Dynamics of Correlation Risk

Wolfgang Karl Härdle Elena Silyakova

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. Centre for Applied Statistics
and Economics
School of Business and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de

Market baskets

Basket correlation

$$\sigma_B^2 = \sum_i w_i^2 \sigma_i^2 + \sum_i \sum_{j \neq i} w_i w_j \sigma_i \sigma_j \rho_{ij}, \tag{1}$$

where σ_i standard deviation, w_i basket weight of the *i*-th stock, ρ_{ij} correlation between the *i*-th and the *j*-th stock, $i, j \in \{1, ..., N\}$.

$$\text{Replace} \left[\begin{array}{cccc} 1 & \rho_{12} & \cdots & \rho_{1N} \\ \rho_{21} & 1 & \cdots & \rho_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{N1} & \rho_{N2} & \cdots & 1 \end{array} \right] \text{ with } \left[\begin{array}{cccc} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{array} \right],$$

then

$$\rho = \frac{\sigma_B^2 - \sum_i w_i^2 \sigma_i^2}{\sum_i \sum_{j \neq i} w_i w_j \sigma_i \sigma_j}$$
 (2)

is the basket correlation.

Measure of basket diversification

Empirical evidence (N big) $0 \le \rho \le 1$, Bourgoin (2001). Define:

$$\sigma_{B,\min}^2 = \sum_i w_i^2 \sigma_i^2 \tag{3}$$

$$\sigma_{B,\max}^2 = \sum_i w_i^2 \sigma_i^2 + \sum_i \sum_{j \neq i} w_i w_j \sigma_i \sigma_j \tag{4}$$

Substituting (3) and (4) to (2) gives ρ a new interpretation:

$$\rho = \frac{\sigma_B^2 - \sigma_{B,min}^2}{\sigma_{B,max}^2 - \sigma_{B,min}^2} \tag{5}$$

Dynamics of DAX diversification

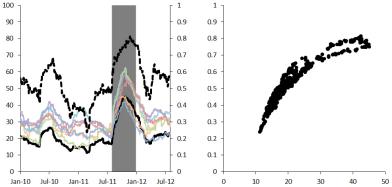


Figure 1: solid lines: $\sigma_{t+0.25}$ (18) of DAX and some constituents (Adidas, BMW, Siemens, Daimler, E.ON, Lufthansa) dashed line: $\rho_{t+0.25}$ (2), right panel: scatter plot $\sigma_{t+0.25}$ vs $\rho_{t+0.25}$, for t+0.25 from 20100104 till 20120801, shaded area: Aug 2011 market fall vertex examples

Define RC and MFIC

- □ calculate the realized variance (RV) $\sigma^2_{t+\tau,B}$ of a basket and $\sigma^2_{t+\tau,j}$ (constituents) via (18)
- **□** obtain the realized correlation (RC) $\rho_{t+\tau}$ via (2)
- \Box calculate the model free implied variance (MFIV) $\tilde{\sigma}_{t,B}^2(\tau)$ of a basket and $\tilde{\sigma}_{t,i}^2(\tau)$ (constituents) via (19)
- obtain the model free implied correlation (MFIC) $\tilde{\rho}_t(\tau)$ via (2) RV and MFIV

Motivation

Can exposure to RC (MFIC) be profitable?

Compare:

$$\tilde{\rho}_{t}(\tau) = \frac{\tilde{\sigma}_{t,B}^{2}(\tau) - \sum_{i} w_{i}^{2} \tilde{\sigma}_{t,i}^{2}(\tau)}{\sum_{i} \sum_{j \neq i} w_{i} w_{j} \tilde{\sigma}_{t,i}(\tau) \tilde{\sigma}_{t,j}(\tau)}$$
(6)

$$\rho_{t+\tau} = \frac{\sigma_{t+\tau,B}^2 - \sum_i w_i^2 \sigma_{t+\tau,i}^2}{\sum_i \sum_{j \neq i} w_i w_j \sigma_{t+\tau,i} \sigma_{t+\tau,j}}$$
(7)

- $\odot \sigma_{t+\tau}^2 \tilde{\sigma}_{tB}^2(\tau) < 0$
- $\odot \ \tilde{\sigma}_{t,i}^2(\tau) \sigma_{t+\tau,i}^2 \approx 0$
- \square expect $\tilde{\rho}_t(\tau) \rho_{t+\tau} > 0$, how to exploit this knowledge?

$\tilde{\rho}_t(\tau)$ vs $\rho_{t+\tau}$ - arbitrage opportunity?

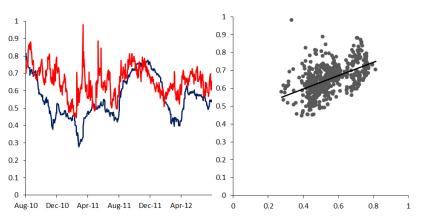


Figure 2: $\rho_{t+\tau}$ (blue) $\tilde{\rho}_t(\tau)$ (red), right panel: scatter plot $\rho_{t+\tau}$ vs $\tilde{\rho}_t(\tau)$, for t+0.25 from 20100802 till 20120801

Dynamics of Correlation Risk

Exposure to $\tilde{\rho}_t(\tau) - \rho_{t+\tau}$

Implement dispersion strategy by trading Variance swaps:

- sell: RV of basket (index)
- buy: RVs of basket constituents

With $N_{var} = 1$ payoff at $t + \tau$:

$$D_{t+\tau} = -\left\{\sigma_{t+\tau,B}^2 - \frac{\tilde{\sigma}_{t,B}^2(\tau)}{\tilde{\sigma}_{t,B}^2(\tau)}\right\} + \sum_{i=1}^{\infty} w_i \left\{\sigma_{t+\tau,i}^2 - \tilde{\sigma}_{t,i}^2(\tau)\right\} = (8)$$

$$\tilde{\rho}_{t}(\tau) \sum_{i} \sum_{j \neq i} w_{i} w_{j} \tilde{\sigma}_{t,i}(\tau) \tilde{\sigma}_{t,j}(\tau) - \rho_{t+\tau} \sum_{i} \sum_{j \neq i} w_{i} w_{j} \sigma_{t+\tau,i} \sigma_{t+\tau,j} \approx^{*}$$

$$\sum_{i} \sum_{i \neq i} w_{i} w_{j} \tilde{\sigma}_{t,i}(\tau) \tilde{\sigma}_{t,j}(\tau) \left\{ \tilde{\rho}_{t}(\tau) - \rho_{t+\tau} \right\}$$
 (9)

* justified by pempirical evidence

Research questions

- $\tilde{\rho}_t(\tau) \rho_{t+\tau} > 0$, does not always hold (Figure 1), so one needs to hedge the dispersion position (8)
- □ Can we use these forecast to hedge the dispersion strategy?

Outline

- 1. Motivation ✓
- 2. Approximating RC with IC
- 3. A Dynamic Factor Model for Implied Correlation
- 4. Data
- 5. Estimation Results and Factor Modeling
- 6. Hedging the basket correlation
- 7. Conclusion

Implied volatility (IV)

We model and forecast RC with implied correlation (IC). IC is a function of implied volatility (IV). Given the theoretical (model) price of an option V and the price observed on the market V, IV $\widehat{\sigma}$ can be found by solving:

$$V(\widehat{\sigma}) - \widecheck{V} = 0.$$

IV contains incremental information beyond the historical estimate and outperforms it in forecasting future volatility, Christensen and Prabhala (1998), Fleming (1998), Blair et al. (2001)

Implied correlation (IC)

Applying (2) to IV of a basket $\widehat{\sigma}_B(\kappa, \tau)$ and its N constituents $\widehat{\sigma}_i(\kappa, \tau)$, $i \in \{1, \dots, N\}$, we obtain the IC surface (ICS):

$$\widehat{\rho}(\kappa,\tau) = \frac{\widehat{\sigma}_B^2(\kappa,\tau) - \sum_i w_i^2 \widehat{\sigma}_i^2(\kappa,\tau)}{\sum_i \sum_{j \neq i} w_i w_j \widehat{\sigma}_i(\kappa,\tau) \widehat{\sigma}_j(\kappa,\tau)},$$
(10)

where $\kappa = \frac{K_i}{S_i e^{r\tau}}$ is common moneyness of the options, τ -common time to maturity, r - the annualized continuously compounded risk-free interest rate, K_i - exercise price of the i-th option, S_i - current price of the i-th underlying.

S&P100 ICS: 20091210

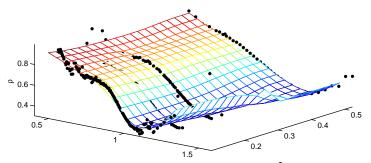


Figure 3: ICS implied by prices of S&P100 options traded on the 20091210, Nadaraya-Watson smoothing of 1-day data

Dynamic modeling of ICS

- Observe an ICS $\widehat{\rho}(\kappa_{t,j}, \tau_{t,j})$, t = 1, ..., T, $j = 1, ..., J_t$ (index of observations at day t)
- $oxed{oxed}$ Apply Fisher's Z-transformation to obtain $Y_{t,j}$
- **⊙** Study the dynamics of {($Y_{t,j}, X_{t,j}$), 1 ≤ t ≤ T, 1 ≤ j ≤ J_t }, where $X_{t,j} = (\kappa_{t,j}, \tau_{t,j})$

ICS with DSFM

Approximate $\mathsf{E}(Y_t|X_t)$ by the sum of L+1 smooth basis functions $m \stackrel{\mathsf{def}}{=} \{m_0,\ldots,m_L\}^\top$ (factor loadings) weighted by time dependent coefficients $Z_t \stackrel{\mathsf{def}}{=} (1,Z_{t,1},\ldots,Z_{t,L})^\top$ (factors):

$$Y_{t,j} = m_0(X_{t,j}) + \sum_{l=1}^{L} Z_{t,l} m_l(X_{t,j}) + \varepsilon_{t,j},$$
 (11)

2-step DSFM estimation procedure

1. estimate the FPCA covariance function

$$\psi(u, v) = \phi(u, v) - \mu(u)\mu(v) \tag{12}$$

and take $\widehat{\mu}$ as \widehat{m}_0 and $\widehat{\gamma}_I$ as \widehat{m}_I , $I \in \{1, \ldots, L\}$, motivated by Hall et. al (2006).

2. estimate time series of factors $\widehat{Z}_t = (\widehat{Z}_{t1}, \dots, \widehat{Z}_{tL})^{\top}$ by OLS.

1st step: estimation of space basis

1. estimate $\widehat{a}_{\mu} = \widehat{\mu}(u) = \widehat{\mu}(v)$:

$$\sum_{t=1}^{T} \sum_{j=1}^{J_t} \{Y_{t,j} - \frac{\partial}{\partial \mu} - b_{\mu} (u - X_{t,j})\}^2 K\left(\frac{X_{t,j} - u}{h_{\mu}}\right)$$

2. estimate $\widehat{a}_{\phi} = \widehat{\phi}(u, v)$:

$$\sum_{t=1}^{T} \sum_{j,k:1 \leq j \neq k \leq J_t} \{Y_{t,j} Y_{t,k} - \frac{\partial}{\partial \phi} - b_{\phi,1} (u - X_{t,j}) - b_{\phi,2} (v - X_{t,k})\}^2$$

$$\times K \left(\frac{X_{t,j} - u}{h_{\phi}}\right) K \left(\frac{X_{t,k} - v}{h_{\phi}}\right)$$

3. use $\widehat{\mu}(u)$, $\widehat{\mu}(v)$ and $\widehat{\phi}(u,v)$ to compute (12) and take its eigenfunctions $\{\widehat{\gamma}_j\}_{j=1}^L$ corresponding to the L largest eigenvalues

Mean function with data

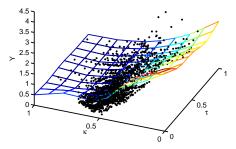


Figure 4: $\widehat{\mu}(u)$ of the DAX ICS with corresponding data points, estimated from November 2009 until October 2010 with $h_{\mu}=(h_{\mu,1},h_{\mu,2})^{\top}=(0.12,0.17)^{\top}$

Eigenfunctions of the covariance operator

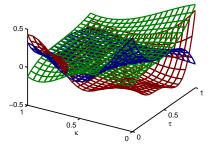


Figure 5: Three first eigenfunctions, $(\widehat{\gamma}_1, \widehat{\gamma}_2, \widehat{\gamma}_3)$, of the DAX ICS covariance operator $\widehat{\psi}$, estimated from November 2009 until October 2010 with $h_{\mu} = (h_{\mu,1}, h_{\mu,2})^{\top} = (0.12, 0.17)^{\top}$ and $h_{\phi} = (h_{\phi,1}, h_{\phi,2})^{\top} = (0.07, 0.085)^{\top}$

2nd step: estimation of factor series

Take \widehat{m} from the 1st step and estimate $\widehat{Z}_t = (1, \widehat{Z}_{t,1}, \dots, \widehat{Z}_{t,L})^{\top}$:

$$\widehat{Z}_{t} = \arg\min_{Z_{t}} \sum_{t=1}^{T} \sum_{j=1}^{J_{t}} \left\{ Y_{t,j} - Z_{t}^{\top} \widehat{m}(X_{t,j}) \right\}^{2}$$
 (13)

IC, MFIC, RC summary statistics

Dispersion strategy from August 2010 to July 2012 on the German market represented by the DAX basket

- MFIC dataset: from daily variance swaps rates (Bloomberg)
 via (6), 20100802 20120801 (24 months), 515 trading days
- □ RC dataset: from daily stock returns (Bloomberg) via (7), 20100802 - 20120801 (24 months), 515 trading days
- IC dataset: from option prices (EUREX) via (10), 20100104 -20120801 (31 months), 656 trading days, 135 obs./day

IC, MFIC, RC summary statistics

		Min.	Max.	Mean	Median	Stdd.	Skewn.	Kurt
IC	κ	0.80	1.20	0.98	0.98	0.09	0.06	2.06
	au	0.02	0.96	0.24	0.17	0.19	1.37	4.39
	$\widehat{ ho}_{t}(\kappa, au)$	0.05	0.99	0.61	0.62	0.15	-0.27	2.61
MFIC	$\tilde{\rho}_t(0.25)$	0.44	0.97	0.65	0.65	0.08	0.06	0.16
	$\tilde{ ho}_t(0.5)$	0.49	1.47	0.70	0.69	0.08	1.81	12.13
	$\tilde{ ho}_t(1)$	0.56	1.08	0.74	0.74	0.09	0.77	0.67
RC	$\rho_{t+0.25}$	0.27	0.81	0.55	0.53	0.11	0.24	-0.80
	$ ho_{t+0.5}$	0.37	0.73	0.57	0.57	0.10	-0.02	-1.40
	ρ_{t+1}	0.43	0.65	0.59	0.60	0.05	-1.24	0.98

Table 1: IC from 20100104 to 20120801 (656 trading days, 135 obs./day), MFIC and RC from 20100802 to 20120801 (515 trading days). The figures are given after filtering and data preparation.

Dynamics of Correlation Risk

Market regime correction

- dependence of $\sigma_{B,t+\tau}$ and $\rho_{t+\tau}$ is stronger if the market volatility is high, empirical evidence
- ont observed for $\widehat{\sigma}_{B,t}(\kappa,\tau)$ and $\widehat{\rho}_t(\kappa,\tau)$, rempirical evidence
- based on regression results make a state-dependent correction of $\widehat{\rho}_t(\kappa, \tau)$:
 - if $\widehat{\sigma}_{B,t}(1,\tau) > 21$ (high volatility regime), then $\widehat{\rho}_t(\kappa,\tau) = 0.0091\widehat{\sigma}_{B,t}(\kappa,\tau)$

DSFM for DAX ICS 2010

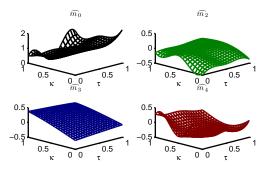


Figure 6: DAX ICS factor loadings \widehat{m}_0 , \widehat{m}_1 , \widehat{m}_2 , \widehat{m}_3 from Nov. 2009 to Oct. 2010

DSFM for DAX ICS 2010

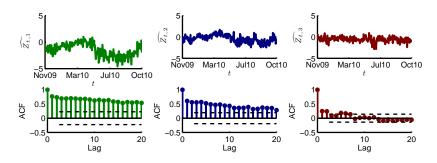


Figure 7: DAX ICS factors $\widehat{Z}_{t,1}, \widehat{Z}_{t,2}, \widehat{Z}_{t,3}$ and their ACFs from Nov. 2009 to Oct. 2010 $(\widehat{Z}_{t,0} \stackrel{\text{def}}{=} 1)$

Hedging dispersion strategy with DSFM, "naïve" hedge

At $t + \tau - \Delta t$ make a Δt -days ahead DSFM forecast $\widehat{\rho}_{t+\tau}(1, t+\tau)$ and use it as $\rho_{t+\tau}$ in (9) to obtain the value of the hedge (opposite) position to be held until $t + \tau$:

$$D_{t+\tau}^{h} = \sum_{i} \sum_{j \neq i} w_{i} w_{j} \tilde{\sigma}_{t,i}(\tau) \tilde{\sigma}_{t,j}(\tau) \left\{ \tilde{\rho}_{t}(\tau) - \widehat{\rho}_{t+\tau}(1, t+\tau) \right\}, \quad (14)$$

then the relative hedging error

Dynamics of Correlation Risk

$$\varepsilon_{t+\tau}^{h} = \frac{D_{t+\tau}^{h} - D_{t+\tau}}{D_{t+\tau}} = -\frac{\widehat{\rho}_{t+\tau}(1, t+\tau) - \rho_{t+\tau}}{\widetilde{\rho}_{t}(\tau) - \rho_{t+\tau}},$$
(15)

 $\varepsilon_{t+ au}^h <$ 0(> 0) means that (14) under-(over-)estimates (8)

Performance of "naïve" hedge, $\tau = 0.083$

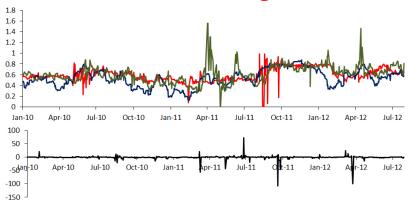


Figure 8: $\widehat{\rho}_{t+0.083}(1, t+0.083)$, $\rho_{t+0.083}$, $\widetilde{\rho}_{t}(0.083)$ and $\varepsilon_{t+0.083}^{h}$, daily moving window estimates for $t+\tau$ from 20100104 until 20120801 (660 trading days), DSFM: T=50, J=49, $h_{\mu}=(0.122,0.128)^{\top}$, $h_{\phi}=(0.153,0.168,0.153,0.168)^{\top}$ by cross-validation Dynamics of Correlation Risk

Performance of "naïve" hedge, $\tau = 0.25$

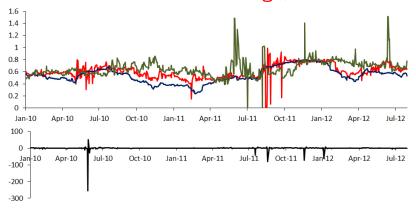


Figure 9: $\widehat{\rho}_{t+0.25}(1,t+0.25)$, $\rho_{t+0.25}$, $\widetilde{\rho}_{t}(0.25)$ and $\varepsilon_{t+0.25}^{h}$, daily moving window estimates for $t+\tau$ from 20100104 until 20120801 (660 trading days), DSFM: T=50, J=49, $h_{\mu}=(0.122,0.128)^{\top}$, $h_{\phi}=(0.153,0.168,0.153,0.168)^{\top}$ by cross-validation Dynamics of Correlation Risk

Performance of "naïve" hedge, $\tau = 0.5$

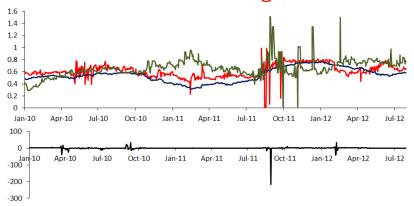


Figure 10: $\widehat{\rho}_{t+0.5}(1,t+0.5)$, $\rho_{t+0.5}$, $\widetilde{\rho}_{t}(0.5)$ and $\varepsilon_{t+0.5}^{h}$, daily moving window estimates for $t+\tau$ from 20100104 until 20120801 (660 trading days), DSFM: T=50, J=49, $h_{\mu}=(0.122,0.128)^{\top}$, $h_{\phi}=(0.153,0.168,0.153,0.168)^{\top}$ by cross-validation Dynamics of Correlation Risk

Performance of "naïve" hedge, $\tau = 1$



Figure 11: $\widehat{\rho}_{t+1}(1,t+1)$, ρ_{t+1} , $\widetilde{\rho}_t(1)$ and ε_{t+1}^h , daily moving window estimates for $t+\tau$ from 20100104 until 20120801 (660 trading days), DSFM: T=50, J=49, $h_{\mu}=(0.122,0.128)^{\top}$, $h_{\phi}=(0.153,0.168,0.153,0.168)^{\top}$ by cross-validation

Dynamics of Correlation Risk

"Naïve" hedge summary statistics

$\overline{\tau}$	Min.	Max.	Mean.	Median	Stdd.	Skew.	Kurt.
0.083	-108.04	72.30	-1.14	-0.71	8.00	-6.61	100.49
	-255.48						
	-216.04						
_ 1	-64.84	76.59	-0.01	-0.38	7.47	2.74	46.85

Table 2: Performance of "naı̈ve" hedge, summary statistics for $\varepsilon_{t+\tau}^h$ from 20100101 until 20120801

"Advanced" hedge

- if $\widehat{\rho}_{t+\tau}(1, t+\tau) \geq \widetilde{\rho}_t(\tau)$ (DSFM predicts loss in dispersion strategy), take an offsetting (with negative sign) position in (14)
- ☑ if $\hat{\rho}_{t+\tau}(1, t+\tau) < \tilde{\rho}_t(\tau)$ (DSFM predicts gain in dispersion strategy), don't hedge
- oxdot payoff of the "advanced" strategy at t+ au

$$D_{t+\tau}^{adv} = \begin{cases} D_{t+\tau} - D_{t+\tau}^h, & \text{if } \widehat{\rho}_{t+\tau}(1, t+\tau) \ge \widetilde{\rho}_t(\tau) \\ D_{t+\tau}, & \text{if } \widehat{\rho}_{t+\tau}(1, t+\tau) < \widetilde{\rho}_t(\tau) \end{cases}$$
(16)

"Naïve" hedge, "advanced" hedge, no hedge $\tau = 0.083$

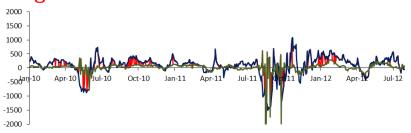


Figure 12: Payoffs of a 1-month dispersion strategy from 20100104 till 20120801 (660 trading days): $D_{t+\tau}$ (no hedge), $D_{t+\tau} - D_{t+\tau}^h$ ("naïve" hedge), $D_{t+\tau}^{adv}$ ("advanced" hedge)

"Naïve" hedge, "advanced" hedge, no hedge , $\tau=0.25$

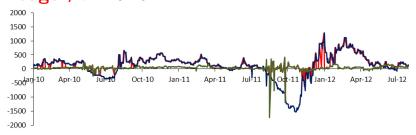


Figure 13: Payoffs of a 3-month dispersion strategy from 20100104 till 20120801 (660 trading days): $D_{t+\tau}$ (no hedge), $D_{t+\tau} - D_{t+\tau}^h$ ("naïve" hedge), $D_{t+\tau}^{adv}$ ("advanced" hedge)

"Naïve" hedge, "advanced" hedge, no hedge, $\tau = 0.5$

Figure 14: Payoffs of a 6-month dispersion strategy from 20100104 till 20120801 (660 trading days): $D_{t+\tau}$ (no hedge), $D_{t+\tau} - D_{t+\tau}^h$ ("naïve" hedge), $D_{t+\tau}^{adv}$ ("advanced" hedge)

"Naïve" hedge, "advanced" hedge, no hedge, $\tau=1$



Figure 15: Payoffs of a 1-year dispersion strategy from 20100104 till 20120801 (660 trading days): $D_{t+\tau}$ (no hedge), $D_{t+\tau} - D_{t+\tau}^h$ ("naïve" hedge), $D_{t+\tau}^{adv}$ ("advanced" hedge)

Strategy	au	Min.	Max.	Mean.	Stdd.
$\overline{}_{bt+ au}$	0.083	-1502.58	1080.23	87.09	356.94
(no hedge)	0.25	-1531.94	1282.31	101.92	440.54
	0.5	-1270.90	1301.28	136.91	456.75
	1	-872.76	760.92	134.26	299.01
$\overline{D_{t+ au}-D_{t+ au}^h}$	0.083	-3237.72	617.40	15.35	203.09
("naïve" hedge)	0.25	-1726.53	413.28	35.90	110.14
	0.5	-1301.47	344.91	41.13	91.91
	1	-914.27	327.03	79.62	93.14
$D_{t+ au}^{ extit{adv}}$	0.083	-1375.99	1011.38	100.93	256.50
("advanced" hedge)	0.25	-1137.79	1282.31	195.09	248.41
	0.5	-760.85	1301.28	231.35	281.66
	0.083	-367.89	623.38	123.04	190.80

Table 3: Summary statistics for $D_{t+\tau}$ (no hedge), $D_{t+\tau} - D_{t+\tau}^h$ ("naïve" hedge), $D_{t+\tau}^{adv}$ ("advanced" hedge) from 20100101 until 20120801, best results (highest min, max,mean and smallest stdd.) are marked red

Dynamics of Correlation Risk

Wolfgang Karl Härdle Elena Silyakova

Ladislaus von Bortkiewicz
Chair of Statistics
C.A.S.E. Centre for Applied Statistics
and Economics
School of Business and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de

Bibliography

Blair, B.J., Poon, S. and Taylor S. J. (2001) Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns *Journal of Econometrics*, 105(1): 5 - 26

Bourgoin, F. (2001)

Stress-testing correlations: An application to portfolio risk management

in Dunis, C. and Timmermann, A. and Moody, J.(eds), Developments in forecast combination and portfolio choice, New York: Wiley

Carr, P. and Madan D.
Towards a theory of volatility trading
Volatility, 417-427, (2002)

Christensen, B.J. and Prabhala, N.R. (1998)
The relation between implied and realized volatility

Journal of Financial Economics, 50(2): 125-150

Fleming, J. (1998)

The quality of market volatility forecasts implied by S&P 100 index option prices

Journal of Empirical Finance, 5(4): 317 - 345

Hall, P., Müller, H. and Wang, J. (2006)
Properties of principal component methods for functional and longitudinal data analysis

Ann. Statist., 34(3): 1493-1517

- Härdle, W. and Simar, L. (2012) Applied Multivariate Statistical Analysis, 3rd edn, Springer Verlag, Heidelberg
- Chicago Board Options Exchange, Incorporated (2009)
 CBOE S&P 500 Implied Correlation Index White Paper
 http://www.cboe.com/micro/impliedcorrelation/default.aspx

Fisher's Z-transformation

 $Y_{t,j} \stackrel{\text{def}}{=} T \{ \widehat{\rho}(\kappa_{t,j}, \tau_{t,j}) \}$, where T is Fisher's Z-transformation:

$$T(u) \stackrel{\text{def}}{=} \frac{1}{2} \log \frac{1+u}{1-u} \tag{17}$$

Härdle and Simar (2012)

→ Back

Appendix —————————————————————9-2

RV and MFIV

oxdot RV is the variance of the asset defined at $t+\tau$ over period from t to $t+\tau$:

$$\sigma_{t+\tau}^2 = \tau^{-1} \sum_{i=252t}^{252(t+\tau)} \left(\log \frac{S_i}{S_{i-1}} \right)^2$$
 (18)

■ MFIV is the risk-neutral expectation (at t) of the integrated volatility from t to $t + \tau$, Britten-Jones and Neuberger (2000), details:

$$\tilde{\sigma_t}^2(\tau) = \frac{2}{\tau} e^{r\tau} \left\{ \int_0^{S_t} \frac{P_t(K, \tau) dK}{K^2} + \int_{S_t}^{\infty} \frac{C_t(K, \tau) dK}{K^2} \right\}, \quad (19)$$

where $P_t(K, \tau)$ { $C_t(K, \tau)$ } put (call) with strike K and maturity τ traded at t, S_t price of the asset in t, r risk free rate, t and τ are given in fractions of a year,

Appendix —————————————————9-3

Variance swap

- oxdot forward contract opened at t that buys RV defined at t+ au
- \boxdot at t+ au pays the difference between RV and MFIV (multiplied by notional N_{var})

$$\left\{\sigma_{t+\tau}^2 - \tilde{\sigma}_t^2(\tau)\right\} N_{var},\tag{20}$$

where $\sigma_{t+\tau}^2$ variable leg of the variance swap defined by (18), $\tilde{\sigma}_t^2(\tau)$ fixed leg (strike) defined by (19)

Variance risk premium (VRP)

Literature findings for $\sigma_{t+\tau}^2 - \tilde{\sigma}_t^2(\tau)$ variance risk premium $(VRP_{t+\tau})$, Carr and Wu (2009), on US market:

→ Back

Variance risk premium (VRP)

Empirical findings for $\sigma_{t+\tau}^2 - \tilde{\sigma}_t^2(\tau)$ variance risk premium $(VRP_{t+\tau})$, Carr and Wu (2009), on German market:

- the most recent sample: German market August 2010 until August 2012
- \boxdot $\sigma_{t+\tau}^2 \tilde{\sigma}_t^2(\tau) < 0$ on average for DAX and all constituents
- □ t-test $H_0: VRP = 0$ ($H_1: VRP < 0$) is strongly rejected for DAX index, but
- for 5 out of 23 stocks we cannot reject the H_0 at 5% significance level

▶ Back

DAX constituents VRP

	au=0.25	au=0.5	au=1
Allianz SE	0.0563	0.0526	0.0225
E.ON AG	0.2519	0.3176	0.0814
Metro AG	0.2931	0.1884	0.0196
RWE AG	0.6322	0.5655	0.0707
ThyssenKrupp AG	0.1964	0.0700	0.0100

Table 4: The results of t-test for H_0 that on average RV = MFIV against the alternative RV < MFIV of stocks for which the the H_0 is not rejected at 5% significance level. Results are presented for DAX index and 23 selected constituent stocks computed over the time period 20100802 - 20120801 for 3 different maturities/estimation windows: $\tau = 0.25, 0.5, 1$)

DAX variance risk premium

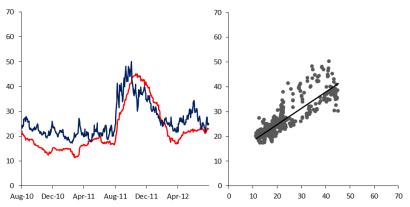


Figure 16: Left panel: $\tilde{\sigma}_{t,B}(0.083)$ vs $\sigma_{t+0.083,B}$ and $VRP_{t+0.083}$ at $t+\tau$ from 20090901 till 20120810, right panel (scatter plot): $\tilde{\sigma}_{t,B}(0.083)$ (vertical axis) vs $\sigma_{t+0.083,B}$ (horizontal axis) Back

RWE variance risk premium

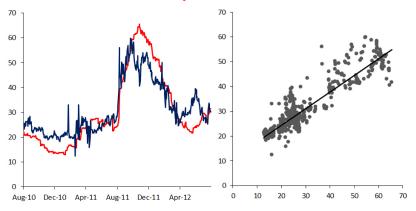


Figure 17: Left panel: $\tilde{\sigma}_{t,RWE}(0.083)$ vs $\sigma_{t+0.083,RWE}$ and $VRP_{t+0.083}$ at $t+\tau$ from 20090901 till 20120810, right panel (scatter plot): $\tilde{\sigma}_{t,RWE}(0.083)$ (vertical axis) vs $\sigma_{t+0.083,RWE}$ (horizontal axis)

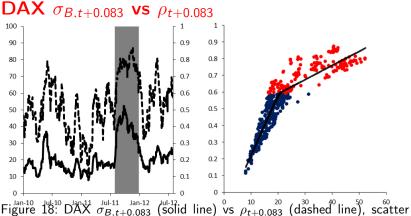
Appendix —————9-9

Switch point selection for correlation regimes

$\overline{\tau}$	$\sigma_{B,t+ au}$	$ ho_{t+ au}$	Slope 1	Slope 2
0.083	20.24	0.5917	0.0361	0.0085
0.25	20.34	0.5728	0.0336	0.0093
0.5	22.42	0.6008	0.0286	0.0094
Average	21.00	0.5884	0.0328	0.0091

Table 5: Segmented linear regression of $\rho_{t+\tau}$ on $\sigma_{B,t+\tau}$ with one break point, $\tau=0083,0.25,0.5$ for $t+\tau$, from 20100104 till 20120801. We fit a segmented linear regression with one break point, as described in Muggeo (2003), Pack to regime correction

Appendix 9-10



plot $\sigma_{B,t+0.083}$ vs $\rho_{t+0.083}$, for t+0.083 from 20100104 till 20120801, shaded area: Aug 2011 market fall, back: Introduction Regime correction

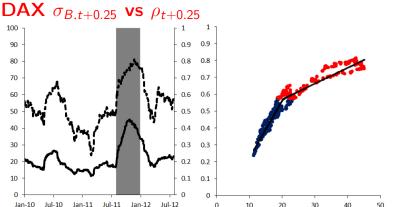


Figure 19: DAX $\sigma_{B,t+0.25}$ (solid line) vs $\rho_{t+0.25}$ (dashed line), scatter plot $\sigma_{B,t+0.25}$ vs $\rho_{t+0.25}$, for t+0.25 from 20100104 till 20120801, shaded area: Aug 2011 market fall, back: Introduction Regime correction

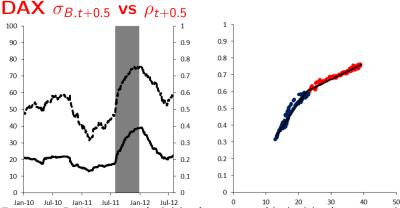


Figure 20: DAX $\sigma_{B,t+0.5}$ (solid line) vs $\rho_{t+0.5}$ (dashed line), scatter plot $\sigma_{B,t+0.5}$ vs $\rho_{t+0.5}$, for t+0.5 from 20100104 till 20120801, shaded area: Aug 2011 market fall, back: Introduction Regime correction

DAX $\widehat{\sigma}_{t,B}(1,0.083)$ **vs** $\widehat{\rho}_{t}(1,0.083)$

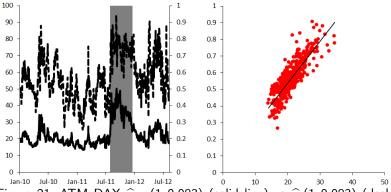


Figure 21: ATM DAX $\widehat{\sigma}_{B,t}(1,0.083)$ (solid line) vs $\widehat{\rho}_t(1,0.083)$ (dashed line), scatter plot $\widehat{\sigma}_{B,t}(1,0.083)$ vs $\widehat{\rho}_t(1,0.083)$, for t+0.083 from 20100104 till 20120801, shaded area: Aug 2011 market fall, back:

► Introduction ► Regime correction

DAX $\hat{\sigma}_{t,B}(1, 0.25)$ **vs** $\hat{\rho}_{t}(1, 0.25)$

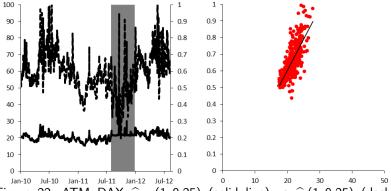


Figure 22: ATM DAX $\widehat{\sigma}_{B,t}(1,0.25)$ (solid line) vs $\widehat{\rho}_t(1,0.25)$ (dashed line), scatter plot $\widehat{\sigma}_{B,t}(1,0.25)$ vs $\widehat{\rho}_t(1,0.25)$, for t+0.25 from 20100104 till 20120801, shaded area: Aug 2011 market fall, back: Introduction

▶ Regime correction

DAX $\widehat{\sigma}_{t,B}(1,0.5)$ vs $\widehat{\rho}_t(1,0.5)$

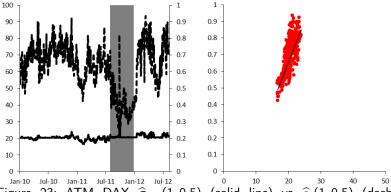


Figure 23: ATM DAX $\widehat{\sigma}_{B,t}(1,0.5)$ (solid line) vs $\widehat{\rho}_t(1,0.5)$ (dashed line), scatter plot $\widehat{\sigma}_{B,t}(1,0.5)$ vs $\widehat{\rho}_t(1,0.5)$, for t+0.5 from 20100104 till 20120801, shaded area: Aug 2011 market fall, back: Introduction

▶ Regime correction

Log contract

Define

$$f(S_t) = \frac{2}{T} \left\{ \log \frac{S_0}{S_t} + \frac{S_t}{S_0} - 1 \right\}$$
 (21)

derivatives:

$$f'(S_t) = \frac{2}{T} \left(\frac{1}{S_0} - \frac{1}{S_t} \right) \tag{22}$$

and

$$f''(S_t) = \frac{2}{TF_t^2} \tag{23}$$

observe $f(S_0) = 0$ Pack

Itô's lemma

$$f(S_t) = f(S_0) + \int_0^T f'(S_t) dS_t + \frac{1}{2} \int_0^T S_t^2 f''(S_t) \sigma_t^2 dt$$
 (24)

Substituting (22), (23):

$$\frac{1}{T} \int_0^T \sigma_t^2 dt = \frac{2}{T} \left(\log \frac{S_0}{S_T} + \frac{S_T}{S_0} - 1 \right) - \tag{25}$$

$$-\frac{2}{T}\int_0^T \left(\frac{1}{S_0} - \frac{1}{S_t}\right) dS_t$$

→ Back

Equation (25) gives the value of σ_R^2 as a sum of:

$$\frac{2}{T} \int_0^T \left(\frac{1}{S_0} - \frac{1}{S_t} \right) dS_t$$

(continuously rebalanced position in underlying stock) and

$$f(S_T) = \frac{2}{T} \left(\log \frac{S_0}{S_T} + \frac{S_T}{S_0} - 1 \right)$$
 (26)

(log contract, static position).

Carr and Madan (2002) represent any twice differentiable payoff function $f(S_T)$:

$$f(S_T) = f(k) + f'(k) \left\{ (S_T - k)^+ - (k - S_T)^+ \right\}$$

$$+ \int_0^k f''(K) (K - S_T)^+ dK$$

$$+ \int_0^\infty f''(K) (S_T - K)^+ dK$$
(27)

where k is an arbitrary number. \square Back

Applying (27) to (26) with $k = S_0$ gives

$$\log\left(\frac{S_0}{S_T}\right) + \frac{S_T}{S_0} - 1 = \tag{28}$$

$$= \int_0^{S_0} K^{-2} (K - S_T)^+ dK + \int_{S_0}^{\infty} K^{-2} (S_T - K)^+ dK$$

a portfolio of OTM puts and calls weighted by K^{-2} . Pack

What are the costs of this strategy? The strike K_{var}^2 of a variance swap is calculated via the risk-neutral expectation:

$$K_{var}^{2} = \frac{2}{T}e^{rT} \int_{0}^{S_{0}} K^{-2}P_{0}(K)dK + \frac{2}{T}e^{rT} \int_{S_{0}}^{\infty} K^{-2}C_{0}(K)dK$$
 (29)

where P_0 (C_0) - value of a put (call) option at t=0.

