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Motivation 1-1

Seek and ye shall find
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Motivation 1-2

Modern Scientific Practice

Modern scientific practice:
� Transparency
� Reproducibility
� Collaborative Reproducible Research

Also: Want to publicize new technologies!

Problem: Need and want to publish our technologies and data!
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QuantNet 2.0 and GitHub 2-1

The Solution

QuantNet 2.0
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QuantNet 2.0 and GitHub 2-2

The Solution

QuantNet 2.0 - The Next Generation
� ≈ 2000 Quantlets
� Technology to easily share data and programs
� Searchable technology
� Enabled collaboration via seamless GitHub integration
� Connections between technologies

Boosting transparent and reproducible science
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QuantNet 2.0 and GitHub 2-3

What is GitHub?

� A distributed version control system (Git)
� A collaboration platform (Hub)
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QuantNet 2.0 and GitHub 2-4

Advantages of QuantNet 2.0

� Fully integrated with GitHub
� Proprietary GitHub-R-API developed from core package

(Arizona State University)
� Text Mining Pipeline via R packages providing D3 and 3D

Visualizations and Document clustering
� Tuned and integrated Search engine within the main D3 Visu

based on validated meta information in Quantlets
� Ease of discovery and use of your technology
� Audit of your technology
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Challenges 3-1

Objectives

� D3: D3.js – Data-Driven Documents
I Knowledge discovery via information visualization
I visit on GitHub

� 3D: Three.js – Next logical step
I cross-browser JavaScript library/API
I animate 3D computer graphics in a web browser
I visit on GitHub

� LSA: Latent Semantic Analysis
I Semantic Embedding
I visit on GitHub

D3-3D-LSA for QuantNet 2.0 and GitHub

https://github.com/d3
https://github.com/mrdoob/three.js
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Challenges 3-2

Statistical Challenges

� Text Mining
I Model calibration
I Dimension reduction
I Semantic based Information Retrieval
I Cluster validation for Document Clustering

� Visualization
I Projection techniques
I 2D, 3D
I Geometry
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Vector Space Model (VSM) 4-1

Vector Space Model (VSM)

� Model calibration
I Text to Vector: Weighting scheme, Similarity, Distance
I Generalized VSM (GVSM)

Latent Semantic Analysis
D3-3D-LSA for QuantNet 2.0 and GitHub

http://borke.net/DataProjector/


Vector Space Model (VSM) 4-2

Text to Vector

� Q = {d1, . . . , dn} set of documents (Quantlets/Gestalten).
� T = {t1, . . . , tm} dictionary (set of all terms).
� tf (d , t) absolute frequency of term t ∈ T in d ∈ Q.

� idf (t)
def
= log(|Q|/nt) inverse document frequency, with

nt = |{d ∈ Q|t ∈ d}|.
� w(d) = {w(d , t1), . . . ,w(d , tm)}>∈ Rm, d ∈ Q,

document as vector.
� w(d , ti ) calculated by a weighting scheme.

� D = [w(d1), . . . ,w(dn)] ∈ Rmxn,
term by document matrix (TDM) .
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Vector Space Model (VSM) 4-3

Weighting scheme, Similarity, Distance
� Salton et al. (1994): the tf-idf – weighting scheme

w(d , t) =
tf (d , t)idf (t)√∑m

j=1 tf (d , tj )2idf (tj )2
,m = |T |

� (normalized tf-idf) Similarity S of two documents d1 and d2

S(d1, d2) =
m∑

k=1

w(d1, tk ) · w(d2, tk ) = w(d1)>w(d2)

� Euclidian distance measure:

distd (d1, d2)
def
=

√√√√ m∑
k=1

{w(d1, tk )− w(d2, tk )}2
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Vector Space Model (VSM) 4-4

Generalized VSM (GVSM)

Generalize similarity S with a linear mapping P :

S(d1, d2) = (Pd1)>(Pd2) = d>
1 P>Pd2

Every P defines another VSM:

M
(P)
S = D>(P>P)D

MS : similarity matrix, D: term by document matrix
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Vector Space Model (VSM) 4-5

GVSM

� Basic VSM (BVSM): BVSM

I P = Im and w(d) = {tf (d , t1), . . . , tf (d , tm)}>
I classical tf-similarity: M tf

S = D>D

� Term-Term correlations: GVSM(TT)

I P = D>, MTT
S = D>(DD>)D

I DD>: term by term correlation matrix

� Latent Semantic Analysis LSA

I D = UΣV>: singular value decomposition (SVD)
I P = U>

k = IkU
>: projection onto the first k dimensions

I MLSA
S = D>(UIkU

>)D
I The k dimensions as the main semantic components and

UkU
>
k = UIkU

> their correlation.
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Vector Space Model (VSM) 4-6

Power of LSA

� Highest-performing variants of LSA-based search algorithms
perform as well as PageRank-based Google search engine
(Miller et al., 2009)

� In half of the studies with 30 sets LSA performance equal to or
better than that of humans (Bradford, 2009)

� Positive correlation of LSA comparable with the more
sophisticated WordNet based methods and also human ratings
(r = 0.88), (Mohamed et al., 2014)
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Empirical results 5-1

M3: 3 Models, 3 Methods, 3 Measures

� Dataset: the whole Quantnet
� Documents: 1170 Gestalten (from 1826 individual Quantlets)
� 3 Models: BVSM, GVSM(TT) and GVSM(LSA)
I 3 configurations in LSA with dimension parameter k equal to

300, 171 (50% of the weight of all singular values) and 50

� 3 Clustering methods: k-Means , k-Medoids , HCA

� 3 Cluster validation measures:
I Connectivity Connectivity

I Silhouette width Silhouette

I Dunn Index Dunn

D3-3D-LSA for QuantNet 2.0 and GitHub



Empirical results 5-2

M3 evaluation results

Measure Model Method
Connectivity LSA50 hca
Silhouette LSA50 hca

Dunn BVSM/LSA hca

� Hierarchical Clustering(hca) better or comparable to other
methods in all measure aspects and in all models

� LSA50 superior wrt. Connectivity and Silhouette
� BVSM/LSA slightly better than LSA50 wrt. Dunn, but still

comparable (small range of values in all models)
� Conclusion: hca under LSA/LSA50 is the optimal method

More results

D3-3D-LSA for QuantNet 2.0 and GitHub



Empirical results 5-3

2D-Geometry via MDS (left) and t-SNE (right) in LSA:50
8 k-Means-Clusters:
1: distribut copula normal gumbel pdf; 2: call option blackschol put price;
3: return timeseri dax stock financi; 4: portfolio var pareto return risk;
5: interestr filter likelihood cir term; 6: visual dsfm requir kernel test;
7: regress nonparametr linear logit lasso; 8: cluster analysi pca principalcompon dendrogram

More about t-SNE Geometry via 3D/Three.js
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Interactive Structure 6-1

Dendrogram: subset from SFE, SFS, IBT

Figure 1: Created by hierarchical clustering (ward-method) in LSA model,
cut in 6 clusters and 30 subclusters, 137 Gestalten

D3 Scheme 1 D3 Scheme 2 D3 Scheme 3
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Interactive Structure 6-2

Hierarchical Clustering live via D3

Figure 2: Come in and Quant out under
quantnet.wiwi.hu-berlin.de/d3/beta/

D3-3D-LSA for QuantNet 2.0 and GitHub

http://quantnet.wiwi.hu-berlin.de/d3/beta/


Interactive Structure 6-3

Combined D3 + 3D View

Figure 3: Finding Quantlets containing the term "pca"

The resulting 31 objects are concentrated on 3 clusters with the topics:
"pca, eigenvalue, standard", "regress, model, estimation" and
"volatility, option, implied" D3 Visu 3D Visu
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Interactive Structure 6-4

Collaboration Timeline via GitHub-API

Figure 4: Snapshot of the development of the MVA repository
More examples of collaboration projects
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https://github.com/QuantLet/MVA-Ready
https://github.com/QuantLet/Git2Q3-Collaboration/blob/master/README.md


Interactive Structure 6-5

3D GitHub Network Graph

D3-3D-LSA for QuantNet 2.0 and GitHub

http://borke.net/PackageNetwork/


Interactive Structure 6-6

3D CRAN Network Graph - R Language
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Conclusion 7-1

Conclusion

� Different model configurations allow adapted Similarity based
Document Clustering and Knowledge Discovery

� LSA/LSA50 and HCA optimal under M3 evaluation

� Incorporating term-term Correlations and Semantics:
I Sparsity reduction
I higher clustering performance and better semantic topics
I more recall/precision (IR)

D3-3D-LSA for QuantNet 2.0 and GitHub



Conclusion 7-2

Future Perspectives

� More clustering methods and validation measures for
performance validation: from M3 to Mk

� Optimization of cluster labels for easier human readability

� Implementation of „upgrades“ into QuantNet 2.0 via D3-3D

� Extension of D3-3D-LSA to further parts of GitHub
I from BigData to SmartData

D3-3D-LSA for QuantNet 2.0 and GitHub
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Appendix 9-1

Text to Vector

� Q = {d1, . . . , dn} set of documents (Quantlets/Gestalten).
� T = {t1, . . . , tm} dictionary (set of all terms).
� tf (d , t) absolute frequency of term t ∈ T in d ∈ Q.

terms Non-/sparse entries
all terms (after preprocessing) 2223 17878/2583032

discarding tf = 1 1416 17071/1639649
discarding tf <= 2 1039 16317/1199313
discarding tf <= 3 846 15738/974082

Table 1: Total number of documents in QNet: 1170 Gestalten/1826
Quantlets; term sparsity: 98%− 99%
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Appendix 9-2

Example: NASDAQ Text Data

Let Q = {d1, d2, d3} be the set of NASDAQ news.
The TDM is a 1022× 3 - matrix.

Document 1: Apple text 1 (total word number: 1729)

Document 2: J. P. Morgan (total word number: 584)

Document 3: Apple text 2 (total word number: 1012)

� NASDAQ articles source
� Data available at RDC
� Sentiment Index (Distillation of News Flow into Analysis of

Stock Reactions, Zhang, J., Chen, C., Härdle, W. and
Bommes, E., 2015)
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Appendix 9-3

Figure 5: Wordcloud of the top 300 words in NASDAQ Texts
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Appendix 9-4

Similarity matrix MS and Distance matrix MD for:

all 1022 terms (in normalized TF-form):

MS =

 1 0.28 0.17
0.28 1 0.11
0.17 0.11 1

 MD =

 0 1.20 1.29
1.20 0 1.34
1.29 1.34 0


229 special terms (tf > 1, in normalized TF-form):

MS =

 1 0.51 0.28
0.51 1 0.15
0.28 0.15 1

 MD =

 0 0.99 1.20
0.99 0 1.30
1.20 1.30 0


41 special terms (tf > 2, in normalized TF-form):

MS =

 1 0.52 0.53
0.52 1 0.69
0.53 0.69 1

 MD =

 0 0.98 0.96
0.98 0 0.79
0.96 0.79 0
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Appendix 9-5

Figure 6: PCA projection of NASDAQ Texts on PC1 and PC2 (all terms)
PC1 (top 5 words): revenu, appl, line, billion, fiscal
PC2 (top 5 words): watt, revenu, compani, year, technolog
The Apple texts are well separated from J.P.M. by PC2 with words like watt, company and technology.
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Appendix 9-6

Figure 7: PCA projection of NASDAQ Texts on PC1 and PC2 (229 terms)
PC1 (top 5 words): revenu, appl, line, billion, year
PC2 (top 5 words): compani, technolog, invest, million, revenu
The Apple texts are well separated from J.P.M. by PC2 with words like company, technology and invest.
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Appendix 9-7

Partitional Clustering methods

� k-Means clustering aims to partition n observations into k
clusters in which each observation belongs to the cluster with
the nearest mean, serving as a prototype of the cluster.

� k-Medoids clustering is related to the k-means. Both attempt
to minimize the distance between points labeled to be in a
cluster and a point designated as the center of that cluster. In
contrast to the k-means, k-medoids chooses datapoints as
centers (medoids) and works with an arbitrary matrix of
distances.

Back to M3-evaluation
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Appendix 9-8

Hierarchical Clustering + Silhouette width

� Hierarchical cluster analysis (HCA) is a method which seeks to
build a hierarchy of clusters using a set of dissimilarities for the
n objects being clustered. It uses agglomeration methods like
"ward.D", "ward.D2", "single", "complete", "average".

� The silhouette of a datum is a measure of how closely it is
matched to data within its cluster and how loosely it is
matched to data of the neighbouring cluster, i.e. the cluster
whose average distance from the datum is lowest. A silhouette
close to 1 implies the datum is in an appropriate cluster, while
a silhouette close to -1 implies the datum is in the wrong
cluster.

Back to M3-evaluation
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Appendix 9-9

Cluster validation measures

� The connectivity indicates the degree of connectedness of the
clusters, as determined by the k-nearest neighbors. The
connectedness considers to what extent observations are
placed in the same cluster as their nearest neighbors in the
data space. The connectivity has a value between zero and ∞
and should be minimized.

� The Dunn Index is the ratio of the smallest distance between
observations not in the same cluster to the largest intra-cluster
distance. The Dunn Index has a value between zero and ∞,
and should be maximized.

Back to M3-evaluation
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Appendix 9-10

t-SNE

t-distributed Stochastic Neighbor Embedding (t-SNE) is a machine
learning algorithm for nonlinear dimensionality reduction. It
comprises two main stages:
1. Construct a probability distribution over pairs of

high-dimensional objects in such a way that similar objects
have a high probability of being picked, whilst dissimilar points
have an infinitesimal probability of being picked.

2. Define a similar probability distribution over the points in the
low-dimensional map, and minimize the Kullback-Leibler
divergence between the two distributions with respect to the
locations of the points in the map.

Back to LSA geometry
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Appendix 9-11

Data Mining: DM

DM is the computational process of discovering/representing
patterns in large data sets involving methods at the intersection of
artificial intelligence, machine learning, statistics, and
database systems.

1. Numerical DM
2. Visual DM
3. Text Mining

(applied on considerably weaker structured text data)

D3-3D-LSA for QuantNet 2.0 and GitHub



Appendix 9-12

Text Mining

Text Mining or Knowledge Discovery from Text (KDT) deals
with the machine supported analysis of text (Feldman et al., 1995).

It uses techniques from:
� Information Retrieval (IR)
� Information extraction
� Natural Language Processing (NLP)

and connects them with the methods of DM.
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Appendix 9-13

Wordcloud of the words/terms in QNet
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Appendix 9-14

Most frequent words/terms in QNet

Figure 8: Words with more then 90 occurrences
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Appendix 9-15

Correlation graph of the QNet terms

Figure 9: 30 most frequent terms with threshold = 0.05
D3-3D-LSA for QuantNet 2.0 and GitHub



Appendix 9-16

Distance measure

A frequently used distance measure is the Euclidian distance:

distd (d1, d2)
def
= dist{w(d1),w(d2)} def

=

√√√√ m∑
k=1

{w(d1, tk )− w(d2, tk )}2

It holds for tf-idf:

cosφ =
x>y

|x | · |y |
= 1− 1

2
dist2

(
x

|x |
,
y

|y |

)
,

where x
|x | means w(d1), y

|y | means w(d2) and cosφ is the angle
between x and y .

D3-3D-LSA for QuantNet 2.0 and GitHub



Appendix 9-17

Drawbacks of the classical tf-idf approach

� Uncorrelated/orthogonal terms in the feature space
� Documents must have common terms to be similar
� Sparsity of document vectors and similarity matrices

Solution
� Using statistical information about term-term correlations
� Incorporating information about semantics (Semantic

smoothing)

D3-3D-LSA for QuantNet 2.0 and GitHub



Appendix 9-18

GVSM – Basic VSM (BVSM)

� P = Im and w(d) = {tf (d , t1), . . . , tf (d , tm)}>
classical tf-similarity: Mtf

S = D>D

� diagonal P(i , i)idf = idf (ti ) and
w(d) = {tf (d , t1), . . . , tf (d , tm)}>
classical tf-idf-similarity: Mtfidf

S = D>(P idf )>P idf D

� starting with
w(d) = {tf (d , t1)idf (t1), . . . , tf (d , tm)idf (tm)}>
and letting P = Im:
Mtfidf

S = D>ImD = D>D

Back to BVSM
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Appendix 9-19

GVSM – term-term correlations

� P = D>

� S(d1, d2) = (D>d1)>(D>d2) = d>
1 DD>d2

� MTT
S = D>(DD>)D

� DD> – term by term matrix, having a nonzero ij entry if and
only if there is a document containing both the i-th and the
j-th terms

� terms become semantically related if co-occuring often in the
same documents

� also known as a dual space method (Sheridan and Ballerini,
1996)

� when there are less documents than terms – dimensionality
reduction

Back to GVSM(TT)
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Appendix 9-20

GVSM – Latent Semantic Analysis (LSA)

� LSA measures semantic information through co-occurrence
analysis (Deerwester et al., 1990)

� Technique – singular value decomposition (SVD) of the matrix
D = UΣV>

� P = U>
k = IkU

> – projection operator onto the first k
dimensions

� MS = D>(UIkU
>)D – similarity matrix

� It can be shown: MS = VΛkV
>, with

D>D = VΣ>U>UΣV> = VΛV> and Λii = λi eigenvalues of
V ; Λk consisting of the first k eigenvalues and zero-values else.

Back to GVSM(LSA)
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Appendix 9-21

Latent Semantic Space

1. Create directly by using the quantlets, matrix D = the set of
quantlets

2. First train by domain-specific and generic background
documents
I Fold in Quantlets into the semantic space after the previous

SVD process
I Gain of higher retrieval performance (bigger vocabulary set,

more semantic structure)
I Chapters or sub-chapters from our e-books well suited

D3-3D-LSA for QuantNet 2.0 and GitHub



Appendix 9-22

Generalized VSM – Semantic smoothing

� More natural method of incorporating semantics is by directly
using a semantic network

� (Miller et al., 1993) used the semantic network WordNet
� Term distance in the hierarchical tree provided by WordNet

gives an estimation of their semantic proximity
� (Siolas and d’Alche-Buc, 2000) have included the semantics

into the similarity matrix by handcrafting the VSM matrix P

� MS = D>(P>P)D = D>P2D – similarity matrix

D3-3D-LSA for QuantNet 2.0 and GitHub



Appendix 9-23

Rows: Connectivity, Silhouette, Dunn; Columns: hca, k-medoids, k-means
Colors: BVSM, GVSM(TT), LSA, LSA50; more details Back to Slides
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Connectivity performance - hca

Back to all results
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Silhouette performance - hca

Back to all results
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Dunn performance - hca

Back to all results
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LSA - A first insight into the interpretation
Coincidence of the terms
in the semantic space principal components
and in the labels of the dendrogram clusters
PC1 (5.6): visual return option call distribut
PC2 (4.9): call option blackschol put price
PC3 (4.5): dsfm fpca dsfmbsyc dsfmfpcaic cluster
PC4 (4.4): dsfm copula distribut densiti gumbel
PC5 (4.3): return visual portfolio timeseri dax
PC6 (4.1): regress kernel nonparametr linear estim
PC7 (4.0): copula regress gumbel nonparametr var
PC8 (3.9): copula visual gumbel scatterplot clayton

PC number cluster number
1 1
2 8
3 6
4 3
5 7
6 5
7 3, 5
8 3
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Sparsity results

BVSM TT LSA:300 LSA:171(50%) LSA:50
TDM 0.99 0.65 0.51 0.51 0.47
MS 0.65 0.07 0.35 0.36 0.35

Table 2: Model Performance regarding the sparsity of the
term by document matrix TDM and the similarity matrix MS in the ap-
propriate models (weighting scheme: tf-idf normed).

Sparsity: the ratio of the number of zero entries to the total number
of entries of a matrix. In general: the lower the sparsity, the better.

More details about sparsity and similarity structure in
BVSM GVSM(TT) GVSM(LSA:300) GVSM(LSA:155(50%)) GVSM(LSA:50)
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Figure 10: Heat map with Dendrogram - BVSM SimMatrix
Back to sparsity results
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Figure 11: Heat map with Dendrogram - GVSM(TT) SimMatrix
Back to sparsity results
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Figure 12: Heat map with Dendrogram - LSA:300 SimMatrix
Back to sparsity results
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Figure 13: Heat map with Dendrogram - LSA:155(50%) SimMatrix
Back to sparsity results
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Figure 14: Heat map with Dendrogram - LSA:50 SimMatrix
Back to sparsity results
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