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Motivation 1-1

Financial risk

Figure 1: Financial risk
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Motivation 1-2

Objective

[] Risk patterns depend on covariates X

(] Dimensionality issues, X € RP, p — oo

[ Variable selection for Quantile Regression (QR)
[J CoVaR, single index model (SIM)
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Motivation 1-3

Challenges

[0 Model of tails of conditional distribution
(] Dimension reduction
(] SIM estimation combined with variable selection

[J Alternatives to MAVE (minimum average variance estimation)
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Motivation "

Single Index Model

[J Observations {X;, Y;}"_; with
Yi=g(8"' X)) +ei, (1)
where g(-) is the link function, and g* € RP. {¢;}7_; are
independent.
(] pis possible large: p — co.
[J Ey|x=x(¢) = 0 for mean regression.

[ FE_|)1(:X(T) = 0 for quantile regression.
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Motivation 1-5

What is known?

[J MAVE method, Xia et al.(2002)
(] Application in banking, environmental statistics
[J First order "free lunch" /n rate

[ A one dimensional problem for estimating g(+)
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Motivation 1-6

High dimensional SIM

(] How to estimate nonzero 3; 7

] Which rates can we allow for p ?

(] What are the consequences for estimating g(-) 7
[] Sparsistency 7

» Go to details
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Single index model 2-1

A quasi-likelihood approach

Recall (1):
mﬁin E (vix=—xp-{Y —g(B"x)}, (2)
Quantile regression:
pr(u) = Tul{u € (0,00)} — (1 — 7)ul{u € (—o0,0)}. (3)
Expectile regression:

pr(u) = Tuzl{u € (0,00)} + (1 — T)UZ].{U € (—o00,0)}. (4)
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Single index model 2-2

Likelihood approximations

g(B'X) ~g(8'x) +&' (8" x)8" (X — x). (5)
Approximations
L(B) = Ep{Y —g(87x) — g/ (8Tx)8T(X - x)}

KnfB (X =) (6)
Lox(B) = *1Zp7{v g(B"x) — g'(B7x)8T (X — x)}

i=1
Kn{B'(Xi —x)} (7)

where Ki(.) = K(./h)/h with K(.) a kernel function and h a
bandwidth.
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Single index model 2.3

A simple trick

Minimize average contrast (w.r.t. 5):

La(B) € S Lux(6)
j=1

= e a7 X) - ETX)ET (X - X))
j=1i=1
KnfBT (X — X))} (8)

Therefore (in first approach):

~

B = argmﬂinL,,(,B).
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Single index model 2.4

One more trick

Let a; = g(B7X;), bj = g'(B" X;), estimate 3 by:

min Z > pe(Yi = aj = biX] B)wii(B), (9)

Y
(aj7bj) s, J=1i=1

where X; € X — X;, w;(8) = Kn(X] B)/ > Kn(X]] B).
=1
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Single index model 2.5

The final trick

Penalize the dimension p and estimate 3 by:

min ZZPT = 3 = biX; B)wi(B +§ (18”111, (10)
(aj,bj)'s,B % 1 =1 -1
j=1i=
where v,(t) is some non-negative function. > Go to details
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Single index model 2-6

How does this work?

[ B initial estimator of 8* (linear QR with variable selection).
[J For t =0,1,2,---, given 3(t), standardize (), ||| =1,
AY) =1, 4d & fy,\(]@(t)D. Then compute

n
(E(t) E(t)) def arg min ZpT(Y,- —aj— bJ-X,-J-TA(t))w,-j(B\(t))
(aj,bj)’s i=1

[ Given (EJ(t),/BJ(t)), solve

B = argmin 30 32 oo (V; —EJ(-t) _ EJ(.t)XI.JTﬁ)w,-j(E(t))
j=1i=1

+ >0 dilBil.
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Single index model 2-7

Some definitions

Let 3* = (6?1)T7/BE<O)T)T with ﬂik def (,317 e, ﬁq)—l— #0 and

Bloy = (Ba+1,--- ,Bp) T = 0. Xy L sub vector of X;
corresponding to 3(;), Xj(o) corresponding to S,

B\O def argmln*ZZIoT{ i — aj( J(l) 1)5 }

j=1i=1

KBy (Xi) — Xj)}-

where a; = g(50) Xjw). bi = &' (5 X)) Xiw) = Xicw) = Xjaa)
Z = X7 8",
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Single index model 2-8

An amuse gueule of theory

Denote B\ as the final estimate of 3*.

Theorem R R R
Under A 1-5, the estimators 3° and 3 exist and P(3° = ) — 1.
Moreover,

P(F = B) > 1 (p— q)exp(—C'n") (11)
for 0<a<1/2.
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Single index model 2.9

Antipasti Theory

Theorem
Let0<a< @<l 2 <, D,=o0(n17%2/2), g =0(n*).

152032, Xiywisy) Xii) 200 = O(n'721), A = O(y/q/n). Then
1By — Byl = Op{(AD + n712)/q} (12)
For any unit vector b in R9, we have
bC \/_(ﬁ(l)—ﬁ )—>’V(0 o2) (13)
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Single index model 2-10

~am

Antipasti Theory \z

where 3(1) def (Bj)jeM*’ M, ={j: B # 0} be the true model.
def

Gy = E{lg"(Z)PIEX)|Zi) — Xil[EXw)|1Z0) — Xiw)] T},

17(€) is a selection of the subgradient of p,(g) and

02 = E[r ()P /[0% E pr (i),

where
O?E pr(ei — v)?
2 T\Ci
Ep ()= 14
O*Ep-(°) 502 o (14)
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Single index model 2-11

Main Course

Theorem .
Under A 1-5, the event B, % {p=p*}. P(B,) = 1 and

P(BS) — 0. Let yj e [ WK (u)du and v; & [ WK?(u)du,
j=0,1,.... If nh> = 0o and h — 0, we have

Vi {g(75) ~ g(T5) ~ 14°/28" (T3 el E e (o)}
£ N(0, vpo?/fz(2)) .
and

Vb {g(xTB) = g'(x78") | < N (0, va0?/[fz(2)13)).
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Simulations 3-1
Link functions

Consider the link functions g (+):
[ Model 1

Y; = 5cos(D - u;) + exp(—D - u?) + ¢, (15)
where u; is the index: u; = X,-Tﬁ, D = 0.8 is a scaling
constant and ¢; is the error term.

[] Model 2
Y; =sin{n(a-uj — b)} +¢;, (16)
with the parameters a = 0.1, b = 0.4.
[] Model 3
Y; = 10sin(D - u;) + /| sin(u;j) + il (17)
with D =0.1.

QR with high dimensional SIM



Simulations 3-2

Criteria

1. Standardized L2 norm:

[ def N M16i — Bill2
Z 18]l2

2. Sign consistency:

p
Acc & Z |sign(B;) — sign(B;)l;
i—1
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Simulations 3-3

Criteria

3. Least angle:

~18l2- 1812

e def <B,8>
e

4. Relative error:

aef 1 <~ |8(X;'6%) —8(X/" %)
Error = n; £(XT5°)
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Simulations 3-4

Criteria - quantile regression

g (") T Dev Acc Angle Error
Model 1 0.9 | 2.3(0.3) 0.66(0.40) 0.999(0.1) 0.96(0.1)
0.5 | 3.7(49) 0.04(0.03) 0.998(0.2) 0.15(0.1)
Model 2 09| 28(56) 0.13(0.81) 0.997(0.1) 8.16(1.1)
0.5|8.2(6.4) 0.02(0.13) 0.995(0.1) 7.51(4.7)
Model 3 0.9 | 3.2(5.9) 0.20(0.92) 0.997(0.2) 11.50(7.9)
0.5 | 1.1(0.8) 0.07(0.26) 0.986(0.1) 5.34(1.6)

Table 1: Criteria evaluated under different models and quantiles. The error
¢ follows a N (0,0.1) distribution. In 100 simulations we set n = 100, p =
10,q = 2. Dev and Error are reported in 1072, Standard deviations are
given in brackets.

QR with high dimensional SIM




Simulations 3-5

Criteria - quantile regression

g () Dev Acc Angle Error
Model 1 | 6.5 (8.0) 3.5(0.2) 0.934(0.1) 1.6(0.5)
Model 2 | 5.2(11.1) 2.8(0.6) 0.933(0.1) 2.1(5.6)
Model 3 | 4.1 (5.9) 0.6(0.8) 0.992(0.2) 2.0(9.1)

Table 2: Criteria evaluated under different models. The error ¢ follows a
N (0,0.1) distribution. In 100 simulations we set n = 100, p = 120,q =
9,7 = 0.9. Dev and Error are reported in 1072, Standard deviations are
given in brackets.
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Application 4-1

Value at Risk

[ Value-at-Risk (VaR) is the most known measure for
quantifying and controlling the risk of a portfolio.

[] The VaR of a financial institution i at 7 € (0,1):
P(Xi: < VaRT,) ¥ 1,

where X; ; represents the asset return of financial institution i
at time t.
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Application 4-2

CoVaR

[J Adrian and Brunnermeier (AB) (2011) proposed CoVaR.
[] The CoVaR of a risk factor j given X at level 7 € (0, 1):

P{Xje < CoVaR], Xic = VR (X0), Me-1} %

here M;_1 is a vector of macro prudential variables.
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Application 4-3

Quantile regression

[ CoVaR technique (AB).

(] Two linear quantile regressions:

Xt = aj+ ’Y,’TMt—l + €t (18)
Xt = aj+BjiXit+ ’YJI,-Mt—l +eje (19)

] F€71(T|Mt_1) =0 and FE;::(T|Mt_1,Xf7t) =0, then:

VaR;’t == (/)é\,' + ’/Y\/'—I—Mtfla (20)
T —~ S 57 ~
CoVa it = aj|i + Bj|ivaRi,t + "Y}ll—l-Mt_]_. (21)
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Application 4-4

Quantile regression and SIM

[] Generalize (19):
Xie = &(S"Bys) +€jes (22)

where § % [M:—1, R], R is a vector of log returns. ;s is a
p x 1 vector, p large.

] F5771(7'|5) =0, then:
CoVaR;is = 8(S ' Byjs), (23)
where S %/ [M;_1, V], where V is the estimated VaR in (20).
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Application 4-5
Model classification

(1 A general model:
Y =f(X)+e.

[J An additive structure:
L
FX) = &(B x).
=1
(] L=1isSIM model:
f(X)=g(BTX), where X = ( f ) ,
2

and x1 € R9, x, € RP79,
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Application 4-6

Model classification

[J L = 2 is partial linear model (PLM)

f(X) = g(8] x1) + &(5; x)
= 51TX1 + g(x2),

for g1 = id, B1 € RP~L, By =1, where

X=("
X )’
and x; € RP~1 x, € R
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4-7

Application

Dataset

[ City national corp (CYN) (ranked as a small firm).

[] Choose 20 firms ranked higher than CYN and 7 macro
prudential variables.

(] Time period is from January 5, 2006 to September 6, 2012,
T =1670.
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Application

Descriptive statistics of CYN

48
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Figure 2: Log returns of CYN
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Application 4-9

Descriptive statistics of CYN

Mean SD Skewness Kurtosis
Before crisis —0.0004 0.0209 0.2408 12.1977
In crisis —9.247 x 10® 0.0312 0.1326 8.9544

Table 3: Descriptive statistics

[] Jarque Bera Test is performed: log returns of CYN are not
normally distributed.

[ Unit root test is conducted: log returns of CYN are stationary.
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Application 4-10

Estimation of VaR

(] Window size: n = 100.
(] 7 Macro prudential variables are applied.

[] Method: quantile regression.
1 7 =0.05.

[ T = 1570 estimated VaR by moving window estimation.
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Application 4-11

Estimation of VaR

0.4

0.2

-04 -02

2006 2007 2008 2009 2010 2011 2012

Figure 3: Log returns of CYN (blue) and VaR of log returns of CYN (red),
7 =0.05, T = 1570, window size n = 100, refer to (20).
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Application 4-12

Estimation of VaR

2006 2007 2008 2009 2010 2011 2012

Figure 4: Log returns of JPM (blue) and VaR of log returns of JPM (red),
7 =0.05, T = 1570, window size n = 100, refer to (20).
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Application 4-13

Estimation of CoVaR

(] Window size: n = 126.

[J Original variables: p = 27.

[] Method: L1-norm quantile regression.

L1 7 =0.05.

(1 Bandwidth: h: = hpean [7’(1 — T)gp{¢_1(7)}_2]0'2.

(] Where hpean: use direct plug-in methodology of a local linear
regression described by Ruppert, Sheather and Wand (1995).

[] Survived variables: Different g in each window.

[0 T = 1544 estimated CoVaR by moving window estimation.
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Application 4-14

Estimation of CoVaR

2007 2008 2009 2010 2011 2012 2013

Figure 5: Log returns of CYN (blue) and the estimated CoVaR (black),
7 =0.05, T = 1544, window size n = 126, refer to (23).
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Application 4-15

The link function
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Figure 6: The link functions
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Application 4-16

The link function
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Figure 7: The estimated link function, window size n = 126, starting date:
20061227, 7 = 0.05, h(left) = 0.0176, h(right) = 0.02, p =27, ¢ = 9:
JPM, WFC, BK, FITB, CMA, liquidity, 3MT, yield and S&P.
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Application 4-17

The link function

0.00 0.05 0.10
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Figure 8: The estimated link function, window size n = 126, starting date:
20100126, 7 = 0.05, h(left) = 0.0118, h(right) = 0.02, p = 27, ¢ = 5:
C, STT, RF, FITB, ZION.
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Application 4-18

The influential variables

5 10 15 20 25

0

200 300 400

100

Figure 9: The frequency of the firms and macro prudential variables. The
X-axis represents these 27 variables, and the Y-axis stands for the frequency
with which the variables survived in the moving window estimation.

» Go to details
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Application 4-19

Further work

[] CoVaR estimation in Expectile situation.
(] CoVaR estimation in Composite Quantile regression situation.
(] Backtesting VaR and CoVaR.
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Appendix 5-1

The penalty term

[ Lasso, Tibshirani (1996): ~x(x) = A
[ SCAD, Fan and Li (2001):

(aA — x)+

100 = M1 < 2) + 220,

[J The adaptive Lasso, Zou (2006): vx(x) = A|x|~? for some
a>0.
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Appendix 5-2

Assumptions

A1 . The kernel function K(-) is a continuous symmetric
probability density function having at least four-order finite
moment. And the link function g() has continuous second
derivative.

A 2 . Assume pi(x) are all strictly convex. And suppose ¥ (x),
the derivative (or a subgradient of ) of px(x), satisfy (1) it is
Lipschitz continuous; (2) E k(i) =0 and
infy<c OEy(e; — v) = (1 where OE ) (g; — v) is the partial
derivative with respect to v, and C; is a constant.
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Appendix 5-3

Assumptions

A3

A4

A5

. The error term ¢; is independent of X;. Let Xj(;) denote the
sub-vector of X; consisting of its first g elements. Let

Z,' = XiTﬂ* and Z,'J' = Z,' — Zj . Define

E{g'(Z)*(E(Xi)|Zi) — X)) (E(Xiy|Zi — X))} T o Coq):
and the matrix Cy satisfies L1 < Apin(Co) < Amax(Go) < Lo
for positive constants Ly and L,. There exists a constant

co > 0 such that Y7, {[| X0yl /v/n}?t% — 0.

. Assume v/mya(5]) = 0 for B # 0 and /A (1Gl) = o
for B = 0. Furthermore assume gh — 0 as n goes to infinity.
. The error term ¢; satisfies E¢; = 0 and Var(g;) < oc.
Assume that E|¢™(g;)/m!| < soK™ where sp and K are
constants.
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Appendix 5-4

Subgradient

If f: U — R is a real-valued convex function defined on a convex
open set in the Euclidean space R”, a vector v in that space is
called a subgradient at a point xg in U if for any x in U one has

f(x)—f(xo)>v-(x—xp)

where the dot denotes the dot product.
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Appendix 5.5

Matrix norm

Assume A is a m X n matrix

| Axl5
A = max
Al = 02 ]
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Appendix 5-6

Sparsistency

Let E be an estimator of 5. B is sparsistent if
|i_>m P{sign(Dﬁ) =sign(DB)} =1
n—oo

where D is the incidence matrix. Consider a undirected graph G
defined by a set of vertices V and undirected edges E which are
unordered pairs of vertices. We construct an orientation of G by
defining a head e™ € e and tail e~ € e. The incidence matrix

D € RE*V for the oriented graph is the matrix whose De,, entry is
lifv=-et, —1if v=e~ and 0 otherwise.
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Appendix

5-7

The financial firms and macro prudential
variables

O N O OB WN =

=R e e
S~ 0NN = O o

The financial frims:

. Bank of America Corp (BAC)

. JP Morgan Chase & Co (JPM)

. Citigroup Inc (C)

. Wells Fargo & Co (WFC)

. U.S. Bancorp (USB)

. PNC Financial Services Group (PNC)
. Bank of New York Mellon (BK)

. Capital One Financial Corp (COF)
. Suntrust Banks Inc (STI)

. State Street Corp (STT)

. BB&T Corp (BBT)

. Financial Corp New (RF)

. Fifth Third Bancorp (FITB)

. KeyCorp (KEY)

15.
16.
17.
18.
19.
20.

21

Northern Trust Corp (NTRS)
M & T Bank Corp (MTB)
Hudson City Bancorp Inc (HCBK)
Comerica Inc (CMA)
Huntington Bancshares Inc (HBAN)
Zions Bancorp (ZION)

The macro prudential variables:

. VIX
22.
23.
. Change in the slope of the yield curve (yield)
25.
26.
27.

Short term liquidity spread (liquidity)
Daily change in the 3-month Treasury maturities (3MT)

Change in the credit spread (credit)
Daily Dow Jones U.S. Real Estate index returns (D_J)
S&P500 returns (S&P)
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