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Motivation 1-1

S&P500

[J capitalization-weighted index based on the common stock
prices of 500 American companies
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Motivation

Challenges

Distribution and Dependency
[J Risk management

» probability of extreme events
» VaR

] asset pricing

(] asset allocation
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Motivation 1-3

Semi-parametrics

(] 500500 covariance matrix; short time series — questionable
estimates

(] 500 dimensions — curse of dimensionality

Refrbduction rights obtainable from F(NANCIAL

ere’s always an element of risk.
No one has a crystal ball. OK, | have
one, but no one knows how it works.”
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Semi-parametric estimation for elliptical distributions

2-1

Semi-parametrics in Ellipsoids

(] Elliptical p.d.f.:

fr(y) = =172 {(y — ) "= Xy — 1)}

» y - returns
> [ - mean
» X - covariance

[0 Example: normality g(z) = W exp(—z/2)

[J Idea: Estimate gz — fy(y)
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Semi-parametric estimation for elliptical distributions 2-2

More on Ellipsoids

(1 If Y has an elliptical distribution, it can be represented
Y =u+RATU
with U ~ U on a sphere {t € RP : ||t "t|| = 1}

1 Useful property: (Y — ) "= (Y — p) £ R2
[1 P.d.f. of R:
gr(r) = 254rPg(r?) with s4 = =2 1(p/2)
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Semi-parametric estimation for elliptical distributions 2-3

More on Ellipsoids

gr(r) = 2s4rP~1g(r?) with sy = F(T/;)

(1 P.d.f. of R transformed into p.d.f. of R?:
gre(r) = 5.-8(r)V/r = sar?*71g(r)
[] Employ estimability of gr2(r)

g(r) =s;'r'=P2gga(r)
[J Liebscher-transformed

g(r) = syt rt P2y (r)h{y(r)}
> h-pdf. of P{(Y — ) TZ (Y — p)}
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Semi-parametric estimation for elliptical distributions 2-4

Density estimation

~

1. Estimate covariance matrix : >,

2. Get non-parametric kernel density estimate h

of & = {(Y —p) " Z7HY — )}
h [e{x - E)wi '} + k{(x + &)wpt}]

ha(x,wn; 5 n) =

™=

nwn
3. Get estimate of g
En(ri T0) = 53 1PN () o, mi )
4. Finally: get estimate of [
(Y1 Z0) = [Zal 280 {(Y =) TE (Y — )i )
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Covariance matrix estimation 3-1

Covariance matrix estimation

[] Idea 1: Factor estimator. Excess returns of a portfolio follow
a factor model

[ ldea 2: Shrinkage estimator. Estimator as a combination of
biased and unbiased estimator (trade-off between a bias and
an estimation error)
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Covariance matrix estimation

Factor Estimator

Y =B,f +¢

Y =(Y1,...,Y,)" asset returns
B = (by1,...,by)" factor loadings
bi = (bnj1,...,bnik) i=1,...,p
[ f=(f,...,fx)" factors

[ e=(e1,...,6p)"  errors

OLS + diagonal covariance matrix of errors — X pp;

Elliptical Distributions in High Dimensions



Covariance matrix estimation 3-3

Shrinkage estimator

. . . 2 2
[J Unbiased empirical variances o1y, ..., 05,

[ Shrinkage target: median value of all o; for diagonal elements
(and 0 for other)
(] Estimator:

o = /):*amed,-a,, +(1- /X*)U,' (1)

optimal pooling parameter \*

Tk . k=1

AT =min(1, ) (2)
Z (Uk - Umedian)2
k=1
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Covariance matrix estimation 3-4

Simulation

1. K = 3 factor model, generate normal sample of factors
n = 250

2. p from 20 to 400 by 20

2.1 Generate normal factor loading vectors

2.2 Generate p standard deviations from Gamma distribution
2.3 Generate normal error vectors

2.4 Get sample of returns according to the model

3. Repeat M =1000 times
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Covariance matrix estimation 3-5

Inverse Matrix

4000 0000

amensionaity

3 factors 2 factors

Figure 1: The average error for fsh,,-,,k (blue curve), fFFL (black curve)
and X, (red curve) under Frobenius norm plotted against dimensionality
p, n =250, M =1000
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Covariance matrix estimation 3-6

Determinant
3 factors 2 factors

Figure 2: Logarithm of the determinant of true covariance matrix divided
by the determinant of the Xgpinc (solid blue curve), X gg (black curve)
and X s,m (red curve) plotted against dimensionality p, n = 250, M =1000

repetitions
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Application 4-1

Fama French 3 Factor Model and Carhart 4
Factor Model

Yi=ri — Rr = a+ B1(Rm — R¢) + f2SMB + B3HML + 34 Mom
(3)

[J Ry risk free rate (1-month TBill)

[J Rm market rate (The NYSE Composite Index)

(1 SMB the performance of small stocks relative to big stocks
(Small Minus Big)

[ HML the performance of value stocks relative to growth stocks
(High Minus Low)

(] Mom momentum
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Application 4-2
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Figure 3: gge(r): for normal distribution and estimated with fFFL for 3
factors and 4 factors and > ;.. for S&P500 daily returns with monthly
interval, n = 750, p=459
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Application 4-3

VaR

Profit and loss for a a linear portfolio M(t)
ATI(t) = 01 X1 + ... + 5pXp(1)

VaR: P{Al(t) < —VaR,} = a Assumptions:
[] Returns X = (Xq,...,Xp) are elliptically distributed
[] Weights § = (d1,...,0p) are known
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Application 4.4

VaR

Solve o = |X|~1/2 f(&xg—VaRa)g{(X — )T (x — )} dx
VaR, = —0p+ g8,V X0

s=q5p: a=G(s)

—1 oo 0
2
W_l)//u—zl 7 g(u)dudz
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Application 4-5

Portfolio Profits and Loss

>

T T T
2008 2009 2010 2011 2012

date

Figure 4: VaR estimated with )EFFL for 3-factor model for the S&P500
portfolio for daily returns for 5% level, 2.5% level, 0.5% level n = 750,

p = 459
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Application 4-6

Portfolio Profits and Loss

2008 2009 2010 2011 2012

date

Figure 5: VaR estimated with fFFL for 4-factor model for the S&P500
portfolio for daily returns for 5% level, 2.5% level, 0.5% level n = 750,
p = 459
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Application 4-7

Portfolio Profits and Loss

2008 2009 2010 2011 2012

date

Figure 6: VaR estimated with fsh,,-,,k for the S&P500 portfolio for daily
returns for 5% level, 2.5% level, 0.5% level n = 750, p = 459
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Application 4-8

a 5% 25% 0.5%
3 factors 7.8% 5.1% 2.3%
4 factors 7.1% 4.8% 2.1%
shrinkage 5.3% 3.8% 1.7%

Table 1: Theoretical quantiles and percentage of outliers

a 5% 25% 0.5%
3 factors 3.0% 1.7% 0.4%
4 factors 3.2% 1.7% 0.2%
shrinkage 1.9% 1.0% 0.2%

Table 2: Theoretical quantiles and percentage of outliers excluding crisis
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