Elliptical Distributions in High Dimensions

Wolfgang Karl Härdle Ostap Okhrin Irina Pimenova

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de

S&P500

□ capitalization-weighted index based on the common stock prices of 500 American companies

Challenges

Distribution and Dependency

- 🖸 Risk management
 - probability of extreme events
 - ► VaR
- asset pricing
- asset allocation

Semi-parametrics

- 500×500 covariance matrix; short time series → questionable estimates
- \odot 500 dimensions \rightarrow curse of dimensionality

"There's always an element of risk. No one has a crystal ball. OK, I have one, but no one knows how it works."

Elliptical Distributions in High Dimensions

Outline

- 1. Motivation \checkmark
- 2. Semi-parametrics
- 3. Covariance matrix estimation
- 4. Application

Semi-parametrics in Ellipsoids

$$f_{Y}(y) = |\Sigma|^{-1/2}g\{(y-\mu)^{\top}\Sigma^{-1}(y-\mu)\}$$

$$\blacktriangleright$$
 μ - mean

Σ - covariance

• Example: normality $g(z) = \frac{1}{(pi)^{-p/2}} \exp(-z/2)$

$$\Box$$
 Idea: Estimate $g_{\Sigma} \rightarrow f_Y(y)$

Elliptical Distributions in High Dimensions -

More on Ellipsoids

 If Y has an elliptical distribution, it can be represented
 Y = μ + RA^TU
 with U ~ U on a sphere {t ∈ ℝ^p : ||t^Tt|| = 1}
 Useful property: (Y - μ)^TΣ⁻¹(Y - μ) ^L = R²
 P.d.f. of R:
 g_R(r) = 2s_dr^{p-1}g(r²) with s_d = π^{p/2}Γ⁻¹(p/2)

More on Ellipsoids

$$g_R(r) = 2s_d r^{p-1}g(r^2)$$
 with $s_d = \frac{\pi^{p/2}}{\Gamma(p/2)}$

 \bigcirc P.d.f. of R transformed into p.d.f. of R^2 :

$$g_{R^2}(r) = \frac{1}{2\sqrt{r}}g(r)\sqrt{r} = s_d r^{p/2-1}g(r)$$

: Employ estimability of $g_{R^2}(r)$ $g(r) = s_d^{-1} r^{1-p/2} g_{R^2}(r)$

Liebscher-transformed

$$g(r) = s_d^{-1} r^{1-p/2} \psi'(r) h\{\psi(r)\}$$

•
$$h - p.d.f.$$
 of $\psi\{(Y - \mu)^{\top}\Sigma^{-1}(Y - \mu)\}$

Elliptical Distributions in High Dimensions -

Density estimation

- 1. Estimate covariance matrix : $\widehat{\Sigma}_n$
- 2. Get non-parametric kernel density estimate hof $\xi_i = \psi\{(Y - \mu)^\top \Sigma^{-1} (Y - \mu)\}$

$$\widehat{h}_n(x,\omega_n;\widehat{\Sigma}_n) = \frac{1}{n\omega_n} \sum_{i=1}^n [\kappa\{(x-\widehat{\xi}_i)\omega_n^{-1}\} + \kappa\{(x+\widehat{\xi}_i)\omega_n^{-1}\}]$$

3. Get estimate of \widehat{g}

$$\widehat{g}_n(r;\widehat{\Sigma}_n) = s_d^{-1} r^{-p/2+1} \psi'(r) \widehat{h}_n(x,\omega_n;\widehat{\Sigma}_n)$$

4. Finally: get estimate of f_Y

 $\widehat{f}_{\mathbf{Y}}(\mathbf{Y};\widehat{\boldsymbol{\Sigma}}_n) = |\widehat{\boldsymbol{\Sigma}}_n|^{-1/2} \widehat{g}_n\{(\mathbf{Y}-\mu)^\top \boldsymbol{\Sigma}^{-1}(\mathbf{Y}-\mu);\widehat{\boldsymbol{\Sigma}}_n\}$

2-4

Covariance matrix estimation

- Idea 1: Factor estimator. Excess returns of a portfolio follow a factor model
- Idea 2: Shrinkage estimator. Estimator as a combination of biased and unbiased estimator (trade-off between a bias and an estimation error)

Factor Estimator

 $Y = B_n f + \varepsilon$

$$Y = (Y_1, ..., Y_p)^T \text{ asset returns}$$

$$B = (b_1, ..., b_p)^T \text{ factor loadings}$$

$$b_i = (b_{n,i1}, ..., b_{n,iK}) i = 1, ..., p$$

$$f = (f_1, ..., f_K)^T \text{ factors}$$

$$ε = (ε_1, ..., ε_p)^T \text{ errors}$$

 OLS + diagonal covariance matrix of errors $o \widehat{\Sigma}_{\textit{FFL}}$

Elliptical Distributions in High Dimensions -

Shrinkage estimator

- \boxdot Unbiased empirical variances $\sigma_{11}^2, \ldots, \sigma_{pp}^2$
- Shrinkage target: median value of all σ_i for diagonal elements (and 0 for other)
- Estimator:

$$\sigma_i^* = \widehat{\lambda}^* \sigma_{median} + (1 - \widehat{\lambda}^*) \sigma_i \tag{1}$$

optimal pooling parameter $\widehat{\lambda}^*$

$$\widehat{\lambda}^* = \min(1, \frac{\sum_{k=1}^{p} \widehat{\operatorname{Var}(\sigma_k)}}{\sum_{k=1}^{p} (\sigma_k - \sigma_{median})^2})$$
(2)

Elliptical Distributions in High Dimensions -

Simulation

- 1. K = 3 factor model, generate normal sample of factors n = 250
- 2. *p* from 20 to 400 by 20
 - 2.1 Generate normal factor loading vectors
 - 2.2 Generate p standard deviations from Gamma distribution
 - 2.3 Generate normal error vectors
 - 2.4 Get sample of returns according to the model
- 3. Repeat M = 1000 times

3-4

Inverse Matrix

Figure 1: The average error for $\widehat{\Sigma}_{shrink}$ (blue curve), $\widehat{\Sigma}_{FFL}$ (black curve) and $\widehat{\Sigma}_{sam}$ (red curve) under Frobenius norm plotted against dimensionality p, n = 250, M = 1000

Determinant

Figure 2: Logarithm of the determinant of true covariance matrix divided by the determinant of the $\hat{\Sigma}_{shrink}$ (solid blue curve), $\hat{\Sigma}_{FFL}$ (black curve) and $\hat{\Sigma}_{sam}$ (red curve) plotted against dimensionality p, n = 250, M = 1000repetitions

Elliptical Distributions in High Dimensions

Fama French 3 Factor Model and Carhart 4 Factor Model

$$Y_i = r_i - R_f = \alpha + \beta_1 (R_m - R_f) + \beta_2 SMB + \beta_3 HML + \beta_4 Mom$$
(3)

- □ *R_f* risk free rate (1-month TBill)
- □ *R_m* market rate (The NYSE Composite Index)
- SMB the performance of small stocks relative to big stocks (Small Minus Big)
- HML the performance of value stocks relative to growth stocks (High Minus Low)
- Mom momentum

Figure 3: $g_{R^2}(r)$: for normal distribution and estimated with $\widehat{\Sigma}_{FFL}$ for **3** factors and 4 factors and $\widehat{\Sigma}_{shrink}$ for S&P500 daily returns with monthly interval, n = 750, p=459

Elliptical Distributions in High Dimensions -

VaR

Profit and loss for a a linear portfolio $\Pi(t)$

 $\Delta \Pi(t) = \delta_1 X_1 + \ldots + \delta_p X_p(t)$

VaR: $P{\Delta\Pi(t) < -VaR_{\alpha}} = \alpha$ Assumptions:

- \Box Returns $X = (X_1, \dots, X_p)$ are elliptically distributed
- \boxdot Weights $\delta = (\delta_1, \ldots, \delta_p)$ are known

VaR

Solve
$$\alpha = |\Sigma|^{-1/2} \int_{(\delta x \le -VaR_{\alpha})} g\{(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\} dx$$

 $VaR_{\alpha} = -\delta\mu + q_{\alpha,\rho}^{g} \sqrt{\delta^{\top} \Sigma \delta}$
 $s = q_{\alpha,\rho}^{g}: \alpha = G(s)$
 $G(s) = \frac{2\pi^{\frac{n-1}{2}}}{\Gamma(\frac{n-1}{2})} \int_{s}^{\infty} \int_{z_{1}^{2}}^{\infty} (u-z_{1}^{2})^{\frac{n-3}{2}} g(u) du dz_{1}$

Elliptical Distributions in High Dimensions -

4-4

Figure 4: VaR estimated with $\widehat{\Sigma}_{FFL}$ for 3-factor model for the S&P500 portfolio for daily returns for 5% level, 2.5% level, 0.5% level n = 750, p = 459Elliptical Distributions in High Dimensions

Figure 5: VaR estimated with $\widehat{\Sigma}_{FFL}$ for 4-factor model for the S&P500 portfolio for daily returns for 5% level, 2.5% level, 0.5% level n = 750, p = 459Elliptical Distributions in High Dimensions

4-6

Figure 6: VaR estimated with $\widehat{\Sigma}_{shrink}$ for the S&P500 portfolio for daily returns for 5% level, 2.5% level, 0.5% level n = 750, p = 459

Elliptical Distributions in High Dimensions

α	5%	2.5%	0.5%
3 factors	7.8%	5.1%	2.3%
4 factors	7.1%	4.8%	2.1%
shrinkage	5.3%	3.8%	1.7%

Table 1: Theoretical quantiles and percentage of outliers

α	5%	2.5%	0.5%
3 factors	3.0%	1.7%	0.4%
4 factors	3.2%	1.7%	0.2%
shrinkage	1.9%	1.0%	0.2%

Table 2: Theoretical quantiles and percentage of outliers excluding crisis

Elliptical Distributions in High Dimensions

Wolfgang Karl Härdle Ostap Okhrin Irina Pimenova

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de

References

J. Fan, W. Härdle and O. Okhrin

Semiparametric Estimation for very High Dimensional Elliptical Distributions

2012

📔 J. Fan, Y. Fan, and J. Lv

High dimensional covariance matrix estimation using a factor model

Journal of Econometrics, 147, 186-197. 2008

E. Liebscher

A semiparametric density estimator based on elliptical distributions

Journal of multivariate analysis, 92, 205-225. 2005

Elliptical Distributions in High Dimensions

References

J. Kamdem

Value-at-Risk and expected shortfall for linear portfolios with elliptically distributed risk factors International Journal of Theoretical and Applied Finance, 8, 537-551. 2005

E. Fama and K. French Common risk factors in the returns on stocks and bonds Journal of Financial economics, 33, 3-56. 1993

References

R. Opgen-Rhein and K. Strimmer

ccurate ranking of differentially expressed genes by a distribution-free shrinkage approach Stat Appl Genet Mol Biol, 6: Article 9. 2007

J. Bien and R. Tibshirani Sparse estimation of a covariance matrix Biometrika, 2010

