The Econometrics of CRIX

Shi Chen
Wolfgang Karl Härdle
Cathy Chen
TM Lee
Bobby Ong

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E.-Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
Currencies - Cigarettes, USD, Cryptos

- Anything can be a currency
- Anyone can offer a currency

Figure 1: Cigarette trading in postwar Germany ([1])

Figure 2: Friedrich A. Hayek ([2])

Econometric Analysis
Digital Economy

- Amazon
- Paypal
- Google Wallet
- Cryptocurrencies
- Ripple
Cryptocurrencies

- Decentralized, virtual, low transaction costs

- NYSE, Andreesen Horowitz, DFJ: Coinbase funding (75 M$)
- Nasdaq: company-wide utilization of blockchain technology
- Citigroup: own coin development
- PBOC: working on digital currency
- Switzerland Zug: first city accepts Bitcoin payments
Pokémon Go and Cryptocurrency

- Each creature could have an asset based crypto-tokens that could be traded in blockchain.
- Pokémon and BTC: PokéBits

Source: steemit, Bitcoin.com
Market Capitalization

CoinMarketCap
Econometric Analysis
CRypto IndeX - CRIX

- high market capitalization
- covers approximately 30 cryptos
 - different liquidity rules
 - model selection criteria
- CRIX family
 - CRIX
 - ECRIX (Exact CRIX)
 - EFCRIX (Exact Full CRIX)

Motivation

CRrypto IndeX - CRIX

- 290 cryptos
- Prices, capitalization, volume
- As of 20160815, overview of CRIX: hu.berlin/crix
 - Users: 1911
 - Page views: 3920
 - average time: 00:01:17

Econometric Analysis
Challenge

1. What’s the dynamics of CRIX?
2. How stable is the CRIX model over time?
The Econometrics of CRIX
Outline

1. Motivation ✓
2. Data
3. ARIMA Model
4. Stochastic Volatility Model
5. Multivariate GARCH Model
6. Nutshell

All QuantLets from www.quantlet.de
Three Indices

Figure 3: The daily value of indices in the CRIX family from 01/08/2014 to 06/04/2016: CRIX, ECRIX and EFCRIX.
Data Description

Figure 4: The log returns of CRIX index from 01/08/2014 to 06/04/2016.
Figure 5: Histogram and QQ plot of CRIX returns from 01/08/2014 to 06/04/2016.

Econometric Analysis
First Approach

The ARIMA(p, d, q) with $d = 1$ is,

$$\Delta y_t = a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + \ldots + a_p \Delta y_{t-p}$$
$$+ \varepsilon_t + b_1 \varepsilon_{t-1} + b_2 \varepsilon_{t-2} + \ldots + b_q \varepsilon_{t-q}$$

or

$$a(L) \Delta y_t = b_L \varepsilon_t$$

- $\Delta y_t = y_t - y_{t-1}$, can be replaced by $\Delta^d y_t$ if necessary.
- L is the lag operator, $\varepsilon_t \sim N(0, \sigma^2)$
Box-Jenkins Procedure

1. Identification of lag orders
2. Parameter estimation
3. Diagnostic checking
Step 1: Lag Orders

p-value for stationarity tests: ADF test (null hypothesis: unit root) of 0.01; KPSS test (null hypothesis: stationary) of 0.1.

Figure 6: The sample ACF and PACF of CRIX returns from 01/08/2014 to 06/04/2016.
Step 1: Lag Orders - ctd

<table>
<thead>
<tr>
<th>ARIMA model selected</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA(2,0,0)</td>
<td>-2469</td>
<td>-2451</td>
</tr>
<tr>
<td>ARIMA(2,0,2)</td>
<td>-2474</td>
<td>-2448</td>
</tr>
<tr>
<td>ARIMA(2,0,3)</td>
<td>-2473</td>
<td>-2442</td>
</tr>
<tr>
<td>ARIMA(4,0,2)</td>
<td>-2476</td>
<td>-2441</td>
</tr>
<tr>
<td>ARIMA(2,1,1)</td>
<td>-2459</td>
<td>-2441</td>
</tr>
<tr>
<td>ARIMA(2,1,3)</td>
<td>-2464</td>
<td>-2438</td>
</tr>
</tbody>
</table>

Table 1: The ARIMA model selection with AIC and BIC.
Step 2: Parameter Estimation

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimate</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept c</td>
<td>-0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.70</td>
<td>0.11</td>
</tr>
<tr>
<td>a_2</td>
<td>-0.75</td>
<td>0.12</td>
</tr>
<tr>
<td>b_1</td>
<td>0.70</td>
<td>0.14</td>
</tr>
<tr>
<td>b_2</td>
<td>0.64</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Log likelihood 1243.12

Table 2: Estimation result of ARIMA(2,0,2) model. econ_arima
Step 3: Diagnostic Checking

- Diagnostic plot of ARIMA(2,0,2) model
- Significant \(p \)-values of Ljung-Box test statistic
- Model residuals are independent
ARIMA Model Forecast

With ARIMA(2,0,2) model, we predict CRIX returns for next 30 days.

Figure 7: CRIX returns and predicted values. The confidence bands are red dashed lines.
Discussion

- We build an ARIMA(2,0,2) model for the CRIX return series to model intertemporal dependence.
- ACF of model residuals has no significant lags as evidenced in Step 3: Diagnostic Checking.
- Further work: Homoskedasticity or Heteroskedasticity.
Volatility Clustering

Figure 8: The squared ARIMA(2,0,2) residuals of CRIX returns.

Econometric Analysis
ARCH Model

ARCH\((q) \) model,

\[
\begin{align*}
\varepsilon_t &= Z_t \sigma_t \\
Z_t &\sim \mathcal{N}(0, 1) \\
\sigma_t^2 &= \omega + \alpha_1 \varepsilon_{t-1}^2 + \ldots + \alpha_p \varepsilon_{t-p}^2
\end{align*}
\]

\(\varepsilon_t \) is the ARIMA model residual
\(\sigma_t^2 \) is the variance of \(\varepsilon_t \) conditional on the information available at time \(t \).
Heteroskedasticity effect

- Two approaches:
 - ARCH LM test (null hypothesis: no ARCH effects) of ε_t
 - Ljung-Box test for ε_t^2
- Both p-values smaller than $2.2e-16$.
- Next step: determine lag order q of ARCH model
Lag order q

Figure 9: The ACF and PACF of squared ARIMA(2,0,2) residuals from 01/08/2014 to 06/04/2016.
Lag Order \(q \) - ctd

<table>
<thead>
<tr>
<th>Model</th>
<th>Log Likelihood</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH(1)</td>
<td>1281.7</td>
<td>-2567.4</td>
<td>-2558.6</td>
</tr>
<tr>
<td>ARCH(2)</td>
<td>1283.4</td>
<td>-2560.8</td>
<td>-2547.6</td>
</tr>
<tr>
<td>ARCH(3)</td>
<td>1291.6</td>
<td>-2575.2</td>
<td>-2557.5</td>
</tr>
<tr>
<td>ARCH(4)</td>
<td>1288.8</td>
<td>-2567.5</td>
<td>-2545.4</td>
</tr>
</tbody>
</table>

Table 3: The ARCH model selection with AIC and BIC.
ARCH Estimation

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimates</th>
<th>Standard deviation</th>
<th>Ljung-Box test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.001</td>
<td>0.000</td>
<td>16.798*</td>
</tr>
<tr>
<td>α_1</td>
<td>0.195</td>
<td>0.042</td>
<td>4.589*</td>
</tr>
<tr>
<td>α_2</td>
<td>0.054</td>
<td>0.037</td>
<td>1.469</td>
</tr>
<tr>
<td>α_3</td>
<td>0.238</td>
<td>0.029</td>
<td>8.088*</td>
</tr>
</tbody>
</table>

Table 4: Estimation result of ARIMA(2,0,2)-ARCH(3) model, with significant level is 0.1%.
GARCH Model

The standard GARCH\((p, q)\) model is,

\[
\varepsilon_t = Z_t \sigma_t \\
Z_t \sim N(0, 1)
\]

\[
\sigma_t^2 = \omega + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^2 + \sum_{j=1}^{q} \alpha_j \varepsilon_{t-j}^2
\]

with the condition that

\[
\omega > 0; \quad \alpha_i \geq 0, \beta_i \geq 0; \quad \sum_{i=1}^{p} \beta_i + \sum_{j=1}^{q} \alpha_j < 1
\]

This ensures that the GARCH model is strictly stationary with finite variance.

Continuous-time GARCH model

Econometric Analysis
Lag Orders p, q

- Normally up to GARCH(2, 2) model is used in practice.
- In particular, the orders of $p = q = 1$ is sufficient in most cases.

<table>
<thead>
<tr>
<th>GARCH models</th>
<th>Log likelihood</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH(1,1)</td>
<td>1305.355</td>
<td>-4.239</td>
<td>-4.210</td>
</tr>
<tr>
<td>GARCH(1,2)</td>
<td>1309.363</td>
<td>-4.249</td>
<td>-4.213</td>
</tr>
<tr>
<td>GARCH(2,1)</td>
<td>1305.142</td>
<td>-4.235</td>
<td>-4.199</td>
</tr>
<tr>
<td>GARCH(2,2)</td>
<td>1309.363</td>
<td>-4.245</td>
<td>-4.202</td>
</tr>
</tbody>
</table>

Table 5: Comparison of GARCH model, orders up to $p = q = 2$.

Econometric Analysis
GARCH Estimation

GARCH(1,2) model,

\[
\begin{align*}
\varepsilon_t &= Z_t \sigma_t, \quad Z_t \sim N(0, 1) \\
\sigma_t^2 &= \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2
\end{align*}
\]

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimates</th>
<th>Standard deviation</th>
<th>Ljung-Box test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>9.91e-05</td>
<td>4.75e-05</td>
<td>2.08*</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>1.65e-01</td>
<td>3.72e-02</td>
<td>4.45***</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>8.07e-02</td>
<td>8.24e-02</td>
<td>0.98</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>6.51e-01</td>
<td>8.20e-02</td>
<td>7.94***</td>
</tr>
</tbody>
</table>

Table 6: Estimation result of ARIMA(2,0,2)-GARCH(1,2) model. * represents significant level of 5% and *** of 0.1%.
GARCH Estimation II

- GARCH(1,1) model is sufficient in most cases,

\[\varepsilon_t = Z_t \sigma_t, \quad Z_t \sim N(0, 1) \]
\[\sigma_t^2 = \omega + \beta_1 \sigma_{t-1}^2 + \alpha_1 \varepsilon_{t-1}^2 \]

- All parameters are significant:

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimates</th>
<th>Standard deviation</th>
<th>Ljung-Box test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>5.32e-05</td>
<td>2.25e-05</td>
<td>2.37*</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>1.20e-01</td>
<td>2.79e-02</td>
<td>4.32***</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>8.32e-02</td>
<td>3.99e-02</td>
<td>20.85***</td>
</tr>
</tbody>
</table>

Table 7: Estimation result of ARIMA(2,0,2)-GARCH(1,1) model. * represents significant level of 5% and *** of 0.1%.

Econometric Analysis
GARCH Estimation II - ctd

With no significant correlations for any lag, GARCH(1,1) is sufficient enough to explain the heteroskedasticity effect.

Figure 10: The ACF and PACF of squared ARIMA(2,0,2) residuals from 01/08/2014 to 06/04/2016.
GARCH Model Residual

- Kolmogorov-Smirnov test of ARIMA-GARCH model residuals.
- The small p-value rejects the null hypothesis that the residuals are drawn from the normal distribution.
- Sample data exhibits leptokurtosis.

<table>
<thead>
<tr>
<th>Model</th>
<th>Kolmogorov distance</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA-GARCH</td>
<td>0.50</td>
<td>2.86e − 10</td>
</tr>
</tbody>
</table>

Table 8: Test of model residuals of ARIMA(2,0,2)-GARCH(1,1) process.
GARCH Model Residual - ctd

Figure 11: The QQ plots of model residuals of ARIMA-GARCH process.

Econometric Analysis
t-GARCH Estimation

- Impose $Z_t \sim t(d)$ to replace the normal assumption of Z_t
- ξ controls the height and fat-tail of density function, therefore different shape of distribution function.

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimates</th>
<th>Standard deviation</th>
<th>T test</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>8.39e − 05</td>
<td>5.45e − 05</td>
<td>1.54</td>
</tr>
<tr>
<td>α_1</td>
<td>2.82e − 01</td>
<td>1.46e − 01</td>
<td>1.93∗</td>
</tr>
<tr>
<td>β_1</td>
<td>7.90e − 01</td>
<td>6.12e − 02</td>
<td>12.91***</td>
</tr>
<tr>
<td>ξ</td>
<td>2.58e + 00</td>
<td>3.62e − 01</td>
<td>7.11***</td>
</tr>
</tbody>
</table>

Table 9: Estimation result of ARIMA(2,0,2)-t-GARCH(1,1) model. ∗ represents significant level of 10% and ∗∗∗ of 0.1%.

Econometric Analysis
t-GARCH Model Estimation - ctd

![ACF and PACF plots](image)

Figure 12: The ACF and PACF plots for model residuals of ARIMA(2,0,2)-t-GARCH(1,1) process.

Econometric Analysis
t-GARCH Model Residual

Figure 13: The QQ plots of model residuals of ARIMA-t-GARCH process.

Econometric Analysis
EGARCH Model

- The introduced GARCH model successfully solve the problem of volatility clustering, but cannot capture the leverage effect.
- The exponential GARCH (EGARCH) model with standard innovations,

\[\varepsilon_t = Z_t \sigma_t \]

\[Z_t \sim N(0, 1) \]

\[\log(\sigma_t^2) = \omega + \sum_{i=1}^{p} \beta_i \log(\sigma_{t-i}^2) + \sum_{j=1}^{q} g_j(Z_{t-j}) \]

with the condition that

\[g_j(Z_t) = \alpha_j Z_t + \phi_j(|Z_{t-j}| - E|Z_{t-j}|), \quad j = 1, 2, \ldots, q \]
t-EGARCH Estimation

- Fit a $\text{EGARCH}(1,1)$ model with student t distributed innovation term.
- The estimation results of the $\text{ARIMA}(2,0,2)-t-\text{EGARCH}(1,1)$ model is,

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Estimates</th>
<th>Standard deviation</th>
<th>Ljung-Box test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>9.91e−05</td>
<td>4.75e−05</td>
<td>2.08*</td>
</tr>
<tr>
<td>α_1</td>
<td>1.65e−01</td>
<td>3.72e−02</td>
<td>4.45*</td>
</tr>
<tr>
<td>β_1</td>
<td>8.07e−02</td>
<td>8.24e−02</td>
<td>0.98</td>
</tr>
<tr>
<td>ϕ_1</td>
<td>6.51e−01</td>
<td>8.20e−02</td>
<td>7.94*</td>
</tr>
</tbody>
</table>

Table 10: Estimation result of $\text{ARIMA}(2,0,2)-t-\text{EGARCH}(1,1)$ model. * represents significant level of 5% and ** of 0.1%.

Econometric Analysis
t-EGARCH Model Residual

Figure 14: The QQ plots of model residuals of ARIMA-t-EGARCH process.

Econometric Analysis
GARCH Model Selection

<table>
<thead>
<tr>
<th>GARCH models</th>
<th>Log likelihood</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH(1,1)</td>
<td>1305.355</td>
<td>-4.239</td>
<td>-4.210</td>
</tr>
<tr>
<td>t-GARCH(1,1)</td>
<td>1309.363</td>
<td>-4.249</td>
<td>-4.213</td>
</tr>
<tr>
<td>t-EGARCH(1,1)</td>
<td>1305.142</td>
<td>-4.235</td>
<td>-4.199</td>
</tr>
</tbody>
</table>

Table 11: Comparison of the variants of GARCH model.
MGARCH Model

Consider the error term ε_t with $E(\varepsilon_t) = 0$, and conditional covariance matrix H_t is $(d \times d)$ positive definite,

$$\varepsilon_t = H_t^{\frac{1}{2}} \eta_t$$

$H_t^{\frac{1}{2}}$ can be obtained by Cholesky factorization of H_t.

η_t is an iid innovation vector such that,

$$E(\eta_t) = 0$$
$$\text{Var}(\eta_t) = E(\eta_t \eta_t^\top) = \mathcal{I}_d$$

with \mathcal{I}_d is the identity matrix with order of d.
DCC-GARCH Model

- Different specification of H_t yields various parametric formulations: VEC, BEKK, CCC, DCC etc.
- Dynamic Conditional Correlation (DCC) model: conditional correlation ρ_{ij} between the i-th and j-th component is the ij-th element of the matrix P_t

$$
H_t = D_t P_t D_t
$$

$$
P_t = (I \odot Q_t)^{-\frac{1}{2}} Q_t (I \odot Q_t)^{-\frac{1}{2}}
$$

with

$$
Q_t = (1 - a - b)S + a \varepsilon_{t-1} \varepsilon_{t-1}^T + b Q_{t-1}
$$

- The diagonal matrix D_t is the conditional variance matrix.
- S is unconditional matrix of ε_t
DCC-GARCH Model Estimation

Figure 15: The standard error of DCC-GARCH model, with CRIX (upper), ECRIX (middle) and EFCRIX (lower).
DCC-GARCH Model Estimation - ctd

- All the estimated parameters are statistically significant except for the constant terms,

\[
\sigma_{CRIX,t}^2 = 0.123 \varepsilon_{CRIX,t-1}^2 + 0.832 \sigma_{CRIX,t-1}^2
\]

\[
\sigma_{ECRIX,t}^2 = 0.123 \varepsilon_{ECRIX,t-1}^2 + 0.832 \sigma_{ECRIX,t-1}^2
\]

\[
\sigma_{EFCRIX,t}^2 = 0.124 \varepsilon_{EFCRIX,t-1}^2 + 0.831 \sigma_{EFCRIX,t-1}^2
\]

\[
Q_t = (1 - 0.268 - 0.571)S + 0.268 \varepsilon_{t-1}^T \varepsilon_{t-1} + 0.571 Q_{t-1}
\]

- The unconditional covariance matrix \(S \),

\[
S = \begin{pmatrix}
0.994 & 0.994 & 0.994 \\
0.994 & 0.994 & 0.993 \\
0.994 & 0.993 & 0.994
\end{pmatrix}
\]
Figure 16: The estimated volatility (black) and realized volatility (grey) using DCC-GARCH model, for example CRIX.
Figure 17: The dynamic autocorrelation between three CRIX indices: CRIX, ECRIX and EFCRIX estimated by DCC-GARCH model.
Figure 18: The dynamic autocorrelation between three CRIX indices: CRIX, ECRIX and EFCRIX estimated by DCC-GARCH model.
DCC-GARCH Model Diagnostics

Figure 19: The comparison of ACF between premodel squared residuals and DCC squared residuals, for example CRIX.
DCC-GARCH Model Diagnostics - ctd

Figure 20: The comparison of PACF between premodel squared residuals and DCC squared residuals, for example CRIX.
GARCH Option Pricing Model

- Option pricing models
 - Black-Scholes model
 - GARCH models: superior in describing asset return dynamics.

- For instance Heston and Nandi (2000), HN model in brief.
 - a closed form expression for European option prices
 - GARCH models with Gaussian innovations
HN model

- In the HN model, the asset return dynamic under the risk neutral measure \mathbb{Q} is,

$$\log\left(\frac{S_t}{S_{t-1}}\right) = r - \frac{\sigma_t^2}{2} + \sigma_t Z_t$$

$$\sigma_t^2 = \omega_{hn} + \beta_{hn}\sigma_{t-1}^2 + \alpha_{hn}(Z_{t-1} - \gamma_{hn}\sigma_{t-1})^2$$

- r is risk-free interest rate
- Z_t is a standard Gaussian innovation
- Risk neutral GARCH parameter: $\theta_{hn} = \{\omega_{hn}, \beta_{hn}, \alpha_{hn}, \gamma_{hn}\}$
- S_t is the return to estimate.
HN model - ctd

☐ The call option C_t at time t, with strike price K and time to maturity τ is worth,

$$
C_t = \exp(-r\tau)f_{hn}(1) \left[\frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \mathcal{R} \left\{ \frac{K^{-i\phi}f_{hn}(i\phi + 1)}{i\phi f_{hn}(1)} \right\} d\phi \right]
$$

$$
- \exp(-r\tau)K \left[\frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \mathcal{R} \left\{ \frac{K^{-i\phi}f_{hn}(i\phi)}{i\phi} \right\} d\phi \right]
$$

\(\mathcal{R}\{\}\) denotes the real part of a complex number

\(f_{hn}(\phi)\) is the conditional moment generating function at time t

$$
f_{hn}(\phi) = E_Q \left[\exp \left\{ \phi \log(S_t) \right\} \middle| \mathcal{F}_t \right] = S_t^\phi \exp(A_t + B_t\sigma_{t+1}^2)
$$
HN model - ctd

- The coefficients A_t and B_t are computed backward starting from the terminal condition $A_T = B_T = 0$.
- The HN model recursive equations are,

$$A_t = A_{t+1} + \phi r + B_{t+1} \omega_{hn} - \frac{1}{2} \log(1 - 2\alpha_{hn} B_{t+1})$$

$$B_t = \phi \left(\gamma_{hn} - \frac{1}{2} \right) - \frac{\gamma_{hn}^2}{2} + \beta_{hn} B_{t+1} + \frac{1/2(\phi - \gamma_{hn})^2}{1 - 2\alpha_{hn} B_{t+1}}$$
Nutshell

- ARIMA model is implemented for removing the intertemporal dependence.
- Volatility models such as ARCH, GARCH and EGARCH are applied to eliminate the effect of heteroskedasticity.
- The t-GARCH(1,1) is introduced to deal with the fat-tail properties of GARCH residuals.
- DCC-GARCH(1,1) exhibits time varying covariances between three CRIX indices.
- Outlook: GARCH option pricing model, eg. HN GARCH model.
The Econometrics of CRIX

Shi Chen
Wolfgang Karl Härdle
Cathy Chen
TM Lee
Bobby Ong

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E.-Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
References

Cigarette trading in postwar Germany, Bundesarchiv, Bild 183-R79014 / CC-BY-SA.

The original uploader was DickClarkMises English Wikipedia / CC BY-SA 3.0.

References

Hamilton, J. D.
Time series analysis.

Lütkepohl, H.
New introduction to multiple time series analysis

Rachev, S. T., Mittnik, S., Fabozzi, F. J., Focardi, S. M., and JaÅšić, T.
Financial econometrics: from basics to advanced modeling techniques
COGARCH Model

- Irregularly spaced data: continuous-time GARCH model.
- The GARCH(1, 1) model diffusion limit satisfies,

\[
\begin{align*}
 dG_t &= \sigma_t dW_t^{(1)} \\
 d\sigma_t^2 &= \theta(\gamma - \sigma_t^2) + \rho\sigma_t^2 dW_t^{(2)}
\end{align*}
\]

- \(G_t \) is the log return \(r_t \) to estimate.
- \(\left\{ W_t^{(1)} \right\}_{t \geq 0} \) and \(\left\{ W_t^{(2)} \right\}_{t \geq 0} \) are two independent Brownian motions.
- \(\theta, \gamma \) and \(\rho \) are parameters.