Jointly Modelling and Robust Forecasting High-Dimensional Yield Curves

Wolfgang K. Härdle
Chen Huang
Linlin Niu

Ladislaus von Bortkiewicz Chair of Statistics
Humboldt-Universität zu Berlin
Wang Yanan Institute for Studies in Economics
Xiamen University
http://lvb.wiwi.hu-berlin.de
http://irtg1792.hu-berlin.de
http://wise.xmu.edu.cn/english
Yield Curves Data

Figure 1: Daily yield curves of Chinese enterprise bond AAA in 2015.
Yield Curves Modelling

- Based on economic theory
 - market equilibrium: Vasicek model; CIR model
 - no-arbitrage: derivative pricing under B-S framework
 - affine-class: dynamic in maturities with time series technique

- Goodness of fit and forecasting
 - dynamic Nelson-Siegel model (Diebold and Li, 2006)
 - other generalized N-S models
Dynamic Nelson-Siegel Model

Advantages
- excellent fit to the term structure
- clear explanation on factors: level, slope and curvature
- estimation simplicity

Limitations
- specification issues
- jointly modelling across bond types and credit ratings
Motivation

Go beyond DNS

- high-dimensional curves across types and ratings
- flexible representation through high-dimensional B-splines
- sparse latent factors
- robust estimation via LAD regression
- risky bonds with low credit ratings
Motivation

Estimation Issues

- estimate a high-dimensional coefficient matrix
- nuclear norm penalty
 - involve a convex optimization
 - lead to a low dimensional factor model
- SVD to identify factors and loadings
- multivariate factorisable quantile/expectile regression (Chao et al. 2015; 2016)
Objectives and Contributions

- jointly modelling and robust forecasting high-dimensional yield curves
- multivariate factorisable median regression (MFMR)
- application for Chinese bond market
 - systemic liquidity and dispersion measure among curves
 - term structure and credit risk structure
 - in- and out-of-sample performance
Outline

1. Motivation
2. Model and Estimation
3. Application with Chinese Yield Curve Data
4. Concluding Remarks
Model Specification

- \(Y = (Y_{ij}) \in \mathbb{R}^{n \times m} \): multivariate curves
 - \(m \): the number of curves (across credit ratings and types)
 - \(n \): the length of observations (over time)
- \(\{X_i\}_{i=1}^n \in \mathbb{R}^p \): \(B \)-spline basis functions
- \(\max\{p, m\} \ll n \) while \(p, m \to \infty \) is allowed
- refer to Chao et al. (2016) for more assumptions
Model Specification

- Linear sparse factor structure:

\[Y_{ij} = \sum_{k=1}^{r} \psi_{j,k} f_k(X_i) + u_{ij}, \quad (1) \]

where \(f_k(X_i) \) is the \(k \)th factor, \(r \) is the number of factors, \(\psi_{j,k} \) are the factor loadings.

- Factors are constructed by linear combination of \(X_i \):

\[f_k(X_i) = \varphi_k^\top X_i \quad (2) \]
Model Specification

- Substituting (2) into (1):
 \[Y_{ij} = \gamma_j^\top X_i + u_{ij}, \]
 where \(\gamma_j = (\sum_{k=1}^{r} \psi_{j,k} \varphi_{k,1}, \ldots, \sum_{k=1}^{r} \psi_{j,k} \varphi_{k,p})^\top \)
- To estimate the coefficient matrix \(\Gamma \), where \(\gamma_j \) is the \(j \)-th column of \(\Gamma \)
Estimation

Robust estimation on Γ via median regression

$$\hat{\Gamma} = \arg \min_{\Gamma \in \mathbb{R}^{p \times m}} \left\{ (mn)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} |Y_{ij} - X_i^\top \Gamma_j| + \lambda \|\Gamma\|_* \right\}$$

- nuclear norm $\|\Gamma\|_* = \sum_{j=1}^{\min(p,m)} \sigma_j(\Gamma)$, given the singular values of Γ: $\sigma_1(\Gamma) \geq \sigma_2(\Gamma) \geq \ldots \geq \sigma_{\min(p,m)}(\Gamma)$,
- # of nonzero singular values of Γ is # of factors: r
- smooth fast iterative shrinkage thresholding algorithm
- singular value decomposition on Γ
Data

- daily yield spread in Chinese bond market
- 180 spread curves
 - maturities of 1, 2, ..., 10 years
 - enterprise bonds (9 credit ratings), chengtou bonds (5 credit ratings), company bonds (4 credit ratings)
- 733 observations from 2014.01 to 2016.12
- obtained from Wind Datafeed Service (WDS)
Factor Analysis

Figure 2: Plot of the first four factors (92.27% of the variance is explained).
Factor Loadings

Figure 3: Factor loadings for enterprise bonds of five credit ratings.
Three Factors by DNS (Treasury Bond)

Figure 4: Plot of the three factors by DNS for treasury bond.

High-Dimensional Yield Curves Modelling
Factor Analysis

Factors interpretation:
- 1st: systemic liquidity or dispersion measure among curves - 53.49%
- 2nd: level (credit risk) - 18.95%
- 3rd: slope - 14.42%
- 4th: curvature - 5.41%
Alternative Approaches

- Three factors DNS

\[Y_{i\tau} = f_{1i} + \left\{ \frac{1 - \exp(-\lambda \tau)}{\lambda \tau} \right\} f_{2i} + \left\{ \frac{1 - \exp(-\lambda \tau)}{\lambda \tau} - \exp(-\lambda \tau) \right\} f_{3i} + u_{i\tau}, \]

where \(\tau \) denotes the maturities (for a particular bond type and credit rating).

- PCA

\[Y_{ij} = \sum_{k=1}^{r} \psi_{kj} f_{ki} + u_{ij}, \]

where \(f_{ki}^\top = Y \gamma_k \), \(\gamma_k \) is the \(k \)-th eigenvector of \(\text{Var}(Y) \). VAR is applied to model the dynamics in factors.
Fitting Performance

Figure 5: Fitted curves by MFMR, DNS, PCA, with real observations.

High-Dimensional Yield Curves Modelling
Fitting Performance - Whole Sample

<table>
<thead>
<tr>
<th></th>
<th>MFMR</th>
<th>DNS</th>
<th>PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>1.92</td>
<td>5.19</td>
<td>6.56</td>
</tr>
<tr>
<td>AA+</td>
<td>2.28</td>
<td>5.96</td>
<td>6.19</td>
</tr>
<tr>
<td>AA-</td>
<td>2.84</td>
<td>7.69</td>
<td>10.53</td>
</tr>
<tr>
<td>A</td>
<td>5.42</td>
<td>9.76</td>
<td>7.31</td>
</tr>
<tr>
<td>BBB+</td>
<td>8.30</td>
<td>11.79</td>
<td>12.12</td>
</tr>
<tr>
<td>Chengtou Bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>2.12</td>
<td>5.27</td>
<td>6.35</td>
</tr>
<tr>
<td>AA+</td>
<td>2.61</td>
<td>6.00</td>
<td>6.04</td>
</tr>
<tr>
<td>AA</td>
<td>2.96</td>
<td>6.67</td>
<td>6.16</td>
</tr>
<tr>
<td>AA-</td>
<td>3.18</td>
<td>7.04</td>
<td>7.61</td>
</tr>
<tr>
<td>Company Bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>2.45</td>
<td>5.89</td>
<td>8.33</td>
</tr>
<tr>
<td>AA+</td>
<td>2.96</td>
<td>8.10</td>
<td>10.42</td>
</tr>
<tr>
<td>AA</td>
<td>3.11</td>
<td>7.04</td>
<td>9.64</td>
</tr>
<tr>
<td>AA-</td>
<td>4.14</td>
<td>7.15</td>
<td>9.30</td>
</tr>
<tr>
<td>average</td>
<td>3.50</td>
<td>7.31</td>
<td>7.95</td>
</tr>
</tbody>
</table>

Table 1: Fitting RMSE with the whole sample under different approaches, averaged over maturities. All numbers are of order \(10^{-2}\).
In-Sample Fitting - Rolling Windows

<table>
<thead>
<tr>
<th></th>
<th>MFMR</th>
<th>DNS</th>
<th>PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>1.53</td>
<td>4.92</td>
<td>4.95</td>
</tr>
<tr>
<td>AA+</td>
<td>1.91</td>
<td>5.91</td>
<td>5.05</td>
</tr>
<tr>
<td>AA-</td>
<td>2.80</td>
<td>8.01</td>
<td>5.88</td>
</tr>
<tr>
<td>A</td>
<td>5.08</td>
<td>9.71</td>
<td>8.05</td>
</tr>
<tr>
<td>BBB+</td>
<td>7.51</td>
<td>11.77</td>
<td>12.62</td>
</tr>
<tr>
<td>Chengtou Bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>1.66</td>
<td>5.10</td>
<td>5.10</td>
</tr>
<tr>
<td>AA+</td>
<td>2.08</td>
<td>6.09</td>
<td>5.82</td>
</tr>
<tr>
<td>AA</td>
<td>2.37</td>
<td>6.94</td>
<td>5.19</td>
</tr>
<tr>
<td>AA-</td>
<td>2.68</td>
<td>7.33</td>
<td>5.99</td>
</tr>
<tr>
<td>Company Bonds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>1.92</td>
<td>6.10</td>
<td>5.70</td>
</tr>
<tr>
<td>AA+</td>
<td>2.38</td>
<td>8.90</td>
<td>6.34</td>
</tr>
<tr>
<td>AA</td>
<td>2.49</td>
<td>7.58</td>
<td>5.96</td>
</tr>
<tr>
<td>AA-</td>
<td>3.63</td>
<td>6.58</td>
<td>8.57</td>
</tr>
<tr>
<td>average</td>
<td>3.03</td>
<td>7.40</td>
<td>6.47</td>
</tr>
</tbody>
</table>

Table 2: In-Sample RMSE with rolling windows (fixed width = 300), averaged over maturities. All numbers are of order 10^{-2}.
Out-of-Sample Forecasting - Rolling Windows

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Tier</th>
<th>MFMR</th>
<th>DNS</th>
<th>PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Bonds</td>
<td>AAA</td>
<td>3.26</td>
<td>5.83</td>
<td>8.07</td>
</tr>
<tr>
<td></td>
<td>AA+</td>
<td>3.33</td>
<td>6.67</td>
<td>8.45</td>
</tr>
<tr>
<td></td>
<td>AA-</td>
<td>3.50</td>
<td>9.15</td>
<td>9.98</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>3.61</td>
<td>10.59</td>
<td>16.52</td>
</tr>
<tr>
<td></td>
<td>BBB+</td>
<td>3.80</td>
<td>12.99</td>
<td>26.44</td>
</tr>
<tr>
<td>Chengtou Bonds</td>
<td>AAA</td>
<td>3.29</td>
<td>6.01</td>
<td>8.75</td>
</tr>
<tr>
<td></td>
<td>AA+</td>
<td>3.42</td>
<td>6.79</td>
<td>10.88</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>3.43</td>
<td>7.68</td>
<td>9.42</td>
</tr>
<tr>
<td></td>
<td>AA-</td>
<td>3.49</td>
<td>8.12</td>
<td>10.98</td>
</tr>
<tr>
<td>Company Bonds</td>
<td>AAA</td>
<td>3.82</td>
<td>7.09</td>
<td>9.04</td>
</tr>
<tr>
<td></td>
<td>AA+</td>
<td>4.15</td>
<td>9.28</td>
<td>9.95</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>4.01</td>
<td>8.58</td>
<td>9.98</td>
</tr>
<tr>
<td></td>
<td>AA-</td>
<td>4.12</td>
<td>8.29</td>
<td>17.85</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td>3.59</td>
<td>8.30</td>
<td>11.94</td>
</tr>
</tbody>
</table>

Table 3: Out-of-Sample RMSE with rolling windows (fixed width = 300, one step ahead), averaged over maturities. All numbers are of order 10^{-2}.

High-Dimensional Yield Curves Modelling
Concluding Remarks

- jointly modelling high-dimensional spread curves
- multivariate factorisable regression with high-dimensional functional data
- latent risky factors - systemic liquidity and dispersion measure
- robust forecasting outperforms DNS
Jointly Modelling and Robust Forecasting High-Dimensional Yield Curves

Wolfgang K. Härdle
Chen Huang
Linlin Niu

Ladislaus von Bortkiewicz Chair of Statistics
Humboldt-Universität zu Berlin
Wang Yanan Institute for Studies in Economics
Xiamen University
http://lvb.wiwi.hu-berlin.de
http://irtg1792.hu-berlin.de
http://wise.xmu.edu.cn/english
References

Factorisable Sparse Tail Event Curves

Chao, S.-K., Härdle, W.K. and Huang, C. (2016)
Multivariate Factorisable Sparse Asymmetric Least Squares Regression
Forecasting the Term Structure of Government Bond Yields
Journal of Econometrics, 130, 337-364

Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach
Princeton University Press