Forecasting Limit Order Book Liquidity with Functional AutoRegressive Dynamics

Ying Chen Wee Song Chua Wolfgang Karl Härdle

NUS National University of Singapore

Department of Statistics and Applied Probability National University of Singapore

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt-Universität zu Berlin

Sim Kee Boon Institute for Financial Economics Singapore Management University

Limit order book

Liquidity demand and supply curve

SIRI and CMCSA bid $X_t^{(b)}$ and ask $X_t^{(a)}$ supply curve on March 4, 2015 at 14:45pm. • Liquidity curves • Data source

Economic implications

- Liquidity demand and supply curves provide information on traders' expectations of the price
- Improve order execution strategy
- Smaller transaction cost
- Robust arbitrage pricing theory (Çetin, Jarrow and Protter, 2004)
- □ Forecasting with DSFM (Härdle, Hautsch and Mihoci, 2012)

Liquidity measures

- Bid-ask spread (Benston and Hagerman, 1974; Stoll, 1978; Fleming and Remolona, 1999)
- □ Liquidity depth based on volumes at the best quotes or some particular price quotes, e.g. XLM (Cooper, Groth and Avera, 1985; Gomber, Schweickert and Theissen, 2015)

Autoregressive models

- Long memory autoregressive conditional Poisson model (Groß-Klußmann and Hautsch, 2013)
- □ Autoregressive model (Huberman and Halka, 2001)
- Vector autoregressive model (Chordia, Sarkar and Subrahmanyam, 2003)
- Local adaptive multiplicative error model (Härdle, Hautsch and Mihoci, 2015; Härdle, Mihoci and Ting, 2016)

Cross-correlations

- Limit order demand and supply elasticities are cross-related (Dierker, Kim, Lee and Morck, 2014)
- ☑ Public or private information: switch sides
- Market-wide events: similar changes on both sides

Cross-correlations

Sample cross correlation function between log-accumulated volumes at best bid and best ask price for AAPL, MSFT, and INTC.

QCross Correlation

1 - 7

Cross-correlations

Sample cross correlation function between log-accumulated volumes at best bid and best ask price for CMCSA, AEZS, and EBAY.

QCross Correlation

1 - 8

- ⊡ Cross correlations suggest richer dynamics
- □ Richer dynamics of liquidity allows for more precise forecasts
- The bid/ask cross-dependency motivates to analyze two liquidity curves simultaneously

Objectives

Employ a Vector Functional AutoRegressive (VFAR) model:

$$\begin{bmatrix} X_t^{(a)} - \mu_a \\ X_t^{(b)} - \mu_b \end{bmatrix} = \begin{bmatrix} \rho^{aa} & \rho^{ab} \\ \rho^{ba} & \rho^{bb} \end{bmatrix} \begin{bmatrix} X_{t-1}^{(a)} - \mu_a \\ X_{t-1}^{(b)} - \mu_b \end{bmatrix} + \begin{bmatrix} \varepsilon_t^{(a)} \\ \varepsilon_t^{(b)} \end{bmatrix}$$

where $X_t^{(a)}$ and $X_t^{(b)}$ are the curves on the (b)id and (a)sk side, while ρ is a bounded linear operator.

- Asymptotic consistency of the VFAR estimator
- ⊡ Finite sample performance in real data analysis

Outline

- 1. Motivation \checkmark
- 2. Data
- 3. Vector Functional AutoRegression (VFAR)
- 4. Empirical Applications
- 5. Conclusion

Data

Data

LOB records of 12 stocks traded in NASDAQ stock market from 2 Jan 2015 to 6 Mar 2015 (44 trading days)

- Apple Inc. (AAPL)
- Microsoft Corporation (MSFT)
- Intel Corporation (INTC)
- Cisco Systems, Inc. (CSCO)
- Sirius XM Holdings Inc. (SIRI)
- Applied Materials, Inc. (AMAT)
- Comcast Corporation (CMCSA)
- AEterna Zentaris Inc. (AEZS)
- eBay Inc. (EBAY)
- Micron Technology, Inc. (MU)
- Whole Foods Market, Inc. (WFM)
- Starbucks Corporation (SBUX)

Summary statistics

5-minutes snapshots of the LOB data.

Ticker Symbol	Spread (USD)		Bid	vol	<u>Ask vol</u>		
	min	max	min	max	min	max	
AAPL	0.01	0.07	52,267	710,020	61,305	1,298,696	
MSFT	0.01	0.02	90,344	928,319	122,377	621,471	
INTC	0.01	0.02	158,900	557,251	146,959	1,142,641	
CSCO	0.01	0.02	134,790	1,316,058	266,455	4,458,672	
SIRI	0.01	0.02	1,266,528	3,725,304	3,002,680	7,605,467	
AMAT	0.01	0.03	78,944	334,794	180,749	787,983	
CMCSA	0.01	0.06	23,668	128,916	40,638	146,724	
AEZS	0.0001	0.05	145,635	767,785	472,689	1,158,740	
EBAY	0.01	0.04	42,060	160,572	52,813	415,033	
MU	0.01	0.04	95,907	497,910	102,357	595,200	
WFM	0.01	0.12	34,538	114,386	41,019	159,488	
SBUX	0.01	0.12	27,467	151,022	34,914	166,932	

Data pre-processing

- Sampling frequency: 5 minutes (Aït-Sahalia, Mykland and Zhang, 2005; Zhang and Aït-Sahalia, 2005)
- Discarded the first 15 minutes and the last 5 minutes (Härdle et al., 2012)
- Log-transformed the accumulated volumes (Potters and Bouchaud, 2003)
- Obtain 75 pairs of bid and ask liquidity curves, for each stock, at each trading day
- □ Total: 3300 pairs of bid and ask supply curves over the whole sample period of 44 trading days for each stock

Vector Functional AutoRegression (VFAR)

$$X_{t}^{(a)}(\tau), X_{t}^{(b)}(\tau) \in C_{(-\infty,\infty)}.$$

$$\begin{bmatrix} X_{t}^{(a)} - \mu_{a} \\ X_{t}^{(b)} - \mu_{b} \end{bmatrix} = \begin{bmatrix} \rho^{aa} & \rho^{ab} \\ \rho^{ba} & \rho^{bb} \end{bmatrix} \begin{bmatrix} X_{t-1}^{(a)} - \mu_{a} \\ X_{t-1}^{(b)} - \mu_{b} \end{bmatrix} + \begin{bmatrix} \varepsilon_{t}^{(a)} \\ \varepsilon_{t}^{(b)} \end{bmatrix}$$

$$(1)$$

- 3-14

where $(\mu_a, \mu_b)^{\top}$ are the mean functions. The operators ρ is bounded linear operator from \mathcal{H} to \mathcal{H} . The innovations $\{\varepsilon_t^{(a)}\}_{t=1}^n$ and $\{\varepsilon_t^{(b)}\}_{t=1}^n$ are strong \mathcal{H} -white noise, i.i.d. with zero mean and $0 < \mathbb{E} \|\varepsilon_1^{(a)}\|^2 = \cdots = \mathbb{E} \|\varepsilon_n^{(a)}\|^2 < \infty$ and $0 < \mathbb{E} \|\varepsilon_1^{(b)}\|^2 = \cdots = \mathbb{E} \|\varepsilon_n^{(b)}\|^2 < \infty$, $\varepsilon_t^{(a)}$ and $\varepsilon_t^{(b)}$ need not be cross-independent.

Convolution kernel operator

The operators ρ in (1):

$$X_{t}^{(a)}(\tau) - \mu_{a}(\tau) = \int_{0}^{1} \kappa_{ab}(\tau - s) \{X_{t-1}^{(b)}(s) - \mu_{b}(s)\} ds$$

+
$$\int_{0}^{1} \kappa_{aa}(\tau - s) \{X_{t-1}^{(a)}(s) - \mu_{a}(s)\} ds + \varepsilon_{t}^{(a)}(\tau)$$

$$X_{t}^{(b)}(\tau) - \mu_{b}(\tau) = \int_{0}^{1} \kappa_{bb}(\tau - s) \{X_{t-1}^{(b)}(s) - \mu_{b}(s)\} ds$$

+
$$\int_{0}^{1} \kappa_{ba}(\tau - s) \{X_{t-1}^{(a)}(s) - \mu_{a}(s)\} ds + \varepsilon_{t}^{(b)}(\tau)$$
(2)

where the kernel function $\kappa_{xy} \in L^2((-\infty,\infty))$ and $\|\kappa_{xy}\|_2 < 1$ for xy = aa, ab, ba, and bb.

B-spline expansion

Expand the functions in (2) using *B*-spline basis function in $L^2((-\infty,\infty))$:

$$B_{j,m}(\tau) = \frac{\tau - w_j}{w_{j+m-1} - w_j} B_{j,m-1}(\tau) + \frac{w_{j+m} - \tau}{w_{j+m} - w_{j+1}} B_{j+1,m-1}(\tau), m \ge 2,$$

where *m* is the order, and $w_1 \leq \cdots \leq w_{J+m}$ denotes the knot sequence. Note that

$$\mathcal{B}_{j,1}(au) = egin{cases} 1 & ext{if } w_j \leq au < w_{j+1}, \ 0 & ext{otherwise}. \end{cases}$$

Sieve

Introduce a sequence of subsets $\{\Theta_{J_n}\}$ - a sieve, where $\Theta_{J_n} \subseteq \Theta_{J_n+1}$ and the union of subsets $\bigcup \Theta_{J_n}$ is dense in the parameter space (Grenander, 1981).

The sieve is defined as follows:

$$\Theta_{J_n} = \left\{ \kappa_{xy} \in L^2 \mid \kappa_{xy}(\tau) = \sum_{l=1}^{J_n} c_l^{xy} B_{l,m}(\tau), \tau \in (-\infty,\infty), \sum_{l=1}^{J_n} l^2 (c_l^{xy})^2 \le v J_n \right\}$$
(3)

VFAR & *B*-Splines

Coefficients relationship

This provides the following relationship of the *B*-spline coefficients:

$$\begin{aligned} d_{t,h}^{a} &= p_{h}^{a} + \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{aa} - c_{h}^{aa} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{a} \\ &+ \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{ab} - c_{h}^{ab} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{b} + d_{h}^{a}(\varepsilon_{t}^{(a)}) \\ d_{t,h}^{b} &= p_{h}^{b} + \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{bb} - c_{h}^{bb} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{b} \\ &+ \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{ba} - c_{h}^{ba} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{a} + d_{h}^{b}(\varepsilon_{t}^{(b)}) \\ &+ \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{ba} - c_{h}^{ba} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{a} + d_{h}^{b}(\varepsilon_{t}^{(b)}) \\ &+ \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{ba} - c_{h}^{ba} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{a} + d_{h}^{b}(\varepsilon_{t}^{(b)}) \\ &+ \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{ba} - c_{h}^{ba} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{a} + d_{h}^{b}(\varepsilon_{t}^{(b)}) \\ &+ \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right\} \right\} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{a} + d_{h}^{b}(\varepsilon_{t}^{(b)}) \\ &+ \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m} - w_{j}}{w_{j+m+1} - w_{j+1}} \right\} \right\} \right\} \frac{w_{j+m} - w_{j}}{m} d_{t-1,i}^{a} + d_{h}^{b}(\varepsilon_{t}^{(b)}) \\ &+ \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j}}{w_{j+m} - w_{j}} - \frac{w_{j+m} - w_{j}}{w_{j+m} - w_{j}} \right\} \right\} \right\} \right\} \frac$$

Vector AutoRegressive form

Rewriting (4) as a matrix yields a form of Vector AutoRegressive (VAR) of order 1:

Vector Functional AutoRegression (VFAR)

Vector AutoRegressive form

Write compactly as the following:

$$Y = BZ + U \tag{6}$$

- 3-20

Assuming

$$\mathbf{u} = \operatorname{vec}(U) = \begin{bmatrix} u_1 \\ \vdots \\ u_T \end{bmatrix} \sim \operatorname{N}(0, I_T \otimes \Sigma_u),$$

with pdf of \mathbf{u} :

$$f_{\mathbf{u}}(\mathbf{u}) = \frac{1}{(2\pi)^{KT/2}} \Big| I_{\mathcal{T}} \otimes \Sigma_u \Big|^{-\frac{1}{2}} \exp \bigg\{ -\frac{1}{2} \mathbf{u}^{\mathsf{T}} (I_{\mathcal{T}} \otimes \Sigma_u^{-1}) \mathbf{u} \bigg\}.$$

Residual analysis

QQ plots of residuals for AEZS, EBAY

3-21

Maximum likelihood estimation

Using $\mathbf{u} = \mathbf{y} - (Z^{\top} \otimes I_{K})\beta$, the likelihood function is: $g\left(X_{t}^{(a)}, X_{t}^{(b)}, X_{t-1}^{(a)}, X_{t-1}^{(b)}, \rho^{aa}, \rho^{ab}, \rho^{ba}, \rho^{bb}\right) = \left|\frac{\partial \mathbf{u}}{\partial \mathbf{y}^{\top}}\right| f_{\mathbf{u}}(\mathbf{u})$ $= \frac{1}{(2\pi)^{KT/2}} \left|I_{T} \otimes \Sigma_{u}\right|^{-\frac{1}{2}} \exp\left[-\frac{1}{2}\left(\mathbf{y} - (Z^{\top} \otimes I_{K})\beta\right)^{\top}(I_{T} \otimes \Sigma_{u}^{-1})\right]$ $\left\{\mathbf{y} - (Z^{\top} \otimes I_{K})\beta\right\}.$

Log-likelihood

Maximum likelihood estimation

$$\widehat{B} = YZ^{\top}(ZZ^{\top})^{-1}$$

$$\widehat{\Sigma_{u}} = \frac{1}{T}(Y - BZ)(Y - BZ)^{\top}$$
(7)

The first column of $YZ^{\top}(ZZ^{\top})^{-1}$ in (7) is the estimator for $v = \left(p_1^a, \cdots, p_{J_n}^a, p_1^b, \cdots, p_{J_n}^b\right)^{\top}$.

Maximum likelihood estimation

To show the estimator for c_j^{xy} for xy = aa, ab, ba, bb as in (2), first define the following notations:

- 3-24

$$W = \operatorname{diag}\left(\frac{m}{w_{1+m} - w_{1}}, \cdots, \frac{m}{w_{J_{n}+m} - w_{J_{n}}}, \frac{m}{w_{1+m} - w_{1}}, \cdots, \frac{m}{w_{J_{n}+m} - w_{J_{n}}}, \frac{m}{w_{1+m} - w_{1}}, \cdots, \frac{m}{w_{J_{n}+m} - w_{J_{n}}}\right),$$

$$q_{j} = \frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}},$$

$$\theta_{1} = (c_{1}^{aa}, \cdots, c_{J_{n}}^{aa}, c_{1}^{ba}, \cdots, c_{J_{n}}^{ba})^{\top},$$

$$\theta_{2} = (c_{1}^{ab}, \cdots, c_{J_{n}}^{ab}, c_{1}^{bb}, \cdots, c_{J_{n}}^{bb})^{\top},$$

$$\theta = (\theta_{1}, \cdots, \theta_{1}, \theta_{2}, \cdots, \theta_{2}),$$

Vector Functional AutoRegression (VFAR) — Maximum likelihood estimation

$$Q = \begin{bmatrix} q_1 - 1 & q_2 & \cdots & q_{J_n} & & & \mathbf{0} \\ q_1 & q_2 - 1 & \cdots & q_{J_n} & & & \\ \vdots & \vdots & \ddots & \vdots & & & \\ q_1 & q_2 & \cdots & q_{J_n} - 1 & & & \\ & & & & q_1 - 1 & q_2 & \cdots & q_{J_n} \\ & & & & & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & & & & & q_1 & q_2 & \cdots & q_{J_n} - 1 \end{bmatrix},$$

- 3-25

where θ contains J_n columns of θ_1 and J_n columns of θ_2 . Therefore the estimator for c_i^{xy} for xy = aa, ab, ba, bb is:

 $\widehat{\boldsymbol{\theta}} = Q^{-1} \boldsymbol{Y} \boldsymbol{Z}^{\top} (\boldsymbol{Z} \boldsymbol{Z}^{\top})^{-1} (\boldsymbol{0}_{2J_n \times 1}, \boldsymbol{I}_{2J_n \times 2J_n})^{\top} \boldsymbol{W}$

Consistency result

Theorem (1)

Assume $\{\Theta_{J_n}\}$ is chosen such that conditions C1 and C2 are in force. Suppose that for each $\delta > 0$, we can find subsets $\Gamma_1, \Gamma_2, \cdots, \Gamma_{I_{J_n}}$ of $\Theta_{J_n}, J_n = 1, 2, \cdots$ such that

- 3-26

(i)
$$D_{J_n} \subseteq \bigcup_{k=1}^{J_{J_n}} \Gamma_k$$
, where
 $D_{J_n} = \{ \rho \in \Theta_{J_n} | H(\rho_{0|\Theta_{J_n}}, \rho) \le H(\rho_{0|\Theta_{J_n}}, \rho_{J_n}) - \delta \}$ for every
 $\delta > 0$ and every J_n .

(ii)
$$\sum_{n=1}^{+\infty} I_{J_n}(\varphi_{J_n})^n < +\infty$$
, where given I sets $\Gamma_1, \dots, \Gamma_I$ in Θ_{J_n} , where

$$\varphi_{J_n} = \sup_k \inf_{t \ge 0} E_{\rho_{0|\Theta_{J_n}}} \exp\Big\{ t \log \frac{g(X_t^{(a)}, X_t^{(o)}, X_{t-1}^{(a)}, X_{t-1}^{(b)}, \Gamma_k)}{g(X_t^{(a)}, X_t^{(b)}, X_{t-1}^{(a)}, X_{t-1}^{(b)}, \rho_{J_n})} \Big\}.$$

Then we have $\sup_{\hat{\boldsymbol{\rho}}_n \in M_J^n} \|\hat{\boldsymbol{\rho}}_n - \boldsymbol{\rho}_{0|\Theta_{J_n}}\|_{HS} \to 0$ a.s.

C1 & C2

Consistency result

Theorem (2) If $J_n = \mathcal{O}(n^{1/3-\eta})$ for $\eta > 0$, then $\|\hat{\kappa}_{J_n} - \kappa_{0|\Theta_{J_n}}\|_2 \to 0$ a.s. when $n \to +\infty$ and $\|\cdot\|_2$ is the L^2 norm in $C_{[0,1]}$.

3-27

 $\hat{\kappa}_{J_n} = (\hat{\kappa}_{aa,J_n}, \hat{\kappa}_{ab,J_n}, \hat{\kappa}_{ba,J_n}, \hat{\kappa}_{bb,J_n})$ is the set of sieve estimators on Θ_{J_n} and $\kappa_{0|\Theta_{J_n}} = (\kappa_{aa,0|\Theta_{J_n}}, \kappa_{ab,0|\Theta_{J_n}}, \kappa_{ba,0|\Theta_{J_n}}, \kappa_{bb,0|\Theta_{J_n}})$ is the projection of the set of true kernel functions κ_0 on Θ_{J_n} .

Real data analysis

- □ Liquidity demand and supply curves over 44 trading days from date 2 Jan 2015 to 6 Mar 2015
- □ Cubic *B*-spline expansions with equally-spaced price percentile as nodes and $J_n = 20$ in the sieve
- 20 coefficients for the bid and another 20 for the ask liquidity curve

Evaluation

The root mean squared estimation error (RMSE), mean absolute percentage error (MAPE), and R^2 are computed:

$$RMSE = \sqrt{\frac{\sum_{xy=a,b} \sum_{t=1}^{T} \sum_{\tau} \left\{ X_{t}^{(xy)}(\tau) - \hat{X}_{t}^{(xy)}(\tau) \right\}^{2}}{N}}$$

$$MAPE = \frac{\sum_{xy=a,b} \sum_{t=1}^{T} \sum_{\tau} \frac{\left| X_{t}^{(xy)}(\tau) - \hat{X}_{t}^{(xy)}(\tau) \right|}{X_{t}^{(xy)}(\tau)}}{N}$$

$$R^{2} = 1 - \frac{\sum_{xy=a,b} \sum_{t=1}^{T} \sum_{\tau} \left\{ X_{t}^{(xy)}(\tau) - \hat{X}_{t}^{(xy)}(\tau) \right\}^{2}}{\sum_{xy=a,b} \sum_{t=1}^{T} \sum_{\tau} \left\{ X_{t}^{(xy)}(\tau) - \bar{X} \right\}^{2}}$$
(8)

VFAR fits

 R^2 , RMSE, and MAPE for in-sample estimation of the nine stocks

Ticker Symbol	<u>R</u>	2	RMSE		MAPE	
	VFAR	Naive	VFAR	Naive	VFAR	Naive
AAPL	92.03%	88.87%	0.3419	0.4041	3.61%	3.80%
MSFT	95.19%	93.53%	0.1831	0.2124	0.95%	1.02%
INTC	94.79%	93.13%	0.1868	0.2144	0.92%	0.98%
CSCO	96.16%	95.08%	0.1926	0.2180	0.86%	0.91%
SIRI	98.29%	97.96%	0.0852	0.0931	0.29%	0.29%
AMAT	95.83%	94.46%	0.1768	0.2040	0.89%	0.97%
CMCSA	93.39%	90.79%	0.1851	0.2185	1.20%	1.35%
AEZS	98.48%	96.82%	0.4247	0.6148	2.18%	2.28%
EBAY	94.88%	93.20%	0.2250	0.2591	1.55%	1.64%
MU	95.14%	93.45%	0.2157	0.2504	1.17%	1.26%
WFM	95.52%	94.00%	0.2023	0.2339	1.57%	1.59%
SBUX	94.77%	92.81%	0.2241	0.2627	2.51%	2.63%

VFAR fits AMAT estimated bid (and ask) supply curves vs. the actually observed ones on 24 February 2015 at 3p.m. • VFAR fits

QEstimated VFAR curve

VFAR fits SIRI estimated bid (and ask) supply curves vs. the actually observed ones on 24 February 2015 at 3p.m.

QEstimated VFAR curve

VFAR fits AAPL estimated bid (and ask) supply curves vs. the actually observed ones on 24 February 2015 at 3p.m.

QEstimated VFAR curve

VFAR fits AEZS estimated bid (and ask) supply curves vs. the actually observed ones on 24 February 2015 at 3p.m.

QEstimated VFAR curve
Forecast

 Make an out-of-sample forecast for the liquidity curves starting from the 31st trading day onwards and predict 1-,5- and 10-step ahead forecasts that correspond to 5-,25- and 50-minute ahead liquidity curves respectively

4-35

- The first pair of forecasted curves is for time t = 2251, based on the past 30 trading days of $30 \times 75 = 2250$ functional objects
- · Move forward one period, i.e. 5 minutes at a time, and re-estimate and forecast until the last time point at t = 3300

Comparison with Naive Forecast

$\ensuremath{\mathsf{RMSE}}$ for multistep ahead VFAR and naive forecast of the nine stocks

	RMSE							
Ticker Symbol	1-s	tep	5-st	eps	10-steps			
	VFAR	Naive	VFAR	Naive	VFAR	Naive		
AAPL	0.3742	0.4318	0.4757	0.5678	0.5063	0.6193		
MSFT	0.1809	0.1986	0.2444	0.2744	0.2707	0.3082		
INTC	0.1927	0.2156	0.2559	0.2974	0.2845	0.3377		
CSCO	0.2124	0.2317	0.3063	0.3447	0.3614	0.4111		
SIRI	0.0894	0.0932	0.1271	0.1404	0.1416	0.1543		
AMAT	0.1928	0.2141	0.2533	0.2940	0.2863	0.3374		
CMCSA	0.1959	0.2240	0.2392	0.2952	0.2512	0.3208		
AEZS	0.4814	0.6525	0.5483	0.7699	0.5812	0.8075		
EBAY	0.2335	0.2620	0.2931	0.3477	0.3228	0.3961		
MU	0.2180	0.2507	0.2797	0.3355	0.3094	0.3787		
WFM	0.2035	0.2303	0.2575	0.3167	0.2746	0.3529		
SBUX	0.2285	0.2623	0.2782	0.3366	0.2975	0.3687		

Comparison with Naive Forecast

MAPE for multistep ahead VFAR and naive forecast of the nine stocks

	MAPE							
Ticker Symbol	1-s	tep	5-st	eps	10-steps			
	VFAR	Naive	VFAR	Naive	VFAR	Naive		
AAPL	3.61%	3.73%	4.21%	4.68%	4.49%	5.09%		
MSFT	0.93%	0.90%	1.42%	1.39%	1.63%	1.67%		
INTC	0.95%	0.97%	1.46%	1.53%	1.74%	1.86%		
CSCO	0.88%	0.89%	1.44%	1.46%	1.76%	1.85%		
SIRI	0.30%	0.27%	0.52%	0.47%	0.62%	0.56%		
AMAT	1.00%	1.01%	1.47%	1.55%	1.72%	1.87%		
CMCSA	1.15%	1.22%	1.56%	1.76%	1.69%	2.01%		
AEZS	2.22%	2.32%	2.85%	3.20%	3.14%	3.51%		
EBAY	1.31%	1.38%	1.79%	1.99%	2.03%	2.36%		
MU	1.18%	1.27%	1.70%	1.90%	1.99%	2.29%		
WFM	1.25%	1.31%	1.76%	1.97%	1.94%	2.32%		
SBUX	1.81%	1.87%	2.27%	2.52%	2.48%	2.86%		

Findings

- Like the VFAR forecasts, the naive forecasts also have RMSE and MAPE increasing as one forecasts more steps into the future
- All VFAR forecasts outperform the naive forecasts in terms of RMSE
- Only in 5 (out of 36) instances, the naive forecasts perform better than VFAR forecasts in terms of MAPE

VFAR forecasts AAPL 5-minute ahead forecasted bid (and ask) supply curves vs. the actually observed ones for 24 February 2015 at 3p.m. •1-step

QForecasted VFAR curve

4 - 39

VFAR

VFAR forecasts AAPL 25-minute ahead forecasted bid (and ask) supply curves vs. the actually observed ones for 24 February 2015 at 3p.m. • 5-steps

QForecasted VFAR curve

4-40

VFAR forecasts AAPL 50-minute ahead forecasted bid (and ask) supply curves vs. the actually observed ones for 24 February 2015 at 3p.m. • 10-steps

QForecasted VFAR curve

VFAR

5-42

Conclusion

- \bigcirc Proposed the VFAR(1) modeling.
- Developed consistent ML estimators for VFAR(1) model with closed forms.
- □ In real data analysis, VFAR approach is more successful as compared to the naive model.
- Demand and supply curves are modelled and forecasted successfully.

Forecasting Limit Order Book Liquidity with Functional AutoRegressive Dynamics

Ying Chen Wee Song Chua Wolfgang Karl Härdle

Department of Statistics and Applied Probability National University of Singapore

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. – Center for Applied Statistics and Economics Humboldt-Universität zu Berlin

Sim Kee Boon Institute for Financial Economics Singapore Management University

Aït-Sahalia, Y., Mykland, P.A. and Zhang, L.

How often to sample a continuous-time process in the presence of market microstructure noise. *Review of Financial Studies*, 18, 351-416, 2005.

 Antoniadis, A. and Sapatinas, T.
Wavelet methods for continuous-time prediction using hilbert-valued autoregressive processes.
Journal of Multivariate Analysis, 87, 135-185, 2003.

Benston, G. and Hagerman, R.

Determinants of bid-asked spreads in the over-the-counter market.

Journal of Financial Economics, 1, 353-364, 1974.

Besse, P., Cardot, H. and Stephenson, D. Autoregressive forecasting of some climatic variations. Scandinavian Journal of Statistics, 27, 673-687, 2000.

🍉 Bosg, D.

Linear Processes in Function Spaces: Theory and Applications. Springer Verlag, New York, 2000.

Çetin, U., Jarrow, R. and Protter, P. Liquidity risk and arbitrage pricing theory. Finance and Stochastics, 8, 311-341, 2004.

Chen, Y. and Li, B.

An Adaptive Functional Autoregressive Forecast Model to Predict Electricity Price Curves.

Journal of Business and Economic Statistics, Accepted, 2015.

- Chordia, T., Sarkar, A. and Subrahmanyam, A. An Empirical Analysis of Stock and Bond Market Liquidity. Federal Reserve Bank of New York Staff Reports, 164,2003.
- Cooper, K., Groth, J.C. and Avers, W.E. Liquidity, exchange listing, and common stock performance. *Journal of Economics and Business*, 37, 19-33, 1985.

Fleming, M.J. and Remolona, E.M.

Price Formation and Liquidity in the U.S. Treasury Market: The Response to Public Information. *Journal of Finance*, 54, 1901-1915, 1999.

Frank, J., Härdle, W.K., and Hafner, C. Statistics of Financial Markets: an Introduction. 4th ed. Springer Verlag, Berlin Heidelberg, 2015.

Geman, S. and Hwang, C.-R.

Nonparametric maximum likelihood estimation by the method of sieves.

Annals of Statistics, 10, 401-414, 1982.

Gomber, P., Schweickert, U. and Theissen, E. Liquidity Dynamics in an Electronic Open Limit Order Book: An Event Study Approach.

European Financial Management, 21, 52-78, 2015.

🛸 Grenander. U.

Abstract Inference.

Wiley, New York, 1981.

Groß-Klußmann, A. and Hautsch, N. Predicting Bid-Ask Spreads Using Long-Memory Autoregressive Conditional Poisson Models. Journal of Forecasting, 32(8), 724-742, 2013.

Guillas, S.

Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes. *Statistics & Probability Letters*, 55(3), 281-291, 2001.

Härdle, W.K., Hautsch, N. and Mihoci, A. Modelling and forecasting liquidity supply using semiparametric factor dynamics. *Journal of Empirical Finance*, 19, 610-625, 2012.

📔 Härdle, W.K., Mihoci, A. and Ting, C.

Adaptive order flow forecasting with multiplicative error models.

Quantitative Finance, Submitted, 2016.

Härdle, W.K., Hautsch, N. and Mihoci, A. Local adaptive multiplicative error models for high-frequency forecasts.

Journal of Applied Econometrics, 30(4), 529-550, 2015.

Huberman, G., and Halka, D. Systematic Liquidity. Journal of Financial Research, 24, 161-178, 2001.

Kim, M., Chaudhuri, K., and Shin, Y. Forecasting Distribution of Inflation Rates: A Functional Autoregressive Approach.

Journal of the Royal Statistical Society Series A, Statistics in Society, (Early online publication), 2015.

Kokoszka, P. and Zhang, X.

Improved estimation of the kernel of the functional autore-gressive process. *Technical report*, Utah State University, 2010.

Mourid, T., and Bensmain, N.
Sieves estimator of the operator of a functional autoregressive process.
Statistics & Probability Letters, 76(1), 93-108, 2006.

Potters, M. and Bouchaud, J.P.

More statistical properties of order books and price impact. *Physica A*, 324, 133-140, 2003.

Stoll, H.

The pricing of security dealer services: An empirical study of NASDAQ stocks.

Journal of Finance, 33, 1153-1172, 1978.

Zhang, L., Mykland, P.A., and Aït-Sahalia, Y.

A tale of two time scales: Determining integrated volatility with noisy high-frequency data.

Journal of the American Statistical Association, 100(472), 1394-1411, 2005.

B-spline expansion

$$\begin{split} X_t^{(a)}(\tau) &= \sum_{j=1}^{\infty} d^a_{t,j} B_{j,m}(\tau), \\ \epsilon_t^{(a)}(\tau) &= \sum_{j=1}^{\infty} d^a_j (\epsilon_t^{(a)}) B_{j,m}(\tau), \\ \kappa_{aa}(\tau) &= \sum_{j=1}^{\infty} c^{aa}_j B_{j,m}(\tau), \\ \kappa_{ab}(\tau) &= \sum_{j=1}^{\infty} c^{ab}_j B_{j,m}(\tau). \end{split}$$

$$\begin{aligned} X_t^{(b)}(\tau) &= \sum_{j=1}^{\infty} d_{t,j}^b B_{j,m}(\tau), \\ \epsilon_t^{(b)}(\tau) &= \sum_{j=1}^{\infty} d_j^b(\epsilon_t^{(b)}) B_{j,m}(\tau), \\ \kappa_{bb}(\tau) &= \sum_{j=1}^{\infty} c_j^{bb} B_{j,m}(\tau), \\ \kappa_{ba}(\tau) &= \sum_{j=1}^{\infty} c_j^{ba} B_{j,m}(\tau). \end{aligned}$$

VFAR -

Appendix -

VFAR & *B*-Splines

$$\begin{aligned} x_{t}^{(a)}(\tau) &= \sum_{j=1}^{J_{n}} d_{t,j}^{a} B_{j,m}(\tau) \\ &= \int_{0}^{1} \left\{ \sum_{j=1}^{J_{n}} \sum_{i=1}^{J_{n}} c_{j}^{aa} d_{t-1,i}^{a} B_{j,m}(\tau-s) B_{i,m}(s) \right\} ds \\ &+ \int_{0}^{1} \left\{ \sum_{j=1}^{J_{n}} \sum_{i=1}^{J_{n}} c_{j}^{ab} d_{t-1,i}^{b} B_{j,m}(\tau-s) B_{i,m}(s) \right\} ds + \sum_{j=1}^{J_{n}} d_{j}^{a} (\varepsilon_{t}^{(a)}) B_{j,m}(\tau) \\ &= \sum_{h=1}^{J_{n}} \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{aa} - c_{h}^{aa} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{a} B_{h,m}(\tau) \\ &+ \sum_{h=1}^{J_{n}} \sum_{i=1}^{J_{n}} \left\{ \sum_{j=1}^{J_{n}} \left(\frac{w_{j+m} - w_{j+1}}{w_{j+m} - w_{j}} - \frac{w_{j+m+1} - w_{j+2}}{w_{j+m+1} - w_{j+1}} \right) c_{j}^{ab} - c_{h}^{ab} \right\} \frac{w_{i+m} - w_{i}}{m} d_{t-1,i}^{b} B_{h,m}(\tau) \\ &\text{FAR} - \sum_{j=1}^{J_{n}} d_{j}^{a} (\varepsilon_{t}^{(a)}) B_{j,m}(\tau) \end{aligned}$$

- 7-54

V

Appendix

Maximum likelihood estimation Log-likelihood function:

 $\ell\left(X_1^{(a)}, \cdots, X_T^{(a)}, X_1^{(b)}, \cdots, X_T^{(b)}; \rho^{aa}, \rho^{ab}, \rho^{ba}, \rho^{bb}\right)$ $= -\frac{KT}{2}\log 2\pi - \frac{T}{2}\log \left|\Sigma_{u}\right| - \frac{1}{2}\left(\mathbf{y} - (Z^{\top} \otimes I_{\mathcal{K}})\beta\right)^{\top} (I_{\mathcal{T}} \otimes \Sigma_{u}^{-1}) \left\{\mathbf{y} - (Z^{\top} \otimes I_{\mathcal{K}})\beta\right\}$ $= -\frac{KT}{2}\log 2\pi - \frac{T}{2}\log \left|\Sigma_{u}\right| - \frac{1}{2}\sum_{i}\left(y_{t} - v - Cy_{t-1}\right)^{\top}\Sigma_{u}^{-1}\left(y_{t} - v - Cy_{t-1}\right)$ $= -\frac{KT}{2}\log 2\pi - \frac{T}{2}\log \left|\Sigma_{u}\right| - \frac{1}{2}\sum^{'}\left(y_{t} - Cy_{t-1}\right)^{\top}\Sigma_{u}^{-1}\left(y_{t} - Cy_{t-1}\right)$ $+ \mathbf{v}^{\top} \boldsymbol{\Sigma}_{u}^{-1} \sum_{u}^{\prime} \left(\mathbf{y}_{t} - \mathbf{C} \mathbf{y}_{t-1} \right) - \frac{T}{2} \mathbf{v}^{\top} \boldsymbol{\Sigma}_{u}^{-1} \mathbf{v}$ $= -\frac{KT}{2}\log 2\pi - \frac{T}{2}\log \left|\Sigma_{u}\right| - \frac{1}{2}\operatorname{Tr}\left\{(Y - BZ)^{\top}\Sigma_{u}^{-1}(Y - BZ)\right\}$

back

VFAR

Consistency result

Let $H(\rho, \psi)$ denote the conditional entropy between a set of operators $\rho = (\rho^{aa}, \rho^{ab}, \rho^{ba}, \rho^{bb})$ and a given set of operators ψ :

$$H(\rho, \psi) = \mathsf{E}_{\rho} \left[\log g(X_t^{(a)}, X_t^{(b)}, X_{t-1}^{(a)}, X_{t-1}^{(b)}, \psi) \right].$$

We consider the following conditions:

C1: If there exists a sequence $\{\rho_{J_n}\}$ such that $\rho_{J_n} \in \Theta_{J_n} \forall n$ and $H(\rho_{0|\Theta_{J_n}}, \rho_{J_n}) \to H(\rho_{0|\Theta_{J_n}}, \rho_{0|\Theta_{J_n}})$, then $\left\| \rho_{J_n} - \rho_{0|\Theta_{J_n}} \right\|_{HS} \to 0$. Here $\rho_{0|\Theta_{J_n}}$ denotes the projection of the set of true operators ρ_0 on the sieve Θ_{J_n} .

7-56

C2: There exists a sequence $\{\rho_{J_n}\}$ described in **C1** such that $H(\rho_{0|\Theta_{J_n}}, \rho_{J_n}) \rightarrow H(\rho_{0|\Theta_{J_n}}, \rho_{0|\Theta_{J_n}}).$

R^2 with different values of J_n

,	Ticker Symbol											
J_n	AAPL	MSFT	INTC	CSCO	SIRI	AMAT	CMCSA	AEZS	EBAY	MU	WFM	SBUX
6	89.55%	91.14%	89.74%	93.08%	95.60%	89.87%	83.96%	98.29%	87.97%	90.46%	88.78%	88.17%
7	90.62%	92.74%	91.70%	94.14%	96.61%	92.55%	88.93%	98.46%	91.09%	92.26%	91.47%	91.12%
8	91.21%	93.60%	92.83%	94.79%	97.15%	93.98%	90.93%	98.57%	92.69%	93.33%	93.03%	92.75%
9	91.48%	94.05%	93.39%	95.15%	97.45%	94.59%	91.67%	98.61%	93.50%	93.92%	93.93%	93.50%
10	91.68%	94.47%	93.90%	95.49%	97.69%	95.06%	92.27%	98.64%	94.12%	94.41%	94.62%	94.07%
11	91.78%	94.72%	94.21%	95.72%	97.86%	95.34%	92.66%	98.64%	94.46%	94.67%	94.99%	94.35%
12	91.84%	94.86%	94.38%	95.84%	97.95%	95.47%	92.85%	98.64%	94.59%	94.79%	95.13%	94.45%
13	91.88%	94.96%	94.51%	95.93%	98.03%	95.58%	92.99%	98.61%	94.68%	94.89%	95.24%	94.53%
14	91.91%	95.05%	94.60%	96.00%	98.10%	95.67%	93.12%	98.58%	94.74%	94.96%	95.32%	94.58%
15	91.94%	95.10%	94.67%	96.06%	98.16%	95.74%	93.23%	98.53%	94.78%	95.02%	95.37%	94.64%
16	91.95%	95.12%	94.69%	96.08%	98.18%	95.74%	93.24%	98.45%	94.79%	95.04%	95.40%	94.67%
17	91.99%	95.16%	94.73%	96.12%	98.22%	95.78%	93.31%	98.43%	94.82%	95.08%	95.45%	94.70%
18	92.00%	95.16%	94.75%	96.13%	98.24%	95.80%	93.33%	98.40%	94.84%	95.10%	95.46%	94.72%
19	92.02%	95.19%	94.77%	96.15%	98.27%	95.84%	93.38%	98.40%	94.86%	95.13%	95.50%	94.75%
20	92.03%	95.19%	94.79%	96.16%	98.29%	95.83%	93.39%	98.48%	94.88%	95.14%	95.52%	94.77%

back