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Motivation 1-1

TENET
Tail-Event-driven NETwork Risk: Hardle et al. (2016)
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Figure 1: Financial risk network dynamics.
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Motivation 1-2
Financial Risk Meter

(] Averaged penalty levels in dynamic network analysis
[ Systemic risk level in the financial market over time
[J Simultaneous inference between sectors
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Figure 2: FRM over time frm.wiwi.hu-berlin.de
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Motivation 1-3

LOB Network

Time-varying Limit Order Book Networks: Hardle et al. (2018)

Figure 3: Plots of LOB networks from 22.06.2016-24.06.2016
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Motivation 1-4

The System of Regression Equations

j7t:)<j—7‘;,3})+€j7t, E€j7t)<j7t:0, j:].,...,_]7 t:1,...7n,

[] The dimension K; = dim(X; ) = K and the number of
equations J are large (potentially larger than n)

] Allowing for temporal and spatial dependency
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Motivation 1-5

The System of Regression Equations
Example 1: Large VAR

P
Yo=Y Y. +e, EgieYe=0.
=1
Example 2: Simultaneous equations systems
\/jvt = ijvt(s_? + Xt—l—/y_]o + 8j7t7
with the reduced form given by

Yir = Xjﬁj? + Ve, EvjeXe=0.
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Motivation 1-6

Effective Prediction with Sparsity Method

[-] Exact sparsity assumption \Bﬂo =s;<s=o(n), j=1,...J

[] ¢1-penalized estimator of BJQ
~ . 1
Bj = arg min. ;Z(Y XTtB Z|6jk’wﬂ(

[] Select a joint penalty A, which accounts for the dependency
and aggregate the effects over equations

[ Prediction performance bound (oracle inequalities)
(1 Individual and simultaneous inference on the coefficients
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Motivation 1-7

Practical Examples

Example 3: Cross-sectional Asset Pricing

K
Yt = Bjo+ Z BikXik,t + €j,ts
k=1
Y +: excess returns for asset j, Xj ; are the factor returns and one
is interested in testing: Hp : Bjo =0,Vj =1,...,J.
Examples 4: Network formation and spillover effects:

-
i)

Y;+: log output for firm j, D;;: capital stock, and one is interested

in testing the spillover parameters w;;.
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Motivation

Fundamental Results

[ Oracle error bounds of #;-penalized estimator: Bickel et al.
(2009), Belloni and Chernozhukov (2013)
[] Ideal penalty level - max of sum of high-dim random vectors
» Gaussian approximation and (block) multiplier bootstrap
» Chernozhukov et al. (2013), Zhang and Wu (2017)
] Uniformly valid inference on target coefficients:
» Post-selection inference (Neyman orthogonality or double

selection): Belloni et al. (2014, 2015)
» De-sparsified (de-biased) LASSO: Zhang and Zhang (2014),

Van de Geer et al. (2014)

LASSO-Driven Inference in Time and Space



Motivation 1-9

Our Contributions

[] More general time dependence measure (Wu, 2005)

[] General Bahadur representation for the Z-estimators with
dependent data

[] Simultaneous confidence region via multiplier bootstrap

(1 Application: textual sentiment spillover effects
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Estimation and Theoretical Results 2-1

"Ideal" Choice of )\

[J Suppose we observe €;; = Y

)

e — X, B9, set

n
def 1 def
Sk S == i Vi = yJavar(Si)
\/B t=1

def .
Ni1-a)=E (1-a)-— tile of 2 Si /Wil
(1—a) = (1 - «a) — quantile o Cﬁngi)g(K’ i/ VK|

where ¢ > 1,eg. c=1.1, a=0.1.

(] Use Gaussian approx. or multiplier block bootstrap
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Estimation and Theoretical Results 2-2

Error Bounds for the Prediction Norm

Lemma 1
Suppose the uniform RE condition holds with probability
1 — o(1), then under the exact sparsity assumption, we have

—~ e 5 3 ’ .
1B — /BJ(')|j,pr « [”1 Z {XJTf(BJ n pr)} ]
t=1

< C)\O(l—Oz)\{]g ml?x\lljk, forall j=1,...,J,
(1)

with probability greater than 1 — av — o(1), where C depends on the
[RE] coefficients
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Estimation and Theoretical Results

Nagaev Type of Inequality

Theorem 2
Under @Z5D and @IZED, we have

K
(2cﬁmax|5jk/\lijk| > r) <Goopnr
k=

Z \|Xjk,-5j,~||g,<
q
1 \Ujk

—C3r? ij
xp(
nl| Xk, 113

J
+CQZ

j=1

J
>
j=1
K
D e
k=1

where for ¢ > 1/2 — 1/q (weak dependence case), w, = 1; for
¢ < 1/2 —1/q (strong dependence case), w, = n9/?=1-<49,
(1, Gy, G5 are constants depending q and <.
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Estimation and Theoretical Results 2-4

Oracle Inequalities under \°(1 — «)

Corollary 3
Under @D and @ZED, given

A°(1-a) € max (155, 2. {n 0B (KJ /) F/2V | Xi .. (neon /) /9).

additionally suppose holds with probability 1 — o(1), then under
the exact sparsity assumption,

By~ e 5 CVamax W max {1025 o 2 08K )21
A N I

with probability 1 — a — o(1).
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Estimation and Theoretical Results 2-5

Empirical Choices of \

[] Gaussian Approximation:
Q(1 — a) © 2cy/nd1{1 — a/(2JK)}
(] Multiplier Bootstrap: selected by an algorithm

(] Dependency over time: groups the data into blocks and
resample the blocks
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Estimation and Theoretical Results 2-6

Gaussian Approximation
The Kolmogorov distance between two rv X and Y-

p(X, ¥) =509 | P(X|oo < 1) = P(|¥]oo < 1)].
r>

TheoNregnf 4 e _

Let X = vec{(Xjkeej,e)jk}, S = vec{(Su )} = n 2 (A,

and define the aggregated over j and k, under
and , we have

p(D7IS,D'Z) -0,  asn— oo, (3)

where Z ~ N(0, Y 3), and X5 is the JK x JK long run

variance-covariance matrix of/ft, D is a diagonal matrix with the
square root of the diagonal elements of ¥ 3.
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Estimation and Theoretical Results 2-7

Gaussian Approximation

Corollary 5
Under the conditions of Theorem 4, we have

sup | P{max2cv/n|S/Vi| < Q(1 — o)} — (1 —a)| =0, (4)
ae(0,1) J-k

for sufficiently large n, where Q(1 — o) = (1 — o) quantile of
2cﬁm:?(x|ij/lUjk , with Zj is Gaussian centered rv with the same
J7

long run variance-covariance structure as Sj.
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Estimation and Theoretical Results 2-8

Algorithm for Multiplier Bootstrap

[ 1. LASSO for each equation

n

1
/Bj = arg mm 7Z(Y, XTt/B J Z |ﬂjk|w_/ka
ES
with \j = 2¢'v/n®~1(1 — o/ /(2K])), o/ =0.1, ¢ = 0.5,
Ve = \/Var(Xj €j,+), and &; ; are some preliminary estimates
of the errors.

[] 2. Keep &y = Yjr — XJTtBJ and update W with &; ;.
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Estimation and Theoretical Results 2-9

Algorithm for Multiplier Bootstrap

1 3. Divide {€j+} into /, blocks, each contains b, = n/I,

observations. A(1 — «) def QCﬁqu]_a), c>1, a=0.1, where

qgls]_a) is the (1 — o) quantile of max; x |Zj[51/\lfjk|, and

In ibp
B 1 g
Zj[k] ~ n oG DL EiXkn )
i1 =(i—1)by+1

where e; are drawn from i.i.d. N(0,1).
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Estimation and Theoretical Results

Multiplier Bootstrap for b)

Theorem 6 (Validity of Multiplier Bootstrap)
Under @I, @IZED, and assume ®pq . < 0o with g > 4,
by = O(n") for some 0 < 1 < 1, let ZIB] wf vec{(Zj[f])jk}, and
v vec{(Vjk)jk}, then

pn S sup | P28 /Wl < r|X.2) = P(IZ/V]oc < )] =0, a5 0 — oo,
relR

sup [P(IS/V]oe < gy ) = (1= )| =0, a5 n = oo,

a€e(0,1)
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Estimation and Theoretical Results 2-11

Coefficient Estimation Procedure

[ Step 1: LASSO for ¥« = Xje. o, +
keep ﬁj( K
[J Step 2: LASSO for Xj ; = Xﬁ_k) t’yj(.’(_k) + Vjk,t, keep the

residuals Vix ¢ = Xjk ¢t — XJ—(r ), ¢ ()

Xit-r.eB(—k) T St

[ Step 3: Regress Y — J( 0 ﬂj( k) On Xik.t using Vi r as
IV, finally achieve fly)
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Estimation and Theoretical Results 2-12
Uniformly Valid Inference

Let Y (Zj ¢, Biks Jk) denote the score, where Z; ; = (YJt,XJTt)T

hfk()<j(—k),t) ( IBJ k) V(= k)) ' for (jv k) €G.
Theorem 7 o
Under et wie = E[{ = 3201 Yi(Zes B )11,

def
¢Jk i 8(?3 E{wjk(zj,t7ﬂ7 ik }‘IB ﬂo we have

(Jn;ax |\/Eajk1(/3jk _/k —nl/2 ZCJk el =o(gy "), asn— o0

with probability 1 — o(1), where ajzk def d)J_kzwjk

def 1 _1
Gt & — 0305 02y B 1), €0 % {log(e]GI)}2.
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Estimation and Theoretical Results 2-13

ClI for Individual Inference

() Ho: 8% =0
(1 CI by asymptotic normality:

(B — G 1207 1(1 — 0/2), B + Gyen /20711 — a/2)]
(1 Multiplier block bootstrap:

1 ib 2 V(B —8%)
* 1 n .. 'n . | —
> Th= 5 i1 i 2= -1y, 1 Gkl Tik = e

> [B) - GG, B + 0501240 ). (1) s the
(1 — @) quantile of [T |
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Estimation and Theoretical Results 2-14

Confidence Region (CR) for Simult.
Inference

[ Ho : J(-’kzo,V(j,k)e G
[J Define q5(1 — a) as the (1 — «) quantile of max(; x)ec | Tj|
[J Simultaneous confidence region: {3 € RI¢! : max(j ke Tik <
95(1 —a) and ming eg Tk = —q5(1 — a)}
[ For each component (j, k) € G:
o B S 1
Clix(a) = w}k] —Gpnqg(1 —a),ﬁ}k] +Gun~Y2g5(1 - )]
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Estimation and Theoretical Results 2-15

Consistency of the Bootstrapped CR

Corollary 8
Under @EZFTD), we have

sup | P(8% € Cly(a), Y(j, k) € G) — (1 —a)| = o(1), as n — oo,
ae(0,1)

with probability 1 — o(1).
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Simulation Study 3-1

Predictive Performance

DGP 1:

Yie=X B +eie, t=1,....nj=1...J

O X, € RK S N(0, X), with Xy, 4, = Mkl v = 0.5,
e KN,

[J divide {1,..., K} evenly into blocks with fixed block size 5,
ﬁjpk =10 if k and j belong to one block and 0 otherwise

[J n =100, take 5000 bootstrap replications

LASSO-Driven Inference in Time and Space




Simulation Study 3-2

Predictive Performance

J=K=50 J=K=100 J=K =150
Prediction norm

Mean 0.96 0.95 0.93

Median 0.97 0.95 0.94

Std. 0.03 0.03 0.03
Euclidian norm

Mean 0.96 0.94 0.93

Median 0.97 0.95 0.93

Std. 0.04 0.03 0.03

Table 1: Prediction norm and Euclidean norm ratios (overall A relative
to single \;'s, average over equations). Results are computed over 1000
repeats of simulations.
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Simulation Study 3-3

Predictive Performance

DGP 2:

Yie=X B +eie, t=1,...,nj=1...JJ=K

B Xe =D oo Arke—i, Ac= (0 + 1)=P~1 My, where the entries of
My are i.i.d. N(0,1). In practice truncate the sum to ¢ = 1000.

L) &ke = ek,t(0.8e,3’t71 +0.2)/2, where ekt are i.i.d. from

t(d)//d/(d — 2) with d = 8

[] &, are generated by the same fashion independently
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Simulation Study 3-4

Predictive Performance

Optimal Choice of b,:
[] Theoretical bias-variance trade-off results in an admissible
range of the rate
[] Depends on the dependency and the dimensionality

(1 In practice, take the one giving the lowest prediction norm on
a grid search

LASSO-Driven Inference in Time and Space %



Simulation Study 3-5

Predictive Performance

p = 0.1 (stronger dependency) p = 1.0 (weaker dependency)

J=50 J=100 J=150 J=50 J=100 J=150
b, =2 2.07 2.91 3.59 2.02 2.63 3.23
b, =4 2.06 2.89 3.56 2.03 2.62 3.223
b, =6 2.05 2.90 3.52 2.08 2.63 3.220
b, =8 2.04 28841 3.51 2.21 2.65 3.23
b, =10 2.05 2.8836 3.53 2.36 271 3.30
b, =12 2.06 2.91 3.57 2.56 2.83 3.39

Table 2: The prediction norm (average over equations) using several choices
of b,. Results are computed over 1000 simulations.

LASSO-Driven Inference in Time and Space




Simulation Study 3-6

Predictive Performance

p = 0.1 (stronger dependency) p = 1.0 (weaker dependency)
J=50 J=100 J=150 J=50 J=100 J =150
Prediction norm
Mean 0.91 0.85 0.83 0.94 0.88 0.83
Median 0.92 0.85 0.83 0.94 0.88 0.83
Std. 0.04 0.04 0.03 0.04 0.03 0.03
Euclidean norm
Mean 0.90 0.84 0.81 0.93 0.86 0.82
Median 0.91 0.85 0.81 0.93 0.87 0.82
Std. 0.05 0.04 0.03 0.05 0.04 0.03

Table 3: Prediction norm and Euclidean norm ratios (overall X relative to
single \;'s, average over equations, J = K). Results are computed over
1000 repeats of simulations.
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Simulation Study 3-7

Inference Performance

Yie=diea?+ X B04eje, die = X[ 00+vie, t=1,...n, j=1,...,J

] a?:oeo forj=1,...,J
(] Block diagonal structure in {85} and {6}, }:

» divide {1,..., K} evenly into blocks with fixed block size 5
» if k and j belong to one block 3} ~ Unif[0, 5],
69, ~ Unif[0, 0.25]

(1 Xi, e, vy are generated as dependent data by the same way

LASSO-Driven Inference in Time and Space




Simulation Study -8

Inference Performance

p = 0.1 (stronger dependency) p = 1.0 (weaker dependency)
J=50 J=100 J =150 J=50 J=100 J =150
a’ =0
Ind. Asym. 0.017 0.013 0.013 0.024 0.015 0.012
Ind. Boot. 0.030 0.020 0.016 0.022 0.017 0.014
Simult. Boot. 0.026 0.047 0.053 0.052 0.055 0.059
a% ~ Unif[0, 2.5]
Ind. Asym. 0.871 0.856 0.855 0.876 0.862 0.857
Ind. Boot. 0.875 0.857 0.857 0.876 0.863 0.858
Mult. Boot. 0.841 0.803 0.800 0.844 0.825 0.809
¥ ~ Unif[0, 5]
Ind. Asym. 0.938 0.925 0.928 0.938 0.932 0.927
Ind. Boot. 0.939 0.925 0.933 0.929 0.933 0.927
Mult. Boot. 0.928 0.907 0.907 0.926 0.918 0.908

Table 4: Average rejection rate of Hé : aj(-’ = 0 over j for the ind. (or

mult.) inference and the rejection rate of Hy : a = --- = a9 = 0 for

simult. inference (significance level = 0.05).
LASSO-Driven Inference in Time and Space




Empirical Analysis: Textual Sentiment Spillover Effects 4-1

Data Source

Textual sentiment effect on financial variables
Financial news articles on NASDAQ community platform

Unsupervised learning approach to extract sentiment variable

OO on

Sentiment words lists - BL option lexicon and LM financial
sentiment dictionary

B

Bullishness indicator based on the average proportion of
positive/negative words (Zhang et al. 2016)
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Empirical Analysis: Textual Sentiment Spillover Effects 4-2

Data Source

[] 63 S&P 500 constituents stocks from 9 GICS sectors
[] Response: stock returns and volatilities

[] Controls: S&P 500 index returns and CBOE VIX index
[ Daily data from January 2, 2015 to December 31, 2015

] Spillover effects over individual stocks and sectors

LASSO-Driven Inference in Time and Space %



Empirical Analysis: Textual Sentiment Spillover Effects 4-3

Model Setting

T T
fie = G+ By Bj+ 20 v+ rje-10j + €je,
or
2 T T 2
logoj, =¢j+ By B+ 2 v + Iogaji_léj + €j s

where the sentiment variables and control variables are included in
Bt = (Bl,t7 ey B_jyt)—l— and Zt.

LASSO-Driven Inference in Time and Space




Empirical Analysis: Textual Sentiment Spillover Effects 4-4

Model Setting - ctd

[ Bullishness for stock j on day t with the related article /:

{1 +m 3T I(Posj i+ > Negji:)}
& {1+ m 157 (Posj; < Negjic)}

Bj,t

Pos; i :, Negj i : are the average proportion of
positive/negative words based on the lexicon
(] Response variables

17,0 = log(Pf%) — log(Pf%).
0'21__ = 0511(“_],1‘ - dj,t)z - 0'019{U,t(uj,t + dj,t) - 2Uj,tdj7t} — 0383’}271'7
uj = log(Pf%) — log(P1%). d. = log(Py.,) — log(Py). with PJ%, P,

P “+» and P;7, are the hlghest lowest, opening and cIosmg prlces
Garman and Klass (1980)
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Empirical Analysis: Textual Sentiment Spillover Effects 4-5

Graphical network - Individual Inference

return-BL 02/01/15-30/12/15

Figure 4: Graphical network among individual stocks (return - BL)
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Empirical Analysis: Textual Sentiment Spillover Effects 4-6

Graphical network - Individual Inference

volatility-BL 02/01/15-30/12/15

Figure 5: Graphical network among individual stocks (volatility - BL)
LASSO-Driven Inference in Time and Space




Empirical Analysis: Textual Sentiment Spillover Effects 4-7

Graphical network - Individual Inference

Example: dependency between two stocks '
[J textual sentiment effect on stock return Hék Bk =0
(] directional edge from "DOW" to "DD"
[ self effect of "DOW"

‘]::DD:\J
Figure 6: Dependency between DOW and DD (return - BL)
LASSO-Driven Inference in Time and Space




Empirical Analysis: Textual Sentiment Spillover Effects 4-8

Graphical network - Simultaneous Inference

[ Joint sentiment effect from sector S; on returns of sector S,
[] Simult. inference on Hy : Bjx =0, Vj € 51, k€ S,
(3 Conclusions:

» returns: energy—health care
» volatility: financials—health care, IT—energy, consumer
discretionary—utilities
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Appendix 5-1

Single Equation LASSO Performance

Theorem 1 of Belloni and Chernozhukov (2013)

Suppose the restricted eigenvalue condition holds, under the exact
sparsity assumption and given the event \; > 2cﬁ12nka<xK|5jk/\lljk|,

then BJ obtained from single equation LASSO satisfy

) 1/2
N 1 = ?
18j = B ljor = [n > {vaTf(Bj - B}’)}
t=1
<(1+1/c) A5 max Wj. (6)

nkj(C) 1<k<K
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Appendix 5-2
Measure of Dependence [by Wu (2005)]

[A1] Assume Xji: = gjk(- - -, &t—1,&t), where &; are i.i.d. random
elements (innovations or shocks) across t and gjc(-) are measurable
functions (filters).

[] Replace & by an i.i.d. copy of &, and

&zvt:gjk(...,gg,...,gt)

. def *
[] Functional dependence measure 04 x+ = || Xjk,r — Xjk,thv

q > 1, which measures the effect of & on Xji ¢;

def . .
Amgjk = 2 tem0qjkt Which measures the cumulative

effect of &o on Xy 1>m
[] Dependence adjusted norm of X ;:
||Xjk,~ q,s — squZO(m + 1)§Am7qJ,k' ¢>0

LASSO-Driven Inference in Time and Space %




Appendix 5.3

Measure of Temporal Dependency

Example: AR(1) process

o0
Xt = OéXt_l + ft = Za€€t7€7 ‘CM‘ < 1.
(=0

T g = 1 = Xella = 06 ~ a'Gollg = lal“ g5 — 6ol
o * o0
Dmg =27 0qt =& — &ollg e m |l oc [af™
O [ X|lge = sumeO(m + 1) Amg <0
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Appendix 5-4

Measure of Spatial Dependency
Example: Spatial MA structure in the errors

o
se=pWee =3 p' Wi, max|[p" Wil < e, le] < 1.
/=0

B g = llej e — €jellg = Il WFi(ng — mo)llq <
|[p* Wjlx max; [0} o — nj0llq.
Dmg =72, 0t = Max; an,o —njollg dtemlclt o< [c]™
B [lgj, lg,e = Supmso(m+1)*Apm g < 00

LASSO-Driven Inference in Time and Space




Appendix 5.5

Restricted Eigenvalue (RE) Condition

[A2] (RE uniformly) Given ¢ > 1, for n € RK,

<Inl.
kj(c) def in —\/_jmj’pr >0,
Inrel<elnr, im0 7)1

holds uniformly over j = 1,...,J with probability 1 — o(1), where

def .
T < {k: J(-Jk;éO}andsj=]lezo(n),nrjkznklfke T,

nTk=0if k¢ T

LASSO-Driven Inference in Time and Space




Appendix 5.6

Moment Conditions

[A3] [le;.

a:s < 00, and || Xy [|q.c < oo.

LASSO-Driven Inference in Time and Space




Appendix
Aggregation over High Dimensions

For single equation j, let
[ @) g = 2maxy || Xk, ||q<||517 llq.¢
BT 2||€J, S Xk, 1)
[ ©jig,e = Tge A {2H|XJ,~|00”q,c||EJ,~||q,<(|0g KJ)3/2}, where
11X, locllqc = ;l;%(m + 1) 3 11X = Xelosllg

Over all equations, let A «f vec{(Xjk,t)jx }
[ @qc = max; k 2[| Xk, [l g.cll€j, .
5 T = 205 i I3/ g 1 X, 1522/
[ Ogc = Tge Ml X ]sollgs s, llg.s(log KJ)3/2}, where
X ] llqe = ;l;%(m + 1) 2 11X — X oo llq

LASSO-Driven Inference in Time and Space
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Appendix 5-8
More Assumptions

[A4] i)(weak dependency case) Given Oz, < oo with ¢ > 2 and
¢ >1/2—1/q, then Oy n*/971/2{log(KJn)}3/?> — 0 and
L1 max( Wl, Wz) = O(l) min(Nl, Nz);

ii) (strong dependency case) given 0 < ¢ < 1/2—1/q, then
O2q.c{log(KJ)}*/? = o(n°) and

L1 max(Wl, W2, W3) = O(].) min(Nz, N3);

where Ly = [®4 Dgo{log(KJ)}?]V/5,

Wy = (980 + 4 o) {log(KJn)}, Wj = &2 {log(KJn)}*,
Wi = [~ {log(Kn) |3/, J1/1/2=5-1/4),

Ny = {n/ log(KJ)}9/20], ., N2 = n{log(KJ)} 2,2,

N3 = [n"/?{log(KJ)}/2@5 JV/(1/272).
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Appendix 5-9
Orthogonality Property

Use vji; as an instrument in the following moment equation (e.g.
mean regression case) for the target coefficient 519,(

E[id Zi.e Bies Mk (Xj(—),e) ] = E(€jeVjiee) = O,

which has the orthogonality property

0
86_](—[( E[wlk{z f?ﬁj/ﬁ Jk( (—k), t) 60 =Y,
0
E Zi+, B, hie(Xi— =0.
371-(, [%k{ J,t _/k Jk( i k),t)}] 'Yj(—k):')’jo(_k)
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Appendix 5-10

Conditions for Theorem 7

o

o

B

LASSO-Driven Inference in Time and Space

Properties of ¢ the map (3, h) — E{¢j(Z; +, B, h)|Xj(_k)7t} is
twice continuously differentiable, and for every @ € {8, hy,..., hm},
E(supges,, |09 E[Vi{ Ze, B: My (Xi—k),e) HXi(—n),el1?) < G
moreover, there exnst constants L1,,, Lo, >1, v > 0 and a cube
7;;(()(,-(_;()’ ) lTk m( —k), t) in RM with center hj('Jk(){j(—k),t)
such that for every DRVANS {ﬂ, hi,...,hm},

SUP(8,h)€ B x Ti(Xj(— ), |319319’ E{%k(zj &3, h)| j(—k),t}| <
él(X( )t E{Ml( —1),6)|*} < Lin, and for every 3, 5’ € By,

h W € Tk( Kt ),

E[{W(ZJ mB» B = (Ze B W)X kel <

O (Xj—r),) (|8 = B'1" + [h = H'[5), E{J62(Xj(—x),0)[*} < Lan-

The 2nd-order moments of scores are bounded away from zero,

wik = E{(J5 2t Yie)?} = 1, ¥k = Yind Zies Bs B (Xj—10.0)}-

f.;(-) is continuously differentiable, f.,(-) and £/ (-) are bounded
from the above.




Appendix 5-11

Conditions for Theorem 7

o Propertles of the nuisance function: with probability 1 — o(1),
hjx € Hjk, where Hj = xm_lHJk m with each Hjk,m being the class

of functions of the form hjem(Xj(—k),c) = X;{_4 Ojk,m.

10k, mllo <'s, hjk7m € Tik,m- There exists sequence of constants

pn 4 0 such that E[{Ajim(Xi(—i).e) = W m(Xir.e)}2] < P2.

[J The true parameter (5 satlsfles E[vid{Z, nﬁjk, Jk( K,t)}] = 0.

Let Bjx be a fixed and closed interval and Bjk be a p055|bly
stochastic interval such that with probability 1 — o(1),
[ tar C Bjk C Bjx, =

1/2(|og an)1/2(jn;)ae><cllw- 2 + n7tr(log an)3/?|

| max
,k)eG
rn < pn, where a, = max(JK, n,e), r. = n'/9 for ¢ > 1/2—-1/q and

ro=n'?"Sfor¢ <1/2-1/q.
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Appendix 5-12
Conditions for Theorem 7

[1 Identifiability:
2‘ E[wjk{zj,ta ﬂ7 h_?k( ji(
b€ Bjk, and |¢jk| > c.

O Fi = {z = vi{z, B, ( )} ﬁeBJk’hGHJkU{ k}}ls
pointwise measurable and has envelope Fjx > supscr, |f| such that
F = max(j e Fjx satisfies E{F9(z)} < oo for some q > 4.

—. )| = |or(B = BRI A a holds for all

(] Dimension growth rates:
Pnw(Lanslog a,,)l/2 +n 2 <(slog a,,)3/2||F( zt)|lg + pion 12 =
o(g; 1) (for smooth case pp = pus, pnv = ps/? for non-smooth

case).
n1/%(slog an)"/*max||f(z)[|> + n~tr(slog n)*/ 2| F'(z:)lq =

O(pn), where F' = {z = t{z, 8, h(xj(1))} : (j, k) € G, B €
B, he Hj U {h)}} with F' = supse 7 | ).
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