564) 5.024 (0.821) 9.495 (0.302) 1.204 (0.592)
(b) 2.176 (0.636) 6.015 (0.801) 9.452 (0.363) 1.512 (0.614)

Model 3 (a) 0.361 (0.211) 1.419 (0.202) 9.781 (0.029) 0.626 (0.091)
(b) 0.423 (0.235) 1.612 (0.236) 9.652 (0.037) 0.751 (0.111)

NOTE: Two different β∗
(1): (a) β∗�

(1) = (5, 4, 3, 2, 1), (b) β∗�
(1) = (5, 2, 1, 0.8, 0.2); the error ε follows a N (0, 0.1) distribution. In 10,000 simulations we set p = 10, q = 5, τ = 0.95.

Standard deviations are given in brackets. Dev, Acc, Angle, and their standard deviations are reported in 10−1; ASE and its standard deviations are reported in 10−2.

follows a N (0, 0.1) distribution. In 10,000 simulations we
set p = 10, q = 5, τ = 0.95. Standard deviations are given in
brackets. We notice that for the case (b), the estimation results
are not better than (a) since the smaller values of β∗

(1) in case
(b) would be estimated as zeros, and the estimation of the link
function would be affected as well. Figures 5 and 6 are the plots
of the estimated link functions in these two cases.

Table 3 shows the criteria evaluated under the p > n case.
Here β∗�

(1) = (5, 5, 5, 5, 5), the error ε follows a N (0, 0.1) distri-
bution. In 10,000 simulations we set p = 200, q = 5, τ = 0.05.
Standard deviations are given in brackets. We find that the errors

are still moderate in the p > n situation compared with Table 1.
Figure 7 shows the graphs in this case.

4.4 Composite L 1-L 2 Regression

In this section, a combined L1 and L2 loss is considered and
thus the corresponding optimization is formed as

arg min
β,g(·)

[ n∑
i=1

w1|Yi − g
(
X�
i β

) | + w2

n∑
i=1

{Yi − g
(
X�
i β

)}2ωi(β)

+n
p∑
l=1

γλ(|βl |)|βl |
]
. (4.4)
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Figure 4. The true link functions (gray) and the estimated link functions (black) with β∗�
(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p =

10, q = 5, τ = 0.5, Model 1 (left) with h = 0.55, Model 2 (middle) with h = 0.13, and Model 3 (right) with h = 0.65.
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Figure 5. The true link functions (gray) and the estimated link functions (black) with β∗�
(1) = (5, 4, 3, 2, 1), and ε ∼ N(0, 0.1), n = 100, p =

10, q = 5, τ = 0.95, Model 1 (left) with h = 0.31, Model 2 (middle) with h = 0.09, and Model 3 (right) with h = 0.8.
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Table 3. Criteria evaluated with different models p ≥ n case

n g(·) Dev Acc Angle ASE

Model 1 1.880 (0.753) 2.535 (0.847) 9.303 (0.157) 1.812 (0.239)
100 Model 2 2.859 (0.954) 9.613 (1.411) 9.035 (0.835) 3.465 (0.936)

Model 3 1.554 (0.635) 3.143 (0.866) 9.265 (0.095) 3.354 (0.297)
Model 1 1.865 (0.744) 1.818 (0.724) 9.331 (0.125) 1.103 (0.233)

200 Model 2 2.433 (0.822) 8.499 (1.222) 9.112 (0.709) 2.224 (0.931)
Model 3 1.415 (0.602) 2.001 (0.713) 9.303 (0.079) 2.915 (0.203)

NOTE: β∗�
(1) = (5, 5, 5, 5, 5); the error ε follows a N (0, 0.1) distribution. In 10, 000 simulations we set p = 200, q = 5, τ = 0.05. Standard deviations are given in brackets. Dev, Acc,

Angle, and their standard deviations are reported in 10−1; ASE and its standard deviations are reported in 10−2.

It can be further formulated as

arg min
β,g(·)

[ n∑
i=1

{w1|Yi − g
(
X�
i β

) |−1 + w2}|Yi − g
(
X�
i β

) |2

×ωi(β) + n

p∑
l=1

γλ(|βl|)|βl|
]
. (4.5)

Let Resti
def= Yi − ĝt (X�

i β̂
t ) be the residual at tth step, and the

final estimate can be acquired by the iteration between g(·) and
β until convergence:

arg min
β,g(·)

[ n∑
i=1

{w1|Resti |−1 + w2}|Yi − g
(
X�
i β

) |2ωi(β̂(t))

+n
p∑
l=1

γλ(|βl|)|βl|
]
. (4.6)

Three different settings are conducted. The results are re-
ported in Table 4. Figure 8 (the upper panel) shows the differ-
ence between the estimated and true g(·) functions. The level of

estimation error is roughly the same as the previous level. Also
the results would not change too much with respect to the error
distributions and the increasing dimension of p, since only the
dimension of q matters.

4.5 Composite L 1 Quantile Regression

We use majorize-minimization (MM) algorithm for a large-
scale regression problem. Table 5 shows the estimation qual-
ity. Compared with the results in Table 1, the estimation effi-
ciency is improved, even in the case of p > n. Figure 8 presents
the plots of the estimated link functions for different mod-
els using both the composite L1 regression and the L1 − L2

regression.

5. APPLICATION

In this section, we apply the proposed methodology to an-
alyze risk for a specific firm conditioning on macro and other
firm variables. More specifically, for small financial firms, we
aim to detect the contagion effects and the potential risk contri-
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Figure 6. The true link functions (gray) and the estimated link functions (black) with β∗�
(1) = (5, 2, 1, 0.8, 0.2), and ε ∼ N(0, 0.1), n =

100, p = 10, q = 5, τ = 0.95, Model 1 (left) with h = 0.21, Model 2 (middle) with h = 0.18, and Model 3 (right) with h = 0.25.
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Figure 7. The true link functions (gray) and the estimated link functions (black) with β∗�
(1) = (5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p =

200, q = 5, τ = 0.05, Model 1 (left) with h = 0.81, Model 2 (middle) with h = 0.22, and Model 3 (right) with h = 0.57.
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Table 4. Simulation results under sparsity, nonsparsity, and large p cases

n Model Settings ε Dev Acc Angle ASE

p = 10, q = 2 N 1.033 (0.141) 1.037 (0.231) 9.888 (0.016) 0.223 (0.031)
t 1.223 (0.230) 1.132 (1.237) 9.860 (0.021) 0.281 (0.047)

Model 1 p = 10, q = 7 N 1.163 (0.201) 1.219 (0.211) 9.833 (0.023) 0.290 (0.049)
t 1.444 (0.232) 1.298 (0.277) 9.805 (0.050) 0.318 (0.079)

p = 100, q = 5 N 1.484 (0.303) 1.624 (1.426) 9.344 (0.091) 0.473 (0.216)
t 1.576 (0.365) 1.845 (0.445) 9.311 (0.106) 0.534 (0.223)

100 Model 2 p = 10, q = 2 N 1.134 (0.277) 6.392 (0.381) 9.399 (0.125) 1.146 (0.216)
t 1.235 (0.295) 6.442 (0.412) 9.391 (0.136) 1.241 (0.227)

p = 10, q = 7 N 1.323 (0.346) 7.723 (0.682) 9.281 (0.287) 1.401 (0.321)
t 1.706 (0.368) 7.953 (0.704) 9.259 (0.314) 1.577 (0.361)

p = 100, q = 5 N 1.207 (0.483) 8.387 (0.891) 9.230 (0.359) 1.728 (0.673)
t 1.994 (0.494) 8.543 (0.903) 9.142 (0.416) 1.751 (0.701)

Model 3 p = 10, q = 2 N 0.880 (0.153) 1.254 (0.143) 9.968 (0.018) 0.550 (0.091)
t 1.077 (0.175) 1.366 (0.145) 9.951 (0.023) 0.740 (0.102)

p = 10, q = 7 N 1.285 (0.183) 1.553 (0.197) 9.950 (0.036) 0.838 (0.127)
t 1.334 (0.195) 1.680 (0.257) 9.947 (0.048) 0.843 (0.139)

p = 100, q = 5 N 1.369 (0.235) 2.023 (0.636) 9.377 (0.054) 1.304 (0.182)
t 1.494 (0.383) 2.293 (0.652) 9.344 (0.063) 1.880 (0.197)

Model 1 p = 10, q = 2 N 1.203 (0.132) 0.999 (0.193) 9.898 (0.010) 0.214 (0.031)
t 1.338 (0.147) 1.019 (0.201) 9.835 (0.009) 0.237 (0.035)

p = 10, q = 7 N 1.208 (0.166) 1.118 (0.218) 9.882 (0.012) 0.309 (0.046)
t 1.457 (0.178) 1.236 (0.242) 9.802 (0.018) 0.306 (0.072)

p = 100, q = 5 N 1.434 (0.183) 1.478 (0.396) 9.323 (0.063) 0.332 (0.152)
t 1.482 (0.217) 1.646 (0.401) 9.315 (0.088) 0.491 (0.179)

500 Model 2 p = 10, q = 2 N 1.036 (0.222) 6.021 (0.311) 9.598 (0.133) 1.026 (0.211)
t 1.133 (0.290) 6.129 (0.411) 9.435 (0.169) 1.198 (0.231)

p = 10, q = 7 N 1.152 (0.229) 7.069 (0.518) 9.402 (0.212) 1.364 (0.288)
t 1.468 (0.289) 7.188 (0.625) 9.382 (0.268) 1.473 (0.306)

p = 100, q = 5 N 1.773 (0.461) 8.327 (0.794) 9.207 (0.281) 1.691 (0.652)
t 1.872 (0.489) 8.376 (0.864) 9.141 (0.299) 1.706 (0.691)

Model 3 p = 10, q = 2 N 0.746 (0.102) 1.023 (0.103) 9.590 (0.013) 0.498 (0.081)
t 0.865 (0.169) 1.215 (0.128) 9.481 (0.020) 0.502 (0.099)

p = 10, q = 7 N 0.992 (0.187) 1.436 (0.137) 9.487 (0.029) 0.578 (0.112)
t 1.003 (0.193) 1.478 (0.186) 9.459 (0.032) 0.624 (0.131)

p = 100, q = 5 N 1.209 (0.203) 1.646 (0.468) 9.381 (0.041) 0.847 (0.165)
t 1.402 (0.353) 2.219 (0.579) 9.343 (0.053) 0.781 (0.194)

NOTE: N means errors follow i.i.d. N(0, 0.1); t means t distribution with degree of 5. Dev, Acc, Angle, and their standard deviations are reported in 10−1; ASE and its standard deviations
are reported in 10−2.
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Figure 8. Plot of the true function g(·) (gray) and the estimation (black) with n = 100, p = 10, q = 5 and ε ∼ N(0, 0.1) in different g(·)
functions. L1–L2 regression, h = 0.6, 0.3, 0.4 (upper pannel); composite quantile h = 0.5, 0.2, 0.5 (lower panel).

D
ow

nl
oa

de
d 

by
 [

H
um

bo
ld

t-
U

ni
ve

rs
it&

au
m

l;t
 z

u 
B

er
lin

 U
ni

ve
rs

it&
au

m
l;t

sb
ib

lio
th

ek
] 

at
 0

2:
37

 1
2 

Ja
nu

ar
y 

20
18

 



10 Journal of Business & Economic Statistics, xxxx 2017

Table 5. Simulation results for composite L1 quantile regression

n Model Settings ε Dev Acc Angle ASE

p = 10, q = 2 N 2.638 (0.053) 0.774 (0.149) 9.993 (0.013) 0.142 (0.022)
t 1.038 (0.125) 0.899 (0.156) 9.991 (0.014) 0.145 (0.031)

Model 1 p = 30, q = 3 N 1.148 (0.141) 1.072 (0.175) 9.828 (0.011) 0.169 (0.043)
t 1.166 (0.106) 1.197 (0.193) 9.576 (0.012) 0.257 (0.063)

p = 120, q = 5 N 1.183 (0.186) 1.207 (0.191) 9.421 (0.040) 0.332 (0.114)
t 1.336 (0.215) 1.219 (0.201) 9.403 (0.063) 0.367 (0.119)

100 Model 2 p = 10, q = 2 N 1.119 (0.213) 4.001 (0.282) 9.592 (0.101) 1.112 (0.212)
t 1.215 (0.241) 4.086 (0.323) 9.499 (0.117) 1.244 (0.218)

p = 30, q = 3 N 1.335 (0.252) 5.154 (0.393) 9.595 (0.132) 1.304 (0.311)
t 1.359 (0.282) 5.538 (0.462) 9.583 (0.168) 1.383 (0.381)

p = 120, q = 5 N 1.742 (0.289) 6.703 (0.504) 9.382 (0.202) 1.453 (0.412)
t 1.946 (0.320) 7.335 (0.611) 9.363 (0.310) 1.626 (0.503)

Model 3 p = 10, q = 2 N 0.415 (0.086) 1.007 (0.100) 9.974 (0.011) 0.426 (0.041)
t 0.512 (0.093) 1.032 (0.113) 9.968 (0.013) 0.493 (0.059)

p = 30, q = 3 N 0.841 (0.143) 1.167 (0.139) 9.965 (0.013) 0.528 (0.060)
t 0.953 (0.153) 1.235 (0.155) 9.962 (0.022) 0.560 (0.069)

p = 120, q = 5 N 0.883 (0.161) 1.357 (0.168) 9.575 (0.034) 0.892 (0.104)
t 0.903 (0.233) 1.946 (0.273) 9.553 (0.044) 0.949 (0.113)

Model 1 p = 10, q = 2 N 0.935 (0.102) 0.609 (0.102) 9.998 (0.003) 0.114 (0.018)
t 1.026 (0.134) 0.774 (0.124) 9.992 (0.005) 0.125 (0.029)

p = 30, q = 3 N 1.132 (0.142) 0.852 (0.138) 9.993 (0.005) 0.133 (0.033)
t 1.148 (0.116) 0.945 (0.165) 9.991 (0.006) 0.174 (0.049)

p = 120, q = 5 N 1.157 (0.125) 1.144 (0.185) 9.543 (0.030) 0.247 (0.110)
t 1.275 (0.166) 1.232 (0.196) 9.572 (0.046) 0.303 (0.115)

500 Model 2 p = 10, q = 2 N 1.104 (0.206) 3.908 (0.260) 9.691 (0.053) 1.009 (0.116)
t 1.185 (0.214) 4.105 (0.273) 9.685 (0.055) 1.216 (0.151)

p = 30, q = 3 N 1.286 (0.219) 4.239 (0.294) 9.552 (0.050) 1.309 (0.216)
t 1.294 (0.278) 5.046 (0.347) 9.504 (0.127) 1.316 (0.231)

p = 120, q = 5 N 1.727 (0.246) 5.675 (0.405) 9.459 (0.134) 1.448 (0.317)
t 1.824 (0.289) 5.856 (0.581) 9.443 (0.168) 1.497 (0.413)

Model 3 p = 10, q = 2 N 0.380 (0.076) 0.996 (0.087) 9.993 (0.010) 0.391 (0.040)
t 0.508 (0.087) 1.022 (0.116) 9.990 (0.016) 0.446 (0.048)

p = 30, q = 3 N 0.763 (0.092) 1.154 (0.125) 9.982 (0.016) 0.514 (0.051)
t 0.846 (0.104) 1.265 (0.142) 9.971 (0.020) 0.546 (0.064)

p = 120, q = 5 N 0.966 (0.113) 1.843 (0.193) 9.833 (0.022) 0.768 (0.087)
t 1.124 (0.235) 1.898 (0.237) 9.742 (0.031) 0.830 (0.104)

NOTE: N means errors follow iid N(0, 0.1); t means t distribution with degree of 5. Dev, Acc, Angle, Error, and their standard deviations are reported in 10−1; ASE and its standard
deviations are reported in 10−2.

butions from larger firms and other market variables. As a result
one identifies a risk index, which is expressed as a linear com-
bination, composed of selected large firm returns and market
prudential variables.

5.1 Data and Risk Calibration

The firm data are selected according to the ranking of
NASDAQ. We take as an example, city national corp. (CYN)

Table 6. The p-values for CaViaR test for V̂aR, ĈoVaRL, and
ĈoVaRSIM for CYN

p-Value Overall Crisis

V̂aR 1.2 × 10−6 0.99

ĈoVaRL 0.01 3.2 × 10−5

ĈoVaRSIM 0.46 0.93

NOTE: T = 2335 in overall period (20060710 − 20151030) and crisis period (20080915 −
20100208).

as our dependent variable. The remaining 199 financial insti-
tutions together with seven lagged macro variables are chosen
as covariates. The list of these firms comes from the website:
http://www.nasdaq.com/screening/companies-by-industry.aspx
?industry=Finance. The daily stock prices of these 200 firms
are from Yahoo Finance for the period from January 5,
2006, to October 30, 2015. The descriptive statistics of the
company, the description of the macro variables, and the list
of the firms (Tables A.2–A.4) can be found in the Appendix.
To evaluate the risk exposure of the firm CYN, we adopt a
modified two-step quantile regression procedure that involves
our quantile single-index model in the second step. The first
one is a quantile regression to calculate the VaR of all the
covariates, respectively. For this propose, one performs QR
of log returns of each covariate on all the lagged macro
variables:

Xi,t = αi + γ�
i Mt−1 + εi,t , (5.1)
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Figure 9. Log returns of JPM (gray) and VaR of log returns of JPM (black); τ = 0.05, T = 2335, window size n = 126; refer to (5.2).

where Xi,t represents the asset return of financial institution i
at time t. Then the VaR of each firm with F−1

εi,t
(τ |Mt−1) = 0 is

obtained by

V̂aR
τ

i,t = α̂i + γ̂�
i Mt−1. (5.2)

Now the second regression is performed using the proposed
MACE method. The response variable is log returns of CYN,
and the explanatory variables are potential risk factors that in-
clude the log returns of those covariates and the lagged macro
variables:

Xj,t = g(S�βj |S) + εj,t , (5.3)

where S
def= [Mt−1, R], R is a vector of log returns for different

firms. βj |S is a p × 1 vector. A detailed list of factors can be
found in Tables A.2–A.4 in the Appendix.

With F−1
εj,t

(τ |S) = 0 the CoVaR for firm j is estimated as

ĈoVaR
τ

j |Ŝ = ĝ(Ŝ�β̂j |S), (5.4)

where Ŝ
def= [Mt−1, V̂ ], with V̂ as the estimated VaR in (5.2).

To evaluate the preciseness of the proposed CoVaR risk mea-
sure, we launch a back-testing procedure. First, one calculates
the violations over time, which is defined as the days on which

the log returns are lower than the estimated VaR or CoVaR:

Îi,t =
{

1, Xi,t < V̂aR
τ

i,t ;
0, otherwise,

where theoretically Ii,t − τ should be a martingale difference
sequence. Then we apply one version of the CaViaR test (see
Berkowitz, Christoffersen, and Pelletier 2011), which adopts a
logit model

Ii,t = α + β1Ii,t−1 + β2VaRi,t + ui,t ,

where ui,t has a logistic distribution. The Wald test is then
applied with null hypothesis: β̂1 = β̂2 = 0; see Franke, Härdle,
and Hafner (2004) for more details.

5.2 Results

We use a moving window size of n = 126 (corresponding
approximately to half a year of trading days) to calculate VaR
of the log returns for the 199 firms, macro variables, and CYN.
Figures 9 and 10 show one illustration of the estimated VaR of
JPM (one covariate in the second step) and CYN, respectively.
It can be seen that the estimated VaR traces the low values of
returns closely, and becomes more volatile when the volatility
of the returns is large.

With the VaR estimation in previous step, we show fur-
ther the estimation of the CoVaR for CYN. The estimation
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Figure 10. Log returns of CYN (gray) and VaR of log returns of CYN (black); τ = 0.05, T = 2335, window size n = 126; refer to (5.2).
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Figure 11. Log returns of CYN (gray) and the estimated CoVaR (black); τ = 0.05, T = 2335, window size n = 126; refer to (5.4).

is conducted in a moving window of size 126. Our tech-
nique is applied with τ = 0.05. We use p = 206 covariates,
and the CoVaR for CYN is estimated with different variables
selected in each window. Figure 11 shows the estimation re-
sults. We further summarize the selected variables in different
windows.

Figure 12 summarizes the selection frequency of the firms and
macro variables for all the windows. The variable 187, “Radian
Group Inc. (RDN),” is the most frequently selected variable with
frequency 752, which indicates the most relevant risk driver for
CYN.

To compare the performance of our proposed measure with
existing measures, we further apply CaViaR test for back-
testing. Figure 13 shows the Îi,t sequence of V̂aR (estimated
value at risk measure) of CYN; there are a total of 23 vi-

Figure 12. The frequency of the firms and macro variables. The X-
axis: 1 − 206 variables, and the Y-axis: the frequency of the variables
selected in the moving window estimation. The variable 187, that is,
“Radian Group Inc. (RDN)” is the most frequently selected variable
with frequency 752.

Figure 13. The violations (i.e., {t : Îi,t = 1}) of V̂aR for CYN(the
dots above), in total 23 violations, T = 2335, τ̂ = 0.009.

Figure 14. The violations (i.e., {t : Îi,t = 1}) of ĈoVaRsim of
CYN(the dots above), in total 28 violations, T = 2335, τ̂ = 0.012.

olations. With T = 2335, the violation proportion is then
τ̂ = 0.009.

From Figure 14 we get the Îi,t sequence of ĈoVaR of CYN;
there are 28 violations out of T = 2335, which means τ̂ =
0.012.

The p-values of the CaViaR tests are then shown in Table 6, in
which we compare our measure ĈoVaRSIM (CoVaR estimated
from single-index model) with the measure attained solely by
doing linear quantile variable selection, that is, ĈoVaRL (see,
e.g., Belloni and Chernozhukov 2011). For the overall period,
only for ĈoVaRSIM, the null hypothesis can not be rejected.
Therefore, V̂aR and ĈoVaRL algorithms do not perform so well
in an overall period. During crisis times, the null hypothesis of
V̂aR and ĈoVaRSIM cannot be rejected; therefore, both V̂aR and
ĈoVaRSIM algorithms perform well during the crisis periods, but
ĈoVaRL’s performance is not favorable.

APPENDIX

A.1 Proof

Proofs are available in the online supplementary materials.

Table A.1. Descriptive statistics of CYN

Mean SD Skewness Kurtosis

Overall period −0.0001 0.0237 0.2821 14.0036
In crisis −9.247 × 10−5 0.0312 0.1326 8.9544
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A.2 Application

The macro variables are the same as suggested by Adrian and Brun-
nermeier (2011) and Chao, Härdle, and Wang (2012). The macro vari-
ables and the corresponding source are listed as follows:

Table A.2. The financial firms

The financial firms

1. Wells Fargo & Co (WFC) 15. Franklin Resources Inc.
(BEN)

2. JP Morgan Chase & Co (JPM) 16. The Travelers Companies,
Inc. (TRV)

3. Bank of America Corp (BAC) 17. AFLAC Inc. (AFL)
4. Citigroup Inc (C) 18. Prudential Financial, Inc.

(PRU)
5. American Express Company

(AXP)
19. State Street Corporation

(STT)
6. U.S. Bancorp (USB) 20. The Chubb Corporation (CB)
7. The Goldman Sachs Group,

Inc. (GS)
21. BB&T Corporation (BBT)

8. American International Group,
Inc. (AIG)

22. Marsh & McLennan
Companies, Inc. (MMC)

9. MetLife, Inc. (MET) 23. The Allstate Corporation
(ALL)

10. Capital One Financial Corp.
(COF)

24. Aon plc (AON)

11. BlackRock, Inc. (BLK) 25. CME Group Inc. (CME)
12. Morgan Stanley (MS) 26. The Charles Schwab

Corporation (SCHW)
13. PNC Financial Services

Group Inc. (PNC)
27. T. Rowe Price Group, Inc.

(TROW)
14. The Bank of New York

Mellon Corporation (BK)
28. Loews Corporation (L)

29. SunTrust Banks, Inc. (STI) 44. Lincoln National
Corporation (LNC)

30. Fifth Third Bancorp (FITB) 45. Affiliated Managers Group
Inc. (AMG)

31. Progressive Corp. (PGR) 46. Cincinnati Financial Corp.
(CINF)

32. M&T Bank Corporation
(MTB)

47. Equifax Inc. (EFX)

33. Ameriprise Financial Inc.
(AMP)

48. Alleghany Corp. (Y)

34. Northern Trust Corporation
(NTRS)

49. Unum Group (UNM)

35. Invesco Ltd. (IVZ) 50. Comerica Incorporated
(CMA)

36. Moody’s Corp. (MCO) 51. W.R. Berkley Corporation
(WRB)

37. Regions Financial Corp. (RF) 52. Fidelity National Financial,
Inc. (FNF)

38. The Hartford Financial
Services Group, Inc. (HIG)

53. Huntington Bancshares
Incorporated (HBAN)

39. TD Ameritrade Holding
Corporation (AMTD)

54. Raymond James Financial
Inc. (RJF)

40. Principal Financial Group
Inc. (PFG)

55. Torchmark Corp. (TMK)

41. SLM Corporation (SLM) 56. Markel Corp. (MKL)
42. KeyCorp (KEY) 57. Ocwen Financial Corp.

(OCN)
43. CNA Financial Corporation

(CNA)
58. Arthur J Gallagher & Co.

(AJG)

Table A.3. The financial firms

The financial firms

59. Hudson City Bancorp, Inc.
(HCBK)

74. Commerce Bancshares, Inc.
(CBSH)

60. People’s United Financial
Inc. (PBCT)

75. Signature Bank (SBNY)

61. SEI Investments Co. (SEIC) 76. Jefferies Group, Inc. (JEF)
62. Nasdaq OMX Group Inc.

(NDAQ)
77. Rollins Inc. (ROL)

63. Brown & Brown Inc. (BRO) 78. Morningstar Inc. (MORN)
64. BOK Financial Corporation

(BOKF)
79. East West Bancorp, Inc.

(EWBC)
65. Zions Bancorp. (ZION) 80. Waddell & Reed Financial

Inc. (WDR)
66. HCC Insurance Holdings Inc.

(HCC)
81. Old Republic International

Corporation (ORI)
67. Eaton Vance Corp. (EV) 82. ProAssurance Corporation

(PRA)
68. Erie Indemnity Company

(ERIE)
83. Assurant Inc. (AIZ)

69. American Financial Group
Inc. (AFG)

84. Hancock Holding Company
(HBHC)

70. Dun & Bradstreet Corp.
(DNB)

85. First Niagara Financial
Group Inc. (FNFG)

71. White Mountains Insurance
Group, Ltd. (WTM)

86. SVB Financial Group (SIVB)

72. Cullen-Frost Bankers, Inc.
(CFR)

87. First Horizon National
Corporation (FHN)

73. Legg Mason Inc. (LM) 88. E-TRADE Financial
Corporation (ETFC)

89. SunTrust Banks, Inc. (STI) 104. Valley National Bancorp
(VLY)

90. Mercury General
Corporation (MCY)

105. KKR Financial Holdings
LLC (KFN)

91. Associated Banc-Corp
(ASBC)

106. Synovus Financial
Corporation (SNV)

92. Credit Acceptance Corp.
(CACC)

107. Texas Capital BancShares
Inc. (TCBI)

93. Protective Life Corporation
(PL)

108. American National
Insurance Co. (ANAT)

94. Federated Investors, Inc. (FII) 109. Washington Federal Inc.
(WAFD)

95. CNO Financial Group, Inc.
(CNO)

110. First Citizens Bancshares
Inc. (FCNCA)

96. Popular, Inc. (BPOP) 111. Kemper Corporation
(KMPR)

97. Bank of Hawaii Corporation
(BOH)

112. UMB Financial Corporation
(UMBF)

98. Fulton Financial Corporation
(FULT)

113. Stifel Financial Corp. (SF)

99. AllianceBernstein Holding
L.P. (AB)

114. CapitalSource Inc. (CSE)

100. TCF Financial Corporation
(TCB)

115. Portfolio Recovery
Associates Inc. (PRAA)

101. Susquehanna Bancshares,
Inc. (SUSQ)

116. Janus Capital Group, Inc.
(JNS)

102. Capitol Federal Financial,
Inc. (CFFN)

117. MBIA Inc. (MBI)

103. Webster Financial Corp.
(WBS)

118. Healthcare Services Group
Inc. (HCSG)
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Table A.4. The financial firms

The financial firms

119. The Hanover Insurance
Group Inc. (THG)

134. BancorpSouth, Inc. (BXS)

120. F.N.B. Corporation (FNB) 135. Privatebancorp Inc. (PVTB)
121. FirstMerit Corporation

(FMER)
136. United Bankshares Inc.

(UBSI)
122. FirstMerit Corporation

(FMER)
137. Old National Bancorp.

(ONB)
123. RLI Corp. (RLI) 138. International Bancshares

Corporation (IBOC)
124. StanCorp Financial Group

Inc. (SFG)
139. First Financial Bankshares

Inc. (FFIN)
125. Trustmark Corporation

(TRMK)
140. Westamerica Bancorp.

(WABC)
126. IberiaBank Corp. (IBKC) 141. Northwest Bancshares, Inc.

(NWBI)
127. Cathay General Bancorp

(CATY)
142. Bank of the Ozarks, Inc.

(OZRK)
128. National Penn Bancshares

Inc. (NPBC)
143. Huntington Bancshares

Incorporated (HBAN)
129. Nelnet, Inc. (NNI) 144. Euronet Worldwide Inc.

(EEFT)
130. Wintrust Financial

Corporation (WTFC)
145. Community Bank System

Inc. (CBU)
131. Umpqua Holdings

Corporation (UMPQ)
146. CVB Financial Corp.

(CVBF)
132. GAMCO Investors, Inc.

(GBL)
147. MB Financial Inc. (MBFI)

133. Sterling Financial Corp.
(STSA)

148. ABM Industries
Incorporated (ABM)

149. Glacier Bancorp Inc.
(GBCI)

164. Citizens Republic Bancorp,
Inc (CRBC)

150. Selective Insurance Group
Inc. (SIGI)

165. Horace Mann Educators
Corp. (HMN)

151. Park National Corp. (PRK) 166. DFC Global Corp. (DLLR)
152. Flagstar Bancorp Inc. (FBC) 167. Navigators Group Inc.

(NAVG)
153. FBL Financial Group Inc.

(FFG)
168. Boston Private Financial

Holdings, Inc. (BPFH)
154. Astoria Financial

Corporation (AF)
169. American Equity

Investment Life Holding Co.
(AEL)

155. World Acceptance Corp.
(WRLD)

170. BlackRock Limited
Duration Income Trust
(BLW)

156. First Midwest Bancorp Inc.
(FMBI)

171. Columbia Banking System
Inc. (COLB)

157. PacWest Bancorp (PACW)) 172. Safety Insurance Group Inc.
(SAFT)

158. First Financial Bancorp.
(FFBC)

173. National Financial Partners
Corp. (NFP)

159. BBCN Bancorp, Inc.
(BBCN)

174. NBT Bancorp, Inc. (NBTB)

160. Provident Financial
Services, Inc. (PFS)

175. Tower Group Inc. (TWGP)

161. FBL Financial Group Inc.
(FFG)

176. Encore Capital Group, Inc.
(ECPG)

162. WisdomTree Investments,
Inc. (WETF)

177. Pinnacle Financial Partners
Inc. (PNFP)

163. Hilltop Holdings Inc.
(HTH)

178. First Commonwealth
Financial Corp. (FCF)
(Continued on next column)

Table A.4. The financial firms (Continued)

The financial firms

179. BancFirst Corporation
(BANF)

190. Berkshire Hills Bancorp
Inc. (BHLB)

180. Independent Bank Corp.
(INDB)

191. Brookline Bancorp, Inc.
(BRKL)

181. Infinity Property and
Casualty Corp. (IPCC)

192. National Western Life
Insurance Company (NWLI)

182. Central Pacific Financial
Corp. (CPF)

193. Tompkins Financial
Corporation (TMP)

183. Kearny Financial Corp.
(KRNY)

194. BGC Partners, Inc. (BGCP)

184. Chemical Financial
Corporation (CHFC)

195. Epoch Investment Partners,
Inc. (EPHC)

185. Banner Corporation
(BANR)

196. United Fire Group, Inc
(UFCS)

186. State Auto Financial Corp.
(STFC)

197. 1st Source Corporation
(SRCE)

187. Radian Group Inc. (RDN) 198. Citizens Inc. (CIA)
188. SCBT Financial

Corporation (SCBT)
199. S&T Bancorp Inc. (STBA)

189. WesBanco Inc. (WSBC)

1. VIX, which measures the implied volatility in the market.
2. The short-term liquidity spread, which is calculated by the differ-

ence between the 3-month Treasury repo rate and 3-month Treasury
constant maturities.

3. The daily change in the 3-month Treasury constant maturities, which
can be defined as the difference between the current day and the
previous day of 3-month Treasury constant maturities.

4. The change in the slope of the yield curve, which is defined by the
difference between the 10-year Treasury constant maturities and the
3-month Treasury constant maturities.

5. The change in the credit spread between 10-year BAA corporate
bonds and the 10-year Treasury constant maturities.

6. The daily S&P500 index returns.
7. The daily Dow Jones U.S. Real Estate index returns.

The repo data can be obtained from the Datastream database, and
the 10-year Treasury constant maturities and BAA corporate bonds
data can be found in the website of the Federal Reserve Board H.15:
http://www.federalreserve.gov/releases/h15/data.htm. Other data are
available in Yahoo Finance. The macro variables’ data are avail-
able from January 4, 2006, to October 29, 2015, with a daily
frequency.

Tables A.1 shows the descriptive statistics of this series. The mean
of CYN in the the overall period (i.e., January 6, 2006, to October
30, 2015) is −0.000118, which is higher than that (−0.000092) in the
crisis period (i.e., from September 15, 2008, to February 8, 2010). The
volatility in the crisis period is higher than it in the overall period. The
p-values of the Jarque Bera test indicate that log returns of CYN are not
normally distributed. We also perform a unit root test, which suggests
that the log returns of CYN are stationary. The mentioned two test
results for the other firms show that all these series are not normally
distributed, but are likely to be stationary.

SUPPLEMENTARY MATERIALS

In the supplementary materials we provide proofs for theorems in
Section 3.
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a b s t r a c t

The class of Generalized Additive Models (GAMs) is a powerful tool which has been well
studied. It helps to identify additive regression structure that can be determined even
more sharply via test procedureswhen some component functions have a parametric form.
Generalized Additive Partially Linear Models (GAPLMs) enjoy the simplicity of GLMs and
the flexibility of GAMs because they combine both parametric and nonparametric com-
ponents. We use the hybrid spline-backfitted kernel estimation method, which combines
the best features of both spline and kernel methods, to make fast, efficient and reliable
estimation under an α-mixing condition. In addition, simultaneous confidence corridors
(SCCs) for testing overall trends and empirical likelihood confidence regions for parameters
are provided under an independence condition. The asymptotic properties are obtained
and simulation results support the theoretical properties. As an illustration, we use GAPLM
methodology to improve the accuracy ratio of the default predictions for 19,610 German
companies. The quantlet for this paper are available on https://github.com.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The class of Generalized Additive Models (GAMs) provides an effective semiparametric regression tool for high-
dimensional data; see [6]. For a response Y and a predictor vector X = (X1, . . . , Xd)⊤, the pdf of Yi conditional on Xi with
respect to a fixed σ -finite measure is from an exponential family, viz.

f (Yi | Xi, φ) = exp [{Yim (Xi) − b {m (Xi)}} /a (φ) + h (Yi, φ)] .

The function b is a given function which relates m (x) to the conditional variance function σ 2 (x) = var (Y | X = x) via the
equation σ 2 (x) = a (φ) b′′ {m (x)}, in which a (φ) is a nuisance parameter that quantifies overdispersion. For theoretical
developments, it is not necessary to assume that the data (Y1,X⊤

1 ), . . . , (Yn,X⊤
n ) come from such an exponential family, but

only that the conditional mean and variance are linked by the relation

var (Y | X = x) = a (φ) b′′
[(b′)−1

{E(Y | X = x)}].
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More specifically, the model is

E (Y | X) = b′

{
c +

d∑
α=1

mα(Xα)

}
, (1)

where b′ is the derivative of function b. Model ((1) ) can be used, e.g., in scoringmethods and analyzing default of companies;
here Y = 1 denotes default and b′

= ey/1 + ey is the link function. Fitting Model (1) to such a default data set leads
to estimated component functions m̂1, . . . , m̂d; see, e.g., [11,25]. Plotting these functions with simultaneous confidence
corridors (SCCs) as developed by [25], one can check the functional form and therefore obtain simpler parameterizations
ofm1, . . . ,md.

The typical approach is to perform a preliminary (nonparametric) analysis on the influence of the component functions,
and onemay improve themodel by introducing parametric components. This will lead to simplification, more interpretabil-
ity andhigher precision in statistical calibration.With these thoughts inmind, GAMs can be extended toGeneralizedAdditive
Partially Linear Models (GAPLM), in which

E (Y | T,X) = b′
{m (T,X)} , (2)

with m (T,X) = β⊤T +
∑d2

α=1mα(Xα), β = (β0, . . . , βd1 )
⊤, T =

(
T0, . . . , Td1

)⊤, and X =
(
X1, . . . , Xd2

)⊤, where T0 = 1 and
Tk ∈ R for all k ∈ {1, . . . , d1}. In this paper, we assume that

var (Y | T = t,X = x) = a (φ) b′′
[
(
b′

)−1
{E (Y | T = t,X = x)}].

Wecanwrite (2) in theusual regression formYi = b′ {m (Ti,Xi)}+σ (Ti,Xi) εi withwhite noise εi that satisfies E (εi | Ti,Xi) =

0, E(ε2
i | Ti,Xi) = 1. For identifiability, we impose the condition

∀α∈{1,...,d2} E {mα(Xα)} = 0. (3)

As in most works on nonparametric smoothing, estimation of the functions m1, . . . ,md2 is conducted on compact sets.
Without loss of generality, let the compact set be ~ = [0, 1]d2 .

Some estimation methods for Model (2) have been proposed, but are either computationally expensive or lacking
theoretical justification. The kernel-based backfitting andmarginal integrationmethods, e.g., in [5,9,24], are computationally
expensive. More advanced non- and semi-parametric models (without link function) have also been studied, e.g., partially
linearmodels and varying-coefficientmodels; see [10,14,16,20,23]. In [20], a nonconcave penalized quasi-likelihoodmethod
was proposed with polynomial spline smoothing for estimation of m1, . . . ,md2 , and deriving quasi-likelihood based
estimators for the linear parameter β ∈ R1+d1 .

To our knowledge, [20] is a pilot paper since it establishes the asymptotic normality of the estimators for the parametric
components in GAPLMs with independent observations. However, the asymptotic normality of the estimators of the
nonparametric component functions m1, . . . ,md2 and SCCs remains to be proved. Recently, [12] studied more complicated
Generalized Additive Coefficient Models by using a two-step spline method, but an iid assumption is required for the
asymptotic properties of the estimation and inference of mα , and the asymptotic normality of parameter estimates has
not been shown either. Nonparametric analysis of deviance tools was developed in [4], which can be used to test the
significance of the nonparametric term in generalized partially linear models with univariate nonparametric component
function. Empirical likelihood based confidence regions for the parameter β and point-wise confidence intervals for the
nonparametric term in generalized partially linear models were also provided in [8].

The spline-backfitted kernel (SBK) estimation introduced in [21] combines the advantages of both kernel and spline
methods and the result is balanced in terms of theory, computation, and interpretation. The basic idea is to pre-smooth
the component functions by spline estimation and then use the kernel method to improve the accuracy of the estimation on
a specificmα . In this paper, we extend the SBK method to calibrate Model (2) with additive nonparametric components and
as a result, we obtain oracle efficiency and asymptotic normality of the estimators for both the parametric and nonparametric
components under α- mixing condition, which complicates the derivation of theoretical properties. With the stronger iid
assumption, we provide an empirical likelihood (EL) based confidence region for the parameterβ due to the advantages of EL
such as increase in coverage accuracy, easy implementation, avoiding estimating variances and Studentizing automatically;
see [8]. In addition,weprovide SCCs for the nonparametric component functions based on themaximal deviation distribution
in [2], so that one can test the hypothesis of the shape for nonparametric terms.

The paper is organized as follows. In Section 2, we discuss the details of (2). In Section 3, the oracle estimator and
its asymptotic properties are introduced. In Section 4, the SBK estimator is introduced and the asymptotics for both the
parametric and nonparametric component estimations is given. In addition, SCCs for testing overall trends and entire shapes
are considered. In Section 5, we apply the methods to simulated and real data examples. All technical proofs are given in
Appendix.
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2. Model assumptions

The space of α-centered square integrable functions on [0, 1] is defined as in [18], viz.

H0
α = {g : E{g(Xα)} = 0, E{g2(Xα)} < ∞}.

Next define the model space M, a collection of functions on Rd2 as

M =

{
g (x) =

d2∑
α=1

gα(x) : gα ∈ H0
α

}
.

The constraints that E {gα(Xα)} = 0 for allα ∈ {1, . . . , d2} ensure theunique additive representation ofmα as expressed in (3).
Denote the empirical expectation by En, i.e., En(ϕ) =

∑n
i=1ϕ (Xi) /n. For functions g1, g2 ∈ M, the theoretical and empirical

inner products are defined respectively as ⟨g1, g2⟩ = E {g1 (X) g2 (X)}, ⟨g1, g2⟩n = En {g1 (X) g2 (X)}. The corresponding
induced norms are ∥g1∥2

2 = E{g2
1 (X)}, ∥g1∥2

2,n = En{g2
1 (X)}. More generally, we set ∥g∥

r
r = E|{g (X) |

r
}.

In the paper, for any compact interval [a, b], we denote the space of pth order smooth functions as C (p)[a, b] = {g : g (p) ∈

C [a, b]}, and the class of Lipschitz continuous functions for constant C > 0 as

Lip ([a, b] , C) = {g : ∀x,x′∈[a,b] |g (x) − g
(
x′
)
| ≤ C |x − x′

|}.

For any vector x = (x1, . . . , xd)⊤, we denote the supremum and p norm as |x| = max1≤α≤d |xα| and ∥x∥p = (
∑d

α=1x
p
α)

1/p,
respectively. In particular, we use ∥x∥ to denote the Euclidean norm, i.e., p = 2. We need the following assumptions.

(A1) For every α ∈ {1, . . . , d2}, one has mα ∈ C (1)[0, 1]; furthermore, m1 ∈ C (2) [0, 1] and there exists a constant Cm > 0
such that, for all α ∈ {2, . . . , d2}, m′

α ∈ Lip ([0, 1] , Cm).
(A2) The inverse link function b′ satisfies b′

∈ C2 (R) , b′′ (θ) > 0, θ ∈ R and Cb > maxθ∈Θb′′ (θ) ≥ minθ∈Θb′′ (θ) > cb for
constants Cb > cb > 0.

(A3) The conditional variance function σ 2 (x) is measurable and bounded. The errors ϵ1, . . . , ϵn are such that E(εi | Fi) = 0,
E(|εi|2+η) ≤ Cη for some η ∈ (1/2, ∞) with the sequence of σ -fields: Fi = σ {(Xj) : j ≤ i, εj, j ≤ i − 1} for all
i ∈ {1, . . . , n}.

(A4) The density function f of
(
X1, . . . , Xd2

)
is continuous and 0 < cf ≤ infx∈χf (x) ≤ supx∈~ f (x) ≤ Cf < ∞. Themarginal

densities fα of Xα have continuous derivatives on [0, 1] and are uniformly bounded from above by Cf and from below
by cf .

(A5) There exist constants K0, λ0 ∈ (0, +∞) such that α (n) ≤ K0e−λ0n holds for all n ∈ N, with the α-mixing coefficients
for the sequence Z1 = (T⊤

1 ,X⊤

1 , ε1)⊤, . . . , Zn = (T⊤
n ,X⊤

n , εi)⊤ defined, for every integer k ≥ 1, by

α (k) = supB∈σ {Zs,s≤t},C∈σ {Zs,s≥t+k} |Pr (B ∩ C) − Pr (B) Pr (C)| .

(A5’) The variables Z1, . . . , Zn are mutually independent and identically distributed.
(A6) There exist constants 0 < cδ < Cδ < ∞ and 0 < cQ < CQ < ∞ such that cδ ≤ E(|Tk|2+δ

| X = x) ≤ Cδ for some
δ > 0, and cQId1×d1 ≤ E

(
TT⊤

| X = x
)

≤ CQId1×d1 .

Assumptions (A1), (A2) and (A4) are standard in the GAM literature; see [19,22]. Assumptions (A3) and (A5) are the same
for weakly dependent data as in [11,21], and Assumption (A6) is the same with (C5) in [20]. When categorical predictors are
present, we can create dummy variables in Ti and Assumption (A6) is still satisfied.

3. Oracle estimators

The aim of our analysis is to provide precise estimators for the component functionsmα and parameters β. Without loss
of generality, wemay focus onm1. If all the unknownβ and otherm2, . . . ,md2 were known,we are in a comfortable situation
since the multidimensional modeling problem has reduced to one dimension. As in [17] define, for each x1 ∈ [h, 1 − h] and
a ∈ A, a local quasi log-likelihood function

ℓ̃m1 (a, x1) =
1
n

n∑
i=1

[Yi {a + m (Ti,Xi_1)} − b {a + m (Ti,Xi_1)}] Kh (Xi1 − x1)

with m (Ti,Xi_1) = β⊤Ti +
∑d2

α=2mα (Xiα) and Kh (u) = K (u/h) /h a kernel function K with bandwidth h satisfying the
following condition.

(A7) The kernel function K ∈ C1
[−1, 1] is a symmetric pdf and h = hn satisfies h = O{n−1/5(ln n)−1/5

}, h−1
=

O{n1/5(ln n)δ} for some constant δ > 1/5.
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Since all the β and m2, . . . ,md2 are known as obtained from the oracle, one can obtain the so-called oracle estimator

m̃K ,1(x1) = argmaxa∈Aℓ̃m1 (a, x1) . (4)

Denote ∥K∥
2
2 =

∫
K 2 (u) du, µ2 (K ) =

∫
K (u) u2du and introduce the scale function

D1(x1) = f1(x1)E
{
b′′

{m (T,X)} | X1 = x1
}
, (5)

and the bias function

bias1(x1) = µ2 (K )
[
m′′

1(x1)f1(x1)E
[
b′′

{m (T,X)} | X1 = x1
]

+m′

1(x1)
∂

∂x1

{
f1(x1)E

[
b′′

{m (T,X)} | X1 = x1
]}

−
{
m′

1(x1)
}2f1(x1)E

[
b′′′

{m (T,X)} | X1 = x1
]]

. (6)

Lemma 1. Under Assumptions (A1)–(A7), for any x1 ∈ [h, 1 − h], as n → ∞, the oracle kernel estimator m̃K,1(x1) given in (4)
satisfies

supx1∈[h,1−h]|m̃K,1(x1) − m1(x1)| = Oa.s.(ln n/
√
nh),

√
nh {m̃K,1(x1) − m1 (x1) − bias1(x1)h2/D1(x1)} ⇝ N [0,D1(x1)−1v2

1(x1)D1(x1)−1
],

with v2
1(x1) = f1(x1)E{σ 2 (T,X) | X1 = x1} ∥K∥

2
2.

Lemma 1 is proved in [11]. The above oracle idea applies to the parametric part as well. Define the log-likelihood function

ℓ̃β (a) =
1
n

n∑
i=1

[Yi{a⊤Ti + m (Xi)} − b{a⊤Ti + m (Xi)}], (7)

wherem (Xi) =
∑d2

α=1mα (Xiα). The infeasible estimator of β is β̃ = argmaxa∈R1+d1 ℓ̃β (a). Clearly, ∇ℓ̃β (β) = 0. To maximize
(7), we have

1
n

n∑
i=1

[YiTi − b′
{a⊤Ti + m (Xi)}Ti] = 0,

then the empirical likelihood ratio is

R̃ (a) = max

{
n∏

i=1

npi :

n∑
i=1

piZi (a) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}
where Zi (a) =

[
Yi − b′

{
a⊤Ti + m (Xi)

}]
Ti.

Theorem 1. (i) Under Assumptions (A1)–(A6), as n → ∞,⏐⏐⏐β̃ − β − [Eb′′
{m (T,X)} TT⊤

]
−1 1

n

n∑
i=1

σ (Ti,Xi) εiTi

⏐⏐⏐ = Oa.s.{(ln n)2/n},

√
n (β̃ − β) ⇝ N

[
0, a (φ) [Eb′′

{m (T,X)} TT⊤
]
−1] .

(ii) Under Assumptions (A1)–(A4), (A5’) and (A6), −2 ln{R̃ (β)} ⇝ χ2
d1

.

Although the oracle estimators β̃ and m̃K ,1(x1) enjoy the desirable theoretical properties in Theorem 1 and Lemma 1, they
are not feasible statistics as their computation is based on the knowledge of unavailable component functionsm2, . . . ,md2 .

4. Spline-backfitted kernel estimators

In practice, m2, . . . ,md2 are of course unknown and need to be approximated. We obtain the spline-backfitted kernel
estimators by using estimations of m2, . . . ,md2 and the unknown β by splines and we employ them to estimate m1(x1) as
in (4). First, we introduce the linear spline basis as in [10]. Let 0 = ξ0 < ξ1 < · · · < ξN < ξN+1 = 1 denote a sequence of
equally spaced points, called interior knots, on [0, 1]. Denote by H = 1/(N + 1) the width of each subinterval

[
ξJ , ξJ+1

]
for

each j ∈ {0, . . . ,N} and denote the degenerate knots ξ−1 = 0, ξN+2 = 1. We need the following assumption.

(A8) The number of interior knots N ∼ n1/4 ln n, i.e., cNn1/4 ln n ≤ N ≤ CNn1/4 ln n for some constants cN , CN > 0.
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Following [11], for each j ∈ {0, . . . ,N}, define the linear B-spline basis as follows:

bJ (x) = (1 − |x − ξJ |/H)+ =

{
(N + 1) x − J + 1
J + 1 − (N + 1) x

0

if ξJ−1 ≤ x ≤ ξJ ,

if ξJ ≤ x ≤ ξJ+1,

otherwise.

Let also the space of α-empirically centered linear spline functions on [0, 1] be defined, for each α ∈ {1, . . . , d2}, as

G0
n,α =

⎧⎨⎩gα : gα(Xα) =

N+1∑
J=0

λJbJ (Xα), En {gα(Xα)} = 0

⎫⎬⎭ ,

and let the space of additive spline functions on χ be

G0
n =

{
g (x) =

d2∑
α=1

gα(Xα) : gα ∈ G0
n,α

}
.

Define the log-likelihood function be given, for any g ∈ G0
n, by

L̂ (β,g) =
1
n

n∑
i=1

[Yi{β
⊤Ti + g(Xi)} − b{β⊤Ti + g (Xi)}], (8)

which according to Lemma 14 of [19], has a unique maximizer with probability approaching 1. The multivariate function
m (x) is then estimated by the additive spline function m̂ (x) with

m̂ (t, x) = β̂
⊤

t + m̂ (x) = argmaxg∈G0n
L̂ (β,g) .

Since m̂ (x) ∈ G0
n, one can write m̂ (x) =

∑d2
α=1m̂α (xα) for m̂α(Xα) ∈ G0

n,α . Next define the log-likelihood function

ℓ̂m1 (a, x1) =
1
n

n∑
i=1

[
Yi

{
a + m̂ (Ti,Xi_1)

}
− b

{
a + m̂ (Ti,Xi_1)

}]
Kh(Xi1 − x1), (9)

where m̂ (Ti,Xi_1) = β̂
⊤

Ti +
∑d2

α=2m̂α (Xiα). Define the SBK estimator as

m̂SBK,1(x1) = argmaxa∈Aℓ̂m1 (a, x1) . (10)

Theorem 2. Under Assumptions (A1)–(A8), as n → ∞ , m̂SBK,1(x1) is oracally efficient,

supx1∈[0,1]|m̂SBK,1 (x1) − m̃K ,1(x1)| = Oa.s.(n−1/2 ln n).

The following corollary is a consequence of Lemma 1 and Theorem 2.

Corollary 1. Under Assumptions (A1)–(A8), as n → ∞, the SBK estimator m̂SBK,1(x1) given in (10) satisfies

supx1∈[h,1−h]|m̂SBK,1(x1) − m1(x1)| = Oa.s.(ln n/
√
nh)

and for any x1 ∈ [h, 1 − h], with bias1(x1) as in (6) and D1(x1) in (5)
√
nh {m̂SBK,1(x1) − m1(x1) − bias1(x1)h2/D1(x1)} ⇝ N [0,D1(x1)−1v2

1(x1)D1(x1)−1
].

Denote ah =
√

−2ln,h, C (K ) =
K ′

2
2 ∥K∥

−2
2 and for any α ∈ (0, 1), the quantile

Qh(α) = ah + a−1
h [ln{

√
C (K )/(2π)} − ln{− ln

√
1 − α}].

Also with D1(x1) and v2
1(x1) given in (5), define σn(x1) = n−1/2h−1/2v1(x1)D−1

1 (x1).

Theorem 3. Under Assumptions (A1)–(A4), (A5’), (A6)–(A8), as n → ∞,

lim
n→∞

Pr
{
supx1∈[h,1−h]

⏐⏐m̂SBK,1(x1) − m1 (x1)
⏐⏐ /σn(x1) ≤ Qh (α)

}
= 1 − α.

A 100 × (1 − α) % simultaneous confidence band for m1(x1) is m̂SBK,1(x1) ± σn(x1)Qh (α) .

In fact, β̂ obtained by maximizing (8) is equivalent to β̂SBK = argmaxa∈R1+d1 ℓ̂β (a) with

ℓ̂β (a) =
1
n

n∑
i=1

[Yi{a⊤Ti + m̂(Xi)} − b{a⊤Ti + m̂(Xi)}]
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in which m̂ (Xi) =
∑d2

α=1m̂α (Xiα). The empirical likelihood ratio is

R̂ (a) = max

{
n∏

i=1

npi :

n∑
i=1

piẐi (a) = 0, p1 ≥ 0, . . . , pn ≥ 0,
n∑

i=1

pi = 1

}
where Ẑi (a) =

[
Yi − b′

{
a⊤Ti + m̂ (Xi)

}]
Ti. Similar to Theorem 2, the main result shows that the difference between β̂ and

its infeasible counterpart β̃ is asymptotically negligible.

Theorem 4. (i) Under Assumptions (A1)–(A6) and (A8), as n → ∞, β̂ is oracally efficient, i.e.,
√
n (β̂k − β̃k)

p
→ 0 for all

k ∈ {0, . . . , d1} and hence
√
n (β̂ − β) ⇝ N [0, a (φ) [Eb′′

{m (T,X)} TT⊤
]
−1

].

(ii) Under Assumptions (A1)–(A4), (A5’), (A6) and (A8), as n → ∞, sup|−2 ln R̂ (β) + 2 ln R̃ (β)| = Op (1) , and hence
−2 ln{R̂(β)} ⇝ χ2

d1
.

As a reviewer pointed out, an obvious advantage of GAPLM over GAM is the capability of including categorical predictors.
Since mα is not a function of T in GAPLM, we can simply create dummy variables to represent the categorical effects and
use spline estimation. [13] proposed spline estimation combined with categorical kernel functions to handle the case when
functionmα depends on categorical predictors.

5. Examples

We have applied the SBK procedure to both simulated (Example 1) and real (Example 2) data and implemented our
algorithms with the following rule-of-thumb number of interior knots

N = Nn = min(⌊n1/4 ln n⌋ + 1, ⌊n/4d − 1/d⌋ − 1),

which satisfies (A8), i.e., N = Nn ∼ n1/4 ln n, and ensures that the number of parameters in the linear least squares problem
is less than n/4, i.e., 1 + d (N + 1) ≤ n/4. The bandwidth of hα is computed as in [11] in an asymptotically optimal way.

5.1. Example 1

The data are generated from the model

Pr(Y = 1 | T = t,X = x) = b′

{
β⊤T +

d2∑
α=1

mα(Xα)

}
, b′ (x) =

ex

1 + ex

with d1 = 2, d2 = 5, β = (β0, β1, β2)
⊤

= (1, 1, 1, )⊤,m1 (x) = m2 (x) = m3 (x) = sin (2πx), m4 (x) = Φ (6x − 3) − 0.5
and m5 (x) = x2 − 1/3, where Φ is the standard normal cdf. The predictors are generated by transforming the following
vector autoregression (VAR) equation for 0 ≤ r1, r2 < 1 and all i ∈ {1, . . . , n}, viz. Z0 = 0, and

Zi = r1Zi−1 + εi, εi ∼ N (0, Σ) , Σ = (1 − r2) Id×d + r21d1⊤

d , d = d1 + d2,

Ti =
(
1, Zi1, . . . , Zid1 ,

)⊤
, Xiα = Φ

(√
1 − r21Ziα

)
, 1 + d1 ≤ α ≤ d1 + d2,

with stationary Zi = (Zi1, . . . , Zid)⊤ ∼ N [0, (1 − r21 )
−1Σ], 1d = (1, . . . , 1)⊤ and Id×d is the d × d identity matrix. The X is

transformed from Z to satisfy Assumption (A4). In this study, we selected four scenarios: (a) r1 = 0 , r2 = 0; (b) r1 = 0.5,
r2 = 0; (c) r1 = 0, r2 = 0.5; (d) r1 = 0.5, r2 = 0.5. The parameter r1 controls the dependence between observations and r2
controls the correlation between variables. In the selected scenarios, r1 = 0 indicates independent observations and r1 = 0.5
α-mixing observations, r2 = 0 indicates independent variables and r2 = 0.5 correlated variables within each observation.
Define the empirical relative efficiency of β̂1 with respect to β̃1 as EFFr (β̂1) = { MSE(β̃1)/MSE(β̂1)}1/2.

Table 1 shows the mean of bias, variances, MSEs and EFFs of β̂1 for R = 1000 with sample sizes n ∈ {500, 1000,
2000, 4000}. The results show that the estimator works as the asymptotic theory indicates, see Theorem 4(i).

Fig. 1 shows the kernel densities of β̂1s for n ∈ {500, 1000, 2000, 4000} from 1000 replications, again the theoretical
properties are supported.

Table 2 shows the simulation results of the empirical likelihood confidence interval for β with n ∈ {500, 1000,
2000, 4000}, and r1 = 0,r2 = 0 from 1000 replications. Themean and standard deviation of−2 ln{R̂ (β)}+2 ln R̃{(β)} (DIFF)
support the oracle efficiency in Theorem 4 (ii). The performance of empirical likelihood confidence interval are compared
with the wald-type one and it is clear that they have similar performance but empirical likelihood confidence interval has
better coverage ratio and shorter average length.

Next for α ∈ {1, . . . , 5}, let X i
α,min, X

i
α,max denote the smallest and largest observations of the variable Xα in the ith

replication, respectively. The component functions m1, . . . ,m5 are estimated on equally spaced points such that 0 = x0 <
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Table 1
The mean of 10 × bias, 100 × variances, 100 × MSEs and EFFs of β̂1 from 1000 replications.

r n 10 × BIAS 100 × VARIANCE 100 × MSE EFF
(
β̂1

)
r1 = 0
r2 = 0

500
1000
2000
4000

1.509
0.727
0.408
0.240

2.018
1.197
0.626
0.282

4.298
1.726
0.793
0.339

0.8436
0.8749
0.9189
0.9534

r1 = 0.5
r2 = 0

500
1000
2000
4000

1.473
0.834
0.476
0.260

3.136
1.287
0.674
0.202

5.306
1.983
0.901
0.270

0.8392
0.8873
0.9294
0.9665

r1 = 0
r2 = 0.5

500
1000
2000
4000

1.327
0.699
0.665
0.390

3.880
1.851
0.739
0.290

5.642
2.339
1.182
0.442

0.8475
0.8856
0.9353
0.9479

r1 = 0.5
r2 = 0.5

500
1000
2000
4000

1.635
0.901
0.529
0.209

4.230
1.190
0.806
0.366

6.903
2.002
1.086
0.410

0.8203
0.8758
0.9304
0.9483

Table 2
Coverage ratios and average length of the empirical likelihood confidence interval (EL) and Wald-type confidence interval for β1 for n =

500, 1000, 2000, 4000 with r1 = 0 from 1000 replications. DIFF= −2 ln{R̂ (β)} + 2 ln{R̃ (β)} is the difference between −2 ln{R̂ (β)} and −2 ln{R̃ (β)}.

n = 500 n = 1000 n = 2000 n = 4000

Coverage ratio EL
Wald

0.923
0.918

0.941
0.934

0.946
0.944

0.951
0.948

Average length EL
Wald

1.2675
1.4073

0.9474
1.0447

0.7105
0.7480

0.5339
0.5625

DIFF MEAN
SD

0.1213
0.5199

0.1023
0.4703

0.0981
0.3667

0.0726
0.3242

· · · < x100 = 1 and the estimator of mα in the rth sample as m̂SBK,α,r . The (mean) average squared errors (ASE and MASE)
are:

ASE(m̂SBK,α,r ) =
1

101

100∑
t=0

{
m̂SBK,α,r (xt ) − mα(xt )

}2
,

MASE(m̂SBK,α) =
1
R

R∑
r=1

ASE(m̂SBK,α,r ).

In order to examine the efficiency of m̂SBK,α relative to the oracle estimator m̃K ,α (xα), both are computed using the same
data-driven bandwidth ĥα,opt, described in Section 5 of [11]. Define the empirical relative efficiency of m̂SBK,α with respect
to m̃K ,α as

EFFr
(
m̂SBK,α

)
=

[ ∑100
t=0

{
m̃K ,α (xt) − mα(xt )

}2∑100
t=0

{
m̂SBK,α,r (xt ) − mα(xt )

}2

]1/2

.

EFF measures the relative efficiency of the SBK estimator to the oracle estimator. For increasing sample size, it should
increase to 1 by Theorem 2. Table 3 shows the MASEs of m̃K ,1, m̂SBK,1 and the average of EFFs from 1000 replications for
n ∈ {500, 1000, 2000, 4000}. It is clear that the MASEs of both SBK estimator and the oracle estimator decrease when
sample sizes increase, and the SBK estimator performs as well asymptotically as the oracle estimator, see Theorem 2.

To have an impression of the actual function estimates, for r1 = 0, r2 = 0.5with sample size n ∈ {500, 1000, 2000, 4000},
we have plotted the SBK estimators and their 95% asymptotic SCCs (red solid lines), point-wise confidence intervals (red
dashed lines), oracle estimators (blue dashed lines) for the true functions m1 (thick black lines) in Fig. 2. Here we use
r1 = 0 because we want to give the 95% asymptotic SCCs, which need the observations be iid to satisfy Assumption (A5’). As
expected by theoretical results, the estimation is closer to the real function and the confidence band is narrower as sample
size increasing.

To compare the prediction performance of GAM and GAPLM, we introduce CAP and AR first. For any score function S, one
defines its alarm rate F (s) = Pr (S ≤ s) and the hit rate FD (s) = Pr (S ≤ s | D) where D represents the conditioning event of
‘‘default’’. Define the Cumulative Accuracy Profile (CAP) curve, for each u ∈ (0, 1), as

CAP (u) = FD{F−1(u)}, (11)
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Fig. 1. Plots of densities for β̂1 with n = 500 (dotted line), n = 1000 (dashed line), n = 2000 (thin solid line), n = 4000 (thick solid line) for (a)
r1 = 0, r2 = 0, (b) r1 = 0, r2 = 0.5, (c) r1 = 0.5, r2 = 0, (d) r1 = 0.5, r2 = 0.5 from 1000 replications.

which is the percentage of default-infected obligators that are found among the first (according to their scores) 100 × u% of
all obligators. A perfect rating method assigns all lowest scores to exactly the defaulters, so its CAP curve linearly increases
up and then stays at 1; in other words, CAPP (u) = min (u/p, 1) for all u ∈ (0, 1), where p denotes the unconditional
default probability. In contrast, a noninformative rating method with zero discriminatory power displays a diagonal line
CAPN (u) = u for all u ∈ (0, 1). The CAP curve of a given scoring method S always locates between these two extremes and
gives information about its performance.

The area between the CAP curve and the noninformative diagonal CAPN (u) ≡ u is aR, whereas aP is the area between
the perfect CAP curve CAPP (u) and the noninformative diagonal CAPN (u). Thus the CAP can be measured for example by
Accuracy Ratio (AR): the ratio of aR and aP , viz.

AR =
aR
aP

=
2

1 − p

{∫ 1

0
CAP (u) du − 1

}
,

where CAP (u) is given in (11). The AR takes value in [0, 1], with value 0 corresponding to the noninformative scoring, and
1 the perfect scoring method. A higher AR indicates an overall higher discriminatory power of a method. Table 4 shows the
average and standard deviations of the ARs from 1000 replications using k-fold cross-validation with k ∈ {2, 10, 100} for
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Table 3
The 100×MASEs of m̃K,1 , m̂SBK,1 and EFFs for n ∈ {500, 1000, 2000, 4000} from 1000 replications.

r n 100 × MASE
(
m̃K,α

)
100 × MASE

(
m̂SBK,α

)
EFF

(
m̂SBK,1

)
r1 = 0
r2 = 0

500
1000
2000
4000

4.482
2.418
1.582
1.212

4.603
2.503
1.613
1.247

0.9501
0.9809
0.9854
0.9923

r1 = 0.5
r2 = 0

500
1000
2000
4000

4.060
2.592
1.746
1.194

4.322
2.649
1.714
1.218

0.9445
0.9767
0.9832
0.9936

r1 = 0
r2 = 0.5

500
1000
2000
4000

4.845
2.935
1.951
1.515

6.348
3.559
2.177
1.648

0.8827
0.8755
0.9494
0.9795

r1 = 0.5
r2 = 0.5

500
1000
2000
4000

5.656
2.804
1.886
1.525

7.114
3.570
2.089
1.634

0.8722
0.8951
0.9478
0.9744

Table 4
The mean and standard deviation (in parentheses) of Accuracy Ratio (AR) values for GLM, GAM, GAPLM for r1 = 0, r2 = 0 from 1000 replications.

n k = 2 k = 10 k = 100

500 GLM
GAM
GAPLM

0.6287 (0.0436)
0.6222 (0.0732)
0.6511 (0.0479)

0.6412 (0.0397)
0.6706 (0.0393)
0.6828 (0.0377)

0.6438 (0.0390)
0.6756 (0.0400)
0.6861 (0.0391)

1000 GLM
GAM
GAPLM

0.6429 (0.0282)
0.6735 (0.0438)
0.6861 (0.0298)

0.6476 (0.0268)
0.6863 (0.0326)
0.6968 (0.0254)

0.6488 (0.0268)
0.6929 (0.0261)
0.7001 (0.0258)

2000 GLM
GAM
GAPLM

0.6474 (0.0204)
0.6842 (0.0615)
0.6984 (0.0204)

0.6513 (0.0195)
0.6984 (0.0286)
0.7067 (0.0178)

0.6519 (0.0188)
0.7000 (0.0185)
0.7057 (0.0178)

4000 GLM
GAM
GAPLM

0.6507 (0.0134)
0.6889 (0.0243)
0.7056 (0.0130)

0.6522 (0.0136)
0.6968 (0.0403)
0.7110 (0.0124)

0.6529 (0.0132)
0.7079 (0.0164)
0.7119 (0.0119)

r1 = 0, r2 = 0 and n ∈ {500, 1000, 2000, 4000}. In each replication, we randomly divide the set of observations into k equal
size folds and use the remaining k − 1 folds as training data set to make prediction for each fold. After we obtain all the
predictions for each observation in the data set, we compute the CAP and AR based on above formula. It is clear that GAPLM
has best predication accuracy.

Finally, to show the estimation performance when T has categorical variables, we generate data using the same model
above but add one more categorical variable, i.e., d1 = 3, β = (β0, β1, β2, β3)

⊤
= (1, 1, 1, 1)⊤, T3 = {0, 1} with probability

0.5 for T3 = 1 and independent with the other variables T and X . Table 5 shows the bias, variances, MSEs and EFFs of β̂3
for R = 1000 with sample sizes n ∈ {500, 1000, 2000, 4000}. The results show that the estimator works as the asymptotic
theory indicates.

5.2. Example 2

The credit reform database, provided by the Research Data Center (RDC) of the Humboldt Universität zu Berlin, was
studied using a GAM in [11]. The data set contains d = 8 financial ratios, which are shown in Table 6, of 19,610 German
companies (18,610 solvent and 1000 insolvent). The time period ranges from 1997 to 2002 and in the case of the insolvent
companies the information was gathered two years before the insolvency took place. The last annual report of a company
before it went bankrupt receives the indicator Y = 1 and for the rest (solvent) Y = 0. In the original data set, the variables are
labeled as Zα . In order to satisfy the Assumption (A4) in [11], we need the transformationXiα = Fnα (Ziα) for allα ∈ {1, . . . , 8},
where Fnα is the empirical cdf of the data X1α, . . . , Xnα . See [3,11] for more details of this data set.

Using a GAM and the SBK method, we clearly see via the SCCs that the shape of m2 (x2) is linear. Fig. 3(a) shows that a
linear line is covered by the SCCs of m̂2. We additionally show the SCCs for another component function of ln(Total_Assets)
in Fig. 3(b). The SCCs do not cover a linear line. In fact, among the eight financial ratios considered, only x2 yields a
linear influence. To improve the precision in statistical calibration and interpretability, we can use GAPLM with parametric
m2 (x2) = β2x2.

For the RDC data, the in-sample AR value obtained from GAPLM is 62.89%, which is very close to the AR value 63.05%
obtained from GAM in [11] and higher than the AR value 60.51% obtained from SVM in [3]. To compare the prediction
performance, we use the AR introduced in Example 1. Then we randomly divide the data set into k ∈ {2, 10} folds and
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Fig. 2. Plots ofm1 (thick black line), m̃K,1 (blue dashed line), asymptotic 95% point-wise confidence intervals (red dashed line), m̂SBK,1 and 95% simultaneous
confidence bands (red solid line) for r1 = 0, r2 = 0.5 and (a) n = 500, (b) n = 1000, (c) n = 2000, (d) n = 4000.

obtain the prediction for each observation using the remaining k − 1 folds as training set. Based on the prediction of all
the observations, we can compute prediction AR value. Table 7 shows the mean and standard deviation of the prediction
AR values from 100 replications. GAPLM has higher prediction AR value than GAM for 99 replications when k = 2 and 100
times when k = 10. It is clear that GAPLM has best prediction accuracy due to the better statistical calibration.
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Appendix A

A.1. Preliminaries

In the proofs that follow, we use ‘‘U ’’ and ‘‘U ’’ to denote sequences of random variables that are uniformly ‘‘O’’ and
‘‘O ’’ of certain order. Denote the theoretical inner product of bJ and 1 with respect to the αth marginal density fα(Xα) as
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Fig. 3. Plots of estimations of component functions (a) m̂SBK,2(x2) and (b) m̂SBK,8(x8) and asymptotic 95% simultaneous confidence bands.

Table 5
The mean of 10 × bias, 100 × variances, 100 × MSEs and EFFs of β̂3 from 1000 replications.

r n 10 × BIAS 100 × VARIANCE 100 × MSE EFF(β̂3)

r1 = 0
r2 = 0

500
1000
2000
4000

1.476
0.770
0.448
0.315

10.129
4.437
1.846
0.937

12.309
5.031
2.047
1.037

0.7634
0.8343
0.8929
0.9572

r1 = 0.5
r2 = 0

500
1000
2000
4000

1.336
0.833
0.423
0.302

10.329
4.221
1.952
0.944

12.115
4.916
2.132
1.036

0.7445
0.8267
0.8832
0.9436

r1 = 0
r2 = 0.5

500
1000
2000
4000

1.441
0.803
0.489
0.328

10.154
4.446
2.136
0.924

12.231
5.114
2.376
1.032

0.7556
0.8430
0.8785
0.9572

r1 = 0.5
r2 = 0.5

500
1000
2000
4000

1.475
0.812
0.524
0.302

11.014
4.464
1.970
0.966

13.190
5.124
2.245
1.058

0.7794
0.8314
0.8852
0.9529

Table 6
Definitions of financial ratios.

Ratio No. Definition Ratio No. Definition

Z1 Net_Income/Sales Z5 Cash/Total_Assets
Z2 Operating_Income/Total_Assets Z6 Inventories/Sales
Z3 Ebit/Total_Assets Z7 Accounts_Payable/Sales
Z4 Total_Liabilities/Total_Assets Z8 ln(Total_Assets)

Table 7
The mean and standard deviation (in parentheses) of AR values for GLM,
GAM, GAPLM for k-fold cross-validation with k ∈ {2, 10} from 1000
replications.

k = 2 k = 10

GLM 0.5627 (0.0271) 0.5751 (0.00162)
GAM 0.5888 (0.0405) 0.6123 (0.00219)
GAPLM 0.5928 (0.0408) 0.6164 (0.00196)
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cJ,α =
⟨
bJ (Xα), 1

⟩
=

∫
bJ (Xα)fα(Xα)dxα and define the centered B-spline basis bJ,α (xα) and the standardized B-spline basis,

for each J ∈ {1, . . . ,N + 1}, as

bJ,α(Xα) = bJ (Xα) −
cJ,α

cJ−1,α
bJ−1(Xα), BJ,α(Xα) =

bJ,α (xα)

∥bJ,α∥2
,

so that E{BJ,α(Xα)} = 0 and E{B2
J,α(Xα)} = 1. Theorem A.2 in [21] shows that under Assumptions . (A1)–(A5) and (A7),

constants c0 (f ),C0(f ) , c1 (f ) andC1(f ) exist depending on themarginal densities f1, . . . , fd such that c0 (f )H ≤ cJ,α ≤ C0 (f )H
and

c1 (f )H ≤ ∥bJ,α∥
2
2 ≤ C1(f )H. (A.1)

Lemma A.1 ([1], p. 149). For any m ∈ C1 [0, 1] with m′
∈ Lip ([0, 1] , C∞), there exist a constant C∞ > 0 and a function

g ∈ G(0)
n [0, 1] such that ∥g − m∥∞ ≤ C∞H2.

A.2. Oracle estimators

Proof of Theorem1. (i) According to theMeanValue Theorem, a vector β̄ betweenβ and β̃ exists such that (β̃−β)∇2ℓ̃β(β̄) =

∇ℓ̃β(β̃) − ∇ ℓ̃β (β) = −∇ℓ̃β (β) since ∇ℓ̃β(β̃) = 0, where

− ∇
2ℓ̃β(β̄) = n−1

n∑
i=1

b′′
{

¯β⊤T i + m (Xi)}TiT⊤

i > cbcQId1×d1

with cb > 0 according to (A2), and then the infeasible estimator is β̃ = argmaxa∈R1+d1 ℓ̃β (a) .

∇ℓ̃β (β) =
1
n

n∑
i=1

[YiTi − b′
{β⊤Ti + m (Xi)}Ti ] =

1
n

n∑
i=1

σ (Ti,Xi) εiTi.

We have |n−1∑n
i=1σ (Ti,Xi) εiTi| = Oa.s.(n−1/2 ln n) by Bernstein’s Inequality as Lemma A.2 in [11], so |β̃ − β| =

Oa.s.(n−1/2 ln n) according to β̃ − β = −{∇
2ℓ̃β(β̄)}−1

∇ℓ̃β (β). Then

∇
2ℓ̃β(β̄)

a.s.
→ ∇

2ℓ̃β (β) = −
1
n

n∑
i=1

b′′
{β⊤Ti + m (Xi)}TiT⊤

i ,

which converges to −E[b′′ {m (T,X)} TT⊤
] almost surely at the rate of n−1/2 ln n. So⏐⏐⏐β̃ − β − [Eb′′

{m (T,X)} TT⊤
]
−1 1

n

n∑
i=1

σ (Ti,Xi) εiTi

⏐⏐⏐ = Oa.s.{n−1(ln n)2}.

Since n−1∑n
i=1σ (Ti,Xi) εiTi ⇝ N [0, a (φ) [Eb′′

{m(T,X)}TT⊤
]
−1

] by the Central Limit Theorem, an application of Slutsky’s
Lemma completes the proof of Theorem 1(i).

(ii) The proof is trivial based on the properties of empirical likelihood ratio for GLMs; see Theorem 3.2 in [15] and
Corollary 1 in [7]. □

A.3. Spline-backfitted kernel estimators

In this section, we present the proofs of Theorems 2–4. We write any g ∈ G0
n as g = λ⊤B (Xi) with vector λg =(

λJ,α
)⊤

1≤J≤N+1,1≤α≤d2
∈ R(N+1)d2 the dimension of the additive spline space G0

n , and

B (x) =
(
B1,1(x1), . . . , BN+1,1(x1), . . . , B1,d2

(
xd2

)
, . . . , BN+1,d2

(
xd2

))⊤
.

Denote B (t, x) =
(
1, t1, . . . , td1 , B1,1(x1), . . . , BN+1,1 (x1) , . . . , B1,d2

(
xd2

)
, . . . , BN+1,d2

(
xd2

))⊤,

λ = (λ⊤

β , λ⊤

g )
⊤

=
(
λ0, λk, λJ,α

)⊤

1≤J≤N+1,1≤α≤d2,1≤k≤d1
∈ RNd

with Nd = 1 + d1 + (N + 1) d2 and

L̂(λβ, g) = L̂ (λ) =
1
n

n∑
i=1

[Yi{λ
⊤B(Ti,Xi)} − b{λ⊤B(Ti,Xi)}],
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which yields the gradient and Hessian formulas

∇ L̂ (λ) =
1
n

n∑
i=1

[YiB(Ti,Xi) − b′
{λ⊤B(Ti,Xi)}B(Ti,Xi)],

∇
2L̂ (λ) = −

1
n

n∑
i=1

b′′
{λ⊤B (Ti,Xi)}B (Ti,Xi)B(Ti,Xi)

⊤.

The multivariate functionm (t, x) is estimated by

m̂ (t, x) = β̂0 +

d1∑
k=1

β̂ktk +

d2∑
α=1

m̂α(Xα) = λ̂
⊤

B (t, x) ,

λ̂ = (λ̂
⊤

β , λ̂
⊤

g )
⊤

= (β̂
⊤

, λ̂
⊤

g )
⊤

= (β̂k, λ̂J,α)⊤0≤k≤d1,1≤α≤d2,1≤J≤N+1 = argmaxλL̂ (λ) .

Lemma 14 of Stone [19] ensures that with probability approaching 1, λ̂ exists uniquely and that ∇ L̂(λ̂) = 0. In addition,
Lemma A.1 and (A1) provide a vector ¯λ =(β⊤, λ̄

⊤

g )
⊤ and an additive spline function m̄ such that

m̄ (x) = λ̄
⊤

g B (x) , ∥m̄ − m∥∞ ≤ C∞H2. (A.2)

We first establish technical lemmas before proving Theorems 2 and 4.

Lemma A.2. Under Assumptions (A1)–(A6) and (A8), as n → ∞,

|∇ L̂(λ̄)| = Oa.s.(H2
+ n−1/2 ln n), ∥∇ L̂(λ̄)∥ = Oa.s.(H3/2

+ H−1/2n−1/2 ln n).

Proof. See Online Supplement. □

Define the following matrices:

V = EB (T,X)B(T,X)⊤, S = V−1, Vn = n−1
n∑

i=1

B (Ti,Xi)B(Ti,Xi)
⊤, Sn = V−1

n ,

Vb = Eb′′
{m (T,X)}B (T,X)B(T,X)⊤ =

[
vb,00 vb,0,k vb,0,J,α
vb,0,k′ vb,k,k′ vb,J,α,k′

vb,0,J ′,α′ vb,J ′,α′,k vb,J,α,J ′,α′

]
Nd×Nd

where Nd = (N + 1) d2 + 1 + d1, and

Sb = V−1
b =

[ sb,00 sb,0,k sb,0,J,α
sb,0,k′ sb,k,k′ sb,J,α,k′

sb,0,J ′,α′ sb,J ′,α′,k b,J,α,J ′,α′

]
Nd×Nd

. (A.3)

For any vector λ ∈ RNd , denote

Vb (λ) = Eb′′
{λ⊤B (T,X)}B (T,X)B(T,X)⊤, Sb (λ) = V−1

b (λ)

Vn,b (λ) = −∇
2L̂ (λ) , Sn,b (λ) = V−1

n,b (λ) . (A.4)

Lemma A.3. Under Assumptions (A2) and (A4), one has

cVINd ≤ V ≤ CVINd , cSINd ≤ S ≤ CSINd , cV,bINd ≤ Vb ≤ CV,bINd , cS,bINd ≤ Sb ≤ CS,bINd .

Under Assumptions (A2), (A4), (A5) and (A8), as n → ∞ with probability increasing to 1

cVINd ≤ Vn (λ) ≤ CVINd , cSINd ≤ Sn (λ) ≤ CSINd cV,bINd ≤ Vn,b (λ) ≤ CV,bINd , cS,bINd ≤ Sn,b (λ) ≤ CS,bINd .

Proof. Using Lemma A.7 in [14] and the boundedness of the function b′. □

Define three vectors Φb,Φv,Φr as

Φb =
(
Φb,J,α

)⊤

0≤k≤d1,1≤α≤d2,1≤J≤N+1 = −Sbn−1
n∑

i=1

[
b′

{m (Ti,Xi)} − b′
{m̄ (Ti,Xi)}

]
B (Ti,Xi) ,

Φv =
(
Φv,J,α

)⊤

0≤k≤d1,1≤α≤d2,1≤J≤N+1 = −Sbn−1
n∑

i=1

[σ (Ti,Xi) εi]B (Ti,Xi) ,
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and

Φr =
(
Φr,J,α

)⊤

0≤k≤d1,1≤α≤d2,1≤J≤N+1 = λ̂ − λ̄ − Φb − Φv.

Lemma A.4. Under Assumptions (A1)–(A6) and (A8), as n → ∞,

∥λ̂ − λ̄∥ = Oa.s.(H3/2
+ H−1/2n−1/2 ln n), (A.5)

∥Φr∥ = Op(H−3/2n−1 ln n), (A.6)
∥Φb∥ = Oa.s.(H2), ∥Φv∥ = Oa.s.(H−1/2n−1/2 ln n).

Proof. See Online Supplement. □

Lemma A.5. Under Assumptions (A1)–(A6) and (A8), as n → ∞,m̂ − m̄

2,n +

m̂ − m̄

2 = Oa.s.(H3/2

+ H−1/2n−1/2 ln n),
m̂ − m


2,n +

m̂ − m

2 = Oa.s.(H3/2

+ H−1/2n−1/2 ln n).

Proof. Lemma A.3 impliesm̂ − m̄

2,n +

m̂ − m̄

2 ≤ 2CV∥λ̂g − λ̄g∥ = Oa.s.(H3/2

+ H−1/2n−1/2 ln n).

The claim follows from the fact that ∥m̄ − m∥∞ + ∥m̄ − m∥2 + ∥m̄ − m∥2,n = O(H2) by (A.2). □

Proof of Theorem 2. According to (9) and the Mean Value Theorem, a m̄K,1 (x1) between m̂SBK,1(x1) and m̃K,1(x1) exists such
that

ℓ̂′

m1
{m̂SBK,1 (x1) , x1} − ℓ̂′

{m̃K,1(x1), x1} = ℓ̂′′

m1
{m̄K,1(x1), x1} {m̂SBK,1(x1) − m̃K,1(x1)}.

Then according to ℓ̂′
m1

{m̂SBK,1(x1), x1} = 0, one has

m̂SBK,1(x1) − m̃K,1 (x1) = −
ℓ̂′
m1

{m̃K,1(x1), x1}

ℓ̂′′
m1

{m̄K,1(x1), x1}
.

The theorem then follows Lemmas A.15 and A.16 in [11] with small modification including variable T. □

Proof of Theorem 3. It follows Theorem 2 and the same proof of Theorem 1 in [25]. □

Proof of Theorem 4. See Online Supplement. □

Appendix B. Supplementary data

gaplmsbk.R: R package containing code to perform SBK estimation for component functions in generalized additive
partially linear model available at https://github.com.

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2017.07.011.
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Abstract:This paperproposes a ratingmethodology that is basedonanon-linear classificationmethod, a sup-
port vector machine, and a non-parametric isotonic regression for mapping rating scores into probabilities
of default. We also propose a four data set model validation and training procedure that is more appropri-
ate for credit rating data commonly characterised with cyclicality and panel features. Tests on representative
data covering fifteen years of quarterly accounts and default events for 10,000 US listed companies confirm
superiority of non-linear PD estimation. Our methodology demonstrates the ability to identify companies of
diverse credit quality from Aaa to Caa–C.
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1 Introduction
Banking throughout the world, both central and commercial, is based on credit or trust in the debtor’s ability
to fulfil obligations. Facing increasing pressure frommarkets and regulators, banks build their trust to an ever
increasing degree on statistical techniques for corporate bankruptcy prediction known as rating or scoring.
Their main purpose is to estimate the financial situation of a company and, if possible, the probability that
a company will default on its obligations within a certain period.

Application of statistical models to corporate bankruptcy wasmade popular after the introduction of dis-
criminant analysis (DA) by Altman [1]. Later the logit and probit models were suggested by Martin [30] and
Ohlson [32]. Similar to them is the hazard or survival analysis [15]. All these models belong to the class of
Generalised Linear Models (GLM) and could also be interpreted using a latent (score) variable. Their core
decision element is a linear score function (graphically represented as a hyperplane in a multidimensional
space) separating successful and failing companies. The company score is computed as a value of that func-
tion. In the case of the probit and logit models the score is – via a link function – directly transformed into
a probability of default (PD). The major disadvantage of these popular approaches is the enforced linearity
of the score and, in the case of logit and probit models, the prespecified form of the link function (logit and
cumulative Gaussian) between PDs and the linear combination of predictors. For more details about rating
models, see [2].

In this paper we introduce an alternative way of assessing a company’s creditworthiness. The proposed
rating methodology is based on a non-linear classification method, the support vector machine (SVM), and
a non-parametric technique for mapping rating scores into probabilities of default (see Section 5). The latter
is an indispensable part of our rating methodology because the SVM score, as well as scores produced by
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a majority of other statistical techniques, is represented on an arbitrary scale not related to PD necessitating
additional calibration. Any attempts of applying parametric techniques for calibrating the score, for example,
the same probit or logit transformations, are unsatisfactory since the relationship between the score and PD
is usually complex and unknown a priori. We believe that by providing a suitable methodology for map-
ping credit scores into PDs we can facilitate the adoption of non-parametric statistical learning techniques in
credit analysis.

Furthermore, we address the prevailing model validation and testing approaches and raise the question
of their applicability to credit rating. It is common to “bundle” credit rating with other data for model com-
parison without addressing data specific characteristics such as high cyclicality or time dependence, and the
presence of strong panel data features [4, 29]. In addition, relatively small and cleaned samples that are used
in most cases do not necessarily represent the data that financial institutions encounter in their analysis.
Hajek and Michalak [17] summarise the features of seventeen credit rating studies, seven of which apply
SVM among other non-parametric techniques. None of them employed a sample larger than 3,900 compa-
nies with the median size of only 852 companies. In contrast, our data cover all major US listed companies
over the period of fifteen years, i.e. represent almost entire capitalisation of the US stock market.

In particular, we are skeptical about an almost universal adoption of random sampling and cross-
validation in the context of company rating. For example, Chen–Shih [7], Lee [26] andYu–Yao–Wang–Lai [39]
perform a random split, while Huang–Chen–Hsu–Chen–Wu [21] and Chen–Li [6] use k-fold validation to
create training and validation sets. The structure of credit data is such that a default event is always in the
future compared to the financial reports used for model training. However, with cross-validation it is very
likely that some defaults to be predicted will happen contemporaneously or prior to the reporting date of
other companies selected in the training set. The use of future information for model training raises serious
doubts if such an exercise can be called forecasting, especially in presence of default correlations caused by
business cycles.

The situation becomes evenmore exacerbated if we consider a typical design of credit data inwhich every
company is represented several times with its annual or quarterly accounts. Then, with cross-validation, the
status of a company will often be predicted with the data for the same company from the future when more
information has already been revealed. The same company is likely to appear multiple times both in the
training and validation sets with very similar characteristics and identical labels. Since company accounts
change relatively slowly, forecasting in such a situation resembles in-sample forecasting and becomes an
easy task for a non-linear statistical learning technique such as SVM. The result will likely be overfitting and
a lower forecasting accuracy out of time. This also affects the prospects of adopting learning machines as
a viable alternative due to understating their performance. We address this issue by proposing a four set test
design better reflecting credit rating reality.

We focus on the cross-sectional analysis of the data as opposed to the time series approach (e.g. the
Merton’s model [31]). This is justified by the fact that company accounts are released only with a quarterly
frequency generating an insufficient amount of data for applying a robust time series analysis. Moreover,
assumptions of a stochastic process are prone to misspecification [5].

The SVM is based on the principle of a safe separation of solvent and insolvent companies in such a way
that the distance between the classes is maximised while misclassifications are penalised [38]. The method
allows using kernel techniques [35] and, therefore, non-linear separating surfaces in contrast to classical DA,
logit and probit models that rely on linear ones. SVM can be considered as a generalised linear method with
input variables mapped to a high-dimensional feature space in which classification is performed. Figure 1
illustrates the qualitative step forward that characterises this paper. The straight line is the linear hyper-
plane separating solvent and insolvent companies based on a logistic regression. The curve is calculatedwith
an SVM. It is evident that the non-linear separation outperforms the linear one and translates into a better
classification performance. An important feature of SVM is also its automatic rather than manual surface
shape identification.

Finally, we investigate a relative impact of SVM characteristics responsible for its higher forecasting accu-
racy. This issue is usually neglected in the literature. When compared with a logistic regression as a bench-
mark, SVM is different in two major aspects. First, it can map non-linear dependencies. Second, it employs
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Figure 1. A classification example. The boundary, here corresponding to a 10% PD, between the classes of solvent (black
triangles) and insolvent companies (white rectangles) was estimated using a logistic regression (a straight lines) and
a non-linear SVM (a non-linear curve). It is clear that SVM offers superior classification by heavier penalising companies with
extremely low or high profitability.

the principle ofmarginmaximisation. To explore their relative importance,we introduce another benchmark,
a linear SVM which lacks the non-linearity feature.

Our study has potential implications for supervisory agencies, banks and firms. In tests designed to
resemble as close as possible the actual rating procedures, we illustrate that non-linearity in the data sig-
nificantly influences accuracy. Our assessments show the magnitude of the impact of simplified quantitative
models on PD estimates and, therefore, on capital requirements.

The rest of the paper proceeds as follows. The next section describes the non-linear scoringmethodology.
Data are presented in Section 3 and the test design, model testing and comparison in Section 4. Then a non-
parametric technique for calibrating a single firm’s score in terms of PD is introduced in Section 5. Finally,
Section 6 concludes.

2 Non-linear scoring methodology
When following a linear approach,we automatically impose, through amodelling bias, amonotonic relation-
ship between financial and economic indicators and PDs. A typical example is the monotonically decreasing
dependence of PD from liquidity measured as a ratio of cash over total assets (CASH/TA, Figure 2). This ratio
characterises the ability of a firm to perform financial transactions quickly and with a low cost. PD is low
for highly liquid firms and high for the firms with low liquidity. However, there is a non-monotonic depen-
dence of PD from such important indicators as company size (LOGTA) or sales growth (SG). In the latter case,
excessively high growth rates turn out to be as disadvantageous for a firm as low or negative growth rates.
This is understandable because extremely high growth rates may be unsustainable and likely indicative of
high volatility and, as a consequence, a higher PD. This result is completely in accordance with the Merton’s
model [31], but we need a non-linear technique to discover such a dependence in the data.

Non-monotonic dependencies in the data were confirmed by Fernandes [13], Manning [28] and Sjur–
Hol–van der Wijst [36]; also see a summary in [17], as well as reflected in some commercial models [10, 12].
There is a strong reason to believe that a successful credit rating model must be able to identify and map
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Figure 2. Three year cumulative probabilities of default estimated on quarterly accounts of the US listed companies for 1996–
2007 as a function of financial ratios. Here a kernel regression was used.

non-linear dependencies without a priory knowledge about their type, e.g. decreasing, increasing, U-shaped,
etc. as evident in Figure 2. Moreover, the model must also be applicable in a high-dimensional case.

SVM, as a non-linear non-parametric statistical learning technique, satisfies all these criteria and has
demonstrated very good accuracy in many applications, such as optical character recognition, medical
diagnostics, electrical load forecasting, face recognition, high-energy physics, etc. It has as a solution a flex-
ible scoring function and is controlled by adjusting only a few parameters. The SVM solution is stable, i.e.
changes slowly in response to a slow change of the data, since the method is based on a convex optimisation
problem [37]. This criteria is particularly important for credit rating, where a sudden and unexplained
change in output due to switching from one local solution to another can create legal liabilities for a financial
institution that performs rating. For SVM software implementation, see [22].

The purpose of classification methods is to separate insolvent (y = 1) from solvent (y = −1) companies
described with a d-dimensional vector of characteristics x, usually financial ratios. The SVM separates the
two groups with the maximum distance (margin) between them [35, 38]. The score for x is computed as

f(x) =
n
∑
i=1
αiyiK(x, xi) + b.

In our case the kernelK(x, xi) is up to a coefficient, aGaussiandensity functionwith the argument ‖x − xi‖
that measures the proximity of an observation x of an unknown class to the observation xi whose class yi is
known. The closer x and xi are, the larger K(x, xi) is; therefore, the score f(x) is primarily defined by the
observations that are close to x:

K(x, xi) = e
‖x−xi‖2
2r2 . (1)

The n factors αi (Lagrangemultipliers) are free parameters that are the solution of the classical hinge-loss
SVM dual optimisation problem (2) and have a higher magnitude for misclassified observations:

max
αi

n
∑
i=1
αi −

n
∑
i=1

n
∑
j=1
αiαjyiyjK(xi , xj), subject to 0 ≤ αi ≤

C
n ,

n
∑
i=1
αiyi = 0. (2)

TheGaussianSVMrelies on two complexity parameters that have to be calibrated, r in (1) and C in (2). The
former is a radial basis coefficient that determines the minimum size of data features that can be replicated
with a kernel. The latter one called capacity determines the relative importance of in-sample misclassifica-
tions vs. generalisation ability. SVMs with a kernel depending only on the distance ‖x − xi‖ are often called
radial basis function (RBF) SVMs. For a linear SVM, K(x, xi) = x⊤xi.
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3 Data
For this study we use the company and credit event data collected and maintained by the Risk Management
Institute of theNationalUniversity of Singapore (RMINUS). Thedata are available for researchers visitingRMI
NUS. At our disposal we have 322,134 quarterly accounts of 10,969 US listed companies covering the period
of fifteen years, 1996–2010, excluding the financial and insurance sector and funds. They represent almost
the entire capitalisation of the US stock market and are a representative sample of US listed companies.

From them 1,220 companies experienced at least one default event, which in our case is either liqui-
dation under Chapter 7 or restructuring under Chapter 11 of the US Bankruptcy Code. After liquidation a
company is delisted and excluded from the sample. We treat companies under Chapter 11 similarly, i.e. a
default event has a permanent effect on a firm. This is justified by the fact that firms with a default history are
likely to have a repeated default. Therefore, when we talk about a probability of default (PD) we always mean
a forward looking conditional probability of default given that a company has never experienced it (for the
forward-looking estimation of PD, see [9]).

We constructed financial ratios common in the literature and selected from themonly the ones that could
be computed at least for 40% of all accounts in the data. The resulting list contained twenty financial ratios
(Table 1). In addition, a new binary default indicator y was generated, which is 1 if default happens within
a medium term horizon of three years from the account date, and −1 otherwise. Thus, we adopt a three year
cumulative definition of default. We use distress events from 1996–2010 but accounts only from 1996–2007
to ensure that all defaultswithin every three year post-account period are recorded. The resulting data contain
266,749 quarterly accounts, from which 10,175 received the label y = 1, i.e. the company will be in default

Ratio N mean std min 25% med 75% max

NI/TA 258, 974 −0.86 249 −1.3 ⋅ 105 −0.049 0.003 0.018 3.2 ⋅ 103

NI/S 248, 553 −6.51 253 −7.0 ⋅ 104 −0.181 0.016 0.069 1.9 ⋅ 104

OI/TA 258, 259 −5.60 2,733 −1.4 ⋅ 106 −0.040 0.009 0.029 2.2 ⋅ 104

OI/S 245, 934 −108.08 50,801 −2.5 ⋅ 107 −0.140 0.039 0.112 4.1 ⋅ 104

TL/TA 259, 631 3.19 111 −4,900 0.284 0.504 0.714 3.7 ⋅ 104

TD/TA 260, 925 5.73 477 −6,100 0.015 0.187 0.389 1.5 ⋅ 105

CL/TA 258, 856 2.70 109 −4,900 0.138 0.228 0.380 3.7 ⋅ 104

INT/TD 183, 663 0.34 88 −15 0.014 0.019 0.027 3.8 ⋅ 104

CASH/TA 259, 519 0.158 0.61 −0.45 0.018 0.066 0.199 2.9 ⋅ 102

CASH/CL 259, 445 1.48 18.0 −34 0.061 0.258 0.901 4.5 ⋅ 103

QA/CL 257, 669 3.32 63 −1,500 0.731 1.308 2.544 2.1 ⋅ 104

CA/CL 259, 503 3.89 63 −1,500 1.091 1.874 3.303 2.1 ⋅ 104

WC/TA 258, 598 −2.14 108 −37,000 0.023 0.218 0.450 4.9 ⋅ 103

TA/S 245, 138 53.78 5,777 −10,000 2.544 4.021 7.614 2.5 ⋅ 106

INV/S 242, 733 1.06 35 −5,400 0.017 0.306 0.682 8.9 ⋅ 103

AR/S 244, 589 0.97 27 −160 0.348 0.570 0.776 1.1 ⋅ 104

AP/S 244, 055 3.20 188 −2,900 0.178 0.299 0.519 8.0 ⋅ 104

SG 226, 636 4.39 653 −100 −0.059 0.086 0.290 2.5 ⋅ 105

LOGTA 259, 646 4.52 2.6 −6.9 2.911 4.600 6.287 13.6
LOGS 248, 464 3.14 2.7 −6.9 1.528 3.287 4.977 11.7

Table 1. Summary statistics of the financial ratios estimated for the 1996–2007 quarterly accounts. The average 3 year
cumulative default rate is 3.81%. The financial ratios include four profitability ratios: NI/TA – return on assets (ROA), NI/S – net
income margin, OI/TA, OI/S; three leverage ratios: TL/TA, TD/TA, CL/TA; a cost structure ratio: INT/TD – average interest rate;
five liquidity ratios: CASH/TA, CASH/CL, QA/CL, CA/CL, WC/TA; four activity ratios: TA/S, INV/S, AR/S, AP/S; a growth indicator:
SG – annual sales growth; two size indicators: LOGTA, LOGS. Here the abbreviations are: TA – total assets, NI – net income,
S – sales, OI – operating income, TL – total liabilities, TD – total debt, CL – current liabilities, INT – interest rate expense,
CASH – cash and cash-like equivalents, QA – quick assets, WC – working capital, INV – inventories, AR – accounts receivable,
AP – accounts payable, SG – annual sales growth, LOGTA – natural logarithm of total assets in million dollars, LOGS – natural
logarithm of sales in million dollars.
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within the next three years. Summary statistics for the twenty financial ratios for 1996–2007 are reported
in Table 1.

Almost all financial ratios contain significant outliers or errors which are reported asminimum andmax-
imum. For example, the negative value of the turnover TA/S implies that total assets or sales are negative.
Likewise, extremely high maximum profitability margins NI/S are hard to explain. If they are used for model
calibration, the result can be a complete misspecification of the model. At the same time, the medians are
consistent with our understanding of what a median financial ratio of an established listed company can be.
For example, the median interest rate INT/TD is close to 2%.

To avoid the bias introduced by outliers we cap all variables and subsequently normalise them to ensure
that they have the same variance (see Section 4). All preprocessing utilises only the information available up
to themomentwhen themodel is calibrated, thus strictly following the out-of-time principle ofmodel testing.
This is in contrast to many publications where all data are preprocessed at once with summary statistics
capturing the future data distribution.

Extreme outliers need to be capped or cleaned prior to calibration since the SVM, as well as the majority
of other statistical learning techniques, are sensitive to outliers. It is often not clear how adequate is data
pre-processing used in the literature since it is often not discussed. Some of the applied techniques, such
as min-max normalisation [23], are unable to address the problem. We draw attention of our readers to the
necessity of outlier capping and normalisation due to the nature of company data, and demonstrate in the
next section how this can be done as an integral part of credit rating.

4 Test design and model comparison
Our judgments about model accuracy are based on a widely accepted metric, the accuracy ratio (AR). It will
be used for model comparison. AR, that can take any value between 0, when a model has no discriminatory
power, and 1, when a model has 100% accuracy, is a rescaled version of the area under curve (AUC) char-
acteristic, whereas AR = 2 ⋅ AUC − 1 (see [11]). AUC can be computed as the area under a receiver operating
characteristic (ROC) curve such as in Figure 3 (see [20]).

AR (or AUC) has an important property: it is invariant to any strictly monotonic transformation of the
score and thus better reflects pure performance of a classification model unaffected by subsequent manipu-
lations with the score. In contrast, popular performance metrics, such as the hit rate, alpha- or beta-errors,
are sensitive to the threshold score value separating solvent from insolvent companies. To address the short-
comings of AR as an accuracy measure, we avoid making conclusions about model superiority when ROC
curves cross or are not concave [19].

Our principle behind the design of model validation and testing procedures is their proximity to the real
life situations in which credit rating models are used by financial institutions. We also address severe defi-
ciencies related to the use of random sampling and cross-validation techniques in the context of credit rating
andpropose a four data set design that better reflects a time structure of credit data.We apply a four set design
in a two-stage out-of-sample out-of-time procedure.

The first stage is model calibration and validation which consists of estimating model parameters that
deliver the highest accuracy on a validation set (VALS) after the model has been calibrated on a calibration
set (CALS). For CALS we use quarterly accounts from 1996–1997 and corporate defaults from 1996–2000;
and for VALS quarterly accounts from 2001–2002 and corporate defaults from 2001–2005. The accounts
are matched for every company and every account receives a label y = 1 if a default happens within the next
three years and −1 otherwise. If a default has already happened in the past, the account is excluded from
our analysis. Finally, we exclude observations with missing values. The longer period for defaults extending
three years after the last account is required to capture all defaults with the maximum horizon of three years
and to avoid a bias in PD estimation. With this design VALS is strictly out-of-time compared to CALS.

All variables are capped or winsorised with the values Q1 − 1.5 ⋅ IQR as minimum and Q3 + 1.5 ⋅ IQR as
maximum, where Q1 is the first quartile or 25% percentile, Q3 is the third quartile or 75% percentile and
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IQR = Q3 − Q1 is the interquartile range. After cappingwenormalise all variables by subtracting theirmedian
and dividing by their standard deviation that was estimated on the capped data. This brings all variables to
the same scale avoiding excessive influence of some. Strictly following the out-of-time principle of testing,
we estimate Q1, Q3, median and standard deviation only on CALS and use them both for companies in CALS
and VALS. This is essential because in reality it is common to rate only few companies in the rating period,
for which a reliable evaluation of summary statistics is impossible.

Model calibration includes variable selection and estimation of themodel complexity parameters C and r
for a non-linear RBF SVM and C for a linear SVM. Since it is practically impossible to try all combinations of
variables in order to choose the one that yields the overall best performance, we apply a forward selection
procedure. Variable selection is basedona logistic regression.Weuse the same set of variableswith allmodels
to ensure that any improvement in performance is due to the model and can not be attributed to a difference
in variables.

First we try all univariate models using one of the twenty variables reported in Table 1. The variable
that demonstrates the highest AR is selected. Next, all bivariate models are tried that include the previously
selected variable, and the second variable is identified. The process continues until all twenty variables have
been included in thefinalmodel. A combinationof variables that hasdemonstrated thehighestAR is retained.
In the order of their selection, this combination of variables is
(1) TL/TA, leverage,
(2) NI/TA – returns on assets, profitability,
(3) CASH/TA, liquidity,
(4) INT/TD – average interest rate, cost structure,
(5) OI/TA, profitability,
(6) LOGTA, size,
(7) CL/TA, leverage,
(8) NI/S – profit margin, profitability,
(9) OI/S, profitability,
(10) AR/S, activity.

The ten selected variables represent the sixmain groups of financial ratios. TL/TA captures the total level
of indebtness and CL/TA the level of debt with the maturity of one year or less, in other words the debt that
needs to be refinanced soon. NI/TA, OI/TA, NI/S and OI/S are various profitability indicators measuring the
ability of capital to generate profits and the share of profits in gross sales. CASH/TA characterises the cash
position of a company. INT/TD or the average interest rate determines the cost of external financing. LOGTA
is the company size measured as the logarithm of total assets (the use of logarithm is essential for avoiding
significant heteroscedasticity causedby thepresence of very large and relatively small companies in thedata).
AR/S characterises the ability of a company to collect its payments.

Themaximum accuracy ratio (AR) achieved by the logistic regression with these ten variables during the
selection procedure is 54.7. It rapidly increases when the first variables are added and decreases at a lower
rate after the maximum is passed. The dependence of AR from the number of selected inputs is flat near its
maximum: all models having between four and fourteen and between six and twelve input variables have AR
higher than 53.0 and 54.0, respectively.

Once the model inputs have been selected, we proceed with the calibration of the parameters C and r
that appear in the formulation of a non-linear SVM. They are estimated on a 12 × 12 grid. The next value of
C is twice as large as the previous one and the next value of r is 1.5 times as large. After the initialisation of
the grid, if the solution is not achieved on its internal nodes but on the boundary, the grid is shifted in the
direction of that boundary until the solution becomes internal. As the solution we take the combination of C
and r that deliver the highest AR on VALS. The procedure is similar for a linear SVMwhen only one parameter
C needs to be calibrated. The grid has only one dimension in this case. The highest AR = 61.1 is achieved
with a non-linear SVM for C = 2,560 and r = 1.51. For a linear SVM the maximum AR = 53.3 is achieved
with C = 200. Too high complexities when C is high or r is small lead to overfitting and low generalisation
ability. Both situations should be avoided.
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Set-up 1 Set-up 2 Set-up 3

Validation TRAS X-Val CALS-VALS CALS-VALS
Testing TRAS-TESS TRAS-TESS TRAS*-TESS
Logit 46.0 46.0 50.9
Linear SVM 49.4 51.1 52.2
Non-linear SVM 55.2 60.2 61.3

Table 2. Forecasting accuracy for the three tested models, a logistic regression, linear and non-linear SVM, demonstrated in
different set-ups. CALS contains the data from 1996–2000 with 27,758 accounts, from which 621 belong to companies
expecting default; VALS and TRAS from 2001–2005 with 27,274 (1,473) accounts; an enlarged training set (TRAS*) from
1996–2005 with 105,056 (5,323) accounts; TESS from 2006–2010 with 27,046 (1,284) accounts. All differences between
models are significant at a ≤5% level according to the Mann-Whitney test. The difference in AR that corresponds here to
a 5% significance level is approximately 0.5 or less.

The second stage of our testing procedure is model training and testing. In real applications the train-
ing set (TRAS) can contain any information available until the present moment, it can include both CALS and
VALSaswell. For our TRASwechoose companyquarterly accounts from2001–2002matchedwith thedefault
events from 2001–2005 following the same procedure described for calibration and validation. In this case
the TRAS is the same as the VALS but this does not have always to be the case. The testing set (TESS) is com-
posed of the accounts from 2006–2007 and default events from 2006–2010. The ten selected variables are
capped, normalised and themissing values excluded following the same protocol as for the pair CALS–VALS.
The number of accounts in every data set after cleaning missing values is reported in the caption of Table 2.
The purpose of having a special TRAS different from CALS is to perform training as close as possible to the
date when the trained model is applied to TESS, for minimising an inevitable change in data distribution.

After having validated the models using the pair CALS–VALS, we train the models on TRAS and evaluate
their performance on TESS. The accuracies are reported in the second column in Table 2 (Set-up 2). We can
observe a significant increase in accuracy of a non-linear SVM to AR = 60.2 fromAR = 46.0 for Logit. A linear
SVM also performs better than Logit demonstrating AR = 51.1. All differences are significant at a ≤ 5% level
according to the Mann–Whitney test [27]. The receiver operating characteristic (ROC) curves for the three
models are presented in Figure 3. A non-linear SVM clearly dominates the other models. The comparison
between a linear SVM and Logit cannot be made decisively since their ROC curves cross.

Figure 3. ROC curves for a logistic regression, linear and non-linear SVM. The superiority of a non-linear SVM is evident: its ROC
curve is above the ROC of the other two models. The advantage of a linear SVM compared to a logistic regression is less clear
since their ROC curves cross.
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Next, we compare our test design based on four data sets with a common in the literature design when
a model is cross-validated on TRAS. A cross-validation procedure is out-of-sample with respect to individual
accounts, but it is not out-of-time. Moreover, it is not out-of-sample with respect to companies.We expect this
to lead to a biased estimation of model parameters and overfitting due to cyclicality and a panel nature of
the data. To demonstrate the shortcomings of the widely adopted approach, we cross-validate all models on
TRAS, using here a 5-fold cross-validation. Subsequently, themodels are trained on TRAS and tested on TESS.
The results are reported in the first column of Table 2 (Set-up 1). As expected, both non-linear and linear
SVM are affected by overfitting and their generalisation ability is impaired, which is evident from a lower AR
compared to the second column. The AR of a non-linear SVM drops from 60.2 to 55.2, and of a linear SVM
from 51.1 to 49.4.

In thefinal set-up,we extend the composition of TRAS,whichnow includes all accounts from1996–2002
matched with defaults from 1996–2005. A substantially larger size of TRAS results in a better forecast-
ing accuracy for all three models. Their relative ranking is, however, preserved (see the last column in
Table 2). The performance of a linear SVM is closer to the performance of a logistic regression than a non-
linear SVM. This confirms our hypothesis that it is the non-linearity feature that is mostly responsible for
a higher accuracy.

In all tests we observe a significant superiority of a non-linear SVM, such as in the last test (AR = 61.3
vs. 50.9 for a logistic regression and 52.2 for a linear SVM). However, in contrast to a logistic regression
that does not have any complexity parameters to be calibrated, a non-linear RBF SVM has two parameters
and can be overfitted if the calibration is based on a design that is drastically different from the one applied
for testing, for example, cross-validation for calibration vs. out-of-time forecasting for testing. Therefore, for
SVMs and other learningmachines with a variable complexity, it is important to employ a similar out-of-time
design for determining model complexity parameters resembling the out-of-time set-up in which the models
are used in practice. Failure to do so will likely penalise SVMs and other learning machines and hinder their
acceptance as a viable credit rating technique. On the contrary, the application of a correctly calibrated non-
linear SVM instead of linear alternatives would allow issuing more credit without increasing risk because of
a better separation between solvent and insolvent companies.

5 Conversion of scores into PDs
The conversion of rating scores into PDs provides us with a link to the existing rating classes reported by
rating agencies such as Moody’s and S&P. In a logistic model a sigmoid function is used to estimate PD
assuming a logistic distribution of the latent variable. The same model is also applicable for converting an
SVM score into PD [33]. Other methodologies based on discriminant analysis or binning are different from
the logistic regression in assuming a Gaussian or piecewise uniform distribution, respectively. Such assump-
tions, however, are often not compatible with reality. For example, a company score computed with an SVM
has arbitrary scaling not related to PD, it only ranks companies from the least to the most prone to default.
Moreover, some techniques such as binning can produce non-monotonic PDs as a function of the score.

With Bayesian inference, which can be applied to SVM and other learning machines, PDs can be derived
inside the modelling framework through posterior class probabilities [14, 24, 25, 34]. Although the poste-
rior distribution is not explicitly postulated in this case, the prior distribution of the model parameters is,
usually as Gaussian. This also imposes restrictions, which can be unrealistic, on the relationship between
PDs and scores.

In order to calibrate scores in terms of PDs we propose using an isotonic regression based on the Pool
Adjacent Violators Algorithm (PAVA). It does not specify a functional dependence a priori, only imposing
a monotonicity constraint, which is a desirable feature [3]; also see [8] for a software implementation of the
algorithm.

For data {xi , yi}ni=1 with x1 ≤ x2 ≤ ⋅ ⋅ ⋅ ≤ xn the PAVA produces a non-decreasing function f(x), i.e.

f(x1) ≤ f(x2) ≤ ⋅ ⋅ ⋅ ≤ f(xn),
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Figure 4. Calibration of the score in terms of PD with the pool adjacent violators algorithm (PAVA) [3]. The dots correspond to
solvent (here y=0) or approaching insolvency (y=1) companies. The line denotes the estimated PD.

that solves the following problem:

̂f = argmin
f∈ℝn

n
∑
i=1

(f(xi) − yi)2 subject to xi ≤ xj , f(xi) ≤ f(xj) for all i ≤ j. (3)

The solution of this problem is pooling (averaging) adjacent observations that violatemonotonicity. The PAVA
name comes from this procedure. The algorithm is fast and scales with the rate n (see [16]). Here {xi}ni=1 are
the scores computed with SVM or any other technique for the accounts in TRAS and {yi}ni=1 are the labels of
those accounts, however with a different encoding: y = 1 if a company experiences a default within the next
three years and y = 0 if not. With this labelling the output ̂fi, i = 1, 2, . . . , n, of PAVA is PDs for the accounts
in TESS, i.e. P̂Di = ̂fi.

After the score has been converted into PD for TRAS, the final stage of our analysis is the estimation of
PD of any company in TESS that has been rated and received a score x. We do this by looking up the closest
value to x among the scores of the companies in TRAS {xi}ni=1 and using PD of the company with the closest
score:

P̂D(x) = P̂D(xi) subject to xi = arg min
i=1,...,n

|x − xi|.

Figure 5 represents PDs estimated for the companies of the testing set for the scores reported along the
horizontal axis as percentiles. The scores were produced with a non-linear SVM trained on the 2001–2005
TRAS, and calibrated on the CALS–VALS pair including years 1996–2000 and 2001–2006, respectively.
Since extreme scores estimated by PAVA tend to be biased (it is easy to see from expression (3) that the mini-
mum PD can be 0 and the maximum 1), we capped PDs at 1% and 99% percentiles of TRAS. The horizontal
lines correspond to the historical average three-year cumulative default rates for the whole letter Moody’s
rating classes. Ourmethodology allows rating companies in a wide range of rating classes with theminimum
PD around 0.00% corresponding to the top Aaa class and the highest PD exceeding 25%which corresponds
to the lowest Caa–C rating classes preceding default, i.e. it covers the whole spectrum of rating classes.

6 Conclusion
In this paper we introduce a ratingmethodology based on a non-linear SVM combinedwith a non-parametric
isotonic regression for mapping scores into probabilities of default (PD). The latter is essential, since the
absolute value of the SVM score has no relationship with PD. It also can be used in combination with other
statistical learning techniques, e.g. neural networks.

We confirm that a rating model based on a non-linear RBF SVM dominates both traditional linear
parametric methods such as a logistic regression and a linear SVM. Most of the improvement in forecasting
accuracy can be attributed to its non-linearity feature. The improvement is significant. For example, in terms
of AR, 60.2 for a non-linear SVM vs. 51.1 for a linear SVM and 46.0 for a logistic regression.

However, in order to achieve high performance, the complexity parameters of a non-linear SVMmust be
correctly calibrated in a set-up that resembles the actual rating procedure, i.e. it must be out-of-sample and
out-of-time.We show, that random sampling and cross-validation procedures routinely applied to calibrating
model parameters and not satisfying the out-of-time criterion are likely to lead to overfitting and deterioration
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Figure 5. Non-linear SVM scores for the companies of TESS calibrated in terms of PD. The horizontal lines represent three-year
cumulative average historical PDs for the Moody’s rating classes [18].

of generalisation ability, and as a consequence, lower accuracy. For example, when an out-of-time calibra-
tion procedure was replaced with cross-validation, the AR of a non-linear SVM dropped from 60.2 to 55.2.
We suggest a four data set testing procedure, whereas the calibration and validation sets used to estimate the
complexity parameters resemble in their set-up the training and testing set pair used to evaluate the perfor-
mance of a model.

Combined with a technique for mapping scores into PDs and correctly calibrated using the four data
design, a non-linear SVM can be a potent alternative to other rating methodologies. The property of SVM to
automatically determine the type of dependence between the input financial indicators and PD is an addi-
tional advantage. Combined with a higher accuracy, it can help to reduce the costs of rating and, as a result,
lead to offering rating services in the areas where it was too costly earlier, for example for smaller companies,
partially replacing human judgement.
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1. Introduction

A pricing kernel is defined as a ratio of the economic risk which contains the prefer-

ences of investors and statistical risk which provides information on the dynamics of

the data generating process (DGP). The pricing kernel is an important link between

economics and finance and it plays a pivotal role in assessing the risk aversion over

equity returns. The economic risk is usually approximated using the risk neutral

density q obtained from the derivative market. Thus, obtaining an accurate estima-

tor of q is a crucial step for pricing kernel estimation. Estimating pricing kernels

from option prices is, for example, discussed in Aı̈t-Sahalia and Lo (2000), Aı̈t-

Sahalia and Duarte (2003), Jackwerth (2000). We refer to a recent work by Song

and Xiu (2016) for a comprehensive list of references. In particular, Aı̈t-Sahalia

and Lo (2000) present several methods to estimate the risk neutral density q by

using different nonparametric methods. Härdle et al. (2013) developed uniform

confidence bands for pricing kernels. The developed theory is helpful for testing

parametric specifications of pricing kernels and has a direct extension to estimat-

ing risk aversion patterns. Golubev et al. (2013) and Beare and Schmidt (2012)

proposed statistical tests of pricing kernel monotonicity. Beare (2011) showed how

the theory of monotone rearrangements may be used to derive an explicit solution

for the cost minimizing measure preserving derivative written on some underlying

asset.

In this paper, we propose to estimate the pricing kernel nonparametrically by

a kind of sieve empirical minimisation with a penalty involving the ratio of the

risk-neutral density estimator and the subjective density estimator. In particular,

the risk-neutral density is approximated by a weighted kernel density estimate with

varying unknown weights for different observations. By observing stock prices or

returns that investors expect to obtain at time to maturity, the subjective density

can be approximated by kernel density estimate of historical stock prices with equal

weights. We represent the European call option price function by the second order

integration of the risk-neutral density, so that the unknown weights are obtained

through one-step penalised least squares estimation with the Kullback-Leibler diver-

gence as the penalty function. Statistical risk provides an overview over statistical

properties of the DGP and is given by the distribution p of future prices conditional

on current prices also known as historical density. The historical density p can be

estimated using the past of the time series of the underlying stock (St). Due to

the large number of observations in the derivative option market, the risk neutral

density q can be well estimated with large-sample asymptotic properties given.

Let C(t;K,T ) be the price, at time t, of a call option of strike K and maturity

T on an underlying asset that trades at time t for the price (St). For the sake of

simplicity we restrict our attention to the case of zero interest rates and dividend

yields. In the absence of arbitrage between options, stocks, and bonds at each matu-

rity one may deduce from standard arguments the existence of a risk neutral density
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for the stock price at future time T , q(S, T ) such that

C(t;K,T ) =

∫ ∞
K

(S −K) q(S, T ) dS. (1.1)

In fact we may identify the risk-neutral density from option prices at time t using

the Breeden and Litzenberger (1978) formula which reads (if interest rates and the

dividends are zero) as

q(S, T ) =
∂2

∂K2

∣∣∣∣
K=S

C(t;K,T ). (1.2)

Note that given a finite number of strikes K for which options are available on the

market, the problem of estimating the risk neutral density q becomes ill-posed, i.e.,

a small perturbation in C can lead to a big change in q. It follows from (1.2) that

all the densities in the family of risk-neutral densities have a constant expectation:

St =

∫ ∞
0

S q(S, T ) dS. (1.3)

Moreover the results of Rothschild and Stiglitz Rothschild and Stiglitz (1970, 1971,

1973) and Kellerer (1972) imply that if the family of distributions q(S, T ) with a

constant expectation has the following positive calendar spread property

C(t;K,T1) ≤ C(t;K,T2), T1 < T2, (1.4)

then there exists a martingale (SMt )t≥0 such that for all T the density of SMT is

q(S, T ). By the fundamental theorem of asset pricing, choosing an arbitrage-free

pricing method is basically equivalent to choosing a martingale measure Q ∼ P,

where P is the historical measure. Unfortunately the martingale measure is not

unique in most cases and one needs to have a criteria to find Q. This is typically

done by solving an optimization problem. A widely studied family of objective

functions for choosing Q consists of criteria which can be expressed in the form

Jf (Q) = EQ
[
f

(
dQ
dP

)]
. (1.5)

An important example of the deviation measures described above is the relative

entropy

E(Q,P) = EQ
[
log

dQ
dP

]
= EP

[
dQ
dP

log
dQ
dP

]
(1.6)

which corresponds to f(x) = log(x). Given a stochastic model St, the minimal en-

tropy martingale model is defined as a martingale S∗t such that the law Q∗ of S∗

minimizes the relative entropy with respect to P = PS among all martingale pro-

cesses: it minimizes the relative entropy under the constraint of being a martingale.

Since we have in our disposal only a family of densities D = {q(X, t), t > 0} (only

information about marginals can be retrieved from vanilla options) it is reasonable

to define minimal entropy martingale marginal model as a martingale S∗Mt such

that for each t the law of S∗Mt is given by the density q(M, t) and the measure QM
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with marginals from D minimizes the relative entropy to PS . The minimal entropy

martingale model has an information theoretic interpretation: minimizing relative

entropy corresponds to choosing a martingale measure (or marginals martingale

measure) by adding the least amount of information to the prior model.

To take into account the prices of derivative products traded in the market,

Kallsen (2002) has introduced a notion of consistent pricing measure, that is, a

measure that correctly reproduces the market-quoted prices for a given number of

derivative products. Following this line and taking into account the formulas (1.2)

and (1.3), we can formulate the calibration problem as one of finding the family of

densities q(S, T ) such that for each T the density q(·, T ) minimizes the functional

Q(q) :=

∫ ∞
0

|C(t;K,T )− (Aq)(K)|2 dµ(K) + αKL(p||q) (1.7)

and the integral
∫∞
0
q(x, T ) dx is constant for all T . In (1.7) p is a prior density

estimated from a historical time series which may depend on t, A is a linear operator

of second order integration (see (1.1)), µ is a finite measure on R+ and KL(p||q) is

the Kullback-Leibler divergence between p and q, i.e.,

KL(p||q) :=

∫
R
p(x) log

p(x)

q(x)
dx. (1.8)

In this paper we propose an efficient way of solving the optimisation problem (1.7)

and study the properties of the corresponding estimator. We then apply our esti-

mation procedure to the well-known pricing kernel problem. From statistical point

of view, the penalised least squares estimate coming from (1.7) gains in numerical

stability and can retain some desirable properties of the historical density p.

The paper is organized as follows. In Section 2 and 3 we formulate the problem

and construct the estimators. In Section 4 and 5 we present the main and auxil-

iary theoretical results. In Section 6, we introduce KL-divergence of log-normals.

Section 7 provides empirical results of a simulation study. The proposed estimation

procedure is illustrated by analyzing a Strike-Call price dataset in Section 8.

2. Problem formulation and main results

Let (K1, C1), . . . , (Km, Cm) be observed pairs of strikes and the corresponding call

option prices. Let also X1, . . . , Xn be identically distributed random variables dis-

tributed with a density p(x). First, we construct a kernel density estimator pn for

p as

pn(x) :=
1

nh

n∑
i=1

K
(
x−Xi

h

)
, (2.1)

where K is a kernel and h = h(n) > 0 is a bandwidth. Next we define a class of

estimators for the risk-neutral density q via

qn(x;W ) :=
1

h

n∑
i=1

wiK
(
x−Xi

h

)
, (2.2)
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where the weights W = {wi}ni=1 are nonnegative and sum to one.

Remark 2.1. A motivation for the weighted kernel density estimate (2.2) comes

from some well known results on penalised density estimation (see, for example, Eg-

germont and LaRiccia (2001)). Indeed, consider the following optimization problem

for q :

minimize −2

∫
R
ω(x) q(x) dPn(x) +

∫
R
|q(x)|2 dx+ h2R(q) (2.3)

subject to q is a continuous density,

where ω stands for the Radon-Nikodym derivative dQ/dP , R is the roughness pe-

nalization term and h is the smoothing parameter. Under the choice

R(q) =

∫
R
|q′(x)|2 dx, (2.4)

the solution q of (2.3) satisfies (see, e.g., Eggermont and LaRiccia (2001)) the

boundary value problem

−h2q′′ + q = ω dPn(x), −∞ < x <∞ (2.5)

q(x)→ 0, |x| → ∞

and is given by

qn(x) =
1

nh

n∑
i=1

ω(Xi)K
(
x−Xi

h

)
(2.6)

provided that 1
n

∑n
i=1 ω(Xi) = 1 and K(·) is a two-sided exponential kernel.

Now by plugging the estimator (2.2) into (1.7) and optimising over the weights

W, we get an estimate for the risk-neutral density q, which is expected to be close to

some solution of (1.7). Further, for a fixed sample X1, . . . , Xn from the distribution

with density p, we approximate the solution of the minimisation problem (1.7) by

qn,m := argminq∈Cn,X Qn,m(q), (2.7)

where

Cn,X :=

{
n∑
i=1

wiKh(x−Xi),

n∑
i=1

wi = 1

}
, Kh(x) :=

1

h
K
(x
h

)
, x ∈ R (2.8)

and

Qn,m(q) :=
1

m

m∑
i=1

|Ci − (Aq)(Ki)|2 −
α

n

n∑
i=1

log(nwi) (2.9)

for some α > 0 and (Aq)(K) :=
∫∞
K

(s−K) q(s) ds. The form of the penalty in (2.9)

can be motivated by the fact that if

wi =
ω(Xi)∑n
j=1 ω(Xj)

, i = 1, . . . , n, ω(x) = q(x)/p(x), (2.10)
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then

1

n

n∑
i=1

log(nwi)→
∫
R

logω(x) dP = −KL(p||q) (2.11)

as n→∞.

Remark 2.2. The parameter α determines the degree of regularisation: larger is

α, more influence has the historical data on the estimation of q. It is reasonable to

let α→ 0 as m→∞, as the amount of information in options data becomes larger.

3. Main results

We assume the following statistical model for call prices

Yi = (Aq∗)(Ki) + εi, i = 1, . . . ,m, (3.1)

with some density q∗, where εi are N (0, σ2) i.i.d. random variables representing

some frictions on the market (e.g. bid ask spread). The additive errors scheme

(3.1) applies to European call prices in an intraday context. In fact, for statistical

analysis Renault (1997) interprets the error as mispricings which could be exploited

by arbitrage strategies. In the next theorem we show that the estimate qn,m is close

to q̄n,m := argminq∈Cn,X Q̄n,m(q), where

Q̄n,m(q) :=
1

m

m∑
i=1

|(Aq∗)(Ki)− (Aq)(Ki)|2 −
α

n

n∑
i=1

log(nwi). (3.2)

In fact (3.2) can be viewed as a discretised version of (1.7).

Theorem 3.1. Set ∆ := q̄n,m − qn,m. If

‖Aq∗‖∞ + ‖AKh‖∞ <∞ (A1)

and

inf
q∈Cn,X

Q̄n,m(q) ≤ α/4, (A2)

then it holds for U <
√
m and h � n−1/5,

P
(
‖A∆‖2m ≥ C(U/

√
m+ α)

∣∣X) ≤ 2ne−U
2/B2

(3.3)

for some constants C > 0 and B2 = max{8σ2 maxj ‖AKjh‖2m, 8σ2‖Aq∗‖2m, 4σ4}.

Remark 3.1. It follows from (A2) that

‖A(q̄n,m − q∗)‖2m ≤ α/4 (3.4)

and hence

P
(
‖A(qn,m − q∗)‖2m ≥ C(U/

√
m+ α)

∣∣X) ≤ 2ne−U
2/B2

(3.5)

for some constant C > 0.
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Remark 3.2. The assumption (A1) imposes some restrictions on the “true” op-

tion prices and on the kernel. The assumption (A2) puts an apriori bound on the

approximation error, which is deterministic for X1, . . . , Xn fixed.

Proof. Denote

T :=Q̄n,m(q)−Qn,m(q)

=
1

m

m∑
i=1

[
|(Aq∗)(Ki)− (Aq)(Ki)|2 − |Ci − (Aq)(Ki)|2

]
.

(3.6)

We have

T = − 1

m

m∑
i=1

ε2i −
2

m

m∑
i=1

(Aq∗)(Ki) εi +
2

m

m∑
i=1

(Aq)(Ki) εi = T1 + T2 + T3, (3.7)

where εi ∼ N (0, σ2). Since we consider q only from the class of convex combinations

Cn,X and a linear functional of convex combinations achieves its maximum value at

the vertices, we get

m

2
sup

q∈Cn,X
|T3(q)| ≤ sup

q∈Cn,X

∣∣∣∣∣
m∑
i=1

(Aq)(Ki) εi

∣∣∣∣∣ = max
j=1,...,n

∣∣∣∣∣
m∑
i=1

(AKjh)(Ki) εi

∣∣∣∣∣ , (3.8)

where Kjh = Kh(x−Xj). Hence and due to Lemma Appendix A.1,

P

(
sup

q∈Cn,X
|T3(q)| > U/

√
m

∣∣∣∣∣X
)
≤ 2n exp

(
− U2

8σ2 maxj ‖AKjh‖2m

)
. (3.9)

Similarly, Lemma Appendix A.1 implies

P
(
|T2| > U/

√
m
∣∣X) ≤ 2 exp

(
− U2

8σ2‖Aq∗‖2m

)
(3.10)

and

P
(
|T1 + σ2| > U/

√
m
∣∣X) ≤ exp

(
− U

2

4σ4

)
+ exp

(
−U
√
m

3σ2

)
. (3.11)

Hence, for U ≤
√
m, m→∞, we have

P
(
|T | > U/

√
m
∣∣X) ≤ 2n(1 + o(1))e−U

2/B2

(3.12)

where B2 = max{8σ2 maxj ‖AKjh‖2m, 8σ2‖Aq∗‖2m, 4σ4}. So, we have proved that

with probability greater than 1− 2ne−U
2/B2

sup
q∈Cn,X

|Qn,m(q)− Q̄n,m(q)| ≤ U√
m

(3.13)

Hence,

0 ≤ Q̄n,m(qn,m)− Q̄n,m(q̄n,m) ≤ Q̄n,m(qn,m)−Qn,m(q̄n,m) +
U√
m

(3.14)

≤ Q̄n,m(qn,m)−Qn,m(qn,m) +
U√
m

≤ 2
U√
m
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with probability greater than 1− 2ne−U
2/B2

. On the other hand,

0 ≤ Q̄n,m(qn,m)− Q̄n,m(q̄n,m) = − 2

m

m∑
i=1

(A∆)(Ki)(Aq̄n,m −Aq∗)(Ki) (3.15)

+
1

m

m∑
i=1

(A∆)2(Ki) +
α

n

n∑
i=1

log
w̄i
wi
,

where q̄n,m(x) =
∑n
i=1 w̄iKh(x−Xi). Due to (A2)

‖Aq∗ −Aq̄n,m‖2m < α/4. (3.16)

If ‖A∆‖2m ≥ 4α, then∣∣∣∣∣ 1

m

m∑
i=1

(A∆)(Ki)(Aq̄n,m −Aq∗)(Ki)

∣∣∣∣∣ ≤ ‖A∆‖m‖Aq̄n,m −Aq∗‖m (3.17)

≤ α1/2‖A∆‖m/2 ≤ ‖A∆‖2m/4

and

− 2

m

m∑
i=1

(A∆)(Ki)(Aq̄n,m −Aq∗)(Ki) + ‖A∆‖2m ≥ ‖A∆‖2m/2. (3.18)

Thus, either ‖A∆‖2m ≤ 4α or

1

2m

m∑
i=1

(A∆)2(Ki) +
α

n

n∑
i=1

log
w̄i
wi
≤ 2

U√
m

(3.19)

which is equivalent to

1

2m

m∑
i=1

(A∆)2(Ki) ≤ 2
U√
m

+ α/4 (3.20)

because of (A2).

Let us now assess the error of approximating KL(p||q) by − 1
n

∑n
i=1 log(nwi).

First we prove the following result.

Lemma 3.1. Suppose that
∫

[|p′′(x)|2/p(x)]dx <∞ and K is two-sided exponential

kernel, then it holds

1

n

n∑
i=1

log
qn(Xi;W )

pn(Xi)
− 1

n

n∑
i=1

log(nwi) = OP (h). (3.21)

Proof. Consider weights of the form wi = vi∑
j vj

, i = 1, . . . , n, then the optimiza-

tion problem becomes

min
vi

1

m

∥∥∥∥Y − 1∑
i vi

Qv

∥∥∥∥2 − α

n

∑
j

log

(
vj∑
i vi

)
(3.22)
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with qil = k(Kl, Xi), i = 1, . . . , n, l = 1, . . . ,m, where

k(x,Xi) =
1

h

∫ ∞
x

(s− x)K
(
s−Xi

h

)
ds. (3.23)

We need to solve

2

m

∑
l

Yl − 1∑
r vr

∑
j

qjlvj

[− qkl∑
r vr

+

∑
j qjlvj

(
∑
r vr)

2

]
− α

nvk
+

α∑
r vr

= 0. (3.24)

Multiplying both sides by
∑
j vj , we get∑

j vj

nvk
= 1 +

2

mα

∑
l

Yl − 1∑
r vr

∑
j

qjlvj

−qkl +
1∑
r vr

∑
j

qjlvj

 . (3.25)

Then for large mα

wk − wi
wi

=

2
mα

∑
l

[
Yl − 1∑

r vr

∑
j qjlvj

]
[qil − qkl]

1 + 2
mα

∑
l

[
Yl − 1∑

r vr

∑
j qjlvj

] [
−qkl + 1∑

r vr

∑
j qjlvj

]
≈ 2

mα

∑
l

Yl − 1∑
r vr

∑
j

qjlvj

 [qil − qkl]

(3.26)

and we have to estimate∑
k

(
wk
wi
− 1

)
Kkh (Xi) =

2

mα

∑
l

Yl − 1∑
r vr

∑
j

qjlvj

∑
k

[qil − qkl]Kkh (Xi) .

(3.27)

Consider∑
k

(qil − qkl)K
(
Xk −Xi

h

)
=

1

h

∑
k

K
(
Xk −Xi

h

)
∫ ∞
Kl

(s−Kl)

[
K
(
s−Xi

h

)
−K

(
s−Xk

h

)]
ds. (3.28)

Now it is rather straightforward to show that under general assumptions on the

kernel K, ∑
k(qil − qkl)K

(
Xk−Xi

h

)∑
j K
(
Xj−Xi

h

) = O(h). (3.29)

Denote now

T =
1

n

n∑
i=1

log p(Xi)−
1

n

n∑
i=1

log pn(Xi). (3.30)

We have

T = I1 + I2, (3.31)
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where

I1 = −
∫

log

(∫
Kh(x− y) d[Pn(y)− P (y)]∫

Kh(x− z)dP (z)
+ 1

)
dPn(x)

=

∫
[Pn(x)− P (x)]dx log

(
−
∫

[Pn(y)− P (y)]K′h(x− y) dy∫
Kh(x− z)dP (z)

+ 1

)
−
∫

log

(∫
Kh(x− y) d[Pn(y)− P (y)]∫

Kh(x− z)dP (z)
+ 1

)
dP (x)

=−
∫
ξn(x) dx

(∫
ξn(y)K′h(x− y) dy∫
Kh(x− z)dP (z)

)
−
∫

log

(∫
Kh(x− y) dξn(y)∫
Kh(x− z)dP (z)

+ 1

)
dP (x) +OP((hn)−1),

(3.32)

where ξn(y) :=
√
n[Pn(y)−P (y)]. Using integration by parts, (AX) and the formula

cov(ξ(t), ξ(u)) = min {P (u), P (t)} − P (u)P (t), (3.33)

we get

I1 = OP

(
1

nh

)
. (3.34)

Consider the second term I2. It holds

I2 = − 1

n

n∑
i=1

[
log

(∫
Kh(Xi − y)p(y) dy

)
− log p(Xi)

]
=

∫
log

(
p(x)∫

Kh(x− y)p(y)dy

)
d(Pn(x)− P (x))

+

∫
log

(
p(x)∫

Kh(x− y)p(y)dy

)
dP (x) = I21 + I22.

(3.35)

Note that I21 is a sum of n independent zero-mean random variables. Using the

inequality

| log(t)| ≤ 2| log
√
t| ≤ 2

|t− 1|√
t
, t > 0, (3.36)

we get with t = p(x)/
∫
Kh(x− y)p(y)dy,

Var(I21) ≤ E
[
I221
]
≤ 1

n

∫
p(x)

[
log

p(x)∫
Kh(x− y)p(y)dy

]2
dx

≤ 4

n

∫ [∫
Kh(x− y)p(y)dy − p(x)

]2∫
Kh(x− z)p(z) dz

dx.

(3.37)

Using the inequality (see, e.g. Tsybakov (2008))∫
h(x) log

(
h(x)

g(x)

)
dx ≤

∫
(g(x)− h(x))2

g(x)
dx (3.38)
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and the properties of the two-sided exponential kernel (Eggermont and LaRiccia

(2001) p. 160), we derive

|I22| ≤
∫ [∫

Kh(x− y)p(y)dy − p(x)
]2∫

Kh(x− y)p(y)dy
dx

≤h4
∫

[
∫
K′′h(x− y)p(y)dy]2∫
Kh(x− z)p(z)dz

dx ≤ h4
∫
Kh(x− y)

|p′′(y)|2

p(y)
dx dy.

(3.39)

Then under the condition
∫

[|p′′(x)|2/p(x)]dx < ∞ (see Eggermont and LaRiccia

(2001) p. 162), we derive I21 = OP

(
h2
√
n

)
, whereas I22 is of order O(h4). Thus at

least T22 = OP(n−4/5).

Next let us consider now for any q ∈ Cn,X , the following functional

T (q) :=
1

n

n∑
i=1

log
q(Xi)

p(Xi)
−KL(p||q). (3.40)

Clearly

sup
q∈Cn

|T (q)| = sup
q∈Cn

∣∣∣∣∣ 1n
n∑
i=1

log
q(Xi)

p(Xi)
−KL(q||p)

∣∣∣∣∣
≤ sup
q∈C̃n

∣∣∣∣∣ 1n
n∑
i=1

log
q(Xi)

p(Xi)
−KL(q||p)

∣∣∣∣∣ ,
(3.41)

where

C̃n := convn(H) =

{
n∑
i=1

wiKh(x− ai),
n∑
i=1

wi = 1, a ∈ Rn
}
. (3.42)

and

H := {Kh(x− a), a ∈ R} . (3.43)

The following lemma holds (see Rakhlin et al (2005)).

Lemma 3.2. If density p is such that 0 < a ≤ p(x) ≤ b for all x, then with

probability at least 1− e−t

sup
q∈C̃n

∣∣∣∣∣ 1n
n∑
i=1

log
q(Xi)

p(Xi)
−KL(q||p)

∣∣∣∣∣ ≤ EX

[
c1√
n

∫ b

0

log1/2D(H, ε, dn) dε

]
+ c2

√
t

n
,

(3.44)

where c1 and c2 are constants that depend on a and b, D(H, ε, dn) is the covering

number of H at scale ε with respect to empirical distance dn for any φ1, φ2 ∈ H

d2n(φ1, φ2) =
1

n

n∑
i=1

(φ1(Xi)− φ2(Xi)). (3.45)
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4. Simulation study

In this section, we use a simulated example to illustrate the proposed nonpara-

metric estimation procedure. The price of an European option at time 0 equals its

discounted expected terminal value max(ST − K, 0) with expectation taken with

respect to the equivalent martingale measure Q :

C(K,T ) = E
[
max(ST −K, 0)e−rT

]
= e−rT

∫ ∞
K

(s−K) q(s, T ) dS, (4.1)

where q(S, T ) is the density of Q at time T. Black & Scholes model assumes that

the asset price ST is lognormally distributed

q(S, T ;α, ρ) = lognorm(x, α, ρ) =
1√

2πρS
e
− (log S−α)2

2ρ2 (4.2)

with

α = log(S0) +

(
r − σ2

0

2

)
T, (4.3)

ρ =
√
σ2
0T . (4.4)

It is well-known, that the classical Black-Scholes model is not able to represent

several important phenomena (see, e.g. Jackwerth (1996), Melick (1997)) observed

in options data. In Melick (1997), Neumann (1998) a mixture of two lognormal

distributions was shown to be more appropriate to model option prices. We adopt

this model for our simulation study.

First, we generate an equidistant strike grid (Ki, 1 ≤ i ≤ m)
T

in [0, 16] with

m = 200. The call prices C(Ki), i = 1, . . . ,m, are obtained using the second order

integration of q which is modelled as a mixture of two lognormal densities:

q (x, µ, νβ, σ) = (1− β) lognorm(x, logµ, σ) + β lognormal(x, log ν, σ) (4.5)

with µ = 2, ν = 7 and σ = 0.5. Suppose r = 0, thus S0,µ = µ exp
(
σ2

2

)
and

S0,ν = ν exp
(
σ2

2

)
(see (4.2)). Then with T = 1 we have

C (K) =

∫ ∞
K

∫ ∞
u

q (s) ds du

=

∫ ∞
K

[1− (1− β)Φ {(logu− logµ) /σ} − βΦ {(logu− log ν) /σ}] du.
(4.6)

The market call prices (Yi, 1 ≤ i ≤ m)
T

are generated by adding a normal white

noise to (C(Ki), 1 ≤ i ≤ m), i.e.,

Yi = C (Ki) + ϑεi, i = 1, . . . ,m, (4.7)

where εi ∼ N (0, 1) and ϑ = 0.05. Furthermore, the historical density p is modelled

as a shifted version of q, i.e. p (x, µ, σ, τ) = q (x− τ, µ, σ), where τ is a shift. This

transformation can be viewed as a measure change (from q to p). Next we generate
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a sample (Xt, 1 ≤ t ≤ n)
T

from p with n = 1000. Then the estimated weights Ŵ =

{ω̂t}nt=1 are obtained by minimizing

Q̃n,m (q) =
1

m

m∑
i=1

{Yi − (Aqn) (Ki)}2 −
α

n

n∑
t=1

log (nωt) , (4.8)

subject to
∑n
t=1 ωt = 1, where qn (z;W ) =

∑n
t=1 ωtφh (z −Xt) , φh(x) =

(1/h)φ(x/h) and φ is standard normal density. Then Aqn (z;W ) =
1
h

∑n
t=1 wt

∫∞
z

(∫∞
s
K
(
u−Xt
h

)
du
)
ds.

Fig. 1. Underlying densities q, p and the kernel density estimate pn for the lognormal mixture

model (4.5) with β = 1.

We compare the solution qn (x; ŵ) of the optimisation problem (4.8) with a local

polynomial estimate of the second derivative of C (see (1.2)) (locpoly function from

CRAN ”KernSmooth” library with a Gaussian kernel). First let us consider the case

β = 1, so that p and q are lognormal. For τ = 0.5 the densities q, p and the kernel

density estimate pn (based on the sample X1, . . . , Xn) are shown in Figure 1. The

solution of the optimisation problem (4.8) gives an estimate depicted in Figures 2

and 3.

Take now β = 0.7, i.e. consider the case of the genuine lognormal mixtures. For

τ = 0.5, the densities q, p and empirical density estimate pn are shown in Figure 4,

the solution of the corresponding optimisation problem gives an estimate depicted

in Figure 5 for α = 0 (no regularization) and for α = 0.1 in Figure 6.

The integrated RMSE of the local polynomial estimator and the estimator ob-

tained as a solution to (4.8) with β = 0.7 are shown in Figure 7 for α ∈ {0, 0.1, 1}.
Empirical results show that our method (solution to problem (4.8) ) is likely to

be more suitable for the estimation of the risk-neutral density then local polynomial

method for mixture-type models.
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Fig. 2. Estimates of the risk-neutral density q in
a log-normal model using the penalised sieve ap-

proach without penalisation (dashed line) and

local polynomial approach (dashed-dotted line).

Fig. 3. Estimates of the risk-neutral density q
in a log-normal model using the penalised sieve

approach with α = 0.1 (dashed line) and local

polynomial approach (dashed-dotted line).

Fig. 4. Underlying densities q, p and the kernel density estimate pn for the lognormal mixture
model (4.5) with β = 0.7.

5. Real data analysis

We use the Strike-Call DAX dataset on November 16, 2011 to estimate model

(4.7). There are m = 1621 observations on this day. Let (Zi, Yi, i = 1, . . . , 1621)

denote the strike and call prices. Figure 8 shows the scatter plot of the call

prices against the strike prices. Clearly, the option call price has a mono-

tone decreasing pattern. We use the realisations of the historical stock price

(DAX index) (Xt, t = 1, . . . , n) from March 12, 2009 to November 16, 2011,

so that n = 500. The historical density function p is estimated by pn (x) =

n−1
∑n
t=1Kh (x−Xt). The risk-neutral density function estimate is then defined as
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Fig. 5. Estimates of the risk-neutral density q in
the lognormal mixture model (4.5) with β = 0.7

using the penalised sieve approach without pe-
nalisation (dashed line) and local polynomial

approach (dashed-dotted line). The historical

density is obtained from q by shifting it by
τ = 0.5

Fig. 6. Estimates of the risk-neutral density q
in in the lognormal mixture model (4.5) with

β = 0.7 using the penalised sieve approach with
α = 0.1 penalisation (dashed line) and local

polynomial approach (dashed-dotted line). The

historical density is obtained from q by shifting
it by τ = 0.5

Fig. 7. The RMSE of the penalised sieve approach with α ∈ {0, 0.1, 1} and the local polynomial

method for the case of the mixture model (4.5) with β = 0.7. The historical density is obtained
from q by shifting it by τ = 0.5

qn(z) =
∑n
t=1 ŵ(Xt)Kh (z −Xt) , where the weights Ŵ = {ŵ(Xt)}nt=1 are obtained

by minimising (4.8). Define the moneyness at time t as Mt = Xt/Z. Figures 9 and

10 show the plots of qn(x; Ŵ ) (dashed line) and pn(x) (solid line) against moneyness

for the cases of α = 0 and α = 1000. For the large value of α the one can see that

the estimated risk-neutral density q is closer to the empirical estimate p.
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Fig. 8. Call option prices against strike prices from DAX dataset

Fig. 9. The estimated historical density pn and

the risk-neutral density q obtained via penalised
sieve approach with α = 0 (no penalisation).

Fig. 10. The estimated historical density pn and

the risk-neutral density q obtained via penalised
sieve approach with α = 1000.

Appendix A. Appendix

Lemma Appendix A.1. Let A = {aij , i, j = 1, . . . , N} be a N × N matrix.

Denote the values SA and λA by

S2
A = 2 tr(A>A)2, λA = ‖AA>‖∞. (A.1)
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If ε1, . . . , εN are i.i.d. N (0, σ2) random variables and b = (b1, . . . , bN )> is a deter-

ministic vector then

P(2|b>Aε| > zσ‖b‖(2λA)1/2) ≤ e−z
2/2 (A.2)

and

P(|ε>A>Aε− tr(A>A)| > zSA) ≤ e−z
2/4 + e−zSA/6λA (A.3)
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a b s t r a c t

A multivariate expectile regression model is proposed to analyze the tail events of large
cross-sectional and spatial data, where the tail events are linked by a latent factor structure.
The computational advantage of the method is demonstrated, and the estimation risk
is analyzed for every fixed number of iteration and fixed sample size, when the latent
factors are either exactly or approximately sparse. The proposed method is applied on
the functional magnetic resonance imaging (fMRI) data taken during an experiment of
investment decisions making. It is shown that the negative extreme blood oxygenation
level dependent (BOLD) responses may be relevant to the risk preferences.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Analyzing cross-sectional or spatial data is of critical interest in many scientific fields. Particularly, the interests in these
fields are mostly in the tail events, which are the extreme events that occur with very small (or very large) probability. For
example, in finance, Value-at-Risk (VaR) defined by the 1% quantile of the distribution of investment portfolio is widely
used for measuring the market risk. In climatology, one of the major interests is the prediction of extreme precipitation
defined by the tail quantile with level very close to 1. The estimation or prediction of tail events is often complicated by high
dimensionality, which is common in many modern applications. However, the latent factors that influence all the cross-
sections or spatial points may be sparse.

Multivariate regression (Izenman, 1975; Reinsel and Velu, 1998) is a classical tool for analyzing the cross-sectional or
spatial data, and the penalization methods with matrix nuclear norm (Yuan et al., 2007; Negahban and Wainwright, 2011;
Negahban et al., 2012) is applied to handle high dimensionality. However, the literature in multivariate regression is mostly
silent about the estimation and prediction of tail events. On the other hand, quantile regression proposed by Koenker and
Bassett (1978) is a well-known method for estimating the conditional quantiles, which is done through optimizing a non-
differentiable loss function. Koenker and Portnoy (1990) generalize the quantile regression to a multivariate regression
framework, but it cannot be applied to modern high dimensional data. To deal with high dimensional data with certain
sparsity structure, it seems necessary to use some penalizationmethods, but the non-differentiable loss function of quantile
regression is less convenient when being optimized with a penalty that is also non-differentiable, such as the nuclear norm.

✩ The codes to implement the algorithms are publicly accessible via the website www.quantlet.de.
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In this paper, we propose to estimate the tail events of a factorizable multivariate model using expectile regression (see
(2.3) in Section 2 for the specific form of the model). Expectiles illustrate the tail events, and are closely related to quantiles
(see, e.g. Section 2 of Rossi and Harvey, 2009). The expectile regression is proposed by Newey and Powell (1987) and is
done through optimizing a smooth loss function. The smooth loss function of expectile regression yields computational
advantages when being combined with a non-differentiable penalty, which will be shown in the algorithmic convergence
analysis in Section 2.2. Furthermore, ourmethod can be easily and efficiently implementedwith the fast iterative shrinkage-
thresholding algorithm of Beck and Teboulle (2009).

In addition to the convergence analysis, we jointly analyze the algorithmic and stochastic risk of our iterative estimator in
Theorem 2.3, which characterizes the estimation error for each fixed sample size and fixed number of iteration. In particular,
the theorem shows that our estimator is consistent as long as max{p, m} ≪ n while p, m → ∞, where p is the dimension
of the covariates,m is the number of cross-sections or spatial points, and n is the sample size obtained in each cross-section
or spatial point. The theorem is established under the weak assumption that the number of latent factors jointly influencing
all the cross-sections or spatial points are approximately sparse.

Much interest has concentrated on using the functional magnetic resonance imaging (fMRI) data to understand the risk
perception of humans (Heekeren et al., 2008). While the positive blood oxygenation level dependent (BOLD) signals are the
focus in most studies, an increasing number of researchers are intrigued by the observed negative BOLD signals and their
implications. Many hypotheses on the causes and implications of the negative BOLD are proposed, but they are still highly
debatable (Mullinger et al., 2014).

We apply our method on the BOLD signals measured on the human subjects during an experiment on investment
decisions making, and shed light on how the negative BOLD responses may be relevant in the decision making process.
Using the same data, Majer et al. (2016) retrieve factor loadings from a dynamic factor model of the BOLD signals, and apply
these loadings on explaining the subjects’ risk attitude. However, their analysis only focus on the mean, and neglect the tail
information of the BOLD signals. We apply our method on the BOLD responses obtained from 19 subjects, and estimate the
factors and loadings at both high and low extreme expectile levels. We find that the factor loadings from the negative tail
of the BOLD signals could not only well explain the revealed risk preference of the subjects in terms of R2, but also predict
the revealed risk preference. The prediction performance of the negative extreme BOLD is generally similar to that of the
positive extreme BOLD, but sometimes they can be more accurate. Nonetheless, we note that our results do not yield any
conclusions on the source of the negative BOLD responses.

The rest of the paper is arranged as follows. Section 2 introduces the model setting, estimation method and theoretical
properties of the estimator. Simulation studies of our method are shown in Section 3. Section 4 illustrates the empirical
application with the fMRI data. Section 5 concludes this paper. Proofs and auxiliary results are provided in Appendices.

2. Method

2.1. Model

We start with defining some notations. Denote a matrix S = (slj) = [S·1...S·m] ∈ Rp×m, where S·j ∈ Rp are the column
vectors. Let ∥S∥F, ∥S∥∗ and ∥S∥ be the matrix Frobenius, nuclear and spectral norm. Denote σmin(S) and σmax(S) the smallest
and largest singular values. For a vector v ∈ Rp, ∥v∥2 is the Euclidean norm. Define ⟨⟨A,B⟩⟩

def
= tr(A⊤B). Im is the identity

matrix with dimensionm.
Let {(X i, Yi1, . . . , Yim)}1≤i≤n be the samples with Yij ∈ R and X i ∈ Rp. Specifically, Yij represents the value observed from

the response j at the time point i, and {X i}
n
i=1 are the covariates. For simplicity, we assume that the samples are i.i.d. over i.

For τ ∈ (0, 1), the conditional expectile ej(τ |X i) of Yij given X i is defined by

ej(τ |X i) = X⊤

i γj(τ ), (2.1)

where

γj(τ )
def
= arg min

γ∈Rp
E
[
ρτ (Yij − X⊤γ)

]
, (2.2)

and ρτ (u)
def
= |τ − 1{u < 0}| |u|2. Define the coefficient matrix

Γ = Γτ
def
= [γ1(τ ) . . . γm(τ )].

We assume that the expectiles e1(τ |X i), . . . , em(τ |X i) are related through a factor model:

ej(τ |X i) =

r∑
k=1

ψj,k(τ )f τk (X i), (2.3)

where f τk (X i) is the kth factor, r is the number of factors, and ψj,k(τ ) are the factor loadings. Furthermore, factors are
constructed by linear combinations of covariates X i:

f τk (X i) = ϕk(τ )⊤X i (2.4)
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where ϕk(τ ) = (ϕk,1(τ ), . . . , ϕk,p(τ ))⊤. By substituting (2.4) into (2.3), it can be seen that the factor structure yields the
reparametrization Γ⊤

= ΨτΦτ , where the matrix Ψτ = (ψj,k(τ ))j≤m,k≤r and Φτ = (ϕk,l(τ ))k≤r,l≤p. Unfortunately, the
matrix factorization is in general not unique, so the factors and loadings may not be identifiable from Γ. We alleviate the
identifiability issue by imposing the normalization restrictions as Eq. (2.14) on page 28 of Reinsel and Velu (1998):

Ψ⊤

τ Ψτ = Im, ΦτΦ
⊤

τ = diag(σ1(Γ), . . . , σp∧m(Γ)). (2.5)

The restrictions (2.5)make the factors and loadings associatedwith the nonzero singular values ofΓ identifiable up to sign, if
the nonzero singular values are distinct.When there exist repeated singular values,Ψτ andΦτ cannot be uniquely identified;
see Remark 2.1. Given the singular value decomposition Γ = UDV ⊤, we have Ψτ = V and Φτ = D⊤U⊤. Suppose an
estimator Γ̂ is available, we can estimate the kth factor by f̂ τk (X i) = X⊤

i ϕ̂k(τ ) = σ̂kX⊤

i Û·k and the factor loadings for the
jth response by ψ̂j(τ ) = V̂ j·, where Û and V̂ are unitary matrices obtained from the singular value decomposition Γ̂ =

ÛD̂V̂ ⊤
.

Remark 2.1 (Identifiability and Free Parameters). If there exist repeated singular values, then the singular vectors associated
with these repeated singular values are not unique, and the factors and loadings are not uniquely identifiable. In particular,
suppose the multiplicity of lth singular value µl > 1, the number of free parameters for factor loadings (eigenvectors of
the right singular spaces) is µ2

l −
(
µl
2

)
− µl = µl(µl − 1)/2, where ‘‘µ2

l ’’ is the total number of coefficients that determine
the factor loadings associated with the lth singular value, ‘‘−

(
µl
2

)
’’ is from the orthogonality constraints and ‘‘−µl’’ is from

the normalization constraints. Since the sign in the matrix factorization cannot be determined, the sign of the loadings and
factors are not identifiable. In our empirical analysis in Section 4, we only use the absolute value of the loadings.

The factor model (2.3) implies that Γ is of rank r , and the model (2.1) corresponds to a multivariate linear regression
model. For the standard regression with square loss, Reinsel and Velu (1998) propose to estimate Γ with the reduced-rank
regression under the knowledge of r . However, r is usually unknown in practice. Yuan et al. (2007) propose to perform the
multivariate regression with the nuclear norm penalty, which does not require the knowledge of r . The latter inspired the
use of the nuclear norm penalty in the next section. However, Yuan et al. (2007) do not provide an algorithm that can scale
up to large dimensions.

2.2. Algorithm

To estimate our model under the factor model (2.3), we combine an asymmetric loss with the nuclear norm penalty. To
be more specific, we estimate Γ (defined in Section 2.1) by solving:

Γ̂τ ,λ
def
= arg min

Γ∈Rp×m
F (Γ), (2.6)

F (Γ) def
= (mn)−1

n∑
i=1

m∑
j=1

ρτ (Yij − X⊤

i Γ·j) + λ∥Γ∥∗, (2.7)

where λ is a tuning parameter, Γ·j is the jth column of Γ. The second term ∥Γ∥∗ =
∑min(p, m)

l=1 σl(Γ), where the singular values
σ1(Γ) ≥ σ2(Γ) ≥ · · · ≥ σmin(p, m)(Γ). We note that (2.7) is a convex optimization problem. The number of factors r in (2.3)
does not need to be specified. To simplify the notation, we denote Γ̂ for Γ̂τ ,λ hereinafter.

To solve the optimization problem (2.7), we apply the fast iterative shrinkage-thresholding algorithm (FISTA) of Beck and
Teboulle (2009). FISTA solves the optimization problems of the form:

min
Γ

{g(Γ) + h(Γ)}, (2.8)

where g is a smooth convex function with Lipschitz continuous gradient ∇g ,

∥∇g(Γ1) − ∇g(Γ2)∥F ≤ L∇g∥Γ1 − Γ2∥F,∀Γ1,Γ2 ∈ Rp×m, (2.9)

where L∇g is the Lipschitz constant of ∇g and h is a continuous convex (possibly non-smooth) function (Ji and Ye, 2009).
In view of (2.7), this corresponds to

g(Γ) def
= (mn)−1

n∑
i=1

m∑
j=1

ρτ (Yij − X⊤

i Γ·j), (2.10)

h(Γ) def
= λ∥Γ∥∗. (2.11)

The Lipschitz constant of ∇g is L∇g = 2(mn)−1 max(τ , 1 − τ )∥X∥
2
F ; see Appendix A.1.

Algorithm 1 is an application of FISTA, with g and h chosen as (2.10) and (2.11).
The subroutine SVTλ,g in Algorithm 1 is the singular value thresholding operator given by SVTλ,g

(
S
) def

= US
(
DS −

(λ/L∇g )Ip×m
)
+
V ⊤

S , where SVD implies S = USDSV ⊤

S , Ip×m is a rectangular identity matrix with main diagonal elements
equal to 1, and (S)+ = (max{0, sij}).
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Algorithm 1: FISTA for expectile regression with nuclear norm penalty.

Input: {Y i}
n
i=1, {X i}

n
i=1, λ

Output: Γ̂ = ΓT
1 Initialization: Γ0 = 0, Ω1 = 0, step size δ1 = 1;
2 for t = 1, 2, . . . , T do
3 Γt = SVTλ,g

(
Ωt − L−1

∇g∇g(Ωt )
)
;

4 δt+1 =
1+

√
1+4δ2t
2 ;

5 Ωt+1 = Γt +
δt−1
δt+1

(Γt − Γt−1);
6 end

Remark 2.2 (Initialization and the Stopping Rule). We suggest to initialize the algorithm with Γ0 = 0 in Algorithm 1 , but
because the optimization problem is convex, this can be replaced by any matrix. Of course, the algorithm converges faster
if we initialize it with a matrix that is close to the minimizer. We suggest to stop the algorithm at iteration T satisfying
|F (ΓT+1) − F (ΓT )| ≤ ϵ, for some small ϵ > 0. In the simulation and empirical analysis of this paper, ϵ = 10−6.

The convergence of Algorithm 1 in terms of the loss function is guaranteed by the following theorem.

Theorem 2.1 (Bounds for the Loss Difference and Convergence Rate in Algorithm 1). Let {Γt}
T
t=0 be the sequence obtained by the

iteration of Algorithm 1 . Then

|F (Γt ) − F (̂Γ)| ≤
4(mn)−1 max(τ , 1 − τ )∥X∥

2
F∥Γ0 − Γ̂∥

2
F

(t + 1)2
. (2.12)

In particular, if for ϵ > 0,

t ≥
2
√
max(τ , 1 − τ )∥X∥F∥Γ0 − Γ̂∥F

√
mnϵ

− 1, (2.13)

then |F (Γt ) − F (̂Γ)| ≤ ϵ.

The bound (2.12) comes from a careful calculation of the Lipschitz constant of the gradient of g . The proof of Theorem 2.1
can be found in Appendix A.1.

Theorem 2.1 shows that to get an ϵ-accurate solution, it requires 1/
√
ϵ steps when holding other parameters fixed. This

is smaller than 1/ϵ steps given by quantile regression and 1/ϵ2 by the general subgradient methods, see Theorem 2.3 and
Remark 2.4 in Chao et al. (2016). In view of (2.13), when τ is approaching 0 or 1, the number of iterations that is required to
achieve an ϵ-accurate solution would increase.

Furthermore, utilizing the strong convexity of g , we can obtain a bound for ∥Γt − Γ̂∥
2
F . For this purpose, additional

assumptions on the design X are required.

(A1) Suppose EX i = 0, EX iX⊤

i = Σwith σmin(Σ) > C1 and σmax(Σ) < C2 for some constants C1, C2 > 0 uniformly in p. For
some sequence 0 < an < 1, constants c1, c2 > 0,

P
[
σmin

(
X⊤X
n

)
≥ c1σmin(Σ), σmax

(
X⊤X
n

)
≤ c2σmax(Σ)

]
≥ 1 − an. (2.14)

Assumption (A1) holds for Gaussian design X with c1 = 1/9, c2 = 9 and an = 4 exp(−n/2). See Wainwright (2009). It
can be shown that (A1) holds for the sub-gaussian designs; see Vershynin (2012a) for details.

The following theorem characterizes the convergence in the Frobenius norm.

Theorem 2.2. Given (A1), the sequence Γt obtained from Algorithm 1 satisfy

∥Γt − Γ̂∥
2
F ≤

36
n(t + 1)2

max(τ , 1 − τ )
min(τ , 1 − τ )

∥X∥
2
F

σmin(Σ)
∥Γ0 − Γ̂∥

2
F, (2.15)

with probability greater than 1 − an. In particular, if for ϵ > 0,

t ≥ 6

√
max(τ , 1 − τ )
min(τ , 1 − τ )

∥X∥F∥Γ0 − Γ̂∥F
√
nσmin(Σ)ϵ

− 1, (2.16)

then ∥Γt − Γ̂∥
2
F ≤ ϵ holds with probability greater than 1 − an.

The proof of Theorem 2.2 is in Appendix A.2. We discuss the estimation of the number of factors in the following remark.
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Remark 2.3 (Estimation of the Number of Factors). The number of factors r defined in Section 2.1 can be estimated by rank(ΓT ),
which is the estimator generated by Algorithm 1 . If the number of factors is exactly sparse, rank(ΓT ) is usually a good
estimator; see the simulation study in Section 3.

2.3. Oracle inequalities

In this section, we derive the bounds for the difference between the sequence Γt generated by Algorithm 1 and the true
matrix Γ. These results heavily rely on the strong convexity of ρτ .

We make the following assumptions.

(A2) There exists C > 0 such that for uij
def
= Yij − X⊤

i Γ·j, P(|uij| > s) ≤ exp(1 − s2/C2), ∀s ≥ 0) with sub-gaussian norm
∥uij∥ψ2

def
= sup

p≥1
p−1/2(E|uij|

p)1/p, and let Ku
def
= max

1≤j≤m
∥uij∥ψ2 .

(A3) Conditional on X i, Yij are independent over j.

(A2) regulates the tails of Yij. (A3) is required for obtaining the bounds on the tail probabilities of the estimation error.
In Theorem 2.3, we state a non-asymptotic bound for ∥Γt − Γ∥F in the general situation that the number of factors can be
increasing with n.

Theorem 2.3 (Approximately Sparse Factors). Under (A1)– (A3), λ = 2 cm−1 max(τ , 1 − τ )Ku
√

∥Σ∥

√
p+m
n for some absolute

constant c > 0. Then for any q ∈ {1, . . . , p ∧ m}, the sequence Γt obtained by Algorithm 1 satisfy

∥Γt − Γ∥
2
F ≤ c ′′

(Rt

n
+ 1

)√
p + m

n
ζτ

{√
p + m

n
ζτq +

p∧m∑
j=q+1

σj(Γ)
}

+
c ′′Rt

n
∥Γ0 − Γ∥

2
F, (2.17)

with probability greater than 1 − 3 · 8−(p+m)
− an, where c ′′ > 0 is an absolute constant, Rt

def
=

1
(t+1)2

max(τ ,1−τ )
min(τ ,1−τ )

∥X∥
2
F

σmin(Σ) and

ζτ
def
=

max(τ ,1−τ )
min(τ ,1−τ )

√
∥Σ∥

σmin(Σ)Ku.

Please see Appendix B for a proof of Theorem 2.3. Note that (2.17) holds for any q ∈ {1, . . . , p∧m}. The optimal bound is
obtained by selecting q that balances

√
p+m
n ζτq and

∑p∧m
j=q+1σj(Γ). For a fixed number of iterations t in Algorithm 1 and τ , a

sufficient condition for (2.17) tending to zero is that the number of factors r is approximately sparse (Γ is approximately low
rank): there exists an increasing sequence q = qn ∈ N such that

lim
n→∞

p + m
n

ζ 2τ q = 0 and lim
n→∞

{ p∧m∑
j=q+1

√
p + m

n
ζτσj(Γ)

}
= 0, (2.18)

where p and m can be growing sequences in n. The quantity Rt characterizes how the computational cost influences the
error bound. We can increase the number of iterations in Algorithm 1 to shrink Rt , but this also increases the computational
cost. Similar to Theorems 2.1 and B.1, when τ is approaching to the boundaries of (0, 1), the bound in (2.17) will increase.
Furthermore, heavier tails for Yij make higher Ku, and lead to higher error bounds.

If the number of factors is fixed and is not increasing with n (rank(Γ) is fixed), then (2.17) is minimized by selecting
q = rank(Γ) and

∑p∧m
j=q+1

√
p+m
n ζτσj(Γ) = 0 in (2.17). Hence, we have the following corollary.

Corollary 2.1 (Exactly Sparse Factors). Under the conditions of Theorem 2.3,

∥Γt − Γ∥
2
F ≤ c ′′

(Rt

n
+ 1

)p + m
n

ζ 2τ rank(Γ) +
c ′′Rt

n
∥Γ0 − Γ∥

2
F, (2.19)

with probability greater than 1 − 3 · 8−(p+m)
− an, where c ′′ > 0 is an absolute constant, Rt =

1
(t+1)2

max(τ ,1−τ )
min(τ ,1−τ )

∥X∥
2
F

σmin(Σ) and

ζτ =
max(τ ,1−τ )
min(τ ,1−τ )

√
∥Σ∥

σmin(Σ)Ku.

Remark 2.4. As explained in Section 2.1, we estimate V ·k,t (the loadings corresponding to the kth factor for all responses)
in the SVD Γt = UtDtV ⊤

t . By Theorem 3.10 of Chao et al. (2016), we have:

1 − |V ⊤

·kV ·k,t | ≤
2(2∥Γ∥ + ∥Γt − Γ∥F)∥Γt − Γ∥F

min
{
σ 2
k−1(Γ) − σ 2

k (Γ), σ
2
k (Γ) − σ 2

k+1(Γ)
} , (2.20)

where V ·k are the true loadings. Theorem 2.3 (or Corollary 2.1) can be used with (2.20) to get an explicit bound.
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Table 3.1
The averaged estimated number of factors r̂ over simulation repetitions with
respect to τ and c . Values in the parentheses are the standard deviations over
the simulation repetitions.

τ 0.05 0.3 0.5 0.7 0.95

r = 10

c = 1.3 10.95 11.00 10.00 11.00 10.94
(0.22) (0.00) (0.00) (0.00) (0.23)

c = 1.5 10.70 11.00 10.00 11.00 10.71
(0.47) (0.00) (0.00) (0.00) (0.46)

c = 1.7 10.19 11.00 10.00 11.00 10.20
(0.61) (0.00) (0.00) (0.00) (0.60)

r = 5

c = 1.3 6.00 6.00 5.00 6.00 6.00
(0.00) (0.00) (0.04) (0.00) (0.00)

c = 1.5 6.00 6.00 5.00 6.00 6.00
(0.00) (0.00) (0.00) (0.00) (0.00)

c = 1.7 6.00 6.00 5.00 6.00 6.00
(0.00) (0.06) (0.00) (0.04) (0.00)

r = 2

c = 1.3 3.00 3.00 2.03 3.00 3.00
(0.00) (0.00) (0.18) (0.00) (0.00)

c = 1.5 3.00 2.99 2.00 2.99 3.00
(0.00) (0.12) (0.00) (0.09) (0.00)

c = 1.7 3.00 2.72 2.00 2.78 3.00
(0.00) (0.45) (0.00) (0.41) (0.00)

3. Simulation study

In this section, we apply our method on the simulated data to evaluate the estimation performance on the factors and
loadings, as the number of factors varies.

Set n = m = p = 100. For i = 1, . . . , n, j = 1, . . . , m, let X i ∼ N(0,Σp×p) with Σjk = 0.5|j−k| and εi
i.i.d.
∼ N(0, Im×m),

the response variables are generated by

Yij = X⊤

i Γ·j + εij =

r∑
k=1

ψjkfk(X i) + εij =

r∑
k=1

V jkDkkX⊤

i U·k + εij, (3.1)

where r = rank(Γ). We will set r = 2, 5, 10, and the nonzero diagonal components of D are (19.01, 18.74, 18.65, 18.22,
17.80, 17.50, 17.21, 17.02, 16.57, 16.49). The columns of V and U are the orthonormal singular vectors of a matrix with
components chosen fromN(0, 1). We repeat the data generation 500 times.

We apply Algorithm 1 with Y and X̃ = (ln, X̃), where ln = (1, . . . , 1) is the intercept. The tuning parameter λ is selected
according to Lemma B.1, i.e., λ = 2 cm−1 max(τ , 1 − τ )Ku

√
∥Σ∥

√
p+m
n . We stop the algorithm as described in Remark 2.2.

Denote the resulting estimator Γ̃1, and obtain Γ̃ by removing the first row (the intercept) of Γ̃1.
Table 3.1 reports the results for the estimated number of factors r̂ , which is the number of nonzero singular values of Γ̃

that are greater than 10−10. That is, the singular values smaller than 10−10 are treated as zero. We try several values of c in
the formula for λ because we do not know its exact value. The true number of factors are generally well recovered by our
algorithm, except for the expectiles that deviate more from τ = 0.5. Furthermore, the estimated number of factors is robust
to the model randomness as the standard deviations are very small. The results are similar for different values of c , so we fix
c = 1.3 for all the later analysis.

The Frobenius error ∥Γ̃ − Γ∥F is shown in Fig. 3.1. The results are symmetric in τ around τ = 0.5, and the estimation
errors tend to be larger for the tail τ . In the models where r is larger, the Frobenius error is also larger. Our findings in the
simulation studies are consistent with the roles of τ and r in the error bound in Corollary 2.1.

We measure the estimation performance of the factors and loadings by

∥∆fac
k· ∥2/Dkk,where ∆fac def

= |̃DŨ⊤
| − |DU⊤

|,

∥∆load
·k ∥2,where ∆load def

= |Ṽ | − |V |,

and 1 − |V ⊤

·kṼ ·k|,

(3.2)
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Fig. 3.1. The averaged estimation error ∥Γ̃ − Γ∥F (c = 1.3 in λ). The solid lines represent the averaged Frobenius errors over simulation repetitions, and
the bands describe the standard deviations over the simulation repetitions.

for k = 1, . . . , r , where Ṽ , D̃ and Ũ are based on the SVD Γ̃ = ŨD̃Ṽ ⊤
, and the absolute value is taken componentwisely to the

matrix. We do not include the covariate X i in themeasure for the estimation error of the factors because all factors share the
same X i. We choose two measures for the estimation performance of the loadings. The ∥∆load

·k ∥2 measures the performance
on the recovery of the absolute values of the loadings, which will be relevant in the empirical analysis in Section 4. On the
other hand, 1−|V ⊤

·kṼ ·k| corresponds to the theory thatwe stated in (2.20), which can be regarded as anothermeasure for the
recovery performance. We have also performed the analysis for τ = 0.05 and 0.3, but we do not include their results in the
paper because they are similar to τ = 0.95 and 0.7. The results are presented in Fig. 3.2. Some general patterns are observed
for the three panels. Smaller r gives smaller estimation error, but the associated standard deviation is larger.When τ deviates
from 0.5, the error is larger, and this effect is particularly for ∥∆fac

k· ∥2/Dkk. ∥∆load
·k ∥2 shows similar pattern to 1 − |V ⊤

·kṼ ·k|,
but the variance for 1 − |V ⊤

·kṼ ·k| is overall larger.

4. Empirical analysis: predicting risk attitude with fMRI Data

In this section, we apply our method on the fMRI data to predict the risk attitude on the investment decisions making.
To understand how human brain responds to reward and risk is an important research topic in neuropsychology, financial
economics and neuroeconomics (Heekeren et al., 2008; Camerer, 2007; Schultz, 2015). Previous research mainly focuses on
the identification of the region of interest (ROI) with Blood Oxygenation Level Dependent (BOLD) signals (see Schultz, 2015
and the references therein). However, only a few research uses fMRI on predicting the risk attitude of subjects. Helfinstein
et al. (2014) train support vector machines with the BOLD signals recorded in a Ballon Analog Risk Task (BART) on several
combinations of brain regions, and this classifier can predict subjects’ next choice with over 70% accuracy; van Bömmel et
al. (2014) and Majer et al. (2016) retrieve factor loadings from a dynamic factor model on BOLD and apply these loadings on
predicting subjects’ risk attitude.

We focus on predicting the risk attitude of the subjects using the BOLD signals, but we differ from the previous studies
in that we separately analyze the positive and negative BOLD signals observed in the cortical regions. The positive BOLD
signals are known to be closely associated with increased neuronal activities, but the interpretation of large negative BOLD
responses (NBR) is still controversial. Mullinger et al. (2014) argue that the best explanation for NBR at the cortical layer
might be a decrease in cerebral blood flow (CBF) with a lesser reduction in the neuronal activities, which is measured by the
cerebral metabolic rate of oxygen consumption (CMRO2). This explanation is proven to be an important complement of the
more classical ‘‘blood/vascular stealing’’ hypothesis (see p. 263 of Mullinger et al., 2014). However, Mullinger et al. (2014)
also argue that there may exist deeper neuronal reasons for NBR than simply the inversion of the neurovascular coupling
mechanism of the positive BOLD responses. Following the interpretation of NBR of Mullinger et al. (2014), we suspect that
NBR also contain valuable information for predicting the risk attitude. Using our expectile based approach, we studywhether
the positive and negative extreme BOLD responses are relevant to the risk attitude.

4.1. Data

Our data come from a rapid event-related design experiment on investment decisions making, and this data set is firstly
analyzed in Majer et al. (2016). The experiment was done as follows: 19 subjects were requested to make choices in 256
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Fig. 3.2. The estimation errors ∥∆load
·k ∥2 , 1−|V ⊤

·k Ṽ ·k| for the loadings and ∥∆fac
k· ∥2/Dkk for the factors, defined in (3.2). The solid lines represent the averaged

errors, and the bands describe the standard deviations over simulation repetitions; c = 1.3 in λ.
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Table 4.1
The goodness of fit R2 , Spearman’s and Kendall’s rank correlations for the in-sample fitting and out-of-sample prediction by (M1) or (M2) with/without
constrains, under different τ , ω levels.

Constrained model (only 1st factor) Unconstrained model (2 factors)

Whole series (M1) Task-wise (M2) Whole series (M1) Task-wise (M2)

τ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

In-sample fitting

ω = 0.1
R2 0.084 0.158 0.101 0.412 0.412 0.413 0.312 0.263 0.226 0.455 0.454 0.454
Spearman’s rank corr 0.149 0.377 0.328 0.595 0.595 0.604 0.532 0.526 0.396 0.618 0.618 0.618
Kendall’s rank corr 0.076 0.263 0.228 0.462 0.462 0.474 0.333 0.357 0.275 0.474 0.474 0.474

ω = 0.5
R2 0.070 0.043 0.030 0.134 0.136 0.135 0.307 0.260 0.352 0.445 0.440 0.441
Spearman’s rank corr 0.177 0.140 0.226 0.335 0.316 0.326 0.547 0.528 0.596 0.533 0.544 0.544
Kendall’s rank corr 0.135 0.088 0.135 0.205 0.193 0.205 0.427 0.333 0.415 0.368 0.380 0.380

ω = 0.9
R2 0.199 0.238 0.148 0.206 0.205 0.205 0.393 0.367 0.229 0.487 0.496 0.500
Spearman’s rank corr 0.435 0.540 0.181 0.412 0.412 0.412 0.588 0.628 0.582 0.596 0.637 0.637
Kendall’s rank corr 0.333 0.391 0.135 0.298 0.298 0.298 0.439 0.439 0.439 0.462 0.497 0.497

Out-of-sample predicting

ω = 0.1 Spearman’s rank corr −0.453 −0.181 −0.321 0.454 0.451 0.440 −0.079 −0.133 0.072 0.298 0.298 0.298
Kendall’s rank corr −0.322 −0.111 −0.240 0.357 0.345 0.345 −0.076 −0.088 0.041 0.216 0.216 0.216

ω = 0.5 Spearman’s rank corr −0.444 −0.700 −0.658 −0.119 −0.119 −0.119 −0.035 −0.196 0.247 0.205 0.204 0.212
Kendall’s rank corr −0.275 −0.509 −0.450 −0.064 −0.064 −0.064 −0.006 −0.146 0.135 0.123 0.111 0.123

ω = 0.9 Spearman’s rank corr −0.207 0.204 −0.493 0.023 0.023 0.023 0.161 0.072 −0.447 0.293 0.307 0.307
Kendall’s rank corr −0.170 0.135 −0.345 0.006 0.006 0.006 0.076 0.041 −0.298 0.205 0.216 0.216

investment decision tasks and each task lasts 7 s. The fMRIwas taken every two seconds (temporal resolution= 2 s), and this
resulted in 1400 images for each subject. We have also acquired the answer for each task from each subject. Before applying
our method, it is necessary to identify the region of interest (ROI), because the BOLD responses in non-ROIs are generated by
noise (under the generalized linear model; see Section 6.2.1 of Lindquist (2008)) and do not have a sparse factor structure.
For our data, Majer et al. (2016) identify three brain regions Anterior insula (left and right aINS) and dorsomedial prefrontal
cortex (DMPFC) as the active regions related to investment decisions via spectral clustering method. We will only focus on
the BOLD responses of the voxels in these three regions.

We integrate the information of each region (left and right aINS and DMPFC) spatially by taking the quantiles of the
BOLD responses over all voxels in these regions. At each fMRI scan i of the sth subject, we take the quantiles with levels
ω ∈ {0.1, 0.5, 0.9} of the BOLD responses over all voxels in the regions b = 1 (aINS_L), b = 2 (aINS_R) and b = 3 (DMPFC)
to construct a single time series νi(s, b, ω), where i = 1, . . . ,N = 1400. Fig. 4.1 gives an illustration of the BOLD time
series of each cluster. For each cluster, the series of 19 subjects at ω are averaged (the solid lines) and the bands show the
dispersion of the 19 time series. We observe that the series forω = 0.9 is positive, which summarizes the information of the
positive BOLD responses, while the series for ω = 0.1 is negative, which corresponds to the negative BOLD responses. The
series for ω = 0.5 is stationary and varying around the origin. From Fig. 4.1, we observe that the series with each different ω
shows different volatility, and this may imply that the series with different ω contains different information. We will show
in Table 4.1 that the series with ω = 0.1 and 0.9 tend to contain more information than ω = 0.5.

4.2. Method

4.2.1. Factor loadings at each region b and quantile level ω
For each ω and a single region b, we consider two approaches to construct the variable Yij:

(C1) Whole time series: set Y b,ω
ij = νi(j, b, ω), where i = 1, . . . , n with n = N = 1400, j = 1, . . . , 19 (subject). Thus, we

have m = 19 curves in each region b and at each quantile level ω.
(C2) Analyzing each task separately (task-wise): we divide the whole time series in each region b and at each quantile

level ω into subseries based on the beginning and the end of each task. Let Iq ⊂ {1, . . . ,N} be the set containing the
indices of the images taken during the qth task. In our data, each |Iq| = 3 or 4. We linearly interpolate the points
{νi(s, b, ω)}i∈Iq for each fixed s, b, and ω. Denote ν̃i(s, b, q, ω) by the value on the interpolated curve at the ith point
in n equally distant grid on the interval (min(Iq),max(Iq)), where i = 1, . . . , n = 50. Let Y b,ω

ij = ν̃i(s, b, q, ω) with
j = 256(s − 1) + q, where s = 1, . . . , 19 (index for subject) and q = 1, . . . , 256 (index for task) for each ω, b. Thus,
there arem = 19 × 256 = 4864 curves in each b and ω.

The variable X i is a vector of basis functions that need to be flexible enough to capture the various shapes of the fMRI
BOLD sequences. For this purpose, we use the cubic B-spline basis {Bk}

p
k=1 with equally spaced knots on [0, 1], and set

X i =
(
B1(i/n), B2(i/n), . . . , Bp(i/n)

)⊤, where i = 1, . . . , n. Note that n = 1400 in (C1) and n = 50 in (C2). B-splines are
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Fig. 4.1. In each region, the ω quantiles of the BOLD responses over all the voxels between 1000 and 1120 s of the experiment are shown. In each subfigure
(region), lowest (resp., middle, highest) solid lines represent the median of ω = 0.1 (resp., ω = 0.5, 0.9) quantiles of all 19 subjects, and the upper and
lower boundaries of the bands present the maximum and the minimum of the ω quantiles of the 19 subjects. Vertical lines indicate the occurrences of the
stimuli (the beginning of each task). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

suitable for estimating the hemodynamic response function, see Degras and Lindquist (2014) for more details. We select
p = ⌈n0.8

⌉ of basis functions in each approach above, where ⌈·⌉ takes the smallest integer that is greater than the argument.
The power 0.8 is greater than the (asymptotic) optimal rate 0.4, because the nuclear norm penalty alleviates the issue of
overfitting. As the result, there are 329 basis functions in the approach (C1) and 23 in (C2).
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We compute the matrix Γ̂b,ω with expectile level τ = 0.1, 0.5, 0.9 using Yij and X i by Algorithm 1 , where Yij is chosen
under either (C1) or (C2) with λb,ω selected by the standard 5-fold cross-validation for each region b and each quantile level
ω. Please see Appendix D.1 for the exact value of λ for each pair (b, ω). Using SVD Γ̂b,ω

= Ûb,ω
τ D̂b,ω

τ (V̂ b,ω
τ )⊤, where (V̂ b,ω

τ )⊤ is
regarded as the factor loadings. We note that the size of the matrix V̂ b,ω

τ is 19 × 19 if we define Y b,ω
ij by following (C1), and

4864 × 4864 by following (C2). Note that the sign of the factor loadings cannot be determined exactly (see Remark 2.1).

Remark 4.1 (On the Computation of λ). Themodel error of the BOLD signals typically demonstrates autocorrelation following
AR(k) or ARMA(1,1) (Lindquist, 2008 page 446) under the temporal resolution 2 s. A major consequence of the presence of
temporal correlation is that the usual cross-validation could potentially underestimate λ, which leads to undersmoothing
and overfitting (Opsomer et al., 2001 Section 2). This problem is especially important for the setting (C2), where the
dimensionality is high because we separate each task. However, we observe that the estimated number of factors for the
setting (C2) is typically very sparse (less than five factors). Overall, the overfitting does not cause a big issue and the usual
cross-validation works well in our model.

4.2.2. Predicting risk attitude
To evaluate the prediction performance, we need to obtain the subjects’ risk attitude βs, where s = 1, . . . , 19 denotes the

subject. We follow the approach of Majer et al. (2016) and estimate βs using the investment decisions made by the subjects
to each task with logistic regression; see Appendix D.2 for more details. In essence, higher βs means the subject s is less
risk-averse.

In order to use the loadings V̂ b,ω
τ to predict βs, we apply the standard linear regression models. In particular, in the case

(C1), we construct a model for βs using the first two factor loadings

βs = α
ω,τ
0 + α

ω,τ
11

⏐⏐(V̂ 1,ω
τ )s1

⏐⏐ + α
ω,τ
12

⏐⏐(V̂ 2,ω
τ )s1

⏐⏐ + α
ω,τ
13

⏐⏐(V̂ 3,ω
τ )s1

⏐⏐
+ α

ω,τ
21

⏐⏐(V̂ 1,ω
τ )s2

⏐⏐ + α
ω,τ
22

⏐⏐(V̂ 2,ω
τ )s2

⏐⏐ + α
ω,τ
23

⏐⏐(V̂ 3,ω
τ )s2

⏐⏐ + εs, s = 1, . . . , 19, (M1)

where {α
ω,τ
0 , α

ω,τ
11 , α

ω,τ
12 , α

ω,τ
13 , α

ω,τ
21 , α

ω,τ
22 , α

ω,τ
23 } ∈ R7 are the intercept and the coefficients associated with the regions left

and right Anterior insula, and dorsomedial prefrontal cortex.
In the case (C2), define the averaged loadings of all tasks for each s

µ
b,ω,τ
s,k

def
=

1
256

256∑
q=1

⏐⏐(V̂ b,ω
τ )256(s−1)+q,k

⏐⏐.
We construct another model for βs using µ

b,ω,τ
s,k :

βs = ᾱ
ω,τ
0 + ᾱ

ω,τ
11 µ

1,ω,τ
s,1 + ᾱ

ω,τ
12 µ

2,ω,τ
s,1 + ᾱ

ω,τ
13 µ

3,ω,τ
s,1

+ ᾱ
ω,τ
21 µ

1,ω,τ
s,2 + ᾱ

ω,τ
22 µ

2,ω,τ
s,2 + ᾱ

ω,τ
23 µ

3,ω,τ
s,2 + εs, s = 1, . . . , 19, (M2)

where {ᾱ
ω,τ
0 , ᾱ

ω,τ
11 , ᾱ

ω,τ
12 , ᾱ

ω,τ
13 , ᾱ

ω,τ
21 , ᾱ

ω,τ
22 , ᾱ

ω,τ
23 } ∈ R7. We take the absolute value of the loadings V̂ b,ω

τ because we are only
interested in the magnitude of the loadings, which describes the importance of the factors.

Remark 4.2. If sufficiently many subjects are available, then ideally we could use all the estimated factors as suggested by
one of our referees. However, because we have only 19 subjects, the number of factor loadings that can be included is very
limited. For example, according to the results of an extensive simulation study shown in Table 1 on page 438 in Knofczynski
andMundfrom (2008), themaximum number of predictors that guarantees the best prediction performance is perhaps only
around 9 to 12, given the sample size 19. In an unreported analysis, we checked the out-of-sample performance of themodels
that include up to 3 and 4 factors loadings. We are not able to find strong evidences that more factor loadings improve the
prediction performance.

4.2.3. In-sample and out-of-sample performance
We compare the in-sample and out-of-sample performance of themodels (M1) and (M2). For the in-sample performance,

R2 of both regressions (M1) and (M2) are computed. In addition, in order to determine whether (M1) and (M2) correctly
predict the order of risk-aversion of the subjects (rather than the exact value ofβs), we calculate the Spearman’s andKendall’s
rank correlations between the fitted β̂s (in-sample) and βs.

To measure the out-of-sample performance, we calculate {̃βs}
19
s=1 by a leave-one-out procedure. The steps are as below:

(1) Fix s, where s = 1, . . . , 19. Use the values of the remaining 18 subjects to compute the coefficients
{α
ω,τ
0 , α

ω,τ
11 , α

ω,τ
12 , α

ω,τ
13 , α

ω,τ
21 , α

ω,τ
22 , α

ω,τ
23 } in model (M1) or {ᾱ

ω,τ
0 , ᾱ

ω,τ
11 , ᾱ

ω,τ
12 , ᾱ

ω,τ
13 , ᾱ

ω,τ
21 , ᾱ

ω,τ
22 , ᾱ

ω,τ
23 } in model (M2) by

the standard linear regression.
(2) Compute β̃s by plugging in the coefficients computed in the last step in models (M1) and (M2), and input the loadings

of the sth subject.
(3) Repeat steps (1) and (2) for each s = 1, . . . , 19.
(4) Calculate the Spearman’s and Kendall’s rank correlations between {̃βs}

19
s=1 and {βs}

19
s=1.
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4.3. Empirical results

In Table 4.1, we present the in-sample fitting and out-of-sample performance for models (M1) and (M2) with the
constrained model that uses only the 1st factor (αω,τ21 = α

ω,τ
22 = α

ω,τ
23 = 0 in (M1) and ᾱω,τ21 = ᾱ

ω,τ
22 = ᾱ

ω,τ
23 = 0 in

(M2)) and the unconstrained model, under various (τ , ω) pairs.
For the in-sample fitting, casesω = 0.1 andω = 0.9 outperform the caseω = 0.5. This shows that both extreme negative

or positive BOLD can lead to good fitting for models (M1) and (M2). In particular, the fitting performance is the best when
τ = 0.9 for ω = 0.9 and τ = 0.1 for ω = 0.1, which correspond to the upper boundary of the red area and the lower
boundary of the blue area in each of the three panels in Fig. 4.1.

For the out-of-sample performance, the constrained (M2) using only the first factor with the negative BOLD (ω = 0.1,
τ = 0.1) nearly always outperforms all the other cases. In contrast, positive BOLD (ω = 0.9) under the samemodel performs
poorly. Moreover, the unconstrained model improves the prediction performance in most cases, particularly for (M2) under
ω = 0.9 and τ = 0.9.

Majer et al. (2016) estimate a dynamic semiparametric factor model and extract the resulting factor loadings to predict
the subjects’ risk attitude. They evaluate the in-sample fitting (with all 19 subjects) by R2

= 0.47 for a special case of our
(M1) (τ = 0.5 and αω,τ21 = α

ω,τ
22 = α

ω,τ
23 = 0). Their fitting performance beats all the R2 in our results, but we are able to

describe the predictive abilities at several levels of τ , instead of only looking at τ = 0.5. Our findings successfully confirm
that the tails of the BOLD signals are more informative than their means in predicting the risk attitude.

5. Conclusions

In this paper,wepropose a factorizablemultivariate expectile regressionmethod for thehigh-dimensional cross-sectional
or spatial data with sparse latent factors. Fast iterative shrinkage-thresholding algorithm is applied to estimate the model.
The convergence of the algorithm and the non-asymptotic theoretical guarantee of the estimator are established. We apply
our method on the fMRI data obtained from an investment decisions making experiment, and study the ranking accuracy
of the subjects’ risk preference using the factor loadings of the extreme BOLD responses. The results show that the negative
BOLD signals could provide comparable prediction performance as the positive BOLD signals. This provides insights into the
on-going debate on the meaning of the negative BOLD responses.

There are several possibilities for the future research. As many data in practice are time series, there is a need to relax the
i.i.d. assumption and make our method compatible with richer temporal structure. Statistical inference is also an important
issue for many applications.

Acknowledgments

Financial support from the Deutsche Forschungsgemeinschaft via CRC 649 ‘‘Economic Risk’’ and IRTG 1792 ‘‘High
Dimensional Non Stationary Time Series’’, Humboldt-Universität zu Berlin, is gratefully acknowledged. Shih-Kang Chao is
partially supported by the Office of Naval Research of the U.S.A (ONR N00014-15-1-2331).

Appendix A. Proofs for Section 2.2

A.1. Proof for Theorem 2.1

Theorem 4.4 in Beck and Teboulle (2009) gives the upper bound of the loss difference at iteration t by

|F (Γt ) − F (̂Γ)| ≤
2L∇g∥Γ0 − Γ̂∥

2
F

(t + 1)2
, (A.1)

where L∇g is the Lipschitz constant of ∇g(Γ) defined in (2.9).
We note that

ρ ′

τ (u) =

{
2τu for u ≥ 0;
2(1 − τ )u for u < 0. (A.2)

Hence, the gradient is

∇g(Γ) = −(mn)−1X⊤
{
W ◦ (Y − XΓ)

}
, (A.3)

whereW(Γ) = (wij) ∈ Rn×m, wij
def
= 2

{
τ + 1(Yij ≤ X⊤

i Γ·j)(1 − 2τ )
}
, ‘‘◦’’ represents the Hadamard product.

To simplify the notations, define U(Γ) = (Yij − X⊤

i Γ·j) ∈ Rn×m. For all Γ1,Γ2 ∈ Rp×m, let U1 = U(Γ1), U2 = U(Γ2),
W1 = W(Γ1) andW2 = W(Γ2).

∥∇g(Γ1) − ∇g(Γ2)∥F = (mn)−1
∥X⊤(W1 ◦ U1) − X⊤(W2 ◦ U2)∥F

≤ (mn)−1
∥X∥F∥W1 ◦ U1 − W2 ◦ U2∥F (by submultiplicity)
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= (mn)−1
∥X∥F

[ n∑
i=1

m∑
j=1

{
ρ ′

τ (u1,ij) − ρ ′

τ (u2,ij)
}2

]1/2

≤ (mn)−1
∥X∥F

[ n∑
i=1

m∑
j=1

{
2max(τ , 1 − τ )

}2(u1,ij − u2,ij)2
]1/2

= 2(mn)−1 max(τ , 1 − τ )∥X∥F∥Y − XΓ1 − (Y − XΓ2)∥F

≤ 2(mn)−1 max(τ , 1 − τ )∥X∥
2
F∥Γ1 − Γ2∥F (by submultiplicity), (A.4)

where the fourth line makes use of the fact that ρ ′
τ (u) is Lipschitz continuous with Lipschitz constant 2max(τ , 1 − τ ), see

Chao et al. (2017).
Plug L∇g = 2(mn)−1 max(τ , 1 − τ )∥X∥

2
F into (A.1) yields

|F (Γt ) − F (̂Γ)| ≤
4(mn)−1 max(τ , 1 − τ )∥X∥

2
F∥Γ0 − Γ̂∥

2
F

(t + 1)2
. (A.5)

Moreover, setting the right hand side of (A.5) to be ϵ (∀ϵ > 0) and solving for t gives

t ≥
2
√
max(τ , 1 − τ )∥X∥F∥Γ0 − Γ̂∥F

√
mnϵ

− 1. □ (A.6)

A.2. Proof for Theorem 2.2

Following the proof of Theorem 1 in Fadili and Peyré (2011), define

I(Γt )
def
= g(Γt ) − g (̂Γ) − ⟨⟨∇g(Γt ),Γt − Γ̂⟩⟩, (A.7)

J(Γt )
def
= h(Γt ) − h(̂Γ) + ⟨⟨∇g(Γt ),Γt − Γ̂⟩⟩, (A.8)

the sum of them gives

I(Γt ) + J(Γt ) = F (Γt ) − F (̂Γ). (A.9)

According to Lemma C.2, we have

I(Γt ) ≥ κ∥Γt − Γ̂∥
2
F

=
1
9
m−1 min(τ , 1 − τ )σmin(Σ)∥Γt − Γ̂∥

2
F, (A.10)

where the second line holds with probability greater than 1 − an under (A1).
Since Γ̂ is the optimizer of (2.6), therefore,

0 ∈ ∇g (̂Γ) + ∇h(̂Γ), (A.11)

which implies

− ∇g (̂Γ) ∈ ∇h(̂Γ). (A.12)

As a result, we have

h(Γt ) − h(̂Γ) ≥ ⟨⟨−∇g(Γt ),Γt − Γ̂⟩⟩, (A.13)

i.e., J(Γt ) ≥ 0.
Plugging (A.10) and (A.13) into (A.9) yields,

∥Γt − Γ̂∥
2
F ≤

9m
min(τ , 1 − τ )σmin(Σ)

{
F (Γt ) − F (̂Γ)

}
≤

36
n(t + 1)2

max(τ , 1 − τ )
min(τ , 1 − τ )

∥X∥
2
F

σmin(Σ)
∥Γ0 − Γ̂∥

2
F, (A.14)

with probability greater than 1 − an. The second line comes from the result of Theorem 2.1. □

Appendix B. Proof for Theorem 2.3

By triangle inequality, we have

∥Γt − Γ∥
2
F = ∥Γt − Γ̂ + Γ̂ − Γ∥

2
F ≤ 2∥Γt − Γ̂∥

2
F + 2∥Γ̂ − Γ∥

2
F . (B.1)
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Combining the results of Lemma B.2 and Theorem 2.2, it follows that

∥Γt − Γ∥
2
F ≤183c2

p + m
n

max(τ , 1 − τ )2

min(τ , 1 − τ )2
∥Σ∥

σmin(Σ)2
K 2
u dim(M)

+ 144c

√
p + m

n
max(τ , 1 − τ )
min(τ , 1 − τ )

√
∥Σ∥

σmin(Σ)
Ku∥ΓM⊥∥∗

+
72

n(t + 1)2
max(τ , 1 − τ )
min(τ , 1 − τ )

∥X∥
2
F

σmin(Σ)
∥Γ0 − Γ̂∥

2
F, (B.2)

holds with probability greater than 1 − 3 × 8−(p+m)
− an.

Furthermore, given

∥Γ0 − Γ̂∥
2
F = ∥Γ0 − Γ + Γ − Γ̂∥

2
F ≤ 2∥Γ0 − Γ∥

2
F + 2∥Γ − Γ̂∥

2
F, (B.3)

and applying Lemma B.2 again we complete the proof of Theorem 2.3. □
Now we show auxiliary results used in the proof of Theorem 2.3. The next theorem is an application of Theorem 1 of

Negahban et al. (2012).

Theorem B.1 (Error Bounds for the Estimator). Under (A1), for any q ∈ {1, . . . , p ∧ m}, any optimal solution Γ̂ in the problem
(2.6) with λ ≥ 2∥∇g(Γ)∥ satisfies the bound

∥Γ̂ − Γ∥
2
F ≤

9m2λ2{
c1 min(τ , 1 − τ )σmin(Σ)

}2 q +
36 mλ

min(τ , 1 − τ )σmin(Σ)

p∧m∑
j=q+1

σj(Γ), (B.4)

with probability greater than 1 − an, where σj(Γ) is the jth singular value of Γ.

Proof for TheoremB.1. The proof is an application of Theorem 1 of Negahban et al. (2012). First, we observe that the nuclear
norm is decomposable in the sense that

∥Γ + ∆∥∗ = ∥Γ∥∗ + ∥∆∥∗,∀Γ ∈ Mq,∆ ∈ M⊥

q , (B.5)

where

Mq = M(Uq, Vq)
def
= {Θ ∈ Rp×m

| col(Θ) ⊆ Uq, row(Θ) ⊆ Vq},

M⊥

q = M⊥

(Uq, Vq)
def
= {Θ ∈ Rp×m

| col(Θ) ⊆ U⊥

q , row(Θ) ⊆ V⊥

q },

(B.6)

where row(Θ) and col(Θ) denote the row and column spaces of Θ. It can be seen that Mq ⊂ Mq where Mq
def
= {Θ ∈

Rp×m
| tr(Θ⊤S) = 0, ∀S ∈ M⊥

q }. Similarly,M⊥

q
def
= {Θ ∈ Rp×m

| tr(Θ⊤S) = 0, ∀S ∈ Mq}.
We will verify its conditions (G1) and (G2). For condition (G1), it is already mentioned above that the nuclear norm ∥ · ∥∗

is decomposable with respect to (M,M⊥

) defined in (B.6). For condition (G2), note that on the event

Ω1
def
=

{
σmin

(
X⊤X
n

)
≥ c1σmin(Σ), σmax

(
X⊤X
n

)
≤ c2σmax(Σ)

}
, (B.7)

the loss function g is restrictive strongly convex with coefficients κ and ξ = 0 (we replace τL in Negahban et al. (2012)
by ξ ) shown in Lemma C.2. Since we measure the error in the Frobenius norm ∥ · ∥F, the subspace compatibility constant
(Definition 3 of Negahban et al., 2012) is

Ψ (Mq)
def
= sup

S∈Mq

∥S∥∗

∥S∥F
≤

√
q.

The conclusion of this theorem follows from Theorem 1 of Negahban et al. (2012). □

Lemma B.1. Under (A1)–(A3),

P
(

∥∇g(Γ)∥ ≤ cm−1 max(τ , 1 − τ )Ku
√

∥Σ∥

√
p + m

n

)
≥ 1 − 3 × 8−(p+m)

− an, (B.8)

where c > 0 is an absolute constant.

Proof for Lemma B.1. Throughout the proof, we restrict on the eventΩ1 in (B.7). Recall the expression from (A.3) that

∇g(Γ) = −(mn)−1X⊤
{
W ◦ (Y − XΓ)

}
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and the matrix U(Γ) = (uij) = (Yij − X⊤

i Γ·j) ∈ Rn×m. Following the proof of Lemma 3 in Negahban and Wainwright (2011),
we have

P
(
n−1

∥X⊤(W ◦ U)∥ ≥ 4s
)

= P
(

sup
β∈Sp−1,
α∈Sm−1

n−1
|β⊤X⊤(W ◦ U)α| ≥ 4s

)

≤ 8p+m sup
β∈Sp−1,
α∈Sm−1

P
(
n−1

|⟨Xβ, (W ◦ U)α⟩| ≥ s
)

≤ 8p+m sup
β∈Sp−1,
α∈Sm−1

P
(
n−1

n∑
i=1

⟨β,X i⟩⟨α, (W ◦ U)i⟩ ≥ s
)
, (B.9)

where Sm−1 def
= {α ∈ Rm

: ∥α∥2 = 1} is the Euclidean sphere in m-dimensions. ∀s ≥ 0, there exists C > 0 such that
P
(
|uij| > s

)
≤ exp

(
1 − s2/C2

)
. Since |wij| ≤ max(τ , 1 − τ ), we have

P
(

|wijuij| > s
)

≤ P
(
max(τ , 1 − τ )|uij| > s

)
= P

(
|uij| >

s
max(τ , 1 − τ )

)
≤ exp

(
1 −

s2

max(τ , 1 − τ )2C2

)
. (B.10)

It means for each j ∈ {1, . . . , m}, wijuij are sub-gaussian. Moreover, the maximal sub-gaussian norm is bounded by

max
1≤j≤m

∥wijuij∥ψ2 = max
1≤j≤m

sup
p≥1

p−1/2(E|wijuij|
p)1/p

≤ max(τ , 1 − τ ) max
1≤j≤m

sup
p≥1

p−1/2(E|uij|
p)1/p

= max(τ , 1 − τ )Ku. (B.11)

Then byHoeffding’s inequality (Proposition 5.10 of Vershynin, 2012b),we can conclude that
⟨
α, (W◦U)i

⟩
is also sub-guassian,

P
(⟨
α, (W ◦ U)i

⟩
≥ s

)
= P

(⏐⏐ m∑
j=1

αjwijuij
⏐⏐ ≥ s

)

≤ exp
(
1 −

C ′s2

max(τ , 1 − τ )2K 2
u ∥α∥2

2

)
= exp

(
1 −

C ′s2

max(τ , 1 − τ )2K 2
u

)
, (B.12)

where C ′ > 0 is an absolute constant. Furthermore, its sub-gaussian norm is bounded by⟨
α, (W ◦ U)i

⟩
ψ2

= sup
p≥1

p−1/2
{
E
⏐⏐⟨α, (W ◦ U)i⟩

⏐⏐p}1/p

= sup
p≥1

p−1/2
(
E
⏐⏐ m∑

j=1

αjwijuij
⏐⏐p)1/p

≤ max(τ , 1 − τ )sup
p≥1

p−1/2
(
E
⏐⏐ m∑

j=1

αjuij
⏐⏐p)1/p

≤ max(τ , 1 − τ )MKu, (B.13)

where M > 0 is an absolute constant. The last line comes from Khintchine inequality (Corollary 5.12 of Vershynin, 2012b)
and recall that ∥α∥2 = 1. Applying Hoeffding’s inequality again we can obtain

P
(
n−1

n∑
i=1

⟨
β,X i

⟩⟨
α, (W ◦ U)i

⟩
≥ s

)
≤ exp

(
1 −

C ′′s2n
max(τ , 1 − τ )2M2K 2

u n−1
∑n

i=1⟨β,X i⟩
2

)
≤ exp

(
1 −

C ′′s2n
max(τ , 1 − τ )2M2K 2

u n−1∥Xβ∥
2
2

)
,
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≤ exp
(
1 −

C ′′s2n
c2 max(τ , 1 − τ )2M2K 2

u ∥Σ∥

)
, (B.14)

where C ′′ is an absolute constant. Combining (B.9) and (B.14) gives

P
(
n−1

X⊤(W ◦ U)
 ≥ 4s

)
≤ exp

(
1 −

C ′′s2n
9max(τ , 1 − τ )2M2K 2

u ∥Σ∥
+ (p + m) log 8

)
. (B.15)

Set s =
1
4 c max(τ , 1 − τ )Ku

√
∥Σ∥

√
p+m
n , where c def

= 4 ·

√
2 log 8 9M2

C ′′ , then we can conclude from the fact P(Ω1) ≥ 1 − an,

P
(
n−1

X⊤(W ◦ U)
 ≤ c max(τ , 1 − τ )Ku

√
∥Σ∥

√
p + m

n

)
≥

[
1 − exp

(
1 − (p + m) log 8

)]
× (1 − an)

≥
[
1 − 3 × 8−(p+m)]

× (1 − an)

≥ 1 − 3 × 8−(p+m)
− an (as p + m > 1). (B.16)

This finishes the proof. □

Lemma B.2. Under (A1)– (A3), selecting λ = 2 cm−1 max(τ , 1 − τ )Ku
√

∥Σ∥

√
p+m
n , for n ≥ 2min(m, p), any optimal solution

Γ̂ in the problem (2.6) satisfies the bound

∥Γ̂ − Γ∥
2
F ≤c ′

p + m
n

max(τ , 1 − τ )2

min(τ , 1 − τ )2
∥Σ∥

σmin(Σ)2
K 2
u dim(M)

+ c ′

√
p + m

n
max(τ , 1 − τ )
min(τ , 1 − τ )

√
∥Σ∥

σmin(Σ)
Ku∥ΓM⊥∥∗, (B.17)

with probability greater than 1 − 3 × 8−(p+m)
− an, where c, c ′ > 0 are absolute constants.

Proof of Lemma B.2. Recall that Ω1 is defined as (B.7), and let the event that (B.8) holds as Ω2. On event Ω1 ∩ Ω2, (B.17)
can be achieved by simply plugging λ = 2 cm−1 max(τ , 1 − τ )Ku

√
∥Σ∥

√
p+m
n into (B.4). We note that

P(Ω2 ∩Ω1) = P(Ω2|Ω1) P(Ω1) ≥
[
1 − 3 × 8−(p+m)]

× (1 − an)

≥ 1 − 3 × 8−(p+m)
− an (as p + m > 1). □ (B.18)

Appendix C. Auxiliary results

Lemma C.1. For any u, δ ∈ R and τ ∈ (0, 1),

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ ≥ min(τ , 1 − τ )δ2. (C.1)

Proof of Lemma C.1. When u = 0, we have ρτ (u) = ρ ′
τ (u) = 0, therefore

ρτ (δ) = |τ − 1{δ < 0}|δ2 ≥ min(τ , 1 − τ )δ2.

If u > 0, u + δ < 0 (δ < 0), we have

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ − min(τ , 1 − τ )δ2 =

{
(1 − 2τ )(δ + u)2 ≥ 0 for τ ≤ 1 − τ ;

(1 − 2τ )(u + 2δ)u > 0 for τ > 1 − τ .

If u > 0, u + δ > 0 (δ > 0), we have

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ − min(τ , 1 − τ )δ2 =

{
(2τ − 1)(u + 2δ)u ≥ 0 for τ ≤ 1 − τ ;

(2τ − 1)(u + δ)2u > 0 for τ > 1 − τ .

In the other two cases,

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ =

{
τδ2 ≥ min(τ , 1 − τ )δ2 for u > 0, u + δ ≥ 0;
(1 − τ )δ2 ≥ min(τ , 1 − τ )δ2 for u < 0, u + δ ≤ 0.

Therefore, we can conclude that

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ ≥ min(τ , 1 − τ )δ2.
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Table D.1
Tuning parameters by 5-fold cross validation.

Whole series (C1) Task-wise (C2)

τ 0.1 0.5 0.9 0.1 0.5 0.9

ω = 0.1
aINSL 0.0442 0.0552 0.0383 0.0008 0.0006 0.0008
aINSR 0.0303 0.0421 0.0293 0.0004 0.0008 0.0004
DMPFC 0.0348 0.0504 0.0198 0.0004 0.0007 0.0006

ω = 0.5
aINSL 0.0181 0.0403 0.0153 0.0004 0.0006 0.0003
aINSR 0.0137 0.0393 0.0157 0.0006 0.0004 0.0005
DMPFC 0.0195 0.0391 0.0143 0.0006 0.0002 0.0007

ω = 0.9
aINSL 0.0253 0.0408 0.0275 0.0006 0.0004 0.0004
aINSR 0.0243 0.0442 0.0200 0.0008 0.0002 0.0006
DMPFC 0.0193 0.0474 0.0206 0.0005 0.0008 0.0008

Lemma C.2. g(Γ) defined in (2.10) is κ-strongly convex and differentiable with κ = m−1 min(τ , 1 − τ )σmin(X
⊤X
n ). □

Proof of Lemma C.2. Denote ũij
def
= Yij − X⊤

i (Γ·j + ∆·j) and uij
def
= Yij − X⊤

i Γ·j, for i = 1, . . . , n, j = 1, . . . , m, we have

⟨⟨∇g(Γ),∆⟩⟩ = tr
(
∇g(Γ)⊤∆

)
= −(mn)−1

m∑
j=1

p∑
l=1

∆lj

n∑
i=1

ρ ′(uij)Xil

= −(mn)−1
n∑

i=1

m∑
j=1

{ p∑
l=1

∆ljρ
′(uij)Xil

}
= −(mn)−1

n∑
i=1

m∑
j=1

{
ρ ′(uij)X⊤

i ∆·j
}
. (C.2)

Therefore,

g(Γ + ∆) − g(Γ) − ⟨⟨∇g(Γ),∆⟩⟩ = (mn)−1
n∑

i=1

m∑
j=1

{
ρ (̃uij) − ρ(uij) + ρ ′(uij)X⊤

i ∆·j
}

≥ (mn)−1 min(τ , 1 − τ )
n∑

i=1

m∑
j=1

(X⊤

i ∆·j)2 (by Lemma C.1)

= (mn)−1 min(τ , 1 − τ )∥X∆∥
2
F

= (mn)−1 min(τ , 1 − τ ) tr(∆⊤X⊤X∆)

≥ m−1 min(τ , 1 − τ )σmin
(X⊤X

n

)
∥∆∥

2
F . □ (C.3)

Appendix D. Additional details for Section 4

D.1. Tuning parameters by cross-validation

Choosingω = 0.1, b = 1 (aINS_L cluster) in (C1) case as an example, Fig. D.1 illustrates the cross-validation error function
in terms of λ under different τ levels. The optimal tuning parameters determined by 5-fold cross-validation under all cases
are reported in Table D.1.

D.2. Risk attitude parameter

The risk attitude parameter β is estimated by logistic model via maximum likelihood estimation (MLE)

P{risky choice|x} =
1

1 + exp[−σ {x̄ − βS(x) − 5}]
,

P{sure choice|x} = 1 −
1

1 + exp[−σ {x̄ − βS(x) − 5}]
, (D.1)

where x is the return stream displayed to the individual, its mean and standard deviation are x̄ and S(x).
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Fig. D.1. The cross-validation error function in terms of tuning parameter λ, with τ = , 0.5, and , respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. D.2. Estimated risk attitude for 19 subjects.

The estimated risk attitude parameters for 19 subjects in order are plotted in Fig. D.2, also see Majer et al. (2016).
Negative parameters imply risk-seeking behaviors; while positive parameters indicate averse risk patterns.We can seemost
of the individuals are risk-averse and the two extremes #1 and #19 are the most risk-averse and most risk-seeking persons
respectively.
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a b s t r a c t

A multivariate expectile regression model is proposed to analyze the tail events of large
cross-sectional and spatial data, where the tail events are linked by a latent factor structure.
The computational advantage of the method is demonstrated, and the estimation risk
is analyzed for every fixed number of iteration and fixed sample size, when the latent
factors are either exactly or approximately sparse. The proposed method is applied on
the functional magnetic resonance imaging (fMRI) data taken during an experiment of
investment decisions making. It is shown that the negative extreme blood oxygenation
level dependent (BOLD) responses may be relevant to the risk preferences.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Analyzing cross-sectional or spatial data is of critical interest in many scientific fields. Particularly, the interests in these
fields are mostly in the tail events, which are the extreme events that occur with very small (or very large) probability. For
example, in finance, Value-at-Risk (VaR) defined by the 1% quantile of the distribution of investment portfolio is widely
used for measuring the market risk. In climatology, one of the major interests is the prediction of extreme precipitation
defined by the tail quantile with level very close to 1. The estimation or prediction of tail events is often complicated by high
dimensionality, which is common in many modern applications. However, the latent factors that influence all the cross-
sections or spatial points may be sparse.

Multivariate regression (Izenman, 1975; Reinsel and Velu, 1998) is a classical tool for analyzing the cross-sectional or
spatial data, and the penalization methods with matrix nuclear norm (Yuan et al., 2007; Negahban and Wainwright, 2011;
Negahban et al., 2012) is applied to handle high dimensionality. However, the literature in multivariate regression is mostly
silent about the estimation and prediction of tail events. On the other hand, quantile regression proposed by Koenker and
Bassett (1978) is a well-known method for estimating the conditional quantiles, which is done through optimizing a non-
differentiable loss function. Koenker and Portnoy (1990) generalize the quantile regression to a multivariate regression
framework, but it cannot be applied to modern high dimensional data. To deal with high dimensional data with certain
sparsity structure, it seems necessary to use some penalizationmethods, but the non-differentiable loss function of quantile
regression is less convenient when being optimized with a penalty that is also non-differentiable, such as the nuclear norm.

✩ The codes to implement the algorithms are publicly accessible via the website www.quantlet.de.
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In this paper, we propose to estimate the tail events of a factorizable multivariate model using expectile regression (see
(2.3) in Section 2 for the specific form of the model). Expectiles illustrate the tail events, and are closely related to quantiles
(see, e.g. Section 2 of Rossi and Harvey, 2009). The expectile regression is proposed by Newey and Powell (1987) and is
done through optimizing a smooth loss function. The smooth loss function of expectile regression yields computational
advantages when being combined with a non-differentiable penalty, which will be shown in the algorithmic convergence
analysis in Section 2.2. Furthermore, ourmethod can be easily and efficiently implementedwith the fast iterative shrinkage-
thresholding algorithm of Beck and Teboulle (2009).

In addition to the convergence analysis, we jointly analyze the algorithmic and stochastic risk of our iterative estimator in
Theorem 2.3, which characterizes the estimation error for each fixed sample size and fixed number of iteration. In particular,
the theorem shows that our estimator is consistent as long as max{p, m} ≪ n while p, m → ∞, where p is the dimension
of the covariates,m is the number of cross-sections or spatial points, and n is the sample size obtained in each cross-section
or spatial point. The theorem is established under the weak assumption that the number of latent factors jointly influencing
all the cross-sections or spatial points are approximately sparse.

Much interest has concentrated on using the functional magnetic resonance imaging (fMRI) data to understand the risk
perception of humans (Heekeren et al., 2008). While the positive blood oxygenation level dependent (BOLD) signals are the
focus in most studies, an increasing number of researchers are intrigued by the observed negative BOLD signals and their
implications. Many hypotheses on the causes and implications of the negative BOLD are proposed, but they are still highly
debatable (Mullinger et al., 2014).

We apply our method on the BOLD signals measured on the human subjects during an experiment on investment
decisions making, and shed light on how the negative BOLD responses may be relevant in the decision making process.
Using the same data, Majer et al. (2016) retrieve factor loadings from a dynamic factor model of the BOLD signals, and apply
these loadings on explaining the subjects’ risk attitude. However, their analysis only focus on the mean, and neglect the tail
information of the BOLD signals. We apply our method on the BOLD responses obtained from 19 subjects, and estimate the
factors and loadings at both high and low extreme expectile levels. We find that the factor loadings from the negative tail
of the BOLD signals could not only well explain the revealed risk preference of the subjects in terms of R2, but also predict
the revealed risk preference. The prediction performance of the negative extreme BOLD is generally similar to that of the
positive extreme BOLD, but sometimes they can be more accurate. Nonetheless, we note that our results do not yield any
conclusions on the source of the negative BOLD responses.

The rest of the paper is arranged as follows. Section 2 introduces the model setting, estimation method and theoretical
properties of the estimator. Simulation studies of our method are shown in Section 3. Section 4 illustrates the empirical
application with the fMRI data. Section 5 concludes this paper. Proofs and auxiliary results are provided in Appendices.

2. Method

2.1. Model

We start with defining some notations. Denote a matrix S = (slj) = [S·1...S·m] ∈ Rp×m, where S·j ∈ Rp are the column
vectors. Let ∥S∥F, ∥S∥∗ and ∥S∥ be the matrix Frobenius, nuclear and spectral norm. Denote σmin(S) and σmax(S) the smallest
and largest singular values. For a vector v ∈ Rp, ∥v∥2 is the Euclidean norm. Define ⟨⟨A,B⟩⟩

def
= tr(A⊤B). Im is the identity

matrix with dimensionm.
Let {(X i, Yi1, . . . , Yim)}1≤i≤n be the samples with Yij ∈ R and X i ∈ Rp. Specifically, Yij represents the value observed from

the response j at the time point i, and {X i}
n
i=1 are the covariates. For simplicity, we assume that the samples are i.i.d. over i.

For τ ∈ (0, 1), the conditional expectile ej(τ |X i) of Yij given X i is defined by

ej(τ |X i) = X⊤

i γj(τ ), (2.1)

where

γj(τ )
def
= arg min

γ∈Rp
E
[
ρτ (Yij − X⊤γ)

]
, (2.2)

and ρτ (u)
def
= |τ − 1{u < 0}| |u|2. Define the coefficient matrix

Γ = Γτ
def
= [γ1(τ ) . . . γm(τ )].

We assume that the expectiles e1(τ |X i), . . . , em(τ |X i) are related through a factor model:

ej(τ |X i) =

r∑
k=1

ψj,k(τ )f τk (X i), (2.3)

where f τk (X i) is the kth factor, r is the number of factors, and ψj,k(τ ) are the factor loadings. Furthermore, factors are
constructed by linear combinations of covariates X i:

f τk (X i) = ϕk(τ )⊤X i (2.4)
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where ϕk(τ ) = (ϕk,1(τ ), . . . , ϕk,p(τ ))⊤. By substituting (2.4) into (2.3), it can be seen that the factor structure yields the
reparametrization Γ⊤

= ΨτΦτ , where the matrix Ψτ = (ψj,k(τ ))j≤m,k≤r and Φτ = (ϕk,l(τ ))k≤r,l≤p. Unfortunately, the
matrix factorization is in general not unique, so the factors and loadings may not be identifiable from Γ. We alleviate the
identifiability issue by imposing the normalization restrictions as Eq. (2.14) on page 28 of Reinsel and Velu (1998):

Ψ⊤

τ Ψτ = Im, ΦτΦ
⊤

τ = diag(σ1(Γ), . . . , σp∧m(Γ)). (2.5)

The restrictions (2.5)make the factors and loadings associatedwith the nonzero singular values ofΓ identifiable up to sign, if
the nonzero singular values are distinct.When there exist repeated singular values,Ψτ andΦτ cannot be uniquely identified;
see Remark 2.1. Given the singular value decomposition Γ = UDV ⊤, we have Ψτ = V and Φτ = D⊤U⊤. Suppose an
estimator Γ̂ is available, we can estimate the kth factor by f̂ τk (X i) = X⊤

i ϕ̂k(τ ) = σ̂kX⊤

i Û·k and the factor loadings for the
jth response by ψ̂j(τ ) = V̂ j·, where Û and V̂ are unitary matrices obtained from the singular value decomposition Γ̂ =

ÛD̂V̂ ⊤
.

Remark 2.1 (Identifiability and Free Parameters). If there exist repeated singular values, then the singular vectors associated
with these repeated singular values are not unique, and the factors and loadings are not uniquely identifiable. In particular,
suppose the multiplicity of lth singular value µl > 1, the number of free parameters for factor loadings (eigenvectors of
the right singular spaces) is µ2

l −
(
µl
2

)
− µl = µl(µl − 1)/2, where ‘‘µ2

l ’’ is the total number of coefficients that determine
the factor loadings associated with the lth singular value, ‘‘−

(
µl
2

)
’’ is from the orthogonality constraints and ‘‘−µl’’ is from

the normalization constraints. Since the sign in the matrix factorization cannot be determined, the sign of the loadings and
factors are not identifiable. In our empirical analysis in Section 4, we only use the absolute value of the loadings.

The factor model (2.3) implies that Γ is of rank r , and the model (2.1) corresponds to a multivariate linear regression
model. For the standard regression with square loss, Reinsel and Velu (1998) propose to estimate Γ with the reduced-rank
regression under the knowledge of r . However, r is usually unknown in practice. Yuan et al. (2007) propose to perform the
multivariate regression with the nuclear norm penalty, which does not require the knowledge of r . The latter inspired the
use of the nuclear norm penalty in the next section. However, Yuan et al. (2007) do not provide an algorithm that can scale
up to large dimensions.

2.2. Algorithm

To estimate our model under the factor model (2.3), we combine an asymmetric loss with the nuclear norm penalty. To
be more specific, we estimate Γ (defined in Section 2.1) by solving:

Γ̂τ ,λ
def
= arg min

Γ∈Rp×m
F (Γ), (2.6)

F (Γ) def
= (mn)−1

n∑
i=1

m∑
j=1

ρτ (Yij − X⊤

i Γ·j) + λ∥Γ∥∗, (2.7)

where λ is a tuning parameter, Γ·j is the jth column of Γ. The second term ∥Γ∥∗ =
∑min(p, m)

l=1 σl(Γ), where the singular values
σ1(Γ) ≥ σ2(Γ) ≥ · · · ≥ σmin(p, m)(Γ). We note that (2.7) is a convex optimization problem. The number of factors r in (2.3)
does not need to be specified. To simplify the notation, we denote Γ̂ for Γ̂τ ,λ hereinafter.

To solve the optimization problem (2.7), we apply the fast iterative shrinkage-thresholding algorithm (FISTA) of Beck and
Teboulle (2009). FISTA solves the optimization problems of the form:

min
Γ

{g(Γ) + h(Γ)}, (2.8)

where g is a smooth convex function with Lipschitz continuous gradient ∇g ,

∥∇g(Γ1) − ∇g(Γ2)∥F ≤ L∇g∥Γ1 − Γ2∥F,∀Γ1,Γ2 ∈ Rp×m, (2.9)

where L∇g is the Lipschitz constant of ∇g and h is a continuous convex (possibly non-smooth) function (Ji and Ye, 2009).
In view of (2.7), this corresponds to

g(Γ) def
= (mn)−1

n∑
i=1

m∑
j=1

ρτ (Yij − X⊤

i Γ·j), (2.10)

h(Γ) def
= λ∥Γ∥∗. (2.11)

The Lipschitz constant of ∇g is L∇g = 2(mn)−1 max(τ , 1 − τ )∥X∥
2
F ; see Appendix A.1.

Algorithm 1 is an application of FISTA, with g and h chosen as (2.10) and (2.11).
The subroutine SVTλ,g in Algorithm 1 is the singular value thresholding operator given by SVTλ,g

(
S
) def

= US
(
DS −

(λ/L∇g )Ip×m
)
+
V ⊤

S , where SVD implies S = USDSV ⊤

S , Ip×m is a rectangular identity matrix with main diagonal elements
equal to 1, and (S)+ = (max{0, sij}).
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Algorithm 1: FISTA for expectile regression with nuclear norm penalty.

Input: {Y i}
n
i=1, {X i}

n
i=1, λ

Output: Γ̂ = ΓT
1 Initialization: Γ0 = 0, Ω1 = 0, step size δ1 = 1;
2 for t = 1, 2, . . . , T do
3 Γt = SVTλ,g

(
Ωt − L−1

∇g∇g(Ωt )
)
;

4 δt+1 =
1+

√
1+4δ2t
2 ;

5 Ωt+1 = Γt +
δt−1
δt+1

(Γt − Γt−1);
6 end

Remark 2.2 (Initialization and the Stopping Rule). We suggest to initialize the algorithm with Γ0 = 0 in Algorithm 1 , but
because the optimization problem is convex, this can be replaced by any matrix. Of course, the algorithm converges faster
if we initialize it with a matrix that is close to the minimizer. We suggest to stop the algorithm at iteration T satisfying
|F (ΓT+1) − F (ΓT )| ≤ ϵ, for some small ϵ > 0. In the simulation and empirical analysis of this paper, ϵ = 10−6.

The convergence of Algorithm 1 in terms of the loss function is guaranteed by the following theorem.

Theorem 2.1 (Bounds for the Loss Difference and Convergence Rate in Algorithm 1). Let {Γt}
T
t=0 be the sequence obtained by the

iteration of Algorithm 1 . Then

|F (Γt ) − F (̂Γ)| ≤
4(mn)−1 max(τ , 1 − τ )∥X∥

2
F∥Γ0 − Γ̂∥

2
F

(t + 1)2
. (2.12)

In particular, if for ϵ > 0,

t ≥
2
√
max(τ , 1 − τ )∥X∥F∥Γ0 − Γ̂∥F

√
mnϵ

− 1, (2.13)

then |F (Γt ) − F (̂Γ)| ≤ ϵ.

The bound (2.12) comes from a careful calculation of the Lipschitz constant of the gradient of g . The proof of Theorem 2.1
can be found in Appendix A.1.

Theorem 2.1 shows that to get an ϵ-accurate solution, it requires 1/
√
ϵ steps when holding other parameters fixed. This

is smaller than 1/ϵ steps given by quantile regression and 1/ϵ2 by the general subgradient methods, see Theorem 2.3 and
Remark 2.4 in Chao et al. (2016). In view of (2.13), when τ is approaching 0 or 1, the number of iterations that is required to
achieve an ϵ-accurate solution would increase.

Furthermore, utilizing the strong convexity of g , we can obtain a bound for ∥Γt − Γ̂∥
2
F . For this purpose, additional

assumptions on the design X are required.

(A1) Suppose EX i = 0, EX iX⊤

i = Σwith σmin(Σ) > C1 and σmax(Σ) < C2 for some constants C1, C2 > 0 uniformly in p. For
some sequence 0 < an < 1, constants c1, c2 > 0,

P
[
σmin

(
X⊤X
n

)
≥ c1σmin(Σ), σmax

(
X⊤X
n

)
≤ c2σmax(Σ)

]
≥ 1 − an. (2.14)

Assumption (A1) holds for Gaussian design X with c1 = 1/9, c2 = 9 and an = 4 exp(−n/2). See Wainwright (2009). It
can be shown that (A1) holds for the sub-gaussian designs; see Vershynin (2012a) for details.

The following theorem characterizes the convergence in the Frobenius norm.

Theorem 2.2. Given (A1), the sequence Γt obtained from Algorithm 1 satisfy

∥Γt − Γ̂∥
2
F ≤

36
n(t + 1)2

max(τ , 1 − τ )
min(τ , 1 − τ )

∥X∥
2
F

σmin(Σ)
∥Γ0 − Γ̂∥

2
F, (2.15)

with probability greater than 1 − an. In particular, if for ϵ > 0,

t ≥ 6

√
max(τ , 1 − τ )
min(τ , 1 − τ )

∥X∥F∥Γ0 − Γ̂∥F
√
nσmin(Σ)ϵ

− 1, (2.16)

then ∥Γt − Γ̂∥
2
F ≤ ϵ holds with probability greater than 1 − an.

The proof of Theorem 2.2 is in Appendix A.2. We discuss the estimation of the number of factors in the following remark.
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Remark 2.3 (Estimation of the Number of Factors). The number of factors r defined in Section 2.1 can be estimated by rank(ΓT ),
which is the estimator generated by Algorithm 1 . If the number of factors is exactly sparse, rank(ΓT ) is usually a good
estimator; see the simulation study in Section 3.

2.3. Oracle inequalities

In this section, we derive the bounds for the difference between the sequence Γt generated by Algorithm 1 and the true
matrix Γ. These results heavily rely on the strong convexity of ρτ .

We make the following assumptions.

(A2) There exists C > 0 such that for uij
def
= Yij − X⊤

i Γ·j, P(|uij| > s) ≤ exp(1 − s2/C2), ∀s ≥ 0) with sub-gaussian norm
∥uij∥ψ2

def
= sup

p≥1
p−1/2(E|uij|

p)1/p, and let Ku
def
= max

1≤j≤m
∥uij∥ψ2 .

(A3) Conditional on X i, Yij are independent over j.

(A2) regulates the tails of Yij. (A3) is required for obtaining the bounds on the tail probabilities of the estimation error.
In Theorem 2.3, we state a non-asymptotic bound for ∥Γt − Γ∥F in the general situation that the number of factors can be
increasing with n.

Theorem 2.3 (Approximately Sparse Factors). Under (A1)– (A3), λ = 2 cm−1 max(τ , 1 − τ )Ku
√

∥Σ∥

√
p+m
n for some absolute

constant c > 0. Then for any q ∈ {1, . . . , p ∧ m}, the sequence Γt obtained by Algorithm 1 satisfy

∥Γt − Γ∥
2
F ≤ c ′′

(Rt

n
+ 1

)√
p + m

n
ζτ

{√
p + m

n
ζτq +

p∧m∑
j=q+1

σj(Γ)
}

+
c ′′Rt

n
∥Γ0 − Γ∥

2
F, (2.17)

with probability greater than 1 − 3 · 8−(p+m)
− an, where c ′′ > 0 is an absolute constant, Rt

def
=

1
(t+1)2

max(τ ,1−τ )
min(τ ,1−τ )

∥X∥
2
F

σmin(Σ) and

ζτ
def
=

max(τ ,1−τ )
min(τ ,1−τ )

√
∥Σ∥

σmin(Σ)Ku.

Please see Appendix B for a proof of Theorem 2.3. Note that (2.17) holds for any q ∈ {1, . . . , p∧m}. The optimal bound is
obtained by selecting q that balances

√
p+m
n ζτq and

∑p∧m
j=q+1σj(Γ). For a fixed number of iterations t in Algorithm 1 and τ , a

sufficient condition for (2.17) tending to zero is that the number of factors r is approximately sparse (Γ is approximately low
rank): there exists an increasing sequence q = qn ∈ N such that

lim
n→∞

p + m
n

ζ 2τ q = 0 and lim
n→∞

{ p∧m∑
j=q+1

√
p + m

n
ζτσj(Γ)

}
= 0, (2.18)

where p and m can be growing sequences in n. The quantity Rt characterizes how the computational cost influences the
error bound. We can increase the number of iterations in Algorithm 1 to shrink Rt , but this also increases the computational
cost. Similar to Theorems 2.1 and B.1, when τ is approaching to the boundaries of (0, 1), the bound in (2.17) will increase.
Furthermore, heavier tails for Yij make higher Ku, and lead to higher error bounds.

If the number of factors is fixed and is not increasing with n (rank(Γ) is fixed), then (2.17) is minimized by selecting
q = rank(Γ) and

∑p∧m
j=q+1

√
p+m
n ζτσj(Γ) = 0 in (2.17). Hence, we have the following corollary.

Corollary 2.1 (Exactly Sparse Factors). Under the conditions of Theorem 2.3,

∥Γt − Γ∥
2
F ≤ c ′′

(Rt

n
+ 1

)p + m
n

ζ 2τ rank(Γ) +
c ′′Rt

n
∥Γ0 − Γ∥

2
F, (2.19)

with probability greater than 1 − 3 · 8−(p+m)
− an, where c ′′ > 0 is an absolute constant, Rt =

1
(t+1)2

max(τ ,1−τ )
min(τ ,1−τ )

∥X∥
2
F

σmin(Σ) and

ζτ =
max(τ ,1−τ )
min(τ ,1−τ )

√
∥Σ∥

σmin(Σ)Ku.

Remark 2.4. As explained in Section 2.1, we estimate V ·k,t (the loadings corresponding to the kth factor for all responses)
in the SVD Γt = UtDtV ⊤

t . By Theorem 3.10 of Chao et al. (2016), we have:

1 − |V ⊤

·kV ·k,t | ≤
2(2∥Γ∥ + ∥Γt − Γ∥F)∥Γt − Γ∥F

min
{
σ 2
k−1(Γ) − σ 2

k (Γ), σ
2
k (Γ) − σ 2

k+1(Γ)
} , (2.20)

where V ·k are the true loadings. Theorem 2.3 (or Corollary 2.1) can be used with (2.20) to get an explicit bound.
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Table 3.1
The averaged estimated number of factors r̂ over simulation repetitions with
respect to τ and c . Values in the parentheses are the standard deviations over
the simulation repetitions.

τ 0.05 0.3 0.5 0.7 0.95

r = 10

c = 1.3 10.95 11.00 10.00 11.00 10.94
(0.22) (0.00) (0.00) (0.00) (0.23)

c = 1.5 10.70 11.00 10.00 11.00 10.71
(0.47) (0.00) (0.00) (0.00) (0.46)

c = 1.7 10.19 11.00 10.00 11.00 10.20
(0.61) (0.00) (0.00) (0.00) (0.60)

r = 5

c = 1.3 6.00 6.00 5.00 6.00 6.00
(0.00) (0.00) (0.04) (0.00) (0.00)

c = 1.5 6.00 6.00 5.00 6.00 6.00
(0.00) (0.00) (0.00) (0.00) (0.00)

c = 1.7 6.00 6.00 5.00 6.00 6.00
(0.00) (0.06) (0.00) (0.04) (0.00)

r = 2

c = 1.3 3.00 3.00 2.03 3.00 3.00
(0.00) (0.00) (0.18) (0.00) (0.00)

c = 1.5 3.00 2.99 2.00 2.99 3.00
(0.00) (0.12) (0.00) (0.09) (0.00)

c = 1.7 3.00 2.72 2.00 2.78 3.00
(0.00) (0.45) (0.00) (0.41) (0.00)

3. Simulation study

In this section, we apply our method on the simulated data to evaluate the estimation performance on the factors and
loadings, as the number of factors varies.

Set n = m = p = 100. For i = 1, . . . , n, j = 1, . . . , m, let X i ∼ N(0,Σp×p) with Σjk = 0.5|j−k| and εi
i.i.d.
∼ N(0, Im×m),

the response variables are generated by

Yij = X⊤

i Γ·j + εij =

r∑
k=1

ψjkfk(X i) + εij =

r∑
k=1

V jkDkkX⊤

i U·k + εij, (3.1)

where r = rank(Γ). We will set r = 2, 5, 10, and the nonzero diagonal components of D are (19.01, 18.74, 18.65, 18.22,
17.80, 17.50, 17.21, 17.02, 16.57, 16.49). The columns of V and U are the orthonormal singular vectors of a matrix with
components chosen fromN(0, 1). We repeat the data generation 500 times.

We apply Algorithm 1 with Y and X̃ = (ln, X̃), where ln = (1, . . . , 1) is the intercept. The tuning parameter λ is selected
according to Lemma B.1, i.e., λ = 2 cm−1 max(τ , 1 − τ )Ku

√
∥Σ∥

√
p+m
n . We stop the algorithm as described in Remark 2.2.

Denote the resulting estimator Γ̃1, and obtain Γ̃ by removing the first row (the intercept) of Γ̃1.
Table 3.1 reports the results for the estimated number of factors r̂ , which is the number of nonzero singular values of Γ̃

that are greater than 10−10. That is, the singular values smaller than 10−10 are treated as zero. We try several values of c in
the formula for λ because we do not know its exact value. The true number of factors are generally well recovered by our
algorithm, except for the expectiles that deviate more from τ = 0.5. Furthermore, the estimated number of factors is robust
to the model randomness as the standard deviations are very small. The results are similar for different values of c , so we fix
c = 1.3 for all the later analysis.

The Frobenius error ∥Γ̃ − Γ∥F is shown in Fig. 3.1. The results are symmetric in τ around τ = 0.5, and the estimation
errors tend to be larger for the tail τ . In the models where r is larger, the Frobenius error is also larger. Our findings in the
simulation studies are consistent with the roles of τ and r in the error bound in Corollary 2.1.

We measure the estimation performance of the factors and loadings by

∥∆fac
k· ∥2/Dkk,where ∆fac def

= |̃DŨ⊤
| − |DU⊤

|,

∥∆load
·k ∥2,where ∆load def

= |Ṽ | − |V |,

and 1 − |V ⊤

·kṼ ·k|,

(3.2)
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Fig. 3.1. The averaged estimation error ∥Γ̃ − Γ∥F (c = 1.3 in λ). The solid lines represent the averaged Frobenius errors over simulation repetitions, and
the bands describe the standard deviations over the simulation repetitions.

for k = 1, . . . , r , where Ṽ , D̃ and Ũ are based on the SVD Γ̃ = ŨD̃Ṽ ⊤
, and the absolute value is taken componentwisely to the

matrix. We do not include the covariate X i in themeasure for the estimation error of the factors because all factors share the
same X i. We choose two measures for the estimation performance of the loadings. The ∥∆load

·k ∥2 measures the performance
on the recovery of the absolute values of the loadings, which will be relevant in the empirical analysis in Section 4. On the
other hand, 1−|V ⊤

·kṼ ·k| corresponds to the theory thatwe stated in (2.20), which can be regarded as anothermeasure for the
recovery performance. We have also performed the analysis for τ = 0.05 and 0.3, but we do not include their results in the
paper because they are similar to τ = 0.95 and 0.7. The results are presented in Fig. 3.2. Some general patterns are observed
for the three panels. Smaller r gives smaller estimation error, but the associated standard deviation is larger.When τ deviates
from 0.5, the error is larger, and this effect is particularly for ∥∆fac

k· ∥2/Dkk. ∥∆load
·k ∥2 shows similar pattern to 1 − |V ⊤

·kṼ ·k|,
but the variance for 1 − |V ⊤

·kṼ ·k| is overall larger.

4. Empirical analysis: predicting risk attitude with fMRI Data

In this section, we apply our method on the fMRI data to predict the risk attitude on the investment decisions making.
To understand how human brain responds to reward and risk is an important research topic in neuropsychology, financial
economics and neuroeconomics (Heekeren et al., 2008; Camerer, 2007; Schultz, 2015). Previous research mainly focuses on
the identification of the region of interest (ROI) with Blood Oxygenation Level Dependent (BOLD) signals (see Schultz, 2015
and the references therein). However, only a few research uses fMRI on predicting the risk attitude of subjects. Helfinstein
et al. (2014) train support vector machines with the BOLD signals recorded in a Ballon Analog Risk Task (BART) on several
combinations of brain regions, and this classifier can predict subjects’ next choice with over 70% accuracy; van Bömmel et
al. (2014) and Majer et al. (2016) retrieve factor loadings from a dynamic factor model on BOLD and apply these loadings on
predicting subjects’ risk attitude.

We focus on predicting the risk attitude of the subjects using the BOLD signals, but we differ from the previous studies
in that we separately analyze the positive and negative BOLD signals observed in the cortical regions. The positive BOLD
signals are known to be closely associated with increased neuronal activities, but the interpretation of large negative BOLD
responses (NBR) is still controversial. Mullinger et al. (2014) argue that the best explanation for NBR at the cortical layer
might be a decrease in cerebral blood flow (CBF) with a lesser reduction in the neuronal activities, which is measured by the
cerebral metabolic rate of oxygen consumption (CMRO2). This explanation is proven to be an important complement of the
more classical ‘‘blood/vascular stealing’’ hypothesis (see p. 263 of Mullinger et al., 2014). However, Mullinger et al. (2014)
also argue that there may exist deeper neuronal reasons for NBR than simply the inversion of the neurovascular coupling
mechanism of the positive BOLD responses. Following the interpretation of NBR of Mullinger et al. (2014), we suspect that
NBR also contain valuable information for predicting the risk attitude. Using our expectile based approach, we studywhether
the positive and negative extreme BOLD responses are relevant to the risk attitude.

4.1. Data

Our data come from a rapid event-related design experiment on investment decisions making, and this data set is firstly
analyzed in Majer et al. (2016). The experiment was done as follows: 19 subjects were requested to make choices in 256
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Fig. 3.2. The estimation errors ∥∆load
·k ∥2 , 1−|V ⊤

·k Ṽ ·k| for the loadings and ∥∆fac
k· ∥2/Dkk for the factors, defined in (3.2). The solid lines represent the averaged

errors, and the bands describe the standard deviations over simulation repetitions; c = 1.3 in λ.
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Table 4.1
The goodness of fit R2 , Spearman’s and Kendall’s rank correlations for the in-sample fitting and out-of-sample prediction by (M1) or (M2) with/without
constrains, under different τ , ω levels.

Constrained model (only 1st factor) Unconstrained model (2 factors)

Whole series (M1) Task-wise (M2) Whole series (M1) Task-wise (M2)

τ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

In-sample fitting

ω = 0.1
R2 0.084 0.158 0.101 0.412 0.412 0.413 0.312 0.263 0.226 0.455 0.454 0.454
Spearman’s rank corr 0.149 0.377 0.328 0.595 0.595 0.604 0.532 0.526 0.396 0.618 0.618 0.618
Kendall’s rank corr 0.076 0.263 0.228 0.462 0.462 0.474 0.333 0.357 0.275 0.474 0.474 0.474

ω = 0.5
R2 0.070 0.043 0.030 0.134 0.136 0.135 0.307 0.260 0.352 0.445 0.440 0.441
Spearman’s rank corr 0.177 0.140 0.226 0.335 0.316 0.326 0.547 0.528 0.596 0.533 0.544 0.544
Kendall’s rank corr 0.135 0.088 0.135 0.205 0.193 0.205 0.427 0.333 0.415 0.368 0.380 0.380

ω = 0.9
R2 0.199 0.238 0.148 0.206 0.205 0.205 0.393 0.367 0.229 0.487 0.496 0.500
Spearman’s rank corr 0.435 0.540 0.181 0.412 0.412 0.412 0.588 0.628 0.582 0.596 0.637 0.637
Kendall’s rank corr 0.333 0.391 0.135 0.298 0.298 0.298 0.439 0.439 0.439 0.462 0.497 0.497

Out-of-sample predicting

ω = 0.1 Spearman’s rank corr −0.453 −0.181 −0.321 0.454 0.451 0.440 −0.079 −0.133 0.072 0.298 0.298 0.298
Kendall’s rank corr −0.322 −0.111 −0.240 0.357 0.345 0.345 −0.076 −0.088 0.041 0.216 0.216 0.216

ω = 0.5 Spearman’s rank corr −0.444 −0.700 −0.658 −0.119 −0.119 −0.119 −0.035 −0.196 0.247 0.205 0.204 0.212
Kendall’s rank corr −0.275 −0.509 −0.450 −0.064 −0.064 −0.064 −0.006 −0.146 0.135 0.123 0.111 0.123

ω = 0.9 Spearman’s rank corr −0.207 0.204 −0.493 0.023 0.023 0.023 0.161 0.072 −0.447 0.293 0.307 0.307
Kendall’s rank corr −0.170 0.135 −0.345 0.006 0.006 0.006 0.076 0.041 −0.298 0.205 0.216 0.216

investment decision tasks and each task lasts 7 s. The fMRIwas taken every two seconds (temporal resolution= 2 s), and this
resulted in 1400 images for each subject. We have also acquired the answer for each task from each subject. Before applying
our method, it is necessary to identify the region of interest (ROI), because the BOLD responses in non-ROIs are generated by
noise (under the generalized linear model; see Section 6.2.1 of Lindquist (2008)) and do not have a sparse factor structure.
For our data, Majer et al. (2016) identify three brain regions Anterior insula (left and right aINS) and dorsomedial prefrontal
cortex (DMPFC) as the active regions related to investment decisions via spectral clustering method. We will only focus on
the BOLD responses of the voxels in these three regions.

We integrate the information of each region (left and right aINS and DMPFC) spatially by taking the quantiles of the
BOLD responses over all voxels in these regions. At each fMRI scan i of the sth subject, we take the quantiles with levels
ω ∈ {0.1, 0.5, 0.9} of the BOLD responses over all voxels in the regions b = 1 (aINS_L), b = 2 (aINS_R) and b = 3 (DMPFC)
to construct a single time series νi(s, b, ω), where i = 1, . . . ,N = 1400. Fig. 4.1 gives an illustration of the BOLD time
series of each cluster. For each cluster, the series of 19 subjects at ω are averaged (the solid lines) and the bands show the
dispersion of the 19 time series. We observe that the series forω = 0.9 is positive, which summarizes the information of the
positive BOLD responses, while the series for ω = 0.1 is negative, which corresponds to the negative BOLD responses. The
series for ω = 0.5 is stationary and varying around the origin. From Fig. 4.1, we observe that the series with each different ω
shows different volatility, and this may imply that the series with different ω contains different information. We will show
in Table 4.1 that the series with ω = 0.1 and 0.9 tend to contain more information than ω = 0.5.

4.2. Method

4.2.1. Factor loadings at each region b and quantile level ω
For each ω and a single region b, we consider two approaches to construct the variable Yij:

(C1) Whole time series: set Y b,ω
ij = νi(j, b, ω), where i = 1, . . . , n with n = N = 1400, j = 1, . . . , 19 (subject). Thus, we

have m = 19 curves in each region b and at each quantile level ω.
(C2) Analyzing each task separately (task-wise): we divide the whole time series in each region b and at each quantile

level ω into subseries based on the beginning and the end of each task. Let Iq ⊂ {1, . . . ,N} be the set containing the
indices of the images taken during the qth task. In our data, each |Iq| = 3 or 4. We linearly interpolate the points
{νi(s, b, ω)}i∈Iq for each fixed s, b, and ω. Denote ν̃i(s, b, q, ω) by the value on the interpolated curve at the ith point
in n equally distant grid on the interval (min(Iq),max(Iq)), where i = 1, . . . , n = 50. Let Y b,ω

ij = ν̃i(s, b, q, ω) with
j = 256(s − 1) + q, where s = 1, . . . , 19 (index for subject) and q = 1, . . . , 256 (index for task) for each ω, b. Thus,
there arem = 19 × 256 = 4864 curves in each b and ω.

The variable X i is a vector of basis functions that need to be flexible enough to capture the various shapes of the fMRI
BOLD sequences. For this purpose, we use the cubic B-spline basis {Bk}

p
k=1 with equally spaced knots on [0, 1], and set

X i =
(
B1(i/n), B2(i/n), . . . , Bp(i/n)

)⊤, where i = 1, . . . , n. Note that n = 1400 in (C1) and n = 50 in (C2). B-splines are
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Fig. 4.1. In each region, the ω quantiles of the BOLD responses over all the voxels between 1000 and 1120 s of the experiment are shown. In each subfigure
(region), lowest (resp., middle, highest) solid lines represent the median of ω = 0.1 (resp., ω = 0.5, 0.9) quantiles of all 19 subjects, and the upper and
lower boundaries of the bands present the maximum and the minimum of the ω quantiles of the 19 subjects. Vertical lines indicate the occurrences of the
stimuli (the beginning of each task). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

suitable for estimating the hemodynamic response function, see Degras and Lindquist (2014) for more details. We select
p = ⌈n0.8

⌉ of basis functions in each approach above, where ⌈·⌉ takes the smallest integer that is greater than the argument.
The power 0.8 is greater than the (asymptotic) optimal rate 0.4, because the nuclear norm penalty alleviates the issue of
overfitting. As the result, there are 329 basis functions in the approach (C1) and 23 in (C2).
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We compute the matrix Γ̂b,ω with expectile level τ = 0.1, 0.5, 0.9 using Yij and X i by Algorithm 1 , where Yij is chosen
under either (C1) or (C2) with λb,ω selected by the standard 5-fold cross-validation for each region b and each quantile level
ω. Please see Appendix D.1 for the exact value of λ for each pair (b, ω). Using SVD Γ̂b,ω

= Ûb,ω
τ D̂b,ω

τ (V̂ b,ω
τ )⊤, where (V̂ b,ω

τ )⊤ is
regarded as the factor loadings. We note that the size of the matrix V̂ b,ω

τ is 19 × 19 if we define Y b,ω
ij by following (C1), and

4864 × 4864 by following (C2). Note that the sign of the factor loadings cannot be determined exactly (see Remark 2.1).

Remark 4.1 (On the Computation of λ). Themodel error of the BOLD signals typically demonstrates autocorrelation following
AR(k) or ARMA(1,1) (Lindquist, 2008 page 446) under the temporal resolution 2 s. A major consequence of the presence of
temporal correlation is that the usual cross-validation could potentially underestimate λ, which leads to undersmoothing
and overfitting (Opsomer et al., 2001 Section 2). This problem is especially important for the setting (C2), where the
dimensionality is high because we separate each task. However, we observe that the estimated number of factors for the
setting (C2) is typically very sparse (less than five factors). Overall, the overfitting does not cause a big issue and the usual
cross-validation works well in our model.

4.2.2. Predicting risk attitude
To evaluate the prediction performance, we need to obtain the subjects’ risk attitude βs, where s = 1, . . . , 19 denotes the

subject. We follow the approach of Majer et al. (2016) and estimate βs using the investment decisions made by the subjects
to each task with logistic regression; see Appendix D.2 for more details. In essence, higher βs means the subject s is less
risk-averse.

In order to use the loadings V̂ b,ω
τ to predict βs, we apply the standard linear regression models. In particular, in the case

(C1), we construct a model for βs using the first two factor loadings

βs = α
ω,τ
0 + α

ω,τ
11

⏐⏐(V̂ 1,ω
τ )s1

⏐⏐ + α
ω,τ
12

⏐⏐(V̂ 2,ω
τ )s1

⏐⏐ + α
ω,τ
13

⏐⏐(V̂ 3,ω
τ )s1

⏐⏐
+ α

ω,τ
21

⏐⏐(V̂ 1,ω
τ )s2

⏐⏐ + α
ω,τ
22

⏐⏐(V̂ 2,ω
τ )s2

⏐⏐ + α
ω,τ
23

⏐⏐(V̂ 3,ω
τ )s2

⏐⏐ + εs, s = 1, . . . , 19, (M1)

where {α
ω,τ
0 , α

ω,τ
11 , α

ω,τ
12 , α

ω,τ
13 , α

ω,τ
21 , α

ω,τ
22 , α

ω,τ
23 } ∈ R7 are the intercept and the coefficients associated with the regions left

and right Anterior insula, and dorsomedial prefrontal cortex.
In the case (C2), define the averaged loadings of all tasks for each s

µ
b,ω,τ
s,k

def
=

1
256

256∑
q=1

⏐⏐(V̂ b,ω
τ )256(s−1)+q,k

⏐⏐.
We construct another model for βs using µ

b,ω,τ
s,k :

βs = ᾱ
ω,τ
0 + ᾱ

ω,τ
11 µ

1,ω,τ
s,1 + ᾱ

ω,τ
12 µ

2,ω,τ
s,1 + ᾱ

ω,τ
13 µ

3,ω,τ
s,1

+ ᾱ
ω,τ
21 µ

1,ω,τ
s,2 + ᾱ

ω,τ
22 µ

2,ω,τ
s,2 + ᾱ

ω,τ
23 µ

3,ω,τ
s,2 + εs, s = 1, . . . , 19, (M2)

where {ᾱ
ω,τ
0 , ᾱ

ω,τ
11 , ᾱ

ω,τ
12 , ᾱ

ω,τ
13 , ᾱ

ω,τ
21 , ᾱ

ω,τ
22 , ᾱ

ω,τ
23 } ∈ R7. We take the absolute value of the loadings V̂ b,ω

τ because we are only
interested in the magnitude of the loadings, which describes the importance of the factors.

Remark 4.2. If sufficiently many subjects are available, then ideally we could use all the estimated factors as suggested by
one of our referees. However, because we have only 19 subjects, the number of factor loadings that can be included is very
limited. For example, according to the results of an extensive simulation study shown in Table 1 on page 438 in Knofczynski
andMundfrom (2008), themaximum number of predictors that guarantees the best prediction performance is perhaps only
around 9 to 12, given the sample size 19. In an unreported analysis, we checked the out-of-sample performance of themodels
that include up to 3 and 4 factors loadings. We are not able to find strong evidences that more factor loadings improve the
prediction performance.

4.2.3. In-sample and out-of-sample performance
We compare the in-sample and out-of-sample performance of themodels (M1) and (M2). For the in-sample performance,

R2 of both regressions (M1) and (M2) are computed. In addition, in order to determine whether (M1) and (M2) correctly
predict the order of risk-aversion of the subjects (rather than the exact value ofβs), we calculate the Spearman’s andKendall’s
rank correlations between the fitted β̂s (in-sample) and βs.

To measure the out-of-sample performance, we calculate {̃βs}
19
s=1 by a leave-one-out procedure. The steps are as below:

(1) Fix s, where s = 1, . . . , 19. Use the values of the remaining 18 subjects to compute the coefficients
{α
ω,τ
0 , α

ω,τ
11 , α

ω,τ
12 , α

ω,τ
13 , α

ω,τ
21 , α

ω,τ
22 , α

ω,τ
23 } in model (M1) or {ᾱ

ω,τ
0 , ᾱ

ω,τ
11 , ᾱ

ω,τ
12 , ᾱ

ω,τ
13 , ᾱ

ω,τ
21 , ᾱ

ω,τ
22 , ᾱ

ω,τ
23 } in model (M2) by

the standard linear regression.
(2) Compute β̃s by plugging in the coefficients computed in the last step in models (M1) and (M2), and input the loadings

of the sth subject.
(3) Repeat steps (1) and (2) for each s = 1, . . . , 19.
(4) Calculate the Spearman’s and Kendall’s rank correlations between {̃βs}

19
s=1 and {βs}

19
s=1.
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4.3. Empirical results

In Table 4.1, we present the in-sample fitting and out-of-sample performance for models (M1) and (M2) with the
constrained model that uses only the 1st factor (αω,τ21 = α

ω,τ
22 = α

ω,τ
23 = 0 in (M1) and ᾱω,τ21 = ᾱ

ω,τ
22 = ᾱ

ω,τ
23 = 0 in

(M2)) and the unconstrained model, under various (τ , ω) pairs.
For the in-sample fitting, casesω = 0.1 andω = 0.9 outperform the caseω = 0.5. This shows that both extreme negative

or positive BOLD can lead to good fitting for models (M1) and (M2). In particular, the fitting performance is the best when
τ = 0.9 for ω = 0.9 and τ = 0.1 for ω = 0.1, which correspond to the upper boundary of the red area and the lower
boundary of the blue area in each of the three panels in Fig. 4.1.

For the out-of-sample performance, the constrained (M2) using only the first factor with the negative BOLD (ω = 0.1,
τ = 0.1) nearly always outperforms all the other cases. In contrast, positive BOLD (ω = 0.9) under the samemodel performs
poorly. Moreover, the unconstrained model improves the prediction performance in most cases, particularly for (M2) under
ω = 0.9 and τ = 0.9.

Majer et al. (2016) estimate a dynamic semiparametric factor model and extract the resulting factor loadings to predict
the subjects’ risk attitude. They evaluate the in-sample fitting (with all 19 subjects) by R2

= 0.47 for a special case of our
(M1) (τ = 0.5 and αω,τ21 = α

ω,τ
22 = α

ω,τ
23 = 0). Their fitting performance beats all the R2 in our results, but we are able to

describe the predictive abilities at several levels of τ , instead of only looking at τ = 0.5. Our findings successfully confirm
that the tails of the BOLD signals are more informative than their means in predicting the risk attitude.

5. Conclusions

In this paper,wepropose a factorizablemultivariate expectile regressionmethod for thehigh-dimensional cross-sectional
or spatial data with sparse latent factors. Fast iterative shrinkage-thresholding algorithm is applied to estimate the model.
The convergence of the algorithm and the non-asymptotic theoretical guarantee of the estimator are established. We apply
our method on the fMRI data obtained from an investment decisions making experiment, and study the ranking accuracy
of the subjects’ risk preference using the factor loadings of the extreme BOLD responses. The results show that the negative
BOLD signals could provide comparable prediction performance as the positive BOLD signals. This provides insights into the
on-going debate on the meaning of the negative BOLD responses.

There are several possibilities for the future research. As many data in practice are time series, there is a need to relax the
i.i.d. assumption and make our method compatible with richer temporal structure. Statistical inference is also an important
issue for many applications.
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Appendix A. Proofs for Section 2.2

A.1. Proof for Theorem 2.1

Theorem 4.4 in Beck and Teboulle (2009) gives the upper bound of the loss difference at iteration t by

|F (Γt ) − F (̂Γ)| ≤
2L∇g∥Γ0 − Γ̂∥

2
F

(t + 1)2
, (A.1)

where L∇g is the Lipschitz constant of ∇g(Γ) defined in (2.9).
We note that

ρ ′

τ (u) =

{
2τu for u ≥ 0;
2(1 − τ )u for u < 0. (A.2)

Hence, the gradient is

∇g(Γ) = −(mn)−1X⊤
{
W ◦ (Y − XΓ)

}
, (A.3)

whereW(Γ) = (wij) ∈ Rn×m, wij
def
= 2

{
τ + 1(Yij ≤ X⊤

i Γ·j)(1 − 2τ )
}
, ‘‘◦’’ represents the Hadamard product.

To simplify the notations, define U(Γ) = (Yij − X⊤

i Γ·j) ∈ Rn×m. For all Γ1,Γ2 ∈ Rp×m, let U1 = U(Γ1), U2 = U(Γ2),
W1 = W(Γ1) andW2 = W(Γ2).

∥∇g(Γ1) − ∇g(Γ2)∥F = (mn)−1
∥X⊤(W1 ◦ U1) − X⊤(W2 ◦ U2)∥F

≤ (mn)−1
∥X∥F∥W1 ◦ U1 − W2 ◦ U2∥F (by submultiplicity)
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= (mn)−1
∥X∥F

[ n∑
i=1

m∑
j=1

{
ρ ′

τ (u1,ij) − ρ ′

τ (u2,ij)
}2

]1/2

≤ (mn)−1
∥X∥F

[ n∑
i=1

m∑
j=1

{
2max(τ , 1 − τ )

}2(u1,ij − u2,ij)2
]1/2

= 2(mn)−1 max(τ , 1 − τ )∥X∥F∥Y − XΓ1 − (Y − XΓ2)∥F

≤ 2(mn)−1 max(τ , 1 − τ )∥X∥
2
F∥Γ1 − Γ2∥F (by submultiplicity), (A.4)

where the fourth line makes use of the fact that ρ ′
τ (u) is Lipschitz continuous with Lipschitz constant 2max(τ , 1 − τ ), see

Chao et al. (2017).
Plug L∇g = 2(mn)−1 max(τ , 1 − τ )∥X∥

2
F into (A.1) yields

|F (Γt ) − F (̂Γ)| ≤
4(mn)−1 max(τ , 1 − τ )∥X∥

2
F∥Γ0 − Γ̂∥

2
F

(t + 1)2
. (A.5)

Moreover, setting the right hand side of (A.5) to be ϵ (∀ϵ > 0) and solving for t gives

t ≥
2
√
max(τ , 1 − τ )∥X∥F∥Γ0 − Γ̂∥F

√
mnϵ

− 1. □ (A.6)

A.2. Proof for Theorem 2.2

Following the proof of Theorem 1 in Fadili and Peyré (2011), define

I(Γt )
def
= g(Γt ) − g (̂Γ) − ⟨⟨∇g(Γt ),Γt − Γ̂⟩⟩, (A.7)

J(Γt )
def
= h(Γt ) − h(̂Γ) + ⟨⟨∇g(Γt ),Γt − Γ̂⟩⟩, (A.8)

the sum of them gives

I(Γt ) + J(Γt ) = F (Γt ) − F (̂Γ). (A.9)

According to Lemma C.2, we have

I(Γt ) ≥ κ∥Γt − Γ̂∥
2
F

=
1
9
m−1 min(τ , 1 − τ )σmin(Σ)∥Γt − Γ̂∥

2
F, (A.10)

where the second line holds with probability greater than 1 − an under (A1).
Since Γ̂ is the optimizer of (2.6), therefore,

0 ∈ ∇g (̂Γ) + ∇h(̂Γ), (A.11)

which implies

− ∇g (̂Γ) ∈ ∇h(̂Γ). (A.12)

As a result, we have

h(Γt ) − h(̂Γ) ≥ ⟨⟨−∇g(Γt ),Γt − Γ̂⟩⟩, (A.13)

i.e., J(Γt ) ≥ 0.
Plugging (A.10) and (A.13) into (A.9) yields,

∥Γt − Γ̂∥
2
F ≤

9m
min(τ , 1 − τ )σmin(Σ)

{
F (Γt ) − F (̂Γ)

}
≤

36
n(t + 1)2

max(τ , 1 − τ )
min(τ , 1 − τ )

∥X∥
2
F

σmin(Σ)
∥Γ0 − Γ̂∥

2
F, (A.14)

with probability greater than 1 − an. The second line comes from the result of Theorem 2.1. □

Appendix B. Proof for Theorem 2.3

By triangle inequality, we have

∥Γt − Γ∥
2
F = ∥Γt − Γ̂ + Γ̂ − Γ∥

2
F ≤ 2∥Γt − Γ̂∥

2
F + 2∥Γ̂ − Γ∥

2
F . (B.1)
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Combining the results of Lemma B.2 and Theorem 2.2, it follows that

∥Γt − Γ∥
2
F ≤183c2

p + m
n

max(τ , 1 − τ )2

min(τ , 1 − τ )2
∥Σ∥

σmin(Σ)2
K 2
u dim(M)

+ 144c

√
p + m

n
max(τ , 1 − τ )
min(τ , 1 − τ )

√
∥Σ∥

σmin(Σ)
Ku∥ΓM⊥∥∗

+
72

n(t + 1)2
max(τ , 1 − τ )
min(τ , 1 − τ )

∥X∥
2
F

σmin(Σ)
∥Γ0 − Γ̂∥

2
F, (B.2)

holds with probability greater than 1 − 3 × 8−(p+m)
− an.

Furthermore, given

∥Γ0 − Γ̂∥
2
F = ∥Γ0 − Γ + Γ − Γ̂∥

2
F ≤ 2∥Γ0 − Γ∥

2
F + 2∥Γ − Γ̂∥

2
F, (B.3)

and applying Lemma B.2 again we complete the proof of Theorem 2.3. □
Now we show auxiliary results used in the proof of Theorem 2.3. The next theorem is an application of Theorem 1 of

Negahban et al. (2012).

Theorem B.1 (Error Bounds for the Estimator). Under (A1), for any q ∈ {1, . . . , p ∧ m}, any optimal solution Γ̂ in the problem
(2.6) with λ ≥ 2∥∇g(Γ)∥ satisfies the bound

∥Γ̂ − Γ∥
2
F ≤

9m2λ2{
c1 min(τ , 1 − τ )σmin(Σ)

}2 q +
36 mλ

min(τ , 1 − τ )σmin(Σ)

p∧m∑
j=q+1

σj(Γ), (B.4)

with probability greater than 1 − an, where σj(Γ) is the jth singular value of Γ.

Proof for TheoremB.1. The proof is an application of Theorem 1 of Negahban et al. (2012). First, we observe that the nuclear
norm is decomposable in the sense that

∥Γ + ∆∥∗ = ∥Γ∥∗ + ∥∆∥∗,∀Γ ∈ Mq,∆ ∈ M⊥

q , (B.5)

where

Mq = M(Uq, Vq)
def
= {Θ ∈ Rp×m

| col(Θ) ⊆ Uq, row(Θ) ⊆ Vq},

M⊥

q = M⊥

(Uq, Vq)
def
= {Θ ∈ Rp×m

| col(Θ) ⊆ U⊥

q , row(Θ) ⊆ V⊥

q },

(B.6)

where row(Θ) and col(Θ) denote the row and column spaces of Θ. It can be seen that Mq ⊂ Mq where Mq
def
= {Θ ∈

Rp×m
| tr(Θ⊤S) = 0, ∀S ∈ M⊥

q }. Similarly,M⊥

q
def
= {Θ ∈ Rp×m

| tr(Θ⊤S) = 0, ∀S ∈ Mq}.
We will verify its conditions (G1) and (G2). For condition (G1), it is already mentioned above that the nuclear norm ∥ · ∥∗

is decomposable with respect to (M,M⊥

) defined in (B.6). For condition (G2), note that on the event

Ω1
def
=

{
σmin

(
X⊤X
n

)
≥ c1σmin(Σ), σmax

(
X⊤X
n

)
≤ c2σmax(Σ)

}
, (B.7)

the loss function g is restrictive strongly convex with coefficients κ and ξ = 0 (we replace τL in Negahban et al. (2012)
by ξ ) shown in Lemma C.2. Since we measure the error in the Frobenius norm ∥ · ∥F, the subspace compatibility constant
(Definition 3 of Negahban et al., 2012) is

Ψ (Mq)
def
= sup

S∈Mq

∥S∥∗

∥S∥F
≤

√
q.

The conclusion of this theorem follows from Theorem 1 of Negahban et al. (2012). □

Lemma B.1. Under (A1)–(A3),

P
(

∥∇g(Γ)∥ ≤ cm−1 max(τ , 1 − τ )Ku
√

∥Σ∥

√
p + m

n

)
≥ 1 − 3 × 8−(p+m)

− an, (B.8)

where c > 0 is an absolute constant.

Proof for Lemma B.1. Throughout the proof, we restrict on the eventΩ1 in (B.7). Recall the expression from (A.3) that

∇g(Γ) = −(mn)−1X⊤
{
W ◦ (Y − XΓ)

}
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and the matrix U(Γ) = (uij) = (Yij − X⊤

i Γ·j) ∈ Rn×m. Following the proof of Lemma 3 in Negahban and Wainwright (2011),
we have

P
(
n−1

∥X⊤(W ◦ U)∥ ≥ 4s
)

= P
(

sup
β∈Sp−1,
α∈Sm−1

n−1
|β⊤X⊤(W ◦ U)α| ≥ 4s

)

≤ 8p+m sup
β∈Sp−1,
α∈Sm−1

P
(
n−1

|⟨Xβ, (W ◦ U)α⟩| ≥ s
)

≤ 8p+m sup
β∈Sp−1,
α∈Sm−1

P
(
n−1

n∑
i=1

⟨β,X i⟩⟨α, (W ◦ U)i⟩ ≥ s
)
, (B.9)

where Sm−1 def
= {α ∈ Rm

: ∥α∥2 = 1} is the Euclidean sphere in m-dimensions. ∀s ≥ 0, there exists C > 0 such that
P
(
|uij| > s

)
≤ exp

(
1 − s2/C2

)
. Since |wij| ≤ max(τ , 1 − τ ), we have

P
(

|wijuij| > s
)

≤ P
(
max(τ , 1 − τ )|uij| > s

)
= P

(
|uij| >

s
max(τ , 1 − τ )

)
≤ exp

(
1 −

s2

max(τ , 1 − τ )2C2

)
. (B.10)

It means for each j ∈ {1, . . . , m}, wijuij are sub-gaussian. Moreover, the maximal sub-gaussian norm is bounded by

max
1≤j≤m

∥wijuij∥ψ2 = max
1≤j≤m

sup
p≥1

p−1/2(E|wijuij|
p)1/p

≤ max(τ , 1 − τ ) max
1≤j≤m

sup
p≥1

p−1/2(E|uij|
p)1/p

= max(τ , 1 − τ )Ku. (B.11)

Then byHoeffding’s inequality (Proposition 5.10 of Vershynin, 2012b),we can conclude that
⟨
α, (W◦U)i

⟩
is also sub-guassian,

P
(⟨
α, (W ◦ U)i

⟩
≥ s

)
= P

(⏐⏐ m∑
j=1

αjwijuij
⏐⏐ ≥ s

)

≤ exp
(
1 −

C ′s2

max(τ , 1 − τ )2K 2
u ∥α∥2

2

)
= exp

(
1 −

C ′s2

max(τ , 1 − τ )2K 2
u

)
, (B.12)

where C ′ > 0 is an absolute constant. Furthermore, its sub-gaussian norm is bounded by⟨
α, (W ◦ U)i

⟩
ψ2

= sup
p≥1

p−1/2
{
E
⏐⏐⟨α, (W ◦ U)i⟩

⏐⏐p}1/p

= sup
p≥1

p−1/2
(
E
⏐⏐ m∑

j=1

αjwijuij
⏐⏐p)1/p

≤ max(τ , 1 − τ )sup
p≥1

p−1/2
(
E
⏐⏐ m∑

j=1

αjuij
⏐⏐p)1/p

≤ max(τ , 1 − τ )MKu, (B.13)

where M > 0 is an absolute constant. The last line comes from Khintchine inequality (Corollary 5.12 of Vershynin, 2012b)
and recall that ∥α∥2 = 1. Applying Hoeffding’s inequality again we can obtain

P
(
n−1

n∑
i=1

⟨
β,X i

⟩⟨
α, (W ◦ U)i

⟩
≥ s

)
≤ exp

(
1 −

C ′′s2n
max(τ , 1 − τ )2M2K 2

u n−1
∑n

i=1⟨β,X i⟩
2

)
≤ exp

(
1 −

C ′′s2n
max(τ , 1 − τ )2M2K 2

u n−1∥Xβ∥
2
2

)
,



16 S. Chao et al. / Computational Statistics and Data Analysis 121 (2018) 1–19

≤ exp
(
1 −

C ′′s2n
c2 max(τ , 1 − τ )2M2K 2

u ∥Σ∥

)
, (B.14)

where C ′′ is an absolute constant. Combining (B.9) and (B.14) gives

P
(
n−1

X⊤(W ◦ U)
 ≥ 4s

)
≤ exp

(
1 −

C ′′s2n
9max(τ , 1 − τ )2M2K 2

u ∥Σ∥
+ (p + m) log 8

)
. (B.15)

Set s =
1
4 c max(τ , 1 − τ )Ku

√
∥Σ∥

√
p+m
n , where c def

= 4 ·

√
2 log 8 9M2

C ′′ , then we can conclude from the fact P(Ω1) ≥ 1 − an,

P
(
n−1

X⊤(W ◦ U)
 ≤ c max(τ , 1 − τ )Ku

√
∥Σ∥

√
p + m

n

)
≥

[
1 − exp

(
1 − (p + m) log 8

)]
× (1 − an)

≥
[
1 − 3 × 8−(p+m)]

× (1 − an)

≥ 1 − 3 × 8−(p+m)
− an (as p + m > 1). (B.16)

This finishes the proof. □

Lemma B.2. Under (A1)– (A3), selecting λ = 2 cm−1 max(τ , 1 − τ )Ku
√

∥Σ∥

√
p+m
n , for n ≥ 2min(m, p), any optimal solution

Γ̂ in the problem (2.6) satisfies the bound

∥Γ̂ − Γ∥
2
F ≤c ′

p + m
n

max(τ , 1 − τ )2

min(τ , 1 − τ )2
∥Σ∥

σmin(Σ)2
K 2
u dim(M)

+ c ′

√
p + m

n
max(τ , 1 − τ )
min(τ , 1 − τ )

√
∥Σ∥

σmin(Σ)
Ku∥ΓM⊥∥∗, (B.17)

with probability greater than 1 − 3 × 8−(p+m)
− an, where c, c ′ > 0 are absolute constants.

Proof of Lemma B.2. Recall that Ω1 is defined as (B.7), and let the event that (B.8) holds as Ω2. On event Ω1 ∩ Ω2, (B.17)
can be achieved by simply plugging λ = 2 cm−1 max(τ , 1 − τ )Ku

√
∥Σ∥

√
p+m
n into (B.4). We note that

P(Ω2 ∩Ω1) = P(Ω2|Ω1) P(Ω1) ≥
[
1 − 3 × 8−(p+m)]

× (1 − an)

≥ 1 − 3 × 8−(p+m)
− an (as p + m > 1). □ (B.18)

Appendix C. Auxiliary results

Lemma C.1. For any u, δ ∈ R and τ ∈ (0, 1),

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ ≥ min(τ , 1 − τ )δ2. (C.1)

Proof of Lemma C.1. When u = 0, we have ρτ (u) = ρ ′
τ (u) = 0, therefore

ρτ (δ) = |τ − 1{δ < 0}|δ2 ≥ min(τ , 1 − τ )δ2.

If u > 0, u + δ < 0 (δ < 0), we have

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ − min(τ , 1 − τ )δ2 =

{
(1 − 2τ )(δ + u)2 ≥ 0 for τ ≤ 1 − τ ;

(1 − 2τ )(u + 2δ)u > 0 for τ > 1 − τ .

If u > 0, u + δ > 0 (δ > 0), we have

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ − min(τ , 1 − τ )δ2 =

{
(2τ − 1)(u + 2δ)u ≥ 0 for τ ≤ 1 − τ ;

(2τ − 1)(u + δ)2u > 0 for τ > 1 − τ .

In the other two cases,

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ =

{
τδ2 ≥ min(τ , 1 − τ )δ2 for u > 0, u + δ ≥ 0;
(1 − τ )δ2 ≥ min(τ , 1 − τ )δ2 for u < 0, u + δ ≤ 0.

Therefore, we can conclude that

ρτ (u + δ) − ρτ (u) − ρ ′

τ (u)δ ≥ min(τ , 1 − τ )δ2.
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Table D.1
Tuning parameters by 5-fold cross validation.

Whole series (C1) Task-wise (C2)

τ 0.1 0.5 0.9 0.1 0.5 0.9

ω = 0.1
aINSL 0.0442 0.0552 0.0383 0.0008 0.0006 0.0008
aINSR 0.0303 0.0421 0.0293 0.0004 0.0008 0.0004
DMPFC 0.0348 0.0504 0.0198 0.0004 0.0007 0.0006

ω = 0.5
aINSL 0.0181 0.0403 0.0153 0.0004 0.0006 0.0003
aINSR 0.0137 0.0393 0.0157 0.0006 0.0004 0.0005
DMPFC 0.0195 0.0391 0.0143 0.0006 0.0002 0.0007

ω = 0.9
aINSL 0.0253 0.0408 0.0275 0.0006 0.0004 0.0004
aINSR 0.0243 0.0442 0.0200 0.0008 0.0002 0.0006
DMPFC 0.0193 0.0474 0.0206 0.0005 0.0008 0.0008

Lemma C.2. g(Γ) defined in (2.10) is κ-strongly convex and differentiable with κ = m−1 min(τ , 1 − τ )σmin(X
⊤X
n ). □

Proof of Lemma C.2. Denote ũij
def
= Yij − X⊤

i (Γ·j + ∆·j) and uij
def
= Yij − X⊤

i Γ·j, for i = 1, . . . , n, j = 1, . . . , m, we have

⟨⟨∇g(Γ),∆⟩⟩ = tr
(
∇g(Γ)⊤∆

)
= −(mn)−1

m∑
j=1

p∑
l=1

∆lj

n∑
i=1

ρ ′(uij)Xil

= −(mn)−1
n∑

i=1

m∑
j=1

{ p∑
l=1

∆ljρ
′(uij)Xil

}
= −(mn)−1

n∑
i=1

m∑
j=1

{
ρ ′(uij)X⊤

i ∆·j
}
. (C.2)

Therefore,

g(Γ + ∆) − g(Γ) − ⟨⟨∇g(Γ),∆⟩⟩ = (mn)−1
n∑

i=1

m∑
j=1

{
ρ (̃uij) − ρ(uij) + ρ ′(uij)X⊤

i ∆·j
}

≥ (mn)−1 min(τ , 1 − τ )
n∑

i=1

m∑
j=1

(X⊤

i ∆·j)2 (by Lemma C.1)

= (mn)−1 min(τ , 1 − τ )∥X∆∥
2
F

= (mn)−1 min(τ , 1 − τ ) tr(∆⊤X⊤X∆)

≥ m−1 min(τ , 1 − τ )σmin
(X⊤X

n

)
∥∆∥

2
F . □ (C.3)

Appendix D. Additional details for Section 4

D.1. Tuning parameters by cross-validation

Choosingω = 0.1, b = 1 (aINS_L cluster) in (C1) case as an example, Fig. D.1 illustrates the cross-validation error function
in terms of λ under different τ levels. The optimal tuning parameters determined by 5-fold cross-validation under all cases
are reported in Table D.1.

D.2. Risk attitude parameter

The risk attitude parameter β is estimated by logistic model via maximum likelihood estimation (MLE)

P{risky choice|x} =
1

1 + exp[−σ {x̄ − βS(x) − 5}]
,

P{sure choice|x} = 1 −
1

1 + exp[−σ {x̄ − βS(x) − 5}]
, (D.1)

where x is the return stream displayed to the individual, its mean and standard deviation are x̄ and S(x).
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Fig. D.1. The cross-validation error function in terms of tuning parameter λ, with τ = , 0.5, and , respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. D.2. Estimated risk attitude for 19 subjects.

The estimated risk attitude parameters for 19 subjects in order are plotted in Fig. D.2, also see Majer et al. (2016).
Negative parameters imply risk-seeking behaviors; while positive parameters indicate averse risk patterns.We can seemost
of the individuals are risk-averse and the two extremes #1 and #19 are the most risk-averse and most risk-seeking persons
respectively.
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Abstract:Understanding how people make decisions from risky choices has attracted increasing attention of
researchers in economics, psychology and neuroscience. While economists try to evaluate individual’s risk
preference through mathematical modeling, neuroscientists answer the question by exploring the neural
activities of the brain. We propose a model-free method, 3-dimensional image functional principal compo-
nent analysis (3DIF), to provide a connection between active risk related brain region detection and indi-
vidual’s risk preference. The 3DIF methodology is directly applicable to 3-dimensional image data without
artificial vectorization or mapping and simultaneously guarantees the contiguity of risk related brain regions
rather than discrete voxels. Simulation study evidences an accurate and reasonable region detection using
the 3DIF method. In real data analysis, five important risk related brain regions are detected, including pari-
etal cortex (PC), ventrolateral prefrontal cortex (VLPFC), lateral orbifrontal cortex (lOFC), anterior insula
(aINS) and dorsolateral prefrontal cortex (DLPFC), while the alternative methods only identify limited risk
related regions. Moreover, the 3DIF method is useful for extraction of subjective specific signature scores
that carry explanatory power for individual’s risk attitude. In particular, the 3DIF method perfectly classifies
both strongly andweakly risk averse subjects for in-sample analysis. In out-of-sample experiment, it achieves
73%–88%overall accuracy, amongwhich 90%–100%strongly risk averse subjects and49%–71%weakly
risk averse subjects are correctly classified with leave-k-out cross validations.

Keywords: fMRI, FPCA, GLM, risk attitude, SVD

MSC 2010: 62H12, 62P10

1 Introduction

Understandingpeople’s risk preferences andhowpeoplemakedecisionsunder riskhaveboth attractedmuch
attention in industry and academia alike. Accurate risk classification is of benefit both to creditors including
banks, retailers, mail order companies, utilities and various other organizations, and to the applicants avoid-
ing over commitment, see [16]. While the traditional classification approaches rely on expert knowledge,
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experience and even a subjective feeling to categorize an individual to be risk averse or risk seeking, there
has been an increasing demand in statistical methods for quantitative complements to the formal art alike
analysis systems. Discriminant analysis, linear regression, logistic regression and decision trees have been
developed and implemented in literature.

To explain the decision making behaviors, classical expected utility theory has been widely adopted in
economics, see [23, 28, 31, 50]. The utility theory assumes that a rational decision maker chooses a strategy
that maximizes the average or expected value of a concave utility function among possible outcomes, see
e.g. [36] for the properties of utility functions. The utility functions depend on parameters that represent
individual’s risk preferences and are estimated based on the individual’s characteristics. Alternatively, risk-
return models [30] determine the average or expected returns and the associated risks of different choices,
and compute a risk-compensated value in the capital asset pricing models, see [43, 51, 52]. The traditional
models, though demonstrating some decision making philosophy in a common sense, are unable to explain
the heterogeneity in decision-making under similar risk attitudes from person to person in the experiments
of behavioral economics and neuroscience, see [3, 5, 10, 21, 44].

Decision-making is indeed a complex neural process involving both cognitive and emotional factors.
According to [23] and [44], individuals not only estimate the expected value of utility or return, but more
importantly, they seem to adapt these estimates by subjective factors, such as risk preference. It thus becomes
scientifically necessary and important to answer which parts of the human brain regulate specific decision-
making tasks and which neural processes drive investment decisions, see [25, 33, 37, 41]. It is also interest-
ing to ask whether the identification of the risk related brain regions helps to explain the heterogeneity of
individual risk preference and its impact on making decision from the neural aspect.

The recent development on neural image data collection allows quantitative analysis to be possible.
In modern risk perception and investment decision (RPID) experiments, subjects are requested to make
decisions with uncertain outcomes and simultaneously their brain reactions are recorded as neural images
by the functional magnetic resonance imaging (fMRI) scanner. The neural images or fMRI data reflects the
changes in the brain’s blood flow at volume and oxygen level during neural activities. The blood-oxygen-
level-dependent (BOLD) signals are captured on 3-dimensional (3D) spatial maps of brain voxels during the
experiments.

Given the fMRI data collected in the risk related experiments, specific brain regions have been found to
be associatedwith risk related decisionmaking. Tobler, O’Doherty, Dolan and Schultz [45] demonstrated that
lateral orbifrontal cortex (lOFC) and medial orbifrontal cortex (mOFC) are related to the evaluation and the
contrast of risky or sure choices. Mohr, Biele, Krugel, Li and Heekeren [33] discovered that risk averse indi-
viduals have greater brain activities in lateral orbifrontal cortex (lOFC) and posterior cingulate cortex (PCC).
Mohr, Biele and Heekeren [32] evidenced the importance of anterior insula (aINS) and ventrolateral pre-
frontal cortex (VLPFC) to value processing, risk and uncertainty. Van Bömmel, Song, Majer, Mohr, Heekeren
and Härdle [47] found parietal cortex (PC) is associated with value processing and selective attention. The
risk related regions are quantified as the voxels significantly activated by the stimulus, which turn out to
be contiguous in modest size relative to the visual or audial cortex. Two techniques – general linear model
(GLM) method and principal component analysis (PCA) method – are by far the most popular to identify the
risk related regions.

The model-based GLM technique depends on a parametric structure, see e.g. [9, 11, 48]. It only focuses
on the neural information with a pre-defined design matrix and ignores any neural activity other than the
priori specified modeling. The PCA technique is model free and has potential to detect risk related regions
without making any constraint or subjective assumptions, see [2, 4, 27]. Without losing much variability, it
extracts spatial factors to represent the risk related brain regions, while the individual risk attitude of the
subject is explained by the factor loadings named signature scores via an orthogonal decomposition.

The PCA method however needs a conversion of the fMRI data to a vector of discrete signals, leading
to extremely high dimensionality when applied to the high resolution image data. To solve the estimation
challenge, singular value decomposition (SVD) has been proposed with a reduced dimension of covariance
matrix, see [13]. Nevertheless, the PCA and SVDmethods conducted in a discrete framework cannot guaran-
tee the contiguity of risk related regions rather discrete voxels, see [19].
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This motivates the adoption of functional principal component analysis (FPCA), see [39, 40]. In FPCA,
the vectorized fMRI data is smoothed as a continuous curve, for which eigen-decomposition is performed,
see [29, 47, 49]. Zipunnikov, Caffo, Yousem, Davatzikos, Schwartz and Crainiceanu [54] further proposed
the functional SVD (FSVD) approach that improved computational efficiency with the utilization of the SVD
technique. It is worth noting that the FPCA and FSVDmethods both request vectorizing the BOLD signals that
are naturally defined on 3D location coordinates to 1D domain. Given the high resolution of fMRI data, with-
out sufficient knowledge of spatial interdependence of the brain, the pre-processing vectorization potentially
impairs accuracy and efficiency for the risk related region detection and further for the risk classification.

It is necessary to ask why not directly analyze the fMRI signals in the 3D domain and howmuch accuracy
can be improved by employing such a new technique. In our study, we propose a model-free 3-dimensional
image functional principal component analysis (3DIF) method to identify risk related regions and extract
subject signature scores. Simulation study and real data analysis demonstrate good quality of the detected
risk related regions with stable accuracy and contiguity property. The 3DIF regions are further found to
carry explanatory power for subjects’ risk attitudes. In the application of risk classification, the 3DIF method
reaches 100% accuracy for in-sample analysis and 73%–88% overall accuracy for out-of-sample analy-
sis. In particular, it correctly classifies 90%–100% strongly risk averse subjects and 49%–71%weakly risk
averse subjects by using leave-k-out cross validations.

The remainder of the paper is structured as follows. Section 2 presents the RPID experiment and data.
Section 3 details the 3DIF methodology and briefly reviews the alternative methods in literature. Section 4
reports the performance of the proposed 3DIF method under different scenarios. In Section 5, we implement
the 3DIF to real data. Section 6 concludes.

2 RPID experiment and data

To investigate the mechanism of brain processes during the process of making decisions under risk, we
analyze functional magnetic resonance imaging (fMRI) data on seventeen subjects who were exposed to an
RPID experiment designed in [33]. The experiment uses streams of investment returns as stimuli and hypo-
thesizes how individual risk attitude affects decisions in risky choices against sure choices. Figure 1 displays
a graphic illustration of the experimental setup. Each experiment trial composes of two phases. The presenta-
tion phase displays a random Gaussian distributed return stream with ten observations that are sequentially
displayed over 2 × 10 seconds. After a 2.5 seconds break, subjects are exposed in the decision phase to one
of three types of tasks and have to give an answer within the next 7 seconds. The three types of tasks included
the decision task, where subjects choose either a 5% fixed return (sure choice) or the investment of the ran-
dom return stream just shown (risky choice). In the other two tasks subjects report their subjective expected
return (scaling from 5% to 15%) and perceived risk (from 0 = no risk to 100 = maximum risk) of the just dis-
played investment. Each trial is repeated 27 times, with the types of tasks randomly selected. In total, there
are 3 × 27 trails for each subject. During the experiment, subjects were placed in the fMRI scanner and high
resolution (91 × 109 × 91) images were acquired every 2.5 seconds.

The seventeen subjects were native German speakers, healthy and right-handed. All participants had
no history of neurological or psychiatric diseases. They were paid for their participation and gave written
informed consent. The return streams were independent from trial to trial, randomly drawn from a Gaussian
distribution. The expected value of the return streams varied from 6%, 9%, to 12%and standard deviations
from 1%, 5% to 9%. The combinations generated in total nine different Gaussian distributions associated
with various risk-return relationships, e.g. low return (6%) and low risk (1%) as well as high return (12%)
and high risk (9%).

The same data had been studied by two works in the existing literature. Mohr, Biele, Krugel, Li and
Heekeren [33] conducted the general linearmodel (GLM)with six design factors. The factors are either subject
specific values including e.g. return stream, perceived risk, expected value of the return stream, or dummy
variables. The study detected value-reward related brain activity in bilateral dorsolateral prefrontal cortex
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Figure 1: Graphic illustration of one trail of the RPID experiment, see [33].

(DLPFC), posterior cingulate cortex (PCC), ventrolateral prefrontal cortex (VLPFC), and medial prefrontal
cortex (MPFC), which is consistent to [1, 22, 24–26, 35, 46]. It also found that perceived risk correlated
significantly with the BOLD signal in the anterior insula (aINS), as documented in a variety of studies by
[8, 14, 20, 34, 37, 38, 42]. However, GLM detection depends on the significance of statistical tests, which are
hard to extract subject specific signals for further analysis.

Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] proposed a panel version of the dynamic
semiparametric factormodel (PDSFM) to reanalyze the data. The approach however only detected two impor-
tant risk-related regions and did not contain any activation regions previously reported in [33] except Parietal
Cortex (PC). Subject signature scoreswere extracted andused in risk classification.Using the variance of these
stimuli responses as input for the classification algorithm, it obtained very high classification rates at 97%
for strongly risk averse individuals and 75% for weakly risk averse with the SVM classifier by applying the
double leave-one-out cross-validation algorithm.

3 Method

Our interest is to propose a dimension reduction technique on 3D space to improve prediction in the fMRI
study of association between risk preferences and brain activity. In this section, we detail the 3D image func-
tional principal component analysis (3DIF)method that is directly applicable to high-dimensional functional
data and guarantees the contiguity of detected risk related brain regions. We show how to identify common
spatial factors and extract subjective specific scores. The spatial factors are used to construct common risk
activation regions that do not dependent on subjects, while the heterogeneity of individual risk attitude is
explained by the subjective specific scores.

Let Y(j)t (x1, x2, x3) denote the observed fMRI signal at time t = 1, . . . , N for subject j = 1, . . . , J at 3D spa-
tial location (x1, x2, x3), where x1 ∈ P1, x2 ∈ P2, x3 ∈ P3 are defined in a bounded cube P1 × P2 × P3 ⊂ ℝ3.
In our study, J = 17 subjects and N = 1360 scanned images. The brain is measured in a cube of size
[1, 91] × [1, 109] × [1, 91], i.e. around 106 voxels per scan. A tensor B-spline smoother is used to smooth
each time-specific brain image and it leads to continuous 3D functional data, denoted as f (j)t (x1, x2, x3).
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3.1 3D image functional principal component analysis (3DIF)

For any continuous functional data ft(x) with x = (x1, x2, x3), one can represent it in a vector format

f (x) = Cϕ(x), (3.1)

where C is an (N × K3)-dimensionalmatrix of B-spline coefficients, N is the number of time points in the fMRI
data and K refers to the number of knots in each spatial direction, and

ϕ(x) = [ϕ1(x1, x2, x3), ϕ2(x1, x2, x3), . . . , ϕK3 (x1, x2, x3)]⊤

are the continuous basis functions generated by tensor products of univariate splines. Thus K3 is the total
number of the basis functions.

In the factor extraction experiment, we are able to assume the fMRI images to be independent and iden-
tically distributed. Denote the covariance function of the functional data

G(x, s) = Cov{f(x), f(s)}

and its sample estimator

Ĝ(x, s) = N−1
N
∑
t=1

ft(x)ft(s). (3.2)

The covariance operator V is defined as

Vf = ∫
P1

∫
P2

∫
P3

G( ⋅ , x)f(x)dx.

Similarly to the orthogonal decomposition in the multivariate PCA, we have for the 3D image functional data

Vξ = ∫
P1

∫
P2

∫
P3

G( ⋅ , x)ξ(x)dx = λξ(x),

where ξ(x) and λ denote the eigenfunction on the 3Ddomain and the eigenvalue respectively. The eigenvalues
are real and non-negative λ1 > λ2 > ⋅ ⋅ ⋅ ≥ 0.Without spatial information loss or distortion due to vectorization
in e.g. FPCA, the first functional factor ξ1(x1, x2, x3) corresponding to the largest eigenvalue λ1 accounts for
as much of the variability in the data as possible, and each succeeding functional factor ξℓ(x1, x2, x3) in turn
has the highest variance possible under the constraint that it is uncorrelated with the preceding ones.

Plugging (3.1) into (3.2), we obtain

Ĝ(s, x) = N−1ϕ⊤(s)C⊤Cϕ(x),

and the orthogonal decomposition equation as

∭N−1ϕ⊤(s)C⊤Cϕ(x)ϕ⊤(x)b d(x) = λϕ⊤(s)b,

where the eigenfunction ξ = ϕ⊤b with b being a coefficient vector. Define

W =∭ϕ(x)ϕ⊤(x)dx.

By solving

N−1W
1
2 C⊤CW

1
2 u = λu, (3.3)

where u = W
1
2 b and the coefficient vector b satisfies b⊤i Wbi = 1 and b⊤i Wbj = 0, we obtain the eigenfunc-

tion that contains spatial information and hence will be used to construct the common spatial factors of
the fMRI data.
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3.2 Multilinear model

To obtain common spatial factors across subjects, we borrow the idea of panel data analysis by averaging
fMRI signals over subjects at each time t:

Ȳt(x1, x2, x3) = J−1
J
∑
j=1

Y(j)t (x1, x2, x3), t = 1, . . . , N.

The averaged signals are smoothed over a tensor B-spline regression with K = 16 knots in every spatial direc-
tion. The eigenfunctions are obtained by the 3DIF orthogonal decomposition in Section 3.1.

The eigenfunctions consist of not only important regions attributed to risk perception and investment
decisions but also other neural activities unrelated to the investigated stimuli and possible magnetic noises.
To remove the impact of noises, the spatial factors are constructed by trimming the eigenfunctions at extreme
quantiles such as [0.05%, 99.95%] levels and replacing the “non-active” voxels with zeros. Moreover, we
only consider the first L eigenfunctions and denote the trimmed factors as common risk related regions,
denoted as ξ̂ℓ(x1, x2, x3)with ℓ = 1, . . . , L, since only the first spatial factors are fundamental and necessary.
By doing this, the original high dimensionality is reduced to a small number of common spatial factors.

Heterogeneity of individual risk attitude are extracted in the multilinear regression that projects the raw
fMRI signals on the common spatial regions:

Y(j)t (x1, x2, x3) =
L
∑
ℓ=1

Z(j)ℓ,t ξ̂ℓ(x1, x2, x3) + ε
(j)
t (x1, x2, x3), (3.4)

where ε(j)t (x1, x2, x3) denotes the idiosyncratic noise of the j-th subject, which is independently and iden-
tically distributed with zero mean and constant variance. The subject-specific factor loadings Z(j)ℓ,t are
calculated by ordinary least squares regression at time t for subject j:

min
Z(j)ℓ,t ∑x1 ,x2 ,x3 {Y

(j)
t (x1, x2, x3) −

L
∑
ℓ=1

Z(j)ℓ,t ξ̂l(x1, x2, x3)}
2
.

The multi-subject 3DIF estimation procedure can now be summarized as follows:
(1) Take the average Ȳt(x1, x2, x3) of the raw 3D fMRI data across all subjects and obtain the smoothed 3D

image functional data ft(x1, x2, x3).
(2) Perform3DIF to construct common spatial functional factors ξ̂ℓ(x1, x2, x3) via (3.3) and trim out insignif-

icant active regions at e.g. 0.05%− and 99.95%+ quantiles.
(3) For every subject, estimate the subject-specific factor loadings Z(j)ℓ,t with the multilinear regression (3.4)

that will be further used to classify risk attitude of the subject.

4 Simulation

Before implementing the proposed 3DIF method to real data, we perform a simulation study to investigate
its performance under known data generating processes. Our primary interest is to see how much the 3DIF
method will improve the detection accuracy of the risk related brain regions compared to the alternative
1-dimensional functional approach. Moreover, we study how robust is the region detection with respect to
the size of the risk activation brain regions.

Our simulation studies are designed to properly reflect real data at hand. The fMRI signals are generated
for a “brain” defined in the dimensions of [1, 91] × [9, 100] × [11, 81]. In previous literature five regions
including PC, VLPFC, lOFC, aINS and DLPFC have been identified to be active under risk related tasks. In the
first simulation study, we consider five regions that are contained in the literature documented places and
specify each of them to a 3 × 3 × 3 cube for a simple demonstration. In particular, PC is defined at location
[51, 53] × [25, 27] × [60, 62], VLPFC at [27, 29] × [89, 91] × [38, 40], lOFC at [54, 56] × [97, 99] × [30, 32],
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Figure 2: Visualization of the double gamma function.

aINS at [63, 65] × [75, 77] × [37, 39], and DLPFC at [66, 68] × [77, 79] × [53, 55]. The regions are constant
in the data generation.

Two kinds of factor loadings are considered: Gaussian distributed random loadings, and a more realistic
situation by incorporating the haemodynamic response function (HRF) in the random loadings. The HRF is
generated by a double gamma function (see [12, 15, 19, 53]):

h(t) = ( t
a1b1
)
a1
e−

t−a1b1
b1 − c( t

a2b2
)
a2
e−

t−a2b2
b2 ,

where a1 = 6, a2 = 12, b1 = b2 = 0.9 and c = 0.35. Compared to the pure random factor loadings, the HRF
scenario mimics the working process of the fMRI scanners, where HRF triggers brain activities. Figure 2
illustrates how the double gamma function reflects the haemodynamic response function (HRF).

Figure 3 gives an illustration of one simulated convolution of double gamma function and the generated
factor loadings with HRF.

The 3D image signals are generated to represent brain signals recorded by the fMRI scanner during an
RPID experiment:

f (NFL)t (x1, x2, x3) =
5
∑
ℓ=1

Zℓtξℓ(x1, x2, x3) + εt(x1, x2, x3),

f (HRF)t (x1, x2, x3) =
5
∑
ℓ=1
{Zℓt + h(t)}ξℓ(x1, x2, x3) + εt(x1, x2, x3),

where NFL refers to the scenario with only normal random factor loadings, while HRF incorporates the
impact of HRF in the fMRI signals. The five functional factors ξℓ(x1, x2, x3) have been defined in the loca-
tions (x1, x2, x3) as mentioned before and are constant over time. The factor loading Zℓt corresponds to the
ℓ-th spatial factor at time point t = 1, . . . , 1000. In both the NFL and HRF scenario, the factor loadings are
Gaussian distributed with mean zero and standard deviations of 7.6, 5.8, 5.2, 1.8, and 1.7 respectively
learned from the real data. The random noise εt(x1, x2, x3) is standard normal distributed and independent
from each other. Each generation is repeated 100 times.

We implement two methods to identify the common spatial factors: 3DIF and FSVD proposed by [54].
Bothmethods handle continuous functional data, however 3DIF directly analyze the fMRI signals in 3D space
while FSVD is only applicable for 1D functional data though the latter employs the singular value decompo-
sition (SVD) approach to achieve better estimation feasibility and accuracy. In the simulation study, we chose
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Figure 3: Simulated factor loadings. On top is the double gamma function. The bottom is the simulated factor loadings,
which are the sum of the double gamma function and the normal random loadings. The red dots highlight time points
when the stimulus are triggered.

K = 16 in each direction leading to K3 = 4096 basis functions to utilize the largest computational power for
each direction. It is worth noting that the designed risk related regions are only used in the fMRI data gen-
eration and will not be utilized in the following decomposition and factor computation. Instead, they are
retained to evaluate the detection accuracy. In both methods, the active regions are defined as the trimmed
spatial functional factors over the 99.999% quantile and below the 0.001% quantile.

As an illustration, Figure 4 displays one active region lOFC associated with evaluating and contrasting
different option choices [45]. From top to bottom, one observes the generated (true) region, the identified
regions by the 3DIF method and the FSVD approach. The active regions are highlighted as bright areas. Both
methods detect the region, however 3DIF performs better in several aspects. In the NLF case, 3DIF explains
more variation for the fMRI signals thanFSVD, i.e.56.3%against55.2%, see Table 1. The variance explained
increaseswhen the number of factor increases.Moreover, 3DIF providesmore clear-cut results, i.e. if the iden-
tified spacial factor corresponds to only one actual region, and simultaneously has less mis-detection, i.e. by
wrongly identifying non-active regions. See Table 2 for the average percentage of the true regions detected by
each estimated functional factor. More than 60% of the estimated functional factors correspond to exactly
one region in 3DIF. The value drops to 43.33% in FSVD. As for mis-detection, 3DIF mistakenly detects 28%
andFSVDhasmore at36.83%.More importantly, 3DIFprovides contiguous regions insteadof discrete voxels
thanks to itsmathematical properties, see the contour plot of lOFC in Figure 5. On the other hand, FSVD iden-
tifies discrete voxels, due to the adoption of SVD in the discrete space, which improves estimation efficiency
but at cost of contiguity. The relative good performance applies to the HRF scenario, too.While 3DIF explains
69.5% variation, FSVD reaches to 55.9%. When using 3DIF, 70% of the detected risk regions correspond to
exactly one active region, 23.33% are mis-detected and less than 7% are mixture of risk regions. The alter-
native FSVDmethod has only 54% of one-to-onematch, more than 30%mis-detection and 15% ofmixture.
Again, 3DIF accurately and reasonably detects a contiguous region, while the FSVD gives discrete voxels.

Now we repeat the above two experiments with different designs on the active regions to investigate the
robustness of 3DIF. In particular, the five active regions are generated with varying sizes to reflect a more
realistic situation. Following the study of [33] on the size of identified brain regions, our spatial moder-
ate assumptions state that the spatial factors are active at location [51, 54] × [25, 28] × [60, 63] for Pari-
etal Cortex (64 voxels), [27, 29] × [88, 91] × [38, 41] for VLPFC (48 voxels), [52, 59] × [92, 99] × [28, 35] for
lOFC (512 voxels), [62, 66] × [74, 78] × [37, 39] for aINS (75 voxels), and [64, 70] × [73, 79] × [51, 57] for
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Figure 4: Functional factors on lOFC. From top to bottom are the generated (true) region, the estimated region with 3DIF
and the estimated region with the FSVD method.

Factor

1 2 3 4 5 6 Total

NFL: 3DIF 24.2% 4.5% 4.2% 9.9% 1.7% 11.7% 56.3%
NFL: FSVD 19.2% 0.7% 1.6% 21.5% 4.8% 7.4% 55.2%

HRF: 3DIF 25.9% 4.9% 7.0% 16.2% 5.7% 9.8% 69.5%
HRF: FSVD 20.5% 2.2% 3.3% 17.8% 1.2% 10.7% 55.9%

Table 1: Variance explained by different number of spatial factors for NFL with Gaussian random factor loadings
and HRF incorporating HRF in the factor loadings. Two methods have been implemented: 3DIF and FSVD.

Regions

0 1 2 ≥ 3

NFL: 3DIF 28.00% 60.67% 11.33% 0.00%
NFL: FSVD 36.83% 43.33% 19.50% 0.33%

HRF: 3DIF 23.33% 70.00% 6.67% 0.00%
HRF: FSVD 31.33% 54.00% 14.67% 0.00%

Table 2: Average percentage of the estimated functional factors that detect the true regions; “0 region” means
no active region and hence a nonzero values indicates mis-detection.
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(a) (b)

(c) (d)

Figure 5: Contour plot of the estimated active region lOFC in NFL (top) and HRF (bottom) cases. On the left is the estimated
region with 3DIF and on the right is the estimated region with FSVD.

Regions

0 1 2 ≥ 3

NFL: 3DIF 27.00% 62.67% 10.33% 0.00%
NFL: FSVD 32.17% 52.33% 15.50% 0.00%

HRF: 3DIF 18.50% 79.67% 1.83% 0.00%
HRF: FSVD 27.67% 61.33% 11.00% 0.00%

Table 3: Robust: average percentage of the estimated functional factors that detect the true regions; “0 region” means
no active region and hence a nonzero values indicates mis-detection.

DLPFC (343 voxels). The factor loadings and the noise level remain the same as in the previous experiments.
Both normal and HRF factor loadings are considered. Each data generation is repeated 100 times.

We still implement the 3DIF and FSVD methods to the generated fMRI data. As the average number of
voxels now is about eight times of that in the previous simulations, the active regions are trimmed at extreme
quantiles. Results evidence a stable performance. Again, 3DIF provides better identification, see Table 3 for
the average percentage of the true regions detected by each estimated factor. In the NFL case, 62.67% of
the estimated functional factors are associated with exactly one region, 27% are mis-detected and 10.33%
are mixed. On the contrary, the alternative method performs worse with less one-to-one match at 52.33%,
moremis-detection at 32.17% andmixture at 15.5%. In the HRF case, 3DIF still outperforms the alternative
with 79.67% one-to-one match, 18.50%mis-detection and 1.83%mixture, compared to 61.33%, 27.67%
and 11.00%by FSVD. Similarly, the 3DIFmethod provides realistic contiguous regions, while the alternative
FSVD detects discrete voxels, see Figure 6 for the contour plot of the risk region lOFC as illustration.
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(a) (b)

(c) (d)

Figure 6: Robust: contour plot of the active region on lOFC. The left column is the estimated region in 3DIF and the right column
is the estimated region with FSVD method. The top row is the result for NFL with normal factor loadings and on the bottom is
the result for HRF with HRF incorporated in factor loadings.

The simulation study shows that the proposed 3DIF outperforms the alternative functional approach,
with better quality of risk related regions detected. The relative good performance is stable for different sce-
narios with various parameters.

5 Empirical results

We implement the proposed 3DIF method to the fMRI signals data collected in the RPID experiment as
described in Section 2,whichmimics real-life investment decisions by providing subjectswith return streams
of investments. We assume that all subjects exhibit homogenous brain structure. In other words, the spatial
maps are common for all, while the individual differences are represented by the subject specific scores. We
report the detected common risk related regions and compare with several alternative methods. We classify
subjects’ risk perception based on the extracted subject specific signals, i.e. signature scores, and evaluate
the risk classification accuracy with the help of psychological risk-return (PRR) model.

5.1 Computational time

The analyzed fMRI data are high dimensional (91 × 109 × 91 × 1 360 scans = 1,227,575,440) and require
large memory (17 × 1.3 GB). The 3DIF method is implemented on twelve cores ProLiant BL680c G7 server
equipped with Intel(R) Xeon(R) CPU E7-4860@2.27GHz processors and 252 GB memory loading. The main
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computation time is spent on computing the tensor integral W =∭ϕ(x)ϕ⊤(x)dx, which exponentially
increases in the number of knots K. Though a large number of knots provides better fit, it extends the com-
putational time. Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] choose the basis function with
fourteen knots in the x- and y-axis and twelve knots in the z-axis to balance accuracy and computational
time. In our study, we increase the number of knots K = 16 in each direction leading to K3 = 4096 basis
functions, to further improve the estimation accuracy by utilizing larger computational power. The computa-
tion of the triple integralW costs 48 hours. It is worth noting that the value of the triple integral only depends
on the B-spline basis functions and hence can be used for other fMRI data analysis. With the value ofW, the
computation of 3DIF only needs 4 hours to complete.

5.2 Alternative methods

For comparison, two alternative methods have been implemented on the same data. Mohr, Biele, Krugel, Li
and Heekeren [33] conducted the general linear model (GLM) with six design factors on the individual fMRI
data. Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] proposed a panel version of the dynamic
semiparametric factor model (PDSFM) to reanalyze the data. See Section 2 for details of their findings.

In addition, we consider threemoremethods that have previously been proposed in literature. We imple-
ment them to analyze the same data, including singular value decomposition (SVD) – a multivariate statis-
tical technique – in a discrete framework, and two functional data analysis methods functional principal
component analysis (FPCA) and functional SVD (FSVD) in a continuous but 1-dimensional space.

SVD: Denote the vectorized fMRI signal data as Y = [Y1, Y2, . . . , YN] that has p × N dimensions with
p = 91 × 109 × 91 and N = 1360 in our study, SVD decomposes the discrete data averaged over subjects
and constructs common spatial factors of risk-related brain regions Y = ΓΛ 1

2 U⊤, where Γ is a p × N orthonor-
mal matrix, Λ is a diagonal matrix and U is an N × N orthogonal matrix. The ℓ-th spatial factor is constructed
with the ℓ-th column of Γ. Compared to the classic principal component analysis (PCA), SVD is computation-
ally efficient and feasible with reduced dimensionality, i.e. decomposing a p × N sample matrix instead of
a p × p covariance matrix given that p ≫ N, when dealing with high-dimensional data. It however ignores
contiguity nature of the fMRI signals, which leads to discontinued active regions.

FPCA and FSVD: The FPCA method estimates eigenfunctions in a functional framework. Similar to the pro-
posed 3DIF method, the vectorized data is smoothed but using 1D basis functions and one performs eigen-
decomposition for the covariance operator. Denote the covariance operator by V we have Vξ = λξ , where ξ
represents the eigenfunction corresponding the eigenvalue λ, see [39, 40]. The FPCA approach, though guar-
antees the contiguity of risk related brain regions, is subject to the curse of dimensionality. Zipunnikov, Caffo,
Yousem,Davatzikos, Schwartz and Crainiceanu [54] proposed FSVD,which implements SVD to the smoothed
functional data instead of the discrete raw data to balance the tradeoff between high dimensionality and
computational efficiency. Nevertheless, the two functional data analysis methods requests pre-processing
vectorization, which may misrepresent the raw spatial structure of the fMRI data.

5.3 Risk related regions ξ̂ℓ

The3D ImageFPCA (3DIF) technique is utilized to capture the fundamental spatialmapsunder riskdecisions.
We identify the common spatial factors and use them to represent the brain regions with significant activity
during the RPID experiment. One question remains on how to choose the number of spatial factors, denoted
by L. The larger the number of spatial factors, the better the in-sample accuracy of the fitted model. On the
other hand, too large L leads to over-fitting and poor out-of-sample performance. The selection of the number
of factorsmay rest on the explained variation for differentmodel specification. Table 4 presents the explained
variance averaged over the seventeen subjects for different number of factors. It shows that 86% variation
in the data is attributed to the first spatial factor when using 3DIF, which can be interpreted as the typical
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L

1 2 4 6 20

3DIF 86.03% 88.93% 90.05% 92.78% 94.34%
FSVD 96.50% 96.57% 96.65% 96.74% 97.07%
FPCA 70.06% 81.62% 87.85% 92.82% 95.27%
SVD 96.67% 96.73% 96.80% 96.89% 97.21%

Table 4: Explained variance by different number of spatial factors.

brain activity during the RPID experiment. Alternatively, the dominant component explains 96.50% varia-
tion in FSVD, 70% in FPCA and 98.67% in SVD. Though numerically important, the first spatial factor has
less psychological meaning and is irrelevant to any important risk related regions documented in literature.
On the contrary, the inclusion of subsequent factors allowsmore useful information captured and simultane-
ously enables the detection of important risk related regions. For example, aINS is in modest size relative to
visual or audial cortex but highly relevant to risk perception and investment decisions. Thus, L = 20 is chosen
in our study. In this case, 94%of variation is explained by the 3DIFmethod, which is lower than the alterna-
tives. However, it is worth mentioning that higher variance is explained by the 3DIF spatial factor associated
with important risk related regions. For example, the 3DIF factor for lOFC (ξ̂5) explains 2.73%(the difference
between 92.78% for L = 6 and 90.05% for L = 4), while FSVD (ξ̂5) and SVD (ξ̂5) both contribute 0.09%and
FPCA (ξ̂3) provide 6.23%. We will continue the performance comparison of the data-driven methods in the
risk classification analysis.

Figure 7displays the identified risk related brain regions byusing the proposed3DIFmethod, the alterna-
tive 1D functional data analysis methods FSVD and FPCA, and themultivariate technique SVD. All detect the
risk relatedbrain regions includingparietal cortex (PC), lateral orbifrontal cortex (lOFC) andventrolateral pre-
frontal cortex (VLPFC). The three regions have been documented in literature and also by [33] analyzing the
same data with GLM. However only the proposed 3DIF method successfully finds anterior insula (aINS) that
is associated with value processing, risk and uncertainty. Moreover, the 3DIF method detects the activation
of medial orbifrontal cortex (mOFC) as documented in [47] when analyzing the same data using PDSFM. The
mOFC has been interpreted to be related to evaluation and contrast of various choices [45]. The FPCAmethod
provides over-smoothed regions, though continuous, due to the extremely high dimensionality larger than
220,000 after vectorization. Table 5 summarizes the region detection for the same data by various methods.
The proposed 3DIF method and the GLM [33] both identified five regions, where four of them are consistent.
The alternative FSVD, FPCA and SVD found three regions and the PDSFM [47] obtained two.

Figure 8 displays details of the detected regions by 3DIF. The relevant spatial factors are ξ̂ℓ(x1, x2, x3)
with ℓ = 3, 4, 5, 12, 18, 19. In particular, ξ̂3 and ξ̂12 are located in PC and attributed to risk related processes
and selective attention (see [6, 41]); ξ̂4 is related to the VLPFC region that stands for value processing. The
regionsmOFCand lOFCpickedupby ξ̂5 that are associatedwith evaluating and contrasting of different choice
options [45]. The aINS region is captured by ξ̂18 and related to risk anduncertainty [18], and theDLPFCarea is
highlighted by ξ̂19. Figures 9–11display the detected risk related brain regions by the alternative approaches.
The identified regions of lOFC and VLPFC in Figures 9–11are similar due to the nearby coordinates of the
regions. The center coordinates of the identified lOFC is (61, 94, 31) and of the VLPFC is (30, 94, 36).

PC VLPFC lOFC aINS DLPFC mOFC MPFC

3DIF ✓ ✓ ✓ ✓ ✓
GLM ✓ ✓ ✓ ✓ ✓
PDSFM ✓ ✓
FSVD ✓ ✓ ✓
FPCA ✓ ✓ ✓
SVD ✓ ✓ ✓

Table 5: Detected risk related brain regions for the same fMRI data of the RPID experiments in [33].
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(a) 3DIF.

(b) FSVD.

(c) FPCA.

(d) SVD.

Figure 7: Detected risk-related brain regions by the first twenty eigenfunctions using (a) the 3DIF and alternative methods
including (b) FSVD, (c) FPCA and (d) SVD.
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(a) Parietal Cortex.

(b) VLPFC.

(c) lOFC.

(d) Parietal Cortex.

(e) aINS.

(f) DLPFC

Figure 8: 3DIF: Selected identified risk related regions ξ̂ℓ , ℓ = 3, 4, 5, 12, 18, 19. (a) Estimated function ξ̂12 in Parietal Cortex;
(b) ξ̂4 in VLPFC; (c) ξ̂5 in lOFC; (d) ξ̂3 in Parietal Cortex; (e) ξ̂18 in aINS; (f) ξ̂19 in DLPFC.
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(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 9: FSVD: Selected identified risk related regions. (a) Estimated function ξ̂10 in Parietal Cortex;
(b) ξ̂5 in VLPFC and lOFC.

(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 10: FPCA: Selected identified risk related regions. (a) Estimated function ξ̂2 in Parietal Cortex;
(b) ξ̂3 in VLPFC and lOFC.
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(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 11: SVD: Selected identified risk related regions by SVD. (a) Estimated function ξ̂10 in Parietal Cortex;
(b) ξ̂5 in VLPFC and lOFC.

5.4 Subject specific signature scores Z(j)ℓ,t

The dynamic behaviors of the individual brain activities are represented by the subject specific signature
Z(j)ℓ,t with j = 1, . . . , 17, ℓ = 1, . . . , 20, and t = 1, . . . , 1360. Given the risk related regions common for all
subjects, the individual risk perception and attitude during decision making under risk are reflected by the
series of the activation. An interesting question is whether the extracted subject specific signature scores
properly reflect the risk preference of individual. Among others, for the active brain regions that have been
found to be related to risk and uncertainty, the respective signature scores are expected to carry explanatory
power for the heterogeneity of individual risk preferences. Understanding those variations requires a careful
investigation and is presented in the following risk classification study.

5.4.1 Risk attitudes

Mohr, Biele, Krugel, Li and Heekeren [33] quantify the risk preference of the seventeen subjects in the same
experiment with the help of psychological risk-return (PRR) model

Vj(x) = μj(x) − βjσj(x),

where Vj(x) is the value of investment x by subject j, μj(x) is the respective expected return, σj(x) is the per-
ceived risk, and βj is a subject specific weight coefficient and reflects the risk attitude of subject j. Given the
displayed streams of returns in the RPID experiment and the subjects’ answers to the two tasks, i.e. subjec-
tive expected return and perceived risk, the risk weight βj is estimated in a logistic regression framework.
In total, seven subjects (j = 2, 5, 6, 8, 10, 11, 17) are categorized as weakly risk averse with the risk weight
βj < 5, and the remaining ten subjects are classified as strongly risk averse, with higher risk attitudes. The
dichotomization and derived risk attitudes βj are presented in Figure 12.

5.4.2 Risk classification

The aim of risk classification analysis is to investigate the possible relation between neural processes under-
lying investment decisions and subjects’ risk preferences. A classification method is proposed to predict
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Figure 12: Risk attitudes and SVM scores of seventeen subjects. Subjects with risk attitude ≤ 5 are marked as red circles,
otherwise as blue squares.

individual’s risk attitude without any information on his or her decision behavior. Instead, the classification
is performed solely on the extracted signature scores. The RPID consists of three types of tasks, we here only
utilize the decision task, where subject chooses between risky investment return or sure fixed 5%return, and
thus his risk attitude contributes to the perceived value of the displayed return streams and plays a key role
in the decision process. The other two tasks, i.e. subjective expected return and perceived risk, have been
employed in the PRR model to provide a benchmark and will be used to verify the classification accuracy.
Moreover, the analysis is performed for each subject based on six signature scores Z(j)ℓ,t, ℓ = 3, 4, 5, 12, 18, 19,
of the active brain regions that have been found to be related to risk and uncertainty.

Each subject was exposed to 27 decision tasks and had tomake a choice within the next 7 seconds in the
RPID experiment. To investigate the brain reactions to the investment decision task of different groups being
strongly/weakly risk averse, three consequent observations after the s-th stimulus at scan ts are considered,
covering the decision making period over 7.5 seconds. The three signature scores are demeaned by the score
at the stimulus timepoint Z jℓ,ts to capture the peak of theHRF.We compute the average to stand for the average
reaction to stimulus s

∆Ẑ(j)ℓ,ts =
1
3

3
∑
τ=1

Ẑ(j)ℓ,,ts+τ − Ẑ
(j)
ℓ,ts

and the standard deviation of the 27 average reactions as empirical characteristics of subject’s risk prefer-
ence. For each subject, six standarddeviations are obtainedandwill beused in the risk classification analysis.
For the alternative FSVD, FPCA and SVD methods, similar procedures are applied to extract the variables for
risk classification.

Classification analysis is performed via support vectormachines (SVM), see [7, 17]. Subjects are classified
based on their six standard deviations of the average reactions to decision task. For the learning part, the
strongly risk averse subjects are denotedwith1 and theweakly risk averse subjectswith−1. The classification
performance is validated by the estimated risk attitudes, see Section 5.4.1.

We first evaluate the in-sample predictive power of the 3DIFmethod on risk preferences. Figure 12 shows
that the seventeen subjects were perfectly classified, with 100% correction for both strongly and weakly risk
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Overall Strong Weak

k 3DIF SVD FSVD FPCA 3DIF SVD FSVD FPCA 3DIF SVD FSVD FPCA

1 88% 76% 76% 76% 100% 100% 100% 90% 71% 43% 43% 57%
2 82% 76% 76% 76% 100% 100% 100% 89% 55% 43% 43% 56%
3 79% 75% 75% 73% 98% 99% 99% 87% 53% 42% 42% 54%
4 77% 74% 73% 72% 95% 98% 95% 85% 51% 39% 41% 52%
5 74% 71% 70% 69% 92% 95% 91% 83% 50% 37% 39% 49%
6 73% 67% 66% 66% 90% 90% 86% 81% 49% 35% 37% 46%

Table 6: SVM classification rate in percentage points by leave-k-out for the 3DIF, SVD, FSVD and FPCA methods. The overall
refers to the classification rates of all subjects, while strong and weak refer to the classification rates of strongly risk averse
subjects and weakly risk averse subjects respectively.

averse groups. The in-sample classification however by utilizing all the information of subjects may involve
over-fitting problem.We thus employ the leave-k-out cross validation and continue out-of-sample prediction.
Samples are iteratively partitioned to two subsets, i.e. training with N − k subjects and validation with k sub-
jects. The prediction for validation is repeatedly performed based on different training sets. The accuracy
measurements are averaged among all the predictions. The algorithm can be formulated as follows:
(1) Divide subjects into training set with N − k people and test set with size of k.
(2) Apply the leave-k-out cross validation and find the optimal SVM parameters.
(3) Classify the test data.
(4) Repeat (1)–(3) for all different test sets.

Table 6 reports the classification rate (in percentage) by leave-k-out cross validation for k = 1, . . . , 6.
The classification rate is relatively stable, though it reduces slowly as k increases. The 3DIF method provides
consistently better “overall classification” rate than the alternatives, with 73%–88% correction using the
optimal SVMparameters. The classification accuracy is remarkably improved for the strongly risk averse sub-
jects. The 3DIF and SVDmethods are superior in terms of classification accuracy at 90%–100%, while 3DIF
and FPCA perform better for weakly risk averse individuals at 49%–71%. As a comparison, van Bömmel,
Song, Majer, Mohr, Heekeren and Härdle [47] have implemented leave-one-out procedure, i.e. k = 1, and
reached 97% for strongly risk-averse individuals and 75% for weakly risk-averse individual. In summary,
the analysis implies that the signature scores of the selected risk related regions carry explanatory power for
subjects’ risk attitudesderived from their choice in theRPIDexperiment. The riskpreferences canbe classified
by the volatility (standard deviation) of the signature signals with an considerable accuracy. The proposed
3DIF method has consistent reasonable classification power compared to the alternatives.

6 Conclusion

Understanding how people make decisions among risky choices has attracted much attention of researchers
in economics, psychology, and neuroscience.While economists evaluate individual’s risk preference through
mathematical modeling, neuroscientists answer the question by exploring the neural activities in brain. The
existing literature has documented the brain regions of PCC, lOFC, mOFC, VLPFC, VMPFC and aNIS to be
associated with decision making process under risk. Our study implements a model-free method to further
investigate the links between active risk related brain region detection and individual’s risk preference.

The proposed 3D Image FPCA (3DIF) methodology is directly applicable to the 3D image data. It avoids
spatial information distortion during artificial vectorization or mapping and simultaneously analyzes brain
data in the continuous functional domain. Thus, the anatomical brain structure is preserved and efficiently
embraced in the estimation procedure. Moreover, it guarantees the contiguity of brain regions rather than
discrete voxels. The 3DIF decomposes the fMRI BOLD signals into spatial factors, representing the common
spatial maps for all subjects, and the heterogeneity of individual risk preference is explained by subject spe-
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cific signature scores. The spatial factors capture the brain regions with the highest variability throughout
experiment and consequently represent the activation pattern with a reduced number of factors. The rep-
resentation precision is controlled by the number of factors L and even subtle effects can be detected. The
signature scores mimic activation patterns on subject’s risk attitude and correspond to the neural activity of
a particular region of interest. As a result, the 3DIF addresses the key limitations of the GLM and the other
conventional model-free methods such as PDSFM, FSVD, FPCA and SVD.

The performance is evidenced by our extensive simulation study, where in different setups, region detec-
tions and modeling performance were reasonably achieved. Furthermore, our technique outperforms the
alternative competitor as the preservation of the spatial brain structure really pays off. In real data analysis,
3DIF detected five risk related regions, which is consistent to the study in [33]. The alternative methods on
the other hand only identified limited risk related regions.

Investment decision may be described as a process of evaluating and contrasting of various choices with
uncertain outcomes. In this framework the risk preferences are the crucial factor which affects the subjec-
tive value of investment. To improve our understanding of the underlying neural activities, we provided the
statistical analysis of the extracted signature scores selected in the decision making context. The focus is
on the variability in the HRF after the decision stimulus, captured by the score series. The standard devia-
tions derived from the subject-specific responses served as an input in the SVM classifier. We perform both
in-sample and out-of-sample risk classifications. In addition to perfect correction for in-sample, the 3DIF
provides nice and stable performance for out-of-sample with leave-k-out cross validation, with the best over-
all classification rate at 73%–88%, the 90%–100% for strongly risk averse and 49%–71% for weakly
risk averse. One can conclude that the 3DIF method exhibits better explanatory power for subjects’ risk
preferences than the alternatives.

Funding: This research was supported by the FRC grant and IDS grant at the National University of Sin-
gapore. The authors also acknowledge the support of the Deutsche Forschungsgemeinschaft through the
SFB 649 “Economic Risk” and the International Research Training Group (IRTG) 1792 “High-Dimensional
Non-Stationary Time Series”.
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. Introduction 

Merton’s ( 1973 ) intertemporal capital asset pricing model

ICAPM) postulates a positive risk-return tradeoff relation in ag-

regate equity markets. Empirical results, however, are incon-

lusive, being unable to reach strong support for this hypoth-

sis. While a positive tradeoff phenomenon has been empiri-

ally documented by, for example, French et al. (1987), Scruggs

1998), Whitelaw (20 0 0), Ghysels et al. (2005), Bali and Peng

2006) , and Lundblad (2007) , others, including Nelson (1991) and

losten et al. (1993) , find a weak or even a negative relation. Most

mportantly, the higher moment-return relation has been studied

y Harvey and Siddique (20 0 0), Jarrow and Zhao (20 06), Harvey

t al. (2010) , and Lambert and Hübner (2013) . 

We re-examine the risk-return tradeoff relation in an interna-

ional context but deviate from the conventional framework in two
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ays. Firstly, we use Value-at-Risk (VaR) as the risk measure. If in-

estors exhibit loss aversion toward this type of downside risk, it

hould be reflected in higher moments of the return distribution

s well. Indeed, in a Gaussian context, VaR would be tightly linked

o variance, but the problem is that the interpretation of the risk

version coefficient, later called lambda, then changes. In a non-

aussian world, it is useful that VaR is linked to all higher mo-

ents, including skewness and kurtosis. If they matter, they would

atter ‘separately’ in the expected return equation. The VaR mea-

ure compresses all of these into one number and is therefore an

dvantageous risk measure. 

Secondly, following Harrison and Zhang (1999), Bandi and Per-

on (2008) , and Ferson et al. (2013) , we focus on long-run risk-

eturn relations. In particular, given the persistence of VaR mea-

ures and their cointegration properties in an integrated global

arket, we find that the downside risk series for all G7 markets

xhibit a long memory phenomenon. In addition, the cointegrated

long-run) downside risk underlines the significance of downside

isk aversion. For countries with a higher return correlation and

 higher world cointegrated downside risk, the investors’ aversion

s mainly based on the global risk. From this perspective, a local

arket is likely to be exposed to a higher global risk due to the co-

https://doi.org/10.1016/j.jbankfin.2018.05.012
http://www.ScienceDirect.com
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movement of downside risk in the long run. The predictive power

of cointegrated relations between global and local downside risk

on future return is confirmed in comparison with the pure short-

run system. 

A few explanations on VaR as risk measure seem to be ap-

propriate. In a Gaussian context, VaR is simply a multiplier of

volatility; the corresponding lambda turns out to be the product of

lambda w.r.t variance risk and a fixed multiplier. In a non-Gaussian

world, VaR can be expressed by higher-order moments (Cornish–

Fisher expansion). Thus, each of them governs the tradeoff equa-

tion separately. The calculation of moments is tedious, however,

and therefore the link between these and VaR provides a useful

parsimonious representation of a risk measure. Although higher

moments-based risk measures are consistent with the risk aver-

sion of investors’ behavior ( Harvey and Siddique, 20 0 0 Eq. (7)),

they are more outlier sensitive when compared to VaR ( Cont et al.,

2010 ). Our approach of using VaR allows another look at nonstan-

dard risk preferences in addition to earlier studies on an asymmet-

ric attitude toward gains versus losses ( Gul, 1991; Ang et al., 2005;

Routledge and Zin, 2010 ). 

Another important finding of our research is that in countries

with a higher return correlation and a higher world cointegrated

downside risk, the investors’ aversion is mainly based on the global

risk. The methodology behind this result is the FCVAR (fraction-

ally cointegrated vector autoregression) model. Here, the fractional

component is a necessity due to the presence of a long memory

property in the VaR series. The employed quantitative FCVAR tech-

nique disentangles the long-run tradeoff effect from the short-run

one. In a nutshell, the FCVAR model, in combination with the eco-

nomic framework in Section 2 , specifies the long-run and short-

run downside risk aversion in a comprehensive way, theoretically

and empirically. 

As a result, a cointegration between any G7 country and the

world market portfolio is confirmed. Such a cointegrated (long-

run) downside risk underlines the significant and positive sign w.r.t

downside risk aversion. In contrast, the short-run risk aversion is

less satisfactory. Our results confirm the importance of the long-

run effect in the downside risk-return relation. However, the lever-

age effect in the dynamic system has vanished. 

The concerns about employing moments motivate us to inno-

vate a calculation for extreme tail (e.g., 1%) VaR. We propose a

nonparametric kernel density estimation procedure that smooths

the empirical distribution of return given a small sample size. It

yields the desired VaR level as an average of neighboring order

statistics. Confidence intervals of these may be obtained by boot-

strap. In this way, one can mitigate outlier distortion that may hap-

pen in moment-based investigation or in the approximation of VaR

via Cornish–Fisher expansion. We believe this approach to be a

novel but computer-intensive way to calculate the VaR risk mea-

sure, even in moderate data sample situations. 

The remainder of this paper is organized as follows.

Section 2 presents a theoretical framework for the downside

risk-return relation in an integrated system, illustrating investors’

risk aversion to the local downside risk and world downside

risk. Section 3 describes the data, estimates the VaR as a mea-

sure of downside risk, and tests for the long memory process.

Section 4 introduces the fractional integrated dynamic system

used to empirically analyze the risk-return relation and reports

the empirical evidence. Section 5 interrogates the robustness of

the model, and Section 6 summarizes our conclusions. 

2. Economic framework 

2.1. Downside risk in a segmented market 

An analysis of international equity markets shows that expected

local returns can be seen either as a function of the conditional
ariance of the country returns or as a function of conditional

ovariance with a world market portfolio subject to the degree

f market integration (see Bekaert and Harvey, 1995; Karolyi and

tulz, 1996 ). If the market is segmented, the expected return will

imply depend upon the local risk. Expressing excess stock return

or country i as a linear function of its conditional variance upon

he information set at time t −1 , I t−1 yields: 

 t−1 ( r i,t ) = λi,t−1 σ
2 
i,t−1 (1)

here E t−1 ( r it ) is the expected excess return, σ 2 
i,t−1 

its variance, all

onditional on the information set I t−1 . Note that lambda λi,t−1 =
 t−1 ( r it ) /σ

2 
i,t−1 

is a measure of the relative risk aversion of in-

estors in country i, reflecting the ratio of risk premium to the

onditional variance ( French et al., 1987; Whitelaw, 1994; Scruggs,

998 ). This measure is limited in its ability to reflect asymmet-

ic risk aversion, however ( Glosten et al., 1993 ); furthermore, it

annot effectively capture the investor’s aversion to higher mo-

ents. If one takes a further step from variance to higher mo-

ents, one may look at asymmetric elements of risk. From a statis-

ical perspective, a single outlier in the left tail can cause skewness

o become negative, whereas an outlier in the right tail can un-

uly increase the skewness coefficient. This motivated Cont et al.

2010) to propose nonparametric VaR as a robust risk measure.

ote that VaR not only provides information about the attributes

f investor risk aversion but also mitigates any concern about out-

iers. 

To provide more insight into this higher moment-VaR relation

e employ the Cornish-Fisher expansion ( Cornish and Fisher, 1937 )

o link the α-quantile, q α , of the probability distribution of stan-

ardized return to its corresponding skewness, S , and excess kur-

osis, k , as: 

 α = z α + 

(
z 2 α − 1 

) S 

6 

+ 

(
z 3 α − 3 z α

) k 

24 

−
(
2 z 3 α − 5 z α

) S 2 

36 

(2)

here z α is the α-quantile value of a standard normal distribu-

ion. V α , the α-percentile of VaR, is simply the product of q α and

ts standard deviation, σ—that is, V α = q ασ . By simple algebra,

q. (2) with V α = q ασ can be written as: 

 α = 

∑ 6 

j=2 
w j 

R 

j 

σ j−1 

here R is the demeaned return and w j is the weight that corre-

ponds to the j th standardized moment, subject to the choice of α-

evel. Hence, this VaR expansion is a weighted sum of standardized

oments and a parsimonious representation since it compresses

ll of them into one number. 

Given I t−1 and equity i , the above statistics can be estimated by

he daily returns within the month t −1: 

 i,t−1 = q i,t−1 σi,t−1 (3)

here V i,t−1 is the conditional VaR at month t −1 and q i,t−1 is the

onditional quantile at month t −1. 1 Therefore, σ 2 
i,t−1 

= V 2 
i,t−1 

/q 2 
i,t−1 

.

ubstituting Eq. (3) into Eq. (1) yields Eq. (4) : 

 t−1 ( r it ) = λ∗
i,t−1 V 

2 
i,t−1 (4)

here 

∗
i,t−1 = λi,t−1 

1 

q 2 
i,t−1 

= 

E t−1 ( r it ) 

σ 2 
i,t−1 

× 1 

q 2 
i,t−1 

= 

E t−1 ( r it ) 

V 

2 
i,t−1 

∗
i,t−1 

is the measure of relative downside risk aversion in coun-

ry i . Eq. (4) posits a positive relationship between expected re-

urn and downside risk if λ∗
i,t−1 

> 0 . Invoking expected utility the-

ry ( Bali et al., 2009 ) concludes that agents are averse to variance
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isk—i.e., λi,t−1 > 0. Hence, λ∗
i,t−1 

, as the product of λi,t−1 and 

1 

q 2 
i,t−1 

,

hould be positive as well. 

By differentiating Eq. (2) with respect to skewness conditional

n S < 0, and given small enough α —e.g., α = 1% —we obtain 

∂ q i 
∂ S i 

>

 and 

∂ V i 
∂ S i 

> 0 ; analogous calculation applied to k i yields 
∂ q i 
∂ k i 

> 0

nd 

∂ V i 
∂ k i 

> 0 . These derivations imply that VaR increases with a

egative skewness and with a positive excess kurtosis at interest-

ng tail levels. Given σ it , and using a chain rule, yields 
∂ r i 
∂ k i 

= 

∂ r i 
∂V 2 

i 

×
∂V 2 

i 
∂ k i 

> 0 , where 
∂ r i 
∂V 2 

i 

> 0 corresponds to a positive local relative risk

version to the downside risk, say λ∗
i 
. Note that 

∂q 2 
i 

∂ k i 
= 0.11 at, for

xample, α = 1% derived from Eq. (2) , and the second moment σ i 

oes not demonstrate a relationship with respect to the fourth mo-

ent, we obtain a positive value—that is, 
∂V 2 

i 
∂ k i 

= 

σ 2 
i 
∂q 2 

i 
∂ k i 

= 0 . 11 × σ 2 
i 

from this differentiation. In summary, the VaR is monotonically

ncreases with kurtosis and negative skewness. 

By the same token, a value-weighted expected world portfo-

io return, E t−1 ( r wt ) , in relation to its downside risk-return can be

ritten as: 

 t−1 ( r w,t ) = λ∗
w,t−1 V 

2 
w,t−1 (5) 

here V 2 w,t−1 is the conditional downside risk of the world portfo-

io and λ∗
w,t−1 

= 

E t−1 ( r w,t ) 

V 2 
w,t−1 

is the measure of relative risk aversion of

he world downside risk. 

.2. Downside risk in an integrated market 

In integrated global markets and in the absence of exchange

isk, 2 the expected stock return in Eq. (1) can be written as a func-

ion of covariance risk between country i and the world portfolio

, and expressed by: 

 t−1 ( r it ) = βi,t−1 E t−1 ( r wt ) = co v iw,t−1 

E t−1 ( r wt ) 

σ 2 
w.t−1 

= λw,t−1 co v iw,t−1 (6) 

here βi,t−1 = 

co v iw,t−1 

σ 2 
w.t−1 

is the conditional beta at time t -1, co v iw,t−1 

s the conditional covariance between the return of country i and

hat of the world portfolio, and λw,t−1 = 

E t−1 ( r wt ) 

σ 2 
w.t−1 

is the condition-

lly expected world price of covariance risk. Transforming co v iw,t−1 

nto the conditional correlation ρiw,t−1 , we write: 

 t−1 ( r it ) = ρiw,t−1 

σi,t−1 

σw,t−1 

E t−1 ( r wt ) (7) 

Following the rationale of Eq. (3) , the conditional VaR of the

orld portfolio, V w,t−1 , is the product of the conditional quantile

alue of the world portfolio return distribution and its conditional

tandard deviation—that is, V w,t−1 = q w,t−1 σw,t−1 . Using this rela-

ionship, Eq. (7) reads as: 

 t−1 ( r it ) = ρiw,t−1 

q w,t−1 

q i,t−1 

V i,t−1 

V w,t−1 

E t−1 ( r wt ) (8) 

Given this formula, one may now ask in addition whether a

ointegration relationship may exist between downside risks. Re-

all that if two time series form a comovement in the long-run

erspective, they are linearly dependent. Hence for the downside

isk case we have: 

 i,t−1 ≈ b i V w,t−1 (9) 
2 Like Bali and Cakici (2010) , we use the US dollar denominated series in order 

o eliminate the effect of exchange rate risk on expected returns in our empirical 

nalyses. 

r

w  

w  

t  
here b i is the cointegrating coefficient. Eq. (9) states that the se-

ies of V i,t−1 − b i V w,t−1 is stationary around mean zero. Substituting

his expression into Eq. (8) yields: 

 t−1 ( r it ) = ρiw,t−1 θiw,t−1 b i E t−1 ( r wt ) (10) 

here θiw,t−1 = 

q w,t−1 
q i,t−1 

is the conditional quantile ratio between the

orld portfolio and country i . With the econometric methods be-

ow, we will be able to check such cointegration properties and

ven look out for long memory features. 

Eq. (10) links E t−1 ( r wt ) as a relevant factor to the expected re-

urn E t−1 ( r it ) if: (i) b i � = 0, where the downside risk of country i

s cointegrated with that of the world portfolio (see Eq. (9) ); (ii)

iw,t−1 � = 0 , describing a nontrivial correlation between E t−1 ( r it ) and

 t−1 ( r wt ) ; and (iii) the ratio θiw,t−1 � = 0 measures the magnitude of

igher moment risk of i relative to the world market. This ratio is

reater than one if the world market portfolio has fatter tails than

ountry i . In a nutshell, Eq. (10) displays a variety of sources used

o link E t−1 ( r wt ) to E t−1 ( r it ) : the correlation ρ iw 

, the quantile ratio

iw 

, and the long-run cointegrating parameter b i . 

A perfect market integration describes the situation in which

 -specific securities will be priced by the same stochastic factor.

ince E t−1 ( r wt ) is contingent on V 2 
w,t−1 

, the conditionally local ex-

ected returns are consequently correlated with the world down-

ide risk, as can be drawn from the combination of Eqs. (5) and

10) : 

 t−1 ( r it ) = λiw,t−1 V 

2 
w,t−1 (11) 

here 

iw,t−1 = ( ρiw,t−1 θiw,t−1 b i ) λ
∗
w,t−1 , (12) 

iw,t−1 , being a measure of risk aversion towards the cointegrated

ownside risk between i and w , is the world price of downside

isk in country i. Eq. (12) links λiw,t−1 neatly with λ∗
w,t−1 

. Indeed,

f ρiw,t−1 and b i are different from zero and if the world downside

isk aversion, λ∗
w,t−1 , rises, the λiw,t−1 of country i will increase ac-

ordingly. 

The positive value of the estimated λiw,t−1 in Eq. (11) is con-

istent with the market integration hypothesis and confirms that

he world downside risk , V 2 w,t−1 , will be priced. The underlying

tructure in λiw,t−1 suggests that the risk aversions are different

rom country to country, depending on the correlation of individ-

al countries’ stock return with that of the world, the quantile ra-

io, and the cointegrating coefficient. 

.3. Empirical framework and long-run vis-à-vis short-run downside 

isk aversion 

Eq. (11) relates the world downside risk and country i ’s excess

tock return; however, an empirical investigation based on it is

onfronted with two challenges. Firstly, the full conditional setting

s infeasible to examine empirically. We therefore consider, as in

ng et al. (2006) and Bali and Cakici (2010) , the empirical version

f Eq. (11) : 

 i,t+1 = μi + λiw 

V 

2 
w,t + ε i,t+1 (13) 

Secondly, estimation of Eq. (11) using ordinary least square re-

ression is biased by the fact that the downside risk exhibits a long

emory feature (see Caporin, 2008; Kinateder and Wagner, 2014 ).

n econometric terms, this is denoted as an unbalanced regression

ith persistent I ( d ) variables (see Maynard et al., 2013 ), and we

herefore modify Eq. (13) to: 

 i,t+1 = μi + λiw 


d V 

2 
w,t + ε i,t+1 (14) 

here 
d V 2 w,t is the fractionally filtered world downside risk series

ith an order of integration d . This filter operation, 
d , removes

he long-memory component and converts V 2 w,t from an I(d ) series



24 C.Y.-H. Chen et al. / Journal of Banking and Finance 93 (2018) 21–32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

w  

s

 

f  

e  

s  

b  

f  

b  

m  

s  

v

 

r  

p  

(  

b  

d  

a  

g  

i  

m  

l

3

 

s  

c  

e  

fl  

n  

i  

r  

w  

d  

h

 

t  

t  

G  

T  

0  

i

T  

c  

m  

b  

s

4 0.582 is an adjustment factor between the bandwidth of a Gaussian kernel and 

a double exponential kernel (see Härdle et al., 2004 , p.57). The paper’s subsequent 

empirical results for VaR estimates show that the choice of the kernel function is 

not so relevant for the efficiency of the estimates, which is consistent with the dis- 

cussion in Härdle et al. (2004 , p.57). 
5 Boudoukh et al. (2008), Bali et al. (2009) , and Lettau and Ludvig- 

son (2010) found that long-horizon returns become more predictable as the horizon 

extends. These findings imply that long-horizon returns could, in principle, lead to 

higher predictability than short-horizon returns. Boudoukh et al. (2008) argue that 

this evidence is not attributable to small sample bias but rather to the use of over- 

lapping return data. 
6 
to an I (0) process. If in the case of no long memory—that is, d = 0 —

then Eq. (14) boils down to Eq. (13) . 

Eq. (11) displays the risk premium as a function of the world

downside risk series. It does not reflect a possible long-run versus

short-run risk premium, however. The quantitative approach taken

here offers the opportunity to document these effects. To be more

specific, we employ the FCVAR model for the joint dynamics of

downside risk that are most likely to be cointegrated ( Johansen,

2008; Johansen and Nielsen, 2012; Bollerslev et al., 2013 ): (

d V 

2 
i,t 


d V 

2 
w,t 

)
= 

(
μ1 

μ2 

)
+ 

(
α1 

α2 

)(
− ˜ βi 1 

)( L d V 

2 
i,t 

L d V 

2 
w,t 

)

+ 

(
�11 �12 

�21 �22 

)(
L d 


d V 

2 
i,t 

L d 

d V 

2 
w,t 

)
+ 

(
ε i,t 
ε w,t 

)
(15)

where L d = ( 1 − 
d ) is the fractional lag operator, ˜ βi is the coin-

tegrating coefficient, while α1 and α2 are the adjustment parame-

ters that determine the speed of adjustment to the equilibrium. �

matrix represents the short-run dynamics. Expanding Eq. (15) , the

world downside risk dynamics is then expressed as: 


d V 

2 
w,t = μ2 + α2 

(
L d V 

2 
w,t − ˜ βi L d V 

2 
i,t 

)
+ 

(
�22 L d 


d V 

2 
w,t + �21 L d 


d V 

2 
i,t 

)
+ ε w,t (16)

The second term on the right-hand side of the above equa-

tion captures the long-run behavior of 
d V 2 w,t , while the third

component represents the short-run dynamics. Finally, recalling

Eq. (14) yields the time series regression as: 

r i,t+1 = μi + λiw,� 

(
L d V 

2 
w,t − ˜ βi L d V 

2 
i,t 

)
+ λiw,s L d 


d V 

2 
w,t + γi L d 


d V 

2 
i,t + ε i,t+1 (17)

This representation enables us to test the downside risk aver-

sion in an integrated market, separating the long-run risk aver-

sion, λiw , � , from the short-run risk aversion, λiw, s γ i stands for

the short-run country-specific downside risk aversion. 

3. Downside risk estimation and long-memory property 

3.1. Data description and estimating downside risk 

We collected daily and monthly US dollar-denominated returns

on stock market indices for G7 countries and the MSCI world in-

dex from Datastream. The stock indices are the total return indices

adjusted for dividends. The data cover the MSCI world stock index

and seven major stock indices for advanced markets: Canada (CA),

France (FR), Germany (GM), the United Kingdom (UK), the United

States (US), Italy (IT), and Japan (JP) for the sample period from

January 1973 through November 2016. As the risk-free rate, the lo-

cal three-month T-bill is selected for the US, the UK, and Canada;

for the Eurozone countries, the three-month interbank rate is used;

and for Japan, we use the three-month gensaki repo rate. 3 

Following the rationale of Dowd (2001) and Cont et al. (2010) ,

we estimate the monthly VaR by using a non-overlapping period

of one-month length (usually n = 22 trading days). However, the

99% VaR is an extreme quantile ( α = 1% ) situated in the tail re-

gion of the empirical distribution. For this reason, the quantile at

the α = 1% level cannot be calculated precisely based on 22 ob-

servations. Accordingly, a nonparametric kernel density estimation

(KDE) is employed to smooth the empirical distribution F t , which

yields, in fact, a VaR estimator as a weighted average of the order

statistics around the ( nα + 1 ) th order statistics. For each month
3 Please refer to the web page of Thomson Reuters Datastream. http://extranet. 

datastream.com/data/Exchange%20&%20Interest%20Rates/RiskFreeInterestRates.htm . 

t

 , we estimate an integrated KDE, ̂ F t,h , with a corresponding band-

idth h , and then perform bootstrap calculations to obtain the de-

ired quantile/VaR estimator for each month (see Appendix A ). 

It should be pointed out that different kernels will create dif-

erent KDE tail behaviors and therefore result in (slightly) differ-

nt VaR estimates. To incorporate more realistic tails, we also con-

ider a double exponential (Laplace) kernel. A modification of the

andwidth can be achieved by using the canonical kernel trans-

ormation, resulting in an adjusted bandwidth after multiplying it

y an adjustment factor. 4 This procedure enables us to obtain 526

onthly and non-overlapping estimates at α = 1% , and avoids pos-

ible statistical problems due to overlapping data ( Lettau and Lud-

igson, 2010 , p. 638). 5 

Table 1 summarizes the statistics of stock returns and downside

isk for the G7 and the MSCI world index representing the world

ortfolio. The monthly excess returns are in the range of 0.30%

Italy) to 0.57% (France), and the VaRs from the Gaussian kernel lie

etween 3.56% (Italy) and 1.82% (World). Likewise, the VaRs from a

ouble exponential kernel and expected shortfall show their vari-

tions across the G7 countries. The data suggest that the VaRs, re-

ardless of the types of kernel, present an AR(1) process. As shown

n Fig. 1 , the downside risks in the G7 countries and the world

arket co-move closely, implying that they may have a potential

ong-run relationship and share a common stochastic trend. 

.2. Long-memory examination for VaR 

Most studies of the downside risk-return relation do not pay

ufficient attention to the importance of the long-memory pro-

ess of downside risk series, even though a long-memory prop-

rty of downside risk is considered to be more appropriate to re-

ect the persistent fear. Caporin (2008) and Kinateder and Wag-

er (2014) are among the exceptions, but they keep silent about

ncorporating the long-memory feature into testing the VaR-return

elation. It has been observed that the fear of big financial losses

ill take a longer period of time for investors to regain their confi-

ence. Therefore, their risk aversion behavior is more likely to ex-

ibit long-term risk aversion ( Chen and Chiang, 2016 ). 

To quantify the degree of long memory, we estimate the frac-

ional integration parameter d using both the log-periodogram es-

imator developed by Geweke and Porter-Hudak (1983 , hereafter

PH), and the local Whittle likelihood procedure of Künsch (1986) .

able 2 reports the estimated values of GPH d, which range from

.347 (Japan) to 0.429 (France), indicating that the downside risk

n advanced countries entails a stationary long-memory property. 6 

he same conclusion can be found in the estimates of the lo-

al Whittle likelihood procedure. We also check the spurious long

emory caused by occasional structural breaks. The test proposal

y Qu (2011) rejects the spurious long memory in all of the VaR

eries. 7 
A suitable value of d usually lies in | d | < 0.5. A fractional (non-integer) number 

with values less than 0 would indicate a weak or memory-less process; if d lies in 

he interval of (0, 0.5), the series is characterized by a stationary process with long 

memory; if d lies in (0.5, ∞ ), the series is a long-memory non-stationary process. 
7 The results will be provided upon request. 

http://extranet.datastream.com/data/Exchange%20&%20
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Table 1 

Descriptive statistics of stock returns, Value-at-Risk (VaR), and ES (Expected Shortfall). 

Country Series Mean (%) Std (%) Skewness Kurtosis AR(1) ADF test 

UK Return 0.45 6.07 0.74 11.63 0.10 −15.93 ∗

VaR(GaussianKDE) 2.90 1.66 3.14 20.15 0.48 −10.14 ∗

VaR(exponentialKDE) 2.70 1.57 3.20 21.06 0.47 −10.29 ∗

ES(GaussianKDE) 3.21 1.80 3.03 19.12 0.49 −9.99 ∗

US Return 0.45 4.29 −0.40 5.78 0.01 −16.44 ∗

VaR(GaussianKDE) 2.36 1.61 4.83 45.43 0.45 −9.75 ∗

VaR(exponentialKDE) 2.21 1.55 5.17 51.79 0.43 −10.04 ∗

ES(GaussianKDE) 2.61 1.75 4.71 43.52 0.47 −9.70 ∗

GM Return 0.38 5.73 −0.29 4.14 0.02 −16.39 ∗

VaR(GaussianKDE) 2.83 1.56 2.29 10.95 0.42 −10.18 ∗

VaR(exponentialKDE) 2.66 1.50 2.40 11.89 0.40 −10.35 ∗

ES(GaussianKDE) 3.14 1.70 2.22 10.27 0.44 −10.01 ∗

FR Return 0.57 6.49 −0.49 4.88 0.05 −16.50 ∗

VaR(GaussianKDE) 3.06 1.63 2.37 12.24 0.46 −11.11 ∗

VaR(exponentialKDE) 2.85 1.54 2.35 11.76 0.44 −11.23 ∗

ES(GaussianKDE) 3.39 1.78 2.33 12.07 0.47 −10.96 ∗

IT Return 0.30 7.28 −0.11 3.64 0.05 −16.50 ∗

VaR(GaussianKDE) 3.56 1.94 2.04 9.38 0.40 −11.21 ∗

VaR(exponentialKDE) 3.33 1.83 2.06 9.59 0.42 −11.06 ∗

ES(GaussianKDE) 3.95 2.11 2.07 9.55 0.39 −11.37 ∗

CA Return 0.39 5.27 −0.57 5.27 0.02 −15.58 ∗

VaR(GaussianKDE) 2.36 1.62 3.37 22.21 0.54 −9.52 ∗

VaR(exponentialKDE) 2.22 1.54 3.38 21.98 0.52 −9.68 ∗

ES(GaussianKDE) 2.62 1.77 3.40 22.83 0.56 −9.30 ∗

JP Return 0.36 5.81 0.28 4.04 0.06 −15.92 ∗

VaR(GaussianKDE) 2.94 1.66 2.82 19.43 0.37 −10.98 ∗

VaR(exponentialKDE) 2.75 1.58 2.98 21.58 0.36 −11.19 ∗

ES(GaussianKDE) 3.26 1.79 2.63 16.99 0.39 −10.79 ∗

World Return 0.43 4.26 −0.37 4.62 0.07 −15.71 ∗

VaR(GaussianKDE) 1.82 1.14 3.19 20.05 0.52 −9.75 ∗

VaR(exponentialKDE) 1.70 1.07 3.21 20.39 0.50 −9.92 ∗

ES(GaussianKDE) 2.02 1.23 3.14 19.53 0.53 −9.65 ∗

The data cover seven major advanced markets: the United States (US), the United Kingdom (UK), Germany 

(GM), France (FR), Italy (IT), Canada (CA), Japan (JP) and an additional MSCI world index (World) for the 

sample period from January 1973 through November 2016. Both excess return and the VaR are calculated 

on a monthly basis with 526 estimated values. Two kernel densities, a Gaussian and a double exponential 

kernel, are applied to generate the VaR estimates. ADF is the augmented Dickey–Fuller test. ∗ indicates that 

the coefficient is significant at the 1% level. 

Table 2 

Semiparametric analysis for risk measures and spurious check. 

GPH estimate of d Local Whittle estimate of d 

UK 0.360 0.330 

US 0.412 0.334 

GM 0.420 0.294 

FR 0.429 0.310 

IT 0.415 0.286 

CA 0.410 0.335 

JP 0.347 0.322 

World 0.374 0.334 

The GPH estimate is the log-periodogram estimator by 

Geweke and Porter-Hudak (1983) , and the local Whittle like- 

lihood procedure is from Künsch (1986) . A suitable value of d 

usually lies in | d | < 0.5. A fractional (non-integer) number with 

values less than 0 would indicate a weak or memory-less pro- 

cess; if d falls within the interval of (0, 0.5), the series is char- 

acterised by a stationary process with a long memory; if d lies 

in (0.5, ∞ ) the series shows a non-stationary long-memory pro- 

cess. 
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. Fractionally integrated dynamic system 

.1. The empirical model 

As discussed in Section 2 , the concern of unbalanced regression

nd the necessity of separating the risk aversion behavior in the

ong run from the short run motivate us to examine the downside

isk-return relation as expressed by Eq. (17) . However, it can be ex-

ressed in a more general FCVAR ( p ) specification that consists of
d 
ariables in a vector of downside risks and returns denoted by z it 
ith integration of order d and lag length p in a dynamic system,

s: 

d z i t = αi (μ
′ + β ′ 

i L d z i t) + 

∑ p 

(s =1) 
�s L 

s 
d 


d z i t + ε i t, t = 1 , . . . , T , 

(18) 

here z it ≡ ( V 2 
i,t 

, V 2 w,t , r i,t , r w,t ) 
′ is a 4 × 1 vector, 
d is the fractional

ifference operator used to remove the long-memory component,

is interpreted as the mean level of the long-run equilibrium,

nd ɛ it is n -dimensional i.i.d. N (0, �ɛ ) where n = 4. This dynamic

CVAR representation will reduce to the classical error-correction-

ype representation if d = 1, and to VAR if d = 0. Note that if z it ≡
( V 2 

i,t 
, V 2 w,t ) 

′ , Eq. (18) will boil down to Eq. (15) . By adding excess

eturns to the vector of z it such that z it ≡ ( V 2 
i,t 

, V 2 w,t , r i,t , r w,t ) 
′ , we

ndertake an investigation of the risk-return relation presented in

q. (17) , although we may particularly focus on the expansion of

 i, t in z it . 

The coefficient matrix �i = αi β
′ 
i 

is an n × n matrix where αi 

nd β i are an n × m matrix with m ≤ n . The columns of β i are the

ointegrating vectors, which represent the long-run equilibrium re-

ations; the coefficients in αi are the adjustment parameters that

etermine the speed of adjustment to the equilibrium. The sec-

nd term on the right-hand side of Eq. (18) , which specifies the

ractional distributed lag matrix �s and powers of L s 
d 

applied to
d z it , directly mirrors the distributed lag matrix in standard error-

orrection models. The parameters in �s govern the short-run dy-

amics of the variables. The selection of lag length p in the frac-

ional distributed lag matrix �s is based on the Bayesian-Schwarz
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Fig. 1. Time variations of G7 downside risk. 

Downside risk is measured by the 99% VaR, which is obtained by using kernel smoothing for the empirical distribution and then bootstrapping from the kernel density 

estimator. The Gaussian kernel density has been applied in this figure. 
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information criterion (BIC), the Ljung-Box Q-test for each residual

series, and the likelihood ratio test for testing the significance of

the �s . 

4.2. The economic interpretation of the model and cointegration rank 

test 

To elucidate the parametric relations of the system, we expand

Eq. (18) by setting the lag length p = 1 as 8 ⎛ 

⎜ ⎝ 


d V 

2 
i,t 


d V 

2 
w,t 


d r i,t 

d r w,t 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

α11 α12 α13 

α21 α22 α23 

α31 α32 α33 

α41 α42 α43 

⎞ 

⎟ ⎠ 

μ′ + 

⎛ 

⎜ ⎝ 

α11 α12 α13 

α21 α22 α23 

α31 α32 α33 

α41 α42 α43 

⎞ 

⎟ ⎠ 

( − ˜ βi 1 0 0 

0 0 1 0 

0 0 0 1 

) 

⎛ 

⎜ ⎝ 

L d V 

2 
i,t 

L d V 

2 
w,t 

L d r i,t 
L d r w,t 

⎞ 

⎟ ⎠ 

+ 

⎛ 

⎜ ⎝ 

�11 �12 �13 �14 

�21 �22 �23 �24 

�31 �32 �33 �34 

�41 �42 �43 �44 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

L d 

d V 

2 
i,t 

L d 

d V 

2 
w,t 

L d 

d r i,t 

L d 

d r w,t 

⎞ 

⎟ ⎠ 

+ 

⎛ 

⎜ ⎝ 

ε i 1 ,t 
ε i 2 ,t 
ε i 3 ,t 
ε i 4 ,t 

⎞
⎟⎠

(19)

This model specification encompasses a variety of financial mar-

ket theories, including testing the restrictions or causal relations

in the long run through elements of αi , 
9 and in the short run

through elements of �s for: (i) risk spillovers or financial conta-

gion: V 2 w,t → V 2 
i,t 

( King and Wadhwani, 1990; Diebold and Yilmaz,

2009 ); (ii) comovement of stock returns: r w, t → r i, t ( Karolyi and
8 It is possible that the fractional difference operator applied to the re- 

turns potentially leads to over-difference. However, according to theorem 8 in 

Johansen (2008) and the illustration in Appendix A1 in Bollerslev et al. (2013) , if 

the conditions for inversion of the FCVAR d ( p ) are satisfied and d < 0.5, the result- 

ing return series remains stationary. 
9 The long run here refers to the analytical long run in Bollerslev et al. (2013) in- 

stead of the one documented by Lundblad (2007) , and the time series statistical 

framework ( Bollerslev et al., 2013 ) instead of the historical long run documented 

by Lundblad (2007) . 

t  

t  

c  

s

l  

w  

a  
tulz, 1996; Forbes and Rigobon, 2002; Caporale et al., 2005; Chi-

ng et al., 2007 ); (iii) risk-return or volatility feedback: V 2 
i,t 

→ r i,t 
 French et al., 1987; Bali and Peng, 2006; Bali et al., 2009 ); and

iv) the leverage effect: r i,t → V 2 
i,t 

( Bekaert and Wu, 20 0 0; Boller-

lev et al., 2006 ). 

Since the existence of a cointegration relationship is a neces-

ary condition in the FCVAR model, one has to examine the num-

er of cointegration ranks. In this study, the rank of �i could be

hree ( m = 3) or four ( n = 4), requiring us to perform the coin-

egration rank test with respect to the following two hypotheses,

 0 : rank ( �i ) = m against H 1 : rank ( �i ) = n . The likelihood ratio

LR) test statistic is given by: 

 R T ( n − m ) = 2 log 

(
L 

(
ˆ d n , n 

)
/L 

(
ˆ d m 

, m 

))
(20)

here L ( ̂  d n , n ) represents the profile likelihood function given

ank n, and other parameters have been concentrated out (see

ohansen and Nielsen, 2012 , p. 2698). The asymptotic distribution

f test statistics in Eq. (20) is highly dependent on the parameter

f d . In the case of 0 < d < 0.5, it has a standard asymptotic distri-

ution to χ2 with degree of freedom ( n − m ) 2 . For d ≥ 0.5, asymp-

otic theory is non-standard and involves fractional Brownian mo-

ion of type II. Table 2 shows that all estimated fractional param-

ters ˆ d are below 0.5. The results in Table 3 show rank ( �i ) = 3 —

hat is, one cointegrating vector. It confirms that the downside risk

or each G7 market is cointegrated with that of the world market. 

.3. Estimations and inferences from the FCVAR model 

The estimation of the FCVAR model can be arrived at by using

he maximum likelihood method. An asymptotic analysis shows

hat the maximum likelihood estimators are asymptotically normal

onditional on the initial values. The log-likelihood function corre-

ponding to Eq. (18) is: 

og L T ( �i ) = − T 

2 

log det 

(
T 

−1 
∑ T 

t=1 
ε it ( �i ) ε it ( �i ) 

′ 
)

(21)

here ε it ( �i ) = 
d z it − αi ( β
′ 
i L d z it + μ′ ) − ∑ p 

s =1 
�s L 

s 
d 

d z it ,

nd � = ( d, α , β , μ′ , �s ) . Under i.i.d. errors with suitable mo-
i i i 
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Table 3 

Cointegration rank tests. 

Rank UK US GM FR IT CA JP 

0 64.163 ∗ 34.513 ∗ 37.641 ∗ 58.599 ∗ 57.248 ∗ 56.009 ∗ 49.380 ∗

1 35.676 ∗ 18.055 ∗ 15.848 ∗ 32.254 ∗ 32.492 ∗ 23.964 ∗ 14.861 ∗

2 4.093 ∗ 12.157 ∗ 8.908 ∗ 21.795 ∗ 15.468 ∗ 10.813 ∗ 4.339 ∗

3 1.225 1.682 2.899 3.828 3.044 2.512 2.606 

This table shows the results of the likelihood ratio test statistics shown in Eq. (20) . 
∗ denotes the significance at the 5% level. 
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ent conditions, the conditional maximum likelihood estimates

re asymptotically Gaussian. 10 

As shown in Table 4 , the estimated long-memory parameters
ˆ 
 for the FCVAR dynamic system range from 0.168 (JP) to 0.451

UK). The estimated 

ˆ d values relative to respective standard errors

in parentheses) are significant, suggesting that neither the simple

AR models nor the VECM are adequate to describe the dynamic

ystem between downside risk series and return series. The esti-

ates of ˜ βi vary among G7 countries, revealing different specifi-

ations of cointegration—e.g., 1 . 084 V 2 
it 

≈ V 2 wt for the case of the UK

nd 0 . 750 V 2 
it 

≈ V 2 wt for the case of the US. The cointegration be-

ween the UK and the world market translates into the result that

he series 1 . 084 V 2 
it 

− V 2 wt is stationary around mean zero. From this

nalysis, it can be stated that the long-run downside risk for the

K is roughly 92% of the world downside risk compared with the

gure for the US, which is roughly 30% higher than that of world

arket. 11 

.3.1. The long-run tradeoff

The long-run tradeoff relation is captured by the parameter α31 ,

hich directly maps to λiw , � in Eq. (17) as a long-run downside

isk aversion parameter. As shown in Table 4 , the estimated coeffi-

ients, 23.140 (UK), 0.148 (US), 1.190 (GM), 1.527 (FR), 0.421 (IT),

nd 0.602 (CA), are all positive and statistically significant, con-

rming a long-run downside risk-return tradeoff. The exception is

he Japanese market with a negative sign but statistically insignif-

cant, suggesting that Japanese investors and their markets behave

uite differently from those in other advanced markets. 

To gain more insight, we recall the definition of λiw 

, the mea-

ure of risk aversion toward the cointegrated downside risk be-

ween country i and world market, in Eq. (12) . Table 5 presents

he estimates of various components in connecting λiw 

given λ∗
w 

.

nspecting the estimated figures for Japan, we see that stock return

orrelation ( ρiw 

= 0 . 690 ), the quantile ratio of the world portfolio

o domestic country ( θiw 

= 0 . 618) and its cointegrating coefficient

 b i = 0 . 728) are lower for the Japanese market compared with re-

ults from other markets. As a consequence, using Eq. (12) , the

isk aversion coefficient toward cointegrated downside risk λiw 

=
iw 

θiw 

b i λ
∗
w 

= 0 . 311 λ∗
w 

for Japan is the lowest among the G7 coun-

ries, implying a relatively low risk aversion in connection with the

orld compared with other advanced markets. 

The estimated results α31 yield three economic insights. Firstly,

he estimated α31 sheds some light on λiw,t−1 , especially from

 long-run cointegration perspective, which is linked to λ∗
i,t−1 

in

q. (4) through b i using Eq. (9) . 12 The significance of the long-run
10 In estimating the FCVAR model represented by Eq. (18) , the VaR is defined as 

he downside risk derived from a Gaussian kernel. 
11 By using the sample period from September 1990 to July 2013, the statistical re- 

ults here are comparable with our earlier finding, suggesting the empirical results 

re robust even using a shorter subsample. 
12 λ∗

i 
= 

E t−1 ( r it ) 

V 2 
i,t−1 

and λiw = 

E t−1 ( r it ) 

V 2 
w,t−1 

= 

E t−1 ( r it ) 
˜ βi V 

2 
i,t−1 

= 

1 
˜ βi 

λ∗
i 

= b 2 
i 
λ∗

i 
. Using Eq. (9) , 

 i, t ≈ b i V w, t , we find that the λ∗
i 

links to λiw by the information of b 2 
i 
. Note 

hat b 2 
i 

∼= 

1 / ̃  βi because V it ≈ b i V wt and ˜ βi V 
2 

it 
≈ V 2 wt . In Eq. (12) , we know 

iw = ( ρiw θiw b i ) λ
∗
w . Putting this together, we have λiw = b 2 

i 
λ∗

i 
= ( ρi,t−1 θi,t−1 b i ) λ

∗
w. 

t  

t  

f  

c  

t  

i

t

ownside risk aversion parameter further implies that the down-

ide risk-return relation can be inferred not only in the local mar-

et ( λ∗
i,t−1 

) but also in an integrated market ( λiw,t−1 ) . Secondly, in-

estors are averse to long-run cointegrated downside risk, λiw , � , as

iscussed in the economic framework and empirically reflected in

he estimated α31 . Therefore, one may not obtain satisfying results

rom a direct estimation for λiw 

, which is the mixture of long-run

nd short-run risk aversion. Thirdly, the finding confirms that risk

version is driven by tail risk and, in turn, higher moment risk im-

lied via Cornish-Fisher expansions. Thus, the investor behavior is

ied closely to its aversion to skewness and kurtosis, as in the ex-

ected utility framework. 

The overwhelming significance of the long-run downside risk

version parameter suggests the need to incorporate a long-

emory feature and to separate the long-run from the short-run

ffect in testing the risk-return relation. This approach allows us

o potentially tease out the empirically inconclusive risk-return re-

ation. Due to the long-run nature of cointegrated downside risk,

nvestors’ aversion to the long-lasting risk commands a long-run

isk reward. 

.3.2. The short-run tradeoff and leverage effects 

The lag length in the short-run dynamics is jointly determined

y the Bayesian-Schwarz information criterion (BIC) and the Ljung-

ox Q-statistic, which test for each residual series without entail-

ng serial correlations. We then examine the significance of the

ikelihood ratio test for the significance of the �s . The overall per-

ormance of tests suggests that p = 1 is appropriate. 13 

The short-run tradeoff hypothesis can be examined by check-

ng the estimated coefficient of �31 (and �41 ), which measures the

hort-term impact of increased domestic (world) risk on domestic

xpected return. Likewise, �41 is analogous to λiw, s in Eq. (17) , rep-

esenting the short-run downside risk aversion at the worldwide

evel, while �31 , which is analogous to γ i , represents the short-run

ownside risk aversion at the country level. For instance, when the

S interacts with the world market, the evidence in Table 4 shows

hat �31 = −1.0 6 6 and �41 = −1.363, indicating a negative short-

un risk-return relation that may be attributed to the fear of big

apital losses caused by downside risk and an eventual selloff of

tocks from investors’ portfolios ( Chen and Chiang, 2016 ). This be-

avior consequently deviates from the tradeoff hypothesis. Bear-

ng this risk, however, will be compensated in the long run as the

ownside shock gradually dies out, which is consistent with our

ssertion of a long-run tradeoff hypothesis. Pairings of countries in

he G7 with the world market did not show a significant short-run

radeoff effect indicated by �31 . However, for the �41 , the results

or Germany and Canada show that their short-run downside risk

ontributes to future world returns. Based on these findings, the

radeoff hypothesis in the short run does not perform as promis-

ngly as that in the long run. 
13 When allowing for fractional cointegration in the long-run equilibrium rela- 

ions, fewer lags are required in the autoregressive system ( Dolatabadi et al., 2015 ). 
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Table 4 

The estimates of FCVAR model for G7 and world indices using a Gaussian kernel. 

d − ˜ βi μ′ 
3 × 1 αi (4 × 3) �s =1 , ( 4 × 4 ) BIC 

UK 0.451 −1.084 

⎛ 

⎝ 

−0 . 009 

−0 . 009 

−0 . 004 

⎞ 

⎠ 5.524 −45.641 −16.861 −5.856 55.824 −17.299 −14.467 718 

(0.02) (4.46) (14.53) (6.45) (5.54) (16.23) (6.56) (7.03) 

−3.847 −10.573 −4.307 3.671 16.617 −4.641 −7.645 

(2.52) (5.29) (2.34) (2.84) (6.25) (2.41) (3.28) 

23.140 −8.202 −30.641 −20.331 −2.777 31.041 −17.876 

(10.81) (35.08) (18.04) (18.24) 40.85) (18.57) (18.17) 

14.619 1.455 −4.911 −12.006 −8.191 5.278 4.670 

(12.70) (9.77) (13.02) (14.84) (34.94) (13.43) (4.56) 

US 0.284 −0.750 

⎛ 

⎝ 

−0 . 018 

−0 . 053 

−0 . 097 

⎞ 

⎠ −0.264 −0.541 −0.091 −1.129 3.556 0.095 −0.293 848 

(0.04) (0.19) (0.57) (2.01) (0.32) (1.08) (0.22) (0.23) 

−0.074 −0.389 −0.038 −0.177 1.267 0.048 −0.111 

(0.07) (0.20) (0.07) (0.11) (0.41) (0.08) (0.08) 

0.148 1.421 −0.749 −1.066 −0.685 −0.539 0.230 

(0.05) (1.09) (0.38) (0.64) (1.92) (0.41) (0.42) 

0.751 −0.011 0.034 −1.363 0.845 0.021 −0.035 

(0.39) (1.24) (0.43) (0.70) (2.16) (0.48) (0.47) 

GM 0.247 −0.721 

⎛ 

⎝ 

−0 . 276 

−0 . 102 

−0 . 227 

⎞ 

⎠ −0.443 0.322 0.153 −0.567 2.141 −0.189 0.139 782 

(0.05) (0.34) (0.70) (0.12) (0.41) (1.05) (0.13) (0.11) 

−0.006 −0.353 0.055 −0.225 1.035 −0.058 −0.081 

(0.20) (0.42) (0.07) (0.25) (0.68) (0.08) (0.07) 

1.190 −0.830 −0.893 1.526 −3.380 −0.121 0.034 

(0.46) (2.90) (0.49) (1.89) (3.86) (0.55) (0.46) 

−2.181 5.271 0.241 4.522 −8.872 −0.222 −0.036 

(1.48) (2.97) (0.48) (1.96) (3.86) (0.52) (0.46) 

FR 0.394 −1.704 

⎛ 

⎝ 

−0 . 925 

−1 . 514 

−0 . 183 

⎞ 

⎠ −0.649 −0.366 −0.018 −0.443 2.085 −0.022 −0.037 656 

(0.04) (0.16) (0.17) (0.07) (0.21) (0.44) (0.07) (0.09) 

−0.291 0.121 −0.039 0.204 −0.073 0.036 −0.071 

(0.08) (0.09) (0.36) (0.11) (0.21) (0.04) (0.05) 

1.527 −2.383 −1.072 −0.886 1.445 0.160 −0.304 

(0.70) (0.76) (0.30) (0.94) (1.53) (0.31) (0.38) 

0.412 0.144 −0.054 0.260 −1.721 0.170 −0.210 

(0.52) (0.56) (0.22) (0.70) (1.15) (0.23) (0.28) 

IT 0.398 −1.325 

⎛ 

⎝ 

−0 . 269 

0 . 001 

−0 . 111 

⎞ 

⎠ −0.385 0.154 −0.263 −0.130 0.524 −0.233 0.119 579 

(0.04) (0.09) (0.21) (0.08) (0.17) (0.41) (0.09) (0.10) 

−0.106 −0.256 −0.039 0.133 0.174 0.047 −0.076 

(0.03) (0.07) (0.03) (0.06) (0.18) (0.03) (0.04) 

0.421 −1.289 −1.008 −0.261 1.556 0.090 −0.102 

(0.22) (0.69) (0.25) (0.54) (1.41) (0.27) (0.37) 

0.087 0.931 −0.035 0.422 −2.278 0.233 −0.280 

(0.21) (0.45) (0.16) (0.35) (0.93) (0.18) (0.24) 

CA 0.328 −1.168 

⎛ 

⎝ 

−0 . 367 

−0 . 142 

−0 . 301 

⎞ 

⎠ −0.163 −0.449 0.290 −0.623 3.273 −0.234 0.129 1027 

(0.03) (0.07) (0.04) (0.06) (0.23) (0.51) (0.07) (0.09) 

0.206 −0.768 0.053 −0.387 1.093 −0.067 0.015 

(0.01) (0.07) (0.01) (0.11) (0.26) (0.03) (0.05) 

0.602 1.463 −1.009 0.171 −1.544 −0.351 0.436 

(0.32) (0.46) (0.29) (0.97) (1.78) (0.34) (0.42) 

1.169 4.021 −0.194 1.993 −1.641 0.050 −0.224 

(0.32) (0.28) (0.23) (0.77) (1.41) (0.27) (0.34) 

JP 0.168 −1.885 

⎛ 

⎝ 

−0 . 209 

−0 . 426 

0 . 135 

⎞ 

⎠ 0.930 −3.603 0.110 −2.496 6.775 −0.196 −0.596 711 

(0.05) (0.95) (2.86) (0.35) (1.19) (3.82) (0.38) (0.69) 

0.614 −2.077 −0.045 −1.241 4.141 0.027 −0.329 

(0.45) (1.41) (0.17) (0.63) (2.17) (0.19) (0.34) 

−2.184 5.111 −0.395 2.730 −5.158 −1.006 0.413 

(2.55) (5.79) (1.08) (3.12) (7.43) (1.16) (1.76) 

−2.398 7.872 0.859 3.399 −10.125 −1.180 1.068 

(2.21) (5.66) (0.93) (2.75) (7.05) (1.03) (1.59) 

This table presents the estimates of the FCVAR model expressed as: 
d z it = αi ( μ
′ + β ′ 

i L d z it ) + 

∑ p 
s =1 

�s L 
s 
d 

d z it + ε it , t = 1 , . . . , T , where 

z it ≡ ( V 2 
i,t 

, V 2 w,t , r i,t , r w,t ) ′ . 
The numbers in parentheses are standard errors. 
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Table 5 

The attributes of market integration. 

Attribute UK US GM FR IT CA JP 

ρ iw 0.757 0.858 0.741 0.740 0.716 0.756 0.690 

θ iw 0.628 0.770 0.642 0.595 0.510 0.769 0.618 
˜ βi 1.084 0.750 0.721 1.704 1.325 1.168 1.885 

b i 0.960 1.155 1.178 0.766 0.869 0.925 0.728 

ρ iw θ iw b i 0.456 0.763 0.560 0.339 0.317 0.538 0.311 

This table reports the parameters in Eq. (12) given by λiw = ρiw θiw b i λ
∗
w in an 

unconditional version where λ∗
w is fixed for each country. λiw is the expected 

world price of cointegrated downside risk, depending on the expected corre- 

lation between local and world stock returns ( ρ iw ), and the expected quan- 

tile ratio between them ( θ iw ), and the cointegrating coefficient ( b i ). Note that 

b i ∼= 

1 / 
√ 

˜ βi due to V it ≈ b i V wt and ˜ βi V 
2 

it 
≈ V 2 wt implied in Eq. (18) . The estimates 

of ˜ βi are reported in Table 4 . 
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To test the leverage effect that the negative return leads to a

igher variance in future, we replace variance with downside risk.

he estimated parameters of α12 , α13 , α22 , and α23 capture the

ong-run leverage effect, while the parameters of �13 , �14 , �23 , and

24 represent the short-run leverage effect. The evidence shows

hat the short-run leverage effect, �13 , produces a negative sign for

he UK ( −17.29), Italy ( −0.233), and Canada ( −0.234), while the

ong-run leverage effect ( α12 ) is significant for the UK ( −45.641),

rance ( −0.366), and Canada ( −0.449). Even though the leverage

ffect lacks robustness, the inclusion of this variable in the model

elps to serve as a control variable in testing the risk-return hy-

othesis. 

.4. Model predictability 

Although the evidence presented by the FCVAR model supports

 long-run risk-return relation, it is reasonable to confirm supe-

ior performance in comparison to a simple vector autoregression

VAR) model in an out-of-sample prediction. We fit Eq. (18) by ex-

luding the long-run component, αi ( β
′ 
i 
L d z it + μ′ ) , and by setting

 = 0 . This change allows us to evaluate the significance of long-

un performance one month ahead in out-of-sample forecasts, us-

ng a 35-year rolling window. The first window ranges from Jan-

ary 1973 to December 2007, yielding the first monthly forecast

n January 2008. The window keeps rolling one month until the

nd of the sample period. In total, this procedure yields 106 fore-

asts based on the FCVAR model and two benchmarked models, a

AR(2) (single-country) model with z it ≡ ( V 2 
i,t 

, r i,t ) 
′ 
, and a VAR(4)

cross-country caused by market integration) model with z it ≡
( V 2 

i,t 
, V 2 w,t , r i,t , r w,t ) 

′ . 14 

Fig. 2 depicts the out-of-sample forecasts against the actual

evel. Nevertheless, a further out-of-sample predictive ability test

s necessary. Here we conduct the conditional predictive ability

CPA) test of Giacomini and White (2006) . The Giacomini and

hite (2006) test essentially provides improvements, in several re-

pects, on the Diebold and Mariano (1995) approach, which has

een in widespread use for predictive evaluation. Firstly, the test

an exist in an environment in which the sample is finite; sec-

ndly, it can handle forecasts based on both nested and non-nested

odels. In our case, two benchmarked models are nested in the

CVAR model. Thirdly, and more importantly, the model accommo-

ates conditional predictive evaluation in such a way that we can

redict which forecast will be more accurate on a specific future

ay. 

An application of this test shows that the FCVAR model has a

uperior forecasting ability relative to the alternative VAR models.
14 To save space, we present only the world-UK constellation. Other pairs have 

onsistent forecasting results and are available upon request. t
he CPA test statistics are 6.51 and 10.22 for the case of the FCVAR

ersus a two-country model; versus a one-country model, the cor-

esponding p -values of the test statistics are 0.039 and 0.006. We

herefore conclude that the inclusion of a long-run specification is

nformative in Eq. (18) . By the same examination, a two-country

odel predicts better than a one-country model given that the test

tatistic is 14.05 and the p -value smaller than 1%. One arrives at

he conclusion that investors do ask for a worldwide downside risk

remium. 

. Robustness checks 

.1. Evidence from alternative kernel density estimators 

As discussed in Section 2.1 and Appendix A, the tail behavior of

he KDE is closely tied to the choice of kernel densities, which, in

urn, generates (slightly) different estimates of the VaR. These in-

erconnections lead us to ask whether the downside risk-return re-

ation is robust given the choice of kernel densities used to obtain

he VaR estimates. This inquiry can be made by fitting a double ex-

onential (Laplace) kernel for a possible fat tail in the stock return

istribution. As shown in Table 1 , the statistics of the VaR esti-

ates derived from the double exponential kernel are compatible

o those from the Gaussian kernel. The downside risk derived from

he double exponential kernel is therefore considered in the FCVAR

ystem. By comparing the results in Panel A of Table 6 with those

n Table 4 , 15 we find that the estimated results are quite compati-

le. Our results confirm the argument in Härdle et al. (2004) that

he choice of the kernel function is not crucial for the efficiency of

he estimates and, as a consequence, it has no significant impact

n the final results. 

.2. Expected shortfall and expected VaR 

As noted by Artzner et al. (1999) , one of the weaknesses of the

aR risk measure is that it is not coherent—that is, it may fail to

atisfy the sub-additivity property and violates the principle that a

erger does not create extra risk. Another weakness of VaR is that

t lacks information on the losses beyond the VaR. For these rea-

ons, the expected shortfall, the mean value of losses larger than

aR, may be used to replace VaR as a downside risk measure. The

orresponding results, which are shown in Panel B of Table 6 , are

onsistently significant. 

The rationale for using the lagged VaR as a proxy for the ex-

ected VaR is that VaR behaves extremely persistently. Because of

his predictability, we follow Bali et al. (2009) in considering an

R( p ) specification as a proxy for expected VaR. Using the BIC, one

an select the optimal lag and then use the current and lagged VaR

o project the expected VaR. Panel C of Table 6 shows that in us-

ng the expected VaR, the estimates do not significantly differ from

hose we derived previously. 

.3. Predictability of skewness 

Because skewness, as a measure of the degree of asymmetry

n the distribution, constitutes a downside risk, it naturally begs

he question of whether the downside risk-return tradeoff hypoth-

sis can be directly examined by employing skewness as an ar-

ument, such as z it = ( Ske w i,t , Ske w w,t , r i,t , r w,t ) 
′ 

in the framework 

f Eq. (18) . Empirical skewness can then be calculated based on a

onthly interval (from the first trading day until the last trading

ay of the month t ). Using this approach, the coefficients of risk
15 To save space, we report only the case of the UK. The statistics for other coun- 

ries are available upon request. 
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Fig. 2. Out-of-sample predictions for alternative models. 

The out-of-sample forecast performances are depicted among the FCVAR, a VAR(2) (single-country model with z it ≡ ( V 2 
i,t 

, r i,t ) 
′ ) and a VAR(4) (cross-country model with 

z it ≡ ( V 2 
i,t 

, V 2 w,t , r i,t , r w,t ) ′ ) model. The vertical axis is the predictive return (%), in this case for UK, compared with the actual return series. 

Table 6 

Robustness checks based on different measures: evidence from the UK market. 

d − ˜ βi μ′ 
3 × 1 αi (4 × 3) �s =1 , ( 4 × 4 ) BIC 

Panel A. Double exponential kernel 

0.452 −1.399 

⎛ 

⎝ 

−0 . 004 

−0 . 001 

0 . 001 

⎞ 

⎠ 1.962 −32.256 −11.234 −1.835 34.735 −11.346 −9.715 957 

(0.06) (2.59) (13.87) (4.65) (2.79) (14.46) (4.68) (5.33) 

−2.493 −9.380 −3.059 2.429 11.082 −3.140 −5.077 

(1.52) (4.50) (1.86) (1.56) (4.83) (1.88) (2.48) 

21.269 −7.989 −22.302 −20.690 5.057 22.560 −13.118 

(11.77) (17.99) (20.89) (11.78) (19.27) (21.18) (26.86) 

10.995 4.584 −3.733 −10.251 −6.742 3.823 3.136 

(5.68) (13.08) (14.93) (5.92) (14.15) (15.13) (18.44) 

Panel B. Expected shortfall 

0.448 −1.273 

⎛ 

⎝ 

−0 . 011 

−0 . 015 

−0 . 002 

⎞ 

⎠ 2.457 −30.906 −14.508 −2.378 39.118 −14.982 −12.230 412 

(0.06) (2.74) (9.48) (5.33) (3.47) (10.88) (5.34) (5.79) 

−2.620 −7.821 −3.548 2.465 13.038 −3.870 −6.462 

(1.48) (3.52) (1.96) (1.73) (4.35) (2.02) (2.71) 

15.165 −5.140 −23.137 −13.109 −2.907 23.356 −14.456 

(8.73) (21.76) (13.15) (10.59) (26.51) (13.59) (14.05) 

8.194 3.989 −4.304 −6.035 −9.408 4.656 1.749 

(6.60) (17.43) (9.48) (8.17) (21.29) (9.81) (10.96) 

Panel C. Expected VaR 

0.131 −1.175 

⎛ 

⎝ 

−0 . 119 

−0 . 063 

−0 . 073 

⎞ 

⎠ −2.384 0.065 −0.712 3.895 0.853 −0.796 −0.594 778 

(0.01) (0.67) (0.55) (0.26) (0.82) (0.83) (0.27) (0.26) 

−1.891 0.802 −0.291 2.345 0.507 −0.366 −0.570 

(0.51) (0.38) (0.18) (0.58) (0.59) (0.19) (0.19) 

15.550 −14.847 −5.810 −15.248 10.647 5.315 −2.358 

(5.63) (5.02) (2.30) (6.67) (7.40) (2.43) (2.33) 

10.237 −8.825 −1.298 −10.123 8.051 1.431 0.554 

(4.42) (3.92) (1.74) (5.35) (5.90) (1.85) (1.85) 

Panel D. Skewness 

0.108 −0.150 

⎛ 

⎝ 

−0 . 009 

−0 . 041 

0 . 125 

⎞ 

⎠ −1.140 0.889 −0.424 −0.253 0.177 0.288 −0.122 537 

(0.03) (0.47) (0.93) (0.53) (0.45) (0.20) (0.20) (0.14) 

0.107 −0.820 −0.021 −0.167 −0.220 0.099 0.155 

(0.52) (0.77) (0.22) (0.48) (0.49) (0.15) (0.13) 

3.527 −5.510 −3.687 −8.362 4.693 1.847 −1.742 

(2.35) (3.95) (1.33) (7.21) (4.45) (1.18) (1.09) 

5.223 −4.389 −0.041 −3.642 2.966 0.323 −0.689 

(5.46) (3.97) (1.20) (4.23) (3.21) (1.09) (1.20) 

This table reports the estimates of Eq. (18) by using different measures of risk. The numbers in parentheses are standard 

errors. Estimates in Panel A are based on the VaR from a double exponential kernel. Estimates in Panel B are based on the 

risk measure represented by the expected shortfall from a Gaussian kernel. Estimates in Panel C are based on the risk measure 

of expected VaR. Estimates in Panel D are using the empirical skewness as a measure for the downside risk when testing the 

risk-return relation. In sum, the evidence for supporting the long-run tradeoff is robust across different model specifications. 
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version toward skewness are insignificant, indicating that skew-

ess, relative to VaR, has a limited return predictability. The find-

ngs are consistent with the results documented by Bali et al.

2009) for the case of US data and therefore lead to the conclu-

ion that richer information content is present embedded in VaR. 

In summary, the evidence to support the long-run tradeoff on

ajor advanced markets is robust across different model specifica-

ions. A small sample bias may appear when the coefficients in a

ynamic system with highly persistent regressors are tested. Con-

ucting a biasness test shows that the framework employed in this

tudy is robust relative to the bias. 16 

. Conclusions 

In considering the possible heavy tail property of G7 returns,

e extend the variance-based risk measure to a higher moment-

ased risk measure via kernel density estimators. This study inves-

igates the downside risk-return relation in an integrated market

ramework. The theoretical model suggests that the expected world

rice of cointegrated downside risk in a specific country is subject

o its return correlation with the world market, the quantile ratio

etween them, and the long-run cointegration. The downside risk

version in an integrated market is further decomposed into long-

un and short-run components. The relative contribution of each

s left to empirical investigation via the FCVAR model with frac-

ional cointegration (long-run) and vector autoregression (short-

un) analyses of world and country-specific risk-return relations. 

We find evidence that, with the exception of Japan, downside

isk forms a cointegration relationship with the world market in

he long run, supporting the risk-return tradeoff hypothesis in the

ong run. Evidence suggests that investors are averse not only to

ocal downside risk but also to world downside risk, as these

ownside risks are significantly cointegrated in the long run. This

ndicates that investors command long-run risk premiums with re-

pect to the cointegrated downside risk. We also find that the pro-

osed FCVAR model indeed yields better stock return predictability

han a pure short-run-based VAR model. 

ppendix A. The nonparametric VaR estimates 

The following section presents detailed description of the pro-

osed procedure. In designating the daily excess returns { r t,i } n i =1 
ithin month t and n as the number of trading days in this spe-

ific month, the KDE-based smoothed distribution function is de-

ned as 

ˆ 
 t,h ( x ) = n 

−1 
n ∑ 

i =1 

x 

∫ 
−∞ 

K h ( u − r t,i ) du, (A.1) 

here K h (s ) = h −1 K( s/h ) is the rescaled kernel with bandwidth

 . The bandwidth is chosen so that the squared bias and the

ariance are balanced, which minimizes the tradeoff between a

hrinking variance and a rising bias that occurs as h increases.

he bandwidth h , therefore, should be optimized to balance this

radeoff. In addition to the choice of bandwidth, the kernel func-

ion also governs the degree of smoothness. It is clear that in

 h , the smoother, should be used to replace the indicator func-

ion in the formulation of F t ( x ). Once we choose the Gaussian

ernel K h = exp( −u 2 / 2 ) / 
√ 

2 π as the kernel for estimating VaR,

ilverman’s (1984) rule of thumb can be applied to obtain an opti-
16 A legitimate argument can be made that a small sample bias might be arrived 

t via a simulation. It can be demonstrated (though not reported here to save space) 

hat the fractional differentiation framework employed in this study is robust rela- 

ive to the bias. The report is available upon request. 

C  

 

C  

C  
al bandwidth, ˆ h rot,t , expressed as: 

ˆ 
 rot,t = 1 . 06 min 

{ 

ˆ σt , 
Q t 

1 . 34 

} 

n 

− 1 
5 , (A.2)

here ˆ σt is the sample standard deviation estimated from { r t,i } n i =1 
nd Q t = r t, [ 0 . 75 n ] − r t, [ 0 . 25 n ] . ( Eq. A.2 ) indeed takes into account the

ensitivity of outliers, since a single outlier may cause too large an

stimate of ˆ σt and hence may create too large a bandwidth. The

nterquartile range Q t is invoked here to compensate for this effect.

he constants 1.34 and 1.06 are scaling factors that are related to

he choice of kernel (see Härdle et al., 2004 ). 

The question arises of how to bootstrap from the KDE, ˆ F t,h (x ) . It

urns out that one doesn’t have to simulate it via an inversion or

ejection technique from ( Eq. A.1 ), since smoothing of the distri-

ution function can be interpreted as a convolution of the empiri-

al distribution function with the kernel K h . The use of a convolu-

ion operator to calculate the convolution of a sum of two random

ariables also allows us to simply view Eq. (A.1) as the integrated

robability density function of the sum of r t, i with a random vari-

ble Z having probability density function K h . To be more explicit,

iven month t , we bootstrap 10 0 0 times from { r t,i } n i =1 
. For each

ootstrapped sample from { r t,i } n i =1 
, we merely add the product of

ˆ 
 rot,t in Eq. (A.1.2) and 10 0 0 generated random variables Z from

.i.d N (0,1). This idea can be expressed as: 

 

∗
t,i = r t,i + ̂

 h rot,t Z (A.3) 

The V i, t estimate of country i at month t can now be obtained

y calculating the 1% quantile of the simulated distribution r ∗
t,i 

.

he corresponding expected shortfall is the mean loss exceeding

he VaR value. The kernel density technique here achieves our goal

f a 1%-quantile value from limited observations, which builds on

ali et al. (2009) , who regard the minimum daily return within

he given month as the VaR. This minimum daily return is actu-

lly around a 4%- to 5%-quantile value over 22 daily returns and

oes not seem to be too extreme. In fact, it is rather unrealistic to

roduce a 1%-expected shortfall estimator under this condition. 
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Monthly disaggregated US data from 1978 to 2016 reveal that exposure to news on
inflation and monetary policy helps to explain inflation expectations. This remains true
when controlling for household personal characteristics, perceptions of government
policy effectiveness, expectations of future interest and unemployment rates, and
sentiment. We find an asymmetric impact of news on inflation and monetary policy after
1983, with news on rising inflation and easier monetary policy having a stronger effect in
comparison to news on lowering inflation and tightening monetary policy. Our results
indicate the impact on inflation expectations of monetary policy news manifested through
consumer sentiment during the lower bound period.
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1. INTRODUCTION

Inflation expectations play a major role in modern macroeconomics, with ratio-
nal expectations ubiquitous as the modeling device for a representative agent.
However, the literature provides both theoretical models and empirical observa-
tions that can explain how different economic agents form inflation expectations
and why they might disagree on their forecasts. For example, Mankiw et al.
(2004) document a considerable degree of disagreement in surveys of US infla-
tion expectations. This disagreement is time-varying and exhibits covariation with
macroeconomic variables. Mankiw and Reis (2002) construct a formal model and
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2 BEN ZHE WANG ET AL.

attribute disagreements to information rigidity. The idea is that the dissemination
of new information occurs gradually between people.

One way households acquire information is through media reports, which we
refer to as “news” in this paper. News can directly impact on household infla-
tion expectations by directly informing the consumer about the possible future
path of inflation (e.g. through expert forecasts), or indirectly through impacting
on household perceptions of current inflation. Lamla and Maag (2012) find that
the disagreement in household inflation expectations in Europe depends on the
reporting intensity and the “tone” of the news about inflation, while Dräger (2015)
finds that the media has a small but significant impact on inflation expectations in
Sweden. Carroll (2003) uses an epidemiology model and finds that professional
forecasts as a proxy for news have predictive power for household forecasts in
the USA.

All the aforementioned studies use aggregated news measures obtained from a
separate source than that for the measure of inflation expectations. One drawback
with this approach is that the news measures do not necessary reflect the news
heard by the individual household, and thus may not necessarily be attributable
to household inflation expectation formation. In this paper, we use the Michigan
Survey of Consumers from 1978 to 2016, which allows us to examine the direct
impact of news on individual households.

There is an emerging literature on investigating the effect of perceived news
using the Michigan Survey of Consumers data. For example, utilizing the panel
structure of the Michigan Survey of Consumer data,1 Pfajfar and Santoro (2013)
test the epidemiology model of Carroll (2003) using an aggregate measure
of news and household perceived news, and find at best weak support for
the epidemiology model. Although hearing inflation news increases the prob-
ability of updating inflation expectations, it enlarges the forecast gap between
households’ inflation expectation and those of professional forecasts, as well
as the gap between households’ inflation expectation and actual realized infla-
tion. Similarly, Dräger and Lamla (2017) find the hearing of news on inflation
increases the chance of households updating their inflation expectations, irrespec-
tive of whether it is favorable or unfavorable news. Pfajfar and Santoro (2009)
find households with different socioeconomic background form inflation expec-
tation differently in response to inflation news, and they exhibit different degrees
of information stickiness when updating their inflation expectations. In addition,
Ehrmann et al. (2017) find households tend to forecast inflation higher if they
have financial difficulties or are pessimistic about major purchases, income devel-
opments, or the unemployment rate—however, their bias shrinks by more than the
average household in response to inflation news. Lahiri and Zhao (2016) also find
consumer sentiment responds to perceived news and Zhang et al. (2016) find stock
markets react to news through its impact on sentiment.

In this paper, we contribute to the literature by considering monetary policy
news along with inflation news and evaluate whether favorable or unfavorable
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NEWS IMPACT ON US INFLATION EXPECTATIONS 3

news has asymmetric impacts on household inflation expectations. Unlike Pfajfar
and Santoro (2013) and Dräger and Lamla (2017), we do not restrict ourselves
to using the panel structure of the Michigan data to investigate how inflation
expectations are updated according to news, but rather examine how inflation
expectations are formed in general.

Our results using the Michigan Survey from 1978 to 2016 show that households
raise their inflation expectations when they are exposed to news of rising inflation
and of contractionary monetary policy. The latter result is an indication that mon-
etary policy acts as a signaling device for the formation of inflation expectations.2

Our results are robust after controlling for household demographics, their per-
ception of the effectiveness of government policies, their expectations of future
interest and unemployment rates, and their sentiment. We also find an asymmet-
ric impact of news on rising inflation (contractionary monetary policy) compared
to news on falling inflation (expansionary monetary policy). Our results indicate
that this asymmetric impact started to become significantly stronger in the early
1990s. We find that the absolute impact of news on higher inflation became sta-
tistically greater than news on lower inflation after 1991, while after 1999 news
on easing monetary policy had a significantly greater impact on inflation expec-
tations than contractionary monetary policy. Finally, during the zero lower bound
period after 2008, news about monetary policy becomes an imperfect signal for
inflation expectations formation. This signal manifested through consumer sen-
timent, which implies central banks should pay attention to consumer sentiment
when communicating monetary policies.

The subsequent paper is organized as follows. Section 2 describes the applied
model and the data used. Section 3 examines the impact of news on households
inflation expectations. Section 4 tests if the content of news has an asymmetric
impact on inflation expectations, while Section 5 examines the news effects during
the zero lower bound period. Section 6 concludes.

2. THE MODEL AND DATA

Since 1978, around 500 adults in households have been surveyed each month on
their 1-year-ahead inflation expectations by the University of Michigan (Survey
of Consumers). The survey asks respondents to provide a numerical answer to the
following question:

By about what percent do you expect prices to go (up/down) on the average, during
the next 12 months?

The data exhibit a considerable degree of disagreement among these US house-
holds in any month. In addition to inflation expectations, the survey also asks
respondents whether they have heard news about current economic conditions,
and also for their evaluations of current and expected future paths of the economy
as well as their personal financial situation.
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4 BEN ZHE WANG ET AL.

We test if news plays a role in explaining household inflation expectations by
estimating equation (1) using pooled ordinary least squares:

π e
it = α + TDtθ

′ + φπNπ
it + φrNr

it + Citγ
′ + εit, (1)

where π e
it is the 1-year ahead inflation expectation of household i at time t, α is a

constant, and TDt collects monthly time dummies that are invariant among house-
holds at a given month. Since our focus is on investigating the impact of news on
individual inflation expectations, we include these time dummies to account for
aggregate developments of the economy in each month that might have an impact
on household inflation expectations.

Nπ
it and Nr

it indicate whether household i has been exposed to any news of infla-
tion and monetary policy, respectively. The survey asks respondents to indicate
whether they have heard news of changes in business conditions:

During the last few months, have you heard of any favorable or unfavorable changes
in business conditions? What did you hear?

The respondents may indicate they have heard news on rising or falling prices,
which we use to approximate inflation news, and lower or higher interest rates or
easier or tighter credit conditions, which we use to approximate monetary policy
news.

If no particular news has been heard, the respective variable has a value of 0;
Nπ

it is set to a value of 1 if household i has been exposed to news about higher
inflation, and −1 in the case of news about lower inflation. In the same manner,
Nr

it takes on a value of 1 if household i has heard news about higher interest rates or
tighter credit conditions, mostly associated with tighter monetary policy, and −1
for exposure to news about lower interest rates or easier credit conditions, mostly
associated with expansionary monetary policy. φπ and φr measure the impact
of inflation news and monetary policy news on household inflation expectations,
which is a key focus of this paper.

Cit ∈ [Dit, Pit, Eit, CSit] represents control variables for the characteristics of
household i. Hereby, Dit denotes economic and demographic variables for respon-
dent i, including log income, age, gender (1 for a female), and level of education
(measured on a scale between 1 and 6, with 6 indicating the highest level of edu-
cation).3 Pit denotes household perceptions on the effectiveness of government
policies in managing inflation or unemployment, taking a value of 1 if the gov-
ernment is perceived to have done a good job, 0 for a fair job, and −1 for a poor
job.4 Eit collects household expectations on the future course of interest rates and
unemployment over the next year, with 1 indicating that household i expects the
future respective rate will increase, 0 that it stays the same, and −1 indicates
that the household expects the rate to be reduced.5 CSit is the measure from the
Michigan Survey for consumer sentiment. It is constructed from five qualitative
questions about the household’s current and future expected personal financial
situation, its current buying attitude regarding large ticket household items, and
its expectation of short- and medium-term business conditions.6 The Appendix
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NEWS IMPACT ON US INFLATION EXPECTATIONS 5

Median inflation expectation and actual realized inflation
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FIGURE 1. The top panel shows the median 12-month ahead household inflation expec-
tation and the realized 12-month ahead inflation. The bottom panel shows the fraction of
households that have heard inflation news or monetary policy news.

shows the pairwise correlations among the explanatory variables. Apart from log
income with education, the perception of government policies with sentiment and
unemployment expectation, and sentiment with unemployment expectation, all
explanatory variables are not highly correlated.

Our monthly sample starts from January 1978 and ends in February 2016,
containing 208,777 individual records in total. The cross-sectional inflation
expectations data range from 0% to (a cap at) 50%. We follow the literature, see,
for example, Curtin (1996), and restrict our sample to those respondents who gave
inflation expectations below 30%, on the grounds that such outliers are likely to
be frivolous. Since our sample covers the high inflation episode in the late 1970s,
and there are possible structural breaks in the inflation expectations series, we test
for structural breaks in median household inflation expectations following Bai
and Perron (2003). The results suggest a structural break in median household
inflation expectations in September 1983 so we split our sample into pre- and
post-September 1983 periods.

The top panel of Figure 1 shows the 12-month ahead median household infla-
tion expectations (blue solid line) and the actual realized 12-month ahead inflation
(red dashed line), with shaded areas indicating NBER-dated recessions and the
vertical line showing our structural break date. Both actual and expected inflation
were high in the late 1970s but gradually decreased during the two recessions
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6 BEN ZHE WANG ET AL.

in the early 1980s. Both remained relatively low throughout the 1990s and early
2000s.7 It is interesting that households on average also expected higher inflation
during and after the financial crisis of 2008. These expectations remained much
greater than realized inflation, while deflation was likely more of a concern to
policymakers.

The bottom panel shows the fraction of households that have heard inflation
news (blue solid line) or monetary policy news (red dashed line). As illustrated
by the figure, the fraction of households who have heard inflation news is quite
volatile. As proposed by Ehrmann et al. (2017), this fraction is often driven by
people who have heard that prices are higher. The authors also find the fraction
to be highly correlated with retail gasoline price inflation in general, suggesting
that frequently purchased items shape households’ inflation (news) perceptions.
The spikes in the series could be related to economic recessions or actual low
or high inflation rates. For example, the high percentage of households who had
heard inflation news in the period March–May 1986 can be explained by the fact
that in 1986 inflation rates had reached levels below 2% for the first time in 20
years, a situation that was frequently discussed in the media. The spike in the
series in September–November 1990 is most likely a result of the USA entering
into recession in July 1990, lasting until March 1991. The recession was at least
partially related to the restrictive monetary policy enacted by the Federal Reserve
throughout 1989 and 1990, when the stated policy was to reduce inflation. The
high fraction of households who had heard inflation news in the early and mid-
2000s was typically related to news about higher prices. For example, during the
first 3 months of 2004, consumer prices increased at a seasonally adjusted annual
rate of over 5%, which was much higher than in previous years. In September
2005, the consumer price index had also risen again by almost 5% in comparison
to 12 months earlier. Notably, a significant part of both increases could be related
to rising energy costs, an issue often reported in the news around that time. The
fraction of households that had heard news about inflation was also extremely
high in the second half of 2008. This is most likely related to the subprime mort-
gage crisis and the fact that both households and the media paid far more attention
to news about macroeconomic and financial conditions during that period.

Generally, most of the spikes are due to periods where people had heard news
on higher prices, except for three episodes: between March and May 1986, when
inflation rates below 2%; between December 2014 and February 2015, when the
US economy deflated for the first time since 2009; and from January 2016 to the
end of the sample, when a general discussion on the risks of a prolonged deflation
period became more prevalent in the media. It is interesting that news of lower
inflation were rare and became prevalent only near the end of the sample, even
though a fear of deflation had become a widespread concern among policymakers
and commentators after 2008.

Interestingly, the fraction of households that heard monetary policy news has
remained low since the 2000s, and this is true even during the recent global
financial crisis when the Federal Reserve had used extensively unconventional
monetary policies.8
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NEWS IMPACT ON US INFLATION EXPECTATIONS 7

3. NEWS IMPACT ON HOUSEHOLD INFLATION EXPECTATIONS

We test if exposure to direct news of inflation and monetary policy affects
household inflation expectations. Model 1 considers only the impact of news on
inflation and Model 2 considers both news on inflation and monetary policy with-
out controlling for characteristics of household i, thus serving as a benchmark.
The subsequent five models extend the benchmark specification: Model 3 controls
for the additional impact of demographic characteristics Dit; Model 4 controls for
the additional impact of perceptions of the effectiveness of government policies
Pit; Model 5 controls for the additional impacts of expectations about interest
rates and unemployment; Model 6 controls for the additional impacts of consumer
sentiment on inflation expectations ICSit; and Model 7 considers all explanatory
variables jointly. We report results in Table 1, with the top panel of the table show-
ing the results for January 1978 to September 1983 and the middle panel focusing
on October 1983 to February 2016. Since we have 457 monthly time dummies
and their interpretations do not necessarily relate to news effects, we omit results
for the time dummies in the table.9

3.1. The First Subsample—January 1978 to September 1983

Results for the first subsample show news of inflation and monetary policy having
a strong impact on household expectations. In this relatively high inflation period,
Model 1 shows that hearing news of higher inflation led an average household
to increase their inflation expectations by 1.03%. When jointly considered with
news of monetary policy, the impact of news of inflation reduces to 0.98%.

News of monetary policy changes can affect inflation expectations in two
opposite ways. One is if households understand the transmission mechanism of
monetary policy to future inflation, in which case news of tighter monetary pol-
icy implies lower expected future inflation. The other is if households do not
understand the transmission mechanism but understand that the central bank tar-
gets inflation, in which case news of contractionary monetary policy is a signal
that inflation is higher than previously expected. Model 2 shows that hearing
news of contractionary monetary policy induced households to expect 0.49%
higher inflation, indicating households understood that higher interest rates are
a result of the central bank’s concern about higher future inflation10. Therefore,
the average household expectations appear to be informed as a signal by the
central bank’s response function, for example, a Taylor rule [as suggested by
Carvalho and Nechio (2014)], rather than households concerning themselves
with the expected future contractionary effect of the interest rate change on
inflation.11 The results from Models 1 and 2 are consistent with earlier find-
ings using aggregate data from the media having a role in driving household
inflation expectations [Lamla and Maag (2012) and Dräger (2015)]. Our results
are also consistent with the information rigidity hypothesis, which suggests that
households’ private information sets (through news) play a role in explaining dis-
agreements in inflation expectations [Mankiw and Reis (2002) and Madeira and
Zafar (2015)].
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TABLE 1. Regression results for inflation expectations

Subsample 1: 1978:01–1983:09

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Constant 4.45*** 4.48*** 4.43*** 4.56*** 4.47*** 6.08*** 4.04***

News: inflation(φπ ) 1.03*** 0.98*** 0.94*** 0.83*** 0.83*** 0.87*** 0.67***

News: monetary policy(φr) – 0.49*** 0.47*** 0.37*** 0.35*** 0.40*** 0.22***

Log income – – 0.07 – – – 0.21***

Age – – −0.03*** – – – −0.03***

Female – – 0.26*** – – – 0.06
Education – – 0.15*** – – – 0.19***

Perception: government policy – – – −1.08*** – – −0.73***

Expectation: interest rate – – – – 0.82*** – 0.72***

Expectation: unemployment rate – – – – 0.82*** – 0.48***

Consumer sentiment – – – – – −0.02*** −0.01***

Adjusted-R2 0.623 0.624 0.628 0.629 0.633 0.628 0.642
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TABLE 1. Continued

Subsample 2: 1983:10–2016:02

Constant 3.21*** 3.19*** 9.04*** 3.08*** 2.92*** 4.92*** 8.87***

News: inflation(φπ ) 0.64*** 0.62*** 0.61*** 0.52*** 0.50*** 0.43*** 0.39***

News: monetary policy(φr) – 0.35*** 0.32*** 0.26*** 0.18*** 0.17*** 0.08**

Log income – – −0.45*** – – – −0.35***

Age – – −0.01*** – – – −0.01***

Female – – 0.66*** – – – 0.54***

Education – – −0.14*** – – – −0.11***

Perception: government policy – – – −0.75*** – – −0.33***

Expectation: interest rate – – – – 0.47*** – 0.40***

Expectation: unemployment rate – – – – 0.73*** – 0.35***

Consumer sentiment – – – – – −0.02*** −0.01***

Adjusted-R2 0.520 0.521 0.532 0.529 0.532 0.535 0.549

Notes: 1. The sample size is 43,599 between January 1978 and September 1983 and 165,178 between October 1983 and February 2016.
2. ∗, ∗∗, and ∗∗∗ represent significance at 10%, 5%, and 1% levels of significance.
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10 BEN ZHE WANG ET AL.

Model 3 confirms results in the earlier literature that households with different
demographic backgrounds disagree on inflation expectations—see, for exam-
ple, Bryan and Venkatu (2001a,b) for the USA, Blanchflower and MacCoille
(2009) for the UK, Easaw et al. (2013) for Italy, and Jonung (1981) for Sweden.
Households with different demographics may purchase different consumption
bundles. In particular, we find that those who are younger, female, and better edu-
cated tended to forecast higher inflation levels. Households may form inflation
expectations according to their lifetime inflation experience. Therefore, younger
people expected much higher inflation following the years of high inflation in
the 1970s. Indeed Malmendier and Nagel (2016) find households with members
older than 70 years expected lower inflation compared to households with mem-
bers younger than 40 years in the 1970s. It is well documented that women on
average forecast higher inflation than men. One possibility is that women have
higher perceived inflation [e.g. Jonung (1981)] due to being likely responsible for
grocery shopping and thus exposed more often to prices than men. The impact of
education on inflation forecasts is interesting. As seen in Figure 1, median infla-
tion expectations underestimate actual inflation in the higher inflation period of
the first subsample (and overestimate inflation in the lower and more stable infla-
tion period of the second subsample). The fact that better educated households
forecast higher inflation in the first subsample (and lower inflation in the sec-
ond subsample) indicates they are better forecasters than the median household.
Better educated households thus appear to have better understood the severity
of the implications of oil price shocks on inflation in the 1970s, realizing that
monetary policy would need to be strategically accommodative to minimize the
effects of the rise in the relative oil price. This accommodative monetary policy
did not increase the nominal interest rate more than inflation, thus reducing the
real interest rate and making monetary policy expansionary, as argued by Clarida
et al. (2000). A similar logic may apply to households with higher income, if we
assume that these households are more likely to participate in financial markets,
and thus tend to be better informed.

Perceiving government policies to be effective in managing the business cycle
significantly reduced inflation expectations by 1.08% (Model 4). Households that
heard tightening monetary policy news and who believe government policies are
effective will form 0.71 (0.37−1.08)% lower inflation expectation compared to
the average household, whereas households hearing the same news but who do
not believe policies are effective would expect 1.45 (0.37 + 1.08)% higher infla-
tion than the average household. This appears to indicate that households who
believe government policies are effective tend to forecast inflation consistent with
the transmission mechanism of monetary policy rather than being informed as a
signal by monetary policy. This result also implies that if the government wants
to lower inflation, it can reduce inflation expectations by influencing household
perceptions about the effectiveness of its policies.

Expecting a rise in interest rates over the next year was associated with
higher inflation expectations (Model 5). This confirms the findings in Model 2
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NEWS IMPACT ON US INFLATION EXPECTATIONS 11

and suggests that households understood monetary policy responds to inflation
now and in the near future, so that higher expected inflation is associated with
higher current and expected future interest rates. Also higher expected future
unemployment was associated with higher inflation expectations. These results
suggest that the average household seemed not to be concerned with the implied
negative correlation between expected inflation and expected unemployment of
an expectations-augmented Phillips curve, instead associating higher expected
inflation with a higher expected future unemployment rate.

The negative and significant consumer sentiment parameter estimate (Model 6)
shows that more optimistic households expected slightly lower inflation than
the average. This result indicates that households’ perception and sentiment—
reflecting their interpretation of their private information set—help to explain why
they disagreed in their inflation expectations. This parameter estimate is robust to
the sample used.

Model 7 includes all regressors and shows that the impact of news about infla-
tion and monetary policy, perceptions on the effectiveness of government policies,
expectations of future interest rates and the unemployment rate, and consumer
sentiment were all important factors for explaining the heterogeneity of inflation
expectations. Adding perceptions on government policies, expectations and sen-
timent induced a magnification of the impacts of income, while gender had a
lessened impact. Therefore, in the first subsample, those who were richer tended
to expect higher inflation, owing to their perceptions, expectations, and sentiment
being less positive than those of poorer households.

3.2. The Second Subsample—October 1983 to February 2016

Many of the aforementioned results remain true in the second subsample, but
there are some notable differences. First, the impacts on inflation expectations of
news about both inflation and monetary policy were smaller, although they remain
significant. This lower impact of news in the second subsample reflects the fact
that inflation had fallen and stabilized during this period, making news of inflation
and monetary policy less salient for households, and thus reducing their impact
on inflation expectations. Second, the signs of the impact of household income
changed to be negative and was much larger in absolute size. Third, the sign
on education also reversed so that now better than average educated households
expected lower inflation. These two sign reversals mean that households with
higher income and better education forecasted lower inflation than the average
household in this subperiod. Finally, gender played a much larger role, with the
difference between male and female expectations becoming significantly larger.

In summary over the whole sample, our results indicate that exposure to news of
higher inflation and contractionary monetary policy significantly increased house-
hold inflation expectations. This result is robust across sample periods and holds
even after controlling for household demographic characteristics, their percep-
tions on the effectiveness of government policies, their expectations about interest
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12 BEN ZHE WANG ET AL.

rates and unemployment, and their sentiment. Among macroeconomic theories,
information rigidity models have been widely used to explain cross-sectional dis-
agreements of inflation expectations—see, for example, Mankiw and Reis (2002)
and Mankiw et al. (2004). These models typically assume information is costly
to acquire, so people have a different information set when forecasting future
paths of the economy. Our results indicate that households who had a larger news
exposure expected different inflation rates (ceteris paribus), thus supporting the
information rigidity theory. The fact that the estimated news effect (φπ and φr)
between Models 2 and 3 are very similar suggests that household demographics
and news almost independently explain inflation expectations. This means that
the demographic impacts on inflation expectations were not due to the different
demographic groups’ exposure to news.

Controlling for the perception of the effectiveness of government policies, for
expectations on future interest and unemployment rates and for consumer sen-
timent reduces the impact of news on household inflation expectations. These
findings suggest that news of inflation and monetary policy impacted on inflation
expectations partially through these household perceptions about policy effec-
tiveness, their expectations of future interest rates and unemployment, and their
sentiments about current economic conditions.

4. THE ASYMMETRIC IMPACT OF NEWS

News on the movements of underlying economic variables may have an asym-
metric impact on inflation expectations. This may arise if one particular direction
of movement of the variable has a more salient effect on expectations than the
other at the time of making the expectation decision. For example, due to dimin-
ishing marginal utility, higher inflation can erode household wealth and reduce
utility more than it would increase it, if inflation fell by the same amount—
households may thus pay more attention to news of higher inflation than of lower
inflation. Households may also have experienced the high inflation episodes in the
1970s and understand high inflation may indicate unsuccessful policies and have
long-lasting effects on future paths of inflation [Madeira and Zafar (2015)] com-
pared to lower inflation. Thus, it may be reasonable to assume a bigger impact of
high inflation on future inflation expectations. Using aggregated data, Lamla and
Maag (2012) and Dräger (2015) indeed find the content of media reports have an
asymmetric impact on inflation expectations.

Utilizing the cross-sectional nature of the Michigan inflation expectations and
news data, we investigate whether news content has an asymmetric impact on
household inflation expectations at the disaggregated level. For each of the news
variables Nπ

it and Nr
it considered, we construct two dummy variables according to

the content of the news. An upward arrow ↑ denotes news that corresponds to an
increasing value of the underlying variable, while a downward arrow ↓ relates to
news decreasing the value of the underlying variable. For example, news of rising
inflation would result in a value of 1 for Nπ

it ↑ and a value 0 for Nπ
it ↓; Nr

it ↓ = 1
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TABLE 2. Regression results for asymmetric news impacts

Subsample 1 Subsample 2
1978:01–1983:09 1983:10–2016:02

Constant 4.07*** 8.84***

News: lower inflation(φπ
↓ ) −0.49** −0.22***

News: higher inflation(φπ
↑ ) 0.70*** 0.46***

News: easing monetary policy(φr
↓) −0.08 −0.15***

News: tightening monetary policy(φr
↑) 0.31*** −0.00

Perception: government policy −0.73*** −0.33***

Expectation: interest rate 0.72*** 0.40***

Expectation: unemployment rate 0.48*** 0.35***

Consumer sentiment −0.01*** −0.01***

Log income 0.20*** −0.35***

Age −0.03*** −0.01***

Female 0.07 0.54***

Education 0.19*** −0.11***

Adjusted-R2 0.642 0.549
Hypothesis: φπ

↓ = −φπ
↑ 0.95 2.72***

Hypothesis: φr
↓ = −φr

↑ 1.37 −1.96*

Notes: 1. Subsample 1 is from January 1978 to September 1983, with sample size 43,599. Subsample 2 is between
October 1983 and February 2016, with sample size 165,178.

2. ∗, ∗∗, and ∗∗∗ represent significance at 10%, 5%, and 1% levels of significance.
3. The estimation results for the monthly time dummy are omitted from the table.

indicates news about easing monetary policy and Nr
it ↑ = 1 indicates news about

contractionary monetary policy. We thus replace Nπ
it and Nr

it in equation (1) with
Nπ

it ↓, Nr
it ↓ and Nπ

it ↑, Nr
it ↑:

π e
it = α + φπ

↓ Nπ
it ↓ + φπ

↑ Nπ
it ↑ + φr

↓Nr
it ↓ + φr

↑Nr
it ↑ + Citγ

′ + TDtθ
′ + εit. (2)

For j ∈ {π , r}, we expect φ
j
↓ to have the opposite impact on inflation expectations

to φ
j
↑. We are interested in testing whether or not increases and decreases have

the same absolute impact on inflation expectations. To test this, we calculate the z
score between the two estimated parameters and test whether the null hypothesis
φ

j
↓ = −φ

j
↑ is rejected:

zj = φ
j
↓ − (−φ

j
↑)√

Var(φj
↓ − (−φ

j
↑))

. (3)

Table 2 shows the estimation results of equation (2) with the columns giving the
estimation results for the two subsamples. The results are broadly consistent with
those presented in Table 1. Consistent with our expectations, the two directions
of news content had opposite effects on household inflation expectations. This
result is robust across both inflation and monetary policy news and across sample
periods.
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14 BEN ZHE WANG ET AL.

Both news of rising and declining inflation had significant impacts on house-
hold inflation expectations across both subsamples. Hearing news of higher
inflation in the first subsample increased inflation expectations by 0.70% on
average, and hearing news of lower inflation reduced inflation expectations by
0.49% on average in this high inflation period. Hearing news on higher inflation
in the second subsample increased household inflation expectations by 0.46%
on average, but being exposed to news on lower inflation only reduced inflation
expectations by 0.22%. This result indicates that households respond to news on
higher inflation more than to news on lower inflation in general, though the effect
of inflation news was much weaker in the second subsample. This is especially
true for news on lower inflation, where the impact is more than halved in the
second subsample. The second row of the lower panel of Table 2 shows the signif-
icance of the z-score test of equation (3) in terms of inflation news (φπ

↓ = −φπ
↑ ).

Consistent with previous results, the test indicates that the symmetric effect of
news on inflation cannot be rejected for the first subsample period, while the effect
became significantly asymmetric in the second subsample, where news of higher
inflation had a bigger absolute impact than news of lower inflation.

News on easing monetary policy did not significantly alter household inflation
expectations in the high inflation period (Subsample 1), but significantly reduced
inflation expectations in the second subsample. On the other hand, news of tight-
ening monetary policy significantly increased household inflation forecasts in the
first subsample but was irrelevant in the second subsample.12 The third row of the
lower panel of Table 2 shows the significance of the z-score test of φr

↓ = −φr
↑: we

find that the symmetric effect of news on monetary policy could not be rejected
for the first subsample, even though only tightening monetary policy was sig-
nificant. However, news on monetary policy became asymmetric in the second
subsample, when easing monetary policy had a much bigger absolute impact on
inflation expectations than tightening monetary policy.

Since the asymmetries became significant in the second subsample, we are
interested to know how they evolved over time. We do this by conducting an
expanding window estimation of zj [equation (3)] starting in October 1983.
Figure 2 shows the evolution of zj for both inflation and monetary policy news,
with the horizontal black line indicating significance at the 10% level. It is inter-
esting that both news of increase and decrease on inflation (monetary policy)
had similar absolute impacts on household inflation expectations for most of the
1980s. However, both news on inflation and monetary policy started to become
increasingly asymmetric in the early 1990s, with the absolute impact of news on
higher inflation becoming statistically greater than news on lower inflation after
1991 (top panel of Figure 2), and news on easing monetary policy having a greater
impact than contractionary monetary policy after 1999 (bottom panel).

One explanation for this interesting evolution of asymmetric news may be
rational inattention to information [Sims (2003)]. Since information is costly
to process, households may only pay attention to news information that they
regarded as relatively important. A general consensus developed in the 1980s and
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FIGURE 2. Time-varying asymmetries—z-score tests.

1990s was that high inflation was bad and needed to be avoided. Presumably
then, high inflation news came to represent unfavorable information for house-
holds. As a consequence, low and stable inflation became a norm in the late 1980s
and households inflation expectations became firmly anchored around 3%. Even
though inflation became a lesser concern, household paid disproportionate atten-
tion to news on higher inflation that was regarded as unfavorable. Households
may also consider that higher inflation (above the norm) tends to be more persis-
tent compared to lower inflation, thus regarding higher inflation as unfavorable.
After 2008, however, there may well have been a growing relative unease about
the risks of deflation, but we see no evidence of that in Figure 2, since the z-score
tests remained flat. With regards to monetary policy, we find that there is con-
sistently significant evidence since 2007 of a greater impact of news on easing
monetary policy in comparison to news on contractionary monetary policy. One
interpretation of this result could be that news on upcoming cuts in the federal
funds rate (that started to occur in late 2007) as well as on quantitative easing
by the Federal Reserve (that started in November 2008) had a noticeably strong
impact on inflation expectations.

In summary, we find evidence that rising inflation news and easing mone-
tary policy impacts on household inflation expectations significantly more than
does lower inflation and tightening monetary policy. This is true in particular for
the relatively lower inflation period (Subsample 2: 1983:10–2016:02). Extending
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16 BEN ZHE WANG ET AL.

window estimation shows that the impact of news on higher inflation (easing
monetary policy) increasingly became bigger compared to lower inflation (con-
tractionary monetary policy) during the 1990s. These asymmetries on both news
persisted through the remaining sample.

5. THE IMPACT OF NEWS UNDER THE ZERO LOWER BOUND

Does the impact of inflation and monetary policy news change under the zero
lower bound from 2008? Table 3 shows the estimates of Models 1–7 for the period
between June 2008 and February 2016. Compared with the second subsample in
Table 1, inflation news has a much bigger impact on household inflation expecta-
tions for all models. This may reflect the fact that households in this period realize
that the FED had lost the effectiveness of its conventional instrument (the federal
funds rate) in managing inflation (deflation). Therefore, in this period households
may have reacted more sensitively to any news on inflation. Looking again at
Figure 1, note that median inflation expectations were almost always greater than
realized inflation from 2008.

During this period, the FED could not cut the current federal funds rate any
further, though it was able to and did use extensively forward guidance, aiming
to influence expectations of future interest rates and inflation to try to stimulate
the economy. Forward guidance can be either Odyssean—when the Feb publicly
commits monetary policy to a future action, or Delphic—when the policy states
the likely future policy actions based on the policymaker’s potential private infor-
mation about macroeconomic fundamentals; see, for example, Campbell et al.
(2012). In addition, the FED undertook three rounds of large-scale asset pur-
chases from 2008 to 2014, otherwise known as “quantitative easing,” leading to a
significant expansion of its balance sheet with bank debt, treasury securities, and
mortgage-backed securities.

Similar to the earlier results, the effectiveness of such unconventional poli-
cies relies crucially on how those economic agents respond on hearing the
news of these policies. However, compared with the second subsample of
Table 1, there are two noticeable differences. First, the impact of monetary pol-
icy news on expected inflation appears strengthened (Models 2–3), even when
the households’ demographic backgrounds are jointly considered, thus seeming
to strengthen the signaling role of the FED’s policy. Second, jointly consider-
ing consumer sentiment (Model 6) makes the impact of monetary policy small
and statistically insignificant. The comparison of this to the results in Table 1 is
indicative of the different implications of unconventional and conventional mone-
tary policy news. The (unconventional) monetary policy news estimate of Model
2 in Table 3 may be seen as a proxy for consumer sentiment in relation to infla-
tion expectations formation. Regressing consumer sentiment on monetary policy
news yields a significant coefficient (at the 1% level) of −7.56. Therefore, hearing
news on monetary policy contraction would be associated with a 7.56 reduction
in consumer sentiment during the zero lower bound period. Consumer sentiment
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TABLE 3. Regression results for inflation expectations

Sample period: 2008:06–2016:02

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Constant 4.04*** 4.04*** 10.30*** 3.79*** 3.80*** 5.84*** 10.53***

News: inflation(φπ ) 1.22*** 1.21*** 1.08*** 1.01*** 0.95*** 0.80*** 0.67***

News: monetary policy(φr) – 0.52*** 0.52*** 0.35*** 0.20* 0.14 0.07
Log income – – −0.49*** – – – −0.44***

Age – – −0.00 – – – −0.01***

Female – – 0.58*** – – – 0.48***

Education – – −0.26*** – – – −0.17***

Perception: government policy – – – −0.90*** – – −0.37***

Expectation: interest rate – – – – 0.35*** – 0.35***

Expectation: unemployment rate – – – – 1.14*** – 0.58***

Consumer sentiment – – – – – −0.02*** −0.01***

Adjusted-R2 0.527 0.527 0.543 0.540 0.549 0.554 0.572

Notes: 1. The sample size is 38128 between June 2008 and February 2016.
2. ∗, ∗∗, and ∗∗∗ represent significance at 10%, 5%, and 1% levels of significance.
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fell significantly in 2008–2009, but improved consistently thereafter. The signif-
icant negative estimate of consumer sentiment in Model 6 suggests that those
households hearing news on monetary policy easing, and thus credit easing, rec-
ognized this as a signal to lower their inflation expectations and to expect easier
conditions that improved consumer sentiment. Households not hearing this news
had no signal and were responsible for maintaining inflation expectations above
realized inflation.

In summary, these results suggest in a consistent way that monetary policy news
provided a signal about future inflation. This signaling effect manifests through
consumer confidence during the zero lower bound period. This implies that central
banks should pay particular attention to the impact of their policy communications
on consumer sentiment to maximize the impact of asset purchases and forward
guidance on inflation expectations.13

6. CONCLUSIONS

We have examined the impact of news on household inflation expectations. Using
monthly US consumer inflation expectations data between January 1978 and
February 2016, we find that, in general, exposure to news on inflation and mon-
etary policy significantly helps to explain household inflation expectations. This
remains true even after controlling for households demographic characteristics,
their perception of the effectiveness of government policies in managing busi-
ness cycles, their expectations of future interest and unemployment rates, and
their sentiment. This result tells us that the average effect of news is unaffected
by the controls. To understand better other distributional aspects of the response,
we would need to consider empirical nonlinearities which we leave for future
research.

We find evidence that news on inflation and monetary policy had an asymmetric
impact on household inflation expectations. In particular, households responded
to news of higher inflation and easing monetary policy significantly more than
news of lower inflation and tightening monetary policy. This was especially true
in the relatively low inflation period after 1983 and probably was a result of the
broad persuasion by public figures about the dangers of high inflation. The more
unfavorable perception of risks of higher inflation remained valid also after 2008,
even though, also, the impact of a deflation threat has likely increased since then.

From 2008, expected inflation became persistently higher than realized infla-
tion. We find news of unconventional monetary policy acts as an imperfect
signaling device for household inflation expectations, which may be seen as a
proxy for consumer sentiment in relation to inflation expectation formation. Weak
consumer sentiment through perceived credit market conditions may have played
an important role in understanding the relatively high inflation expectations in this
period.
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NEWS IMPACT ON US INFLATION EXPECTATIONS 19

NOTES

1. Each month, about 40% of the households are randomly chosen to be reinterviewed 6 months
after their initial interview. This rotating panel feature is useful for analyzing how consumers update
their inflation expectations.

2. Our paper is also related to a growing theoretical literature that shows monetary policy could
have real effects even in the absence of nominal rigidities, if we are willing not to assume rational
expectations. The transmission channels may arise from information rigidities [Woodford (2001)],
rational inattention [Adam (2007)], and potential signaling effects [Melosi (2017)].

3. A value of 1 indicates grade 0–8 without high school diploma; 2 indicates grade 9–12 without
high school diploma; 3 indicates grade 0–12 with high school diploma; 4 indicates grades 13–17
without a college degree; 5 indicates grade 13–16 with a degree; and 6 indicates grade 17 with a
college degree.

4. The survey asks respondents to provide their opinion on the following question:

As to the economic policy of the government—I mean steps taken to fight inflation or
unemployment—would you say the government is doing a good job, only fair, or a poor job?

5. The survey asks respondents to provide their forecast of interest rate and unemployment:

No one can say for sure, but what do you think will happen to interest rates for borrowing
monetary during the next 12 months—will they go up, stay the same, or go down?

How about people out of work during the coming 12 months—do you think that these will be
more unemployment than now, about the same or less?

6. More details about the calculation can be found at https://data.sca.isr.umich.edu/fetchdoc.php?
docid=24770

7. The median inflation expectation in the first subsample (1978:01–1983:09) was 6%, compared
with 3% in the second subsample (1983:10–2016:02). This reduction in the median expectation was
accompanied by a reduction in the heterogeneity of inflation expectations, with the variance of the
cross-sectional distribution decreasing from 34.3 in the first subsample to 15.2 in the second subsam-
ple. This reduction in the heterogeneity of inflation expectations was likely due to the low and stable
inflation rate in the second subsample, and a stronger emphasis placed by the FED on maintaining low
and stable inflation.

8. The fraction of household that had heard inflation (monetary policy) news was 11.33(12.47)%
on average for the first subsample, decreasing to 5.61(5.96)% in the second subsample.

9. The monthly dummies capture the effect of common factors on household inflation expectation.
One of these factors may be the objective intensity of news reporting on inflation and monetary policy.

10. A potential endogeneity problem arises for the two types of news used in this paper. For exam-
ple, in response to tighter monetary policy there may be a perception in this news that inflation
prospects will be mitigated. To address this issue, we reran the estimation excluding those house-
holds that indicated they have heard news on lower inflation and tightening monetary policy and those
households that indicated they have heard news on higher inflation and easing monetary policy. There
are only marginal changes to the estimated coefficients and all results remain qualitatively the same.
The results are available from the authors upon request.

11. We cannot rule out the possibility that households form higher inflation expectations when
hearing of contractionary monetary policy because they may think the monetary policy is too
accommodative–see, for example, Clarida et al. (2000) and Gertler et al. (1999). A consensus about
accommodative monetary policy contributing to high inflation was achieved much later (in the 1980s),
and in the first sample period, it was surely not well understood when households formed their infla-
tion expectation. Therefore, we do not expect the average household would form inflation expectation
in this sophisticated way.
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20 BEN ZHE WANG ET AL.

12. Our credibility interpretation remains valid after distinguishing easing and tightening of mone-
tary policy news in the second subperiod. Though the average household reduces inflation expectations
when hearing news on easing monetary policy, those who perceive effective government policies
understand the implication of monetary policy and forecast higher inflation. The detailed results on
this are available on request.

13. We thank the referee for suggesting this.
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A B S T R A C T

Crime prediction is crucial to criminal justice decision makers and efforts to prevent crime. The paper evaluates
the explanatory and predictive value of human activity patterns derived from taxi trip, Twitter and Foursquare
data. Analysis of a six-month period of crime data for New York City shows that these data sources improve
predictive accuracy for property crime by 19% compared to using only demographic data. This effect is strongest
when the novel features are used together, yielding new insights into crime prediction. Notably and in line with
social disorganisation theory, the novel features cannot improve predictions for violent crimes.

1. Introduction

Every day, people leave their neighbourhood to commute to work,
shop in malls or relax in museums and bars. Such travel creates a social
flow of both crime targets and perpetrators that connect areas beyond
spatial distance and facilitates criminal activity [33].

Exploitation of location-based data offers new perspectives on the
mechanisms of crime emergence and helps predict the occurrence of
crime. Government institutions and especially police depend on adap-
tive, short-term crime predictions to anticipate changes and breaks in
crime patterns and allocate scarce resources efficiently [e.g., 35].

The objective of this paper is to establish the performance of data on
human dynamics in predicting crime. In pursuing this goal, the paper
proposes predictive models that extend conventional crime forecasts by
incorporating three sources of data: public venues, social media activity
and taxi flows. We suggest alternative ways to extract features from the
data sources and examine how their interaction improves predictive
performance. This provides concrete guidance to decision makers on
how to leverage these new data sources for accurate crime forecasting.

Empirical results using crime data from New York City confirm the
relevance of the proposed features. Using a rolling-window prediction
approach, we demonstrate that including the novel features sig-
nificantly improves crime predictions for some types of crime. The re-
sults reveal interaction effects: Features from different data sources
work best when used in combination.

Our dual approach of prediction and explanatory analysis addresses
policy makers' concerns about preventing crime in a predictive policing
and a wider prevention context. In line with social disorganisation and

opportunity theory, our results add to a better understanding of the link
between crime opportunities and human dynamics and highlight new
areas for policy design.

The paper is organised as follows: Section 2 discusses related work.
Section 3 introduces spatial and non-spatial prediction models.
Section 4 outlines the data sources and feature construction methods.
Empirical results are presented in Section 5 and discussed in Section 6.
Section 7 concludes the paper.

2. Related work

Our study uses online data together with spatial analysis to under-
stand behavioural aspects of the emergence of crime and how this
improves crime prediction. In this section, we briefly introduce seminal
explanatory studies that use spatial analysis to provide empirical sup-
port for prominent crime theories. Then, we elaborate how online data
sources have been used in explanatory contexts before presenting
forecasting studies that use online data or spatial analysis to predict
crime.

The main theories concerned with explaining the spatio-ecological
dimension of crime are opportunity theory and social disorganisation
theory. The former analyses crime events as opportunities created by
the intersection of a suitable target, a motivated offender, and lack of
supervision [11]. Social disorganisation theory considers neighbour-
hood characteristics that influence the likelihood of criminal activity
among inhabitants. A lack of social control and social cohesion within a
community combined with structural disadvantages gives rise to
criminal behaviour [20].
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Classical crime modelling draws on these theories and uses regres-
sion analysis to identify socio-economic predictors of criminal beha-
viours on an aggregated level. The findings emphasise the relevance of
demographic characteristics such as residential instability, ethnic het-
erogeneity and population density [e.g. 29]. These results have been
supplemented with spatial analysis to evaluate the relevance of spatial
dependence. Spatial proximity to violence has been shown to be more
important than demographic data [19,24].

With the availability of online data, crime modelling has shifted to
incorporating aggregated, anonymous human behavioural data. Geo-
tagged Twitter data in particular has been used to understand how
topics on social media relate to crime, for example through term-fre-
quency analysis [34]. Dynamic data on human activity has also been
used to model crime. Traunmueller et al. [30] examine correlations
between people activity features, which they derive from mobile phone
data, and monthly crime rates.

Paralleling the development in classical crime modelling, online
data has been combined with spatial analysis to explore their re-
lationship. Bendler et al. [5] include Twitter and local points of interest
(POI) data in a geographically weighted regression to capture human
activity and explore spatial dependence between crime locations. They
show that only some crimes such as burglary are related to Twitter
activity.

Wang et al. [32] also consider POI data, which they integrate with
taxi flow data to model yearly crime rates in Chicago. They find a model
using both types of information to outperform models using only POI or
taxi data. Such synergy hints at an interdependence between the two
sources, which has also been observed by Bendler et al. [5].

In contrast to explanatory studies, crime prediction has paid com-
paratively less attention to the intersection of space and human dy-
namics and usually uses online data as inputs for crime prediction. For
example, Aghababaei & Makrehchi [1] employ temporal topic detection
to identify Twitter topics predicting crime. Bogomolov et al. [7] train a
Random Forest to predict high-crime areas using features related to
visitors volumes based on telecommunication records. Gerber [15]
finds that prediction models using Twitter topic modelling outperform
Kernel density estimation-based models.

There are few predictive studies using spatial analysis. Most no-
tably, the work by Rosser et al. [28] analyses criminal incidents on a
street segment-level instead of a grid- or census unit-level. However,
human dynamics are not explicitly taken into consideration since the
predictions are not based on any analysis of traffic volume or pedestrian
density on those streets.

Xue & Brown [35] model the coordinates of crime as a locally op-
timal site picked by the offender from a set of spatial alternatives to
commit the crime. Similar to Rosser et al. [28], they do not take human
dynamics into account.

An interesting approach to synthesising different data sources for
crime prediction is proposed by Kang & Kang [16] who train a deep
neural network (DNN) to integrate Google Streetview images and
temporal features into a joint feature as input layers for DNN-based
crime prediction.

Table 1 shows how explanatory studies frequently incorporate be-
havioural data and spatial dependence, whereas predictive studies
focus on only one of the two aspects. Therefore, a contribution of this
paper is the joint consideration of data on spatial structure and human
dynamics. A second contribution stems from combining explanatory
and predictive analysis as it is crucial to understand the underlying
process of crime generation to not only successfully predict crime in-
cidents but also prevent crime [9].

3. Methodology

Crime rates depend on the underlying population at risk, which
need not correspond to the residential population in a geographic unit
[e.g. 23]. Therefore, a common modelling approach, which we adopt in

this study, is to use counts of crime incidents. Our data forms a panel of
crime counts and covariates for 1974 census tracts for 26 weeks, in-
dexed by i and t, respectively.

Our analysis approach is two-fold: our main focus is crime predic-
tion, which we supplement with explanatory analysis. We use spatial
econometric models and machine learning techniques to fit models and
predict crime. In the following section, we first describe the econo-
metric models in Subsections 3.1 and 3.2. Then, we describe the ma-
chine learning methods used in Subsection 3.3. We use a rolling
window prediction approach which we explain in Subsection 3.4 where
we also present the linear predictors.

Before detailing the models, we introduce some notation. Modelling
crime counts in a city begins with a specific, bounded two-dimensional
area �⊂D 2, where D denotes the surface area of the city. D can be
partitioned into a finite number N of well-defined, non-overlapping
areal units, e.g. census tracts.

Crime events are modelled as realisations of a point process on D.
The locations of kt crime events at time t are denoted by

= …S s s{ , , }t t k t1 t . This allows modelling the number of realised events in
an areal unit as a time-dependent count variable. Let this count variable
be defined as �= ∑ ∈ = …=m i t s i i N( , ) ( ), 1, ,l

k
lt1

t such that m(i,t) gives
the number of crimes in unit i at time t. Let y denote the vector of NT
count variables observed at the N areal units in T periods such that m
(i,t) ≡ yit.

Spatial dependence between areas can take the form of a Markov
random field, which defines a neighbourhood for each element in y. An
areal unit j is a neighbour of areal unit i if the conditional distribution of
yi depends on yj [12]. Let Ai={j : j is a neighbour of i} be the neigh-
bourhood of unit i. Note that Ai excludes unit i.

3.1. Linear models

Consider the simple pooled linear panel regression model:

= + ∼y Xβ e e N σ I, (0, ),NT
2 (1)

where X is a NT× K matrix of K regressors. In the presence of spatial
dependence, the error terms in Eq. (1) are no longer uncorrelated.
Approaches to account for such error correlation include the simulta-
neous autoregressive (SAR) and the conditional autoregressive (CAR)
model.

The SAR model introduces spatial structure through a spatial lag
[12, p. 406]:

= ⊗ + + ∼y I ρW y Xβ ε ε N σ I( ) , (0, ),T NT
2 (2)

where ⊗ denotes the Kronecker product, IT denotes the identity matrix
of order T, and W is a N×N binary matrix specifying which areas are
spatially adjacent with wii=0 ∀i. ρ is the parameter that specifies the
magnitude of spatial dependence.

The inclusion of a spatial lag of the dependent variable accounts for
spatial spillovers and a mismatch of the spatial scale with the spatial
event. Both effects occur in crime modelling since the contagion effect
of crimes leads to a diffusion through space. In addition, economic and
criminal features do not match perfectly with the spatial units. A spatial
lag SAR model is a convenient choice to account for these character-
istics [3].

The CAR model introduces a spatial dependence parameter in the
error term which accounts for small-scale spatial variation [12, p. 407].
This yields the following model:

= +
∼ ⊗ − −

y Xβ ε
ε N σ I I δW

,
(0, { ( ) }),T N

2 1 (3)

where W is again a N×N spatial adjacency matrix and δ denotes the
magnitude of spatial dependence between neighbouring regions.

The CAR model introduces spatial structure as a Markov random
field, such that the conditional distribution of each area depends on the
neighbourhood. The distribution of yit conditional on all yjt can be
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shown to be

∑∼
⎛

⎝
⎜ + −

⎞

⎠
⎟

⊤ ⊤y y N X β δW y X β σ| ( ), ,it jt it
j

ij jt jt i
2

(4)

for i≠j, where σi
2 denotes the conditional variance [12, p. 407]. This

conditional dependence structure is different from the structure mod-
elled in a SAR model. There, the inclusion of the spatial lag means that
values in unit i do not only depend on values in the direct neighbour-
hood Ai but also on higher-order neighbours, i.e. neighbours of neigh-
bours. Therefore, the SAR model implies a global dependence structure
compared to the CAR model [3].

3.2. Count models

Linear models offer a broad framework to include spatial structure
but fail to accommodate the integer-valued and non-negative nature of
crime counts. Small counts are better modelled by a Poisson
Generalised Linear Model. In the case of crime counts, the Poisson
parameter λ represents the expected incident count:

= = ⊤λ E y X e( | ) .X β (5)

Similar to the linear model, the errors of the Poisson model in Eq.
(5) are no longer uncorrelated under spatial dependence. Poisson
Generalised Linear Mixed Models (GLMMs) account for this dependence
by incorporating a random effect in the GLM predictor. GLMMs model E
(y | X) as a linear combination of fixed effects X and random effects Z
with a logarithmic link function [2]:

= +⊤λ X β Z ηlog .it it it i (6)

Here, Zη are location-specific random effects. At each cross-section t, Z
is a N×N indicator matrix of the spatial units, which means that the
random effect is simply a random intercept added to the conditional
mean. The distribution of the random vector η is assumed to be mul-
tivariate normal:

∼ = −η N D D σ Q(0, ), .2 1 (7)

Q is a symmetric spatial dependency matrix different from the ad-
jacency matrix W used before. Its entries are as follows:

=
⎧

⎨
⎪

⎩⎪

=
− ∈ ≠

∉ ≠
Q

A i j
j A i j
j A i j

| | if ,
1 if and ,

0 if and ,
ij

i

i

i (8)

where the |Ai| entries on the diagonal denote the size of the neighbour
set and neighbours are indicated by −1 [22, p. 186]. In the non-spatial
Poisson GLM in Eq. (6), the variance is equal to the expectation [2]. In

the model in Eq. (6), this is not the case. Here, σ accounts for both the
variance and spatial dependence. The parameters in Eqs. (6) and (7) are
estimated using restricted maximum likelihood (REML) and Fisher
Scoring [18].

3.3. Machine learning models

Previous models make assumptions about the data-generating pro-
cess and consider a linear additive relationship between crime counts
and covariates. Machine learning techniques are more flexible and ac-
count for non-linearity in a data-driven manner [21]. We concentrate
on random forest (RF), gradient boosting machines (GBMs), and feed-
forward artificial neural networks (ANNs), all of which have shown
promising results in previous studies [e.g. 6,13].

RF develops an ensemble of size k through drawing k bootstrap
samples from the training data. The base models in RF consist of in-
dividual decision trees, which are grown from the bootstrap samples.
To increase randomness among the base models, RF determines the best
split during tree growing among a randomly sampled subset of cov-
ariates [8]. The model prediction consists of the simple average cal-
culated across the k base models.

GBMs embody the idea of additive modelling. The algorithm in-
crementally develops an ensemble through adding base models. In our
paper, we use regression trees as base models. These are fitted to the
residuals via the negative gradient of the loss function of the current
ensemble. GBM predictions are obtained by calculating a weighted
average over base model forecasts, whereby the weights are determined
during gradient descent [14].

An ANN model consists of interconnected layers of processing units
(neurons) with connection weights representing the model parameters.
Estimating an ANN model involves minimising loss functions with re-
spect to connection weights using gradient-based methods. ANNs cal-
culate the output of a neuron as a non-linear transformation of the
weighted sum over its input neurons. The transformations are called
activation functions and allow an ANN to capture non-linear patterns in
data [17]. We use a Rectified Linear Unit (ReLU) activation function.

3.4. Rolling window prediction

We use a rolling window prediction approach where we use all
y1:t=(y1,1:t,…,yN,1:t)⊤ to estimate our models and produce forecasts

= …+ + +
⊤ŷ ŷ ŷ( , , )t t N t1 1, 1 , 1 for the next week. We compute the prediction

errors = −+ + +e y ŷt t t1 1 1. We repeat this step for t= h,…,T− 1 where h
is the smallest number of observations used for estimating the model.
We set h= T/2. We then calculate the total mean squared error based
on the obtained errors = ∑ ∑= = +MSE eNh i

N
t h
T

it
1

1 1
2.

For the linear model, the predictions for weekly crime counts are

Table 1
Literature overview.

Study Explanatory/
predictive

Spatial Human
dynamics

Machine
learning

Crime type City Time frame

Wang et al. [32] E ✓ ✓ All crime Chicago Yearly
Bendler et al. [5] E ✓ ✓ Assault, burglary, homicide, theft,

…
San Francisco Hourly

Traunmueller et al. [30] E ✓ Street vs. indoor London Monthly
Williams et al. [34] E ✓ Burglary, theft, drugs, violent crime,

…
London Monthly

Gerber [15] P ✓ Theft, battery, drugs, burglary, … Chicago Daily
Xue & Brown [35] P ✓ ✓ Burglary Richmond, VA Monthly
Rosser et al. [28] P ✓ ✓ Residential burglary Anonymous UK city Daily
Bogomolov et al. [7] P ✓ ✓ (Hotspot classification) London Monthly
Kang & Kang [16] P ✓ ✓ All crime Chicago Daily
Aghababaei & Makrehchi

[1]
P ✓ ✓ Theft, drugs, burglary, … Chicago Daily

This study E and P ✓ ✓ ✓ violent and property crime New York Weekly
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obtained by using the best linear unbiased predictor or its panel
equivalent [4]. Table 2 gives the predictors for the time period t+1 for
the regression models. The SAR predictor is obtained by spatially lag-
ging the linear predictor and adding the spatially lagged error vector of
the model. The CAR predictor is obtained by taking a time-averaged
conditional expectation.

Machine learning models require auxiliary data for hyperparameter
tuning to enable adaption of a learning algorithm to a given task [e.g.,
10]. For such models, we use the first 1,…,t− 2 weeks in the window of
length t as training set and the last two weeks as validation set for
parameter tuning. This way, we still produce an out-of-sample one-step
ahead forecast for t+1. We report the models with the lowest pre-
diction errors on the test set. We tune the hyperparameters using grid
search (see Appendix A for details) at each window. Since we include
lagged crime counts as predictors, the rolling window approach cor-
responds to cross-validation for time-dependent data.

4. Data integration and feature construction

Since the data sources we use (census, POI, Twitter and taxi flow
data) have different time coverages, we use the most recent complete
overlap from June 1, 2015 to November 29, 2015. We aggregate the
temporal data to weekly intervals which begin uniformly on Monday.
The final data set covers 26 weeks. As discussed in Section 3.4, we set
h= T/2=13weeks. This choice results in 13 windows of length 1 :
t,t=13,…,25, on which we train our models. We then produce 13 se-
parate one-step ahead forecasts for week t+1. We use the human
dynamics features at time t to predict crime counts at time t+1.

The short time frame of the data makes explicit modelling of tem-
poral effects infeasible since 26 weeks are not sufficient to reliably

estimate weekly or monthly seasonality. We also do not include a
dummy for the week of the first of a month to account for a potential
“pay day effect”: While one might expect that criminal behaviour as-
sociated with drinking increases after receiving the monthly salary, this
implied human activity is already captured by our novel data sources.

The following subsections introduce the data sources. For each
source, we elaborate on alternative options for feature engineering
since different formulations may differ in their predictive power. The
definitions always include a general definition using raw counts and
additional versions similar to data standardisation or variance reduc-
tion such a log-transformed features. We do not consider further feature
transformations such as Principal Component Analysis due to their non-
interpretability. Section 4.6 details how the final set of features has
been selected.

4.1. Census

The spatial units of analysis are census tracts as defined by the US
Census Bureau. We use the coordinates of point-referenced data to
match them to the corresponding census tract. We select the following
eight demographic variable from Summary File 1 of the 2010 census
data [31] based on previous studies [e.g., 32]: the total population in
the census tract, the median age of the population, the share of males,
the share of the Black, Asian, and Hispanic population, respectively, the
rate of female-headed family households, and the rate of vacant ac-
commodation.

4.2. New York City crime data

Data on criminal incidents is provided by the New York City Police
Department [25]. We focus on violent and property crime because their
spatial distribution differs, which facilitates examining the proposed
features in a context of varying spatial dependence. Violent crime en-
compasses murder and non-negligent manslaughter, robbery, and ag-
gravated assault. Since rape incidences are not geo-located in the NYPD
dataset, we exclude them from the analysis. Property crime comprises
burglary, larceny-theft, motor vehicle theft, and arson.

Fig. 1a and b shows the spatial distribution of crime for the analysis
period of June to November 2015. Property crime exhibits a more even
distribution than violent crime. The strength of spatial correlation be-
tween areas is tested using Moran's I [3]. For both crime types and

Table 2
Predictors for the spatial linear regression models considered in the study.

Model Predictor

LR =+ +ŷ X βt t1 1

SAR  ̂= − + −+
− + −ŷ I ρW X β I ρW ε( ) ( )t N t N1

1 1 1

CAR  = + ∑ ∑ −+ +
⊤

=
⊤ŷ X β δw t y X β((1/ ) ( ))i t i t j ij k

t
jk jk, 1 , 1 1

GLM =+ +ŷ X βexp ( )t t1 1

GLMM  ̂= ++ + +ŷ X β Z ηexp ( )t t t1 1 1

Fig. 1. Number of crime incidents between June and
November 2015. In the property crime map, the area
around Penn Station (largest outlier with 2002 in-
cidents) is excluded for more consistent colour
scaling. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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every time period, the null hypothesis of no spatial dependence is re-
jected with p<0.000.

4.3. Foursquare

We gather POI data from Foursquare, a mobile recommendation
app. We consider POI data a characterisation of the census tract since
POI categories attract specific groups of people. For example, one can
expect that more nightlife venues attract drunken behaviour. Prior
work has evidenced a connection between criminal activity and local
points of interest in a geographic area [5]. Foursquare categorises all
venues along nine main dimensions: nightlife, food, arts & entertain-
ment, residence, shops, travel, outdoors & recreation, college & edu-
cation, and professional. In total, we obtain 47,113 POI in the geo-
graphic area of interest.

Two different ways of constructing the feature from POI data are
considered:

1. the total counts of venues per category,
2. the share of categories on the total number of venues in the census

tract.

4.4. Taxi

The NYC Taxi & Limousine Commission [26] provides taxi flow
data. We argue that taxi flows illustrate connections between different
neighbourhoods beyond what is already covered through spatial
proximity. Around 25% of all taxi trips end in a census tract that is not a
neighbour of the tract they started in, suggesting that the taxi feature
captures connections between census tracts that go beyond spatial
proximity. Fig. 2 supports this view and, in agreement with Wang et al.
[32], confirms taxi data as a valuable source for crime modelling.

We consider all trips within New York City in the analysis time
frame but exclude trips that start or end outside the analysis area. This
gives 70,288,218 trips in the 26weeks. We aggregate individual trips to
a weekly connection flow matrix F, with rows (columns) of F referring
to the census tract where the trip started (ended). Hence, fij denotes the
number of trips made from tract i to j for each time interval. Note that
fii=0 ∀i as otherwise, crime rate of census tract i would be used as its
own predictor.

The taxi flow feature is then constructed as ct= Ftyt−1 such that
neighbouring crime rates are weighted by the magnitude of flow F. It is

crucial to note that the crime vector y is lagged by a week to prevent
unintended implicit simultaneity of the response yt and its predictors.
The week index t is dropped for ease of notation.

We propose three different ways to construct c and demonstrate the
calculation for c1, the feature of example tract 1:

1. Raw multiplication: One can define t as the simple matrix multi-
plication of the flow matrix F and the crime count vector y:

= + …+c f y f y .N N1 12 2 1

2. Normalised by source: The taxi flow arriving in each census tract is
normalised by the total number of flows leaving the source census
tract. For example, the flow leaving the second census tract towards
the first tract is normalised by all flows leaving from the second
tract:

=
+ +…+

+ …+
∑ =

c
f

f f f
y

f

f
y .

N

N

i
N

Ni
N1

21

21 23 2
2

1

1

3. Normalised by destination: The taxi flow arriving in each census
tract is normalised by the total number of flows arriving in the
destination census tract:

=
+ +…+

+ …+
∑ =
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4.5. Twitter

We use Twitter data as a proxy for day-to-day population density
through tourists or visitors. Accordingly, we focus on the number of
Tweets in an area but do not attempt to extract their topical content.
While Foursquare data covers venues as potential destinations of
human activity and taxi flow data records where people move to, some
of the overall activity is not captured. For example, we observe high
numbers of tweets in the census tract containing the 9/11 Memorial
site, unaccounted for by any other feature, whether novel or demo-
graphic.

We source Twitter data from Pfeffer & Morstatter [27] who provide
IDs to tweets published in the United States between June 1, 2015 and

Fig. 2. Coordinates of complete taxi trips in New York City in week 46 in 2015.
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November 30, 2015. We aggregate the number of tweets per week and
census tract, and implement four versions of the Twitter feature:

1. Using the full activity,
2. counting night-time tweets only,
3. using log-transformed full activity,
4. using log-transformed night-time activity.

Any tweet sent out between 22 pm and 6 am contributed to the
night-time feature. Taking the logarithm of the number of tweets serves
to reduce variation between census tracts.

4.6. Evaluation and feature selection

We proposed multiple variable definitions for each novel data
source. Since we are interested in interactions, we select the best
combination of all feature types using a variable selection procedure
where we estimate CAR models for all possible combinations of the
definitions. We then produce one-step ahead forecasts for 13 weeks in
total using the procedure described in Section 3.4 and pick the com-
bination with the overall lowest MSE. In comparison with in-sample
goodness-of-fit statistics such as R2, the MSE-based selection strategy
emphasises the predictive value of a feature on out-of-sample data. We
suggest that a prediction-centric feature selection strategy is better
aligned with the goal of forecasting crime accurately.

While some machine learning techniques such as Random Forests
entail variable importance rankings that can guide variable selection,
they may pick up non-linear relationships that linear models cannot
accommodate. This would give machine learning models an advantage
in subsequent comparisons. To counterbalance this, we select feature
definitions through optimising predictions of a linear model. Out of the
linear models, we choose the CAR model because it models the outcome
variable as a linear combination directly (rather than on the log scale)
and because the implied spatial dependence structure is local rather
than global. Therefore, the selected feature definition combination is
expected to suit the wide range of spatial and non-spatial models we
consider.

Table 3a and b shows MSE values for property and violent crime.
We present results for alternative definitions of the Twitter and taxi
features. Total counts of venues for Foursquare category produces
uniformly better results than the venue share. Overall, we observe the
best results with the non-normalised POI feature, log-transformed
nightly tweet activity, and taxi data normalised by destination. For the
POI feature, however, using total counts outperforms normalisation.
The counts preserve differences in the POI distribution across New York
City, which results in better predictions than the shares of categories.

We provide a short data overview in Table 4. We find that the new

features have low correlations with the demographic variables (all
Pearson's r<0.35) but higher correlations with crime of up to 0.63.
This makes them valuable predictors in addition to the demographic
variables which capture characteristics of the residential population
only.

5. Results

We consider eight different combinations of the features to in-
vestigate interactions. The census data serves as baseline and is in-
cluded in all settings. The other groups are added in all possible com-
binations which we number from 1 to 8 (Table 5).

We begin with examining the explanatory power of the individual
features and their interactions. In view of the large number of fitted
models (2 types of crime× 5 model specifications× 8 settings over 13
windows), we do not reproduce all results. Instead, Tables 6 and 7 show
the regression coefficients only for the largest possible window of
25 weeks and for setting 8, which includes all feature groups. As de-
tailed in Appendix B, the coefficients are stable over different fitting
windows.

Since the significance levels vary across models, we do not discuss
each model individually. Instead, we focus on effects identified as sig-
nificant by all models and refer to the average effect over models in the
text. As the coefficients for GLM and GLMM are on the log-scale, we
present the effects for linear and exponential models separately.

For property crime, the largest effect size across all non-exponential
models is observed for the vacancy rate, which is significantly posi-
tively associated with property crime counts. The new features are
significantly associated with property crime. In particular, a 1 unit

Table 3
MSE values for crime predictions from CAR models including POI data in the
form of the total counts of venues per Foursquare category together with al-
ternative definitions of the Twitter and taxi features.

Twitter Taxi

Raw Destination Source

(a) Property crime
All 4.5415 4.5221 4.8355
Night 4.5301 4.5272 4.8033
log All 4.5259 4.5329 4.8744
log Night 4.5193 4.5051 4.8626

(b) Violent crime
All 0.5402 0.5396 0.5400
Night 0.5411 0.5404 0.5400
log All 0.5418 0.5405 0.5414
log Night 0.5417 0.5392 0.5398

The lowest MSE obtained is printed in bold.

Table 4
Summary statistics for the data set.

Variable Mean Std. deviation Median Min Max

Property crime 1.45 2.34 1.00 0.00 56
Violent crime 0.37 0.74 0.00 0.00 11
Population 3829.61 2118.97 3431.50 56 26,588
Median age 35.92 6.01 35.40 13.40 80.90
Male 0.48 0.03 0.48 0.32 0.94
Black 0.28 0.31 0.12 0.00 0.96
Asian 0.13 0.16 0.06 0.00 0.88
Hispanic 0.27 0.23 0.18 0.00 0.91
Vacancy rate 0.08 0.06 0.07 0.00 0.65
Female-headed HH 0.20 0.12 0.17 0.00 0.58
log night tweets 1.22 1.42 0.69 0.00 7.87
Entertainment POI 2.90 3.39 2.00 0 64
Uni POI 2.51 3.43 2.00 0 61
Food POI 3.01 3.01 2.00 0 28
Professional POI 2.61 2.47 2.00 0 20
Nightlife POI 2.82 2.81 2.00 0 27
Outdoors POI 2.29 2.33 2.00 0 19
Shops POI 2.75 2.73 2.00 0 26
Travel POI 2.52 2.64 2.00 0 26
Residential POI 2.76 2.51 2.00 0 22
Taxi (property) 1.45 3.21 0.28 0.00 58.26
Taxi (violent) 0.37 0.77 0.08 0.00 22.92
N=1974 census units observed over T=26weeks: 51,324 observations

Table 5
Definition of experimental settings in terms of different groups of crime pre-
dictors.

Features Settings

1 2 3 4 5 6 7 8

Census ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
POI ✓ ✓ ✓ ✓
Taxi ✓ ✓ ✓ ✓
Twitter ✓ ✓ ✓ ✓
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increase in the weekly taxi flow is associated with an increase of 0.21
property crime counts. Similarly, an increment of one venue in the
shops category results in a 0.13 increase of crime counts. Interestingly,
a single additional residential venue, often elderly homes, is associated
with a 0.05 decrease of property crime. This is an intuitive result when
considering the higher presence of watchful neighbours. A similar result
is observed for nightlife venues, which are associated with a 0.07 de-
crease. While the Twitter feature is significant, its effect of property
crime is comparatively small as a 1 percent increase in night tweets
yields a 0.14/100= 0.0014 increase in crime counts. For the ex-
ponential models, we observe very similar results. The largest effect is,
again, observed for the vacancy rate, followed by the taxi feature. The
same POI venues are identified as influencing property crime counts.

For violent crime, the effect of social cohesion is pronounced. A 10%
increase in the male share predicts a 0.1 increase of violent crime
counts. Similarly, 10% increases in the rates of female-headed house-
holds and vacant homes are associated with increases of 0.1 and 0.04 in
counts. The relevance of ethnic heterogeneity is less pronounced com-
pared to property crime.

Regarding the new features, the effect of the Twitter feature is even
smaller than for property crime. This is contrasted with the taxi feature
where a 1 unit increase yields a 0.08 increase in violent crime. As with

property crime, the food category has the largest effect size. Even then,
an additional food venue is associated with a relatively small increase
of 0.007 in violent crime. Again, the results for the exponential models
are similar. The largest effects over both models are observed for de-
mographic variables such as the male share of female-headed house-
holds.

With respect to spatial dependence, we find that estimates of the
corresponding parameter in the CAR model are considerably larger
than in the SAR model. For the CAR model, the average estimate for δ is
0.1357. For the SAR model, we obtain an average ρ estimate of 0.0629.
Since the CAR model implies stronger local autocorrelation we find
evidence for substantial dependence on direct neighbours.

We complete the explanatory analysis by inspecting the variable
importance for the machine learning models. Since we estimate models
over 13 windows, we average the importance rank for each variable
over 13 windows. We present the five variables with the overall highest
mean ranks in Tables 8 and 9. If the mean rank equals the importance
rank, the variable has that rank across all 13 windows. We find that for
both crime types, the taxi feature is highly important. Furthermore, the
Twitter feature, which does not have a large effect size in the econo-
metric models, is highly ranked for both crime types and machine
learning models. Overall, we find that the regression results and the

Table 6
Estimates and standard errors for property crime in the full setting (setting 8).

Variable CAR SAR LR GLMa GLMMa

Intercept −0.4255 −0.9090*** −0.9500 −0.2687*** −1.5419***

(0.2448) (0.2220) (0.2246) (0.0794) (0.0001)
Population 0.0001* 0.0001*** 0.0001 0.0001*** 0.0001***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Median age 0.0124*** 0.0011 −0.0003 −0.0076*** −0.0012***

(0.0024) (0.0018) (0.0018) (0.0008) (0.0003)
Male −1.3028*** 0.4165 0.8414 −0.5642*** 0.2675***

(0.3929) (0.3708) (0.3752) (0.1331) (0.0000)
Black 0.7076*** 0.1839** 0.2690 0.3999*** 0.7297***

(0.0920) (0.0644) (0.0652) (0.0299) (0.0001)
Asian 0.5009*** 0.1802** 0.2511 0.1389*** 0.2387***

(0.1066) (0.0690) (0.0698) (0.0322) (0.0000)
Hispanic 0.9776*** 0.2430** 0.3017 0.4787*** 0.6541***

(0.1029) (0.0749) (0.0758) (0.0339) (0.0001)
Vacancy rate 2.3155*** 2.0637*** 2.3373 0.6015*** 0.8929***

(0.2095) (0.1777) (0.1799) (0.0519) (0.0000)
Female-headed HH −0.1474 1.3941*** 1.5020 −0.0366 −0.6935***

(0.2418) (0.2054) (0.2078) (0.0887) (0.0001)
log night tweets 0.0987*** 0.1221*** 0.2034 0.2344*** 0.0682***

(0.0099) (0.0087) (0.0089) (0.0031) (0.0032)
Entertainment POI 0.0151*** 0.0157*** 0.0171 −0.0055*** −0.0013

(0.0036) (0.0036) (0.0036) (0.0013) (0.0013)
Uni POI −0.0025 0.0012 0.0023 0.0000 0.0015

(0.0032) (0.0032) (0.0032) (0.0013) (0.0016)
Food POI 0.0543*** 0.0512*** 0.0441 0.0218*** 0.0293***

(0.0045) (0.0045) (0.0046) (0.0017) (0.0019)
Professional POI 0.0185*** 0.0162** 0.0221 0.0241*** 0.0240***

(0.0055) (0.0055) (0.0056) (0.0020) (0.0023)
Nightlife POI −0.0599*** −0.0704*** −0.0761 −0.0334*** −0.0141***

(0.0049) (0.0048) (0.0049) (0.0017) (0.0019)
Outdoors POI 0.0222*** 0.0114* 0.0157 0.0138*** 0.0127***

(0.0058) (0.0058) (0.0058) (0.0021) (0.0023)
Shops POI 0.1433*** 0.1236*** 0.1209 0.0581*** 0.0552***

(0.0049) (0.0049) (0.0049) (0.0017) (0.0012)
Travel POI 0.0335*** 0.0349*** 0.0316 −0.0021 0.0124***

(0.0051) (0.0048) (0.0049) (0.0017) (0.0019)
Residential POI −0.0639*** −0.0474*** −0.0468 −0.0323*** −0.0212***

(0.0052) (0.0050) (0.0050) (0.0020) (0.0021)
Taxi 0.1757*** 0.2060*** 0.2549 0.0480*** 0.0250***

(0.0043) (0.0037) (0.0037) (0.0007) (0.0011)

Standard errors in parentheses.
a Coefficients are on the log scale.
* p< .05.
** p< .01.
*** p< .001.
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Table 7
Estimates and standard errors for violent crime in the full setting (setting 8).

Variable CAR SAR LR GLMa GLMMa

Intercept −0.6394*** −0.8085*** −0.8674*** −3.2569*** −3.4166***

(0.0863) (0.0780) (0.0785) (0.1781) (0.0001)
Population 0.0000** 0.0000*** 0.0001*** 0.0001*** 0.0001***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Median age −0.0009 −0.0013* −0.0019** −0.0258*** −0.0063***

(0.0008) (0.0006) (0.0006) (0.0020) (0.0004)
Male 0.7738*** 1.0597*** 1.1766*** 2.0673*** 1.2500***

(0.1386) (0.1302) (0.1311) (0.2818) (0.0001)
Black 0.2058*** 0.0412 0.0991*** 1.3403*** 1.5275***

(0.0325) (0.0227) (0.0228) (0.0594) (0.0003)
Asian 0.0773* −0.0142 −0.0094 0.6724*** 1.1663***

(0.0376) (0.0242) (0.0244) (0.0760) (0.0000)
Hispanic 0.3434*** 0.1154*** 0.1931*** 1.2196*** 1.7608***

(0.0363) (0.0264) (0.0266) (0.0646) (0.0003)
Vacancy rate 0.3272*** 0.4673*** 0.5500*** 1.3155*** 0.2863***

(0.0735) (0.0617) (0.0621) (0.1385) (0.0001)
Female-headed HH 0.8420*** 1.4462*** 1.6264*** 1.8172*** 0.3705***

(0.0853) (0.0721) (0.0726) (0.1605) (0.0002)
log night tweets 0.0107** 0.0104*** 0.0158*** 0.1099*** 0.0207***

(0.0035) (0.0029) (0.0030) (0.0065) (0.0053)
Entertainment POI −0.0005 0.0008 0.0027* −0.0056 −0.0072**

(0.0013) (0.0013) (0.0013) (0.0031) (0.0024)
Uni POI 0.0007 0.0021 0.0027* 0.0086** 0.0055*

(0.0011) (0.0011) (0.0011) (0.0028) (0.0026)
Food POI 0.0059*** 0.0073*** 0.0070*** 0.0154*** 0.0245***

(0.0016) (0.0016) (0.0016) (0.0036) (0.0029)
Professional POI 0.0068*** 0.0046* 0.0045* 0.0189*** 0.0181***

(0.0019) (0.0019) (0.0019) (0.0045) (0.0035)
Nightlife POI 0.0035* 0.0026 0.0030 0.0149*** 0.0081**

(0.0017) (0.0017) (0.0017) (0.0037) (0.0030)
Outdoors POI 0.0016 −0.0028 −0.0028 −0.0053 0.0001

(0.0021) (0.0020) (0.0020) (0.0047) (0.0040)
Shops POI 0.0041* 0.0006 0.0001 −0.0056 0.0129***

(0.0017) (0.0017) (0.0017) (0.0039) (0.0033)
Travel POI 0.0034 0.0014 −0.0004 −0.0118** 0.0280***

(0.0018) (0.0017) (0.0017) (0.0039) (0.0031)
Residential POI −0.0058** −0.0029 −0.0027 −0.0026 −0.0091**

(0.0018) (0.0017) (0.0018) (0.0042) (0.0033)
Taxi 0.0530*** 0.0877*** 0.1094*** 0.1205*** 0.0754***

(0.0054) (0.0049) (0.0049) (0.0060) (0.0073)

Standard errors in parentheses.
a Coefficients are on the log scale.
* p< .05.
** p< .01.
*** p< .001.

Table 8
Variable importance for property crime in Setting 8 over 13 windows.

Rank RF Mean rank GBM Mean rank

1. Taxi 1.00 Taxi 1.00
2. log night tweets 2.00 Hispanic 2.00
3. Hispanic 3.00 Entertainment POI 3.00
4. Population 4.25 Median age 3.50
5. Shops POI 4.50 log night tweets 4.08

Table 9
Variable importance for violent crime in Setting 8 over 13 windows.

Rank RF Mean rank GBM Mean rank

1. Taxi 1.00 Taxi 1.00
2. log night tweets 2.00 Female-headed HH 2.00
3. Female-headed HH 3.08 Population 3.08
4. Population 4.25 log night tweets 3.92
5. Black 4.64 Median age 5.00 Fig. 3. MSE values of different models for property crime predictions.
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variable importance ranking are in agreement.
We now focus on the predictive results. Figs. 3 and 4 plot the MSE

over 13 periods. For property crime, we observe a clear pattern: the
MSE is largest across all models for setting 1, which uses demographic
variables only, and it decreases upon adding novel features. This pro-
vides strong evidence in favour of using novel data sources for property
crime prediction. In addition, we observe that some features perform
better when used in combination. In particular, settings 3 and 5 use the
taxi feature together with POI data (setting 3) or Twitter (setting 5).
These settings perform better than the combination of POI data and
Twitter data alone. Adding only one feature already improves the
predictive accuracy but to a lesser degree compared with adding a
combination. Setting 8 using all features together produces the best
result. Over all models considered, the MSE in setting 8 is on average
19% lower compared to the baseline setting. This is the largest im-
provement compared to all other settings, which result in a MSE that is
on average 11% lower than the baseline. Clearly, the machine learning
models outperform the econometric models across all settings. A
Random Forest in setting 8 produces the smallest prediction error. We
suggest that the superior performance is driven by non-linear re-
lationships between the features and property crime.

For violent crime, there is a very different trend. As before, the
machine learning models perform better than the econometric models
but the margin is smaller. With respect to novel data sources, the
econometric models slightly improve on their predictions in the base-
line setting (setting 1) when having access to the full set of features
(setting 8). The machine learning techniques, however, benefit very
little from the new features. We observe the lowest prediction error
with a GBM in Setting 1. Over all models, the MSE in the other settings
is 1% higher than the MSE in setting 1. We conclude that using data on

human dynamics and POI offers little advantage for violent crime
prediction.

We investigate the robustness of our results for the two best per-
forming models: a RF using setting 8 for property crime and a GBM for
violent crime in setting 1. In Fig. 5, we plot the MSE obtained for in-
dividual windows hyperparameter configurations during grid search.
Each point on the x-axis corresponds to a MSE obtained for a single
window and hyperparameter configuration. The vertical line corre-
sponds to the lowest average MSE obtained over all windows as re-
ported in Figs. 3 and 4. Especially for property crime, there is a clear
peak regarding the mean MSE for each individual window which means
that the predictions are relatively robust against specific hyperpara-
meter settings as they all yield similar results. This provides strong
evidence for the superiority of the new features since a wide range of RF
produce competitive property crime predictions.

The results for the GBM predicting violent crime are different: the
prediction errors are more variable as a function of hyperparameters
and windows and the best-performing hyperparameter combinations at
each window are more dissimilar than for property crime. Given that
these results are obtained with Census data only, the sensitivity to the
window choice is not surprising.

6. Discussion

Our mixed approach of explanatory analysis and prediction reflects
the dual objective of police and policy makers. We can not only show
that crime forecasting benefits from including the novel feature, we also
shed light on the emergence of urban crime and find clear support for
well-known crime theories. This provides clear guidance on how to
conceptualise and address crime in a predictive policing context.

The forecasting results show that using the new features sig-
nificantly improves the prediction accuracy for property crime. We find
that adding static data such as POI venues does not suffice to forecast
crime counts accurately. Instead, dynamic Twitter or taxi data and in
particular their interaction greatly reduce the prediction error. These
results are in line with prior work by Wang et al. [32] and Bendler et al.
[5]. We suggest that a combination of node-specific data on the de-
mographic make up as well as the visitor make up through Twitter and
POI data in combination with edge-specific data on social taxi flow is
the best combination of different data sources to predict property crime
counts. The taxi feature proxies human dynamics between areas and
how people proliferate crime through space. The spatial dependence
matrix models only first-order dependence of immediate neighbours.
Many taxi trips traverse multiple areas such that the taxi feature ac-
counts for social connection and crime proliferation beyond just
neighbouring sites.

For violent crime, however, the spatio-temporal dimension of the
new features adds very little. Our explanatory analysis reveals the
origins of this result. Violent crime is taking place in neighbourhoods

Fig. 4. MSE values of different models for violent crime predictions.

Fig. 5. MSE distribution over hyperparameters and windows.
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with poor social cohesion as evident by the positive association with
vacant homes and female-headed family households. In line with dis-
organisation theory, social deprivation provides the context for delin-
quent, violent behaviour [20]. Support for social disorganisation theory
is supplemented by the fact that violent crime counts are not particu-
larly sensitive to POI venues. That long-term structural conditions are
more important for violent crime is further emphasised by the poor
explanatory and predictive performance of short-term human activity
as captured by the novel features.

In contrast, property crime is far less related to the residential make
up of the census tract where the crime takes place. Rather than local
deprivation, local opportunities through anonymity and vacant homes
matter. The coefficients and variable importance rankings capture a
trade-off between more opportunities and targets through high human
activity on the one hand and more watchful eyes, deterring crime on the
other hand. This is for instance illustrated in the negative association of
property crime with nightlife and residential venues and the positive
association with shopping venues. The notion that different circum-
stances drive property and violent crime differently is further supported
by the rather low correlation between the crime types (Pearson's
r=0.17), indicating that the two crime types take place in areas with
very different characteristics.

Police react to crime with temporary resource allocations as well as
with long-term policy decisions on funding, intervention programmes
and task forces. In order to tackle crime, public decision makers depend
on both immediate, accurate crime volume forecasts and insight into
the underlying crime generating process.

Our explanatory analysis reveals that violent crime emerges from
long-standing social environments where short-run movement dy-
namics do not matter. Based on these results, crime prevention strate-
gies need to account for this spatial and structural difference. Since
violent crime is a more slowly-varying process, corresponding crime
prevention programmes need to address long-standing issues of re-
victimisation and re-offending through youth and family support pro-
grammes and partnerships with affected communities.

In contrast, our results indicate that to prevent property crime,
police need to be aware of its transitory, changing nature. It is driven by

localised opportunities, which means that interventions need to target
those intersections of opportunity and offender. In particular, the re-
levance of the taxi feature demonstrates that in large cities, both of-
fenders and victims cross large distances, propagating crime. This im-
plies that police need to consider not only neighbouring areas but also
connections to areas that are further away. Anonymous data on human
behaviour can be crucial in identifying these links.

At the time of study, the limited availability of Twitter data con-
strained the time period of study. Future research can exploit different
sources of social media activity and investigate whether similar results
hold outside of the United States.

7. Conclusion

This paper presents a multi-model solution to predicting the number
of crime incidents in a census tract by combining demographic data
with aggregated social media, venue and taxi flow data. In addition, it
addresses the two-fold concerns of policy makers: preventing crime in
the short run through resource allocation and preventing crime in the
medium run through prevention programmes.

Using a rolling-window prediction approach, we provide robust
evidence that new features accounting for human activity improves
forecasts for crimes shaped by local opportunities. By not only relying
on previous crime observations and quinquennial census data but ra-
ther on abundantly available behavioural data, the models can gen-
eralise to new areas or areas with poor reporting rates.

Following an applied perspective, the proposed approach can be
employed to predict future problematic crime areas and improve police
responsiveness and resource allocation. By analysing underlying me-
chanisms of different crime types, promising areas for intervention have
been identified.
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Appendix A. Grid search parameters

Table A.10 details which parameters were optimised during a grid search. We use early stopping when the MSE does not decrease by at least
0.01% for 5 consecutive scores. Where different, we supply the values used for property and violent crime fitting separately.

Table A.10
Range of grid search values for hyperparameter optimisation.

Model Parameter Range of values

Property Violent

GBM Learn rate 0.01–0.2 with 0.01 increments
Learn rate annealing 0.990–0.998 with 0.001 increments
Maximum allowed tree depth 13–21 7–15
Row sample rate 0.20–1 with 0.05 increments
Column sample rate 0.20–1 with 0.05 increments
Column sample rate per tree 0.20–1 with 0.05 increments
Minimum number of rows in a terminal node 4, 8, 16, 32, 64, 128, 256, 512
Number of bins used for split 16, 32, 64, 128, 256, 512, 1024
Error improvement threshold for split 0, 10−8, 10−6, 10−4

Histogram type at each node Quantiles Global, Round Robin
Number of trees 10,000

(continued on next page)
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Table A.10 (continued)

Model Parameter Range of values

Property Violent

NN Learning rate Adaptive (ADADELTA)

Neurons in hidden layer(s) 64, 128, 256, 512
Number of hidden layers 1, 2
Epochs 1, 10, 20
Learning rate decay 0.95, 1 (no decay)

RF Maximum allowed tree depth 11–19 7–15

Row sample rate 0.20–1 with 0.05 increments
Column sample rate 0.20–1 with 0.05 increments
Minimum number of rows in a terminal node 4, 8, 16, 32, 64, 128, 256, 512
Number of bins used for split 16, 32, 64, 128, 256, 512, 1024
Error improvement threshold for split 0, 10−8, 10−6, 10−4

Histogram type at each node Quantiles Global, Round Robin
Number of trees 10,000

Appendix B. Coefficients in rolling window estimation

Since we re-estimate the linear models in each window, we obtain a distribution of coefficients over 13 windows. Since setting 8 includes all
variables, we present the coefficients for all models for setting 8.

Fig. B.6. Coefficient distribution for property crime for Setting 8 over 13 windows.
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Fig. B.7. Coefficient distribution for violent crime for Setting 8 over 13 windows.
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A B S T R A C T

The cryptocurrency market is unique on many levels: Very volatile, frequently changing market
structure, emerging and vanishing of cryptocurrencies on a daily level. Following its development
became a difficult task with the success of cryptocurrencies (CCs) other than Bitcoin. For fiat
currency markets, the IMF offers the index SDR and, prior to the EUR, the ECU existed, which
was an index representing the development of European currencies. Index providers decide on a
fixed number of index constituents which will represent the market segment. It is a challenge to fix
a number and develop rules for the constituents in view of the market changes. In the frequently
changing CC market, this challenge is even more severe. A method relying on the AIC is proposed
to quickly react to market changes and therefore enable us to create an index, referred to as
CRIX, for the cryptocurrency market. CRIX is chosen by model selection such that it represents
the market well to enable each interested party studying economic questions in this market and
to invest into the market. The diversified nature of the CC market makes the inclusion of altcoins
in the index product critical to improve tracking performance. We have shown that assigning
optimal weights to altcoins helps to reduce the tracking errors of a CC portfolio, despite the fact
that their market cap is much smaller relative to Bitcoin. The codes used here are available via
www.quantlet.de.

1. Introduction

More and more companies have started offering digital payment systems. Smartphones have evolved into a digital wallet, telephone
companies offer banking related services: clear signal that we are about to enter the era of digital finance. In fact we are already acting
inside a digital economy. The market for e-𝑥 (𝑥 = ‘‘finance’’, ‘‘money’’, ‘‘book’’, you name it . . . ) has not only picked up enormous
momentum but has become standard for driving innovative activities in the global economy. A few clicks at 𝑦 and payment at 𝑧
brings our purchase to location 𝑤. Own currencies for the digital market were therefore just a matter of time. Due to organizational
difficulties the idea of the Nobel Laureate Hayek, see Hayek (1990), of letting companies offer concurrent currencies seemed for a
long time scarcely feasible, but the invention of the Blockchain has made it possible to bring his vision to life. Cryptocurrencies (CCs)
have surfaced and opened up an angle towards this new level of economic interaction. Since the appearance of Bitcoins, several new
CCs have spread through the Web and offered new ways of proliferation. Even states accept them as a legal payment method or part
of economic interaction. E.g., the USA classifies CCs as commodities, Kawa (2015), and lately Japan announced that they accept
them as a legal currency, EconoTimes (2016). Obviously, the crypto market is fanning out and shows clear signs of acceptance and
deepening liquidity, so that a closer look at its general moves and dynamics is called for.
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The transaction graph of Bitcoin (BTC), the Blockchain, has received much attention, see e.g. Ron and Shamir (2013) and Reid
and Harrigan (2013). Even the economics of BTC has been studied, e.g. Bolt and Oordt (2016) and Kristoufek (2015). To our best
knowledge, the development of the entire CC market has not been studied so far, only subsamples have been taken into account.
Wang and Vergne (2017) studied the variations of 5 CCs. Elendner et al. (2017) analyzed the top 10 CCs by market capitalization and
found that their returns are weakly correlated with each other. Furthermore, a Principal Component (PC) Analysis, carried out in the
same reference, showed 7 out of 10 PC were necessary to describe more than 90% of the variance. These findings indicate the price
evolution of CCs is very different from each other. This brings us to the conclusion that BTC, even though it dominates the market in
terms of its market capitalization, cannot lead the direction of the market. The movements of other CCs are important too, when one
analyzes the market. Having a closer look at the different CCs, it becomes obvious they have different kind of missions and technical
aspects. Bitcoin pioneered as the token of the first decentralized, distributed ledger, giving start to multiple interpretations of its
nature and purpose: new type of currency, commodity (like gold), alternative asset or innovative technology. The currently second
most important CC by market capitalization—Ethereum – was created with a particular goal in mind – to power the blockchain
based Ethereum platform for company building (DAO) and smart contract implementation. This idea triggered an unprecedented
interest as it allowed companies to enter the field without creating their own blockchain ecosystem. Newcomers could benefit from
the existing supporters of the respective platform, which allowed faster entry, adoption and operation. Other CCs, like Ripple (XRP),
are intended to fuel the transaction network bridging traditional markets (banks) and the crypto ecosystem. Ripple also became one of
the first successful cases of pre-emitted CC, abandoning the idea of decentralization. Since the appearance of BTC many technological
advancements took place. Some CCs are designed for faster (or even immediate) transactions, like Litecoin (LTC), some are more
efficient energy-wise, like DASH. Many embraced different hashing algorithms, altering the mining process, like Monero. Long ASIC
domination is being disrupted, Proof-of-work is replaced by Proof-of-Stake, new ways to motivate those providing computational
power are introduced. Regardless the type of CC, one witnesses a new kind of transaction network with a different approach for fees
and handling of trust issues. The intended and actual usage can be interpreted as the business model of the different CCs and the
participation in either CC can give advantages over others, White (2014).

In the first month of 2017, CCs other than BTC (altcoins) showed a strong gain in their market capitalization, reducing the
dominance of BTC in the market. The finding of very different movements of CCs and the stronger position of alternative CCs in
the market infers the necessity of a market index for the CC market for tracking the market movements. Comparing CCs against a
market index answers economic questions like which business model is more successful than another one, gained recently compared
to other CCs, drives the success of the market, is more established. Comparing a CC market index against other market indices
answers economic and financial questions like which market proxy is more volatile, has more tail risk, attracts more investments. We
construct CRIX, a market index (benchmark) which will enable each interested party to study the outlined economic questions, the
performance of the CC market as a whole or of single CCs. Studying the stochastic dynamics of CRIX will allow a la limite to create
ETFs or contingent claims.

Many index providers construct their indices with a fixed number of constituents, see e.g. FTSE (2016), S&P (2014) and Deutsche
Boerse AG (2013). If the respective index is intended to be a proxy for the performance of a market, this requires huge trust from
economists and investors into the choice of the index constituents by the index provider. On the other hand, the CRSP index family,
derived for the US market, CRSP (2015), has no boundary on the number of index constituents. The number of constituents is reviewed
daily and adjusted until the index members cover a predefined share of the market capitalization. Such a dynamic methodology is
important in the market of CCs since the number of CCs changes daily. Additionally the market value of CCs often changes frequently,
which increases the market volatility and therefore the need for considering such a CC for the representation of the market. Our
intention is extending the idea behind the CRSP indices. Our first goal is constructing a methodology for CRIX which relies on model
selection criteria to receive a proxy for the market and to replace the trust problematic with a statistical methodology. The resulting
methodology is dynamic in the number of index constituents, like the CRSP indices. By this method only CCs which add informative
value to the index are considered, which makes it representative. If more CCs than BTC are necessary to fulfill this requirement, they
will be added. However we are concerned with the dominance of BTC in an index solely relying on market capitalization. Thus we
introduce a second weighting scheme based on weighting by trading volume. Due to the usage of trading volume, the respective index
is constructed in terms of trading focus. If the market participants focus more on altcoins than on BTC, these receive a higher weight.
On the other hand, if the market focus is truly on BTC, it will receive a high weight in either index. Our second goal, constructing
an investable index will be fulfilled by the methodology itself due to having a sparse index, only consisting of actively traded CCs
in a market with low transaction costs. Note that due to the low transaction costs in the CC market, a dynamic methodology creates
low additional costs. Additionally to the methodology ensuring an investable index, the proposed trading volume weighting scheme
further supports this goal.

Investing into an ETF composed of the constituents of CRIX implies some differences compared to traditional index investing. In
the traditional setting only the constituents are reviewed and replaced on the review date – if necessary – according to the index
rules. In dynamic index investing the constituents are also reviewed for their number. This requires the manager of the fund to buy
and sell more assets on the review date. In a market with high transaction costs, this approach is more costly. But the market of CCs
has very low transaction costs, thus this problem will not occur in this market.

To compute CRIX, the differences in the log returns of the market against a selection of possible indices is evaluated. The results
show, that the AIC works well to evaluate the differences. It penalizes the index for the number of constituents. For the calculation
of the respective likelihoods, a non-parametric approach using the Epanechnikov (1969) kernel is applied. The proof for the impact
of the value of an asset in the market on the AIC method is given, thus a top-down approach is applied to select the assets for
the benchmarks to choose from, where the sorting depends on either market cap or trading volume. The number of constituents is
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recalculated quarterly to ensure an up-to-date fit to the current market situation. With CRIX one may study the contingent claims
and the stochastic nature of this index, Chen et al. (2017), or study the CC market characteristics against traditional markets, Härdle
and Trimborn (2015).

This paper is structured as follows. Section 2 introduces the topic and reviews the basics of index construction. In Section 3
the method for dynamic index construction for CRIX is described and Section 4 introduces the remaining rules for CRIX. Section 5
describes further variants to create a CRIX family. Their performance is tested in Section 6. In Sections 7 and 8 the new method is
applied to the German and Mexican stock markets to check the performance of the methodology against existing indices. The codes
used to obtain the results in this paper are available via www.quantlet.de.

2. Index construction

The basic idea of any price index is to weight the prices of its constituent goods by the quantities of the goods purchased or
consumed. The Laspeyres index takes the value of a basket of 𝑘 assets and compares it against a base period:

𝑃𝐿
0𝑡 (𝑘) =

∑𝑘
𝑖=1 𝑃𝑖𝑡𝑄𝑖0

∑𝑘
𝑖=1 𝑃𝑖0𝑄𝑖0

(1)

with 𝑃𝑖𝑡 the price of asset 𝑖 at time 𝑡 and 𝑄𝑖0 the quantity of asset 𝑖 at time 0 (the base period). For market indices, such as CRSP,
S&P500 or DAX, the quantity 𝑄𝑖0 is the number of shares of the asset 𝑖 in the base period. Multiplied with its corresponding price,
the market capitalization results, hence the constituents of the index are weighted by their market capitalizations. These indices are
often referred to as benchmarks for their respective market. We define the term benchmark:

Definition 1. A benchmark is a measure which consists of a selection of CCs that are representing the market.

But markets change. A company which was representative for market developments yesterday might no longer be important today.
On top of that, companies can go bankrupt, a corporation can raise the number of its outstanding shares, or trading in it can become
infrequent. All these situations must produce a change in the index structure, so that the market is still adequately represented. Hence
companies have to drop out of the index and have to be replaced by others. The index rules determine in which cases such an event
happens. The formula of Laspeyres (1) cannot handle such events entirely because a change of constituents will result in a change
in the index value that is not due to price changes. Therefore, established price indices like DAX or S&P500, see Deutsche Boerse
AG (2013) and S&P (2014) respectively, and the newly founded index CRIX(𝑘), a CRyptocurrency IndeX, thecrix.de, use the adjusted
formula of Laspeyres,

CRIX𝑡(𝑘, 𝛽) =

∑𝑘
𝑖=1 𝛽𝑖,𝑡−𝑙 𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙
𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘)𝑡−𝑙

(2)

with 𝑃 , 𝑄 and 𝑖 defined as before, 𝛽𝑖,𝑡−𝑙 the adjustment factor of asset 𝑖 found at time point 𝑡−𝑙 , 𝑙 indicates that this is the 𝑙th adjustment
factor, and 𝑡−𝑙 the last time point when 𝑄𝑖,𝑡−𝑙

, 𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘)𝑖,𝑡−𝑙 and 𝛽𝑖,𝑡−𝑙 were updated. In the classical setting, 𝛽𝑖,𝑡−𝑙 is defined to be 𝛽𝑖,𝑡−𝑙 = 1
for all 𝑖 and 𝑙. Anyhow, some indices use 𝛽𝑖,𝑡−𝑙 to achieve maximum weighting rules, e.g. Deutsche Boerse AG (2013) and MEXBOL
(2013). The 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 ensures that the index value of CRIX has a predefined value on the starting date. It is defined as

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘, 𝛽)0 =
∑𝑘

𝑖=1 𝛽𝑖0𝑃𝑖0𝑄𝑖0

starting value . (3)

The starting value could be any possible number, commonly 100, 1000 or 10000. It ensures that a positive or negative development
from the base period will be revealed. Whenever changes to the structure of CRIX occur, the 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 is adjusted in such a way that
only price changes are reflected by the index. Defining 𝑘1 and 𝑘2 as number of constituents, it results

∑𝑘1
𝑖=1 𝛽𝑖,𝑡−𝑙−1𝑃𝑖,𝑡−1𝑄𝑖,𝑡−𝑙−1
𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘1, 𝛽)𝑡−𝑙−1

= CRIX𝑡−1(𝑘1, 𝛽) = CRIX𝑡(𝑘2, 𝛽) =

∑𝑘2
𝑗=1 𝛽𝑗,𝑡−𝑙 𝑃𝑗,𝑡𝑄𝑗,𝑡−𝑙
𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘2, 𝛽)𝑡−𝑙

. (4)

In indices like FTSE, S&P500 or DAX the number of index members is fixed, 𝑘1 = 𝑘2, see FTSE (2016), S&P (2014) and Deutsche
Boerse AG (2013). As long as the goal behind these indices is the reflection of the price development of the selected assets, this is a
straightforward approach. But, e.g., DAX is also meant to be an indicator for the development of the market as a whole, see Janßen and
Rudolph (1992). This raises automatically the question of whether the included assets and the weighting scheme are representing the
market. Since the constituents are chosen using a top-down approach, meaning that the biggest companies by market capitalization
are included, the intuitive answer is yes. But it leaves a sour taste that additional assets may describe the market more appropriately.
Furthermore different weighting schemes provide another view on the market. One may object by referring to total market indices like
the Wilshire 5000, S&P Total Market Index or CRSP U.S. Total Market Index, see Wilshire Associates (2015), S&P (2015) and CRSP
(2015), that are providing a full description. But financial practice has shown that smaller indices like DAX30 and S&P500 receive
more attention in evaluating the movements of their corresponding markets, probably because they are easier to invest in due to the
smaller number of constituents. It is therefore appealing to know which are the representative assets in a market and which smaller
number of index constituents eases the handling of a tracking portfolio. Additionally, one may be concerned that an index would
include illiquid and non-investable assets which makes the management of a tracking portfolio even more difficult. Fig. 1 shows that
this is indeed a problem in the CC market. Some CCs have a fairly high market capitalization while their respective trading volume
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Fig. 1. Comparison of the log mean trading volume and log mean market capitalization, both measured in USD, for all CCs in the dataset over the time period
20140401–20170325. VolMarketCapComparison.

Table 1
Weighting schemes for derivation of CRIX.

Market cap weighting Liquidity weighting

𝛽𝑖,𝑡−𝑙 1
𝑉 𝑜𝑙𝑖,𝑡−𝑙

𝑃𝑖,𝑡−𝑙
𝑄𝑖,𝑡−𝑙

is very low. This is problematic, because an asset which is not frequently traded cannot add enough information to a market index
to display market changes and is difficult to trade for an investor. Hence, one goal behind constructing CRIX is making it investable
by concentrating on liquid CCs:

Definition 2. Between investment portfolios with equal performance, the one with the least assets is preferable.

We react to the goals and problems in two ways: First, these thoughts raise the question which value of 𝑘 is ‘‘optimal’’ for building
an investable benchmark for the market. Additionally, especially young and innovative markets may change their structure over time.
Therefore, a quantification of an accurate CC benchmark with sparse number of constituents is asked for. Since the CC market shows
a frequently changing market structure with a huge number of illiquid CCs, a time varying index selection structure is applied. The
later described selection method omits illiquid CCs by construction, because only CCs who show changes in their return series can be
selected to be added to CRIX by the method. Due to the low transaction costs in this market, a dynamic methodology is applicable
since it does not raise the costs of restructuring a tracking portfolio too much. Secondly, we apply two kind of weighting schemes,
Table 1. We apply the classical setting to build a proper market index which is only flexible in terms of the dynamic constituents and
tackles the illiquidity issue due to the applied selection method. The liquidity weighting allows one to weight CCs higher, which are
more traded relative to their market capitalization and therefore implicitly acquire more financial attention. This weighting scheme
bails (2) down to weighting the price development by their trading volume,

LCRIX𝑡(𝑘, 𝛽) =

∑𝑘
𝑖=1

𝑉 𝑜𝑙𝑖,𝑡−𝑙
𝑃𝑖,𝑡−𝑙

𝑄𝑖,𝑡−𝑙
𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘)𝑡−𝑙
=

∑𝑘
𝑖=1

𝑉 𝑜𝑙𝑖,𝑡−𝑙
𝑃𝑖,𝑡−𝑙

𝑃𝑖𝑡

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘)𝑡−𝑙
. (5)

The latter is referred to as Liquidity CRIX (LCRIX). This approach has the potential to diminish the influence of e.g. Bitcoin stronger
than the market cap weighting, if the relation of trading volume to market cap is higher for other CCs. In Section 6 we show that
LCRIX has a better mean directional accuracy than CRIX and puts more weight on altcoins, Table 8, therefore tackling the issue of
BTC dominance when the actual trading amount suggests a different result.

3. Dynamic index construction

This section is dedicated to describing the composition rule which is used to find the number of index members—the spine of
CRIX and LCRIX. Since CRIX will be a benchmark for the CC market, the dimension and evaluation of the market has to be defined:

Definition 3. The total market (TM) consists of all CCs in the CC universe. Its value is the combined market value of the CCs.

To compare the TM with a benchmark candidate, it will be normalized by a Divisor,

TM(𝐾)𝑡 =

∑𝐾
𝑖=1 𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝐾)𝑡−𝑙
(6)
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with 𝐾 the number of all CCs in the CC universe. Note that no adjustment factor is used for TM(𝐾)𝑡. For the volume weighting, the
TM is defined as LTM respectively,

LTM(𝐾)𝑡 =

∑𝐾
𝑖=1

𝑉 𝑜𝑙𝑖,𝑡−𝑙
𝑃𝑖,𝑡−𝑙

𝑄𝑖,𝑡−𝑙
𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝐾)𝑡−𝑙
. (7)

In the further explanations, the focus lies on the TM. However when LCRIX is derived, it is optimized against LTM. The results can
be easily extended to the case of LTM. Further define the log returns:

𝜀(𝐾)𝑇𝑀𝑡 = log{TM(𝐾)𝑡} − log{TM(𝐾)𝑡−1} (8)
𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋

𝑡 = log{CRIX(𝑘, 𝛽)𝑡} − log{CRIX(𝑘, 𝛽)𝑡−1}, (9)

where CRIX(𝑘, 𝛽)𝑡 is the CRIX with 𝑘 constituents at time point 𝑡.
The goal is to optimize 𝑘 and 𝛽 so that a sparse but accurate approximation in terms of

min
𝑘,𝛽

‖𝜀(𝑘, 𝛽)‖2 = min
𝑘,𝛽

‖𝜀(𝐾)𝑇𝑀 − 𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋
‖

2, (10)

is achieved, where 𝜀(𝑘, 𝛽) is the difference in the log returns of TM(𝐾) and CRIX(𝑘, 𝛽). A squared loss function is chosen in (10), since
it heavily penalizes deviations.

Since the value of TM(𝐾)𝑡 is unknown and not measurable due to a lack of information, the total market index will be defined
and used as a proxy for the TM(𝐾). The definition is inspired by total market indices like CRSP (2015), S&P (2015) and Wilshire
Associates (2015). They use all stocks for which prices are available.

Definition 4. The total market index (TMI) contains all CCs in the CC universe for which prices are available. The CCs are weighted
by their market capitalization.

This changes (6) to

TMI𝑡(𝑘𝑚𝑎𝑥) =

∑𝑘𝑚𝑎𝑥
𝑖=1 𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘𝑚𝑎𝑥)𝑡−𝑙
with 𝑘𝑚𝑎𝑥 the maximum number of CCs with available prices and (10) to

min
𝑘,𝛽

‖𝜀(𝑘, 𝛽)‖2 = min
𝑘,𝛽

‖𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀𝐼 − 𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋
‖

2 (11)

s.t.: 1 ≤ 𝑘 ≤ 𝑘𝑢

𝑘 = 𝑘1 + 𝑠 (12)
𝑘𝑢 ∈ [1, 𝑘𝑚𝑎𝑥]

𝑠 ∈ [1, 𝑘𝑚𝑎𝑥 − 𝑘1]

𝛽1×𝑘 = (1,… , 1, 𝛽𝑘1+1,… , 𝛽𝑘1+𝑠)
⊤

𝛽𝑘1+1,… , 𝛽𝑘1+𝑠 ∈ (−∞,∞),

where 𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀𝐼 are the log returns for TMI. In the derivation of LCRIX, the optimization is performed against LTMI and
𝛽1×𝑘 = (𝛽1,… , 𝛽𝑘, 𝛽𝑘1+1,… , 𝛽𝑘1+𝑠)

⊤ where 𝛽𝑖 =
𝑉 𝑜𝑙𝑖,𝑡−𝑙

𝑃𝑖,𝑡−𝑙
𝑄𝑖,𝑡−𝑙

for 𝑖 = 1,… , 𝑘1 and 𝛽𝑘1+1,… , 𝛽𝑘1+𝑠 ∈ (−∞,∞).
Several constraints were introduced with (11). The parameters 𝛽𝑘+1,… , 𝛽𝑘+𝑠 are included to evaluate if adding 𝑠 more assets to the

index explains the difference between 𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀𝐼 and 𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋 better. The first 𝑘 assets (𝑘1) will not be adjusted by a parameter, so
no parameter estimation is necessary. This makes the first term a constant. The choice of 𝑘1 is important since it defines the number
of base CCs to be included in the index. The parameters of the next 𝑠 assets have to be estimated, so (2) becomes

CRIX𝑡(𝑘, 𝛽) =

∑𝑘1
𝑖=1 𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

+
∑𝑘1+𝑠

𝑗=𝑘1+1
𝛽𝑗,𝑡−𝑙 𝑃𝑗𝑡𝑄𝑗,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘1)𝑡−𝑙
.

A number of criteria are applicable. Model selection (SC) criteria can be categorized by their property to be either asymptotic
optimal or consistent in choosing the true model. In this context will be investigated: Generalized Cross Validation (GC), Generalized
Full Cross Validation (GFC), Mallows’ C𝑝, Shibata (SH), Final Prediction Error (FPE) and Akaike Information Criterion (AIC), all
asymptotic optimal criteria under the assumption of Gaussian distributed residuals. Since CRIX is supposed to be a benchmark model,
all possible models under certain restrictions for the number of parameters are included in the test set,

𝛩𝑆𝐶 = {CRIX(𝑘1, 𝛽),CRIX(𝑘2, 𝛽),…}, (13)

where 𝑘1, 𝑘2,… are predefined values and 𝑆𝐶 ∈ {GC,GFC,C𝑝, SH, FPE,AIC}. Recall that the intention behind CRIX is to discover
under a squared loss function the best model to describe the data (benchmark), which supports the choice of an asymptotic optimal
criteria. The GC criterion, see Craven and Wahba (1978), is defined as

GC{𝜀(𝑘, 𝛽), 𝑠} =
𝑇 −1 ∑𝑇

𝑡=1 𝜀(𝑘, 𝛽)
2
𝑡

(1 − 𝑇 −1𝑠)2
(14)
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by assuming that 𝑠 < 𝑇 . One shall note that 𝑠 and not 𝑘 + 𝑠 defines the number of variables to penalize for, since 𝑘 parameters are
set to be 1 and need not be estimated. According to Arlot and Celisse (2010), the asymptotic optimality of GC was shown in several
frameworks. The GFC, see Droge (1996):

GFC{𝜀(𝑘, 𝛽), 𝑠} = 𝑇 −1
𝑇
∑

𝑡=1
𝜀(𝑘, 𝛽)2𝑡 (1 + 𝑇 −1𝑠)2 (15)

is an alteration.
A further score, SH,

SH{𝜀(𝑘, 𝛽), 𝑠} = 𝑇 + 2𝑠
𝑇 2

𝑇
∑

𝑡=1
𝜀(𝑘, 𝛽)2𝑡 , (16)

was shown to be asymptotically optimal, Shibata (1981), and asymptotically equivalent to Mallows’ C𝑝 and AIC.
Mallows (1973)’ C𝑝:

C𝑝{𝜀(𝑘, 𝛽), 𝑠} =
∑𝑇

𝑡=1 𝜀(𝑘, 𝛽)
2
𝑡

𝜎(𝑘, 𝛽)2
− 𝑇 + 2 ⋅ 𝑠 (17)

with 𝜎(𝑘, 𝛽)2 the variance of 𝜀(𝑘, 𝛽). 𝐶𝑝{𝜀(𝑘, 𝛽), 𝑠} tends to choose models which overfit and is not consistent in selecting the true
model, see Mallick and Yi (2013), Woodroofe (1982) and Nishii (1984).

The FPE uses the formula

FPE{𝜀(𝑘, 𝛽), 𝑠} = 𝑇 + 𝑠
(𝑇 − 𝑠)𝑇

𝑇
∑

𝑡=1
𝜀(𝑘, 𝛽)2𝑡 , (18)

see Akaike (1970)
So far, the discussed criteria depend on little data information. Just the squared residuals and, in the case of Mallows’ C𝑝, the

variance are taken into account. The AIC uses more information by depending on the maximum likelihood, derived by

𝐿{𝜀(𝑘, 𝛽)} = max
𝛽

∏

𝑡
𝑓{𝜀(𝑘, 𝛽)𝑡}, (19)

where 𝑓 , in (21), represents the density of the 𝜀(𝑘, 𝛽)𝑡 over all 𝑡. The AIC is defined to be

AIC{𝜀(𝑘, 𝛽), 𝑠} = −2 log𝐿{𝜀(𝑘, 𝛽)} + 𝑠 ⋅ 2, (20)

Akaike (1998). If the true model is of finite dimension, then the AIC is not consistent, compare Hurvich and Tsai (1989). Shibata
(1983) showed the asymptotic efficiency of Mallows’ C𝑝 and AIC under the assumption of an infinite number of regression variables
or an increasing number of regression variables with the sample size. Due to the usage of the density in deriving the AIC, it uses more
information about the dataset. Considering that (10) implies the criteria are derived under an expected squared loss function,

E(‖𝜀(𝑘, 𝛽)‖2) = ∫

∞

−∞
‖𝜀(𝑘, 𝛽)‖22 𝑓{𝜀(𝑘, 𝛽)}𝑑𝜀(𝑘, 𝛽), (21)

the density, 𝑓 , can be estimated different from the Gaussian distribution. Here, 𝑓 is estimated nonparametrically with an Epanechnikov
kernel, since according to Härdle et al. (2004) the Epanechnikov (1969) kernel shows a good balance between variance optimization
and numerical performance. In nonparametric estimation with an Epanechnikov kernel, Epa, the estimator of 𝑓 is derived by

𝑓ℎ(𝑥) =
1
𝑛ℎ

𝑛
∑

𝑖=1
Epa(

𝑥 − 𝑥𝑖
ℎ

), Epa(𝑢) = 3

4
√

5
(1 − 𝑢2

5
)𝐈(|𝑢| ≤

√

5)

where ℎ is the bandwidth.
The bandwidth selection is performed with the plug-in selector by Sheather and Jones (1991) and further described in Wand and

Jones (1994). The plug-in selector is derived under the loss function Mean Integrated Squared Error, MISE. Hall (1987) found that
the Kullback–Leibler (KL) loss function for selecting the smoothing parameter of the kernel density is highly influenced by the tails of
the distribution. Devroye and Györfi (1985) mention that Mean Integrated Error (MIE) is stronger affected than MISE by the tails of
the distribution and Kanazawa (1993) claims that MIE shall be used if interest is in modeling the tails. Kanazawa (1993) investigates
that the use of a Kullback–Leibler loss function would put more weight on the tails compared to MISE. Since this is not in our interest,
the choice of the density smoothing parameter, ℎ, is performed under MISE.

Due to the richer information basis of the AIC, we decide to use it as the selection criteria for CRIX. The choice is supported by
an empirical analysis in Section 6.

To decide with the AIC which number 𝑘 should be used, a procedure was created which compares the squared difference between
log returns of the TMI, see Definition 4, and several candidate indices,

‖𝜀(𝑘𝑗 , 𝛽)‖2 = ‖𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀𝐼 − 𝜀(𝑘𝑗 , 𝛽)𝐶𝑅𝐼𝑋
‖

2, (22)

where 𝜀(𝑘𝑗 , 𝛽)𝐶𝑅𝐼𝑋 is the log return of CRIX version with 𝑘𝑗 constituents and 𝜀(𝑘𝑗 , 𝛽) is the respective difference. The candidate
indices, CRIX(𝑘𝑗 , 𝛽), have different numbers of constituents which fulfill 𝑘1 < 𝑘2 < 𝑘3 < ⋯ , where 𝑘𝑗 = 𝑘1 + 𝑠(𝑗 − 1). Therefore, the
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number of constituents between the indices are equally spaced. The procedure implies that the selection method evaluates if 𝑠 more
assets add information to CRIX. If so, these assets are added to the intercept and the next 𝑠 assets are tested for. Assets with a higher
market capitalization are expected to have a higher influence on the AIC, so the following theorem is formulated:

Theorem 1. The rate of improvement of the AIC depends on the relative value of an asset in the market.

The proof for Theorem 1 is given in the Appendix A.1, under the assumption of normally distributed error terms. Therefore, we
will follow the common practise to include the assets with the highest market capitalization in the index,

argmax
𝑖

𝑘
∑

𝑗=1
𝑃𝑗,𝑖,𝑡−𝑙

𝑄𝑗,𝑖,𝑡−𝑙
, 𝑖 ∈ {1,… , 𝐾}. (23)

Thus, a top-down approach to decide about the number of index constituents is applied.
For the sorting of the index constituents by highest market capitalization, just the closing data of the last day of a month are used.

We chose to do so, since the next periods CRIX will just depend on 𝑄𝑖,𝑡−𝑙
, (2), and not on data which lie further in the past. This is in

line with the methodology of e.g. the DAX. For LCRIX, the CCs with the highest trading volume are chosen respectively,

argmax
𝑖

𝑘
∑

𝑗=1
𝑉 𝑜𝑙𝑗,𝑖,𝑡−𝑙 , 𝑖 ∈ {1,… , 𝐾}. (24)

Since the differences between the TMI(𝑘𝑚𝑎𝑥) and CRIX(𝑘𝑗 , 𝛽) are caused over time by the missing time series in CRIX(𝑘𝑗 , 𝛽), the
independence assumption of the 𝜀(𝑘𝑗 , 𝛽) for all 𝑗 cannot be fulfilled by construction. But Györfi et al. (1989) give arguments that under
certain conditions in case of nonparametric density estimation, the rate of convergence is essentially the same as for an independent
sample. Summarizing the described procedure, results to:

1. At time point 𝑇 + 1, construct TMI(𝑘𝑚𝑎𝑥)
2. Set 𝑗 = 2
3. Construct CRIX(𝑘1, 1) and CRIX(𝑘𝑗 , 𝛽), 𝑘1 < 𝑘2 < 𝑘3 < ⋯
4. Compute 𝜀(𝑘𝑗 , 𝛽) and 𝜀(𝑘1, 1)
5. Kernel density estimation (KDE) for density 𝑓 (𝜀(𝑘1, 1))

(a) Compute the log likelihood (20) for 𝜀(𝑘𝑗 , 𝛽) with KDE for 𝜀(𝑘1, 1).
(b) Sum the log likelihoods

6. Derive AIC{𝜀(𝑘𝑗 , 𝛽), 𝑘𝑗 − 𝑘1} and AIC{𝜀(𝑘1, 1), 0}
7. If 𝑗 = (𝑘𝑚𝑎𝑥 − 𝑘1)∕𝑘1: stop, else jump to 3. and 𝑗 = 𝑗 + 1

The next section describes the further index rules for CRIX.

4. CRIX family rules

The constituents of the indices are regularly checked so that the corresponding index always represents its asset universe well.
It is common to do this on a quarterly basis. In case of CRIX this reallocation is much faster. In the past, coins have shown a very
volatile behavior, not just in the manner of price volatility. In some weeks, many occur out of nothing in the market and many others
vanish from the market even when they were before very important, e.g., Auroracoin. This calls for a faster reallocation of the market
benchmark than on a quarterly basis. A monthly reallocation is chosen to make sure that CRIX catches the momentum of the CC
market well. Therefore, on the last day of every month, the CCs which had the highest market capitalization on the last day in the
last month will be checked and the first 𝑘 will be included in CRIX for the coming month. Accordingly for LCRIX the ones with the
highest trading volume are chosen.

Since a review of an index is commonly performed on a quarterly basis the number of index members of CRIX will be checked
on a quarterly basis too. The described procedure from Section 3 will be applied to the observations from the last three months on
the last day of the third month after the markets closed. The number of index constituents, 𝑘, will be used for the next three months.
Thus, CRIX corresponds to a monthly rebalanced portfolio which number of constituents is reviewed quarterly.

It may happen that some data are missing for some of the analyzed time series. If an isolated missing value occurs alone in the
dataset, meaning that the values before and after it are not missing, then Missing At Random (MAR) is assumed. This assumption
means that just observed information cause the missingness, Horton and Kleinman (2007). The Last-Observation-Carried-Forward
(LOCF) method is then applied to fill the gap for the application of the AIC. We did not choose a different approach since a regression
or imputation method may alter the data in the wrong direction. By LOCF, no change is implied and the CC is not excluded. If two
or more data are missing in a row, then the MAR assumption may be violated, therefore no method is applied. The corresponding
time series is then excluded from the computation in the derivation period. If data are missing during the computation of the index
values, the LOCF method is applied too. This is done to make the index insensitive to this CC at this time point. CRIX should mimic
market changes, therefore an imputation or regression method for the missing data would distort the view on the market.

Before continuing, the described rules are summarized:

∙ Quarterly altering of the number of index constituents
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∙ Monthly altering of the index constituents
∙ Model selection for index derivation with AIC
∙ Nonparametric estimation of the density
∙ Application of a top-down approach to select the assets for the subset analysis
∙ Application of LOCF if trading of an asset stops before next reallocation.

5. The CRIX family

Using the described methods and rules from above, three indices will be proposed. This indices provide a different look at the
market.

1. CRIX/LCRIX: The first and leading index is CRIX and for volume weighting LCRIX. While the choice for the best number of
constituents is made, their numbers are chosen in steps of 5. It is common in financial industry to construct market indices
with a number of constituents which is evenly divisible by 5, see e.g. FTSE (2016), S&P (2014), Deutsche Boerse AG (2013).
Therefore this selection is applied for CRIX(𝑘), 𝑘 = 5, 10, 15,… with 𝑘1 = 5. Since the global minimum for the selection criterion
may involve many index constituents, but a sparse index is the goal, the search for the optimal model terminates at level 𝑗
whenever

AIC{𝜀(𝑘𝑗 , 𝛽), 𝑘𝑗 − 5} < AIC{𝜀(𝑘𝑗−1, 𝛽), 𝑘𝑗−1 − 5} (25)

and 𝑘𝑗−1 index constituents are chosen. Therefore merely a local optimum will be achieved in most of the cases for 𝛩 = 𝛩𝐴𝐼𝐶 ,
in (13). But the choice is still asymptotically optimal by defining 𝛩 = {𝛩𝐴𝐼𝐶 |𝑘𝑖 ≤ 𝑘𝑗∀𝑖}. In Section 6 it will be shown that the
performance of the index is already very good.

2. ECRIX/LECRIX: The second constructed index is called Exact CRIX (ECRIX) and Liquidity ECRIX respectively. It follows the
above rules too. But the number of its constituents is chosen in steps of 1. Therefore the set of models contains CRIX(𝑘),
𝑘 = 1, 2, 3,… with 𝑘1 = 1 and stops when

AIC{𝜀(𝑘𝑗 , 𝛽), 𝑘𝑗 − 1} < AIC{𝜀(𝑘𝑗−1, 𝛽), 𝑘𝑗−1 − 1}. (26)

3. EFCRIX/LEFCRIX: Since the decision procedures for CRIX and ECRIX terminate when the AIC rises for the first time, Exact
Full CRIX and Liquidity EFCRIX will be constructed to visualize whether the decision procedure works fine for the covered
indices. The intention is to have an index which may approach the TMI but only in case even small assets help improve the
view on the total market, a benchmark for the benchmarks. It will be derived with the AIC procedure, compare Section 3. For
𝑘 = 1, 2, 3,… with 𝑘1 = 1 the decision rule is based on

min
𝑘𝑗 ,𝛽

AIC{𝜀(𝑘𝑗 , 𝛽), 𝑘𝑗 − 1} (27)

for 𝛩 = 𝛩𝐴𝐼𝐶 , in (13). This index computes the AIC for every possible number of constituents and the number is chosen where
the AIC becomes minimal.

6. Performance analysis

The indices CRIX, ECRIX, EFCRIX with market cap weighting and LCRIX, LECRIX, LEFCRIX with volume weighting have been
proposed to give insight into the CC market. Our RDC CC database covers data for over 1000 CCs, kindly provided by CoinGecko.
The data used for the analysis cover daily closing data for prices, market volume and market capitalization in USD for each CC in the
time period from 2014-04-01 to 2017-03-25. Crypto exchanges are open on the weekends, therefore data for weekend closing prices
exist. Since CC exchanges do not finish trading after a certain time point every day, a time point which serves as a closing time has
to be defined. CoinGecko used 12 am UTC time zone. One should note that missing data are observed in the dataset, therefore the
last rules from Section 4 will come into play.

Fig. 2 shows the performance of CRIX, and Fig. 6 the differences between CRIX and both ECRIX and EFCRIX. For the purpose
of comparison, the indices were recalibrated on the recalculation dates since the index constituents change then. We do not provide
each index plot individually since they perform almost equally. However, the AIC method gave very different numbers of constituents
for the corresponding indices. The numbers of constituents are given in Table 4. For comparison, the number of constituents under
the other discussed model selection criteria are provided too. The variance of 𝐶𝑝 was derived with a GARCH(1,1) model, Bollerslev
(1986). The corresponding information for ECRIX and EFCRIX are given in the same Table 4. Interestingly the methodology of EFCRIX
causes its number of constituents to reach a relatively stable value for each period. ECRIX has mostly much fewer constituents than
CRIX and EFCRIX due to the fact that this index just runs until a local optimum. Comparing the number of constituents for CRIX
derived with AIC against the other criteria, one sees that GC, GFC and SH tend to choose more or the same number of constituents
than AIC. Also all three criteria suggest the same result. 𝐶𝑝 stops at the initial value for CRIX, ECRIX and EFCRIX. For CRIX, ECRIX
and EFCRIX, AIC mostly chooses less constituents compared to all other criteria, except 𝐶𝑝 which terminates very early. For LCRIX,
LECRIX and LEFCRIX mostly less constituents were chosen than for CRIX, ECRIX and EFCRIX, compare Table 5. Note that the AIC
gave the sparsest result again.

114



S. Trimborn, W.K. Härdle Journal of Empirical Finance 49 (2018) 107–122

Fig. 2. Performance of CRIX. CRIXindex CRIXcode.

Table 2
Comparison of CRIX, ECRIX, EFCRIX, derived under different penalizations, against TMI under mean of monthly Mean Squared Error, compared with btc.

AIC GC GFC SH Cp FPE

CRIX 0.4769 0.4883 0.3755 0.3598 1.9844 0.0042
ECRIX 11.0988 10.3673 10.3673 10.4667 79.3979 0.0048
EFCRIX 3.1394 0.0116 0.0049 0.0049 79.3979 0.0048
LCRIX 0.6417 0.1497 0.1217 0.1211 0.6638 0.0049
LECRIX 22.8782 16.7187 16.7187 16.7187 125.0620 0.0047
LEFCRIX 7.9158 0.0645 0.0126 0.0126 125.0620 0.0047
btc 79.3979 79.3979 79.3979 79.3979 79.3979 79.3979

Table 3
Comparison of CRIX, ECRIX, EFCRIX, derived under different penalizations, against
TMI under mean of monthly Mean Directional Accuracy, compared with btc.

AIC GC GFC SH Cp FPE

CRIX 0.9896 0.9908 0.9918 0.9928 0.9835 1.0000
ECRIX 0.9576 0.9586 0.9586 0.9586 0.9133 1.0000
EFCRIX 0.9794 0.9990 1.0000 1.0000 0.9133 1.0000
LCRIX 0.9928 0.9949 0.9959 0.9959 0.9917 1.0000
LECRIX 0.9692 0.9700 0.9700 0.9700 0.9501 1.0000
LEFCRIX 0.9855 0.9979 1.0000 1.0000 0.9501 1.0000
btc 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133

The indices optimized until a local optimum are expected to perform less optimal than the globally optimized ones against the
TMI/LTMI. Tables 2 and 3 give the mean over monthly Mean Squared Error (MSE) and Mean Directional Accuracy (MDA), defined
as

MSE{CRIX(𝑘)} = 1
𝑡+𝑙 − 𝑡−𝑙

𝑡+𝑙
∑

𝑡=𝑡−𝑙

{CRIX(𝑘)𝑡 − TMI(𝑘max)𝑡}2 (28)

MDA{CRIX(𝑘)} = 1
𝑡+𝑙 − 𝑡−𝑙

𝑡+𝑙
∑

𝑡=𝑡−𝑙

𝐈[sign{TMI(𝑘max)𝑡 − TMI(𝑘max)𝑡−1}

= sign{CRIX(𝑘)𝑡 − CRIX(𝑘)𝑡−1}] (29)

where 𝑡−𝑙 and 𝑡+𝑙 are the beginning and end of the month respectively, 𝐈(⋅) is the indicator function and sign(⋅) gives the sign of the
respective equation. Apparently CRIX performs best, which can be explained due to its larger number of index constituents. The
CRIX, ECRIX and EFCRIX are close in terms of the MDA but the MSE is much better for CRIX. Comparing all the model selection
criteria, FPE has the best performance in terms of MSE and MDA, due to choosing high numbers of constituents. The trading volume
weighted indices are close in terms of MSE and MDA to their market weighted corresponding indices. At the same time the number
of constituents are mostly sparser for the volume weighted ones.

CRIX was constructed with steps of five which is common in practice and performed best under AIC. For this case the number of
constituents was the most stable, while achieving the best performance for MSE and MDA. Additionally, the analysis showed that it is
indeed unnecessary from a practical viewpoint to choose the global optimal AIC under steps of 1. Even a local optimum and a much
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Fig. 3. Performance of CRIX compared to BTC.

Table 4
Comparison of AIC, GC, GFC, SH, Cp and the FPE method for the selection of the number of index constituents for the CRIX, ECRIX and EFCRIX in the 11 periods.

CRIX ECRIX EFCRIX

AIC GC GFC SH Cp FPE AIC GC GFC SH Cp FPE AIC GC GFC SH Cp FPE max

1 5 10 10 10 10 35 2 2 2 3 1 36 2 7 30 30 1 36 36
2 10 15 15 15 5 100 3 3 3 3 1 93 3 94 93 93 1 93 113
3 5 10 35 35 5 100 5 5 5 5 1 93 5 94 93 93 1 93 158
4 10 10 10 40 5 95 3 3 3 3 1 90 3 91 90 90 1 90 182
5 10 20 20 20 5 100 2 4 4 4 1 93 12 94 93 93 1 93 169
6 10 10 20 20 5 100 2 2 2 2 1 93 2 94 93 93 1 93 171
7 5 20 20 20 5 100 1 1 1 1 1 93 16 94 93 93 1 93 176
8 15 20 20 20 5 95 3 4 4 4 1 91 3 92 91 91 1 91 140
9 15 5 5 5 5 100 3 3 3 3 1 93 3 94 93 93 1 93 188
10 15 15 25 25 5 100 3 5 5 5 1 93 3 94 93 93 1 93 207
11 10 35 45 45 5 100 2 2 2 2 1 93 4 94 93 93 1 93 221

more stable number of constituents is able to mimic the market movements very well in terms of the MDA and MSE. Furthermore,
even for ECRIX there was more than one constituent selected most of the time. This shows that Bitcoin, which currently clearly
dominates the market in terms of market capitalization and trading volume, does not account for all the variance in the market.
Other CCs are important for the market movements too.

Depending on the theoretical and empirical analysis, we decided to continue with the AIC. From the theoretical viewpoint, the
AIC uses the most information about the data, since it relies on the density. From the empirical analysis, the AIC chooses much less
constituents than GC, GFC, SH and FPE, while its performance in terms of MSE and MDA is close to the three outlined criteria. The
better performance was achieved due to overparametrization of the index by GC, GFC, SH and FPE. Therefore, CRIX will be derived
with the AIC criterion.

Comparing CRIX with the development of BTC, it tracks the market development better over time. Fig. 3 shows the monthly MSE
of CRIX with AIC and BTC. In 2016 CRIX tracked the market development much better than BTC, and in the beginning of 2017
even better due to the huge impact of the price gain of altcoins like Ethereum, Ripple and Dash. Their performance is visualized in
Fig. 4, clearly showing the better performance of CRIX in this time period, driven by price gains in altcoins. Due to the log scale and
the high gains of altcoins, the difference between CRIX and BTC appears little, while in fact being considerable. Fig. 4(b) shows the
difference in the log returns of CRIX and BTC. One sees differences in their return series, which are particularly strong beginning of
2016 and in March 2017. Comparing the performance of CRIX and LCRIX against BTC, one observes an increasing spread between
the indices, Fig. 5. It indicates a lower weight of BTC in LCRIX, thus tackling the issue of dominance of BTC in CRIX by liquidity
weighting. Having a look at the actual differences in the log return series compared to CRIX, Fig. 5(b), stronger spikes are observed,
thus showing the difference in the performance from CRIX and LCRIX driven by the stronger weights on altcoins in LCRIX. Table 8
shows the actual weights given to BTC and altcoins in the respective indices. In the liquidity indices altcoins frequently receive a
higher weight compared to the respective indices based on market capitalization weighting. Once the altcoins received even 52% of
the weights in LCRIX. The results show the market focus in terms of trading is stronger for altcoins than their market capitalization
suggests, thus an index accounting for this is called for, LCRIX. Simultaneously the weighting scheme tackles the dominance of BTC
in a market capitalization index.
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Fig. 4. Comparison of performance of CRIX, BTC, ETH, XRP and DASH.

Fig. 5. Comparison of performance of CRIX, BTC and LCRIX.

Table 5
Comparison of AIC, GC, GFC, SH, Cp and the FPE method for the selection of the number of index constituents for the LCRIX, LECRIX and LEFCRIX in the 11 periods.

LCRIX LECRIX LEFCRIX

AIC GC GFC SH Cp FPE AIC GC GFC SH Cp FPE AIC GC GFC SH Cp FPE max

1 5 10 15 15 5 35 2 3 3 3 1 36 2 6 16 16 1 36 36
2 5 10 10 10 5 100 2 4 4 4 1 93 2 94 93 93 1 93 113
3 5 5 20 20 5 100 3 4 4 4 1 93 6 94 93 93 1 93 158
4 15 20 20 30 5 95 3 2 2 2 1 90 3 91 90 90 1 90 182
5 5 5 5 5 5 100 1 1 1 1 1 93 93 94 93 93 1 93 169
6 5 5 5 5 5 100 2 2 2 2 1 93 9 94 93 93 1 93 171
7 10 25 30 35 5 100 1 2 2 2 1 93 1 94 93 93 1 93 176
8 10 20 35 35 5 95 1 1 1 1 1 91 3 92 91 91 1 91 140
9 5 10 10 10 5 100 2 2 2 2 1 93 2 94 93 93 1 93 188
10 10 10 10 10 5 100 1 1 1 1 1 93 1 94 93 93 1 93 207
11 5 15 15 15 5 100 2 3 3 3 1 93 2 94 93 93 1 93 221

7. Application to the German stock market

The CRIX methodology was derived with the idea of finding a method which allows mimicking young and fast changing markets
appropriately. But well known major markets usually change their structure too. So the proposed methodology is tested on the
German stock market, which has four major indices: DAX, MDAX, SDAX and TecDAX. The DAX is used to determine the overall
market direction, Janßen and Rudolph (1992). Since it is chosen from the so called prime segment, it has some prior restrictions. It
is interesting to see whether our methodology yields the DAX as an adequate benchmark for the total market. Since the indices are
derived with market cap weighting scheme, only this methodology is tested. Following Definition 4, all available stocks are defined
as the TMI and our new method is applied to find an appropriate index. Again, the 7-step method from Section 3 was applied to find
the number of constituents, but it starts at 30 members to check if more constituents are necessary. The method for the identification
of 𝑘 and the reallocation of the included assets is performed quarterly, like DAX. To be in line with the DAX reallocation dates, the
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Fig. 6. Realized difference between TMI and CRIX (solid), ECRIX (dashed), EFCRIX (dotdashed). CRIXfamdiff CRIXcode.

Fig. 7. Number of constituents of FDAX (solid), DAX (horizontal solid) and cumulated monthly variance of FDAX (dashed). CRIXdaxmembersvar CRIXcode.

index calculation will start after the third Friday of September and the reallocation dates are the third Fridays of December, March,
June and September, see Deutsche Boerse AG (2013).

The data were fetched from Datastream in the period 2000-06-16 until 2015-12-18. All stocks which are German companies and
are traded on XETRA are chosen. Any time series for which Datastream reported an error either for the price or market capitalization
data was excluded from the analysis. The index, computed with the new methodology, is called Flexible DAX (FDAX). One should
note that the analysis starts three months after the starting point of the dataset due to the initialization period of FDAX.

Fig. 7 shows the number of members of FDAX and DAX in the respective periods. Most of the time, the number of index constituents
for FDAX is higher than the 30 members of DAX. Just around 2004–2005 is the 𝑘 more frequently 30. Especially while the turmoil
of the financial markets, starting from 2008/2009, is the number of index constituents much higher. One might hint that a higher
reported variability in one period should cause an increase in 𝑘 in the next period, since it was shown that the selection method
depends on the variance, see Appendix A. Fig. 7 shows that this idea can partially be supported. The derivation of the conditional
variance was performed with a GARCH(1,1) model, Bollerslev (1986), and the daily results were summed up. Obviously, in the
extreme cases increases the 𝑘 in the next period, see 2001, 2002, 2006 and 2011.

The computation of the MSE and MDA, see Table 6, shows that FDAX is a more accurate benchmark for the total market as DAX.
Since Janßen and Rudolph (1992) state that DAX may be used to analyze the movements of the total market, an MDA of 92% is
indeed good. But FDAX mimics the market even better, with an MDA of 96%. Also the MSE for FDAX is much lower than the one of
DAX. Therefore the methodology fulfilled its goal to find a sparse, investable and accurate benchmark, depending on the MDA.

8. Application to Mexican stock market

The Mexican stock market is represented by the IPC35, MEXBOL (2013). One of its rules is a readjustment of the weights to
lower the effect of dominant stocks. In the CC market BTC is such a dominant asset. The CRIX methodology could help to circumvent
arbitrary rules and develop an index to represent the market accurately.
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Table 6
Comparison of DAX with CRIX methodology (FDAX) and rescaled DAX against TMI.

MSE MDA

FDAX vs. TMI 6.36 0.96
DAX vs. TMI 51.02 0.92

Fig. 8. Number of constituents of FIPC (solid) and IPC (dashed) in the respective periods. CRIXipcmembers CRIXcode.

Table 7
Comparison of IPC with CRIX methodology (FIPC) and rescaled IPC against TMI.

MSE MDA

FIPC vs. TMI 24.97 0.97
IPC vs. TMI 4743.50 0.91

The data were fetched from Datastream for the period 1996-06-01 until 2015-05-29 and cover all Mexican companies listed in
Datastream. The specifications of the methodology are the same as for the German stock market except for the recalculation date. In
line with the methodology of the IPC35, the index is recalculated with the closing data of the last business days of August, November,
February and May, therefore the recalculated index starts on the first business days of September, December, March and June. The
TMI will be all fetched companies. The choice of 𝑘 starts with 35 since this is the amount of constituents of IPC.

Again, the CRIX methodology works well. The MSE is very low compared to the one for the IPC35 and the MDA gives a much
better performance too, see Table 7. We can conclude that the methodology helped to circumvent the usage of arbitrary rules for the
weights in the rules of the indices and enhances at the same time the performance of the market index. Fig. 8 shows the number of
index members of the FIPC compared to the IPC. Obviously, the methodology also suggests using more than 35 index members half
of the time which is the number of members of the IPC.

9. Conclusion

The movements of CCs are very different from each other, Elendner et al. (2017). So studying the entire market of CCs requires
an instrument which adequately captures and displays the market movements, an index. But index construction for CCs requires
a new methodology to find the right number of index members. Innovative markets, like the one for CCs, change their structure
frequently. The proposed methods were applied to oracle a new family of indices, which are displayed and updated on a daily basis.
The performance of the new indices were studied and it was shown that the dynamic AIC based methodology results in indices with
stable properties. The results show that a market like the CC market – momentarily dominated by Bitcoin – still needs a representative
index since Bitcoin does not account for all the variance in the market. The diversified nature of the CC market makes the inclusion
of altcoins in the index product critical to improve tracking performance. We have shown that assigning optimal weights to altcoins
helps to reduce the tracking errors of a CC portfolio, despite the fact that their market cap is much smaller relative to Bitcoin.

Besides the classical market capitalization weighting, a volume weighting scheme was proposed. The corresponding indices are
sparser in terms of constituents while having a comparable performance, which gives support to this weighting scheme under the
goals of the study. The AIC based method was also applied to the German stock market. The results yield a more accurate benchmark
in terms of MDA. In applying the CRIX methodology to the Mexican stock market, which is dominated by Telmex, one finds high
accuracy of it in terms of MSE and MDA.

We conclude, that the CRIX technology enhances the construction of an index if the goal is to find a sparse, investable and accurate
benchmark.
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Table 8
Average monthly weights of BTC and altcoins in the respective periods in the 6 indices.

Periods CRIX LCRIX ECRIX LECRIX EFCRIX LEFCRIX

k BTC altcoins k BTC altcoins k BTC altcoins k BTC altcoins k BTC altcoins k BTC altcoins

2014/08 5 0.96 0.04 5 0.96 0.04 2 0.98 0.02 2 0.97 0.03 2 0.98 0.02 2 0.97 0.03
2014/09 5 0.94 0.06 5 0.82 0.18 2 0.97 0.03 2 0.86 0.14 2 0.97 0.03 2 0.86 0.14
2014/10 5 0.93 0.07 5 0.86 0.14 2 0.97 0.03 2 0.91 0.09 2 0.97 0.03 2 0.91 0.09
2014/11 10 0.92 0.08 5 0.95 0.05 3 0.94 0.06 2 0.99 0.01 3 0.94 0.06 2 0.99 0.01
2014/12 10 0.85 0.15 5 0.95 0.05 3 0.86 0.14 2 0.97 0.03 3 0.86 0.14 2 0.97 0.03
2015/01 10 0.82 0.18 5 0.93 0.07 3 0.85 0.15 2 0.98 0.02 3 0.85 0.15 2 0.98 0.02
2015/02 5 0.86 0.14 5 0.90 0.10 5 0.86 0.14 3 0.91 0.09 5 0.86 0.14 6 0.90 0.10
2015/03 5 0.90 0.10 5 0.96 0.04 5 0.90 0.10 3 0.96 0.04 5 0.90 0.10 6 0.96 0.04
2015/04 5 0.90 0.10 5 0.94 0.06 5 0.90 0.10 3 0.95 0.05 5 0.90 0.10 6 0.94 0.06
2015/05 10 0.90 0.10 15 0.96 0.04 3 0.92 0.08 3 0.96 0.04 3 0.92 0.08 3 0.96 0.04
2015/06 10 0.87 0.13 15 0.86 0.14 3 0.90 0.10 3 0.88 0.12 3 0.90 0.10 3 0.88 0.12
2015/07 10 0.88 0.12 15 0.48 0.52 3 0.90 0.10 3 0.48 0.52 3 0.90 0.10 3 0.48 0.52
2015/08 10 0.88 0.12 5 0.59 0.41 2 0.93 0.07 1 1.00 0.00 12 0.88 0.12 93 0.58 0.42
2015/09 10 0.89 0.11 5 0.53 0.47 2 0.93 0.07 1 1.00 0.00 12 0.88 0.12 93 0.52 0.48
2015/10 10 0.90 0.10 5 0.59 0.41 2 0.96 0.04 1 1.00 0.00 12 0.90 0.10 93 0.58 0.42
2015/11 10 0.92 0.08 5 0.82 0.18 2 0.97 0.03 2 0.83 0.17 2 0.97 0.03 9 0.82 0.18
2015/12 10 0.93 0.07 5 0.84 0.16 2 0.98 0.02 2 0.84 0.16 2 0.98 0.02 9 0.84 0.16
2016/01 10 0.92 0.08 5 0.87 0.13 2 0.97 0.03 2 0.87 0.13 2 0.97 0.03 9 0.87 0.13
2016/02 5 0.89 0.11 10 0.90 0.10 1 1.00 0.00 1 1.00 0.00 16 0.87 0.13 1 1.00 0.00
2016/03 5 0.83 0.17 10 0.86 0.14 1 1.00 0.00 1 1.00 0.00 16 0.81 0.19 1 1.00 0.00
2016/04 5 0.85 0.15 10 0.93 0.07 1 1.00 0.00 1 1.00 0.00 16 0.84 0.16 1 1.00 0.00
2016/05 15 0.83 0.17 10 0.75 0.25 3 0.87 0.13 1 1.00 0.00 3 0.87 0.13 3 0.75 0.25
2016/06 15 0.85 0.15 10 0.65 0.35 3 0.88 0.12 1 1.00 0.00 3 0.88 0.12 3 0.65 0.35
2016/07 15 0.84 0.16 10 0.71 0.29 3 0.90 0.10 1 1.00 0.00 3 0.90 0.10 3 0.71 0.29
2016/08 15 0.83 0.17 5 0.70 0.30 3 0.90 0.10 2 0.72 0.28 3 0.90 0.10 2 0.72 0.28
2016/09 15 0.82 0.18 5 0.73 0.27 3 0.88 0.12 2 0.77 0.23 3 0.88 0.12 2 0.77 0.23
2016/10 15 0.84 0.16 5 0.84 0.16 3 0.89 0.11 2 0.85 0.15 3 0.89 0.11 2 0.85 0.15
2016/11 15 0.87 0.13 10 0.94 0.06 3 0.91 0.09 1 1.00 0.00 3 0.91 0.09 1 1.00 0.00
2016/12 15 0.89 0.11 10 0.94 0.06 3 0.93 0.07 1 1.00 0.00 3 0.93 0.07 1 1.00 0.00
2017/01 15 0.88 0.12 10 0.92 0.08 3 0.93 0.07 1 1.00 0.00 3 0.93 0.07 1 1.00 0.00
2017/02 10 0.89 0.11 5 0.93 0.07 2 0.94 0.06 2 0.94 0.06 4 0.92 0.08 2 0.94 0.06
2017/03 10 0.81 0.19 5 0.74 0.26 2 0.87 0.13 2 0.82 0.18 4 0.84 0.16 2 0.82 0.18
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Appendix A

A.1. Proof of Theorem 1

Proof. Assume normally distributed error terms, (10) and (22): 𝜀(𝑘, 𝛽) ∼ N{0, 𝜎(𝑘, 𝛽)2}, 𝜀(𝑘, 𝛽) ∼ N{0, �̂�(𝑘, 𝛽)2}. Then

log𝐿{𝜀(𝑘, 𝛽)} = −𝑇
2
log(2𝜋) − 𝑇

2
log 𝜎(𝑘, 𝛽)2 − 1

2𝜎(𝑘, 𝛽)2

𝑇
∑

𝑡=1
𝜀(𝑘, 𝛽)2𝑡 . (30)

Denote 𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} =
∑𝑇

𝑡=1𝜀(𝑘, 𝛽)
2
𝑡 and �̂�(𝑘, 𝛽)2 = 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)}. Then

log𝐿{𝜀(𝑘, 𝛽)} = −𝑇
2
log(2𝜋) − 𝑇

2
log 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} − 1

2𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)}
𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} (31)

= −𝑇
2
log(2𝜋) − 𝑇

2
log 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} − 𝑇

2
(32)

= −𝑇
2
log 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} + 𝐶 (33)

with 𝐶 = − 𝑇
2 log(2𝜋) − 𝑇

2 . Since 𝐶 does not depend on any model parameters, just on the data length 𝑇 , this part of the equation
could be omitted.

AIC{𝜀(𝑘, 𝛽), 𝑠} = 𝑇 log 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} + 2 ⋅ 𝑠 (34)
= 𝑇 log 𝜎(𝑘, 𝛽)2 + 2 ⋅ 𝑠 (35)
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The enhancement in the fit to the Total Market Index (TMI) by adding more constituents, 𝑠, determines the degree of improvement
of the likelihood.

With the linearity property of the expectation operator, assume without loss of generality

𝖤{𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀} = 𝖤{𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋} = 0

𝑡 ∈ {1,… , 𝑇 }

𝑡−𝑙 = 0

𝑠 = 1

𝜎(𝑘, 𝛽) = Var{𝜀(𝑘, 𝛽)}
= Var{𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀 − 𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋}

=
𝑇
∑

𝑡=1

[

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0(

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0 + 𝛽1𝑃𝑘+1,𝑡−1𝑄𝑘+1,0)

}

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0(

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0 + 𝛽1𝑃𝑘+1,𝑡𝑄𝑘+1,0)

}

]

2

=
𝑇
∑

𝑡=1

[

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0 +

𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0𝛽1𝑃𝑘+1,𝑡−1𝑄𝑘+1,0

}

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0 +

𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0𝛽1𝑃𝑘+1,𝑡𝑄𝑘+1,0

}

]

2

Using the relation log(𝑎 + 𝑏) = log(𝑎) + log(1 + 𝑏
𝑎
), it results:

=
𝑇
∑

𝑡=1

[

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

}

+ log

⎧

⎪

⎨

⎪

⎩

1 +
∑𝑘𝑚𝑎𝑥

𝑖=1 𝑃𝑖𝑡𝑄𝑖,0𝛽1𝑃𝑘+1,𝑡−1𝑄𝑘+1,0
∑𝑘𝑚𝑎𝑥

𝑖=1 𝑃𝑖𝑡𝑄𝑖,0
∑𝑘

𝑖=1 𝑃𝑖,𝑡−1𝑄𝑖,0

⎫

⎪

⎬

⎪

⎭

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0

}

+ log

⎧

⎪

⎨

⎪

⎩

1 +
∑𝑘𝑚𝑎𝑥

𝑖=1 𝑃𝑖,𝑡−1𝑄𝑖,0𝛽1𝑃𝑘+1,𝑡𝑄𝑘+1,0
∑𝑘𝑚𝑎𝑥

𝑖=1 𝑃𝑖,𝑡−1𝑄𝑖,0
∑𝑘

𝑖=1 𝑃𝑖,𝑡𝑄𝑖,0

⎫

⎪

⎬

⎪

⎭

]

2

=
𝑇
∑

𝑡=1

(

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

}

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0

}

+

[

log

{

1 +
𝛽1𝑃𝑘+1,𝑡−1𝑄𝑘+1,0
∑𝑘

𝑖=1 𝑃𝑖,𝑡−1𝑄𝑖,0

}

− log

{

1 +
𝛽1𝑃𝑘+1,𝑡𝑄𝑘+1,0
∑𝑘

𝑖=1 𝑃𝑖,𝑡𝑄𝑖,0

}]

)

2 (36)

Solving the derivation and writing the terms which do not depend on 𝛽1 as 𝐴𝑡 and the last part of (36) as 𝐵𝑡:

𝜎(𝑘, 𝛽) =
𝑇
∑

𝑡=1
𝐴𝑡 + 2 log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

}

𝐵𝑡 − 2 log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0

}

𝐵𝑡 + 𝐵2
𝑡

=
𝑇
∑

𝑡=1
𝐴𝑡 + 2𝐵𝑡

[

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

}

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0

}]

+ 𝐵2
𝑡

=
𝑇
∑

𝑡=1
𝐴𝑡 + 2𝐵𝑡

[

𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀 − 𝜀(𝑘, 1)𝐶𝑅𝐼𝑋] + 𝐵2
𝑡

Since normally distributed error terms are assumed, note that 𝛽1 =
𝐶𝑜𝑣{𝜀(𝑘,1),𝜀𝑘+1}

𝑉 𝑎𝑟{𝜀𝑘+1}
, where 𝜀𝑘+1 is the log return of 𝑃𝑖,𝑡𝑄𝑖,0. The change

in the variance will depend on the additional variance which the new constituent can explain, see 𝛽1. Furthermore, it depends on the
value of 𝑃𝑘+1,𝑡𝑄𝑘+1,0 relative to ∑𝑘

𝑖=1𝑃𝑖,𝑡𝑄𝑖,0, (36), which is the summed market value of the constituents in the index. This infers that
constituents with a higher market capitalization are more likely to be part of the index. ■

This gives support to using the often applied top-down approach, which we use for the construction of CRIX too.
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Abstract
New Public Management helps universities and research institutions to perform in a highly

competitive research environment. Evaluating publicly financed research improves trans-

parency, helps in reflection and self-assessment, and provides information for strategic

decision making. In this paper we provide empirical evidence using data from a Collab-

orative Research Center (CRC) on financial inputs and research output from 2005 to 2016.

After selecting performance indicators suitable for a CRC, we describe main properties of

the data using visualization techniques. To study the relationship between the dimensions

of research performance, we use a time fixed effects panel data model and fixed effects

Poisson model. With the help of year dummy variables, we show how the pattern of

research productivity changes over time after controlling for staff and travel costs. The

joint depiction of the time fixed effects and the research project’s life cycle allows a better

understanding of the development of the number of discussion papers over time.
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Introduction

New Public Management (NPM) emerged in the 1980s (Hood 1991) with the goal of

improving efficiency and overall performance of public sector institutions by using busi-

ness management approaches and models. NPM places a strong focus on permanent

monitoring and evaluation of performance. Measuring research performance allows an

analysis of the structural issues in science. It can thus facilitate the development of a

scientific system and strengthen excellence in research.

This paper discusses Collaborative Research Centers (CRC)—long-term university-

based research institutions funded by the German Research Foundation (DFG 2018).

Evaluating publicly financed research results improves transparency, helps in reflection

and self-assessment, and provides information for strategic decision making. Periodic

monitoring of resource use and interim results allows CRC management to keep the finger

on the pulse and to react to unfavourable phenomena promptly or to develop options for

improvement; thereby, supporting success of the CRC.

There are numerous studies that concentrate on the evaluation of university research or

research institutions in general (Pastor et al. 2015; Van den Berghe et al. 1998). Lee (2010)

and Bolli and Somogyi (2011) discuss performance measurements for departments and

research units. Jansen et al. (2007) and Carayol and Matt (2004) further investigate per-

formance indicators for research groups. However, a CRC differs from common research

units or institutions, because of its interdisciplinary background. The performance indi-

cators used for the evaluation of a CRC should be designed specifically for its needs and

purposes in order to reflect the behaviour of involved research fields and other underlying

characteristics.

In this paper we focus on a selection of performance indicators for intermediate and

final evaluations suitable for broad applicability within CRCs and identifying a relationship

between productivity and resource use of CRCs that may have implications for funding

policy. The goals of this paper include: (1) selecting performance indicators suitable for a

CRC; (2) visualizing goals vs. results, societal impact and the interdisciplinarity structure

of research results of a CRC; (3) analysis of a dependence structure between financial

inputs and research output of a CRC and development of research productivity over time.

To achieve these objectives, we use twelve years (2005–2016) of Collaborative

Research Center 649 ‘‘Economic Risk’’ (CRC 649) data on 35 sub-projects. For each sub-

project we observe yearly staff costs, travel costs and number of discussion papers (DPs).

The life span of each sub-project varies, which results in an unbalanced panel.

Schröder et al. (2014) indicate that the proposal for funding determines objectives for

the research activity. To examine the correspondence between objectives and research

results of the CRC, we carry out a semantic analysis of proposals and abstracts from

published DPs. As a result, we find that both use 50% of the same words.

Apart from research activity, a CRC has an impact on society through public events,

transfer of knowledge or promotion of young researchers. For instance, young researchers

usually perform specific theoretical or practical research that is also used for their Ph.D.

thesis. Collecting data on their further career helps to better understand this impact. With

the help of a mosaic plot, we visualize three important dimensions of young researchers

careers after receiving their Ph.D. within the CRC: gender, location and area of work. For

example, we show that almost 70% of young researchers who received their Ph.D. during

CRC membership found later a job in academia.
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Through a network analysis, we illustrate the interdisciplinarity structure of the research

results and find out that most DPs were published in the fields of mathematical and

quantitative methods, followed by financial economics, macroeconomics and monetary

economics.

To study the relationship between research outcomes and funding for the CRC, we

regress the number of DPs on staff and travel costs using sub-project-level data. With the

help of year dummy variables added to the model, we show how the pattern of the sub-

projects’ productivity changed from 2005 to 2016 after controlling for staff and travel

costs. Since the level of spending from the previous year and the preceding number of DPs

may influence the current number of DPs, we additionally control for the lagged variables.

The productivity of each sub-project may differ due to some heterogeneity or individual

effects, such as the skills of a principal investigator (PI), average abilities or skills of

researchers employed at the sub-project, or the specific behavior of a research field. For

instance, working on a publication with one vs. more co-authors, writing in English vs.

other languages, or publishing in books vs. articles may affect the research outcomes

(Zharova et al. 2017). Therefore, we allow for the possibility of individual sub-project’s

effects. Considering the data structure, we apply a time fixed effects panel data (FE) model.

Since the number of DPs is a count variable, we also apply a fixed effects Poisson (FEP)

model.

We show that an increase of staff costs by 100% leads to an expected increase in the

number of DPs by roughly 43% (FE) or 1.62 DPs (FEP). Travel costs have a diminishing

effect on the number of DPs according to estimation results of the considered models. The

previous level of both staff and travel costs negatively influence the number of DPs. We

depict the estimates of coefficients of the dummy variables for years and find that the

development trend corresponds with the stages of a project’s life cycle. For instance, the

most significant declines in the number of DPs take place during the stage of theoretical

and empirical research, whereas the finalization stage corresponds with the growth in the

number of published DPs.

The programmed R codes are available on the web-based repository hosting service and

collaboration platform GitHub.

The remainder of the paper is structured as follows. Literature review on performance

indicators is presented in Sect. 2. Section 3 describes the data and provides some pre-

liminary descriptive analyses. Section 4 introduces the methodology and shows empirical

results. Finally, Sect. 5 summarizes the results.

Literature review

The combination of a peer-reviewed process and quantitative indicators is common

practice in research performance assessment. The German Council of Science and

Humanities (WR, germ.—Wissenschaftsrat) suggests evaluating the research institutions

within three dimensions (research, promoting young researchers and knowledge transfer),

which contain nine research performance criteria (WR 2004). We select five criteria rel-

evant to a CRC and provide a literature review on suitable indicators that may reflect the

performance of the CRC.

1. Research quality shows originality and novelty of research outputs, trustworthiness of

methodology, impact and relevance for further research (Table 1).

2. Effectiveness reflects the contribution of all sub-projects to the development of

expertise in the research field within the CRC and beyond (Table 2).

123

Scientometrics (2018) 117:1023–1040 1025

https://github.com/AlonaZharova/CRC


3. The efficiency criterion describes a quantity of research outputs in relation to a

specific input, i.e. total costs, staff expenditures, number of staff, etc. (Table 3).

4. Research enabling relates to scientific activities that facilitate and support the

research of young researchers (Table 4).

5. Knowledge transfer defines the transfer of research results and products or distri-

bution of knowledge (Table 5).

Data

Collaborative Research Centers (CRC) are interdisciplinary research institutions financed

through the German Research Foundation (germ.—Deutsche Forschungsgemeinschaft,

DFG). The goal of a CRC is to pursue interdisciplinary innovative research by bringing

together scholars from different research fields within multiple research projects, also

called sub-projects. The classical CRC consolidates cooperation between several univer-

sities or non-university research institutions with at least 60% of all sub-projects based in

the coordinating university (DFG 2018).

CRCs are granted for four years and depending on the results of the interim evaluations

can be prolonged twice for a maximum period of twelve years. During the assessment each

sub-project undergoes a critical appraisal. Depending on a change in research program or

staff turnover (professors), a CRC can also submit proposals for new sub-projects. As a

result, the number of research projects may vary between phases.

In this paper we provide empirical evidence using data from a Collaborative Research

Center 649 ‘‘Economic Risk’’ (hereinafter referred to as the CRC). The CRC was launched

in 2005 for a four-year term and extended twice, for a total life span of twelve years. As an

interdisciplinary research center, it combined economics, mathematics and statistics and

pursued research within three primary areas: (1) microeconomics, in particular individual

and contractual answers to risk; (2) quantitative projects, in particular financial markets

and risk assessment; (3) macroeconomic risks. For more information, we refer to the

website of the CRC (CRC 649 2016).

The total number of the CRC sub-projects within three four-year phases is 35, but the

number of sub-projects per phase varies from 16 to 21. Since the sub-projects of the CRC

have different life periods, the data set does not have the observations for all years that

indicates an unbalanced panel, see Fig. 1. The main reason for the panel being unbalanced

Table 1 Research quality

Indicator Definition Literature

Relative reception success

CPub Relation of total number of citations
(NCPub) to the total number of
publications (NPub)

Wissenschaftsrat (2012), Diem and Wolter (2013),
Donner and Aman (2015)

CPub/FCm Number of citations per publication in
relation to the citation’s average of the
field

Wissenschaftsrat (2012), Abramo and D’Angelo
(2011), Moed et al. (2011), Van den Berghe
et al. (1998)

CPub=JCm Number of citations per publication in
relation to the citation’s average of the
journal

Moed (2010), Wissenschaftsrat (2012)
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is the attrition of sub-projects, as a result of research project’s termination or the leave of

principal investigators to other universities, and the establishment of new research projects

during the prolongation phases. For instance, twelve sub-projects had a life cycle of four

Table 2 Effectiveness

Indicator Definition Literature

Research activity

NCosts Total amount of the third party expenses (TPE) Wissenschaftsrat (2012), Schmoch and
Schubert (2009)

NStaff Total number of staff financed from third party
funds (TPF)

Carayol and Matt (2004), Wissenschaftsrat
(2012)

RAunit Research activity of unit (sub-project, SP)—
multiplication of the total number of
publications and the total number of citations
of a unit with regard to the institutions-wide
number of citations for the analyzed period
ðRASP ¼ NPubSP � CPubSP=CPubCRC Þ

Pastor et al. (2015)

Research productivity

NPub Total number of publications Wissenschaftsrat (2012), Abramo and
D’Angelo (2011), Diem and Wolter (2013),
Moed et al. (2011), Hornbostel (1991)

NCPub Total number of citations Wissenschaftsrat (2012)

FNPub Fractional productivity—total number of
contributions to publications, where each
contribution is a publication divided by the
number of co-authors

Abramo et al. (2009), Abramo and D’Angelo
(2011)

ScSPub Scientific strength—weighted sum of
publications authored by each person, where
the weight for each publication is the number
of citations per publication in relation to the
citation’s average of the field ðCPub=FCmÞ

Abramo and D’Angelo (2011), Abramo et al.
(2009)

h h-index Hirsch (2005), Bornmann (2013)

Visibility of the CRC

AbsCPub Absolute citation count in the light of
maximum citation count of a single
publication ðCPubmax

Þ and the number of non-
cited publications (NncPub)

Wissenschaftsrat (2012)

Reputation

List of scientific prizes and awards Zheng and Liu (2015), Wissenschaftsrat
(2012)

Professional activity Wissenschaftsrat (2012)

Editorships

Review activities

Editorial board memberships

Academic functions

Academic memberships

Organized conferences and workshops
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years, eleven sub-projects lasted for eight years and five sub-projects existed twelve years

(see Fig. 1).

Principal investigators (PIs) lead sub-projects. From 35 sub-projects 83% have one PI

and 17% have two PIs. Since three PIs participate in two sub-projects, the CRC counts 38

Table 3 Efficiency

Indicator Definition Literature

NPub=NStaff Relation of the number of publications (NPub) to
the number of research staff (NStaff )

Pastor and Serrano (2016),
Wissenschaftsrat (2012), Abramo and
D’Angelo (2011)

NCPub=NStaff Relation of the number of citations of
publications (NPub) to the number of research
staff (NStaff )

Wissenschaftsrat (2012), Lee (2010)

NCosts=NStaff Relation of the TPE to the total number of
research staff (NStaff )

Wissenschaftsrat (2012), Pastor and
Serrano (2016), Barra and Zotti (2016)

Table 4 Research Enabling / Promotion of young researchers

Indicator Definition Literature

Promotion of young researchers

NYR Total number of positions for
young researchers

Wissenschaftsrat (2012)

NPh:D: Total number of defended
Ph.D.

Wissenschaftsrat (2012), Diem and Wolter (2013), Grözinger
and Leusing (2006), Schmoch and Schubert (2009)

DPh:D: Average duration of Ph.D.
study

Wissenschaftsrat (2004)

NPubPh:D: Total number of publications
by young researchers

Wissenschaftsrat (2004)

List of awards and prizes of
young researchers

Wissenschaftsrat (2012)

List of calls and appointments
for young researchers

Wissenschaftsrat (2012)

Table 5 Knowledge transfer

Indicator Definition Literature

NPat Number of patents Wissenschaftsrat (2011), Carayol and Matt
(2004)

List of Transfer projects

List of activities in public relations Wissenschaftsrat (2012)

List of research products and teaching
materials

Wissenschaftsrat (2012)
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PIs in total over twelve years. PIs of all three academic ranks participate in the CRC: full

professors (76%), junior professors (19%) and postdoctoral researchers (5%).

The CRC uses 62% of resources on average to finance the research staff working within

sub-projects, in particular doctoral (Docs) and postdoctoral (PostDocs) researchers. In

addition, all members of the CRC may use its central funds for travel costs, organizing

conferences and workshops, inviting guest lecturers and researchers, gender equality etc.

The amount of research staff working within sub-projects differs, depending on the

scope and complexity of the research program. Each sub-project counts from 0.5 to 2.5

full-time equivalents (FTEs) of researcher positions per year. The FTEs are often split and

used to hire more research staff, i.e. 2 researchers with 50% financing, or to top up

researchers that are already employed and who are financed by other sources. Figure 2

shows the distribution of sub-projects according to the number of FTEs per year. For

instance, 21 sub-projects have one FTE per year on average, eight sub-projects hire staff on

0.5 FTEs, four sub-projects use 1.5 FTEs and two sub-projects have each 2 and 2.5 FTEs.

In this paper we use data from annual financial reports, internal publications’ and

discussion papers’ (DPs) databases and CRC’s newsletter. Additional insight is gathered

from the texts of one proposal for a launch and two proposals for a prolongation of the

CRC 649 (2005–2008, 2009–2012, 2013–2016) which were submitted to the DFG. On the

one hand, one can see such proposals as goals that the CRC sets for each period. On the

other hand, the published DPs encompass the achieved results of the research activity. We

undertake a semantic analysis on both informational sources, i.e. 61 summaries of sub-

projects from three proposals and abstracts of 771 DPs. The two word clouds of the top 75

keywords are illustrated in Fig. 3. We find that both use 50% of the same words. The

Fig. 1 Distribution of sub-projects (SP) over life span in years

Fig. 2 Distribution of sub-projects according to the number of research staff (in FTE per year)
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different size of the same words, for instance the word ‘‘risk’’, indicates that the number of

times the word is mentioned in the proposals and abstracts differs.

One of the primary goals of a CRC is the high-quality instruction, supervision and

support of young researchers. The common result of this process is a Ph.D. defence.

Collecting data on the further career of the young researchers helps to better understand the

impact on society. For instance, one may wonder how many females that worked and

defended their Ph.D. thesis at the CRC are afterward working in academia in Germany? To

visualize such data we use a mosaic plot in Fig. 4.

The vertical axis splits the individuals according to their gender. The data are further

divided into two groups on the upper horizontal axis according to the location of the job.

The lower horizontal axis shows how many people received a contract in academia or other

fields. The width and height of each segment represent the number of observations within

each group. Consider the 65 members of the CRC that received their Ph.D. from 2005 to

2016. There are 11 female researchers that received jobs in academia in Germany and 6 in

other countries. For males that stayed in academia, the number is 21 for Germany and 7 for

other countries. This means that almost 70% of young researchers who received their Ph.D.

during CRC membership found later a job in an academic institution.

The proportion of 36.9% of female researchers is quite low in comparison to 50.4% for

female doctoral students within CRCs in social sciences and humanities, but higher than

25.7% within CRC in mathematical and natural sciences (DFG 2017). However, since the

CRC pursued interdisciplinary research in both social and mathematical sciences, the CRC

proportion corresponds to the value in-between. As a part of the communication processes

with alumni and mentoring of CRC young researchers, the CRC invited its former

members who got promoted in academia as guest lecturers for CRC seminars or as guest

researchers to work on papers jointly with PIs and/or younger CRC generations.

In order to understand if the intended interdisciplinarity occurred, we analyze DPs that

serve as an outcome of the CRC research activity. Almost each DP has codes indicating

subject fields according to the Journal of Economic Literature (JEL) classification in the

economic sciences (see JEL 2018).

We show the network of collaborating disciplines in Fig. 5. The small gold circles

introduce the DPs, whereas the nodes leading to the bigger blue circles indicate the JEL
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Fig. 4 Mosaic plot of job type, location and gender of 65 CRC members who received their Ph.D. between
2005 and 2016 (as of Dec 2016)

Fig. 5 Network of 760 discussion papers (yellow) and 20 JEL codes (blue) published from 2005 to 2016.
(Color figure online)
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code of the corresponding research area. The size of each blue circle reflects the relative

number of references to DPs. The explanation of JEL codes is given in Table 6. For

instance, most of the DPs were published in the C area, i.e. mathematical and quantitative

methods. They are followed by G (financial economics), E (macroeconomics and monetary

economics) and D (microeconomics). These four fields with higher research output cor-

respond to the three primary areas of the CRC. Note that the DPs that involve research in

more than one field are connected to two or more JEL codes simultaneously. This confirms

the interdisciplinary character of the CRC research output.

One more factor influencing the variability of the number of DPs across research fields

is the area of expertise of PIs and research staff. Figure 6 shows the cumulative number of

PIs within their areas of expertise and Fig. 7 depicts the cumulative number of CRC

research staff (in FTE) working within same research areas for twelve years. Since the

attrition of some sub-projects and establishment of new ones influences the availability of

PIs and research staff and accordingly their expertise within the CRC life cycle, we use

cumulative numbers. We also use weights for the number of the sub-projects and expertise

areas for each PI to equalize the total time available for research. For example, the PI who

is an expert in four research areas receives 0.25 for each JEL code and the PI who leads

two sub-projects has 0.5 for the distribution within JEL areas of each project.

Figures 6 and 7 show, for instance, that the area D reveals 24 years of PIs expertise and

15 years of research staff (in FTE) work. Both figures provide evidence that the most

expertise is concentrated within the area C, followed by E, D, G and Q. This also explains

the concentration of research output within corresponding JEL areas in Fig. 5. The

Table 6 JEL Classification System

Code Research field

A General Economics and Teaching

B History of Economic Thought, Methodology, and Heterodox Approaches

C Mathematical and Quantitative Methods

D Microeconomics

E Macroeconomics and Monetary Economics

F International Economics

G Financial Economics

H Public Economics

I Health, Education, and Welfare

J Labor and Demographic Economics

K Law and Economics

L Industrial Organization

M Business Administration and Business Economics/Marketing/Accounting/Personnel Economics

N Economic History

O Economic Development, Innovation, Technological Change, and Growth

P Economic Systems

Q Agricultural and Natural Resource Economics/Environmental and Ecological Economics

R Urban, Rural, Regional, Real Estate, and Transportation Economics

Y Miscellaneous Categories

Z Other Special Topics

123

1032 Scientometrics (2018) 117:1023–1040



correlation between the number of DPs and number of PIs specializing in the same JEL

areas is 93.8% (95% for full professors only), whereas the correlation between the number

of DPs and the amount of research staff (in FTE) working within same fields is 95.1%.

Analysis of research productivity

The observed time series across the same sub-projects indicate the longitudinal or panel

structure of the data. To investigate the relationship between the input and the output

variables, we use the methods designed for panels.

Methodology

The basic framework for the panel data analysis shows the model (Wooldridge 2002):

yi ¼ bXi þ ui; i ¼ 1; . . .;K; ð1Þ

where yi ¼ ðyi1; . . .; yiTÞ> is a (1� T) vector of observations for t ¼ 1; 2; . . .; T , Xi ¼
ðx>i1; . . .; x>iTÞ

>
is a (K � T) matrix of observations, b is a (K � 1) vector of coefficients and

ui is a (1� T) vector of unobservables.

The unobserved sub-project’s effect may contain such factors as publishing behavior in

a research field, average researchers’ abilities or skills of principal investigators of sub-

projects that should be roughly constant over time.

We allow for arbitrary correlation between the unobserved sub-project’s heterogeneity

or fixed effects ci and the observed explanatory variables xit and, therefore, use the fixed

effects model for each i (Wooldridge 2016):

Fig. 6 Cumulative number of PIs (in PI years; full professors—blue, junior professors—red, postdoctoral
researchers—orange) from 2005 to 2016 (weighted by the number of research fields and sub-projects) with
expertise in corresponding JEL research fields. (Color figure online)

Fig. 7 Cumulative number of research staff in FTE (in staff years; weighted by the number of research
fields) from 2005 to 2016 working within corresponding JEL research areas
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yit ¼ b1xit1 þ � � � þ bkxitk þ ci þ uit; t ¼ 1; 2; . . .; T ; i ¼ 1; 2; . . .;K; ð2Þ

where yit includes dependent variables and xit independent variables for individual i at time

t, b1; . . .; bk are the unknown coefficients, ci is individual effect or individual heterogeneity
and uit are idiosyncratic errors that change across individuals i and time t.

The fixed effects estimator (or the within estimator) is obtained as the pooled OLS

estimator on the time-demeaned variables. The strict exogeneity assumption on explana-

tory variables, EðuitjXi; ciÞ ¼ 0, provides that the fixed effects estimator is unbiased

(Wooldridge 2016). As the number of sub-projects (clusters) is large, statistical inference

after OLS should be based on cluster-robust standard errors to account for heteroscedas-

ticity and within-panel serial correlation (Cameron and Miller 2015).

Next, we are interested in the pattern of sub-projects’ productivity, i.e. number of

produced discussion papers, in different time periods. For this purpose we use time fixed

effects that change over time but are constant across sub-projects. We include the dummy

variables for T � 1 years to avoid the multicollinearity. Usually the first year is selected as

a base year. The time fixed effects model (FE) is (Stock and Watson 2003):

yit ¼ b1xit1 þ � � � þ bkxitk þ d1 þ d2D2 þ � � � þ dTDT þ ci þ uit; ð3Þ

where D2; . . .;DT are time effects and d1; . . .; dT are the parameters to estimate.

When the dependent variable involves count data, it has a Poisson distribution instead of

a normal distribution. Hausman et al. (1984) introduce a fixed effects Poisson model (FEP)

as:

Eðyitjxi; aiÞ ¼ ailðxit; b0Þ; t ¼ 1; 2; . . .; T ; ð4Þ

where b0 is a (1� K) vector of unknown parameters to be estimated and l is the condi-

tional mean. Wooldridge (1999) further derives a consistent estimator for FEP using a

quasi-conditional maximum likelihood estimator (QCMLE).

Empirical results

Before presenting the estimates, we explain some specifications of the model. Since the

yearly staff and travel costs are in nominal Euros, a slight increase may happen due to

inflation. One possibility to deal with this is an adjustment using a Consumer Price Index

(CPI). Another way to track the effect of real spendings is the use of a logarithmic form.

The interpretation of the estimation results is then done using the level-log model. Here we

use the second approach.

Table 7 presents the results of FE (1) and (2), and FEP (3) and (4) models for the

number of DP as a dependent variable. The parameters of interest are staff costs

blogStaffCosts, travel costs blogTravelCosts and year-specific influence dyear. We also include

lagged variables into the models (2) and (4), since the current number of research outputs

may be affected by the previous number of publication and invested funds in economic

sciences and mathematics (Zharova et al. 2017). The models (2) and (4) encompass the

number of DPs bnDPt�1
, staff costs blogStaffCosts and travel costs blogTravelCosts in the time

t � 1. The intercept const is the average of individual effects ci across all sub-projects that

is reported by Stata. We use cluster-robust standard errors to account for heteroscedas-

ticity. The significance level of all estimates decreases as a result of standard error

adjustment (Wooldridge 2016).
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Table 7 Estimation results for time fixed effects (within) regression (models (1) and (2)) and fixed effects
Poisson regression (models (3) and (4)) with number of DP (nDP) as the dependent variable and with robust
standard errors adjusted for clusters in sub-projects

Dependent variable: nDP FE model FEP model

(1) (2) (3) (4)

blogStaffCosts 1.38** 1.62* 0.47*** 0.43**

(0.61) (0.88) (0.12) (0.19)

blogTravelCosts � 0.94* � 0.34 � 0.22** � 0.04

(0.55) (0.47) (0.10) (0.09)

d2006 1.61 1.92 0.25 0

(1.36) (1.61) (0.26) (omit.)

d2007 � 1.20 � 2.55 � 0.30 � 0.98***

(1.38) (2.46) (0.31) (0.25)

d2008 � 0.95 � 2.03 � 0.23 � 0.97***

(1.30) (2.10) (0.32) (0.36)

d2009 � 2.05* � 3.16 � 0.54* � 1.20***

(1.13) (1.98) (0.33) (0.23)

d2010 � 1.93* � 2.13 � 0.51* � 1.03***

(1.14) (2.68) (0.30) (0.31)

d2011 1.10 0 0.33* 0

(0.70) (omit.) (0.20) (omit.)

d2012 � 2.79* � 3.60* � 0.71** � 1.90***

(1.46) (1.78) (0.34) (0.20)

d2013 � 2.98** � 3.18 � 0.80** � 1.32***

(1.30) (2.52) (0.32) (0.41)

d2014 � 1.36 � 1.73 � 0.44 � 0.99***

(0.95) (1.61) (0.27) (0.37)

d2015 � 2.55** � 1.90 � 0.74** � 1.02***

(1.17) (1.77) (0.33) (0.31)

d2016 � 0.30 0 � 0.31 � 0.69*

(1.79) (omit.) (0.36) (0.41)

const � 2.37 0.05

(5.29) (10.09)

bnDPt�1
0.02 � 0.01*

(0.16) (0.03)

blogStaffCostst�1
� 0.66 � 0.25

(0.59) (0.23)

blogTravelCostst�1
� 0.21 � 0.02

(0.58) (0.13)

R2 0.20 0.21

AIC 706 437 463 253

BIC 742 469 501 258

***, ** and * indicate a statistical significance at 1%, 5% and 10% level, respectively. Standard deviation is
provided in brackets
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In (2) and (4) two years were omitted because of collinearity. In (3) five observations

were dropped out of the analysis because there was only one observation per group.

Performing analysis on unbalanced data slightly increases the estimated effects of con-

sidered variables, but the general idea remains unchanged (Wooldridge 2016).

In the model (1) we see the positive, significant effect of staff costs on the number of

DPs. 1.38/100 is the unit change in n DP when staff expenses increase by 1%. In other

words, a 100% increase in staff costs leads to an increase in the number of DPs by 1.38.

Similarly, the model (2) shows that a 100% increase in staff costs increases the number of

DPs by 1.62, holding other variables constant. The fit of the FE models in (1) and (2) in

Table 7 with nDP as the dependent variable is almost the same, indicating that including

lagged variables does not significantly improve the model.

The FEP estimates have a different interpretation. For instance, the coefficient on

blogStaffCosts shows that a rise of staff costs by 100% leads to an increase of the number of

DPs by 47% and 43% for models (3) and (4) correspondingly. The coefficients on staff

costs estimates for four models in Table 7 are significant at 1% to 10% level. The influence

of previous values of staff costs on the number of DPs is negative and insignificant.

Travel costs have a diminishing effect on the number of DPs according to estimation

results of considered models. The coefficient on blogTravelCosts implies that, if we increase

the travel costs by 100%, we expect the number of DP to decrease by 0.94 DP due to FE

model (1). The Poisson coefficient in (3) means that an increase in logTravelCosts by 10%

decreases nDP by 2% (0.22�0.10).

The coefficients on the year dummy variables reveal how the average productivity of

sub-projects changes over time. As 2005 is selected as the base year, it is not reported with

a coefficient. The coefficient on d2006 in model (1) shows that, on average, 1.6 DPs are

attributed to the year effect of 2006 holding other factors fixed. In Poisson case (3) one

suggests that the expected number of DPs in 2006 is 25% higher than on average. The

coefficients on d2006 and d2011 indicate a positive increase in the number of DPs even

without changing expenses. The omission of year dummies would lead to the attribution of

this positive effects to the effects of costs change.

One can see that the year effects have a negative impact on the number of DPs in the

majority of years for all models. The project’s life cycle could explain this. Research

projects generally have five main stages: proposal development, funding review, project

start-up, performing research and finalization of the project. We map the estimates of

coefficients of the models and fit the stages of life cycles in Figs. 8 and 9. Proposal

development and funding review take place before 2005 and are not depicted in these

Figures.

A highly demanding application for a CRC requires extensive preliminary research. The

results of this preliminary research are published as DPs in the first year 2005, thus,

creating a specific bias towards later research outputs produced during the CRC’s life time.

The three following increases in the number of DPs take place mainly in the finalization

stage caused by the publishing of research results in the final stage of projects. The

research output of the last phase in 2016 shows part of the positive trend. In fact, 28 DPs

were published in 2017, after the CRC was officially finished and financing ended. Three

major declines could be explained by the theoretical and empirical stage of the research in

the middle of each project life cycle. In summary, the joint depiction of the time fixed

effects and the research project’s life cycle allows a better understanding of the devel-

opment of the number of DPs over time.
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Conclusions

Our findings show that the performance indicators suitable for the intermediate or final

evaluation of a CRC facilitate a better understanding of the dependence structure between

research productivity and financial inputs, and provide relevant information for successful

decision and policy making.

As a result of semantic analysis of the text from proposals for the CRC submitted to the

DFG and the abstracts from published DPs, we find out that two word clouds standing for

goals and results use 50% of the same words. Aiming to visualize a further career path of

young researchers that received their Ph.D. within the CRC, we use mosaic plot with

dimensions gender, location and area of work. We show that almost 37% are females and

70% of young researchers found a job in academia.

We describe the interdisciplinary structure of research results with the help of the

network analysis. We show that such fields as mathematical and quantitative methods,

financial economics, macroeconomics and monetary economics and microeconomics are

Fig. 8 Estimates of coefficients on the year dummy variables for the time fixed effects (within) regression
(models (1) and (2)). The lower part of the figure shows the corresponding stage of the research project life
cycle
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the most reflected in the published DPs. These fields correspond to the primary research

areas of the CRC. Moreover, the most of research output takes place in the areas that have

more PIs with corresponding expertise. Additionally, the sub-projects with more research

staff are expected to produce more DPs. The network visualization provides also evidence

that one of the main goals of the interdisciplinary research center—interdisciplinarity—is

achieved.

Using time fixed effects panel data model and fixed effects Poisson model, we show that

increasing staff costs by 100% raises the number of DPs of a sub-project by 1.62 or 43%

according to the estimates of FE and FEP models correspondingly. Travel costs have

diminishing effect on the number of DPs according to our estimation results. We analyse

the change in productivity of the CRC over time for reasons not captured by the other

independent variables using the dummy variables for years. We depict the estimates of

coefficients for years and show the possible association between the trend and the stages of

a project’s life cycle. For instance, the major declines in the number of DPs take place

during the stage of theoretical and empirical research, whereas the finalization stage may

correspond to the growth in the number of published DPs.

Fig. 9 Estimates of coefficients on the year dummy variables for the fixed effects Poisson regression
(models (3) and (4)). The lower part of the figure shows the corresponding stage of the research project life
cycle
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Zharova, A., Härdle, W.K. & Lessmann, S. (2017). Is scientific performance a function of funds? SFB 649
Discussion Paper, 2017(28).

Zheng, J., & Liu, N. (2015). Mapping of important international academic awards. Scientometrics, 104(3),
763–791.

123

1040 Scientometrics (2018) 117:1023–1040



Stat. Risk Model. 2018; 35(3–4): 89–110

Research Article

Ying Chen*, Wolfgang K. Härdle, Qiang He and Piotr Majer

Risk related brain regions detection
and individual risk classification with
3D image FPCA
https://doi.org/10.1515/strm-2017-0011
Received April 14, 2017; revised August 3, 2018; accepted October 13, 2018

Abstract:Understanding how people make decisions from risky choices has attracted increasing attention of
researchers in economics, psychology and neuroscience. While economists try to evaluate individual’s risk
preference through mathematical modeling, neuroscientists answer the question by exploring the neural
activities of the brain. We propose a model-free method, 3-dimensional image functional principal compo-
nent analysis (3DIF), to provide a connection between active risk related brain region detection and indi-
vidual’s risk preference. The 3DIF methodology is directly applicable to 3-dimensional image data without
artificial vectorization or mapping and simultaneously guarantees the contiguity of risk related brain regions
rather than discrete voxels. Simulation study evidences an accurate and reasonable region detection using
the 3DIF method. In real data analysis, five important risk related brain regions are detected, including pari-
etal cortex (PC), ventrolateral prefrontal cortex (VLPFC), lateral orbifrontal cortex (lOFC), anterior insula
(aINS) and dorsolateral prefrontal cortex (DLPFC), while the alternative methods only identify limited risk
related regions. Moreover, the 3DIF method is useful for extraction of subjective specific signature scores
that carry explanatory power for individual’s risk attitude. In particular, the 3DIF method perfectly classifies
both strongly andweakly risk averse subjects for in-sample analysis. In out-of-sample experiment, it achieves
73%–88%overall accuracy, amongwhich 90%–100%strongly risk averse subjects and49%–71%weakly
risk averse subjects are correctly classified with leave-k-out cross validations.

Keywords: fMRI, FPCA, GLM, risk attitude, SVD

MSC 2010: 62H12, 62P10

1 Introduction

Understandingpeople’s risk preferences andhowpeoplemakedecisionsunder riskhaveboth attractedmuch
attention in industry and academia alike. Accurate risk classification is of benefit both to creditors including
banks, retailers, mail order companies, utilities and various other organizations, and to the applicants avoid-
ing over commitment, see [16]. While the traditional classification approaches rely on expert knowledge,
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experience and even a subjective feeling to categorize an individual to be risk averse or risk seeking, there
has been an increasing demand in statistical methods for quantitative complements to the formal art alike
analysis systems. Discriminant analysis, linear regression, logistic regression and decision trees have been
developed and implemented in literature.

To explain the decision making behaviors, classical expected utility theory has been widely adopted in
economics, see [23, 28, 31, 50]. The utility theory assumes that a rational decision maker chooses a strategy
that maximizes the average or expected value of a concave utility function among possible outcomes, see
e.g. [36] for the properties of utility functions. The utility functions depend on parameters that represent
individual’s risk preferences and are estimated based on the individual’s characteristics. Alternatively, risk-
return models [30] determine the average or expected returns and the associated risks of different choices,
and compute a risk-compensated value in the capital asset pricing models, see [43, 51, 52]. The traditional
models, though demonstrating some decision making philosophy in a common sense, are unable to explain
the heterogeneity in decision-making under similar risk attitudes from person to person in the experiments
of behavioral economics and neuroscience, see [3, 5, 10, 21, 44].

Decision-making is indeed a complex neural process involving both cognitive and emotional factors.
According to [23] and [44], individuals not only estimate the expected value of utility or return, but more
importantly, they seem to adapt these estimates by subjective factors, such as risk preference. It thus becomes
scientifically necessary and important to answer which parts of the human brain regulate specific decision-
making tasks and which neural processes drive investment decisions, see [25, 33, 37, 41]. It is also interest-
ing to ask whether the identification of the risk related brain regions helps to explain the heterogeneity of
individual risk preference and its impact on making decision from the neural aspect.

The recent development on neural image data collection allows quantitative analysis to be possible.
In modern risk perception and investment decision (RPID) experiments, subjects are requested to make
decisions with uncertain outcomes and simultaneously their brain reactions are recorded as neural images
by the functional magnetic resonance imaging (fMRI) scanner. The neural images or fMRI data reflects the
changes in the brain’s blood flow at volume and oxygen level during neural activities. The blood-oxygen-
level-dependent (BOLD) signals are captured on 3-dimensional (3D) spatial maps of brain voxels during the
experiments.

Given the fMRI data collected in the risk related experiments, specific brain regions have been found to
be associatedwith risk related decisionmaking. Tobler, O’Doherty, Dolan and Schultz [45] demonstrated that
lateral orbifrontal cortex (lOFC) and medial orbifrontal cortex (mOFC) are related to the evaluation and the
contrast of risky or sure choices. Mohr, Biele, Krugel, Li and Heekeren [33] discovered that risk averse indi-
viduals have greater brain activities in lateral orbifrontal cortex (lOFC) and posterior cingulate cortex (PCC).
Mohr, Biele and Heekeren [32] evidenced the importance of anterior insula (aINS) and ventrolateral pre-
frontal cortex (VLPFC) to value processing, risk and uncertainty. Van Bömmel, Song, Majer, Mohr, Heekeren
and Härdle [47] found parietal cortex (PC) is associated with value processing and selective attention. The
risk related regions are quantified as the voxels significantly activated by the stimulus, which turn out to
be contiguous in modest size relative to the visual or audial cortex. Two techniques – general linear model
(GLM) method and principal component analysis (PCA) method – are by far the most popular to identify the
risk related regions.

The model-based GLM technique depends on a parametric structure, see e.g. [9, 11, 48]. It only focuses
on the neural information with a pre-defined design matrix and ignores any neural activity other than the
priori specified modeling. The PCA technique is model free and has potential to detect risk related regions
without making any constraint or subjective assumptions, see [2, 4, 27]. Without losing much variability, it
extracts spatial factors to represent the risk related brain regions, while the individual risk attitude of the
subject is explained by the factor loadings named signature scores via an orthogonal decomposition.

The PCA method however needs a conversion of the fMRI data to a vector of discrete signals, leading
to extremely high dimensionality when applied to the high resolution image data. To solve the estimation
challenge, singular value decomposition (SVD) has been proposed with a reduced dimension of covariance
matrix, see [13]. Nevertheless, the PCA and SVDmethods conducted in a discrete framework cannot guaran-
tee the contiguity of risk related regions rather discrete voxels, see [19].
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This motivates the adoption of functional principal component analysis (FPCA), see [39, 40]. In FPCA,
the vectorized fMRI data is smoothed as a continuous curve, for which eigen-decomposition is performed,
see [29, 47, 49]. Zipunnikov, Caffo, Yousem, Davatzikos, Schwartz and Crainiceanu [54] further proposed
the functional SVD (FSVD) approach that improved computational efficiency with the utilization of the SVD
technique. It is worth noting that the FPCA and FSVDmethods both request vectorizing the BOLD signals that
are naturally defined on 3D location coordinates to 1D domain. Given the high resolution of fMRI data, with-
out sufficient knowledge of spatial interdependence of the brain, the pre-processing vectorization potentially
impairs accuracy and efficiency for the risk related region detection and further for the risk classification.

It is necessary to ask why not directly analyze the fMRI signals in the 3D domain and howmuch accuracy
can be improved by employing such a new technique. In our study, we propose a model-free 3-dimensional
image functional principal component analysis (3DIF) method to identify risk related regions and extract
subject signature scores. Simulation study and real data analysis demonstrate good quality of the detected
risk related regions with stable accuracy and contiguity property. The 3DIF regions are further found to
carry explanatory power for subjects’ risk attitudes. In the application of risk classification, the 3DIF method
reaches 100% accuracy for in-sample analysis and 73%–88% overall accuracy for out-of-sample analy-
sis. In particular, it correctly classifies 90%–100% strongly risk averse subjects and 49%–71%weakly risk
averse subjects by using leave-k-out cross validations.

The remainder of the paper is structured as follows. Section 2 presents the RPID experiment and data.
Section 3 details the 3DIF methodology and briefly reviews the alternative methods in literature. Section 4
reports the performance of the proposed 3DIF method under different scenarios. In Section 5, we implement
the 3DIF to real data. Section 6 concludes.

2 RPID experiment and data

To investigate the mechanism of brain processes during the process of making decisions under risk, we
analyze functional magnetic resonance imaging (fMRI) data on seventeen subjects who were exposed to an
RPID experiment designed in [33]. The experiment uses streams of investment returns as stimuli and hypo-
thesizes how individual risk attitude affects decisions in risky choices against sure choices. Figure 1 displays
a graphic illustration of the experimental setup. Each experiment trial composes of two phases. The presenta-
tion phase displays a random Gaussian distributed return stream with ten observations that are sequentially
displayed over 2 × 10 seconds. After a 2.5 seconds break, subjects are exposed in the decision phase to one
of three types of tasks and have to give an answer within the next 7 seconds. The three types of tasks included
the decision task, where subjects choose either a 5% fixed return (sure choice) or the investment of the ran-
dom return stream just shown (risky choice). In the other two tasks subjects report their subjective expected
return (scaling from 5% to 15%) and perceived risk (from 0 = no risk to 100 = maximum risk) of the just dis-
played investment. Each trial is repeated 27 times, with the types of tasks randomly selected. In total, there
are 3 × 27 trails for each subject. During the experiment, subjects were placed in the fMRI scanner and high
resolution (91 × 109 × 91) images were acquired every 2.5 seconds.

The seventeen subjects were native German speakers, healthy and right-handed. All participants had
no history of neurological or psychiatric diseases. They were paid for their participation and gave written
informed consent. The return streams were independent from trial to trial, randomly drawn from a Gaussian
distribution. The expected value of the return streams varied from 6%, 9%, to 12%and standard deviations
from 1%, 5% to 9%. The combinations generated in total nine different Gaussian distributions associated
with various risk-return relationships, e.g. low return (6%) and low risk (1%) as well as high return (12%)
and high risk (9%).

The same data had been studied by two works in the existing literature. Mohr, Biele, Krugel, Li and
Heekeren [33] conducted the general linearmodel (GLM)with six design factors. The factors are either subject
specific values including e.g. return stream, perceived risk, expected value of the return stream, or dummy
variables. The study detected value-reward related brain activity in bilateral dorsolateral prefrontal cortex
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Figure 1: Graphic illustration of one trail of the RPID experiment, see [33].

(DLPFC), posterior cingulate cortex (PCC), ventrolateral prefrontal cortex (VLPFC), and medial prefrontal
cortex (MPFC), which is consistent to [1, 22, 24–26, 35, 46]. It also found that perceived risk correlated
significantly with the BOLD signal in the anterior insula (aINS), as documented in a variety of studies by
[8, 14, 20, 34, 37, 38, 42]. However, GLM detection depends on the significance of statistical tests, which are
hard to extract subject specific signals for further analysis.

Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] proposed a panel version of the dynamic
semiparametric factormodel (PDSFM) to reanalyze the data. The approach however only detected two impor-
tant risk-related regions and did not contain any activation regions previously reported in [33] except Parietal
Cortex (PC). Subject signature scoreswere extracted andused in risk classification.Using the variance of these
stimuli responses as input for the classification algorithm, it obtained very high classification rates at 97%
for strongly risk averse individuals and 75% for weakly risk averse with the SVM classifier by applying the
double leave-one-out cross-validation algorithm.

3 Method

Our interest is to propose a dimension reduction technique on 3D space to improve prediction in the fMRI
study of association between risk preferences and brain activity. In this section, we detail the 3D image func-
tional principal component analysis (3DIF)method that is directly applicable to high-dimensional functional
data and guarantees the contiguity of detected risk related brain regions. We show how to identify common
spatial factors and extract subjective specific scores. The spatial factors are used to construct common risk
activation regions that do not dependent on subjects, while the heterogeneity of individual risk attitude is
explained by the subjective specific scores.

Let Y(j)t (x1, x2, x3) denote the observed fMRI signal at time t = 1, . . . , N for subject j = 1, . . . , J at 3D spa-
tial location (x1, x2, x3), where x1 ∈ P1, x2 ∈ P2, x3 ∈ P3 are defined in a bounded cube P1 × P2 × P3 ⊂ ℝ3.
In our study, J = 17 subjects and N = 1360 scanned images. The brain is measured in a cube of size
[1, 91] × [1, 109] × [1, 91], i.e. around 106 voxels per scan. A tensor B-spline smoother is used to smooth
each time-specific brain image and it leads to continuous 3D functional data, denoted as f (j)t (x1, x2, x3).
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3.1 3D image functional principal component analysis (3DIF)

For any continuous functional data ft(x) with x = (x1, x2, x3), one can represent it in a vector format

f (x) = Cϕ(x), (3.1)

where C is an (N × K3)-dimensionalmatrix of B-spline coefficients, N is the number of time points in the fMRI
data and K refers to the number of knots in each spatial direction, and

ϕ(x) = [ϕ1(x1, x2, x3), ϕ2(x1, x2, x3), . . . , ϕK3 (x1, x2, x3)]⊤

are the continuous basis functions generated by tensor products of univariate splines. Thus K3 is the total
number of the basis functions.

In the factor extraction experiment, we are able to assume the fMRI images to be independent and iden-
tically distributed. Denote the covariance function of the functional data

G(x, s) = Cov{f(x), f(s)}

and its sample estimator

Ĝ(x, s) = N−1
N
∑
t=1

ft(x)ft(s). (3.2)

The covariance operator V is defined as

Vf = ∫
P1

∫
P2

∫
P3

G( ⋅ , x)f(x)dx.

Similarly to the orthogonal decomposition in the multivariate PCA, we have for the 3D image functional data

Vξ = ∫
P1

∫
P2

∫
P3

G( ⋅ , x)ξ(x)dx = λξ(x),

where ξ(x) and λ denote the eigenfunction on the 3Ddomain and the eigenvalue respectively. The eigenvalues
are real and non-negative λ1 > λ2 > ⋅ ⋅ ⋅ ≥ 0.Without spatial information loss or distortion due to vectorization
in e.g. FPCA, the first functional factor ξ1(x1, x2, x3) corresponding to the largest eigenvalue λ1 accounts for
as much of the variability in the data as possible, and each succeeding functional factor ξℓ(x1, x2, x3) in turn
has the highest variance possible under the constraint that it is uncorrelated with the preceding ones.

Plugging (3.1) into (3.2), we obtain

Ĝ(s, x) = N−1ϕ⊤(s)C⊤Cϕ(x),

and the orthogonal decomposition equation as

∭N−1ϕ⊤(s)C⊤Cϕ(x)ϕ⊤(x)b d(x) = λϕ⊤(s)b,

where the eigenfunction ξ = ϕ⊤b with b being a coefficient vector. Define

W =∭ϕ(x)ϕ⊤(x)dx.

By solving

N−1W
1
2 C⊤CW

1
2 u = λu, (3.3)

where u = W
1
2 b and the coefficient vector b satisfies b⊤i Wbi = 1 and b⊤i Wbj = 0, we obtain the eigenfunc-

tion that contains spatial information and hence will be used to construct the common spatial factors of
the fMRI data.
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3.2 Multilinear model

To obtain common spatial factors across subjects, we borrow the idea of panel data analysis by averaging
fMRI signals over subjects at each time t:

Ȳt(x1, x2, x3) = J−1
J
∑
j=1

Y(j)t (x1, x2, x3), t = 1, . . . , N.

The averaged signals are smoothed over a tensor B-spline regression with K = 16 knots in every spatial direc-
tion. The eigenfunctions are obtained by the 3DIF orthogonal decomposition in Section 3.1.

The eigenfunctions consist of not only important regions attributed to risk perception and investment
decisions but also other neural activities unrelated to the investigated stimuli and possible magnetic noises.
To remove the impact of noises, the spatial factors are constructed by trimming the eigenfunctions at extreme
quantiles such as [0.05%, 99.95%] levels and replacing the “non-active” voxels with zeros. Moreover, we
only consider the first L eigenfunctions and denote the trimmed factors as common risk related regions,
denoted as ξ̂ℓ(x1, x2, x3)with ℓ = 1, . . . , L, since only the first spatial factors are fundamental and necessary.
By doing this, the original high dimensionality is reduced to a small number of common spatial factors.

Heterogeneity of individual risk attitude are extracted in the multilinear regression that projects the raw
fMRI signals on the common spatial regions:

Y(j)t (x1, x2, x3) =
L
∑
ℓ=1

Z(j)ℓ,t ξ̂ℓ(x1, x2, x3) + ε
(j)
t (x1, x2, x3), (3.4)

where ε(j)t (x1, x2, x3) denotes the idiosyncratic noise of the j-th subject, which is independently and iden-
tically distributed with zero mean and constant variance. The subject-specific factor loadings Z(j)ℓ,t are
calculated by ordinary least squares regression at time t for subject j:

min
Z(j)ℓ,t ∑x1 ,x2 ,x3 {Y

(j)
t (x1, x2, x3) −

L
∑
ℓ=1

Z(j)ℓ,t ξ̂l(x1, x2, x3)}
2
.

The multi-subject 3DIF estimation procedure can now be summarized as follows:
(1) Take the average Ȳt(x1, x2, x3) of the raw 3D fMRI data across all subjects and obtain the smoothed 3D

image functional data ft(x1, x2, x3).
(2) Perform3DIF to construct common spatial functional factors ξ̂ℓ(x1, x2, x3) via (3.3) and trim out insignif-

icant active regions at e.g. 0.05%− and 99.95%+ quantiles.
(3) For every subject, estimate the subject-specific factor loadings Z(j)ℓ,t with the multilinear regression (3.4)

that will be further used to classify risk attitude of the subject.

4 Simulation

Before implementing the proposed 3DIF method to real data, we perform a simulation study to investigate
its performance under known data generating processes. Our primary interest is to see how much the 3DIF
method will improve the detection accuracy of the risk related brain regions compared to the alternative
1-dimensional functional approach. Moreover, we study how robust is the region detection with respect to
the size of the risk activation brain regions.

Our simulation studies are designed to properly reflect real data at hand. The fMRI signals are generated
for a “brain” defined in the dimensions of [1, 91] × [9, 100] × [11, 81]. In previous literature five regions
including PC, VLPFC, lOFC, aINS and DLPFC have been identified to be active under risk related tasks. In the
first simulation study, we consider five regions that are contained in the literature documented places and
specify each of them to a 3 × 3 × 3 cube for a simple demonstration. In particular, PC is defined at location
[51, 53] × [25, 27] × [60, 62], VLPFC at [27, 29] × [89, 91] × [38, 40], lOFC at [54, 56] × [97, 99] × [30, 32],
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Figure 2: Visualization of the double gamma function.

aINS at [63, 65] × [75, 77] × [37, 39], and DLPFC at [66, 68] × [77, 79] × [53, 55]. The regions are constant
in the data generation.

Two kinds of factor loadings are considered: Gaussian distributed random loadings, and a more realistic
situation by incorporating the haemodynamic response function (HRF) in the random loadings. The HRF is
generated by a double gamma function (see [12, 15, 19, 53]):

h(t) = ( t
a1b1
)
a1
e−

t−a1b1
b1 − c( t

a2b2
)
a2
e−

t−a2b2
b2 ,

where a1 = 6, a2 = 12, b1 = b2 = 0.9 and c = 0.35. Compared to the pure random factor loadings, the HRF
scenario mimics the working process of the fMRI scanners, where HRF triggers brain activities. Figure 2
illustrates how the double gamma function reflects the haemodynamic response function (HRF).

Figure 3 gives an illustration of one simulated convolution of double gamma function and the generated
factor loadings with HRF.

The 3D image signals are generated to represent brain signals recorded by the fMRI scanner during an
RPID experiment:

f (NFL)t (x1, x2, x3) =
5
∑
ℓ=1

Zℓtξℓ(x1, x2, x3) + εt(x1, x2, x3),

f (HRF)t (x1, x2, x3) =
5
∑
ℓ=1
{Zℓt + h(t)}ξℓ(x1, x2, x3) + εt(x1, x2, x3),

where NFL refers to the scenario with only normal random factor loadings, while HRF incorporates the
impact of HRF in the fMRI signals. The five functional factors ξℓ(x1, x2, x3) have been defined in the loca-
tions (x1, x2, x3) as mentioned before and are constant over time. The factor loading Zℓt corresponds to the
ℓ-th spatial factor at time point t = 1, . . . , 1000. In both the NFL and HRF scenario, the factor loadings are
Gaussian distributed with mean zero and standard deviations of 7.6, 5.8, 5.2, 1.8, and 1.7 respectively
learned from the real data. The random noise εt(x1, x2, x3) is standard normal distributed and independent
from each other. Each generation is repeated 100 times.

We implement two methods to identify the common spatial factors: 3DIF and FSVD proposed by [54].
Bothmethods handle continuous functional data, however 3DIF directly analyze the fMRI signals in 3D space
while FSVD is only applicable for 1D functional data though the latter employs the singular value decompo-
sition (SVD) approach to achieve better estimation feasibility and accuracy. In the simulation study, we chose
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Figure 3: Simulated factor loadings. On top is the double gamma function. The bottom is the simulated factor loadings,
which are the sum of the double gamma function and the normal random loadings. The red dots highlight time points
when the stimulus are triggered.

K = 16 in each direction leading to K3 = 4096 basis functions to utilize the largest computational power for
each direction. It is worth noting that the designed risk related regions are only used in the fMRI data gen-
eration and will not be utilized in the following decomposition and factor computation. Instead, they are
retained to evaluate the detection accuracy. In both methods, the active regions are defined as the trimmed
spatial functional factors over the 99.999% quantile and below the 0.001% quantile.

As an illustration, Figure 4 displays one active region lOFC associated with evaluating and contrasting
different option choices [45]. From top to bottom, one observes the generated (true) region, the identified
regions by the 3DIF method and the FSVD approach. The active regions are highlighted as bright areas. Both
methods detect the region, however 3DIF performs better in several aspects. In the NLF case, 3DIF explains
more variation for the fMRI signals thanFSVD, i.e.56.3%against55.2%, see Table 1. The variance explained
increaseswhen the number of factor increases.Moreover, 3DIF providesmore clear-cut results, i.e. if the iden-
tified spacial factor corresponds to only one actual region, and simultaneously has less mis-detection, i.e. by
wrongly identifying non-active regions. See Table 2 for the average percentage of the true regions detected by
each estimated functional factor. More than 60% of the estimated functional factors correspond to exactly
one region in 3DIF. The value drops to 43.33% in FSVD. As for mis-detection, 3DIF mistakenly detects 28%
andFSVDhasmore at36.83%.More importantly, 3DIFprovides contiguous regions insteadof discrete voxels
thanks to itsmathematical properties, see the contour plot of lOFC in Figure 5. On the other hand, FSVD iden-
tifies discrete voxels, due to the adoption of SVD in the discrete space, which improves estimation efficiency
but at cost of contiguity. The relative good performance applies to the HRF scenario, too.While 3DIF explains
69.5% variation, FSVD reaches to 55.9%. When using 3DIF, 70% of the detected risk regions correspond to
exactly one active region, 23.33% are mis-detected and less than 7% are mixture of risk regions. The alter-
native FSVDmethod has only 54% of one-to-onematch, more than 30%mis-detection and 15% ofmixture.
Again, 3DIF accurately and reasonably detects a contiguous region, while the FSVD gives discrete voxels.

Now we repeat the above two experiments with different designs on the active regions to investigate the
robustness of 3DIF. In particular, the five active regions are generated with varying sizes to reflect a more
realistic situation. Following the study of [33] on the size of identified brain regions, our spatial moder-
ate assumptions state that the spatial factors are active at location [51, 54] × [25, 28] × [60, 63] for Pari-
etal Cortex (64 voxels), [27, 29] × [88, 91] × [38, 41] for VLPFC (48 voxels), [52, 59] × [92, 99] × [28, 35] for
lOFC (512 voxels), [62, 66] × [74, 78] × [37, 39] for aINS (75 voxels), and [64, 70] × [73, 79] × [51, 57] for
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Figure 4: Functional factors on lOFC. From top to bottom are the generated (true) region, the estimated region with 3DIF
and the estimated region with the FSVD method.

Factor

1 2 3 4 5 6 Total

NFL: 3DIF 24.2% 4.5% 4.2% 9.9% 1.7% 11.7% 56.3%
NFL: FSVD 19.2% 0.7% 1.6% 21.5% 4.8% 7.4% 55.2%

HRF: 3DIF 25.9% 4.9% 7.0% 16.2% 5.7% 9.8% 69.5%
HRF: FSVD 20.5% 2.2% 3.3% 17.8% 1.2% 10.7% 55.9%

Table 1: Variance explained by different number of spatial factors for NFL with Gaussian random factor loadings
and HRF incorporating HRF in the factor loadings. Two methods have been implemented: 3DIF and FSVD.

Regions

0 1 2 ≥ 3

NFL: 3DIF 28.00% 60.67% 11.33% 0.00%
NFL: FSVD 36.83% 43.33% 19.50% 0.33%

HRF: 3DIF 23.33% 70.00% 6.67% 0.00%
HRF: FSVD 31.33% 54.00% 14.67% 0.00%

Table 2: Average percentage of the estimated functional factors that detect the true regions; “0 region” means
no active region and hence a nonzero values indicates mis-detection.
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(a) (b)

(c) (d)

Figure 5: Contour plot of the estimated active region lOFC in NFL (top) and HRF (bottom) cases. On the left is the estimated
region with 3DIF and on the right is the estimated region with FSVD.

Regions

0 1 2 ≥ 3

NFL: 3DIF 27.00% 62.67% 10.33% 0.00%
NFL: FSVD 32.17% 52.33% 15.50% 0.00%

HRF: 3DIF 18.50% 79.67% 1.83% 0.00%
HRF: FSVD 27.67% 61.33% 11.00% 0.00%

Table 3: Robust: average percentage of the estimated functional factors that detect the true regions; “0 region” means
no active region and hence a nonzero values indicates mis-detection.

DLPFC (343 voxels). The factor loadings and the noise level remain the same as in the previous experiments.
Both normal and HRF factor loadings are considered. Each data generation is repeated 100 times.

We still implement the 3DIF and FSVD methods to the generated fMRI data. As the average number of
voxels now is about eight times of that in the previous simulations, the active regions are trimmed at extreme
quantiles. Results evidence a stable performance. Again, 3DIF provides better identification, see Table 3 for
the average percentage of the true regions detected by each estimated factor. In the NFL case, 62.67% of
the estimated functional factors are associated with exactly one region, 27% are mis-detected and 10.33%
are mixed. On the contrary, the alternative method performs worse with less one-to-one match at 52.33%,
moremis-detection at 32.17% andmixture at 15.5%. In the HRF case, 3DIF still outperforms the alternative
with 79.67% one-to-one match, 18.50%mis-detection and 1.83%mixture, compared to 61.33%, 27.67%
and 11.00%by FSVD. Similarly, the 3DIFmethod provides realistic contiguous regions, while the alternative
FSVD detects discrete voxels, see Figure 6 for the contour plot of the risk region lOFC as illustration.
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(a) (b)

(c) (d)

Figure 6: Robust: contour plot of the active region on lOFC. The left column is the estimated region in 3DIF and the right column
is the estimated region with FSVD method. The top row is the result for NFL with normal factor loadings and on the bottom is
the result for HRF with HRF incorporated in factor loadings.

The simulation study shows that the proposed 3DIF outperforms the alternative functional approach,
with better quality of risk related regions detected. The relative good performance is stable for different sce-
narios with various parameters.

5 Empirical results

We implement the proposed 3DIF method to the fMRI signals data collected in the RPID experiment as
described in Section 2,whichmimics real-life investment decisions by providing subjectswith return streams
of investments. We assume that all subjects exhibit homogenous brain structure. In other words, the spatial
maps are common for all, while the individual differences are represented by the subject specific scores. We
report the detected common risk related regions and compare with several alternative methods. We classify
subjects’ risk perception based on the extracted subject specific signals, i.e. signature scores, and evaluate
the risk classification accuracy with the help of psychological risk-return (PRR) model.

5.1 Computational time

The analyzed fMRI data are high dimensional (91 × 109 × 91 × 1 360 scans = 1,227,575,440) and require
large memory (17 × 1.3 GB). The 3DIF method is implemented on twelve cores ProLiant BL680c G7 server
equipped with Intel(R) Xeon(R) CPU E7-4860@2.27GHz processors and 252 GB memory loading. The main

Brought to you by | Humboldt-Universität zu Berlin
Authenticated

Download Date | 4/16/19 5:20 PM



100 | Y. Chen et al., Risk related brain regions detection

computation time is spent on computing the tensor integral W =∭ϕ(x)ϕ⊤(x)dx, which exponentially
increases in the number of knots K. Though a large number of knots provides better fit, it extends the com-
putational time. Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] choose the basis function with
fourteen knots in the x- and y-axis and twelve knots in the z-axis to balance accuracy and computational
time. In our study, we increase the number of knots K = 16 in each direction leading to K3 = 4096 basis
functions, to further improve the estimation accuracy by utilizing larger computational power. The computa-
tion of the triple integralW costs 48 hours. It is worth noting that the value of the triple integral only depends
on the B-spline basis functions and hence can be used for other fMRI data analysis. With the value ofW, the
computation of 3DIF only needs 4 hours to complete.

5.2 Alternative methods

For comparison, two alternative methods have been implemented on the same data. Mohr, Biele, Krugel, Li
and Heekeren [33] conducted the general linear model (GLM) with six design factors on the individual fMRI
data. Van Bömmel, Song, Majer, Mohr, Heekeren and Härdle [47] proposed a panel version of the dynamic
semiparametric factor model (PDSFM) to reanalyze the data. See Section 2 for details of their findings.

In addition, we consider threemoremethods that have previously been proposed in literature. We imple-
ment them to analyze the same data, including singular value decomposition (SVD) – a multivariate statis-
tical technique – in a discrete framework, and two functional data analysis methods functional principal
component analysis (FPCA) and functional SVD (FSVD) in a continuous but 1-dimensional space.

SVD: Denote the vectorized fMRI signal data as Y = [Y1, Y2, . . . , YN] that has p × N dimensions with
p = 91 × 109 × 91 and N = 1360 in our study, SVD decomposes the discrete data averaged over subjects
and constructs common spatial factors of risk-related brain regions Y = ΓΛ 1

2 U⊤, where Γ is a p × N orthonor-
mal matrix, Λ is a diagonal matrix and U is an N × N orthogonal matrix. The ℓ-th spatial factor is constructed
with the ℓ-th column of Γ. Compared to the classic principal component analysis (PCA), SVD is computation-
ally efficient and feasible with reduced dimensionality, i.e. decomposing a p × N sample matrix instead of
a p × p covariance matrix given that p ≫ N, when dealing with high-dimensional data. It however ignores
contiguity nature of the fMRI signals, which leads to discontinued active regions.

FPCA and FSVD: The FPCA method estimates eigenfunctions in a functional framework. Similar to the pro-
posed 3DIF method, the vectorized data is smoothed but using 1D basis functions and one performs eigen-
decomposition for the covariance operator. Denote the covariance operator by V we have Vξ = λξ , where ξ
represents the eigenfunction corresponding the eigenvalue λ, see [39, 40]. The FPCA approach, though guar-
antees the contiguity of risk related brain regions, is subject to the curse of dimensionality. Zipunnikov, Caffo,
Yousem,Davatzikos, Schwartz and Crainiceanu [54] proposed FSVD,which implements SVD to the smoothed
functional data instead of the discrete raw data to balance the tradeoff between high dimensionality and
computational efficiency. Nevertheless, the two functional data analysis methods requests pre-processing
vectorization, which may misrepresent the raw spatial structure of the fMRI data.

5.3 Risk related regions ξ̂ℓ

The3D ImageFPCA (3DIF) technique is utilized to capture the fundamental spatialmapsunder riskdecisions.
We identify the common spatial factors and use them to represent the brain regions with significant activity
during the RPID experiment. One question remains on how to choose the number of spatial factors, denoted
by L. The larger the number of spatial factors, the better the in-sample accuracy of the fitted model. On the
other hand, too large L leads to over-fitting and poor out-of-sample performance. The selection of the number
of factorsmay rest on the explained variation for differentmodel specification. Table 4 presents the explained
variance averaged over the seventeen subjects for different number of factors. It shows that 86% variation
in the data is attributed to the first spatial factor when using 3DIF, which can be interpreted as the typical
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L

1 2 4 6 20

3DIF 86.03% 88.93% 90.05% 92.78% 94.34%
FSVD 96.50% 96.57% 96.65% 96.74% 97.07%
FPCA 70.06% 81.62% 87.85% 92.82% 95.27%
SVD 96.67% 96.73% 96.80% 96.89% 97.21%

Table 4: Explained variance by different number of spatial factors.

brain activity during the RPID experiment. Alternatively, the dominant component explains 96.50% varia-
tion in FSVD, 70% in FPCA and 98.67% in SVD. Though numerically important, the first spatial factor has
less psychological meaning and is irrelevant to any important risk related regions documented in literature.
On the contrary, the inclusion of subsequent factors allowsmore useful information captured and simultane-
ously enables the detection of important risk related regions. For example, aINS is in modest size relative to
visual or audial cortex but highly relevant to risk perception and investment decisions. Thus, L = 20 is chosen
in our study. In this case, 94%of variation is explained by the 3DIFmethod, which is lower than the alterna-
tives. However, it is worth mentioning that higher variance is explained by the 3DIF spatial factor associated
with important risk related regions. For example, the 3DIF factor for lOFC (ξ̂5) explains 2.73%(the difference
between 92.78% for L = 6 and 90.05% for L = 4), while FSVD (ξ̂5) and SVD (ξ̂5) both contribute 0.09%and
FPCA (ξ̂3) provide 6.23%. We will continue the performance comparison of the data-driven methods in the
risk classification analysis.

Figure 7displays the identified risk related brain regions byusing the proposed3DIFmethod, the alterna-
tive 1D functional data analysis methods FSVD and FPCA, and themultivariate technique SVD. All detect the
risk relatedbrain regions includingparietal cortex (PC), lateral orbifrontal cortex (lOFC) andventrolateral pre-
frontal cortex (VLPFC). The three regions have been documented in literature and also by [33] analyzing the
same data with GLM. However only the proposed 3DIF method successfully finds anterior insula (aINS) that
is associated with value processing, risk and uncertainty. Moreover, the 3DIF method detects the activation
of medial orbifrontal cortex (mOFC) as documented in [47] when analyzing the same data using PDSFM. The
mOFC has been interpreted to be related to evaluation and contrast of various choices [45]. The FPCAmethod
provides over-smoothed regions, though continuous, due to the extremely high dimensionality larger than
220,000 after vectorization. Table 5 summarizes the region detection for the same data by various methods.
The proposed 3DIF method and the GLM [33] both identified five regions, where four of them are consistent.
The alternative FSVD, FPCA and SVD found three regions and the PDSFM [47] obtained two.

Figure 8 displays details of the detected regions by 3DIF. The relevant spatial factors are ξ̂ℓ(x1, x2, x3)
with ℓ = 3, 4, 5, 12, 18, 19. In particular, ξ̂3 and ξ̂12 are located in PC and attributed to risk related processes
and selective attention (see [6, 41]); ξ̂4 is related to the VLPFC region that stands for value processing. The
regionsmOFCand lOFCpickedupby ξ̂5 that are associatedwith evaluating and contrasting of different choice
options [45]. The aINS region is captured by ξ̂18 and related to risk anduncertainty [18], and theDLPFCarea is
highlighted by ξ̂19. Figures 9–11display the detected risk related brain regions by the alternative approaches.
The identified regions of lOFC and VLPFC in Figures 9–11are similar due to the nearby coordinates of the
regions. The center coordinates of the identified lOFC is (61, 94, 31) and of the VLPFC is (30, 94, 36).

PC VLPFC lOFC aINS DLPFC mOFC MPFC

3DIF ✓ ✓ ✓ ✓ ✓
GLM ✓ ✓ ✓ ✓ ✓
PDSFM ✓ ✓
FSVD ✓ ✓ ✓
FPCA ✓ ✓ ✓
SVD ✓ ✓ ✓

Table 5: Detected risk related brain regions for the same fMRI data of the RPID experiments in [33].
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(a) 3DIF.

(b) FSVD.

(c) FPCA.

(d) SVD.

Figure 7: Detected risk-related brain regions by the first twenty eigenfunctions using (a) the 3DIF and alternative methods
including (b) FSVD, (c) FPCA and (d) SVD.
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(a) Parietal Cortex.

(b) VLPFC.

(c) lOFC.

(d) Parietal Cortex.

(e) aINS.

(f) DLPFC

Figure 8: 3DIF: Selected identified risk related regions ξ̂ℓ , ℓ = 3, 4, 5, 12, 18, 19. (a) Estimated function ξ̂12 in Parietal Cortex;
(b) ξ̂4 in VLPFC; (c) ξ̂5 in lOFC; (d) ξ̂3 in Parietal Cortex; (e) ξ̂18 in aINS; (f) ξ̂19 in DLPFC.
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(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 9: FSVD: Selected identified risk related regions. (a) Estimated function ξ̂10 in Parietal Cortex;
(b) ξ̂5 in VLPFC and lOFC.

(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 10: FPCA: Selected identified risk related regions. (a) Estimated function ξ̂2 in Parietal Cortex;
(b) ξ̂3 in VLPFC and lOFC.
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(a) Parietal Cortex.

(b) VLPFC & lOFC.

Figure 11: SVD: Selected identified risk related regions by SVD. (a) Estimated function ξ̂10 in Parietal Cortex;
(b) ξ̂5 in VLPFC and lOFC.

5.4 Subject specific signature scores Z(j)ℓ,t

The dynamic behaviors of the individual brain activities are represented by the subject specific signature
Z(j)ℓ,t with j = 1, . . . , 17, ℓ = 1, . . . , 20, and t = 1, . . . , 1360. Given the risk related regions common for all
subjects, the individual risk perception and attitude during decision making under risk are reflected by the
series of the activation. An interesting question is whether the extracted subject specific signature scores
properly reflect the risk preference of individual. Among others, for the active brain regions that have been
found to be related to risk and uncertainty, the respective signature scores are expected to carry explanatory
power for the heterogeneity of individual risk preferences. Understanding those variations requires a careful
investigation and is presented in the following risk classification study.

5.4.1 Risk attitudes

Mohr, Biele, Krugel, Li and Heekeren [33] quantify the risk preference of the seventeen subjects in the same
experiment with the help of psychological risk-return (PRR) model

Vj(x) = μj(x) − βjσj(x),

where Vj(x) is the value of investment x by subject j, μj(x) is the respective expected return, σj(x) is the per-
ceived risk, and βj is a subject specific weight coefficient and reflects the risk attitude of subject j. Given the
displayed streams of returns in the RPID experiment and the subjects’ answers to the two tasks, i.e. subjec-
tive expected return and perceived risk, the risk weight βj is estimated in a logistic regression framework.
In total, seven subjects (j = 2, 5, 6, 8, 10, 11, 17) are categorized as weakly risk averse with the risk weight
βj < 5, and the remaining ten subjects are classified as strongly risk averse, with higher risk attitudes. The
dichotomization and derived risk attitudes βj are presented in Figure 12.

5.4.2 Risk classification

The aim of risk classification analysis is to investigate the possible relation between neural processes under-
lying investment decisions and subjects’ risk preferences. A classification method is proposed to predict
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Figure 12: Risk attitudes and SVM scores of seventeen subjects. Subjects with risk attitude ≤ 5 are marked as red circles,
otherwise as blue squares.

individual’s risk attitude without any information on his or her decision behavior. Instead, the classification
is performed solely on the extracted signature scores. The RPID consists of three types of tasks, we here only
utilize the decision task, where subject chooses between risky investment return or sure fixed 5%return, and
thus his risk attitude contributes to the perceived value of the displayed return streams and plays a key role
in the decision process. The other two tasks, i.e. subjective expected return and perceived risk, have been
employed in the PRR model to provide a benchmark and will be used to verify the classification accuracy.
Moreover, the analysis is performed for each subject based on six signature scores Z(j)ℓ,t, ℓ = 3, 4, 5, 12, 18, 19,
of the active brain regions that have been found to be related to risk and uncertainty.

Each subject was exposed to 27 decision tasks and had tomake a choice within the next 7 seconds in the
RPID experiment. To investigate the brain reactions to the investment decision task of different groups being
strongly/weakly risk averse, three consequent observations after the s-th stimulus at scan ts are considered,
covering the decision making period over 7.5 seconds. The three signature scores are demeaned by the score
at the stimulus timepoint Z jℓ,ts to capture the peak of theHRF.We compute the average to stand for the average
reaction to stimulus s

∆Ẑ(j)ℓ,ts =
1
3

3
∑
τ=1

Ẑ(j)ℓ,,ts+τ − Ẑ
(j)
ℓ,ts

and the standard deviation of the 27 average reactions as empirical characteristics of subject’s risk prefer-
ence. For each subject, six standarddeviations are obtainedandwill beused in the risk classification analysis.
For the alternative FSVD, FPCA and SVD methods, similar procedures are applied to extract the variables for
risk classification.

Classification analysis is performed via support vectormachines (SVM), see [7, 17]. Subjects are classified
based on their six standard deviations of the average reactions to decision task. For the learning part, the
strongly risk averse subjects are denotedwith1 and theweakly risk averse subjectswith−1. The classification
performance is validated by the estimated risk attitudes, see Section 5.4.1.

We first evaluate the in-sample predictive power of the 3DIFmethod on risk preferences. Figure 12 shows
that the seventeen subjects were perfectly classified, with 100% correction for both strongly and weakly risk
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Overall Strong Weak

k 3DIF SVD FSVD FPCA 3DIF SVD FSVD FPCA 3DIF SVD FSVD FPCA

1 88% 76% 76% 76% 100% 100% 100% 90% 71% 43% 43% 57%
2 82% 76% 76% 76% 100% 100% 100% 89% 55% 43% 43% 56%
3 79% 75% 75% 73% 98% 99% 99% 87% 53% 42% 42% 54%
4 77% 74% 73% 72% 95% 98% 95% 85% 51% 39% 41% 52%
5 74% 71% 70% 69% 92% 95% 91% 83% 50% 37% 39% 49%
6 73% 67% 66% 66% 90% 90% 86% 81% 49% 35% 37% 46%

Table 6: SVM classification rate in percentage points by leave-k-out for the 3DIF, SVD, FSVD and FPCA methods. The overall
refers to the classification rates of all subjects, while strong and weak refer to the classification rates of strongly risk averse
subjects and weakly risk averse subjects respectively.

averse groups. The in-sample classification however by utilizing all the information of subjects may involve
over-fitting problem.We thus employ the leave-k-out cross validation and continue out-of-sample prediction.
Samples are iteratively partitioned to two subsets, i.e. training with N − k subjects and validation with k sub-
jects. The prediction for validation is repeatedly performed based on different training sets. The accuracy
measurements are averaged among all the predictions. The algorithm can be formulated as follows:
(1) Divide subjects into training set with N − k people and test set with size of k.
(2) Apply the leave-k-out cross validation and find the optimal SVM parameters.
(3) Classify the test data.
(4) Repeat (1)–(3) for all different test sets.

Table 6 reports the classification rate (in percentage) by leave-k-out cross validation for k = 1, . . . , 6.
The classification rate is relatively stable, though it reduces slowly as k increases. The 3DIF method provides
consistently better “overall classification” rate than the alternatives, with 73%–88% correction using the
optimal SVMparameters. The classification accuracy is remarkably improved for the strongly risk averse sub-
jects. The 3DIF and SVDmethods are superior in terms of classification accuracy at 90%–100%, while 3DIF
and FPCA perform better for weakly risk averse individuals at 49%–71%. As a comparison, van Bömmel,
Song, Majer, Mohr, Heekeren and Härdle [47] have implemented leave-one-out procedure, i.e. k = 1, and
reached 97% for strongly risk-averse individuals and 75% for weakly risk-averse individual. In summary,
the analysis implies that the signature scores of the selected risk related regions carry explanatory power for
subjects’ risk attitudesderived from their choice in theRPIDexperiment. The riskpreferences canbe classified
by the volatility (standard deviation) of the signature signals with an considerable accuracy. The proposed
3DIF method has consistent reasonable classification power compared to the alternatives.

6 Conclusion

Understanding how people make decisions among risky choices has attracted much attention of researchers
in economics, psychology, and neuroscience.While economists evaluate individual’s risk preference through
mathematical modeling, neuroscientists answer the question by exploring the neural activities in brain. The
existing literature has documented the brain regions of PCC, lOFC, mOFC, VLPFC, VMPFC and aNIS to be
associated with decision making process under risk. Our study implements a model-free method to further
investigate the links between active risk related brain region detection and individual’s risk preference.

The proposed 3D Image FPCA (3DIF) methodology is directly applicable to the 3D image data. It avoids
spatial information distortion during artificial vectorization or mapping and simultaneously analyzes brain
data in the continuous functional domain. Thus, the anatomical brain structure is preserved and efficiently
embraced in the estimation procedure. Moreover, it guarantees the contiguity of brain regions rather than
discrete voxels. The 3DIF decomposes the fMRI BOLD signals into spatial factors, representing the common
spatial maps for all subjects, and the heterogeneity of individual risk preference is explained by subject spe-
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cific signature scores. The spatial factors capture the brain regions with the highest variability throughout
experiment and consequently represent the activation pattern with a reduced number of factors. The rep-
resentation precision is controlled by the number of factors L and even subtle effects can be detected. The
signature scores mimic activation patterns on subject’s risk attitude and correspond to the neural activity of
a particular region of interest. As a result, the 3DIF addresses the key limitations of the GLM and the other
conventional model-free methods such as PDSFM, FSVD, FPCA and SVD.

The performance is evidenced by our extensive simulation study, where in different setups, region detec-
tions and modeling performance were reasonably achieved. Furthermore, our technique outperforms the
alternative competitor as the preservation of the spatial brain structure really pays off. In real data analysis,
3DIF detected five risk related regions, which is consistent to the study in [33]. The alternative methods on
the other hand only identified limited risk related regions.

Investment decision may be described as a process of evaluating and contrasting of various choices with
uncertain outcomes. In this framework the risk preferences are the crucial factor which affects the subjec-
tive value of investment. To improve our understanding of the underlying neural activities, we provided the
statistical analysis of the extracted signature scores selected in the decision making context. The focus is
on the variability in the HRF after the decision stimulus, captured by the score series. The standard devia-
tions derived from the subject-specific responses served as an input in the SVM classifier. We perform both
in-sample and out-of-sample risk classifications. In addition to perfect correction for in-sample, the 3DIF
provides nice and stable performance for out-of-sample with leave-k-out cross validation, with the best over-
all classification rate at 73%–88%, the 90%–100% for strongly risk averse and 49%–71% for weakly
risk averse. One can conclude that the 3DIF method exhibits better explanatory power for subjects’ risk
preferences than the alternatives.

Funding: This research was supported by the FRC grant and IDS grant at the National University of Sin-
gapore. The authors also acknowledge the support of the Deutsche Forschungsgemeinschaft through the
SFB 649 “Economic Risk” and the International Research Training Group (IRTG) 1792 “High-Dimensional
Non-Stationary Time Series”.
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