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Motivation 1-1

RKHS – what are they?

� They are ideal space for smooth objects, i.e. Hilbert spaces
limited to smooth functions

� Main field of application – Support Vector Machines (SVM)
� This method of linear discrimination can be generalised to

smooth nonlinear contexts
� The generalisation involves kernel and thus, Reproducing

Kernel Hilbert Spaces (Aronszajn, 1950)

Reproducing Kernel Hilbert Spaces



Motivation 1-2

Recap SVM

� SVM provide a modern and powerful statistical tool for
classification

� Training data (x1, y1), . . . , (xm, ym) ∈ X × {±1}
� From training data construct a classifier function

f : X → {±1}
� Focus on efficiency and speed
� Example: classify from accounting data in bankrupt and

non-bankrupt companies
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Motivation 1-3
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Figure 1: Linearly separable case
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Motivation 1-4

Let x1 ∈ {x | 〈w , x〉+ b = 1} and x2 ∈ {x | 〈w , x〉+ b = −1}.
Then,

〈w , (x1 − x2)〉 = 2

〈 w
‖w‖ , (x1 − x2)〉 =

2
‖w‖

From projecting two points from the two classes being closest to
each other on the separating hyperplane’s normal vector w

‖w‖ it is
clear that the margin equals 2

‖w‖
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Motivation 1-5

Margin maximisation

Maximise the margin in order to separate the points from both
classes with the highest "safest" distance (margin) between them.
Maximising the margin is equivalent to minimising the norm of w .

min
w∈X ,b∈R

1
2
‖w‖2

s.t. yi (〈w , xi 〉+ b) ≥ 1,∀i = 1, . . . ,m

Corresponding Lagrangian:

L(w , b, α) =
1
2
‖w‖2 −

m∑
i=1

αi {yi (〈w , xi 〉+ b)− 1}
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Motivation 1-6

Dual problem

Due to Wolfe (1961) this optimisation program is equivalent to the
dual one (see appendix for details):

max
α∈Rm

m∑
i=1

αi −
1
2

m∑
i ,j=1

αiαjyiyj〈xi , xj〉 (1)

s.t. αi ≥ 0, ∀i = 1, . . . ,m
m∑

i=1

αiyi = 0
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Motivation 1-7
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Figure 2: Classifier
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Motivation 1-8

Nonlinear classifier

Real data is not linearly separable!
Idea – Elevate data point via a feature map Ψ into RKHS H and
then solve a linear classification problem in H

Ψ : X → H
x 7→ def

= Ψ(x)
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Motivation 1-9

Data Space Feature Space

Figure 3: Feature map Ψ(x) = (x2
1 ,
√
2x1x2, x2

2 )

Reproducing Kernel Hilbert Spaces



Motivation 1-10

The reproducing property

� We need to calculate the inner product in the feature space,
see equation (1). This is computationally intensive due to the
high dimensionality of H

� Cover’s Theorem (Cover, 1965) – number of linear separations
increases with the dimensionality

Here, the reproducing property helps (the so called kernel trick)

x>x = 〈Ψ(x),Ψ(x ′)〉 = k(x , x ′)
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Definition 2-1

The merit of the Reproducing Property

Thanks to the reproducing property (〈f , k(x , .)〉H = f (x)), one can
evaluate inner products in the feature space without explicitely
calculating the mapping Ψ(xi ).
Hilbert spaces with this reproducing property are called RKHS.
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Definition 2-2

Hilbert space

1. Vector space (i.e. vector space axioms are valid)
2. Normed space (i.e. a norm exist)
3. Complete (i.e. every Cauchy sequence’s limit is inside)
4. The norm is defined by an inner product (i.e.
‖v‖2 = 〈v , v〉,∀v)
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Definition 2-3

Inner product

1. Mapping H×H → R is linear in each component (bilinear)
2. Symmetric: ∀x , y ∈ H, 〈x , y〉 = 〈y , x〉
3. Strictly positive: ∀x ∈ H\{0} , 〈x , x〉 greater than zero
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Definition 2-4

What is a (positive definite) kernel?

� A kernel k is positive definite iff for x1, . . . , xm ∈ X the Gram
matrix K defined by Kij

def
= k(xi , xj) is positive definite

� Kernel are symmetric, i.e. k(xi , xj) = k(xj , xi )

� Kernel help constructing generalised inner products
� An RKHS possesses the Reproducing Property wrt one unique

kernel
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Construction 3-1

Map to a feature space

Map observations {xi}mi=1 to a feature space such that the kernel is
an inner product in that space. More precisely

Ψ : x 7→ k(x , .)

A particular form of the kernel could be:

k(x , .) = exp
{
− 1
2σ2
‖x − .‖2

}
(Gaussian Radial Basis Function)
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Construction 3-2

Map to a feature space
Construction 3-2

Map to a feature space.

k(., x) can be interpreted as a similarity measure of x to all other
elements of X .
Here, Ψ : X → RX , where RX def

= {f : X → R} is a (possibly
infinite dimensional) function space.

Reproducing Kernel Hilbert Spaces -b
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k(x , .) can be interpreted as a similarity measure of x to all other
elements of X .
Here, Ψ : X 7→ RX , where RX def

= {f : X 7→ R} is (possibly infinite
dimensional) function space
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Construction 3-3

Other kernels

Anisotropic Gaussian Kernel

k(x , .) = exp
{
1
2

(xi − .)> r−2Σ−1 (xi − .)
}

Polynomial Kernel

k(x , .) = 〈x , .〉d

Hyperbolic Tangent Kernel

k(x , .) = tanh (ν〈x , .〉+)

Reproducing Kernel Hilbert Spaces



Construction 3-4

Element of the feature space

The elements of the feature space are defined as:

f (.) =
m∑

i=1

αik(., xi )

where m ∈ N, αi ∈ R and arbitrary x1, . . . , xm ∈ X .
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Construction 3-5

Inner product on the feature space

For two elements f and g

f (.) =
m∑

i=1

αik(., xi ), g(.) =
m′∑
j=1

βjk(., x ′j )

define

〈f , g〉 def
=

m∑
i=1

m′∑
j=1

αiβjk(xi , x ′j )

Recall that we aim at:

〈k(x , .), f 〉 = f (x)

〈Ψ(xi ),Ψ(xj)〉 = k(xi , xj)
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Construction 3-6

Is it an inner product?

� Symmetric: 〈f , g〉 = 〈g , f 〉
� Biliner: 〈f , g〉 =

∑m′

j=1 βj f (x
′
j ) =

∑m′

i=1 αig(xi )

� Positive definite: 〈f , f 〉 =
∑m

i ,j=1 αiαjk(xi , xj) ≥ 0
� 〈f , f 〉 = 0⇒ f = 0

Consequently, the completion of the feature space is now a Hilbert
space!
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Construction 3-7

Is this space an RKHS?

Choose m finite for simplicity

〈k(., x), f 〉 = 〈k(., x),
m∑

i=1

αik(., xi )〉

=
m∑

i=1

αik(x , xi )

= f (x)

By definition of 〈., .〉 (with m′ = 1 and β1 = 1) and f (.)
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Construction 3-8

The "kernel trick"

Let

f (.) = k(x , .)

Then

〈k(x , .), k(x ′, .)〉 = 〈f , k(x ′, .)〉
= f (x ′)
= k(x , x ′)

Ψ:x 7→k(x ,.)⇐⇒ 〈Ψ(x),Ψ(x ′)〉 = k(x , x ′)

i.e. the inner product in the feature space is equivalent to the
value of the kernel in the input space
Reproducing Kernel Hilbert Spaces



Construction 3-9

A different point of view: Riesz’s theorem

1. H Hilbert space of functions f : X 7→ R and corresponding
inner product 〈., .〉

2. ξx linear, continuous functional

ξx : H 7→ R
f 7→ f (x), ∀x ∈ X

ξx(f ) = f (x)

Then ∃!y ∈ H, ∀f ∈ H, ξx(f ) = 〈y , f 〉.
Hence f (x) = 〈k(x , .), f 〉 and y = k(x , .) ∈ H.
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RKHS – Definition and properties 4-1

Definition RKHS

Let X be a nonempty set and H a Hilbert space of functions
f : X 7→ R. Then H is called an RKHS endowed with the inner
product 〈., .〉 if there is exist a function k : X × X 7→ R with the
following properties:
1. k has the reproducing property 〈f , k(x , .)〉 = f (x), ∀f ∈ H
2. k spans H, i.e. H = span {k(x , .)|x ∈ X}
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RKHS – Definition and properties 4-2

Intuition RKHS

� Benefit from the richness of Hilbert spaces (inner product,
norm, projections) . . .

� . . . and restrict them to ensure the Reproducing property
� Mapping to the feature space flattens out non-linearities due

to the Reproducing property
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RKHS – Definition and properties 4-3

Mercer’s theorem

� Provide conditions under which a RKHS associated with a
certain kernel exists

� RKHS exist for every kernel that is continuous, symmetric and
positive definite

� Represenation of RKHS in a standardised basis
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RKHS – Definition and properties 4-4

Mercer’s theorem

Suppose k ∈ L∞(X 2) is a real-valued function such that

Tk : L2(X ) 7→ L2(X )

f (.) 7→ (Tk f )(.)

(Tk f )(x)
def
=

∫
X
k(x , x ′)f (x ′)dµ(x ′)

is positive definite. Let φj ∈ L2(X ) be normalised orthogonal
eigenfunctions of Tk associated with eigenvalues λj > 0. Then
1. λj ∈ `1
2. Eigenfunction expansion k(x , x ′) =

∑NH
j=1 λjφj(x)φj(x ′) holds

for almost all (x , x ′) (NH is the possibly infnite number of
dimension of H)
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RKHS – Definition and properties 4-5

Implied Mercer map

� Somewhat standardised feature map implied by Mercer’s
theorem:

Ψ : X 7→ `NH
2

x 7→
{√

λjφj(x)
}

j=1,...,NH

� Elements of H:

f (x) =
∞∑
i=1

αik(x , xi ) =
∞∑
i=1

αi

NH∑
j=1

λjφj(x)φj(xi )
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RKHS – Definition and properties 4-6

� Bi-linearity implies:

〈f , k(., x ′)〉H =
∞∑
i=1

αi

NH∑
j=1

NH∑
m=1

λjφj(xi )〈φj , φm〉λmφm(x ′)

� Now, choose 〈., .〉 such that

〈φj , φm〉 =
δjm
λj

� Then, obtain the Reproducing property

〈f , k(., x ′)〉 =
∞∑
i=1

αi

NH∑
j=1

λjφj(x)φj(x ′)
per def

= f (x ′)
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Illustrations 5-1

Figure 4: SVM for orange peel data, n = 200, d = 2, n−1 = n+1 = 100,
x+1,i ∼ N((0, 0)>, 22I), x−1,i ∼ N((0, 0)>, 0.52I) with SVM parameters
r = 0.5 and C = 20/200. The solid circle and triangle are observations
that are used as support vector. MVAsvmOrangePeel.R
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Illustrations 5-2

Figure 5: SVM for noisy spiral data. The spirals spread over 3π radian;
the distance between the spirals equals 1.0. d = 2, n−1 = n+1 = 100,
n = 200. The noise was injected with the parameters εi ∼ N(0, 0.12I).
The separation is perfect with SVM parameters r = 0.1 and C = 10/200.
The solid circle and triangle are observations that are used as support
vector. MVAsvmSpiral.R
Reproducing Kernel Hilbert Spaces
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Appendix 7-1

Wolfe duality Dual Problem

Primal problem

min
w∈X ,b∈R

1
2
‖w‖2

s.t. yi (〈w , xi 〉+ b) ≥ 1, ∀i = 1, . . . ,m

L(w , b, α) =
1
2
‖w‖2 −

m∑
i=1

αi {yi (〈w , xi 〉+ b)− 1}
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Appendix 7-2

Injecting the FOC into the Lagrangian yields the dual problem

∂

∂b
L(w , b, α) = 0 ⇐⇒

m∑
i=1

αiyi = 0

∂

∂w
L(w , b, α) = 0 ⇐⇒ w =

m∑
i=1

αiyixi

G (α)
def
=

m∑
i=1

αi −
1
2
αiαjyiyj〈xi , xj〉

Wolfe (1961):

max
w∈X ,b∈R

L⇐⇒ max
α∈Rm

G
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Appendix 7-3

Obtain optimal w and b

Then obtain w by:

w =
m∑

i=1

αiyixi

Choose b such that the optimality condition

yi (〈w , xi 〉+ b) ≥ 1

is verified for all i = 1, . . . ,m (more complex algorithm needed)
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