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Motivation

Seek and ye shall find
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Motivation 1-2

Modern Scientific Practice

Modern scientific practice:
(] Transparency
(] Reproducibility
[] Collaborative Reproducible Research

Also: Want to publicize new technologies!

Problem: Need and want to publish our technologies and datal
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QuantNet 2.0 and GitHub

The Solution
QuantNet 2.0

[ J
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QuantNet 2.0 and GitHub 2-2

The Solution

QuantNet 2.0 - The Next Generation
[J ~ 2000 Quantlets
(] Technology to easily share data and programs
[] Searchable technology
(] Enabled collaboration via seamless GitHub integration

1 Connections between technologies

Boosting transparent and reproducible science
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QuantNet 2.0 and GitHub

What is GitHub?

O®

o A distributed version control system (Git)
o A collaboration platform (Hub)

gnhub

SOCIAL CODING
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QuantNet 2.0 and GitHub 2-4

Advantages of QuantNet 2.0

[J Fully integrated with GitHub

] Proprietary GitHub-R-API developed from core package
(Arizona State University)

[] Text Mining Pipeline via R packages providing D3 and 3D
Visualizations and Document clustering

[] Tuned and integrated Search engine within the main D3 Visu
based on validated meta information in Quantlets

[] Ease of discovery and use of your technology

1 Audit of your technology
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Challenges 3-1

Objectives

(] D3: D3.js — Data-Driven Documents

» Knowledge discovery via information visualization
» visit on GitHub

[] 3D: Three.js — Next logical step

» cross-browser JavaScript library/API
» animate 3D computer graphics in a web browser
» visit on GitHub

[ LSA: Latent Semantic Analysis

» Semantic Embedding
» visit on GitHub

D3-3D-LSA for QuantNet 2.0 and GitHub


https://github.com/d3
https://github.com/mrdoob/three.js
https://github.com/cran/lsa

Challenges 3-2

Statistical Challenges

[] Text Mining

» Model calibration

Dimension reduction

Semantic based Information Retrieval
Cluster validation for Document Clustering

vvyy

[ Visualization

» Projection techniques
» 2D, 3D
» Geometry

D3-3D-LSA for QuantNet 2.0 and GitHub



Vector Space Model (VSM)

Vector Space Model (VSM)

(] Model calibration
» Text to Vector: Weighting scheme, Similarity, Distance
» Generalized VSM (GVSM)
Latent Semantic Analysis
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Vector Space Model (VSM)

Text to Vector

Q = {di,...,dn} set of documents (Quantlets/Gestalten).
T ={t1,...,tm} dictionary (set of all terms).
tf(d, t) absolute frequency of term t € T in d € Q.

O OO O

idf (t) def log(|Q|/n¢) inverse document frequency, with
ne = |{d € Q|t € d}|.

w(d) = {w(d,t1),...,w(d, tm)} "€ R™,d € Q,
document as vector.

.

[ w(d, t;) calculated by a weighting scheme.

L D =[w(d),...,w(d,)] € R™"
term by document matrix (TDM) .
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Vector Space Model (VSM) 4-3

Weighting scheme, Similarity, Distance
[J Salton et al. (1994): the tf-idf — weighting scheme
tf(d, t)idf(t)
Tt (d )Pidf ()

() (normalized tf-idf) Similarity S of two documents d; and d

w(d,t) =

=[T]

S(di, db) = Z w(d, ty) - w(da, t) = w(ch) w(d)
k=1

[J Euclidian distance measure:

dlstd(dl,dz : \JZ{W di, tk) - W(dz, tk)}

k=1
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Vector Space Model (VSM) 4-4

Generalized VSM (GVSM)

Generalize similarity S with a linear mapping P:

S(dy,ds) = (Pdy) " (Pdy) = d]' PT Pd,

Every P defines another VSM:

M) = DT (PTP)D

Ms: similarity matrix, D: term by document matrix

D3-3D-LSA for QuantNet 2.0 and GitHub




Vector Space Model (VSM)

GVSM

[ Basic VSM (BVSM):
» P =Il,and w(d) = {tf(d,t1),...,tF(d, tm)} "
» classical tf-similarity: MY = D" D

[] Term-Term correlations:
» P=DT, MTT DT(DDT)D
» DDT: term by term correlation matrix

[J Latent Semantic Analysis
» D = UxV': singular value decomposition (SVD)
» P=U =1.U": projection onto the first k dimensions
> MLEA=DT(ULUT)D
> The k dimensions as the main semantic components and
UkU = UIUT their correlation.
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Vector Space Model (VSM) 4-6

Power of LSA

[] Highest-performing variants of LSA-based search algorithms
perform as well as PageRank-based Google search engine
(Miller et al., 2009)

(1 In half of the studies with 30 sets LSA performance equal to or
better than that of humans (Bradford, 2009)

[] Positive correlation of LSA comparable with the more
sophisticated WordNet based methods and also human ratings
(r = 0.88), (Mohamed et al., 2014)
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Empirical results 5-1

M3: 3 Models, 3 Methods, 3 Measures

[J Dataset: the whole Quantnet

[ Documents: 1170 Gestalten (from 1826 individual Quantlets)
[J 3 Models: BVSM, GVSM(TT) and GVSM(LSA)

» 3 configurations in LSA with dimension parameter k equal to
300, 171 (50% of the weight of all singular values) and 50

[ 3 Clustering methods: @D, CEIEEDD,
(] 3 Cluster validation measures:
» Connectivity CEIIETED

» Silhouette width @EIEED
» Dunn Index @D
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Empirical results

M3 evaluation results

5-2

Measure Model

Method

Connectivity LSA50

hca

Silhouette LSA50

hca

Dunn | BVSM/LSA

hca

[] Hierarchical Clustering(hca) better or comparable to other
methods in all measure aspects and in all models

(] LSA50 superior wrt. Connectivity and Silhouette

[] BVSM/LSA slightly better than LSA50 wrt. Dunn, but still
comparable (small range of values in all models)

[ Conclusion: hca under LSA/LSA50 is the optimal method
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Empirical results

5-3
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Interactive Structure 6-1

Dendrogram: subset from SFE, SFS, IBT

Cluster Dendrogram

d
el “ward D)

Figure 1: Created by hierarchical clustering (ward-method) in LSA model,
cut in 6 clusters and 30 subclusters, 137 Gestalten
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Interactive Structure 6-2

Hierarchical Clustering live via D3

T

Hierarchical cluster analysis (3 Levels)
on Quantlets
via D3 js

Figure 2: Come in and Quant out under
quantnet.wiwi.hu-berlin.de/d3/beta/
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Interactive Structure 6-3

Combined D3 + 3D View

n e El

Figure 3: Finding Quantlets containing the term "pca"

The resulting 31 objects are concentrated on 3 clusters with the topics:
"pca, eigenvalue, standard", "regress, model, estimation" and
"volatility, option, implied"
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Interactive Structure

Collaboration Timeline via GitHub-API
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Figure 4: Snapshot of the development of the MVA repository

More examples of collaboration projects
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https://github.com/QuantLet/MVA-Ready
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Interactive Structure 6-5

3D GitHub Network Graph

torvalds.

torvalds has 0
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http://borke.net/PackageNetwork/

Interactive Structure

3D CRAN Network Graph - R Language

"Press SPACE to deactivate steering mode
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Conclusion 7-1

Conclusion

[ Different model configurations allow adapted Similarity based
Document Clustering and Knowledge Discovery

[J LSA/LSA50 and HCA optimal under M3 evaluation
(1 Incorporating term-term Correlations and Semantics:
» Sparsity reduction

» higher clustering performance and better semantic topics
» more recall/precision (IR)
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Conclusion 7-2

Future Perspectives

[J More clustering methods and validation measures for
performance validation: from M3 to Mk

[] Optimization of cluster labels for easier human readability

(1 Implementation of ,upgrades” into QuantNet 2.0 via D3-3D

[ Extension of D3-3D-LSA to further parts of GitHub
» from BigData to SmartData

D3-3D-LSA for QuantNet 2.0 and GitHub
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Appendix

0-1
Text to Vector

[ Q ={di,...,dn} set of documents (Quantlets/Gestalten).
[0 T ={t1,...,tm} dictionary (set of all terms).
[ tf(d, t) absolute frequency of term t € T in d € Q.

terms | Non-/sparse entries
all terms (after preprocessing) | 2223 17878/2583032

discarding tf = 1 | 1416 17071/1639649
discarding tf <=2 | 1039 16317/1199313
discarding tf <=3 | 846 15738/974082

Table 1: Total number of documents in QNet:

1170 Gestalten/1826
Quantlets; term sparsity: 98% — 99%
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Appendix 9-2
Example: NASDAQ Text Data

Let Q = {d1, do, d3} be the set of NASDAQ news.
The TDM is a 1022 x 3 - matrix.

Document 1: Apple text 1 (total word number: 1729)
Document 2: J. P. Morgan (total word number: 584)

Document 3: Apple text 2 (total word number: 1012)

[J NASDAQ articles source

[J Data available at RDC

[ Sentiment Index (Distillation of News Flow into Analysis of
Stock Reactions, Zhang, J., Chen, C., Hardle, W. and
Bommes, E., 2015)
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Figure 5: Wordcloud of the top 300 words in NASDAQ Texts
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Appendix
Similarity matrix Ms and Distance matrix Mp for:

all 1022 terms (in normalized TF-form):

1 028 0.17 0 1.20
Ms=1028 1 0.11 Mp=1120 O
0.17 0.11 1 1.29 1.34
229 special terms (tf > 1, in normalized TF-form):
1 051 0.28 0 099
Ms= 1051 1 0.15 Mp=1099 O
028 0.15 1 1.20 1.30
41 special terms (tf > 2, in normalized TF-form):
1 052 053 0 0.98
Ms= 1052 1 0.69 Mp={098 0
0.53 069 1 0.96 0.79

D3-3D-LSA for QuantNet 2.0 and GitHub
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Figure 6: PCA projection of NASDAQ Texts on PC1 and PC2 (all terms)

PC1 (top 5 words): revenu, appl, line, billion, fiscal
PC2 (top 5 words): watt, revenu, compani, year, technolog

The Apple texts are well separated from J.P.M. by PC2 with words like watt, company and technology.
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Figure 7: PCA projection of NASDAQ Texts on PC1 and PC2 (229 terms)

PC1 (top 5 words): revenu, appl, line, billion, year
PC2 (top 5 words): compani, technolog, invest, million, revenu

The Apple texts are well separated from J.P.M. by PC2 with words like company, technology and invest.
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Appendix 9-7

Partitional Clustering methods

[] k-Means clustering aims to partition n observations into k
clusters in which each observation belongs to the cluster with
the nearest mean, serving as a prototype of the cluster.

[] k-Medoids clustering is related to the k-means. Both attempt
to minimize the distance between points labeled to be in a
cluster and a point designated as the center of that cluster. In
contrast to the k-means, k-medoids chooses datapoints as
centers (medoids) and works with an arbitrary matrix of
distances.
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Appendix 9-8

Hierarchical Clustering 4+ Silhouette width

[J Hierarchical cluster analysis (HCA) is a method which seeks to
build a hierarchy of clusters using a set of dissimilarities for the
n objects being clustered. It uses agglomeration methods like
"ward.D", "ward.D2", "single", "complete", "average".

(] The silhouette of a datum is a measure of how closely it is
matched to data within its cluster and how loosely it is
matched to data of the neighbouring cluster, i.e. the cluster
whose average distance from the datum is lowest. A silhouette
close to 1 implies the datum is in an appropriate cluster, while
a silhouette close to -1 implies the datum is in the wrong
cluster.
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Appendix 9-9

Cluster validation measures

(] The connectivity indicates the degree of connectedness of the
clusters, as determined by the k-nearest neighbors. The
connectedness considers to what extent observations are
placed in the same cluster as their nearest neighbors in the
data space. The connectivity has a value between zero and oo
and should be minimized.

[J The Dunn Index is the ratio of the smallest distance between
observations not in the same cluster to the largest intra-cluster
distance. The Dunn Index has a value between zero and oo,
and should be maximized.

D3-3D-LSA for QuantNet 2.0 and GitHub




Appendix 9-10
t-SNE

t-distributed Stochastic Neighbor Embedding (t-SNE) is a machine
learning algorithm for nonlinear dimensionality reduction. It
comprises two main stages:

1. Construct a probability distribution over pairs of
high-dimensional objects in such a way that similar objects
have a high probability of being picked, whilst dissimilar points
have an infinitesimal probability of being picked.

2. Define a similar probability distribution over the points in the
low-dimensional map, and minimize the Kullback-Leibler
divergence between the two distributions with respect to the
locations of the points in the map.

D3-3D-LSA for QuantNet 2.0 and GitHub




Appendix 9-11

Data Mining: DM

DM is the computational process of discovering/representing
patterns in large data sets involving methods at the intersection of
artificial intelligence, machine learning, statistics, and
database systems.

1. Numerical DM
2. Visual DM

3. Text Mining
(applied on considerably weaker structured text data)
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Appendix 9-12

Text Mining

Text Mining or Knowledge Discovery from Text (KDT) deals
with the machine supported analysis of text (Feldman et al., 1995).

It uses techniques from:
[J Information Retrieval (IR)
[ Information extraction

[J Natural Language Processing (NLP)

and connects them with the methods of DM.
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Appendix 9-13

Wordcloud of the words/terms in QNet
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Appendix 9-14

Most frequent words/terms in QNet

word

Figure 8: Words with more then 90 occurrences
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Correlation graph of the QNet terms

Figure 9: 30 most frequent terms with threshold = 0.05
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Distance measure

A frequently used distance measure is the Euclidian distance:

distq(dy, do) & dist{w(dr), w(dp)} & Z{W di, t) — w(da, t)}
k=1

It holds for tf-idf:

-
1
cos ¢ = Xy =1— Zdist® i,l ,
x| - lyl 2 x| Iyl

where [ means w(di), b{_l means w(d>) and cos ¢ is the angle

between x and y.
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Drawbacks of the classical tf-idf approach

[ Uncorrelated/orthogonal terms in the feature space
[] Documents must have common terms to be similar

[] Sparsity of document vectors and similarity matrices

Solution

[] Using statistical information about term-term correlations

[ Incorporating information about semantics (Semantic
smoothing)

D3-3D-LSA for QuantNet 2.0 and GitHub




Appendix

GVSM - Basic VSM (BVSM)

O P=l,and w(d) = {tf(d,t1),...,tF(d, tm)}"
cIaSS|ca| tf-similarity: MY = DTD

[ diagonal P(i, i) = idf(t;) and

w(d) = {tf(d, t1),... tf(d, tm)}"
classical tf—|df—5|m|Iar|ty MEidf — DT (pidf)T pidf o

[] starting with
w(d) = {tf(d, tl)idf(tl), o tF(d, tm)idf (tm)} T
and letting P = I,
Mtfldf DT/ D — DTD

» Back to BVSM

D3-3D-LSA for QuantNet 2.0 and GitHub
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Appendix 9-19
GVSM - term-term correlations

OP=DT

[ S(di,d2) =(D"dy)T (D" da) = d DD dy

O mMIT=D"(DD")D

1 DDT - term by term matrix, having a nonzero ij entry if and
only if there is a document containing both the i-th and the
Jj-th terms

[J terms become semantically related if co-occuring often in the
same documents

[J also known as a dual space method (Sheridan and Ballerini,
1996)

(] when there are less documents than terms — dimensionality
reduction

D3-3D-LSA for QuantNet 2.0 and GitHub
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GVSM — Latent Semantic Analysis (LSA)

(] LSA measures semantic information through co-occurrence
analysis (Deerwester et al., 1990)

[ Technique — singular value decomposition (SVD) of the matrix
D=UxXVT

L P= UkT = I, UT - projection operator onto the first k
dimensions

[] Ms = DT(UlLUT)D - similarity matrix

[ It can be shown: Ms = VALV, with
D'D=VITUTULZVT = VAVT and A; = \; eigenvalues of
V. Ay consisting of the first k eigenvalues and zero-values else.

D3-3D-LSA for QuantNet 2.0 and GitHub
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Latent Semantic Space

1. Create directly by using the quantlets, matrix D = the set of
quantlets
2. First train by domain-specific and generic background
documents
» Fold in Quantlets into the semantic space after the previous
SVD process
» Gain of higher retrieval performance (bigger vocabulary set,

more semantic structure)
» Chapters or sub-chapters from our e-books well suited

D3-3D-LSA for QuantNet 2.0 and GitHub



Appendix 9-22

Generalized VSM — Semantic smoothing

(] More natural method of incorporating semantics is by directly
using a semantic network

(1 (Miller et al., 1993) used the semantic network WordNet

(] Term distance in the hierarchical tree provided by WordNet
gives an estimation of their semantic proximity

[] (Siolas and d'Alche-Buc, 2000) have included the semantics
into the similarity matrix by handcrafting the VSM matrix P

[0 Ms=DT"(PTP)D = D" P?D - similarity matrix

D3-3D-LSA for QuantNet 2.0 and GitHub
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Connectivity performance - hca
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Silhouette performance - hca
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Dunn performance - hca
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» Back to all results
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LSA - A first insight into the interpretation

Coincidence of the terms
in the semantic space principal components P
and in the labels of the dendrogram clusters

PC1 (5.6): visual return option call distribut

PC2 (4.9): call option blackschol put price 2 stsab stosstrequie ©
PC3 (4.5): dsfm fpca dsfmbsyc dsfmfpcaic cluster

PC4 (4.4): dsfm copula distribut densiti gumbel

PC5 (4.3): return visual portfolio timeseri dax 3 cogulagumbel ciyion ©
PC6 (4.1): regress kernel nonparametr linear estim

PC7 (4.0): copula regress gumbel nonparametr var

PC8 (3.9): copula visual gumbel scatterplot clayton

4 cluster anays dendrogram ©

Centre O

PC number | cluster number
1 1 Ny e @
2 8
3 6 6: dstm pca,dsimosye ©
4 3
5 7 7: return.portfolio.var @
6 5
7 3,5
g 3 o catoptonin ©
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Sparsity results
BVSM | TT [ LSA:300 | LSA:171(50%) | LSA:50
TDM | 099 |0.65| 051 0.51 0.47
Ms | 0.65 |0.07| 0.35 0.36 0.35

Table 2: Model Performance regarding the sparsity of the

term by document matrix TDM and the similarity matrix Mg in the ap-

propriate models (weighting scheme: tf-idf normed).

Sparsity: the ratio of the number of zero entries to the total number
of entries of a matrix. In general: the lower the sparsity, the better.

More details about sparsity and similarity structure in

D3-3D-LSA for QuantNet 2.0 and GitHub
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Figure 10: Heat map with Dendrogram - BVSM SimMatrix

» Back to sparsity results
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Figure 11: Heat map with Dendrogram - GVSM(TT) SimMatrix

» Back to sparsity results
D3-3D-LSA for QuantNet 2.0 and GitHub
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Figure 12: Heat map with Dendrogram - LSA:300 SimMatrix

» Back to sparsity results
D3-3D-LSA for QuantNet 2.0 and GitHub
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Appendix

Figure 14: Heat map with Dendrogram - LSA:50 SimMatrix
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