LASSO-Driven Inference in Time and Space

Victor Chernozhukov Wolfgang K. Härdle Chen Huang Weining Wang

MIT Center for Statistics
Humboldt-Universität zu Berlin
University of St.Gallen
City, University of London
http://stat.mit.edu
http://lvb.wiwi.hu-berlin.de
http://mathstat.unisg.ch
http://www.city.ac.uk

TENET

Tail-Event-driven NETwork Risk: Härdle et al. (2016)

Financial Risk Meter

- Averaged penalty levels in dynamic network analysis
- Systemic risk level in the financial market over time

Figure 2: FRM over time frm.wiwi.hu-berlin.de

LOB Network

Time-varying Limit Order Book Networks: Härdle et al. (2018)

Figure 3: Plots of LOB networks from 22.06.2016-24.06.2016

The System of Regression Equations

$$Y_{j,t} = X_{j,t}^{\top} \beta_j^0 + \varepsilon_{j,t}, \quad \mathsf{E} \, \varepsilon_{j,t} X_{j,t} = 0, \quad j = 1, ..., J, \quad t = 1, \ldots, n,$$

- ☑ The dimension $K_j = \dim(X_{j,t}) \equiv K$ and the number of equations J are large (potentially larger than n)
- □ Allowing for temporal and spatial dependency

The System of Regression Equations

Example 1: Large VAR

$$Y_t = \sum_{l=1}^p \Phi_l^0 Y_{t-l} + \varepsilon_t, \quad \mathsf{E} \, \varepsilon_{j,t} Y_{t-l} = 0.$$

Example 2: Simultaneous equations systems

$$Y_{j,t} = Y_{-j,t} \delta_j^0 + X_t^\top \gamma_j^0 + \varepsilon_{j,t},$$

with the reduced form given by

$$Y_{j,t} = X_t^{\top} \beta_j^0 + \nu_{j,t}, \quad \mathsf{E} \, \nu_{j,t} X_t = 0.$$

LASSO-Driven Inference in Time and Space ————————

Effective Prediction with Sparsity Method

- $oxed{\Box}$ Exact sparsity assumption $|\beta_j^0|_0 = s_j \leq s = o(n), \ j=1,\ldots J$
- oxdot ℓ_1 -penalized estimator of eta_j^0

$$\widehat{\beta}_j = \arg\min_{\beta \in \mathbb{R}^{K_j}} \frac{1}{n} \sum_{t=1}^n (Y_{j,t} - X_{j,t}^\top \beta)^2 + \frac{\lambda}{n} \sum_{k=1}^{K_j} |\beta_{jk}| \Psi_{jk}$$

- oxdot Select a joint penalty λ , which accounts for the dependency and aggregate the effects over equations
- Prediction performance bound (oracle inequalities)
- Individual and simultaneous inference on the coefficients

Practical Examples

Example 3: Cross-sectional Asset Pricing

$$Y_{j,t} = \beta_{j0} + \sum_{k=1}^{K} \beta_{jk} X_{jk,t} + \varepsilon_{j,t},$$

 $Y_{j,t}$: excess returns for asset j, $X_{jk,t}$ are the factor returns and one is interested in testing: $H_0: \beta_{j0} = 0, \forall j = 1, \ldots, J$.

Examples 4: Network formation and spillover effects:

$$Y_{j,t} = \beta_j D_{j,t} + \sum_{i \neq j} \omega_{ij} D_{i,t} + \gamma_j^\top X_{j,t} + \varepsilon_{j,t},$$

 $Y_{j,t}$: log output for firm j, $D_{j,t}$: capital stock, and one is interested in testing the spillover parameters ω_{ij} .

Fundamental Results

- \odot Oracle error bounds of ℓ_1 -penalized estimator: Bickel et al. (2009), Belloni and Chernozhukov (2013)
- Ideal penalty level max of sum of high-dim random vectors
 - Gaussian approximation and (block) multiplier bootstrap
 - Chernozhukov et al. (2013), Zhang and Wu (2017)
- Uniformly valid inference on target coefficients:
 - Post-selection inference (Neyman orthogonality or double selection): Belloni et al. (2014, 2015)
 - ▶ De-sparsified (de-biased) LASSO: Zhang and Zhang (2014), Van de Geer et al. (2014)

Our Contributions

- More general time dependence measure (Wu, 2005) Definition
- General Bahadur representation for the Z-estimators with dependent data
- Simultaneous confidence region via multiplier bootstrap
- □ Application: textual sentiment spillover effects

Outline

- 1 Motivation ✓
- 2. Estimation and Theoretical Results
- 3. Simulation Study
- 4. Application

"Ideal" Choice of λ

 $oxed{\Box}$ Suppose we observe $arepsilon_{j,t} = Y_{j,t} - X_{j,t}^ op eta_j^0$, set

$$\begin{split} S_{jk} &\stackrel{\text{def}}{=} \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \varepsilon_{j,t} X_{jk,t}, \ \Psi_{jk} \stackrel{\text{def}}{=} \sqrt{\operatorname{avar}(S_{jk})} \\ \lambda^{0} (1-\alpha) &\stackrel{\text{def}}{=} (1-\alpha) - \operatorname{quantile of } 2c\sqrt{n} \max_{j \leq J,k \leq K} |S_{jk}/\Psi_{jk}|, \end{split}$$

where c>1, e.g. c=1.1, lpha=0.1.

▶ Foundations

Use Gaussian approx. or multiplier block bootstrap

Error Bounds for the Prediction Norm

Lemma 1

Suppose the uniform RE condition \bullet [A2] holds with probability 1-o(1), then under the exact sparsity assumption, we have

$$|\widehat{\beta}_{j} - \beta_{j}^{0}|_{j, \text{pr}} \stackrel{\text{def}}{=} \left[n^{-1} \sum_{t=1}^{n} \left\{ X_{j, t}^{\top} (\widehat{\beta}_{j} - \beta_{j}^{0}) \right\}^{2} \right]^{1/2}$$

$$\leq C \lambda^{0} (1 - \alpha) \frac{\sqrt{s}}{n} \max_{k} \Psi_{jk}, \quad \text{for all } j = 1, \dots, J,$$

$$(1)$$

with probability greater than $1-\alpha-o(1)$, where C depends on the [RE] coefficients

Nagaev Type of Inequality

Theorem 2
Under [A1] and [A3], we have

$$P\left(2c\sqrt{n}\max_{j,k}|S_{jk}/\Psi_{jk}| \ge r\right) \le C_{1}\varpi_{n}nr^{-q}\sum_{j=1}^{J}\sum_{k=1}^{K}\frac{\|X_{jk,\cdot}\varepsilon_{j,\cdot}\|_{q,\varsigma}^{q}}{\Psi_{jk}^{q}} + C_{2}\sum_{j=1}^{J}\sum_{k=1}^{K}\exp\left(\frac{-C_{3}r^{2}\Psi_{jk}^{2}}{n\|X_{jk,\cdot}\varepsilon_{j,\cdot}\|_{2,\varsigma}^{2}}\right),$$
(2)

where for $\varsigma > 1/2 - 1/q$ (weak dependence case), $\varpi_n = 1$; for $\varsigma < 1/2 - 1/q$ (strong dependence case), $\varpi_n = n^{q/2 - 1 - \varsigma q}$. C_1, C_2, C_3 are constants depending q and ς .

Oracle Inequalities under $\lambda^0(1-\alpha)$

Corollary 3

Under [A1] and [A3], given

$$\lambda^{0}(1-\alpha) \lesssim \max_{j,k} \left(\|X_{jk,\cdot}\varepsilon_{j,\cdot}\|_{2,\varsigma} \{n \log(KJ/\alpha)\}^{1/2} \vee \|X_{jk,\cdot}\varepsilon_{j,\cdot}\|_{q,\varsigma} (n\varpi_{n}KJ/\alpha)^{1/q} \right),$$

additionally suppose $igcap \mathbb{A}^2$ holds with probability 1-o(1), then under the exact sparsity assumption,

$$\begin{split} |\widehat{\beta}_{j} - \beta_{j}^{0}|_{j, \operatorname{pr}} &\lesssim C\sqrt{s} \max_{k} \Psi_{jk} \max_{j} \left\{ \|X_{jk, \cdot} \varepsilon_{j, \cdot}\|_{2,\varsigma} n^{-1/2} \{ \log(KJ/\alpha) \}^{1/2} \vee \|X_{jk, \cdot} \varepsilon_{j, \cdot}\|_{q,\varsigma} n^{1/q - 1} (\varpi_{n} KJ/\alpha)^{1/q} \right\}, \end{split}$$

with probability $1 - \alpha - o(1)$.

Empirical Choices of λ

□ Gaussian Approximation:

$$Q(1-\alpha) \stackrel{\text{def}}{=} 2c\sqrt{n}\Phi^{-1}\{1-\alpha/(2JK)\}$$

- Multiplier Bootstrap: selected by an algorithm
- Dependency over time: groups the data into blocks and resample the blocks

Gaussian Approximation

The Kolmogorov distance between two rv X and Y:

$$\rho(X,Y) = \sup_{r \ge 0} \big| \mathsf{P}(|X|_{\infty} \le r) - \mathsf{P}(|Y|_{\infty} \le r) \big|.$$

Theorem 4

Let $\widetilde{X}_t \stackrel{\text{def}}{=} \text{vec}\{(X_{jk,t}\varepsilon_{j,t})_{jk}\}$, $\widetilde{S} \stackrel{\text{def}}{=} \text{vec}\{(S_{jk})_{jk}\} = n^{-1/2}\sum_{t=1}^n \widetilde{X}_t$, and define the aggregated dependence adjusted norm over j and k, under [A1] and [A3]-[A4], we have

$$\rho(D^{-1}\widetilde{\mathcal{S}}, D^{-1}\widetilde{\mathcal{Z}}) \to 0, \quad \text{as } n \to \infty,$$
 (3)

where $\widetilde{\mathcal{Z}} \sim N(0, \Sigma_{\widetilde{\mathcal{X}}})$, and $\Sigma_{\widetilde{\mathcal{X}}}$ is the JK \times JK long run variance-covariance matrix of $\widetilde{\mathcal{X}}_t$, D is a diagonal matrix with the square root of the diagonal elements of $\Sigma_{\widetilde{\mathcal{X}}}$.

Gaussian Approximation

Corollary 5

Under the conditions of Theorem 4, we have

$$\sup_{\alpha \in (0,1)} |\mathsf{P}\{\max_{j,k} 2c\sqrt{n}|S_{jk}/\Psi_{jk}| \leq \widetilde{Q}(1-\alpha)\} - (1-\alpha)| \to 0, \quad (4)$$

for sufficiently large n, where $\widetilde{Q}(1-\alpha)=(1-\alpha)$ quantile of $2c\sqrt{n}\max_{j,k}|Z_{jk}/\Psi_{jk}|$, with Z_{jk} is Gaussian centered rv with the same long run variance-covariance structure as S_{jk} .

Algorithm for Multiplier Bootstrap

$$\widetilde{\beta}_j = \arg\min_{\beta \in \mathbb{R}^{K_j}} \frac{1}{n} \sum_{t=1}^n (Y_{j,t} - X_{j,t}^\top \beta)^2 + \frac{\lambda_j}{n} \sum_{k=1}^{K_j} |\beta_{jk}| \Psi_{jk},$$

with $\lambda_j = 2c'\sqrt{n}\Phi^{-1}(1-\alpha'/(2K_j))$, $\alpha' = 0.1$, c' = 0.5, $\Psi_{jk} = \sqrt{\text{Var}(X_{jk,t}\check{\varepsilon}_{j,t})}$, and $\check{\varepsilon}_{j,t}$ are some preliminary estimates of the errors.

oxdot 2. Keep $\widetilde{arepsilon}_{j,t} = Y_{j,t} - X_{j,t}^ op \widetilde{eta}_j$ and update Ψ_{jk} with $\widetilde{arepsilon}_{j,t}$.

Algorithm for Multiplier Bootstrap

$$Z_{jk}^{[B]} = \frac{1}{\sqrt{n}} \sum_{i=1}^{l_n} e_{j,i} \sum_{l=(i-1)b_n+1}^{ib_n} \widetilde{\varepsilon}_{j,l} X_{jk,l},$$
 (5)

where e_i are drawn from i.i.d. N(0,1).

Multiplier Bootstrap for b)

```
Theorem 6 (Validity of Multiplier Bootstrap)

Under [AI], [A3], and assume \Phi_{2q,\varsigma} < \infty with q > 4,

b_n = \mathcal{O}(n^\eta) for some 0 < \eta < 1, let \widetilde{\mathcal{Z}}^{[B]} \stackrel{\text{def}}{=} \text{vec}\{(Z_{jk}^{[B]})_{jk}\}, and

\widetilde{\Psi} \stackrel{\text{def}}{=} \text{vec}\{(\Psi_{jk})_{jk}\}, then

\widetilde{\rho}_n \stackrel{\text{def}}{=} \sup_{r \in \mathbb{R}} |P(|\widetilde{\mathcal{Z}}^{[B]}/\widetilde{\Psi}|_{\infty} \le r|\mathcal{X}, \varepsilon.) - P(|\widetilde{\mathcal{Z}}/\widetilde{\Psi}|_{\infty} \le r)| \to 0, as n \to \infty,

\sup_{\alpha \in (0,1)} |P(|\widetilde{\mathcal{S}}/\widetilde{\Psi}|_{\infty} \le q_{(1-\alpha)}^{[B]}) - (1-\alpha)| \to 0, as n \to \infty.
```

Coefficient Estimation Procedure

- **Step** 2: LASSO for $X_{jk,t} = X_{j(-k),t}^{\top} \gamma_{j(-k)}^{0} + v_{jk,t}$, keep the residuals $\hat{v}_{jk,t} = X_{jk,t} X_{j(-k),t}^{\top} \hat{\gamma}_{j(-k)}$
- **Step** 3: Regress $Y_{j,t} X_{j(-k),t}^{\top} \widehat{\beta}_{j(-k)}^{[1]}$ on $X_{jk,t}$ using $\widehat{v}_{jk,t}$ as IV, finally achieve $\widehat{\beta}_{jk}^{[2]}$

▶ Orthogonality

Uniformly Valid Inference

Let
$$\psi_{jk}(Z_{j,t}, \beta_{jk}, h_{jk})$$
 denote the score, where $Z_{j,t} = (Y_{j,t}, X_{j,t}^{\top})^{\top}$, $h_{jk}(X_{j(-k),t}) = (X_{j(-k),t}^{\top}\beta_{j(-k)}, X_{j(-k),t}^{\top}\gamma_{j(-k)})^{\top}$, for $(j,k) \in G$.

Theorem 7

Under
$$\bigcirc$$
 conditions, let $\omega_{jk} \stackrel{\text{def}}{=} \mathsf{E}[\{\frac{1}{\sqrt{n}}\sum_{t=1}^n \psi_{jk}(Z_{j,t},\beta_{jk}^0,h_{jk}^0)\}^2],$

$$\phi_{jk} \stackrel{\text{def}}{=} \frac{\partial}{\partial \beta} \mathsf{E}\{\psi_{jk}(Z_{j,t},\beta,h_{jk}^0)\}\big|_{\beta=\beta_{jk}^0}$$
, we have

$$\max_{(j,k)\in G} |\sqrt{n}\sigma_{jk}^{-1}(\widehat{\beta}_{jk}-\beta_{jk}^0)-n^{-1/2}\sum_{t=1}^n \zeta_{jk,t}|=\wp(g_n^{-1}), \text{ as } n\to\infty$$

with probability
$$1 - o(1)$$
, where $\sigma_{jk}^2 \stackrel{\text{def}}{=} \phi_{jk}^{-2} \omega_{jk}$, $\zeta_{jk,t} \stackrel{\text{def}}{=} -\phi_{jk}^{-1} \sigma_{jk}^{-1} \psi_{jk}(Z_{j,t}, \beta_{jk}^0, h_{jk}^0)$, $g_n \stackrel{\text{def}}{=} \{\log(e|G|)\}^{1/2}$.

Cl for Individual Inference

- $\Box H_0: \beta_{ik}^0 = 0$
- Multiplier block bootstrap:
 - $T_{jk}^* = \frac{1}{\sqrt{n}} \sum_{i=1}^{l_n} e_{j,i} \sum_{l=(i-1)b_n+1}^{ib_n} \widehat{\zeta}_{jk,l}, \ T_{jk} = \frac{\sqrt{n}(\widehat{\beta}_{jk}^{[2]} \beta_{jk}^{\mathbf{o}_k})}{\widehat{\sigma}_{jk}}$
 - $\widehat{\beta}_{jk}^{[2]} \widehat{\sigma}_{jk} n^{-1/2} q_{(1-\alpha)}^*, \widehat{\beta}_{jk}^{[2]} + \widehat{\sigma}_{jk} n^{-1/2} q_{(1-\alpha)}^*], \ q_{(1-\alpha)}^* \text{ is the } (1-\alpha) \text{ quantile of } |T_{jk}^*|$

Confidence Region (CR) for Simult. Inference

- $\Box H_0: \beta_{jk}^0 = 0, \forall (j,k) \in G$
- $oxed{oxed}$ Define $q_G^*(1-lpha)$ as the (1-lpha) quantile of $\max_{(j,k)\in G}|T_{jk}^*|$
- $oxed{oxed}$ Simultaneous confidence region: $\{eta \in \mathbb{R}^{|\mathcal{G}|} : \max_{(j,k) \in \mathcal{G}} T_{jk} \leq q_G^*(1-lpha) \}$

Consistency of the Bootstrapped CR

Corollary 8

Under conditions, we have

$$\sup_{\alpha\in(0,1)}|\mathsf{P}(\beta_{jk}^0\in\widetilde{\mathsf{CI}}_{jk}^*(\alpha),\;\forall (j,k)\in \mathit{G})-(1-\alpha)|=o(1),\;\mathsf{as}\;\mathsf{n}\to\infty,$$

with probability 1 - o(1).

DGP 1:

$$Y_{j,t} = X_t^{\top} \beta_j^0 + \varepsilon_{j,t}, \quad t = 1, \dots, n, j = 1, \dots, J$$

- ☑ divide $\{1, \ldots, K\}$ evenly into blocks with fixed block size 5, $\beta_{jk}^0 = 10$ if k and j belong to one block and 0 otherwise

	J = K = 50	J = K = 100	J = K = 150				
	Prediction norm						
Mean	0.96	0.95	0.93				
Median	0.97	0.95	0.94				
Std.	0.03	0.03	0.03				
	Euclidian norm						
Mean	0.96	0.94	0.93				
Median	0.97	0.95	0.93				
Std.	0.04	0.03	0.03				

Table 1: Prediction norm and Euclidean norm ratios (overall λ relative to single λ_j 's, average over equations). Results are computed over 1000 repeats of simulations.

DGP 2:

$$Y_{j,t} = X_t^{\top} \beta_j^0 + \varepsilon_{j,t}, \quad t = 1, \dots, n, j = 1, \dots, J, J = K$$

- $X_t = \sum_{\ell=0}^{\infty} A_{\ell} \xi_{t-\ell}$, $A_{\ell} = (\ell+1)^{-\rho-1} M_{\ell}$, where the entries of M_{ℓ} are i.i.d. N(0,1). In practice truncate the sum to $\ell=1000$.
- $\xi_{k,t} = e_{k,t} (0.8 e_{k,t-1}^2 + 0.2)^{1/2}$, where $e_{k,t}$ are i.i.d. from $t(d)/\sqrt{d/(d-2)}$ with d=8
- oxdots $arepsilon_t$ are generated by the same fashion independently

Optimal Choice of b_n :

- Theoretical bias-variance trade-off results in an admissible range of the rate
- Depends on the dependency and the dimensionality
- In practice, take the one giving the lowest prediction norm on a grid search

	ho=0.1 (stronger dependency)			ho=1.0 (weaker dependency)			
	<i>J</i> = 50	J = 100	J = 150	J = 50	<i>J</i> = 100	J = 150	
$b_n = 2$	2.07	2.91	3.59	2.02	2.63	3.23	
$b_n = 4$	2.06	2.89	3.56	2.03	2.62	3.223	
$b_n = 6$	2.05	2.90	3.52	2.08	2.63	3.220	
$b_n = 8$	2.04	2.8841	3.51	2.21	2.65	3.23	
$b_n = 10$	2.05	2.8836	3.53	2.36	2.71	3.30	
$b_n = 12$	2.06	2.91	3.57	2.56	2.83	3.39	

Table 2: The prediction norm (average over equations) using several choices of b_n . Results are computed over 1000 simulations.

	ho= 0.1 (stronger dependency)			ho=1.0	ho=1.0 (weaker dependency)			
	<i>J</i> = 50	J = 100	J = 150	J = 50	<i>J</i> = 100	J = 150		
	Prediction norm							
Mean	0.91	0.85	0.83	0.94	0.88	0.83		
Media	n 0.92	0.85	0.83	0.94	0.88	0.83		
Std.	0.04	0.04	0.03	0.04	0.03	0.03		
	Euclidean norm							
Mean	0.90	0.84	0.81	0.93	0.86	0.82		
Media	n 0.91	0.85	0.81	0.93	0.87	0.82		
Std.	0.05	0.04	0.03	0.05	0.04	0.03		

Table 3: Prediction norm and Euclidean norm ratios (overall λ relative to single λ_j 's, average over equations, J=K). Results are computed over 1000 repeats of simulations.

Inference Performance

$$Y_{j,t} = d_{j,t}\alpha_j^0 + X_t^{\top}\beta_j^0 + \varepsilon_{j,t}, \ d_{j,t} = X_t^{\top}\theta_j^0 + v_{j,t}, \ t = 1, \ldots, n, \ j = 1, \ldots, J$$

- $\Box \alpha_i^0 = \alpha^0 \text{ for } j = 1, \dots, J$
- $oxed{oxed}$ Block diagonal structure in $\{eta_{jk}^0\}$ and $\{ heta_{jk}^0\}$:
 - ▶ divide $\{1,...,K\}$ evenly into blocks with fixed block size 5
 - if k and j belong to one block $\beta_{jk}^0 \sim \text{Unif}[0, 5]$, $\theta_{ik}^0 \sim \text{Unif}[0, 0.25]$
- $\ oxdots$ $X_t, arepsilon_t, v_t$ are generated as dependent data by the same way

Inference Performance

	ho= 0.1 (stronger dependency)			ho=1.0 (weaker dependency)			
	J = 50	J = 100	J = 150	J = 50	J = 100	J = 150	
	$\alpha^0 = 0$						
Ind. Asym.	0.017	0.013	0.013	0.024	0.015	0.012	
Ind. Boot.	0.030	0.020	0.016	0.022	0.017	0.014	
Simult Boot	0.026	0.047	0.053	0.052	0.055	0.059	
	$lpha^{0}\simUnif[0,2.5]$						
Ind. Asym.	0.871	0.856	0.855	0.876	0.862	0.857	
Ind. Boot.	0.875	0.857	0.857	0.876	0.863	0.858	
Mult. Boot.	0.841	0.803	0.800	0.844	0.825	0.809	
	$lpha^{0} \sim Unif[0,5]$						
Ind. Asym.	0.938	0.925	0.928	0.938	0.932	0.927	
Ind. Boot.	0.939	0.925	0.933	0.929	0.933	0.927	
Mult. Boot.	0.928	0.907	0.907	0.926	0.918	0.908	

Table 4: Average rejection rate of $H_0^j:\alpha_j^0=0$ over j for the ind. (or mult.) inference and the rejection rate of $H_0:\alpha_1^0=\cdots=\alpha_J^0=0$ for simult. inference (significance level = 0.05). LASSO-Driven Inference in Time and Space

Data Source

- Textual sentiment effect on financial variables
- Financial news articles on NASDAQ community platform
- Unsupervised learning approach to extract sentiment variable
- Sentiment words lists BL option lexicon and LM financial sentiment dictionary
- Bullishness indicator based on the average proportion of positive/negative words (Zhang et al. 2016)

Data Source

- Response: stock returns and volatilities
- Controls: S&P 500 index returns and CBOE VIX index
- □ Daily data from January 2, 2015 to December 31, 2015
- Spillover effects over individual stocks and sectors

Model Setting

$$r_{j,t} = c_j + B_t^{\mathsf{T}} \beta_j + z_t^{\mathsf{T}} \gamma_j + r_{j,t-1} \delta_j + \varepsilon_{j,t},$$

or

$$\log \sigma_{j,t}^2 = c_j + B_t^{\top} \beta_j + z_t^{\top} \gamma_j + \log \sigma_{j,t-1}^2 \delta_j + \varepsilon_{j,t},$$

where the sentiment variables and control variables are included in $B_t = (B_{1,t}, \dots, B_{J,t})^{\top}$ and z_t .

Model Setting - ctd

 \Box Bullishness for stock j on day t with the related article i:

$$B_{j,t} = \log \left[\frac{\{1 + m^{-1} \sum_{i=1}^{m} \mathsf{I}(Pos_{j,i,t} > Neg_{j,i,t})\}}{\{1 + m^{-1} \sum_{i=1}^{m} \mathsf{I}(Pos_{j,i,t} < Neg_{j,i,t})\}} \right].$$

 $Pos_{j,i,t}$, $Neg_{j,i,t}$ are the average proportion of positive/negative words based on the lexicon

Response variables

$$\begin{split} r_{j,t} &= \log(P_{j,t}^C) - \log(P_{j,t}^O), \\ \sigma_{j,t}^2 &= 0.511(u_{j,t} - d_{j,t})^2 - 0.019\{r_{j,t}(u_{j,t} + d_{j,t}) - 2u_{j,t}d_{j,t}\} - 0.383r_{j,t}^2, \\ u_{j,t} &= \log(P_{j,t}^H) - \log(P_{j,t}^O), \ d_{j,t} = \log(P_{j,t}^L) - \log(P_{j,t}^O), \ \text{with } P_{j,t}^H, \ P_{j,t}^D, \ \text{and } P_{j,t}^C \ \text{are the highest, lowest, opening and closing prices.} \\ &\text{Garman and Klass} \ (1980) \end{split}$$

Graphical network - Individual Inference

Figure 4: Graphical network among individual stocks (return - BL) LASSO-Driven Inference in Time and Space

Graphical network - Individual Inference

Figure 5: Graphical network among individual stocks (volatility - BL) LASSO-Driven Inference in Time and Space

Graphical network - Individual Inference

Example: dependency between two stocks

- \Box textual sentiment effect on stock return $H_0^{jk}: \beta_{jk} = 0$
- directional edge from "DOW" to "DD"
- self effect of "DOW"

Figure 6: Dependency between DOW and DD (return - BL)

Graphical network - Simultaneous Inference

- \odot Joint sentiment effect from sector S_1 on returns of sector S_2
- $oxed{\Box}$ Simult. inference on $H_0: \beta_{jk} = 0, \ \forall j \in S_1, \ k \in S_2$
- Conclusions:
 - returns: energy→health care
 - volatility: financials→health care, IT→energy, consumer discretionary→utilities

LASSO-Driven Inference in Time and Space

Victor Chernozhukov Wolfgang K. Härdle Chen Huang Weining Wang

MIT Center for Statistics
Humboldt-Universität zu Berlin
University of St.Gallen
City, University of London
http://stat.mit.edu
http://lvb.wiwi.hu-berlin.de
http://mathstat.unisg.ch
http://www.city.ac.uk

Appendix — 5-1

Single Equation LASSO Performance

Theorem 1 of Belloni and Chernozhukov (2013)

Suppose the restricted eigenvalue condition holds, under the exact sparsity assumption and given the event $\lambda_j \geq 2c\sqrt{n}\max_{1\leq k\leq K}|S_{jk}/\Psi_{jk}|$, then $\widetilde{\beta}_j$ obtained from single equation LASSO satisfy

$$|\widetilde{\beta}_{j} - \beta_{j}^{0}|_{j,pr} = \left[\frac{1}{n} \sum_{t=1}^{n} \left\{ X_{j,t}^{\top} (\widetilde{\beta}_{j} - \beta_{j}^{0}) \right\}^{2} \right]^{1/2}$$

$$\leq (1 + 1/c) \frac{\lambda_{j} \sqrt{s_{j}}}{n \kappa_{j}(\overline{c})} \max_{1 \leq k \leq K} \Psi_{jk}. \tag{6}$$

Measure of Dependence [by Wu (2005)]

[A1] Assume $X_{jk,t} = g_{jk}(\dots, \xi_{t-1}, \xi_t)$, where ξ_t are i.i.d. random elements (innovations or shocks) across t and $g_{jk}(\cdot)$ are measurable functions (filters).

- $oxed{oxed}$ Replace ξ_0 by an i.i.d. copy of ξ_0^* , and $X_{jk,t}^* = g_{jk}(\dots,\xi_0^*,\dots,\xi_t)$
- Functional dependence measure $\delta_{q,j,k,t} \stackrel{\text{def}}{=} \|X_{jk,t} X_{jk,t}^*\|_{q}$, $q \geq 1$, which measures the effect of ξ_0 on $X_{jk,t}$; $\Delta_{m,q,j,k} \stackrel{\text{def}}{=} \sum_{t=m}^{\infty} \delta_{q,j,k,t}$, which measures the cumulative effect of ξ_0 on $X_{jk,t \geq m}$
- Dependence adjusted norm of $X_{jk,t}$: $\|X_{jk,\cdot}\|_{q,\varsigma} = \sup_{m \ge 0} (m+1)^{\varsigma} \Delta_{m,q,j,k}, \, ς > 0$

Measure of Temporal Dependency

Example: AR(1) process

$$X_t = \alpha X_{t-1} + \xi_t = \sum_{\ell=0}^{\infty} \alpha^{\ell} \xi_{t-\ell}, \ |\alpha| < 1.$$

- $\delta_{q,t} = \|X_t^* X_t\|_q = \|\alpha^t \xi_0^* \alpha^t \xi_0\|_q = |\alpha|^t \|\xi_0^* \xi_0\|_q,$ $\Delta_{m,q} = \sum_{t=m}^{\infty} \delta_{q,t} = \|\xi_0^* \xi_0\|_q \sum_{t=m}^{\infty} |\alpha|^t \propto |\alpha|^m$

Measure of Spatial Dependency

Example: Spatial MA structure in the errors

$$\varepsilon_t = \rho W \varepsilon_t = \sum_{\ell=0}^{\infty} \rho^{\ell} W^{\ell} \eta_{t-\ell}, \, \max_j |[\rho^t W^t]_j|_1 \leq |c|^t, \, |c| < 1.$$

▶ Contributions

Restricted Eigenvalue (RE) Condition

[A2] (RE uniformly) Given c > 1, for $\eta \in \mathbb{R}^K$.

$$\kappa_j(c) \stackrel{\mathrm{def}}{=} \min_{|\eta_{\mathcal{T}_j^c}|_1 \leq c |\eta_{\mathcal{T}_j}|_1, \eta \neq 0} \frac{\sqrt{s_j} |\eta|_{j, \mathsf{pr}}}{|\eta_{\mathcal{T}_j}|_1} > 0,$$

holds uniformly over $j=1,\ldots,J$ with probability $1-\wp(1)$, where $T_j \stackrel{\text{def}}{=} \{k : \beta_{ik}^0 \neq 0\} \text{ and } s_j = |T_j| = o(n), \ \eta_{T_ik} = \eta_k \text{ if } k \in T_j,$ $\eta_{T_i k} = 0$ if $k \notin T_i$ ► Error Bounds for Prediction Norm

Appendix —

Moment Conditions

[A3]
$$\|\varepsilon_{j,\cdot}\|_{q,\varsigma} < \infty$$
, and $\|X_{jk,\cdot}\|_{q,\varsigma} < \infty$.

Nagaev Inequality

5-6

Appendix — 5-7

Aggregation over High Dimensions

For single equation j, let

$$\Box \Gamma_{j,q,\varsigma} = 2\|\varepsilon_{j,\cdot}\|_{q,\varsigma} (\sum_{k} \|X_{jk,\cdot}\|_{q,\varsigma}^{q/2})^{2/q}$$

$$\Theta_{j,q,\varsigma} = \Gamma_{j,q,\varsigma} \wedge \{2 || |X_{j,\cdot}|_{\infty} ||_{q,\varsigma} || \varepsilon_{j,\cdot} ||_{q,\varsigma} (\log KJ)^{3/2} \}, \text{ where } \\ || |X_{j,\cdot}|_{\infty} ||_{q,\varsigma} = \sup_{m \geq 0} (m+1)^{\varsigma} \sum_{t=m}^{\infty} || |X_{j,t} - X_{j,t}^*|_{\infty} ||_{q}$$

Over all equations, let $\mathcal{X}_t \stackrel{\text{def}}{=} \text{vec}\{(X_{jk,t})_{jk}\}$

$$\Box \Gamma_{q,\varsigma} = 2(\sum_{j} \|\varepsilon_{j,\cdot}\|_{q,\varsigma}^{q/2})^{2/q} (\sum_{j,k} \|X_{jk,\cdot}\|_{q,\varsigma}^{q/2})^{2/q}$$

$$\begin{array}{l} \boxdot \quad \Theta_{q,\varsigma} = \Gamma_{q,\varsigma} \wedge \{ \||\mathcal{X}_{\cdot}|_{\infty}\|_{q,\varsigma} \|\varepsilon_{j,\cdot}\|_{q,\varsigma} (\log KJ)^{3/2} \}, \text{ where } \\ \||\mathcal{X}_{\cdot}|_{\infty}\|_{q,\varsigma} = \sup_{m \geq 0} (m+1)^{\varsigma} \sum_{t=m}^{\infty} \||\mathcal{X}_{t} - \mathcal{X}_{t}^{*}|_{\infty}\|_{q} \end{aligned}$$

▶ Gaussian Approximation

Appendix — 5-8

More Assumptions

```
[A4] i)(weak dependency case) Given \Theta_{2q,\varsigma} < \infty with q \ge 2 and
\zeta > 1/2 - 1/q, then \Theta_{2q,\varsigma} n^{1/q - 1/2} \{ \log(KJn) \}^{3/2} \to 0 and
L_1 \max(W_1, W_2) = o(1) \min(N_1, N_2)
ii) (strong dependency case) given 0 < \varsigma < 1/2 - 1/q, then
\Theta_{2g,\varsigma}\{\log(KJ)\}^{1/2}=\wp(n^{\varsigma}) and
L_1 \max(W_1, W_2, W_3) = o(1) \min(N_2, N_3);
where L_1 = [\Phi_{4,\varsigma} \Phi_{4,0} \{ \log(KJ) \}^2]^{1/\varsigma}.
W_1 = (\Phi_{6,0}^6 + \Phi_{8,0}^4) \{ \log(KJn) \}^7, W_2 = \Phi_{4,6}^2 \{ \log(KJn) \}^4,
W_3 = [n^{-\varsigma} {\log(KJn)}]^{3/2} \Theta_{2q,\varsigma}]^{1/(1/2-\varsigma-1/q)}
N_1 = \{n/\log(KJ)\}^{q/2}\Theta_{2n,c}^q, N_2 = n\{\log(KJ)\}^{-2}\Phi_{4,c}^{-2}
N_3 = [n^{1/2} \{ \log(KJ) \}^{-1/2} \Theta_{2g,\varsigma}^{-1}]^{1/(1/2-\varsigma)}
```

▶ Gaussian Approximatioi

Orthogonality Property

Use $v_{jk,t}$ as an instrument in the following moment equation (e.g. mean regression case) for the target coefficient β_{jk}^0

$$E[\psi_{jk}\{Z_{j,t},\beta_{jk}^{0},h_{jk}^{0}(X_{j(-k),t})\}] = E(\varepsilon_{j,t}v_{jk,t}) = 0,$$

which has the orthogonality property

$$\begin{split} & \frac{\partial}{\partial \beta_{j(-k)}} \, \mathsf{E}[\psi_{jk} \{ Z_{j,t}, \beta_{jk}^0, h_{jk}(X_{j(-k),t}) \}] \Big|_{\beta_{j(-k)} = \beta_{j(-k)}^0} = 0, \\ & \frac{\partial}{\partial \gamma_{j(-k)}} \, \mathsf{E}[\psi_{jk} \{ Z_{j,t}, \beta_{jk}^0, h_{jk}(X_{j(-k),t}) \}] \Big|_{\gamma_{j(-k)} = \gamma_{j(-k)}^0} = 0. \end{split}$$

▶ Estimation

Conditions for Theorem 7

- $oxed{\Box}$ Properties of ψ_{jk} : the map $(\beta,h)\mapsto \mathsf{E}\{\psi_{jk}(Z_{i,t},\beta,h)|X_{i(-k),t}\}$ is twice continuously differentiable, and for every $\vartheta \in \{\beta, h_1, \dots, h_M\}$, $\mathsf{E}(\sup_{\beta \in \mathcal{B}_{ik}} |\partial_{\vartheta} \mathsf{E}[\psi_{ik} \{ Z_{i,t}, \beta, h_{ik}^{0}(X_{i(-k),t}) \} | X_{i(-k),t}]|^{2}) \leq C_{1};$ moreover, there exist constants $L_{1n}, L_{2n} \geq 1$, $\nu > 0$ and a cube $\mathcal{T}_{jk}(X_{j(-k),t}) = \times_{m=1}^M \mathcal{T}_{jk,m}(X_{j(-k),t})$ in \mathbb{R}^M with center $h_{jk}^0(X_{j(-k),t})$ such that for every $\vartheta, \vartheta' \in \{\beta, h_1, \dots, h_M\}$, $\sup_{(\beta,h)\in\mathcal{B}_{ik}\times\mathcal{T}_{ik}(X_{i(-k),t})}|\partial_{\vartheta}\partial_{\vartheta'} \mathsf{E}\{\psi_{jk}(Z_{j,t},\beta,h)|X_{j(-k),t}\}|\leq$ $\ell_1(X_{i(-k),t}), \; \mathsf{E}\{|\ell_1(X_{i(-k),t})|^4\} \leq L_{1n}, \text{ and for every } \beta, \beta' \in \mathcal{B}_{ik},$ $h, h' \in \mathcal{T}_{ik}(X_{i(-k),t}),$ $E[\{\psi_{ik}(Z_{i,t},\beta,h)-\psi_{ik}(Z_{i,t},\beta',h')\}^2|X_{i(-k),t}] \leq$ $\ell_2(X_{i(-k),t})(|\beta-\beta'|^{\nu}+|h-h'|_2^{\nu}), \ \mathsf{E}\{|\ell_2(X_{i(-k),t})|^4\} \leq L_{2n}$
- The 2nd-order moments of scores are bounded away from zero, $\omega_{jk} = \mathsf{E}\{(\tfrac{1}{\sqrt{n}} \sum_{t=1}^n \psi_{jk,t}^0)^2\} \geq c_1, \psi_{jk,t}^0 = \psi_{jk}\{Z_{j,t},\beta_{jk}^0,h_{jk}^0(X_{j(-k),t})\}.$

Conditions for Theorem 7

- **Properties of the nuisance function:** with probability 1 o(1), $\widehat{h}_{jk} \in \mathcal{H}_{jk}$, where $\mathcal{H}_{jk} = \times_{m=1}^{M} \mathcal{H}_{jk,m}$ with each $\mathcal{H}_{jk,m}$ being the class of functions of the form $\widetilde{h}_{jk,m}(X_{j(-k),t}) = X_{j(-k),t}^{\top} \theta_{jk,m}$, $\|\theta_{jk,m}\|_{0} \leq s$, $\widetilde{h}_{jk,m} \in \mathcal{T}_{jk,m}$. There exists sequence of constants $\rho_{n} \downarrow 0$ such that $\mathbb{E}[\{\widetilde{h}_{jk,m}(X_{i(-k),t}) h_{ik-m}^{0}(X_{i(-k),t})\}^{2}] \lesssim \rho_{n}^{2}$.
- The true parameter β_{jk}^0 satisfies $\mathsf{E}[\psi_{jk}\{Z_{j,t},\beta_{jk},h_{jk}^0(X_{j(-k),t})\}]=0$. Let \mathcal{B}_{jk} be a fixed and closed interval and $\widehat{\mathcal{B}}_{jk}$ be a possibly stochastic interval such that with probability $1-\wp(1)$,

$$\begin{split} & [\beta_{jk}^0 \pm c_1 r_n] \subset \widehat{\mathcal{B}}_{jk} \subset \mathcal{B}_{jk}, \ r_n = \\ & n^{-1/2} (\log a_n)^{1/2} \max_{(j,k) \in G} \|\psi_{jk,\cdot}^0\|_{2,\varsigma} + n^{-1} r_\varsigma (\log a_n)^{3/2} \|\max_{(j,k) \in G} |\psi_{jk,\cdot}^0\|_{q,\varsigma}, \\ & r_n \lesssim \rho_n, \ \text{where } a_n = \max(JK,n,e), \ r_\varsigma = n^{1/q} \ \text{for } \varsigma > 1/2 - 1/q \ \text{and } \\ & r_\varsigma = n^{1/2-\varsigma} \ \text{for } \varsigma < 1/2 - 1/q. \end{split}$$

Conditions for Theorem 7 Theorem 7

- Identifiability:
 - 2| $E[\psi_{jk}\{Z_{j,t}, \beta, h_{jk}^0(X_{j(-k),t})\}]| \ge |\phi_{jk}(\beta \beta_{jk}^0)| \wedge c_1$ holds for all $\beta \in \mathcal{B}_{jk}$, and $|\phi_{jk}| \ge c_1$.
- ☑ $\mathcal{F}_{jk} = \{z \mapsto \psi_{jk}\{z, \beta, \widetilde{h}(x_{j(-k)})\} : \beta \in \mathcal{B}_{jk}, \widetilde{h} \in \mathcal{H}_{jk} \cup \{h^0_{jk}\}\}$ is pointwise measurable and has envelope $F_{jk} \ge \sup_{f \in \mathcal{F}_{jk}} |f|$, such that $F = \max_{(j,k) \in G} F_{jk}$ satisfies $E\{F^q(z)\} < \infty$ for some $q \ge 4$.
- Dimension growth rates:

$$\rho_{n,v}(L_{2n}s\log a_n)^{1/2} + n^{-1/2}r_{\varsigma}(s\log a_n)^{3/2}||F(z_t)||_q + \rho_n^2n^{1/2} = o(g_n^{-1})$$
 (for smooth case $\rho_{n,v} = \rho_n s$, $\rho_{n,v} = \rho_n^{1/2}$ for non-smooth case).

$$n^{-1/2}(s\log a_n)^{1/2} \max_{f \in \mathcal{F}'} \|f(z_t)\|_2 + n^{-1}r_s(s\log a_n)^{3/2} \|\bar{\mathcal{F}}'(z_t)\|_q =$$

$$\mathcal{O}(\rho_n)$$
, where $\mathcal{F}' = \{z \mapsto \psi_{jk}\{z, \beta, \widetilde{h}(x_{j(-k)})\} : (j, k) \in G, \beta \in G, \beta$

$$\mathcal{B}_{jk}, \widetilde{h} \in \mathcal{H}_{jk} \cup \{h_{jk}^0\}\}$$
 with $\bar{F}' = \sup_{f \in \mathcal{F}'} |f|$.

References — 6-1

References

Belloni, A. and Chernozhukov, V. (2013)

Least Squares after Model Selection in High-dimensional Sparse Models

Bernoulli, 19(2), 521-547

Belloni, A., Chernozhukov, V. and Kato, K. (2014) Inference on Treatment Effects after Selection among High-dimensional Controls

The Review of Economic Studies, 81(2), 608-650

Belloni, A., Chernozhukov, V. and Kato, K. (2015) Uniform Post Selection Inference for Least Absolute Deviation Regression and Other Z-estimation Problems Biometrika, 102(1), 77-94

References — 6-2

References

Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009) Simultaneous Analysis of Lasso and Dantzig Selector The Annals of Statistics, 37(4), 1705-1732

Chernozhukov, V., Chetverikov, D. and Kato, K. (2013)

Gaussian Approximations and Multiplier Bootstrap for Maxima
of Sums of High-dimensional Random Vectors

The Annals of Statistics, 41(6), 2786-2819

Garman, M. B. and Klass, M. J. (1980) On the Estimation of Security Price Volatilities from Historical Data

The Journal of Business, 53(1), 67-78

References — 6-3

References

- Härdle, W. K. Chen, S., Liang, C. and Schienle, M. (2018)

 Time-varying Limit Order Book Networks

 IRTG 1792 Discussion Paper 2018-016
- Härdle, W. K., Wang, W. and Yu, L. (2016) TENET: Tail-event Driven Network Risk Journal of Econometrics, 192(2), 499-513
- Manresa, E. (2013)
 Estimating the Structure of Social Interactions Using Panel Data
 Unpublished Manuscript, CEMFI

References

References

Stock, J. H. and Watson, M. W. (2012) Disentangling the Channels of the 2007-2009 Recession Brookings Panel on Economic Activity

🔋 Van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014)

On Asymptotically Optimal Confidence Regions and Tests for High-dimensional Models

Annals of Statistics, 42(3), 1166-1202

Wu, W. B. (2005)

Nonlinear System Theory: Another Look at Dependence Proceedings of the National Academy of Sciences of the United States of America, 102, 14150-14154

References

References

Zhang, C.-H. and Zhang, S. S. (2014)

Confidence Intervals for Low Dimensional Parameters in High Dimensional Linear Models

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 217-242

📄 Zhang, D. and Wu, W. B. (2017) Gaussian Approximation for High Dimensional Time Series The Annals of Statistics, 45(5), 2895-1919

Zhang, J. L., Härdle, W. K., Chen, C. Y. and Bommes, E. (2016)

Distillation of News Flow into Analysis of Stock Reactions Journal of Business & Economic Statistics, 34(4), 547-563

