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Risk in wind power production

§ Project completion risk 

§ Operating risk 

§ Revenue risk 
subsidies, e.g. feed-in tariff, floating market price premium are per 
unit electricity 
‣ Price risk 
‣ Volume risk
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Volume risk

Relative to expected production (stylised index curve), 
investors benefit from holding WPF, 
wind power generators benefit from selling WPF.
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Wind power futures at Nasdaq

§ Contract: A contract settling against the expected power 
production of future delivery periods  

§ Underlying: NAREX-WIDE: average utilisation relative to the 
available capacity 
 
 
with                    , where WPL(s) is the long term wind power load 

and C(s) the capacity at time s. 

[⌧1, ⌧2]

NAREX(⌧1, ⌧2) =
1

⌧2 � ⌧1

Z ⌧2

⌧1

U(s)ds

U(s) =
WPL(s)

C(s)
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Wind power utilisation: non-standard pdf

Top: 5 min production data of 1 wind farm  
Bottom: daily aggregates on country level



8Motivation

Pricing green financial products

Research approaches for volume risk 

§ Equilibrium models 
‣ Bessembinder & Lemmon (1998) 
‣ Gersema & Wozabal (2017) 

§ No-arbitrage pricing models 
‣ Benth & Saltyte Benth (2009) 
‣ Alexandridis & Zapranis (2013) 
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Gaussian vs non-Gaussian models
Gaussian stochastic pricing CAR(p) 

§ Wind Futures: Benth & Saltyte Benth (2009), Alexandridis & 
Zapranis (2013) 

§ Weather Derivatives: Benth et al. (2011), Benth et al. (2007), 
Härdle & López Cabrera (2012), Härdle et al (2016), … 

 
Non-Gaussian pricing CARMA(p,q)-Lévy 

§ Electricity Futures: Benth et al. (2014) 

§ Electricity pricing: Veraart (2016) 

§ Theory: Barndorff-Nielson & Shephard (2001), …
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FEB Four Algorithm

Econometrics Fin. Mathematics
utilisation CARMA(p, q)

# #
deseasonalisation Futures pricing

# #
ARMA(p, q) Market price of risk

#
seasonal variance

normalising increments

Benth et al. (2007), Härdle et al. (2016)
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Research questions

§ Is there a simple model mimicking weather dynamics with spikes 
and heavy-tailed distributions 

§ How to achieve Gaussian increments? 
‣ Logit-transform 
‣ Smooth Inter-Quartile (Expectile)-Range 

§ In-sample fit: Gaussian vs. non-Gaussian? 

§ Out-of-sample performance: 
‣ Calibration of market price of risk 
‣ Futures price forecasting 



Outline

1. Motivation  
2. FEB4 algorithm 

3. Data 

4. Model comparison 
5. Conclusion
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FEB Four Algorithm

Econometrics Fin. Mathematics
utilisation CARMA(p, q)

# #
deseasonalisation Futures pricing

# #
ARMA(p, q) Market price of risk

#
seasonal variance

normalising increments

Model
Transform

Lévy
Gauss
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NAREX-WIDE index

Data from transmission system operators (TSO) 

Approximation of NAREX-WIDE index by using 
1. Consistent time series of WP generation; training (2010-2015), 

test (2016) at 15 min resolution 
2. Aggregate production TSO control areas (Tennet, Amprion, 

50Hertz, Transnet BW) 
3. Scale production by capacity (time series) 

4. Calculate daily average utilisation factor 

NAREX-WIDE is provided by MeteoGroup 
Nasdaq WPF: quarterly, monthly and weekly: 01/2016-now
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Gaussian and Lévy fit

Lévy Gaussian
b1 a1 a2 a3 a1 a2 a3

�0.687 1.469 0.164 0.758 2.276 1.767 0.430

Left: CARMA(3,1) coefficient estimates of the CARMA-Lévy process; 
Right: CARMA(3,0) of the Gaussian process. AIC for the transformed 
Gaussian model: 6209.124 
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GH fit for Lévy increments

Distribution � ↵̄ �  
GHYP � 2 R ↵̄ > 0 � > 0  > 0

NIG � = � 1
2 ↵̄ > 0 � > 0  > 0

Student-t (⌫ df) � = � ⌫
2 < 1 ↵̄ = 0 � > 0  = 0

HYP � = �d+1
2 ↵̄ > 0 � > 0  > 0

VG � > 0 ↵̄ = 0 � = 0  > 0

Model Sym � ↵̄ µ � � AIC

VG F 1.426 0.000 �5.386 10.410 5.390 16530.366

GHYP F 1.418 0.052 �5.365 10.416 5.367 16532.365

HYP F 1.000 0.008 �4.580 10.886 4.587 16547.773

NIG F �0.500 1.229 �5.663 10.308 5.664 16551.142

Estimation results: Fit of CARMA-Lévy increments to a selection of 
generalised hyperbolic distributions
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Gaussian case: AIC estimate for transformed data

Following Akaike (1978) on AIC for transformed data gives

AIC(transformed-model) + Adjustment = AIC + 2
TX

t=1

log(
@ Ut

1�Ut

@Ut
)

= AIC + 2
TX

t=1

log(
1

Ut � U2
t

)

= 6209.124 + 2 · (�4874.352)

= 15957.83



19Model comparison

Pricing green financial products

Variance Gamma increments

Left to right: empirical vs theoretical pdf, log pdf, q-q-plot 
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Gaussian increments

Left to right: empirical vs theoretical pdf, log pdf, q-q-plot 

PGFP
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Seasonal MPR - contract wise

Seasonal structure of MPR. Left: MPR for weekly contracts. Right: 
MPR for mostly contracts. Samples consist of 17 weekly and 9 
monthly contracts

MPR is strongly affected by seasonal variance!
PGFP
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RMSE ✓ b✓OLS b✓smooth
t

b✓OLS

CV
b✓smooth

t,CV

mean(✓) 0 0.059 0.056 0.059 0.056
�(Ut, Ft) 5.438 5.438 5.438 5.438 5.438

�(Ut, bFt) 12.860 11.092 6.025 11.092 6.021

�(F, bFt) 10.328 9.027 3.489 9.027 3.399

MAPE ✓ b✓OLS b✓smooth
t

b✓OLS

CV
b✓smooth

t,CV

mean(✓) 0 0.059 0.056 0.059 0.056
�(Ut, Ft) 21.271 21.271 21.271 21.271 21.271

�(Ut, bFt) 43.014 44.164 22.772 44.164 22.638

�(F, bFt) 35.302 38.404 18.560 38.404 18.107

Out-of-sample backtesting - weekly contracts. Top: RMSE. Bottom: MAPE. 
Tuning parameter for smoothing splines:                  . Cross-validation with ⇣ ⇡ 0.0002

⇣ ⇡ 0.0003
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Out-of-sample backtesting - monthly contracts. Top: RMSE. Bottom: MAPE. 
Tuning parameter for smoothing splines:                  . Cross-validation with ⇣ ⇡ 0.0002

⇣ ⇡ 0.0003

RMSE ✓ b✓OLS b✓smooth
t

b✓OLS

CV
b✓smooth

t,CV

mean(✓) 0 0.036 0.036 0.036 0.036
�(Ut, Ft) 1.833 1.833 1.833 1.833 1.833

�(Ut, bFt) 3.801 2.667 2.214 2.667 2.117

�(F, bFt) 4.065 2.647 1.622 2.647 1.504

MAPE ✓ b✓OLS b✓smooth
t

b✓OLS

CV
b✓smooth

t,CV

mean(✓) 0 0.036 0.036 0.036 0.036
�(Ut, Ft) 10.033 10.033 10.033 10.033 10.033

�(Ut, bFt) 17.525 13.550 11.759 13.550 11.376

�(F, bFt) 18.149 11.353 6.187 11.353 5.729
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Conclusion

§ In-sample fit and model comparison in favour of Gaussian model 

§ Smooth IER/IQR achieve Gaussian increments  

§ Negative MPR: producers pay a premium as insurance fee 

§ Positive MPR: investors pay premium for reduction of risk 

§ Lack of location specific future contracts and indices 
‣ retrieve information from seasonal productivity factor maps 
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The model

U(t) = ⇤(t) + Y (t)

Assume that the underlying        follows a mean-reverting additive 
process 

   

              - deterministic trend-seasonal production level 
              - short term variation 

U(t)

⇤(t)

Y (t)
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CARMA(p, q)

Suppose           follows a stable continuous time autoregressive 
moving average process 

   

 where the autoregressive polynomial is given by 

and the moving average polynomial by 

Y (t)

a(D)Yt = b(D)DB(t), D
def
=

d

dt
,

P (z) = zp + a1z
p�1 + . . .+ ap

Q(z) = b0 + b1z
q + . . .+ bp�1z

p�1.
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where 

eUt = ⇤t + Yt

Yt = b>Xt state equation

dXt = (AXt + ep�t✓t)dt+ ep�tdB
✓
t observation equation

A =

0

BBBBBB@

0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 1

�↵p �↵p�1 · · · · · · �↵1

1

CCCCCCA
ep =

0

BBBBB@

0
0
...
0
1

1

CCCCCA
b =

0

BBBBB@

1
b1
...

bp�2

bp�1

1

CCCCCA
Xt =

0

BBBBBB@

Xt

X(1)
t
...

X(p�2)
t

X(p�1)
t

1

CCCCCCA

Proof A
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Future price dynamics

For the short term variation dynamics 

we define the future price                   at time t for a contract 
maturing at  

where        is the risk-neutral probability measure.

Yt = b> exp{A(t� s)}Xs +

Z t

s
b> exp{A(t� u)}ep�udBu, u  s < t

F (t, ⌧1, ⌧2)
⌧2 > t

F (t, ⌧1, ⌧2) = EQ✓


1

⌧2 � ⌧1

Z ⌧2

⌧1

U(s)ds
��Ft

�
, 0  t  ⌧ < 1,

Q✓

Brownian Motion
Lévy Process
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Future prices

Consider a stochastic process           with dynamics under   

The mean of the stochastic process is then given by 

and the variance by 

X(t) Q✓

Xt = exp{A(t� s)}Xs +

Z t

s
exp{A(t� u)}ep�u✓udu

+

Z t

s
exp{A(t� u)}ep�udB

✓
u

µ✓(s, t,Xt)
�
= e>1 exp{A(t� s)}Xs +

Z t

s
e>1 exp{A(t� u)}ep�u✓udu

⌃2(s, t)
�
=

Z t

s
�u

⇥
e>1 exp{A(t� u)}ep

⇤2
du.
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Future prices

Then the back-transformed power utilisation is given by: 

bFt,⌧1,⌧2 =
1

⌧2 � ⌧1

Z ⌧2

⌧1

✓
1 + exp


�
⇢
⇤t + µ✓(s, t,Xt) +

1

2
⌃2(s, t)

��◆�1

Ut = (1 + exp [� {⇤t + µ✓(s, t,Xt) + ⌃(s, t)Z}])�1 , Z ⇠ N(0, 1)
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CARMA(p, q)-Lévy

Ut = ⇤t + Yt

d⇤t = ⇤tdt

Yt = b>Xt state equation

dXt = (AXt)dt+ epdLt, observation equation

A =

0

BBBBBB@

0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 1

�↵p �↵p�1 · · · · · · �↵1

1

CCCCCCA
ep =

0

BBBBB@

0
0
...
0
1

1

CCCCCA
b =

0

BBBBB@

b0
b1
...

bp�2

bp�1

1

CCCCCA
Xt =

0

BBBBBB@

Xt

X(1)
t
...

X(p�2)
t

X(p�1)
t

1

CCCCCCA

Proof A
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Let                                                         , the pure jump Lévy 
process with             a Poisson random measure with Lévy 
measure l that satisfies  

If all eigenvalues of coefficient matrix A have negative real parts, 
then               is given by 

The future price is given by 

Lt =

Z t

0

Z 1

0
zNL(ds, dz), t 2 [0, T ]

NL
Z 1

0
zl(dz) < 1

(Xt)t2R

Xt =

Z t

�1
exp{A(t� s)}epdLs

Yt = b>Xt =

Z t

�1
b> exp{A(t� s)}epdLs

Ft(T ) = ⇤T +

 Z t

�1
b> exp{A(T � s)}dLs + EQ✓

[L1]

Z T

t
b> exp{A(T � s)}✓(s)ds

�
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Logit-normal adjustment

For the logit-normal transformation define CAR(p) model for wind power 

Pinsen (2012) 

eUt = �(U)
def
= log

✓
Ut

1� Ut

◆
= ⇤t + Yt, Ut 2 (0, 1),

Ut = ��1(eUt)
def
= {1 + exp(�eUt)}�1 = [1 + exp{�(⇤t + Yt)}]�1,
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Risk Premium
Let the risk premium (RP) be:  

Constant MPR estimated by OLS: 

Smooth MPR estimated by smoothing-splines: 

where                       future contracts with measurement periods

RP i
⌧ i
1,⌧

i
2

�
=

Z ⌧ i
2

⌧ i
1

✓u�ue
>
1 A

�1[exp{A(⌧ i2 � u)}� Ip]epdu,

✓̂it = argmin
✓i
t

✓
FNAREX(t,⌧ i

1,⌧
i
2)
� bFNAREX(t,⌧ i

1,⌧
i
2)

◆2

,

arg min
{f,⇣}2R

nX

t=1

n
b✓t � f(ut)

o2
+ ⇣

Z
dt

⇢
@2f(ut)

@t2

�2

i = 1, . . . , I

[⌧ i1, ⌧
i
2], t  ⌧ i1 < ⌧ i2
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Seasonality and seasonal variance

Left: Time series of logit-transformed daily average WP utilisation with 
different seasonality estimates. Right: Seasonal variance.



42Econometric methods and normality

Pricing green financial products

Truncated Fourier Series

⇤t = a+ b · t+
LX

l=1

cl cos

⇢
2⇡(t� dl)

l · 365

�
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Periodic B-splines

⇤t = argmin
↵j

365X

t=1

⇢
Ūt �

JX

j=1

↵j j(st)

�2

,

where            is a vector of known basis functions,      are 
coefficients, J  is the number of knots. Ziel et al. (2017)

 j(st) ↵j
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Local Linear Smoothing

with h selected via cross validation or rule of thumb

argmin
e,f

365X

t=1

�
Ūt � es � fs(t� s)

 2
K

✓
t� s

h

◆
,
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Approximating      by IQR or IER

The quantile and expectile loss functions by Breckling and 
Chambers (1988) are defined as 

with quantile loss for               and expectile loss for  
A    -level moment is given by the expectile  

Then the normalised inter expectile range (IER) is defined 

�t

⇢⌧,↵ (u) = |⌧ � I {u < 0}| |u|↵ ,

↵ = 1, ↵ = 2,
⌧

e(⌧ |t) def
= argmin

✓
E[⇢⌧ (Y � ✓) |t]

�IER(t)
def
=

e(↵ = 0.75|t)� e(↵ = 0.25|t)
2e�1(↵ = 0.75|�)
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Inter Quartile and Expectile Ranges

A robust approximation of volatility is given by the normalised Inter 
Quartile Range (IQR) 

and make use of this relationship between the variance and the 
standard normal cdf  

Bowman and Azzalini (1997)

�IQR(t)
def
=

q(↵ = 0.75|t)� q(↵ = 0.25|t)
2��1(↵ = 0.75)

�
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             with smoothing splines

Minimise Anderson-Darling-test 

conditional on smooth seasonal IER  

with  

b�t

arg min
m,⇣,

�T �
TX

t=1

(2t� 1)

T


logF (Yt)

+ log

⇢
1� F (YT+1�t)

��
+

����
1

 ·
p
T

�
e>e

� 1
2 � 1

����,

1

365

365X

t=1

{�t,k �m(t)}2 + ⇣

Z
dt

⇢
@2m(t)

@t2

�2

,

k = {IQR, IER}
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ADT JBT SWT CvM KST
LL.RoT 0.052 0.152 0.118 0.055 0.095
LL.RoT-IER 0.064 0.501 0.199 0.084 0.113
LL.RoTos-IER 0.075 0.590 0.209 0.096 0.163
BS-IER 0.075 0.590 0.209 0.096 0.163
LL.CV-IER 0.073 0.569 0.361 0.085 0.083
LL.CV-IER.CV 0.138 0.051
TFS-IER 0.103 0.756 0.201 0.120 0.307
BS-IQR 0.166 0.208 0.064 0.210 0.307
LL.CV-IQR 0.098 0.179 0.346
LL.CV-IQR.CV 0.193 0.085
TFS-IQR 0.152 0.167 0.240

p-values of five different normality tests for deseasonalised data after 
processing seasonal variance. p-values below 0.05 are omitted.
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Proof CAR(3)    AR(3)⇡



51Appendix

Pricing green financial products

LévyGauss
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Seasonal variance: LLE - mirroring observations
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Risk-neutral probabilities - Brownian motion

The measure change is given by the Girsanov transform 

where                    are Brownian motions 

          is the compensation for bearing the risk associated with non-
extreme market variations, e.g. diffusion component

dB✓
i (t) = �✓B,i(t)dt+ dBi(t),

{Bi(t)}mi=1

✓B,i
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Suppose the Novikov condition (square-integrability) holds 

then         is a Brownian motion under the the probability       with 
density of the Radon-Nikodym derivative 

         

E

"
exp

(
1

2

Z T

0
✓2(t)dt

)#
< 1

B✓ Q✓
B

dQ✓
B

dP

����
Ft

= exp

⇢
�
Z t

0
✓(s)dBs �

1

2

Z t

0
✓2(s)ds

�
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The Girsanov measure change gives the dynamics of Y(t) 

Ys = b> exp{A(s� t)}X+

Z s

t
b> exp{A(s� u)}ep�u✓udu

+

Z s

t
b> exp{A(s� u)}ep�udB

✓
u
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The measure change is achieved by the Girsanov transform, 
assuming           is a Borel measurable function, then the density of 
the Radon-Nikodym derivative is given by 

         is real-valued function, integrable wrt the L\'evy process. 

Applying Bayes theorem along density process of $Q_\theta$ we 
have 
        

Q✓
B

Risk-neutral probabilities - Lévy process

✓(t)

dQ✓
L

dP

����
Ft

= exp

Z t

0
�✓(s)dLs �

Z t

0
 L

⇢
✓2(s)

�
ds

�

✓(t)

log EQs

⇥
exp{iz>L(t)}

��Fs

⇤
= { (z � i✓)�  (�i✓)}(t� s)


