Clustering SFB Abstracts

Larisa Adamyan
Linxi Wang
Kirill Efimov
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
International Research Training Group 1792
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de
irtg1792.hu-berlin.de
Motivation

Topic extraction

- Find a **cluster structure** in the abstracts of SFB papers
- Compare it with *JEL* or *project codes*

Figure 1: Papers on SFB website
Motivation

Outline

1. Motivation ✓
2. Data Preparation
3. Adaptive Weights Clustering
4. True clustering structure
5. References
Data Extraction

- Scrape SFB webpage with discussion papers

- For each paper extract:
 - Abstract
 - Project code
 - JEL Codes

- Store all the information in database on HU server
Data Preprocessing

- Tokenize
- Transfer all letters to small ones
- Remove punctuation, numbers, stopwords, special characters
- Lemmatize/stemming
- Remove words which occur only once
Term-Document Matrix (TDM)

- Rows correspond to the documents
- Columns correspond to the terms
- Each cell represents frequency of a word in a document

Figure 2: Most frequent terms from abstracts on SFB website
Term frequency- inverse document frequency (TF-IDF)

- A weighting factor
- Reflects how important a word is to a document in a collection
- The i-th document is presented as a vector $X_i = \{x_{ij}\}_{j=1}^d$, where

$$x_{ij} = tf_{ij} \times idf_j, \quad idf_j = \log \frac{1 + n}{1 + n_j} + 1.$$

tf_{ij}: frequency of term j in the document i
idf_j: inverse document frequency
n: number of documents
n_j: number of documents which contain the term j.
True clustering structure

What to consider as true clustering structure?

- **Project codes**
 - represent project areas
 - 5 project area (Individual and contractual answers to risks, Macroeconomic risk, Financial markets, Risk Data Center, Transfer projects)

- **JEL codes**
 - represent topics
 - 17 JEL (Mathematical and quantitative methods, International economics, Financial economics, Business administration...)
 - paper abstracts can have up to 5 JEL codes
Comparison

- Adaptive Weights Clustering (AWC)
- K-means
 - minimize the objective function over partitions.
 - require to fix the number of clusters
 - produce only spherical clusters
- Cluto
 - a software package for clustering high dimensional datasets
 - hierarchical clustering
 - require to fix the number of clusters
 - produce high quality clustering solutions in text clustering
Normalized Mutual Information NMI

- True clustering structure $C^* = \{C^*_m\}_{m=1}^M$
- Answer clustering structure $C = \{C_l\}_{l=1}^L$

$$NMI(C, C^*) = \frac{\sum_{ml} n_{ml} \log \frac{n_{nml}}{n_m n_l}}{\sqrt{\sum_m n_m \log \frac{n_m}{n} \cdot \sum_l n_l \log \frac{n_l}{n}}}$$

where $n_{ml} = |C^*_m \cap C_l|$, $n_m = |C^*_m|$, $n_l = |C_l|$.

- Maximize NMI
Misweighting Error used in AWC

- True weights w_{ij}^*
- Answer weights \hat{w}_{ij}

$$
e = \frac{\sum_{i \neq j} |\hat{w}_{ij}| \mathbb{1}(w_{ij}^* = 0) + \sum_{i \neq j} |1 - \hat{w}_{ij}| \mathbb{1}(w_{ij}^* = 1)}{\sum_{i \neq j} \mathbb{1}(w_{ij}^* = 0) + \sum_{i \neq j} \mathbb{1}(w_{ij}^* = 1)}$$

Rand index:

$$R = 1 - e$$

- Minimize e
Adjusted Rand Index AdR

- True clustering structure $C^* = \{ C^*_m \}_{m=1}^M$
- Answer clustering structure $C = \{ C_l \}_{l=1}^L$

$$AdR(C, C^*) = \frac{\sum_{ml} \binom{n_{ml}}{2} - \sum_m \binom{n_m}{2} \sum_l \binom{n_l}{2} / \binom{n}{2}}{\frac{1}{2} \left(\sum_m \binom{n_m}{2} + \sum_l \binom{n_l}{2} \right) - \sum_m \binom{n_m}{2} \sum_l \binom{n_l}{2} / \binom{n}{2}}$$

- Maximize AdR
K-means

- Project codes as true clustering structure
- 50 runs for each K
- Try with PCA (number of components = 2, 5, 10)
- Best result without PCA
- Best result when K = 5
Figure 3: 50 runs for each K. K = 3 best result
AWC

Figure 4: left: plateau heuristics, right: AWC result for $\lambda = 0.4$
K-means

- JEL codes as true clustering structure
- 50 runs for each K
- Try with PCA (number of components = 2, 5, 10)
- Best result without PCA
- Best result when $K = 3$
Cluto

Figure 5: 50 runs for each K. K = 3 best result
AWC

- JEL codes as true clustering structure

Figure 6: Plateau heuristics
AWC Result

Figure 7: Result for $\lambda = 0.5$ from plateau heuristics
Cluster 1 found by AWC

- 46% contain G: 'Financial economics'
- 81% contain C: 'Mathematical and quantitative methods'
- Contains 86% of pairs \{C, G\}

Figure 8: size = word frequency, darker color — higher idf
Cluster 2 found by AWC

- 77% contain J: 'Labor economics'

Figure 9: size = word frequency, darker color — higher idf
Cluster 3 found by AWC

- 51% contain D: 'Microeconomics'
- 54% contain C: 'Mathematical and quantitative methods'

Figure 10: size = word frequency, darker color – higher idf
Cluster 4 found by AWC

- 73% contain E: 'Macroeconomics and monetary economics'

Figure 11: size = word frequency, darker color – higher idf
Cluster 5 found by AWC

- 32% contain R: 'Urban, rural, and regional economic'
- 24% contain Q: 'natural resource economics'
- 40% contain C: 'Mathematical and quantitative methods'

Figure 12: size = word frequency, darker color – higher idf
Cluster 6 found by AWC

- 54% contain \(I\): 'Health, education, and welfare'
- 80% contain \(C\): 'Mathematical and quantitative methods'
- 50% contain pairs \(\{I, C\}\)

Figure 13: size = word frequency, darker color – higher idf
 Conclusion

- The best run of k-means among 50 runs for each $2 \leq k \leq 30$ provides best $\text{AdR} = 0.22$ when $k = 3$
- CLUTO can provide partitioning with $\text{AdR} = 0.32$ (best result among 50 runs for $k=3$)
- The best result of CLUTO for $k \neq 3$ is $\text{AdR} = 0.20$
- AWC automatically finds meaningful cluster structure with $\text{AdR} = 0.27$
References

Steinhaus, H.

Strehl, A. and Ghosh, J.

Lawrence, H. and Phipps, A.

Karypis, G.
"CLUTO - a clustering toolkit". No. TR-02-017. MINNESOTA UNIV MINNEAPOLIS DEPT OF COMPUTER SCIENCE, (2002).
Clustering SFB Abstracts

Larisa Adamyan
Linxi Wang
Kirill Efimov
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
International Research Training Group 1792
Humboldt–Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de
irtg1792.hu-berlin.de