### Realized Cryptocurrency Volatility Forecasting

Junjie Hu\* WeiYu Kuo° Wolfgang Karl Härdle\*

\*Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin °Department of International Business National Chengchi University ©RCVJ\_Forecasting



#### Crytocurrency Market

- □ Unregulated and unlikely to be regulated
- □ Free market or chaotic market?
- □ An extremly volatile market for sure. Unpredictable volatility?



Figure 1: Chaos and Randomness



#### **Distribution of Logarithmic Returns**



### Annualized Realized Variance of Major Indices

|       | AEX  | DJI  | FTSE | HSI   | SPX  | SSEC | BTC-G |
|-------|------|------|------|-------|------|------|-------|
| count | 4842 | 4704 | 4769 | 4645  | 4709 | 4508 | 965   |
| mean  | 0.16 | 0.12 | 0.13 | 0.14  | 0.12 | 0.22 | 0.81  |
| std   | 0.38 | 0.29 | 0.32 | 0.40  | 0.32 | 0.46 | 1.68  |
| min   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00  |
| 25%   | 0.02 | 0.01 | 0.02 | 0.02  | 0.01 | 0.03 | 0.01  |
| 50%   | 0.05 | 0.04 | 0.05 | 0.05  | 0.04 | 0.08 | 0.29  |
| 75%   | 0.14 | 0.11 | 0.12 | 0.13  | 0.11 | 0.22 | 2.99  |
| max   | 7.03 | 5.55 | 7.74 | 16.45 | 7.18 | 7.70 | 18.59 |

Table 1: Realized variance comparison between market indices(Oxford-man Realized Library) and Bitcoin

- Much larger mean, standard deviation and higher extreme values
- Overnight bias correction of *RV* for market indices (Bollerslev et al (2018))
- □ Cause of high *RV*. Volatility? Jump?



### **Program Trading**



Figure 3: One day sample of 5-min freq BTC. Price and Log-return on top panel, Trading Volume on bottom panel

⊡ Same log-return, repeating more than 100 times during 2016

□ 24-hours trading capability, might cause more volatile

Algorithm trading crash (1987 Stock Market Crash)
Realized Cryptocurrency Volatility Forecasting



#### **Realized Voaltilty and Jumps**

- Volatility: A central role in finance, financial derivatives pricing (options, volatility swap), risk management
- ABDL(2001, 2003): "Realized Variance" (*RV*) from high-frequency data with good dynamics (lognormal, long-memory)
- □ Fleming et al.(2001, 2003): Economic value of realized volatilty timing
- Bollerslev et al.(2018): Similary risk (realized volatility) across different asset classes (commodities, currencies, equity, bonds)
- ⊡ Forecasting on *RV* with continous component and jump component (BNS (2004), Corsi et al(2010))



# Realized Volatility of Cryptocurrency

- $\boxdot$  Importance of RV on emerging market
- $\boxdot$  Rigorous research contribution to industries
- □ Limited researches on Realized Cryptocurrency Volatility



Figure 4: Daily Trading Volume of Bitcoin



#### **Research Questions**

- □ Investigation on realized cryptocurrency variance process
- □ Predictability of realized cryptocurrency volatility
- ☑ Analysis on realized jumps
- Economic value from a better *RV* forecast for investors?



### Outline

- 1. Motivation  $\checkmark$
- 2. Realized Variance
- 3. Jump Detection
- 4. HAR Forecasting Model
- 5. Realized Utility Evaluation
- 6. Summary



### **Continuous-Time Framework**

□ A general continous-time jump diffussion process:

 $dp(t) = \mu(t)dt + \sigma(t)dW(t) + \kappa(t)dq(t), 0 \le t \le T \quad (1)$ 

- p: Logarithmic price
- $\mu :$  Continous and locally bounded variation process
- $\sigma:$  Strictly positive stochastic volatility process with right continuous sample path
- W: Brownian motion
- $\kappa:$  Size of a jumps
- q: Counting measure for jumps



### **Realized Variance**

□ Logarithmic return at time  $t + j\Delta$  can be noted as  $r_{t+j\Delta}$ , where Δ is the sampling frequency

$$r_{t+j\Delta} \stackrel{\text{def}}{=} p\left(t+j\Delta\right) - p\left(t+(j-1)\Delta\right) \tag{2}$$

 $\square$  Daily Realized Variance  $RV_{t+1}$  for period [t:t+1]

$$RV_{t+1}(\Delta) \stackrel{\text{def}}{=} \sum_{j=1}^{1/\Delta} r_{t+j\Delta}^2$$
 (3)

 $\square \ RV \text{ converges to Quadratic Variation } QV \text{ as } \Delta \text{ goes to } 0 \\ RV_{t+1}(\Delta) \xrightarrow{p} QV_{t+1}$  (4)



### **Realized Variance**

 $\boxdot$  Variance of p(t) measured by QV

$$QV_{t+1} = \int_{t}^{t+1} \sigma^{2}(s) ds + \sum_{t < s \le t+1} \kappa^{2}(s)$$
 (5)

⊡ Hence, *RV* has

$$RV_{t+1}(\Delta) \xrightarrow{p} \underbrace{\int_{t}^{t+1} \sigma^2(s) ds}_{IV_{t+1}} + \underbrace{\sum_{t < s \le t+1} \kappa^2(s)}_{J_{t+1}}$$
(6)

⊡ Two dynamic components: Intergated Variance (hereafter  $IV_{t+1}$ ) and jump component (hereafter  $J_{t+1}$ )



# Realized Bipower Variation (BNS(2004)) ■ Realized BiPower Variance (hereafter BPV<sub>t+1</sub>) for period [t, t + 1]

$$BPV_{t+1}(\Delta) \stackrel{\text{def}}{=} \frac{\pi}{2} \sum_{j=2}^{h/\Delta} |r_{t+j\Delta}| |r_{t+(j-1)\Delta}| \tag{7}$$

$$BPV \text{ converges to } IV \text{ as } \Delta \text{ goes to } 0 \\ BPV_{t+1}(\Delta) \to \int_{t}^{t+1} \sigma^{2}(s) ds$$
 (8)

 $\boxdot$  Finally,  $J_{t+1}$  for period [t, t+1] estimated

$$RV_{t+1}(\Delta) - BPV_{t+1}(\Delta) \xrightarrow{p} \sum_{t < s \le t+1} \kappa^2(s)$$
 (9)

$$J_{t+1} \stackrel{\text{def}}{=} max \left\{ RV_{t+1}(\Delta) - BPV_{t+1}(\Delta), 0 \right\}$$

Realized Cryptocurrency Volatility Forecasting -



### Data Source

#### 🖸 DYOS &

A free data source: https://www.cryptodatadownload.com/

 5-min freq from 3 different exchanges, 913 trading days (01.01.2016-01.07.2018)&
 1-min freq from 1 exchange, 966 trading days (01.01.2016-23.08.2018)

Realized Labrary, 31 indices realized variance and bipower variance



### RV and BPV for Market Indices: FTSE



Figure 5: The Financial Times Stock Exchange 100 Index, 2000-2018



### RV and BPV for Market Indices: SSEC



Figure 6: The Shanghai Stock Exchange 50 Index, 2000-2018

RealizTradingohournbja%conrectedebyssquared-over-night-prices-(Bollerslev(2018))

B

### ACF of log(RV): cryptocurrencies



Figure 7: ACF of log(*RV*) decay, BTC-G, BTC-D, ETH-G, ETH-D, XRP, LTC

Realized Cryptocurrency Volatility Forecasting



### ACF of log(RV): Global Indices V.S BTC-G



Figure 8: ACF of log(RV) decay: Comparison between 6 global market indices and BTC-G



#### **Realized Variance Separation**



Figure 9: 5-min freq Log-Return of Bitcoin, Realized Volatility, Bipower Volatility and Jump Process





Why BPV Is Biased To Large Jumps



### **Threshold Bipower Variation**

□ Threshold Bipower Variance, hereafter  $TBPV_{t+1}$ , for period [t, t+1] (Mancini(2009))

$$TBPV_{t+1}(\Delta) = \mu_1^{-2} \sum_{j=2}^{1/\Delta} |r_{t+j\Delta}| |r_{t+(j-1)\Delta}|$$
  
$$\cdot I \{ |r_{t+j\Delta}|^2 \le \theta_{t+j\Delta} \}$$
  
$$\cdot I \{ |r_{t+(j-1)\Delta}|^2 \le \theta_{t+(j-1)\Delta} \}$$

: Where  $heta_{t+j\Delta} = \mathcal{C}_{ heta}^2 \cdot \widehat{\mathcal{V}}_{t+j\Delta}$ , and  $\mu_1 = \sqrt{2/\pi}$ 

BPV: Biased by big jumps, TBPV: Problematic with small jumps



### **Corrected Threshold Bipower Variation**

□ A modified TBPV(Corsi et al. (2010))

$$TBPV_{t+1}(\Delta) = \mu_1^{-2} \sum_{j=2}^{1/\Delta} Z_1(r_{t+j\Delta}, \theta_{t+j\Delta}) \cdot Z_1(r_{t+(j-1)\Delta}, \theta_{t+(j-1)\Delta})$$
(10)

 $\boxdot$  Where  $\Phi$  and  $\Gamma$ 

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{s^2}{2}} ds, \Gamma(\alpha, x) = \int_{x}^{+\infty} s^{\alpha-1} e^{-s} ds \quad (12)$$

Realized Cryptocurrency Volatility Forecasting -

# Local Variance Estimation $\widehat{V}_t$

 $\boxdot$  a non-parametric filter of length 2L + 1 (Fan and Yao, 2003)

$$\widehat{V}_{t}^{Z} = \frac{\sum_{i=-L, i\neq-1, 0, 1}^{L} \mathcal{K}(\frac{i}{L}) \cdot r_{t+i}^{2} \cdot \mathbf{I}\{r_{t+i}^{2} \leq c_{\theta}^{2} \cdot \widehat{V}_{t+i}^{Z-1}\}}{\sum_{i=-L, i\neq-1, 0, 1}^{L} \mathcal{K}(\frac{i}{L}) \cdot \mathbf{I}\{r_{t+i}^{2} \leq c_{\theta}^{2} \cdot \widehat{V}_{t+i}^{Z-1}\}}, Z = 1, 2, 3...$$
(13)

- $\square$  K(x): Gaussian Kernel.  $C_{\theta}$ : immaterial coefficient, trade-off between effciency and bias
- $\odot$  Initial value  $\widehat{V}_t^0 = \inf$ ; Iteration until converged
- ⊡ Evaluation within each day, avoid using furture information



### Threshold Jump

⊡ Test statistics c-z for  $TJ_t$  (BNS(2004), Corsi et al.(2010))

$$c-z = \Delta^{-\frac{1}{2}} \frac{\{RV_t - TBPV_t\}RV_t^{-1}}{\sqrt{\left(\frac{\pi^2}{4} + \pi - 5\right)\max\{1, \frac{TTriPV_t}{TBPV_t^2}\}}}$$
(14)

 $Threshold continuous process, hereafter <math>TC_{t+1}$  for period  $[t, t+1] TC_{t+1} \stackrel{\text{def}}{=} RV_{t+1} - TJ_{t+1}$ (16)

Realized Cryptocurrency Volatility Forecasting



· 3-4



#### Volatility Separation





### **Threshold Volatility Separation**



Figure 12:  $TJ^{1/2}$  separation. Significant threshold-jumps separation using TBPV. Confidence level  $\alpha = 0.9999$  and  $c_{\theta} = 3$ 



### **Unconditional** RV Distribution





Figure 13: Histogram and Epanechinikov KDE of daily log(RV) (annualized) for 5-min freq BTC , bandwidth=1.8

 Close to log-normal distribution, similar to results from previous literatures

Realized Cryptocurrency Volatility Forecasting



|          | $RV^{1/2}$ | $\log(RV)$ | BPV   | TBPV  | Jump(lpha) | TJump(lpha) |
|----------|------------|------------|-------|-------|------------|-------------|
| count    | 965        | 965        | 965   | 965   | 678        | 749         |
| mean     | 0.68       | -1.44      | 0.67  | 0.60  | 0.16       | 0.28        |
| std      | 0.58       | 1.78       | 1.49  | 1.42  | 0.52       | 0.85        |
| min      | 0.01       | -9.77      | 0.00  | 0.00  | 0.00       | 0.00        |
| 5%       | 0.09       | -4.75      | 0.00  | 0.00  | 0.00       | 0.01        |
| 50%      | 0.54       | -1.24      | 0.19  | 0.15  | 0.07       | 0.11        |
| 95%      | 1.73       | 1.10       | 2.63  | 2.45  | 0.45       | 0.89        |
| max      | 4.31       | 2.92       | 17.96 | 20.77 | 10.90      | 14.89       |
| skewness | 2.15       | -0.54      | 5.39  | 6.54  | 14.83      | 11.72       |
| kurtosis | 7.03       | 0.45       | 38.85 | 62.78 | 275.28     | 173.30      |
| ac(1)    | 0.69       | 0.79       | 0.55  | 0.51  | 0.12       | 0.09        |
| ac(7)    | 0.42       | 0.64       | 0.21  | 0.21  | 0.07       | 0.05        |
| ac(30)   | 0.30       | 0.42       | 0.16  | 0.17  | 0.01       | -0.01       |
| ac(100)  | 0.15       | 0.21       | 0.07  | 0.08  | -0.01      | -0.01       |

#### **Summary Statistics**

Table 2: Summary statistics for volatility related measures (annualized) from 5-min freq BTC, ac(n): n-days autocorrelation. Confidence level  $\alpha = 0.9999$ 

- □ More jumps are detected using *TJump* measure
- $\odot$  Long-memory and log-normal of log(RV)

Realized Cryptocurrency Volatility Forecasting -



#### HAR Models

HAR-CJ

$$\widehat{RV}_{t,t+h} = \alpha + \widehat{CP}^{\top} \cdot \beta_C + \varepsilon_{t,t+h}$$
(17)

 $\widehat{RV}_{t,t+h} = \alpha + \widehat{CP}^{\top} \cdot \beta_{C} + \widehat{JP}^{\top} \cdot \beta_{J} + \varepsilon_{t,t+h}$ 

$$\begin{array}{ll} & \text{Where } RV_{t_1,t_2} \stackrel{\text{def}}{=} \frac{1}{t_2 - t_1 + 1} \sum_{t=t_1}^{t_2} RV_t \\ & \text{ } & \widehat{CP} = (\widehat{C}_t, \widehat{C}_{t-7,t}, \widehat{C}_{t-30,t})^\top, \ \widehat{JP} = (\widehat{J}_t, \widehat{J}_{t-7,t}, \widehat{J}_{t-30,t})^\top \\ & \text{ } & \widehat{C}_t = \left\{ C_t, \ TC_t, \ C_t^{Exp}, \ TC_t^{Exp} \right\}, \ \widehat{J}_t = \left\{ J_t, \ TJ_t \right\} \\ & \text{ } & \widehat{RV} = \left\{ RV, \ RV^{1/2}, \log(RV) \right\}. \ \text{Likewise for other variables.} \end{array}$$

Realized Cryptocurrency Volatility Forecasting -



(18)

### Performance Evaluation

 $\square$   $R^2$  of Mincer–Zarnowitz forecasting regressions

☑ Mean Squared Error (MSE)

$$MSE = \frac{1}{T} \sum_{t=1}^{T} \left( RV_t - \widetilde{RV}_t \right)^2$$
(19)

 Heteroskedasticity adjusted Root Mean Square Error (HRMSE) (Bollerslev and Ghysels(1996))

$$HRMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(\frac{RV_t - \widetilde{RV}_t}{RV_t}\right)^2}$$
(20)

□ QLIKE loss function (Patton(2011))

$$QLIKE = \frac{1}{T} \sum_{t=1}^{T} \left( \log RV_t + \frac{\widetilde{RV}_t}{RV_t} \right)$$
Realized Cryptocurrency Volatility Forecasting

(21)

|                | HAR     | HAR-CJ  | HAR-TCJ  | HAR-Exp-CJ     | HAR-E×p-TCJ |
|----------------|---------|---------|----------|----------------|-------------|
| α              | 0.122   | 0.266   | 0.221    | 0.237          | 0.203       |
|                | (1.341) | (3.040) | (2.083)  | (2.590)        | (1.899)     |
| βn             | 0.242   | 0.283   | 0.268    | 0.528          | 0.579       |
| . 5            | (3.329) | (3.125) | (2.528)  | (4.286)        | (3.634)     |
| $\beta_W$      | 0.104   | 0.079   | -0.097   | 0.759          | 1.229       |
|                | (1.127) | (0.675) | (-0.431) | (1.971)        | (1.999)     |
| $\beta_M$      | 0.533   | 0.604   | 1.023    | -0.302         | -0.614      |
|                | (2.054) | (1.822) | (1.983)  | (-1.153)       | (-1.352)    |
| $\beta$ ID     | . ,     | 0.002   | 0.184    | <b>-0.03</b> 8 | 0.167       |
| 55             |         | (0.010) | (1.282)  | (-0.232)       | (1.226)     |
| R <sup>2</sup> | 0.389   | 0.394   | 0.368    | 0.404          | 0.390       |
| MSE            | 1.597   | 1.644   | 1.739    | 1.623          | 1.671       |
| QLIKE          | 1.459   | 1.673   | 1.686    | 1.571          | 1.591       |
| HRMSE          | 1.288   | 1.502   | 1.468    | 1.474          | 1.459       |

Table 3: RV, (t-values)

- □ Standard errors correction: Bartlett/Newey-West
- ⊡ Positive (insignificant)  $\beta_{JD}$  parameter, contradictory to previous researches

Positive (significant) and persistent impact of C on RV
 Realized Cryptocurrency Volatility Forecasting



|                | HAR     | HAR-CJ  | HAR-TCJ | HAR-Exp-CJ | HAR-Exp-TCJ |
|----------------|---------|---------|---------|------------|-------------|
| α              | 0.063   | 0.187   | 0.170   | 0.167      | 0.148       |
|                | (2.036) | (4.714) | (4.007) | (3.722)    | (3.221)     |
| $\beta_D$      | 0.446   | 0.434   | 0.413   | 0.631      | 0.660       |
| -              | (8.262) | (7.784) | (5.980) | (7.846)    | (5.935)     |
| $\beta_W$      | 0.201   | 0.243   | 0.140   | 0.278      | 0.474       |
|                | (3.661) | (3.240) | (1.188) | (1.828)    | (2.177)     |
| $\beta_M$      | 0.199   | 0.174   | 0.306   | -0.057     | -0.274      |
|                | (2.517) | (1.917) | (2.280) | (-0.349)   | (-1.062)    |
| $\beta_{ID}$   | . ,     | 0.119   | 0.250   | 0.058      | 0.223       |
|                |         | (1.020) | (2.968) | (0.532)    | (2.680)     |
| R <sup>2</sup> | 0.436   | 0.438   | 0.455   | 0.420      | 0.441       |
| MSE            | 1.523   | 1.463   | 1.426   | 1.508      | 1.456       |
| HRMSE          | 0.773   | 0.841   | 0.846   | 0.804      | 0.835       |
| QLIKE          | 0.717   | 0.851   | 0.838   | 0.834      | 0.844       |

Table 4: Squared-root model,  $RV^{1/2}$ , (t-values)

- □ Non-linearity modeling, consistent and more significant results
- Error are based on squared-form, i.e RV
- TJ significant impact on day-ahead volatility, i.e No mean reversion effect

Realized Cryptocurrency Volatility Forecasting



|                | HAR      | HAR-CJ   | HAR-TCJ  | HAR-Exp-CJ | HAR-Exp-TCJ |
|----------------|----------|----------|----------|------------|-------------|
| α              | -0.316   | -0.122   | -0.132   | -0.477     | -0.114      |
|                | (-6.096) | (-1.320) | (-0.778) | (-2.904)   | (-0.722)    |
| $\beta_D$      | 0.517    | 0.294    | 0.178    | 0.648      | 0.390       |
| -              | (10.519) | (5.723)  | (3.756)  | (20.826)   | (4.607)     |
| $\beta_W$      | 0.312    | 0.384    | 0.381    | 0.448      | 0.046       |
|                | (4.186)  | (5.046)  | (4.567)  | (2.676)    | (0.396)     |
| $\beta_M$      | 0.113    | 0.051    | 0.044    | -0.169     | 0.188       |
|                | (1.992)  | (0.744)  | (0.597)  | (-1.962)   | (1.178)     |
| $\beta_{ID}$   |          | 0.586    | 0.941    | 0.225      | 0.647       |
|                |          | (1.924)  | (4.661)  | (0.862)    | (3.686)     |
| R <sup>2</sup> | 0.432    | 0.404    | 0.435    | 0.410      | 0.436       |
| MSE            | 1.662    | 1.783    | 1.694    | 1.540      | 1.701       |
| HRMSE          | 0.605    | 0.698    | 0.655    | 0.689      | 0.611       |
| QLIKE          | 0.496    | 0.653    | 0.576    | 0.699      | 0.551       |

Table 5: Logarithmic model, log (RV), (t-values)

- □ Positive elasticity w.r.t 1-day-lagged Jump
- ⊡ Threshold separated jumps more informative
- □ Best performance (HRMSE, QLIKE) of log-log model



### Realized Utility Framework

Investor: Mean-variance preference with constant sharp ratio on time-varying volatility asset(Bollerslev et al (2018))
 Expected utility function approximation with assuming W<sub>t+1</sub> ~ N(μ<sub>t</sub>, σ<sub>t</sub><sup>2</sup>), γ<sup>A</sup> = - u''/u' as Pratt-Arrow absolute risk aversion function

$$\mathsf{E}[u(W_{t+1})] = \mu_t - \frac{1}{2}\gamma^A \sigma_t^2 \tag{22}$$

 $\boxdot$  Investment:  $\omega_t$  on Cryptocurrencies and  $1-\omega_t$  on risk-free asset at time t

$$W_{t+1} = W_t (1 + r_f + \omega_t r_{t+1})$$
 (23)

Where  $r_{t+1}, r_f$  as excess return at time t+1 and risk free return

Realized Cryptocurrency Volatility Forecasting



### Volatility Timing Strategy

□ Under assumption of the known constant Sharp ratio 
$$SR = \frac{E(r_{t+1})}{\sqrt{E(RV_{t+1})}}$$
, rewriting expected utility  $EU(\omega_t)$  by replacing  $V(r_{t+1})$  with  $RV_{t+1}$ 

$$\mathsf{EU}(\omega_t) = W_t \left[ \omega_t \, \mathsf{E}(r_{t+1}) + \frac{\gamma}{2} \omega_t^2 \, \mathsf{V}(r_{t+1}) \right] \tag{24}$$

$$= W_t \left[ \omega_t \operatorname{\mathsf{E}}(r_{t+1}) + \frac{\gamma}{2} \omega_t^2 R V_{t+1} \right]$$
(25)

$$= W_t \left[ \omega_t SR \cdot \sqrt{RV_{t+1}} + \frac{\gamma}{2} \omega_t^2 RV_{t+1} \right]$$
(26)

Where  $\gamma = \gamma^{\mathcal{A}} W_t$  as relative risk aversion

 $\boxdot$  Optimal weight  $\omega_t^*$  targeting SR/ $\gamma$ : Volatility timing strategy

$$\omega_t^* = \frac{SR/\gamma}{\sqrt{RV_{t+1}}} \tag{27}$$

Realized Cryptocurrency Volatility Forecasting -



# Evaluating *RV* Forecasting

 $\boxdot$  Optimal expected utility function

$$\mathsf{EU}(\omega_t^*) = \frac{SR^2}{2\gamma} W_t \tag{28}$$

⊡ For estimated  $\widehat{RV}_{t+1}$  and corresponding optimal  $\hat{\omega}_t$ , the expected utility per wealth

$$\frac{\mathsf{EU}(\hat{\omega}_t)}{W_t} = \frac{SR^2}{\gamma} \left( \sqrt{\frac{RV_{t+1}}{\widehat{RV}_{t+1}}} - \frac{1}{2} \frac{RV_{t+1}}{\widehat{RV}_{t+1}} \right)$$
(29)

⊡ Realized utility (*RU*): Averaging the realized expression by out-of-sample forecast  $\widehat{RV}$ 

$$RU\left(\widehat{RV}_{t+1}\right) = \frac{SR^2}{\gamma} \frac{1}{T} \sum_{t=1}^{T} \left( \sqrt{\frac{RV_{t+1}}{\widehat{RV}_{t+1}}} - \frac{1}{2} \frac{RV_{t+1}}{\widehat{RV}_{t+1}} \right)$$
(30)

Realized Cryptocurrency Volatility Forecasting

|      |                     | HAR    | HAR-CJ              | HAR-TCJ | HAR-Exp-CJ          | HAR-Exp-TCJ         |
|------|---------------------|--------|---------------------|---------|---------------------|---------------------|
| h=1  | RV                  | 3.547% | 3.535%              | 3.534%  | 3.536%              | 3.535%              |
|      | $(RV)^{1/2}$        | 3.418% | 3.493%              | 3.499%  | <mark>3.485%</mark> | <mark>3.493%</mark> |
|      | $\log(RV)$          | 3.137% | 3.343%              | 3.303%  | 3.364%              | 3.265%              |
| h =7 | RV                  | 3.758% | 3.728%              | 3.747%  | 3.704%              | 3.715%              |
|      | (RV) <sup>1/2</sup> | 3.718% | 3.776%              | 3.783%  | 3.776%              | 3.780%              |
|      | log(RV)             | 3.568% | <mark>3.733%</mark> | 3.640%  | 3.749%              | 3.664%              |
| h=30 | RV                  | 3.835% | 3.751%              | 3.792%  | 3.707%              | 3.733%              |
|      | $(RV)^{1/2}$        | 3.842% | 3.787%              | 3.825%  | 3.765%              | 3.775%              |
|      | $\log(RV)$          | 3.780% | 3.769%              | 3.723%  | 3.675%              | 3.732%              |

#### **Empirical Realized Utility Results**

Table 6: BTC out-of-sample realized utility evaluated at the maximum value equals to  $RU(RV_{t+h}) = \frac{1}{2}SR^2/\gamma = 4\%$ . D-M t-test shows Better/Worse comparing with HAR model at 5% Significant level

- □ Jump components provide significant economic value
- ⊡ Models perform better on longer forecast horizon
- $\boxdot$  Non-linear models are better from economic perspective

Realized Cryptocurrency Volatility Forecasting



### Summary

- Realized Volatility Processes
   Differences: Significant larger scale and frequent jumps
   Similarities: Log-noraml distributed and long-memory
   Maybe useful for cryptocurrencies options pricing
- Statistics Findings
   Threshold jump method overcomes consecutive jumps and provides more information
   Significant positive impact from TJ on RV. No mean-reversion
  - Non-linear models perform better
- Economic Perspective Investors gain higher economic value by modeling jumps Longer investment horizon, higher utility Non-linear modeling is necessary to capture more market changes



### Realized Cryptocurrency Volatility Forecasting

Junjie Hu\* WeiYu Kuo° Wolfgang Karl Härdle\*

\*Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin °Department of International Business National Chengchi University ©RCVJ\_Forecasting



#### Appendix

#### RV and BPV for Market Indices: SPX



Figure 14: The Standard & Poor's 500 Index, 2000-2018



|                | HAR      | HAR-CJ   | HAR-TCJs | HAR-Exp-CJs | HAR-Exp-TCJs |
|----------------|----------|----------|----------|-------------|--------------|
| α              | -0.316   | -0.122   | -0.132   | -0.477      | -0.114       |
|                | (-6.096) | (-1.320) | (-0.778) | (-2.904)    | (-0.722)     |
| $\beta_D$      | 0.517    | 0.294    | 0.178    | 0.648       | 0.390        |
| -              | (10.519) | (5.723)  | (3.756)  | (20.826)    | (4.607)      |
| $\beta_W$      | 0.312    | 0.384    | 0.381    | 0.448       | 0.046        |
|                | (4.186)  | (5.046)  | (4.567)  | (2.676)     | (0.396)      |
| $\beta_M$      | 0.113    | 0.051    | 0.044    | -0.169      | 0.188        |
|                | (1.992)  | (0.744)  | (0.597)  | (-1.962)    | (1.178)      |
| $\beta_{JD}$   |          | 0.586    | 0.941    | 0.225       | 0.647        |
|                |          | (1.924)  | (4.661)  | (0.862)     | (3.686)      |
| $\beta_{IW}$   |          | -0.844   | -0.406   | -0.196      | -0.200       |
|                |          | (-2.419) | (-1.343) | (-0.564)    | (-0.749)     |
| $\beta_{JM}$   |          | -0.363   | -0.202   | 0.009       | -0.166       |
|                |          | (-0.753) | (-0.497) | (0.024)     | (-0.473)     |
| R <sup>2</sup> | 0.432    | 0.404    | 0.435    | 0.410       | 0.436        |
| MSE            | 1.662    | 1.783    | 1.694    | 1.540       | 1.701        |
| HRMSE          | 0.605    | 0.698    | 0.655    | 0.689       | 0.611        |
| QLIKE          | 0.496    | 0.653    | 0.576    | 0.699       | 0.551        |

Table 7: Logarithmic model,  $\log(RV)$ , t-values in the parantheses

|                 | HAR     | HAR-CJ   | HAR-TCJs | HAR-Exp-CJs | HAR-Exp-TCJs |
|-----------------|---------|----------|----------|-------------|--------------|
| α               | 0.063   | 0.187    | 0.170    | 0.167       | 0.148        |
|                 | (2.036) | (4.714)  | (4.007)  | (3.722)     | (3.221)      |
| $\beta_D$       | 0.446   | 0.434    | 0.413    | 0.631       | 0.660        |
|                 | (8.262) | (7.784)  | (5.980)  | (7.846)     | (5.935)      |
| $\beta_W$       | 0.201   | 0.243    | 0.140    | 0.278       | 0.474        |
|                 | (3.661) | (3.240)  | (1.188)  | (1.828)     | (2.177)      |
| $\beta_M$       | 0.199   | 0.174    | 0.306    | -0.057      | -0.274       |
|                 | (2.517) | (1.917)  | (2.280)  | (-0.349)    | (-1.062)     |
| $\beta_{ID}$    |         | 0.119    | 0.250    | 0.058       | 0.223        |
|                 |         | (1.020)  | (2.968)  | (0.532)     | (2.680)      |
| β <sub>IW</sub> |         | -0.140   | 0.074    | -0.086      | 0.081        |
|                 |         | (-1.031) | (0.742)  | (-0.633)    | (0.824)      |
| βIM             |         | -0.107   | -0.157   | -0.083      | -0.113       |
|                 |         | (-0.868) | (-1.743) | (-0.747)    | (-1.488)     |
| R <sup>2</sup>  | 0.436   | 0.438    | 0.455    | 0.420       | 0.441        |
| MSE             | 1.523   | 1.463    | 1.426    | 1.508       | 1.456        |
| HRMSE           | 0.773   | 0.841    | 0.846    | 0.804       | 0.835        |
| QLIKE           | 0.717   | 0.851    | 0.838    | 0.834       | 0.844        |

Table 8: Squared-root model,  $RV^{1/2}$ , t-values in the parantheses

|                | HAR     | HAR-CJ       | HAR-TCJs | HAR-Exp-CJs | HAR-Exp-TCJs |
|----------------|---------|--------------|----------|-------------|--------------|
| α              | 0.122   | 0.266        | 0.221    | 0.237       | 0.203        |
|                | (1.341) | (3.040)      | (2.083)  | (2.590)     | (1.899)      |
| βn             | 0.242   | 0.283        | 0.268    | 0.528       | 0.579        |
| 5              | (3.329) | (3.125)      | (2.528)  | (4.286)     | (3.634)      |
| 3 <sub>W</sub> | 0.104   | <b>0.079</b> | -0.097   | 0.759       | 1.229        |
|                | (1.127) | (0.675)      | (-0.43)1 | (1.971)     | (1.999)      |
| β <sub>M</sub> | 0.533   | 0.604        | 1.023    | -0.302      | -0.614       |
|                | (2.054) | (1.822)      | (1.983)  | (-1.153)    | (-1.352)     |
| βın            | . ,     | 0.002        | 0.184    | -0.038      | 0.167        |
| 50             |         | (0.010)      | (1.282)  | (-0.232)    | (1.226)      |
| 3 111/         |         | -0.004       | 0.326    | -0.052      | 0.212        |
| 511            |         | (-0.026)     | (1.502)  | (-0.276)    | (1.252)      |
| BIM            |         | -0.704       | -0.372   | -0.471      | -0.183       |
| 5101           |         | (-1.749)     | (-1.788) | (-1.588)    | (-1.119)     |
| R <sup>2</sup> | 0.389   | 0.394        | 0.368    | 0.404       | 0.390        |
| MSE            | 1.597   | 1.644        | 1.739    | 1.623       | 1.671        |
| QLIKE          | 1.459   | 1.673        | 1.686    | 1.571       | 1.591        |
| HRMSE          | 1.288   | 1.502        | 1.468    | 1.474       | 1.459        |

#### **Out-of-Sample Forecast**, *RV* form

Table 9: RV, t-values in the parantheses



### Log-return Distribution, Full Sample



Figure 15: Histogram of BTC 5-min log-return, 1st, Jan 2016 to 1st, July 2018

- $\odot$  Log-returns range in [-0.137, 0.137]
- Zero dropped
- ☑ Suspicious values dropped

Realized Cryptocurrency Volatility Forecasting



### Log-return Distribution, Since 2017



Figure 16: Histogram of BTC 5-min log-return, 1st, Jan 2017 to 1st, July 2018

- $\Box$  Log-returns range in [-0.084, 0.087]
- Zero values dropped
- Suspicious values dropped

Realized Cryptocurrency Volatility Forecasting

### Log-return Distribution, Full Sample



Figure 17: Histogram of ETH 5-min log-return, 1st, Jan 2016 to 1st, July 2018

- $\boxdot$  Log-returns range in [-0.425, 0.448]
- Zero dropped
- ☑ Suspicious values dropped

Realized Cryptocurrency Volatility Forecasting



### Log-return Distribution, Since 2017



Figure 18: Hisogram of ETH 5-min log-return, 1st, Jan 2017 to 1st, July 2018

- $\boxdot$  Log-returns range in [-0.145, 0.129]
- Zero dropped
- ☑ Suspicious values dropped

Realized Cryptocurrency Volatility Forecasting



### Avoid using future information

#### $\boxdot$ Rolling window within each day

Realized Cryptocurrency Volatility Forecasting -

