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Motivation 1-1

Financial risk

Figure 1: Financial risk
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Motivation

Objective

[] Risk patterns depend on covariates X

(] Dimensionality issues, X € RP, p — oo

[ Variable selection for Quantile Regression (QR)
[J CoVaR, single index model (SIM)
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Motivation 1-3

Challenges

[0 Model of tails of conditional distribution
(] Dimension reduction
(] SIM estimation combined with variable selection

[J Alternatives to MAVE (minimum average variance estimation)
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Motivation "

Single Index Model

[J Observations {X;, Y;}"_; with
Yi=g(8"' X)) +ei, (1)
where g(-) is the link function, and g* € RP. {¢;}7_; are
independent.
(] pis possible large: p — co.
[J Ey|x=x(¢) = 0 for mean regression.

[ FE_|)1(:X(T) = 0 for quantile regression.
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Motivation

CoVaR

[ CoVaR technique (AB)
(1 Two linear quantile regressions

Xit = ai+v M1 +eiq,
Xt = i+ BjiXit+ ’YJT,-Mt—l + &)t

[ F; N (7IMe—1) = 0 and F_ 7 (7|M;—1,Xit) = 0, then

—T N T
VaRi7t == Oé, + ’)/I Mj_-_]_,

— T . ~ —T ~T

COVa j‘i,t Oéj|, + 6j|ivaRi,t + ’}/jlth_]_.
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Motivation 1-6

What is known?

[J MAVE method, Xia et al.(2002)
(] Application in banking, environmental statistics
[J First order "free lunch" /n rate

[ A one dimensional problem for estimating g(+)
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Motivation 1-7

High dimensional SIM

[] How to estimate nonzero 3} 7
(] Which rates can we allow for p ?
[] What are the consequences for estimating g(-) ?

(] Combine dimension reduction with variable selection in a tail
regression context.
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Motivation 1-8

CoVaR application

0.0 0.1 0.2

-0.1

-0.2

2007 2008 2009 2010 2011 2012 2013

Figure 2: Log returns of CYN (blue) and the estimated CoVaRsy (red),
7 =0.05, T = 1543, window size n = 126, refer to (25).

CoVaR with very high dimensional risk factors




Outline

ARSI

Motivation Vv
Single index model
Simulations
Applications
Further work



Single index model 2-1

A quasi-likelihood approach

Recall (1):  MinE(vix=npul¥ —8(8" )} (2)
def &
where pu() %S S wipk(2), (Wi > 0, pi(-) convex) and
k=1
w (wi, -+ ,wk) is chosen to be data driven, Zszl wg = 1.

In degenerate case, K = 1:
Quantile regression
pw(u) =71ul{u € (0,00)} — (1 — 7)ul{u € (—0,0)} (3)
Expectile regression
pu(u) = Tu?1{u € (0,00)} + (1 — 7)uv’1{u € (—0,0)}  (4)
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Single index model 2-2

Expectile and Quantile Curves

0.0 0.2 0.4 0.6 0.8 1.0
tau

Figure 3: Expectile (green) and Quantile (blue) for N(0,1).
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Single index model 2.3

Likelihood approximations

g(B7X;) ~ g(B"x) +&'(8Tx)8T (Xi — x) ()

Approximations

L(B) ' EpufY —2(8Tx)—g(87x)8T(X —x)}
Kn{B" (X — x)} (6)

Los(8) € 070> pu{Yi— g(87x) — g'(87 )87 (X — x)}
i=1

Kn{BT(Xi = x)} (7)
where Kp(.) = K(./h)/h with K(.) a kernel, h bandwidth
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Single index model 2.4

A simple trick

Minimize average contrast (w.r.t. 5):

La(B) < ntS Lax(8)
j=1

= 2> pw {Y; -8B X) —&'(8"X)8" (X — xj)}

j=1i=1
Kn{B"(Xi = X))} (8)
Therefore (in first approach):

~

B =~ argmﬂinL,,(,B).
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Single index model 2.5

One more trick

Let a; = g(B7X;), bj = g'(B" X;), estimate 3 by:

min n! Z ZpW(Y,- — aj — biX; B)wi(B), (9)

. b)Y
(a_l7b_l) 5,8 =1 =1

def n
where X; % X; = X, wi(5) & Ky(X] 8)/ 22 Kn(X] 9)
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Single index model 2.6

The final trick

Penalize the dimension p and estimate S by:

min n! ZZ/)W —aj— b X,J /3 wij(B) + Z’YAU |B/| (10)

aj,b)sﬁ j=1i=1

where ~,(t) is some non-negative function, and 3 initial
estimator of 5* (linear QR with variable selection).

» Go to details
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Single index model 2-7
How does this work?
[ B initial estimator of 8* (linear QR with variable selection).
[1 Fort=0,1,2,- given /j’(t), standardize 3(®), |5 =1,
A(t) =1, d,( ) def 7>\(|5 ]) Then compute
A~ N def .
ORCOR ?rgl?}i"pr(Yf — 3y = X B9)oy (A1)
317 S i=1

] Given (ngt),b}t)), solve

n n

Bt — arg mﬁin LS pul(Yi— a( ) b(t)XTﬁ) (5 (£))
j=li=1

7 (t)
+3 0 dr 18I
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Single index model 2-8

Some definitions

Let 8* = (87],0T) T with 35y = (81, Bq)T #0. Xja) = sub
vector of X; corresponding to 5(1)' Xi(o) corresponding to zero 3*.

50 def (BOT OT)

(1)
def
Bty = argminn” ZZPW{ = 3 — b XiwBw }
j=1i=1
wii(B 1))

where aj(1) = g(ﬁ(—;)xj(l))' bj1y = g/(ﬁa)xj(l))'
Xij1) = Xiqa) = Xjq)-
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Single index model 2-9

An amuse gueule of theory

Denote E as the final estimate of 3*.

Theorem ~ ~ A
Under A 1-5, the estimators 3° and /3 exist and P(3° = B) — 1.
Moreover,

-~

P(B°=5) > 1~ (p— q)exp(—C'n®), (11)

» Go to details
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Single index model 2-10

Antipasti Theory \g

Theorem ot

Under A 1-5, 5(1) = (/B,)IEM*’ b e RY, Hb” =1:
1By — Byl = Op{(ADs + n~*2)\/q} (12)
b Coty V(B — Byy)) —= N(O, 02) (13)

where 02 = E[tby,(¢1)]2/[02 E pu(ei)]?
. 0? E,Ow(5i — V)2
B 8V2 v=0

82 Epw(') (14)

» Go to details
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Single index model 2-11

Main Course

Theorem
Under A 1-5, B, ¢ {B = 8*} : P(B,) — 1. Let 1j < [ WK (u)du,

deffufKQ(u du, j=0,1,.... If nh® = 0o and h — 0, then
Vb, [fz(2)/(1052) {?(XTB) — g(xT5) — e (xT B ad E i (c)]

£5N(0, 1),
and

Vi, [z, (2013} (v203) {€/ (T B) — '(x87) } 5 N (0, 1),
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Simulations 3-1

Simulation

03 different Bly: Bgf) = (5,5,5,5,5), 3\ = (5,4,3,2,1) and
By = (5,2,1,08,0.2).

[J 2 different distribution of &: &; ~ N(0,0.1) and &; ~ t(5).

(] 3 different 7: 7 =0.95, 7 = 0.5 and 7 = 0.05.

(1 2 different p: p =10 and p = 200.

[J 3 different link functions: Model 1, Model 2 and Model 3.

(1) -
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Simulations 3-2

Link functions

(] Model 1

Y; =5cos(D - Z;) + exp(—D - Z?) + ¢, (15)
Zi = XiTB*, D = 0.01 is a scaling constant and ¢; is the error
term.
[] Model 2
Yi =sin{n(A-Z — B)} +¢j, (16)
with the parameters A =0.3, B =3.
[] Model 3
Y; =10sin(D - Z;) + /| sin(0.5 - Z) + /], (17)
with D =10.1.
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Simulations 3-3

The estimated vs. true link functions
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Figure 4: The true link functions (black) and the estimated link functions
(red) with B(f) = (5,5,5,5,5), and € ~ N(0,0.1), n = 100, p = 10,q =
5,7 =0.95, model 1 (left) with h = 1.02, model 2 (middle) with h = 0.15
and model 3 (right) with h = 0.76.
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Simulations 3-4

Criteria

1. Standardized L2 norm:

aet 18° = Bll2
Dev = ———=
1812

2. Sign consistency:

P
def . * . i~
Acc = " |sign(B] ) — sign(5)|
I=1
3. Least angle: R
o det <05 >
o e

182 - 1812
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Simulations 3-5

Criteria

4. Relative error:

1N |g(Z) - 8(Z
Errordéffz g(Zi) — ()
n— 8(Zi)

5. Average squared error:

ASE(h) & %Z{g(Zi) -2}
i=1
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Simulations 3-6

Criteria - Quantile regression (small p case)

Dev Dev Dev
ASE(h) Acc  ASE(h) Acc  AsE(h) Acc
+Model 1
#Model 2
+Model 3
Error ‘Angle Errol ‘Angle Error Angle
1=0.05 =0.50 1=0.95

Figure 5: Criteria evaluated under different models and quantiles. [3(*5 =
(5,5,5,5,5), the error  follows a N (0, 0.1) distribution. In 100 simulations
we set n =100, p = 10,9 = 5.

» Criteria table
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Simulations 3-7

Criteria - Quantile regression (small p case)

Dev Dev Dev
ASE(h) Acc ASE(h) Acc ASE(h) Acc
+Model 1
=Model 2
+Model 3
Error ‘Angle Error ‘Angle Errol Angle
1=0.05 1=0.50 1=0.95

Figure 6: Criteria evaluated under different models and quantiles. ﬂ(*g =
(5,5,5,5,5), the error ¢ follows a t(5) distribution. In 100 simulations we
set n=100,p = 10,q9 = 5.

» Criteria table
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3-8

Simulations

Criteria - Quantile regression (different ;)

Dev Dev Dev

ASE(h) Acc  ASE(h) Acc  ASE(h) Acc

~(a)
=(b)

“(c)

Errol ‘Angle Error Angle Error’ ‘Angle

Model 1 Model 2 Model 3

Figure 7: Criteria evaluated under three different By (a) Ba—)r =
(5,5.5.5,5), (b) A) = (5.4.3,2,1), (c) B} = (5,2,1,08,0.2) the
error ¢ follows a N(0,0.1) distribution. In 100 simulations we set n =
100, p = 10,9 = 5,7 = 0.95.

» Criteria table
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Simulations 3-9

Criteria - Quantile regression (large p case)

Dev

k‘Acc

<+Model 1
#Model 2
+Model 3

Error Angle

Figure 8: Criteria evaluated with different models under p > n case. /3(*5 =
(5,5,5,5,5), the error € follows a N (0,0.1) distribution. In 100 simulations
we set n = 100, p = 200, g = 5,7 = 0.05.
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Simulations 3-10

Criteria - Expectile regression (small p case)

ASE(h) e ASE(h) cc  ASE(h) cc

~+Model 1
#*Model 2

+Model 3
Errol ‘Angle Errol ‘Angle Error ‘Angle

1=0.05 1=0.50 1=0.95
Figure 9: Criteria evaluated under different models and quantiles. ﬂ(*g =

(5,5,5,5,5), the error € follows a N (0, 0.1) distribution. In 100 simulations
we set n =100, p = 10,q = 5.

» Criteria table
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Simulations 3-11

Criteria - Expectile regression (large p case)

Dev

<+Model 1
«Model 2
+Model 3

Error Angle
Figure 10: Criteria evaluated with different models under p > n case.
ﬁ(*J = (5,5,5,5,5), the error ¢ follows a N (0,0.1) distribution. In 100

simulations we set n = 100, p = 200, g = 5,7 = 0.05.
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Simulations 3-12

Criteria - Composite quantile regression

Dev Dev
ASE(h) Acc ASE(h) Acc
+Model 1
=Model 2
+Model 3
Errol Angle Errol ngle
p=10 p=200

Figure 11: Criteria evaluated under different models and number of p,
where p = 10 (left) and p = 200 (right), A} = (5.5,5,5,5), the er-
ror ¢ follows a N(0,0.1) distribution. In 100 simulations we set 7 =
(0.25,0.35,0.5,0.65,0.75), n = 100, g = 5.
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Simulations 3-13

The estimated vs. true link functions
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Figure 12: Plot of the true function g(-) (black) and the estimation (red)
with 7 = (0.25,0.35,0.5,0.65,0.75),n = 100,p = 10,q = 5 and ¢ ~
N(0,0.1) in different g(-) functions, model 1 (left) with h = 0.45, model
2 (middle) with h = 0.16 and model 3 (right) with h = 0.15.
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Simulations 3-14

The estimated vs. true link functions
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Figure 13: Plot of the true function g(-) (black) and the estimation (red)
with 7 = (0.25,0.35,0.5,0.65,0.75),n = 100,p = 200,g = 5 and ¢ ~
N(0,0.1) in different g(-) functions, model 1 (left) with h = 0.28, model
2 (middle) with h = 0.05 and model 3 (right) with h = 0.13.
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Application 4-1

Value at Risk

[J Value-at-Risk (VaR) is the most known measure for
quantifying and controlling the risk of a portfolio.

[ The VaR of a financial institution i at 7 € (0,1):

P(X;: < VaR],) % 7,

where X; ; represents the asset return of financial institution i
at time t.
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Application 4-2

CoVaR

[J Adrian and Brunnermeier (AB) (2011) proposed CoVaR.
[] The CoVaR of a risk factor j given X at level 7 € (0, 1):

- - def
P{Xjc < CoVaRy; .| Xie = VaR™(Xi¢), Me—1} = 7,

here M;_1 is a vector of macroprudential variables.
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Application 4-3

Quantile regression

[J CoVaR technique (AB)

(] Two linear quantile regressions

Xt = aj+ ’Y,’TMt—l + €t (18)
Xt = aj+BjiXit+ ’YJI,-Mt—l +eje (19)

CJ F€71(T|Mt_1) =0 and F5;1(7—|Mt—lyxi,t) = 0, then

VaR;’t == (/)é\,' + /’?/'—I—Mtfla (20)
T —~ S 57 ~
CoVa it = Oéj|,' + Bj“VQR,”t + 7}||—th—1- (21)
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Application 4-4

Quantile regression

[] Generalize (19):
)<j,t = ST,BJ|S + Ejts (22)

where § % [M:—1, R], R is a vector of log returns. 35 is a
p X 1 vector, p large.

] F€771(7'|5) =0, then:
CoVaRjs = 5" Bjs. (23)

where S % [M;_1, /\7] where V is the estimated VaR in (20).
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Application 4-5

Quantile regression and SIM

[] Generalize (19):
Xie = &(S"Bys) +€jes (24)

where § % [M:_1,R], R is a vector of log returns. g(-) is a
link function. s is a p x 1 vector, p large.

] F5771(7'|5) =0, then:
CoVaRis = 8(S ' Byjs), (25)
where S %/ [M:_1, V], where V is the estimated VaR in (20).
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Application 4-6

Dataset

[ City national corp (CYN) (as an example).
[] Choose 199 financial firms and 7 macroprudential variables.

(] Time period is from January 6, 2006 to September 6, 2012,
T = 1669.

CoVaR with very high dimensional risk factors



Application

Descriptive statistics of CYN

4-7
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Figure 14: Log returns of CYN

2012
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Application

48

Descriptive statistics of CYN

Mean SD Skewness Kurtosis
Before crisis —4.0 x 10~% 0.0209 0.2408 12.1977

In crisis —9.2x 107> 0.0312 0.1326 8.9544

Table 1: Descriptive statistics

[] Jarque Bera Test is performed: log returns of CYN are not
normally distributed.

[] Unit root test is conducted: log returns of CYN are stationary.
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Application 4-9

Estimation of VaR

(] Window size: n = 126.
(] 7 Macroprudential variables are applied.

[] Method: quantile regression.
(1] 7 =0.05.

[ T = 1543 estimated VaR by moving window estimation.
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Application 4-10

Estimation of VaR

2007 2008 2009 2010 2011 2012

Figure 15: Log returns of CYN (blue) and VaR of log returns of CYN (red),
7 =0.05, T = 1543, window size n = 126, refer to (20).
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Application 4-11

Estimation of VaR

2007 2008 2009 2010 2011 2012

Figure 16: Log returns of JPM (blue) and VaR of log returns of JPM (red),
7 =0.05, T = 1543, window size n = 126, refer to (20).
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Application 4-12

Estimation of CoVaR_

oo

]
]

Window size: n = 126.

Original variables: p = 206.

Method: L1-norm quantile regression.
7 = 0.05.

Lambda: generalized approximate cross-validation criterion
(GACV) (Yuan 2006):
>im1prlyi — (i)}

GACV(\) = P ,
where df is a measure of the effective dimensionality of the
fitted model.
Selected variables: Different g in each window.
T = 1543 estimated CoVaR; by moving window estimation.
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Application 4-13

Estimation of CoVaR_

2007 2008 2009 2010 2011 2012

Figure 17: Log returns of CYN (blue) and the estimated CoVaR; (red),
7 =0.05, T = 1543, window size n = 126, refer to (23).
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Application

£ in each window
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Figure 18: Different 3 in application.
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Application 4-15

The histogram of g
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Figure 19: Frequency of the number of selected variables. Where § = 28

oA ---------------.ll'll“|
10 20

0 3

with frequency 158, § = 27 with frequency 156 and G = 26 with frequency
155.
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Application 4-16

The estimated value of )\

0.10 0.15

0.05
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Figure 20: The Xin application.
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Application 4-17

The influential variables

400 600 800

200

oA

0 50 100 150 200
Figure 21: The frequency of the firms and macroprudential variables. The
X-axis: 1—206 variables, and the Y-axis: the frequency of the variables se-
lected in the moving window estimation. The variable 152, i.e. "Flagstar
Bancorp Inc. (FBC)" is the most frequently selected variable with fre-
quency 885.
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Application 4-18

Estimation of CoVaRgu

Window size: n = 126.

Original variables: p = 206.

Method: L1-norm quantile regression & Single index model.

7 = 0.05.

Bandwidth: h; = Amean [7(1 — T)(p{CD*l(T)}*z]O'z,

where hpean: use direct plug-in methodology of a local linear
regression described by Ruppert, Sheather and Wand (1995).

O oo
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Application 4-19

Estimation of CoVaRgu

(] Lambda: generalized approximate cross-validation criterion
(GACV) (Yuan 2006):

GACV()) = D1 pr‘;{_}/id; f(Xi)}’

where df is a measure of the effective dimensionality of the
fitted model.
[-] Selected variables: Different g in each window.

[] T = 1543 estimated CoVaRss by moving window estimation.
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Application 4-20

Estimation of CoVaRgu

2007 2008 2009 2010 2011 2012 2013

Figure 22: Log returns of CYN (blue) and the estimated CoVaRsy (red),
7 =0.05, T = 1543, window size n = 126, refer to (25).
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Application 4-21

£ in each window

.

o".
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Figure 23: Different 3 in application.
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Application 4-22

The histogram of g
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Figure 24: Frequency of the number of selected variables. Where § = 3
with frequency 335, g = 4 with frequency 329 and g = 5 with frequency
249,
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Application 4-23

The estimated value of )\
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Figure 25: The Xin application.

CoVaR with very high dimensional risk factors




Application 4-24

The link function
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Figure 26: The link functions
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Application 4-25

The link function
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Figure 27: The estimated link function, window size n = 126, 7 = 0.05,
p = 206. For the left graph: starting date is 20081029, h = 0.065,
g = 3: HBAN, CNO, STSA. For the right graph: starting date is 20101230,
h=0.058, g =2: FBC, RDN.
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Application 4-26

The influential variables
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Figure 28: The frequency of the firms and macroprudential variables. The
X-axis: 1 — 206 variables, and the Y-axis: the frequency of the variables
selected in the moving window estimation. The variable 187, i.e. "Radian
Group Inc. (RDN)" is the most frequently selected variable with frequency
707.
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Application 4-27

Backtesting

(] The violation sequence:
/t _ ].7 )(,‘71_L < \73\th,
0, otherwise.
If VaR algorithm is correct, I+ should be a martingale
difference sequence.
(] The CaViaR test model:
lt = a+ Bili—1 + B2VaR: + ug.

where VaR; can be CoVaR; in case ofACoVaR estimation.

[J The test procedure: estimate 31 and 3, by logistic regression.
Then Wald's test is applied. Null hypothesis: 51 = 5> =0, i.e.
I; is a martingale difference sequence.
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Application 4-28

Backtesting VaR
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Figure 29: The top dots are the violations (i.e. {t: /, = 1}) of VaR of
CYN, totally 14 violations, 7 = 0.009, T = 1543.
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Application 4-29

Backtesting CoVaR_
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2007 2008 2009 2010 2011 2012

Figure 30: The top dots are the violations (i.e. {t: [, = 1}) of CoVaR,
of CYN, totally 231 violations, 7 = 0.15, T = 1543.
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Application 4-30

Backtesting CoVaRgm
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Figure 31: The top dots are the violations (i.e. {t: /; = 1}) of CoVaR s
of CYN, totally 19 violations, 7 = 0.012, T = 1543.
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Application 4-31

Backtesting results (The overall period)

(] Test result

p-value of Wald's test statistics

VaR 27x107°
CoVaR, 0.00
CoVaR sy 0.54

Table 2: The CaViaR test for \737?, mL and C?\E?S,M for CYN,
T = 1543, 20060706 — 20120906.

1 Only for m?sw,, null hypothesis can not be rejected. VaR
and CoVaR, algorithms perform not so well in overall period.
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Backtesting results (The crisis period)

[ Test result

p-value of Wald's test statistics

VaR 0.99
CoVaR, 3.2 x 1075
CoVaRsy 0.93

Table 3: The CaViaR test for \797?, C?\ER’L and msm for CYN,
T = 350, 20080915 — 20100208.

(1 Null hypothe5|s of VaR and CoVaRS,M can not be rejected,
therefore both VaR and CoVaRS/M algorithms perform well
during the crisis period, but CoVaRL performs not well.
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Backtesting results

o VaR performs well only in crisis period.
] mL performs not well in both crisis and overall period.

] msm performs well in both crisis and overall period.
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Conclusion of CoVaR estimation

1 CoVaRs, risk measure is more precise.

1 CoVaRs can help us to find the most relevant influential
firms.
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Estimation of the median by using QR

] Window size: n = 126.

(1 7 Macroprudential variables are applied.
[] Method: quantile regression.

1 7 =0.5.

[] T = 1543 estimated median by moving window estimation.
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Estimation of the median by using QR
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Figure 32: Log returns of CYN (blue) and the estimated median (red),
tau = 0.5, T = 1543, window size n = 126, refer to (20).
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Estimation of the median by using CQR

(] Window size: n = 126.

[ Original variables: p = 206.

[J Method: composite quantile regression.

[J 7 =(0.25,0.35,0.5,0.65,0.75).

[] Selected variables: Different g in each window.

[ T = 1543 estimated median by moving window estimation.

CoVaR with very high dimensional risk factors



Application 4-38

Estimation of the median by using CQR
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Figure 33: Log returns of CYN (blue) and the estimated median (red),
T = 1543, window size n = 126, refer to (25).
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The probability density function of the
residuals
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Figure 34: The probability density function of the residuals.
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The cumulative distribution function of the
residuals
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Figure 35: The cumulative distribution function of the residuals.
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£ in each window
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Figure 36: Different E by CQR.
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The histogram of g
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Figure 37: Frequency of the number of selected variables. Where § = 5
with frequency 1400, g = 4 with frequency 110 and § = 3 with frequency
24,
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The link function
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Figure 38: The link functions
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The link function
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Figure 39: The estimated link function, window size n = 126, 7 =
(0.25,0.35,0.5,0.65,0.75), p = 206. For the left graph: starting date
is 20081029, h = 0.18, g = 3: MTB, UNM, LNC. For the right graph:
starting date is 20101230, h = 0.26, ¢ = 4: MCY, AB, FBC, VIX.
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The influential variables
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Figure 40: The frequency of the firms and macroprudential variables. The
variable 91 "Associated Banc-Corp (ASBC)", the variable 50 "Comer-
ica Incorporated (CMA)" and the variable 72 "Cullen-Frost Bankers, Inc.
(CFR)" are the most frequently selected variables with frequency 398, 353
and 340, respectively.
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Conclusion of CQR estimation

[1 CQR estimates conditional median quantile.

(] The residuals are symmetric, so the CQR estimation is
appropriate.

(] Variable selection at median level are different from variable
selection at tail level.
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Appendix 5-1

The penalty term

[ Lasso, Tibshirani (1996): ~x(x) = A
[ SCAD, Fan and Li (2001):

(aA — x)+

(x) = AMI(x < A) + GoDr

I(x > A)},

[J The adaptive Lasso, Zou (2006): vx(x) = A|x|~? for some
a>0.
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Assumptions

Al K a cts symmetric pdf, g(-) € C2.

A2 pw(x) convex. Suppose ¥ (x), subgradient of py,(x):
i) Lipschitz continuous; ii) Ew(g;) = 0 and
infMSC 8E1/1W(5,- — V) = C1.

A3 ¢; is independent of X;. Let Z; = X,-Tﬂ* and Zjj = Z; — Z;.
Co(n) o E{g(Z)*(E(Xiy|Zi) — Xi)) (E(Xi1)| Zi — Xi))} '},
and the matrix Cy(;) satisfies
0 < L1 < Amin(Coq1)) < Amax(Co1)) < L2 for positive
constants L1 and L,. There exists a constant ¢g > 0 such that
S AIXiyll/v/nye B0, with 0 < ¢ < 1. Also

|52 555 X0X(3)0 E w200 = Op(nt=2),
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Assumptions

A4 The penalty parameter X is chosen such that
AD, = O{n~1/?}, with
Dp © max{d, : I € M,} = o(n1=2/2) o, < 4, (187)),
M, ={l: B # 0} be the true model. Furthermore assume
gh—0asn— oo, qg=0(n?2), p=0O(exp{n’}), nh> = o
and h = 0. Also, 0 < d < a < ap/2<1/2, ap/2 <oy < L.
For example, 6 = 1/5, a = 1/4, ap = 3/5, a3 = 3/5.

A5 The error term ¢; satisfies Ec; = 0 and Var(g;) < co. Assume
that E|¢)™(ej)/m!| < soc™ where s5 and ¢ are constants.
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Subgradient

If f: U — R is a real-valued convex function defined on a convex
open set in the Euclidean space R”, a vector v in that space is
called a subgradient at a point xg in U if for any x in U one has

f(x)—f(xo)>v-(x—xp)

where the dot denotes the dot product.
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Matrix norm

Assume A is a m X n matrix

| Axl5
A = max
Al = 02 ]
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Sparsistency

The result of (11) is stronger than the oracle property defined in
Fan and Li (2001) once the properties of BO are established. It was
formulated by Kim et al. (2008) for the SCAD estimator with
polynomial dimensionality p. It implies not only the model selection
consistency and but also sign consistency (Zhao and Yu, 2006;
Bickel et al., 2008, 2009):

P{sgn(B) = sgn(B*)} = P{sgn(B°) = sgn(5")} — 1
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Selection of weights

Wopt = argmin w' Mw, (26)
w>0,|lw|=1

where M is a (K x K) matrix with element in /th row and kth

column as my = n~13°7 | zp/(ego))wk(al(-o)), i(+) and i (-) are
the first derivative of p;(-) and p(-) respectively. 5,(.0) is the
residual induced by the initial estimate 5(9).
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The confidence interval

The 100(1 — )% confidence interval:

8(2) — 7 - T 5+ L8 (2)120E 0w (€);

fz(l)( z)
8(2) + i B + 3R (2)i20B Y ()]
1)

where 3, is the a-Quantile of the standard normal distribution, and

?Z(l)(z) =n1 27:1 Kh(Z — Z,-(l)), where Zi(l) = Xi?l)g(l).
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Expectile-Quantile Correspondence

Let v(x) represents expectile regression, /(x) represents quantile
regression.

Fixed x, define w(7) such that v,,(;)(x) = I(x) then w(7) is
related to /(x) via

71(x) — [ ydF (y|x)

w(r) = 2E(Y|x) — 2fi(;) ydF (y|x) — (1 — 27)/(x)

For example, Y ~ U(—1,1), then w(7) = 72/(272 — 27 + 1)
Expectile corresponds to quantile with transformation w.
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The financial firms and macroprudential

variables
The financial frims:
1. Wells Fargo & Co (WFC) 15. Franklin Resources Inc. (BEN)
2. JP Morgan Chase & Co (JPM) 16. The Travelers Companies, Inc. (TRV)
3. Bank of America Corp (BAC) 17. AFLAC Inc. (AFL)
4. Citigroup Inc (C) 18. Prudential Financial, Inc. (PRU)
5. American Express Company (AXP) 19. State Street Corporation (STT)
6. U.S. Bancorp (USB) 20. The Chubb Corporation (CB)
7. The Goldman Sachs Group, Inc. (GS) 21. BB&T Corporation (BBT)
8. American International Group, Inc. (AIG) 22. Marsh & McLennan Companies, Inc. (MMC)
9. MetLife, Inc. (MET) 23. The Allstate Corporation (ALL)
10. Capital One Financial Corp. (COF) 24. Aon plc (AON)
11. BlackRock, Inc. (BLK) 25. CME Group Inc. (CME)
12. Morgan Stanley (MS) 26. The Charles Schwab Corporation (SCHW)
13. PNC Financial Services Group Inc. (PNC) 27. T. Rowe Price Group, Inc. (TROW)
14. The Bank of New York Mellon Corporation (BK) | 28. Loews Corporation (L)
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The financial firms and macroprudential
variables

29.
30.
3L
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

SunTrust Banks, Inc. (STI)

Fifth Third Bancorp (FITB)

Progressive Corp. (PGR)

M&T Bank Corporation (MTB)

Ameriprise Financial Inc. (AMP)

Northern Trust Corporation (NTRS)

Invesco Ltd. (IVZ)

Moody's Corp. (MCO)

Regions Financial Corp. (RF)

The Hartford Financial Services Group, Inc. (HIG)
TD Ameritrade Holding Corporation (AMTD)
Principal Financial Group Inc. (PFG)

SLM Corporation (SLM)

KeyCorp (KEY)

CNA Financial Corporation (CNA)

44,
45,
46.
47.
48.
49.
50.

51

Lincoln National Corporation (LNC)
Affiliated Managers Group Inc. (AMG)
Cincinnati Financial Corp. (CINF)
Equifax Inc. (EFX)

Alleghany Corp. (Y)

Unum Group (UNM)

Comerica Incorporated (CMA)

. W.R. Berkley Corporation (WRB)
52.
53.
54.
55.
56.
57.
58.

Fidelity National Financial, Inc. (FNF)
Huntington Bancshares Incorporated (HBAN)
Raymond James Financial Inc. (RJF)
Torchmark Corp. (TMK)

Markel Corp. (MKL)

Ocwen Financial Corp. (OCN)

Arthur J Gallagher & Co. (AJG)
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The financial firms and
variables

5-12

macroprudential

50.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71
72.
73.

Hudson City Bancorp, Inc. (HCBK)
People’s United Financial Inc. (PBCT)
SEl Investments Co. (SEIC)

Nasdag OMX Group Inc. (NDAQ)
Brown & Brown Inc. (BRO)

BOK Financial Corporation (BOKF)
Zions Bancorp. (ZION)

HCC Insurance Holdings Inc. (HCC)
Eaton Vance Corp. (EV)

Erie Indemnity Company (ERIE)
American Financial Group Inc. (AFG)
Dun & Bradstreet Corp. (DNB)
White Mountains Insurance Group, Ltd. (WTM)
Cullen-Frost Bankers, Inc. (CFR)
Legg Mason Inc. (LM)

74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

Commerce Bancshares, Inc. (CBSH)
Signature Bank (SBNY)

Jefferies Group, Inc. (JEF)

Rollins Inc. (ROL)

Morningstar Inc. (MORN)

East West Bancorp, Inc. (EWBC)
Waddell & Reed Financial Inc. (WDR)
Old Republic International Corporation (ORI)
ProAssurance Corporation (PRA)
Assurant Inc. (AlZ)

Hancock Holding Company (HBHC)

First Niagara Financial Group Inc. (FNFG)
SVB Financial Group (SIVB)

First Horizon National Corporation (FHN)
E-TRADE Financial Corporation (ETFC)

CoVaR with very high dimensional risk factors




Appendix

5-13

The financial firms and macroprudential

variables
89. SunTrust Banks, Inc. (STI) 104. Valley National Bancorp (VLY)
90. Mercury General Corporation (MCY) | 105. KKR Financial Holdings LLC (KFN)
91. Associated Banc-Corp (ASBC) 106. Synovus Financial Corporation (SNV)
92. Credit Acceptance Corp. (CACC) 107. Texas Capital BancShares Inc. (TCBI)
93. Protective Life Corporation (PL) 108. American National Insurance Co. (ANAT)
94. Federated Investors, Inc. (Fll) 109. Washington Federal Inc. (WAFD)
95. CNO Financial Group, Inc. (CNO) 110. First Citizens Bancshares Inc. (FCNCA)
96. Popular, Inc. (BPOP) 111. Kemper Corporation (KMPR)
97. Bank of Hawaii Corporation (BOH) 112. UMB Financial Corporation (UMBF)
98. Fulton Financial Corporation (FULT) | 113. Stifel Financial Corp. (SF)
99. AllianceBernstein Holding L.P. (AB) 114. CapitalSource Inc. (CSE)
100. TCF Financial Corporation (TCB) 115. Portfolio Recovery Associates Inc. (PRAA)
101. Susquehanna Bancshares, Inc. (SUSQ) | 116. Janus Capital Group, Inc. (JNS)
102. Capitol Federal Financial, Inc. (CFFN) | 117. MBIA Inc. (MBI)
103. Webster Financial Corp. (WBS) 118. Healthcare Services Group Inc. (HCSG)
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The financial firms and macroprudential

variables
119. The Hanover Insurance Group Inc. (THG) | 134. BancorpSouth, Inc. (BXS)
120. F.N.B. Corporation (FNB) 135. Privatebancorp Inc. (PVTB)
121. FirstMerit Corporation (FMER) 136. United Bankshares Inc. (UBSI)
122. FirstMerit Corporation (FMER) 137. Old National Bancorp. (ONB)
123. RLI Corp. (RLI) 138. International Bancshares Corporation (IBOC)
124. StanCorp Financial Group Inc. (SFG) 139. First Financial Bankshares Inc. (FFIN)
125. Trustmark Corporation (TRMK) 140. Westamerica Bancorp. (WABC)
126. IberiaBank Corp. (IBKC) 141. Northwest Bancshares, Inc. (NWBI)
127. Cathay General Bancorp (CATY) 142. Bank of the Ozarks, Inc. (OZRK)
128. National Penn Bancshares Inc. (NPBC) 143. Huntington Bancshares Incorporated (HBAN)
129. Nelnet, Inc. (NNI) 144. Euronet Worldwide Inc. (EEFT)
130. Wintrust Financial Corporation (WTFC) | 145. Community Bank System Inc. (CBU)
131. Umpqua Holdings Corporation (UMPQ) 146. CVB Financial Corp. (CVBF)
132. GAMCO Investors, Inc. (GBL) 147. MB Financial Inc. (MBFI)
133. Sterling Financial Corp. (STSA) 148. ABM Industries Incorporated (ABM)
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The financial firms and macroprudential
variables

149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.

Glacier Bancorp Inc. (GBCI)

Selective Insurance Group Inc. (SIGI)
Park National Corp. (PRK)

Flagstar Bancorp Inc. (FBC)

FBL Financial Group Inc. (FFG)
Astoria Financial Corporation (AF)
World Acceptance Corp. (WRLD)

First Midwest Bancorp Inc. (FMBI)
PacWest Bancorp (PACW))

First Financial Bancorp. (FFBC)
BBCN Bancorp, Inc. (BBCN)
Provident Financial Services, Inc. (PFS)
FBL Financial Group Inc. (FFG)
WisdomTree Investments, Inc. (WETF)
Hilltop Holdings Inc. (HTH)

164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.

Citizens Republic Bancorp, Inc (CRBC)

Horace Mann Educators Corp. (HMN)

DFC Global Corp. (DLLR)

Navigators Group Inc. (NAVG)

Boston Private Financial Holdings, Inc. (BPFH)
American Equity Investment Life Holding Co. (AEL)
BlackRock Limited Duration Income Trust (BLW)
Columbia Banking System Inc. (COLB)

Safety Insurance Group Inc. (SAFT)

National Financial Partners Corp. (NFP)

NBT Bancorp, Inc. (NBTB)

Tower Group Inc. (TWGP)

Encore Capital Group, Inc. (ECPG)

Pinnacle Financial Partners Inc. (PNFP)

First Commonwealth Financial Corp. (FCF)
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The financial firms and macroprudential

variables
179. BancFirst Corporation (BANF) 190. Berkshire Hills Bancorp Inc. (BHLB)
180. Independent Bank Corp. (INDB) 191. Brookline Bancorp, Inc. (BRKL)
181. Infinity Property and Casualty Corp. (IPCC) | 192. National Western Life Insurance Company (NWLI)
182. Central Pacific Financial Corp. (CPF) 193. Tompkins Financial Corporation (TMP)
183. Kearny Financial Corp. (KRNY) 194. BGC Partners, Inc. (BGCP)
184. Chemical Financial Corporation (CHFC) 195. Epoch Investment Partners, Inc. (EPHC)
185. Banner Corporation (BANR) 196. United Fire Group, Inc (UFCS)
186. State Auto Financial Corp. (STFC) 197. 1st Source Corporation (SRCE)
187. Radian Group Inc. (RDN) 198. Citizens Inc. (CIA)
188. SCBT Financial Corporation (SCBT) 199. S&T Bancorp Inc. (STBA)

189.

WesBanco Inc. (WSBC)
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The financial firms and macroprudential

variables

The macroprudential variables:

200.
201.
202.
203.
204.
205.
206.

VIX

Short term liquidity spread (liquidity)

Daily change in the 3-month Treasury maturities (3MT)
Change in the slope of the yield curve (yield)

Change in the credit spread (credit)

Daily Dow Jones U.S. Real Estate index returns (D__J)
S&P500 returns (S&P)
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The selected financial firms and
macroprudential variables (CoVaR,)

5-18

Top 6 influential covariates Frequency
No. 152 Flagstar Bancorp Inc. (FBC) 885
No. 200 VIX 795
No. 162 WisdomTree Investments, Inc. (WETF) 730
No. 117 MBIA Inc. (MBI) 711
No. 203 Change in the slope of the yield curve (yield) 703
No. 187 Radian Group Inc. (RDN) 676
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The selected financial firms and
macroprudential variables (CoVaRgm)

5-19

Top 6 influential covariates Frequency
No. 187 Radian Group Inc. (RDN) 707
No. 152 Flagstar Bancorp Inc. (FBC) 350
No. 106 Synovus Financial Corporation (SNV) 285
No. 95 CNO Financial Group, Inc. (CNO) 226
No. 65 Zions Bancorp. (ZION) 224
No. 195 Epoch Investment Partners, Inc. (EPHC) 206
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The selected financial firms and

macroprudential variables (CQR)

Top 6 influential covariates Frequency
No. 91 Associated Banc-Corp (ASBC) 398
No. 50 Comerica Incorporated (CMA) 353
No. 72 Cullen-Frost Bankers, Inc. (CFR) 340
No. 21 BB&T Corporation (BBT) 296
No. 97 Bank of Hawaii Corporation (BOH) 259
No. 140 Westamerica Bancorp. (WABC) 258
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The logistic regression

P(It = 1“1’71) VaRt) = P(O[ + Blltfl + 62 VaRt + uy > O|It71, VaRt)

= N o+ Pil—1+ B2VaRy)
etB1li—1+B2VaR:

1 4+ extBili—1+p2VaR:

logit(p) = |0g(%)

= o+ PBil—1+ B2VaR:

where P = P(It = 1’/1‘—17 VaRt).
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Criteria - Quantile regression (small p case)

g(+) T Dev Acc Angle Error ASE(h)
0.95 1.22(0.36) 0.8(3.53) 9.874(0.079) 0.029(0.004) 0.044(0.014)
Model 1 0.50 0.74(0.25) 0.6(1.45) 9.969(0.023) 0.007(0.002) 0.003(0.002)
0.05 1.75(0.59) 1.8(3.55) 9.829(0.123) 0.038(0.006) 0.064(0.021)
0.95 1.68(1.88) 6.6(9.32) 9.691(0.666) 7.564(7.159) 4.769(8.771)
Model 2 050 1.49(1.46) 1.0(2.82) 9.780(0.401) 5.916(4.874) 1.363(2.305)
0.05 1.50(1.73) 8.1(9.71) 9.556(0.985) 8.627(8.526) 6.145(9.168)
0.95 0.37(0.27) 0.4(2.19) 9.989(0.016) 0.141(0.069) 0.574(0.624)
Model 3 050 0.11(0.08) 0.3(0.79) 9.997(0.002) 0.051(0.029) 0.076(0.049)
0.05 056(0.32) 0.4(228) 9.978(0.025) 0.229(0.063) 0.724(0.711)

Table 4: Criteria evaluated under different models and quantiles. BaT) =
(5,5,5,5,5), the error  follows a N (0, 0.1) distribution. In 100 simulations
we set n = 100, p = 10, g = 5. Standard deviations are given in brackets.
Dev, Acc, Angle, Error and their standard deviations are reported in 1071,
ASE(h) and its standard deviations are reported in 1072,
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Criteria - Quantile regression (small p case)

g(+) T Dev Acc Angle Error ASE(h)
0.95 1.79(0.76) 0.9(4.23) 9.720(0.101) 0.050(0.008) 0.111(0.037)
Model 1 0.50 0.91(0.39) 1.2(2.56) 9.951(0.039) 0.009(0.002) 0.004(0.003)
0.05 1.92(0.79) 2.5(4.48) 9.746(0.128) 0.053(0.009) 0.122(0.049)
0.95 2.31(1.88) 9.2(9.48) 9.610(0.668) 9.158(9.561) 5.643(6.561)
Model 2 050 1.77(1.59) 5.0(3.58) 9.712(0.487) 8.152(7.278) 1.785(2.814)
0.05 3.07(1.06) 8.6(9.28) 9.695(0.551) 9.750(7.464) 4.643(4.462)
0.95 0.32(0.24) 05(2.11) 9.987(0.016) 0.235(0.117) 0.759(0.798)
Model 3 050 0.29(0.11) 0.3(0.90) 9.994(0.008) 0.077(0.052) 0.081(0.085)
0.05 0.42(0.26) 0.6(2.26) 9.982(0.019) 0.326(0.201) 0.861(0.863)

Table 5: Criteria evaluated under different models and quantiles. B{lT) =
(5,5,5,5,5), the error ¢ follows a t(5) distribution. In 100 simulations we
set n = 100,p = 10,9 = 5. Standard deviations are given in brackets.
Dev, Acc, Angle, Error and their standard deviations are reported in 1071,
ASE(h) and its standard deviations are reported in 1072,
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Criteria - Quantile regression (different ;)

g() 6(*1)

Dev

Acc

Angle

Error

ASE(h)

(a)
Model 1 (b)

(c)

1.22(0.36)
1.51(0.36)
1.72(0.38)

0.8(3.53)
1.0(3.62)
1.3(3.94)

9.874(0.079)
9.861(0.092
9.892(0.099

0.029(0.004)
0.035(0.005)
0.036(0.005)

0.044(0.014)
0.052(0.019)
0.059(0.023)

(a)
Model 2 (b)

(c)

(

1.68(1.88)
1.85(1.95)
2.34(2.21)

6.6(9.32)
7.4(9.45)
9.5(9.88)

)
)
9.691(0.666)
)
9.432(0.856)

7.564(7.159)
8.135(8.352)
8.374(8.973)

4769(8.771)
5.731(8.928)
7.212(9.134)

(a)
Model 3 (b)

(<)

0.37(0.27)
0.41(0.26)
0.53(0.28)

0.4(2.19)
0.5(2.46)
0.6(2.87)

9.989(0.016)
9.981(0.019)

(
(

(
9.541(0.752
(

(

(
9.973(0.021)

0.141(0.069)
0.259(0.122)
0.352(0.229)

0.574(0.624)
0.786(0.812)
0.814(0.921)

Table 6: Criteria evaluated under three different 5(*1):
(555757575)’ (b) ﬂikl—)r

(5,4,3,2,1), (¢) B

E‘<1—)r = (5727

(a) Ba‘; =
1,0.8,0.2) the

error ¢ follows a N(0,0.1) distribution. In 100 simulations we set n =

100,p = 10, = 5,7 = 0.95. Standard deviations are given in brackets.

Dev, Acc, Angle, Error and their standard deviations are reported in 1071,
ASE(h) and its standard deviations are reported in 1072,
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Criteria - Quantile regression (large p case)

g() Dev Acc Angle Error ASE(h)
Model T 1.86(0.84) 5.6(6.92) 9.891(0.225) 0.046(0.009) 0.103(0.040)
Model 2 1.85(1.65) 9.7(8.51) 9.873(0.651) 9.731(9.516) 4.971(3.121)
Model 3 0.92(0.39) 6.2(5.72) 9.952(0.041) 1.051(0.108) 1.432(1.042)

Table 7: Criteria evaluated with different models under p > n case. 5(*1T) =
(5,5,5,5,5), the error € follows a N (0,0.1) distribution. In 100 simulations
we set n = 100, p = 200, g = 5,7 = 0.05. Standard deviations are given
in brackets. Dev, Acc, Angle, Error and their standard deviations are
reported in 1071, ASE(h) and its standard deviations are reported in 1072,
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Appendix

5-26

Criteria - Expectile regression (small p case)

g(+) T Dev Acc Angle Error ASE(h)
0.95 0.60(0.25) 0.0(0.00) 9.978(0.018) 0.029(0.002) 0.006(0.002)
Model 1 0.50 0.51(0.21) 0.0(0.00) 9.985(0.013) 0.005(0.001) 0.002(0.001)
0.05 0.61(0.25) 0.0(0.00) 9.977(0.018) 0.016(0.003) 0.010(0.003)
0.95 0.78(0.47) 0.0(0.00) 9.958(0.056) 5.306(5.689) 0.571(0.678)
Model 2 0.50 0.64(0.43) 0.0(0.00) 9.969(0.054) 2.643(3.444) 0.249(0.435)
0.05 0.85(0.44) 0.0(0.00) 9.954(0.055) 5.564(6.216) 0.619(0.670)
0.95 0.14(0.07) 0.0(0.00) 9.998(0.002) 0.027(0.014) 0.024(0.024)
Model 3 050 0.11(0.04) 0.0(0.00) 9.999(0.001) 0.019(0.007) 0.014(0.008)
0.05 0.26(0.08) 0.0(0.00) 9.996(0.003) 0.062(0.020) 0.116(0.064)

Table 8: Criteria evaluated under different models and quantiles. B{lT) =
(5,5,5,5,5), the error  follows a N (0, 0.1) distribution. In 100 simulations
we set n = 100, p = 10, g = 5. Standard deviations are given in brackets.
Dev, Acc, Angle, Error and their standard deviations are reported in 1071,
ASE(h) and its standard deviations are reported in 1072,
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Criteria - Expectile regression (large p case)

g() Dev Acc Angle Error ASE(h)
Model T 1.03(0.51) 0.1(0.30) 9.927(0.087) 0.017(0.003) 0.013(0.007)
Model 2 1.77(1.29) 0.0(0.01) 9.863(0.321) 7.351(7.401) 2.698(3.011)
Model 3 0.56(0.26) 0.6(0.98) 9.951(0.137) 0.126(0.106) 1.383(0.382)

Table 9: Criteria evaluated with different models under p > n case. 5(*1T) =
(5,5,5,5,5), the error € follows a N (0,0.1) distribution. In 100 simulations
we set n = 100, p = 200, g = 5,7 = 0.05. Standard deviations are given
in brackets. Dev, Acc, Angle, Error and their standard deviations are
reported in 1071, ASE(h) and its standard deviations are reported in 1072,
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Criteria - Composite quantile regression

g(+) p Dev Acc Angle Error ASE(h)
small  0.54(0.17) ( ) 9.983(0.009) 0.006(0.001) 0.002(0.001)
large  1.02(0.34) ( ) 9.934(0.038) 0.009(0.002) 0.005(0.003)
small  0.40(0.17) ( ) 9.990(0.007) 1.760(1.143) 0.073(0.049)
large  0.81(0.46) 5.5(0.99) 9.973(0.032) 2.058(1.702) 0.179(0.126)
(0.03) 0.0(0.00) )
(0.04) 0.0(0.00) )

Model 1

Model 2

small  0.12(0.03 9.999(0.001) 0.020(0.004) 0.020(0.006)

Model 3 rge  0.22(0.04 9.997(0.002) 0.044(0.008) 0.049(0.018)

Table 10: Criteria evaluated under different models and number of p. small
represents p = 10, large stands for p = 200, B(*IT) = (5,5,5,5,5), the
error ¢ follows a N (0,0.1) distribution. In 100 simulations we set 7 =
(0.25,0.35,0.5,0.65,0.75),n = 100, g = 5. Standard deviations are given
in brackets. Dev, Acc, Angle, Error and their standard deviations are
reported in 1071. ASE(h) and its standard deviations are reported in
102
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