Factorizable Sparse Tail Event Curves with Expectiles

Shih-Kang Chao Wolfgang K. Härdle Chen Huang

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics
Humboldt–Universität zu Berlin
Department of Statistics, Purdue University
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de
http://irtg1792.hu-berlin.de
http://www.stat.purdue.edu

Holding on the two ends...

FASTEC: FActorisable Sparse Tail Event Curves

- Common structure
 - ▶ High-dimensional time series with factors
 - Sparse penalization
- Individual variety
 - ▶ Tail behaviour
 - Spread analysis on factor loadings

Chao et al. (2015)

fMRI Application

- - ▶ 19 volunteers, 256 investment decisions tasks
 - ► Around 100³ voxels' data points, Blood Oxygenation Level Dependent (BOLD) effect every 2 sec
- Investment decisions and brain reactions
- Economics, Psychology and Statistics
- Spectral clustering identifies active zones

Majer et al. (2015)

Chinese Temperature

- Daily data from 1957 to 2013
- □ Temperature distribution and extreme weather forecasting

DWD Climate Data

■ Daily wind speed data for German stations from 1964 to 2014

Aging and Growing over the World

- Mortality trend over ages
- Extremes and expectiles, tail events

FASTEC with Expectiles Faster 1: Log death rates over ages

Challenges

- Dimension reduction
- Multivariate tail event regression
- Oracle inequalities for the estimator
- How do Tail Event Curves vary in time?

Outline

- 1. Motivation ✓
- 2. FASTEC with Expectiles
- 3. fMRI data & risk perception
- 4. Empirical Results
- 5. Conclusions

Tail Event Curve

- Quantile
 - Ratio of areas
 - Local influence

$$\frac{\tau}{1-\tau} = \frac{\int_{-\infty}^{q_{\tau}} dF(y)}{\int_{q_{\tau}}^{\infty} dF(y)}$$

▶ VaR and ES

- Expectile
 - Ratio of weighted averaged distances
 - Capture the tail moments, not robust

$$\frac{\tau}{1-\tau} = \frac{\int_{-\infty}^{e_{\tau}} |y - e_{\tau}| \, dF(y)}{\int_{e_{\tau}}^{e_{\tau}} |y - e_{\tau}| \, dF(y)}$$

Example

→ History of Expectiles

When $\tau = 0.5$, quantile = median, expectile = mean.

FASTEC with Expectiles

Quantile and Expectile

Loss function

$$\rho_{\tau,\alpha}(u) = |\tau - I\{u < 0\}| |u|^{\alpha}, \text{ with } \alpha = 1, 2, \tau \in (0, 1]$$

- Quantile $q_{\tau} = \arg\min_{\theta} \mathsf{E} \, \rho_{\tau,1} \, (Y \theta)$
- Expectile $e_{\tau} = \arg\min_{\theta} \mathsf{E} \, \rho_{\tau,2} \, (Y \theta)$

Note: the MLE of the location parameter of an ALD/AND correspond to the quantile/expectile regression estimator

Quantile and Expectile

Loss function

Figure 2: Expectile and quantile loss functions at $\tau=0.5$ (dashed), $\tau=0.9$ (solid). QRcheck

FASTEC with Expectiles

Model Specification

- \mathbf{Y}_{i} $\}_{i=1}^{n} \in \mathbb{R}^{m}$: multivariate curves to be jointly modelled
- $igoplus \{m{X}_i\}_{i=1}^n \in \mathbb{R}^p$: p increases with n, B-spline basis or other regression variables

Example

Chinese temperature: for each year, m=159 (stations), n=365 (days), $p=n^{0.6}\approx 34$.

fMRI: m=19 (individuals) $\times 256$ (questions) = 4864, n=50 (data points), $p=n^{0.8}\approx 23$.

Demographic data: for each year, m=38 (countries), n=111 (ages), $p=n^{0.8}\approx 43$.

FASTEC with Expectiles -

Model Specification - ctd

□ Conditional expectile function $e(\tau|\mathbf{X}_i)$ is approximated by linear factor model:

$$e(\tau|\mathbf{X}_i) = \sum_{k=1}^r \psi_k(\tau) f_k^{\tau}(\mathbf{X}_i), \tag{1}$$

where $f_k^{\tau}(\mathbf{X}_i)$ is the kth factor, r is the number of factors, $\psi_k(\tau)$ are the factor loadings.

 \odot Dimension reduced from p to r

Model Specification - ctd

 \Box Factors are constructed by linear combination of X_i :

$$f_{k}^{\tau}(\mathbf{X}_{i}) = \boldsymbol{\varphi}_{k}^{\top}(\tau)\mathbf{X}_{i} \tag{2}$$

$$e(\tau|\mathbf{X}_i) = \boldsymbol{\gamma}^{\top}(\tau)\mathbf{X}_i \tag{3}$$

with $\gamma(\tau) = (\sum_{k=1}^r \psi_k(\tau) \varphi_{k,1}(\tau), \dots, \sum_{k=1}^r \psi_k(\tau) \varphi_{k,p}(\tau))^{\top}$, which is one column of the coefficient matrix Γ .

Estimation

oxdot Coefficient matrix $oldsymbol{\Gamma}$:

$$\widehat{\boldsymbol{\Gamma}}_{\lambda}(\tau) = \arg\min_{\boldsymbol{\Gamma} \in \mathbb{R}^{\rho \times m}} \left\{ (mn)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{\tau} \left(Y_{ij} - \boldsymbol{X}_{i}^{\top} \boldsymbol{\Gamma}_{\cdot j} \right) + \lambda \| \boldsymbol{\Gamma} \|_{*} \right\}$$
(4)

- $ightharpoonup \Gamma_{.j}$ is the jth column of $\Gamma \in \mathbb{R}^{p \times m}$
- nuclear norm $\|\Gamma\|_* = \sum_{j=1}^{\min(p,m)} \sigma_j(\Gamma)$, given the eigenvalues of Γ : $\sigma_1(\Gamma) \geq \sigma_2(\Gamma) \geq \ldots \geq \sigma_{\min(p,m)}(\Gamma)$,
- \blacktriangleright # of factors is # of nonzero eigenvalues of Γ
- Solved by fast iterative shrinkage thresholding algorithm
- Identify factors and loadings

→ Factorizable

Fast Iterative Shrinkage Thresholding Algorithm • Iterative procedure

Beck and Teboulle (2009)

- \Box Objective: $\min_{\Gamma} \left\{ F\left(\Gamma\right) \stackrel{\text{def}}{=} g\left(\Gamma\right) + h\left(\Gamma\right) \right\}$

$$\|
abla g(\Gamma_1) -
abla g(\Gamma_2)\|_{\mathsf{F}} \leq L_{
abla g} \|\Gamma_1 - \Gamma_2\|_{\mathsf{F}}, orall \Gamma_1, \Gamma_2$$

where $L_{\nabla g}$ is the Lipschitz constant of ∇g

- $|F(\Gamma_t) F(\Gamma^*)| \leq \frac{2L_{\nabla g} ||\Gamma_0 \Gamma^*||_F^2}{(t+1)^2}$

Loss Error Bound and Convergence Analysis

Theorem 1

Lipschitz continuity of expectile loss gradient: $L_{\nabla g} = 2(mn)^{-1} \max(\tau, 1 - \tau) \|X\|_{\mathsf{F}}^2$

□ In the t-th step of the iteration

$$|F\left(\boldsymbol{\Gamma}_{t}\right) - F\left(\boldsymbol{\Gamma}^{*}\right)| \leq \frac{4(mn)^{-1} \max\left(\tau, 1 - \tau\right) \|\boldsymbol{X}\|_{\mathsf{F}}^{2} \|\boldsymbol{\Gamma}_{0} - \boldsymbol{\Gamma}^{*}\|_{\mathsf{F}}^{2}}{(t+1)^{2}} \tag{5}$$

□ To achieve $|F(Γ_t) - F(Γ^*)| ≤ ε$, ∀ε > 0, we need

$$t \ge \frac{2\sqrt{\max\left(\tau, 1 - \tau\right)} \|\boldsymbol{X}\|_{\mathsf{F}} \|\boldsymbol{\Gamma}_0 - \boldsymbol{\Gamma}^*\|_{\mathsf{F}}}{\sqrt{mn\varepsilon}} - 1 \tag{6}$$

 $oxed{\Box}$ Convergence rate $\mathcal{O}(1/\sqrt{arepsilon})$ FASTEC with Expectiles

Oracle Inequalities

- oxdot Upper bounds for $\|\widehat{\Gamma}_{\lambda} \Gamma^*\|_{\mathsf{F}}^2$ in finite sample
- oxdots Γ^* can be exactly sparse or not
- ☑ High-dimensional framework: rank (Γ^*) and p + m are both allowed to tend to infinity (but no quicker than n)
- $oxed{} \{(\pmb{X}_i, \pmb{Y}_i)\}_{i=1}^n \in \mathbb{R}^{p+m}$ are identically distributed observations

- Unified framework for high-dimensional M—Estimators with decomposable regularizers by Negahban et al. (2012)
- Conditions need to be verified:
 - Restricted strong convexity holds for expectile loss function
 - Nuclear norm is decomposable with respect to appropriately chosen subspaces

 Decomposable

Theorem 2

Suppose $\{\boldsymbol{X}_i\}_{i=1}^n \in \mathbb{R}^p$ are i.i.d. samples from N $(\boldsymbol{0}, \boldsymbol{\Sigma})$, for $n \geq 2 \min{(m,p)}$, any optimal solution $\widehat{\boldsymbol{\Gamma}}_{\lambda}$ with a strictly positive tuning parameter $\lambda \geq 2\|\nabla g\left(\boldsymbol{\Gamma}^*\right)\|$ satisfies the bound

$$\|\widehat{\boldsymbol{\Gamma}}_{\lambda} - \boldsymbol{\Gamma}^*\|_{\mathsf{F}}^2 \leq \frac{9^3 m^2 \lambda^2}{\{\min\left(\tau, 1 - \tau\right) \sigma_{\min}\left(\boldsymbol{\Sigma}\right)\}^2} \boldsymbol{\Psi}^2\left(\overline{\mathcal{M}}\right) + \frac{36 m \lambda}{\min\left(\tau, 1 - \tau\right) \sigma_{\min}\left(\boldsymbol{\Sigma}\right)} \|\boldsymbol{\Gamma}_{\mathcal{M}^{\perp}}^*\|_*, \tag{7}$$

with probability greater than $1 - 4 \exp(-n/2)$.

- $\overset{\textstyle }{ } \stackrel{\textstyle }{ }$
- $\boxdot \ \Gamma_{\mathcal{M}^{\perp}}^{*} \stackrel{\mathsf{def}}{=} \mathsf{arg} \ \min_{\mathbf{Z} \in \mathcal{M}^{\perp}} \lVert \mathbf{Z} \Gamma^{*} \rVert_{\mathsf{F}}$
- $oxed{oxed}$ Best choice of λ $oxed{oxed}$ Tuning Parameter

Corollary

Under the assumptions on sample setting, selecting $\lambda = 2m^{-1}S\max\left(\tau,1-\tau\right)\sqrt{K_u^2\left\|\Sigma\right\|}\sqrt{\frac{p+m}{n}}, \text{ for } n\geq 2\min\left(m,p\right),$ any optimal solution $\widehat{\Gamma}_{\lambda}$ satisfies the bound

$$\|\widehat{\boldsymbol{\Gamma}}_{\lambda} - \boldsymbol{\Gamma}^*\|_{\mathsf{F}}^2 \leq \frac{9^3 \cdot \{2S \max(\tau, 1 - \tau) \, K_u\}^2 \, \|\boldsymbol{\Sigma}\| \, (p + m)}{n \, \{\min(\tau, 1 - \tau) \, \sigma_{\min}(\boldsymbol{\Sigma})\}^2} \boldsymbol{\Psi}^2 \, (\overline{\mathcal{M}}) + \frac{72S \max(\tau, 1 - \tau) \, \sqrt{K_u^2 \, \|\boldsymbol{\Sigma}\|} \sqrt{p + m}}{\sqrt{n} \min(\tau, 1 - \tau) \, \sigma_{\min}(\boldsymbol{\Sigma})} \|\boldsymbol{\Gamma}_{\mathcal{M}^{\perp}}^*\|_{*},$$

$$(8)$$

with probability greater than $1-3\times 8^{-(p+m)}-4\exp{(-n/2)}$.

FASTEC with Expectiles

Investment Decisions and Brain Reactions

- Is risk attitude reflected in brain activity?

Investment Decision Experiment

- Survey by Department of Education and Psychology, FU Berlin

- Investment Decision (ID) task (×256) safe vs. random (μ, σ) return

Investment Decision

Choose between:

- A) Safe, fixed return 5%
- B) Random, investment return (3 types)
 - ➤ Single Investment
 - ► Portfolio of 2 (perfectly) correlated investments
 - ► Portfolio of 2 uncorrelated investments
- oxdot Each type of portfolio imes 64, single imes 128
- □ Display and decision time: 7 sec

ID Experiment

Figure 3: Decide between **A)** 5% return and displayed **B)** portfolio/investment

FASTEC with Expectiles -

fMRI Dynamics

Hemodynamic response (1 voxel) • HRF

Figure 4: Hemodynamic response of a stimulus signal

Risk Attitude Parameter

Figure 5: Estimated risk attitude for 19 subjects

→ Risk attitude parameter

FASTEC with Expectiles

Importance of Tails

Figure 6: Boxplot of maximum responses over questions for 19 subjects (ordered by risk attitude parameters)

FASTEC with Expectiles

fMRI Data

Three ID-related active clusters: aINS_Left and aINS_Right, DMPFC. Majer et al. (2015)

→ aINS → DMPFC

 $oxed{oxed}$ At each t, take different quantile levels (0.1, 0.5, 0.9) among all voxels in each cluster

Data Smoothing

- \odot 19 individuals, 256 questions, $19 \times 256 = 4864$ curves
- Use 4 scans (6 seconds) after each stimulus
- Linear interpolation, take 50 points from the fitted curve

Figure 7: Two examples in aINS_Left cluster at 50% quantile level, with Hemodynamic response.

Factor Analysis

- n = 50 observations, m = 4864 curves
- **∴** X_i : *B*-spline basis (cubic splines) with $p = n^{0.8} \approx 23$, t = i/n, i = 1, ..., n **← Cubic spline basis**

	aINS_L	$aINS_R$	DMPFC
1st factor	0.624	0.631	0.612
2nd factor	0.791	0.793	0.779
3rd factor	0.907	0.913	0.898
4th factor	1.000	1.000	1.000

Table 1: Proportion of variance explained by the first four factors under $\tau=50\%$

Factor Curves

Figure 8: The first 2 factors under $\tau=99\%$ and $\tau=1\%$ respectively (1% quantile level in aINS_Left cluster) FASTEC with Expectiles

Risk attitude - Stimulus Response

Standard deviation of the factor loadings

$$\beta_{i} = \alpha_{0} + \alpha_{1} \cdot \operatorname{sd} (\psi_{1})_{i,\operatorname{ainsL}}^{\tau} + \alpha_{2} \cdot \operatorname{sd} (\psi_{1})_{i,\operatorname{ainsR}}^{\tau} + \alpha_{3} \cdot \operatorname{sd} (\psi_{1})_{i,\operatorname{DMPFC}}^{\tau} + \varepsilon_{i}$$

$$\tag{9}$$

Figure 9: R^2 in the regressions under different au levels FASTEC with Expectiles

Risk attitude - Stimulus Response

$$\beta_{i} = \alpha_{0} + \alpha_{1} \cdot \operatorname{sd}(\psi_{1})_{i, ainsL}^{0.1} + \alpha_{2} \cdot \operatorname{sd}(\psi_{1})_{i, ainsR}^{0.1} + \alpha_{3} \cdot \operatorname{sd}(\psi_{1})_{i, DMPFC}^{0.1} + \varepsilon_{i}$$
(10)

	Estimate	SE	tStat	pValue
α_0	0.961	0.201	4.777	$0.245 \cdot 10^{-3}$
α_1	-34.414	12.250	-2.809	0.013
α_2	-37.571	15.623	-2.405	0.029
α_3	30.984	14.152	2.189	0.044

Table 2: Coefficients estimation results, $R^2 = 0.422$, adj. $R^2 = 0.307$.

Figure 10: Fitted risk attitude by model given in (10) with $\tau=$ 0.1.

FASTEC with Expectiles

Figure 11: Fitted risk attitude (hollow points) by model given in (10) with au=0.1. FASTEC with Expectiles

Factor Curves

Figure 12: The first 2 factors under $\tau=99\%$ and $\tau=1\%$ respectively (99% quantile level in aINS_Left cluster) FASTEC with Expectiles

Mean of the factor loadings

$$\beta_{i} = \alpha_{0} + \alpha_{1} \cdot (\bar{\psi}_{1})_{i,\text{ainsL}}^{\tau} + \alpha_{2} \cdot (\bar{\psi}_{1})_{i,\text{ainsR}}^{\tau} + \alpha_{3} \cdot (\bar{\psi}_{1})_{i,\text{DMPFC}}^{\tau} + \varepsilon_{i}$$

$$\tag{11}$$

Faste with expectiles in the regressions under different τ levels

Figure 14: Fitted risk attitude by model given in (11) with $\tau = 0.7$.

FASTEC with Expectiles

Figure 15: Fitted risk attitude (hollow points) by model given in (11) with au=0.7. FASTEC with Expectiles

Factor Curves

Figure 16: The first 2 factors under $\tau=99\%$ and $\tau=1\%$ respectively (50% quantile level in aINS_Left cluster)

FASTEC with Expectiles

Factor Loadings

Figure 17: The first factor loadings for #1 and #19 individuals FASTEC with Expectiles

Factor Loadings

Fastec with Expectiles — Fastec with Expectil

oxdot Dispersion of the factor loadings under two au levels

$$\operatorname{dis}(\psi_{1})_{i}^{\tau_{1},\tau_{2}} = \frac{1}{256} \sum_{q=1}^{256} \sqrt{\left\{\psi_{1}(\tau_{1})_{i,q} - \bar{\psi}_{1}(\tau_{1})_{i}\right\}^{2} + \left\{\psi_{1}(\tau_{2})_{i,q} - \bar{\psi}_{1}(\tau_{2})_{i}\right\}^{2}}$$

$$\beta_{i} = \alpha_{0} + \alpha_{1} \cdot \log \operatorname{dis} (\psi_{1})_{i, \operatorname{ainsL}}^{\tau_{1}, \tau_{2}} + \alpha_{2} \cdot \log \operatorname{dis} (\psi_{1})_{i, \operatorname{ainsR}}^{\tau_{1}, \tau_{2}} + \alpha_{3} \cdot \log \operatorname{dis} (\psi_{1})_{i, \operatorname{DMPFC}}^{\tau_{1}, \tau_{2}} + \varepsilon_{i}$$

$$\tag{12}$$

0.1-0.9 0.2-0.8 0.3-0.7 0.4-0.6 0.5 Figure 19: R^2 in the regressions under different τ levels (by pairs) FASTEC with Expectiles

Figure 20: Fitted risk attitude by model given in (12) with $\tau_1 = 0.1, \tau_2 = 0.9$.

FASTEC with Expectiles -

Figure 21: Fitted risk attitude (hollow points) by model given in (12) with $au_1=0.1, au_2=0.9.$ FASTEC with Expectiles

Factor Loadings

Figure 22: The first factor loadings for all curves $j=1,\ldots,4864$, where "3-171" denotes #3 individual's #171 question and so on.

FASTEC with Expectiles

Temperature Data

Figure 23: Top figure: detrended temperature series; bottom figure: trend FASTECChinaTemper2008

FASTEC with Expectiles

Temperature Data - Factors

Figure 24: The first factor under 1% and 99% tail levels.

Q FASTEC with Expectiles

Temperature Data - Factor Loadings

Figure 25: The first factor loadings for each station.

Temperature Data - Chinese Map

Figure 26: Chinese map marked with three selected weather stations.

GRASTEC with Expectiles

Wind Data - Factors

Figure 27: The first factor under 1% and 99% tail levels.

Wind Data - Factor Loadings

Figure 28: The first factor loadings for each station.

FASTEC with Expectiles -

F

Wind Data - German Map

Figure 29: German map marked with two most extreme weather stations.

FASTEC with Expectiles

Mortality Data - Curves

- In each year, a bundle of m curves over ages0, 1, . . . , 110
- Estimate conditional expectile curves applying functional data analysis

Figure 30: Log death rate curves from 1921 to 2011.

FASTEC with Expectiles -

Mortality Data - Factors

- The common trend concerning quinquagenarian group
- Use factor loadings to detect the outliers
 - Good ones: Japan, Switzerland
 - Bad ones: Latvia, Russia

Figure 31: The first factor under 70% tail level.

Mortality Data - Factor Loadings

Figure 32: The first factor loadings for four representative countries in all years under 70% tail level: Switzerland, Japan, Latvia, Russia FASTEC with Expectiles

Conclusions — 5-1

Conclusions

- Principal factors capture the common patterns among curves
- □ TEC study discovers the extreme behaviors
- Consistency and convergence rate of the estimator are demonstrated by theorems
- Risk attitude implied by individual's choices and his brain reactions can be linked by statistical model

Factorizable Sparse Tail Event Curves with **Expectiles**

Shih-Kang Chao Wolfgang K. Härdle Chen Huang

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt-Universität zu Berlin Department of Statistics, Purdue University http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de http://irtg1792.hu-berlin.de http://www.stat.purdue.edu

References — 6-1

References

Beck, A. and Teboulle, M. (2009)

A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

SIAM Journal on Imaging Sciences, 2(1), 183-202

Breckling, J. and Chambers, R. (1988)

M-Quantiles

Biometrica, 75(4), 761-771

References — 6-2

References

Cai, J.-F., Candès, E.J. and Shen, Z. (2010)

A Singular Value Thresholding Algorithm for Matrix

Completion

SIAM Journal on Optimization, 20(4), 1956-1982

Chao, S.-K., Härdle, W.K. and Yuan, M. (2015)

Factorisable Sparse Tail Event Curves

SFB 649 Discussion Paper 2015-034, 2015

References — 6-3

References

- Majer, P., Mohr, P., Heekeren, H. and Härdle, W.K. (2015) Portfolio Decisions and Brain Reactions via the CEAD method Psychometrika, doi:10.1007/s11336-015-9441-5
- Negahban, S.N., Ravikumar, P., Wainwright, M.J. and Yu, B. (2012)

A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers Statistical Science, 27(4), 538-557

Appendix — 7-1

Value at Risk and Expected Shortfall

► Tail Event Curve
FASTEC with Expectiles

Appendix — 7-2

History of Expectiles

- Gravile A. Goldberger
 - motivated by the interpretation of expectation as a center of gravity
- □ Projectile G. Chamberlain
 - motivated by the fact that it solves a least squares problem
- Other alternative terminologies: Heftile, Loadile

```
→ Tail Event Curve
```


Appendix

7-3

Iterative Algorithm

- oxdot Initialize: $\Gamma_0=$ 0, $oldsymbol{\Sigma}_1=$ 0, step size $\delta_1=1$
- \Box For t = 1, 2, ..., T
 - $\qquad \qquad \Gamma_t = \arg \, \min_{\Gamma} \left\{ \frac{g(\Gamma)}{L_{\nabla g}} + \frac{1}{2} \left\| \Gamma \left\{ \Omega_t \frac{1}{L_{\nabla g}} \nabla g \left(\Omega_t \right) \right\} \right\|^2 \right\}$
 - when penalizing nuclear norm, $\Gamma_t = \mathbf{P} \left(\mathbf{R} \frac{\lambda}{L_{\nabla g}} \mathbf{I}_{p \times m} \right)_+ \mathbf{Q}^{\top}$, see Cai et al. (2010), where $\Omega_t \frac{1}{L_{\nabla g}} \nabla g \left(\Omega_t \right) = \mathbf{P} \mathbf{R} \mathbf{Q}^{\top}$, by SVD

 - $\qquad \qquad \boldsymbol{\Omega}_{t+1} = \boldsymbol{\Gamma}_t + \frac{\delta_{t-1}}{\delta_{t+1}} \left(\boldsymbol{\Gamma}_t \boldsymbol{\Gamma}_{t-1} \right)$
- $\widehat{oldsymbol{\Gamma}} = oldsymbol{\Gamma}_{\mathcal{T}}$

▶ Model Estimation

Factorize $\widehat{\Gamma}_{\lambda}(au)$

- \Box dimension reduced from p to r
- oxdot singular value decomposition: $\widehat{oldsymbol{\Gamma}}_{\lambda}(au) = \mathbf{SVD}^{ op}$

▶ Model Estimation

Appendix — 7-5

RSC of Expectile Loss

 \square RSC holds for $g(\Gamma) = (mn)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{\tau} (Y_{ij} - \mathbf{X}_{i}^{\top} \Gamma_{\cdot j})$ with curvature $\kappa > 0$ and tolerance function $\xi(\cdot)$ if

$$g\left(\Gamma^{*} + \Delta\right) - g\left(\Gamma^{*}\right) - \left\langle\left\langle\nabla g\left(\Gamma^{*}\right), \Delta\right\rangle\right\rangle \ge \kappa \|\Delta\|_{\mathsf{F}}^{2} - \xi^{2}\left(\Gamma^{*}\right), \forall \Delta \in \mathbb{C}$$
(13)

Appendix — 7-6

RSC of Expectile Loss - ctd

Figure 34: An example when $\tau=0.9$, $\delta\in[-0.5,0.5]$, where the two dash lines are the LHS of (14) w.r.t. δ (for $u=\pm0.1$ respectively), and the red line is the lower bound

FASTEC with Expectiles

RSC of Expectile Loss - ctd

▶ Return

Decomposable Regularizers

For M ⊆ M of ℝ^{p×m}, a norm-based regularizer R is decomposable with respect to (M, M[⊥]), if

$$\mathcal{R}\left(\Gamma + \Delta\right) = \mathcal{R}\left(\Gamma\right) + \mathcal{R}\left(\Delta\right), \forall \Gamma \in \mathcal{M}, \Delta \in \overline{\mathcal{M}}^{\perp}$$
 (15)

Nuclear norm is decomposable with respect to

$$\mathcal{M}\left(U,V
ight) = \left\{ \mathbf{\Gamma} \in \mathbb{R}^{p imes m} | \operatorname{row}\left(\mathbf{\Gamma}\right) \subseteq U, \operatorname{col}\left(\mathbf{\Gamma}\right) \subseteq V
ight\}$$
 $\overline{\mathcal{M}}^{\perp}\left(U,V
ight) = \left\{ \mathbf{\Gamma} \in \mathbb{R}^{p imes m} | \operatorname{row}\left(\mathbf{\Gamma}\right) \subseteq U^{\perp}, \operatorname{col}\left(\mathbf{\Gamma}\right) \subseteq V^{\perp}
ight\}$

▶ Return

More Assumptions

- $oxdots \ \{(m{X}_i, m{Y}_i)\}_{i=1}^n \in \mathbb{R}^{p+m} \ ext{are i.i.d.,} \ \{m{X}_i\}_{i=1}^n \in \mathbb{R}^p \sim \mathsf{N}\left(m{0}, m{\Sigma}
 ight)$
- Conditional on X_i , $u_{ij} = \{Y_{ij} X_i^\top \Gamma_{\cdot j}\}_{j=1}^m$ are cross-sectional independent over j

Best choice of λ

Under the assumptions on sample setting,

$$\begin{split} & \mathsf{P}\left(\left\|\nabla g\left(\Gamma\right)\right\| \leq m^{-1} S \max\left(\tau, 1 - \tau\right) \sqrt{K_u^2 \left\|\mathbf{\Sigma}\right\|} \sqrt{\frac{p + m}{n}}\right) \\ & \geq 1 - 3 \times 8^{-(p + m)} - 4 \exp\left(-n/2\right), \end{split}$$

where S is an absolute constant.

▶ Corallary

Experiment

- Incentive to be rational
 - ▶ Draw 1 ID task and multiply subject's choice by 100 EUR $9\% \times 100 = 9$ EUR
- Gaussian returns:
 - $\mu = 5\%, 7\%, 9\%, 11\%$
 - $\sigma = 2\%, 4\%, 6\%, 8\%$

→ ID Experiment

Single Investment • fMRI Experiment

Figure 35: An example of return stream from single investment displayed to the subject during the experiment for 7 sec.; returns $r_i \sim N(\mu, \sigma^2)$, here

$$\mu=5\%, \sigma=2\%$$

FASTEC with Expectiles

Correlated Portfolio MRI Experiment

Figure 36: An example of return streams from correlated portfolio displayed to the subject during the experiment for 7 sec.; returns $r_i \sim N(\mu, \sigma^2)$, here $\mu_1 = 5\%, \mu_2 = 9\%$ and $\sigma = 2\%$ FASTEC with Expectiles

Uncorrelated Portfolio MRI Experiment

Figure 37: An example of return streams from uncorrelated portfolio displayed to the subject during the experiment for 7 sec.; returns $r_i \sim N(\mu, \sigma^2)$, here $\mu = 7\%$, $\sigma = 2\%$

FASTEC with Expectiles

HRF • fMRI dynamics

☐ Hemodynamic response function e.g. Double Gamma function

$$h(t) = (\frac{t}{5.4})^6 \exp(-\frac{t-5.4}{0.9}) - 0.35(\frac{t}{10.8})^{12} \exp(-\frac{t-10.8}{0.9}), \ t \ge 0$$
-time [sec]

Figure 38: Predicted response as a convolution of a stimulus signal and a HRF. Figure modified from FEAT - FMRI.

FASTEC with Expectiles -

Risk Attitude Parameter

Risk-return choice model

$$V_r^i = \bar{x_r} - \beta_i S_r, \qquad 1 \le i \le 19, 1 \le r \le 256$$

- $ightharpoonup x_r$ portfolio return stream, $\bar{x_r}$ average return (μ)
- \triangleright S_r standard deviation of x_r (risk)
- \triangleright V_r^i subjective value (unobserved), 5% risk free return
- \triangleright β_i risk attitude parameter

Risk Attitude Parameter

$$P\left\{ \mathsf{risky choice} \middle| x \right\} = \frac{1}{1 + \exp\left\{ \bar{x} - \beta S(x) - 5 \right\}}$$

$$P\left\{ \mathsf{sure choice} \middle| x \right\} = 1 - \frac{1}{1 + \exp\left\{ \bar{x} - \beta S(x) - 5 \right\}}$$

risky choice - unknown return, sure choice - fixed, 5% return

oxdot eta estimated by maximum likelihood

▶ Risk Attitude

Cluster Activation: aINS

Figure 39: Anterior insula (aINS) activated during all type of investment decisions in the group-level analysis.

FASTEC with Expectiles

Cluster Activation: DMPFC

Figure 40: Dorsolateral prefrontal cortex (DMPFC) activated during all type of investment decisions in the group-level analysis. • fMRI Data FASTEC with Expectiles

B-Spline Basis for Cubic Splines

Figure 41: B-Spline basis for Cubic splines with 23 basis functions

→ Factor Analysis

