How does the market react to cooling measures? The case of Singapore

T. Xie¹ S.-K. Chao² R. Schulz³ W. K. Härdle⁴

¹Singapore Management University

²Purdue University

³University of Aberdeen

⁴Humboldt University of Berlin

February 22, 2017

Sim Kee Boon Institute for Financial Economics

To buy or not to buy?

Macro-prudential Policies Post-crisis

- Monetary policy became a "blunt tool"
- Central banks turned to macro-prudential policies
 - e.g. loan-to-value ratio, stamp duties, etc
 - mostly aimed at housing market
- Objectives of MPPs
 - 1. to promote the resilience of the financial system by mandating higher levels of liquidity, capital and collateralisation
 - 2. to restrain the build-up of financial imbalances by slowing credit and asset price growth

Movements in house prices

Figure: House price movements in major cities since 2007.

How does macro-prudential policies work?

- ▶ Lean against the wind (Zhang and Zoli 2016)
- ▶ Discretion vs rule (Kuttner and Shim 2016)
- ► House price indices still show upward trends

Monetary vs macro-prudential policies

- Interest rate affects consumption and investments
 - hence the inflation
- LTV, DSTI ratios affect demand for loans
 - affect the demand for housing only indirectly
 - hence the house price more indirectly

Inelastic housing demand

Figure: No. of deals and property price indices.

Outline

- Motivation
- Singapore's context
- Methodology and data
- Results
- Conclusion

Singapore's housing market

- ▶ Public housing sector is dominant (Phang 2001)
 - Singapore citizens can afford their first homes
- Prone to foreign speculation (Chow and Xie 2016)
 - Free mobility of capital in and out of the real estate sector
 - Foreign investors have freedom in acquiring private properties in Singapore
- Challenge to policy makers
 - Housing market needs to remain attractive to investors
 - At the same time affordable to local residents and fundamentally healthy

Cooling measures in Singapore

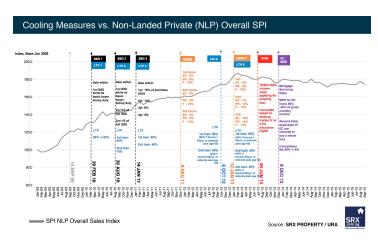


Figure: Cooling measures and private property price index.

Cooling measures in Singapore

Figure: Cooling measures and private property price index.

Data

- ► SRX data for private and HDB transactions spanning from Jan 1, 2007 to Jun 30, 2016
 - Price
 - Size
 - ► Geo-location
 - Property type
- Monthly consumer price index from the CEIC Database
- We calculate the log real price per square foot

Sampling periods

Table: Sampling periods.

s	Period	Date
1	Before cooling measures During cooling measures After cooling measures	Jan 1, 2007 – Sep 13, 2009 Sep 14, 2009 – Dec 9, 2013 Dec 10, 2013 – Jun 30, 2016

Hypothesis testing

▶ For a total of S sampling periods, we define τ the conditional quantile $Q_s(\tau|\mathbf{x})$ of the log real house price psf Y_s at period s on the geo-location $X = \mathbf{x}$:

$$P[Y_s \le Q_s(\tau|\mathbf{x})|X=\mathbf{x}] = \tau \tag{1}$$

Null hypothesis:

$$H_0: Q_s(\tau|\mathbf{x}) = Q_{s'}(\tau|\mathbf{x}) \tag{2}$$

for all $s \neq s'$.

► Acceptance of the null hypothesis implies stable house prices across the two periods

Uniform confidence bands (Chao et al. 2017)

- Bootstrapped simultaneous confidence bands
- ▶ For each period, and at location \mathbf{x} , we compute an estimator of $Q_s\left(\tau|\mathbf{x}\right)$ by

$$\hat{Q}_{s}\left(\tau|\mathbf{x}\right) = \arg\min_{q \in \mathbb{R}} \sum_{i=1}^{n_{s}} K_{h_{s}}\left(\mathbf{x} - X_{i}^{s}\right) \rho_{\tau}\left(Y_{i}^{s} - q\right)$$
(3)

Uniform confidence bands

- ▶ Härdle, Ritov, and Wang 2015 and Chao et al. 2017
- ▶ The simultaneous confidence set with nominal level α :

$$\mathcal{C}_{s}\left(\mathcal{X}_{0}\right):=\left\{\left(\mathbf{x},q
ight)\in\mathcal{X}_{0}\times\mathbb{R}:q\in\left[\hat{Q}_{s}\left(au|\mathbf{x}\right)\pm c_{ au,\mathbf{n}}\xi_{lpha}^{*}
ight]
ight\}$$
 (4)

where $c_{\tau,n}$ is the scaling factor

$$c_{\tau,n} := \sqrt{\frac{\tau(1-\tau)}{n_s |h_s| \hat{f}_{X^s}(\mathbf{x}) \hat{f}_{Y^s|X^s}^2 \left(\hat{Q}_s(\tau|\mathbf{x})|\mathbf{x}\right)}}$$
(5)

► The null hypothesis is rejected when two confidence sets $(s \neq s')$ are disjoint:

$$C_{s}\left(\mathcal{X}_{0}\right)\cap C_{s'}\left(\mathcal{X}_{0}\right)=\varnothing\tag{6}$$

A 250×250 grid of Singapore

From west to east

Price dynamics: West to east

Price dynamics: South to north

MRT stations in Singapore

Neighbourhood of an MRT station: Toa Payoh

Price dynamics: EW line

Price dynamics: NS line

Price dynamics: NE line

Findings

- Cooling measures are more likely to suppress demand for loans, not for housing
- We observe a pattern of substitution effect down the price distribution
- Prices of the high-end houses are cooled first
- Prices at the lower percentiles respond to cooling measures with lags

Upcoming plan

- Use different independent variables:
 - ▶ E.g. distance from MRT stations
- Use specific policy tools as independent variables:
 - ► LTV ratio
 - Debt servicing ratio
 - Stamp duties

Thank you!

References I

Chao, Shih-Kang et al. (2017). "Confidence Corridors for Multivariate Generalized Quantile Regression". In: Journal of Business & Economic Statistics 35.1, pp. 70–85. ISSN: 0735-0015. DOI: 10.1080/07350015.2015.1054493. URL: http://dx.doi.org/10.1080/07350015.2015.1054493.

Chow, Hwee Kwan and Taojun Xie (2016). "Are House Prices Driven by Capital Flows? Evidence from Singapore". In: Journal of International Commerce, Economics and Policy 07.01, p. 1650006. DOI: 10.1142/S179399331650006X. URL: http://www.worldscientific.com/doi/abs/10.1142/S179399331650006X.

References II

Härdle, Wolfgang Karl, Ya'acov Ritov, and Weining Wang (2015). "Tie the straps: Uniform bootstrap confidence bands for semiparametric additive models". In: Journal of Multivariate Analysis 134, pp. 129—145. ISSN: 0047-259X. DOI: 10.1016/j.jmva.2014.11.003. URL: http://www.sciencedirect.com/science/article/pii/S0047259X14002395.

Kuttner, Kenneth N. and Ilhyock Shim (2016). "Can non-interest rate policies stabilize housing markets? Evidence from a panel of 57 economies". In: Journal of Financial Stability 26, pp. 31–44. ISSN: 1572-3089. DOI: 10.1016/j.jfs.2016.07.014. URL: https://www.sciencedirect.com/science/article/pii/S1572308916300705.

◆ロト ◆団ト ◆量ト ◆量ト ■ めの(で)

References III

Phang, Sock-Yong (2001). "Housing Policy, Wealth Formation and the Singapore Economy". In: Housing Studies 16.4,

pp. 443–459. ISSN: 0267-3037. DOI:

10.1080/02673030120066545. URL:

http://dx.doi.org/10.1080/02673030120066545.

Zhang, Longmei and Edda Zoli (2016). "Leaning against the wind: Macroprudential policy in Asia". In: Journal of Asian Economics

42, pp. 33–52. ISSN: 1049-0078. DOI:

10.1016/j.asieco.2015.11.001. URL:

http://www.sciencedirect.com/science/article/pii/ S1049007815001025.