# Crypto volatility forecasting: ML vs GARCH

Bruno Spilak Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E.-Center for Applied Statistics and Economics

International Research Training Group

Humboldt-Universität zu Berlin Ivb.wiwi.hu-berlin.de

www.case.hu-berlin.de

irtg1792.hu-berlin.de







# Why predicting realized volatility ?

- Trading volatility derivative products (VIX, VDAX, Forex, volatility swaps)
- Build trading strategies with options
- Dynamic risk management
- Crypto market is highly volatile: need for efficient risk management
- Opportunities for new financial products
- ETF on VCRIX ?







#### **Econometrics**

Observe price

make assumptions on its dynamics

■ Find a formula to price an instrument

#### **Machine learning**

☑ Observe price

□ Feed it into a neural network (kernel machine, random forest)

• We got a "model" !



3

### ML Machine Learning





W Phillips (curve), hydro engineer/economist, MONIAC Monetary National Income Analogue Computer



work.caltech.edu/library/181.html

#### **Econometrics**

- Strong assumptions
- Structural breaks
- Fat tails, skewness, long memory

#### **Machine learning**

- Not enough data
- ☑ Imbalance class problems
- Blackbox



# ML vs GARCH



How to use econometrics to make the black box transparent ?

white while the first of the

# Risk management

- $\Box$  Prediction of future extreme loss ( $X_t$ ) rather than overshooting or undershooting
- Build metric for undershooting evaluation
- Build metric for overshooting evaluation
- Overshooting of  $\widehat{\operatorname{VaR}}_t \operatorname{GARCH}$  forecast
- Undershooting of  $\widehat{\operatorname{VaR}}_t$  forecast as historical  $\operatorname{VaR}_t$

How to use ML and ETRIX on top of simple strategies in order to build a well calibrated risk management?





**Undershooting** and **Overshooting** risk managers for the **loss** 

If we could predict all exceedances over the undershooting risk manager, we would have a perfect strategy



### Tail Loss for risk management

• Invest when tail estimator ( $\widehat{\text{VaR}}_t$ ) is small

• De-invest when  $\widehat{\operatorname{VaR}}_t$  is large

 $\square$  **P**<sub>*t*</sub>, position size at time *t*, (capital invested in risky asset):

$$\mathbf{P}_t = k / \widehat{\mathbf{VaR}}_t^p$$

Where *k* is the budgeted risk (predefined) per trade and *p* is used to penalise extreme losses (for now p=1)

Goal: reduce drawdowns without losing trading opportunities



## Tail Loss for risk management



| Metrics               | Undershooting | Overshooting |
|-----------------------|---------------|--------------|
| Average position size | 0.91          | 0.69         |
| Average gains         | 0.008         | 0.006        |
| Average loss          | 0.008         | 0.006        |
| Max gain              | 0.109         | 0.076        |
| Max loss              | 0.079         | 0.059        |

**Undershooting** and **Overshooting** risk managers for the **btc return** with position sizing 20170801 - 20180501



## Outline

- 1. ETRIX
- 2. ML
- 3. ML vs GARCH
- 4. Results for two risk management strategies

11

### Presentation of models

### • ARIMA(p, d, q):

$$\Delta y_t = a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + \ldots + a_p \Delta y_{t-p} \\ + \varepsilon_t + b_1 \varepsilon_{t-1} + b_2 \varepsilon_{t-2} + \ldots + b_q \varepsilon_{t-q}$$
  
Where  $\Delta y_t = y_t - y_{t-1}$  is the differenced series and  $\varepsilon_t \sim N(0, \sigma^2)$   
 $\bigcirc$  GARCH $(p, q)$ :

$$\begin{split} \varepsilon_t &= Z_t \sigma_t \\ Z_t &\sim N(0,1) \\ \sigma_t^2 &= \omega + \sum_{i=1}^p \beta_i \sigma_{t-i}^2 + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2 \\ \end{split}$$
 Where  $\omega > 0$ ,  $\alpha_i \ge 0$ ,  $\beta_i \ge 0$ ;  $\sum_{i=1}^p \beta_i + \sum_{j=1}^q \alpha_j < 1$ 



# Extreme value theory (EVT) for ETRIX

GARCH captures time-varying volatility behaviour

 $\bigcirc$  GARCH innovation ( $Z_t$ ) heavy tails

Need to take into consideration extreme tail events



# Extreme value theory (EVT) for ETRIX

- $\boxdot GARCH EVT(p,q) \text{ approach (N. Packham et al (2016))}$
- ⊡ Fit simple GARCH on loss (negative return)  $r_t = Z_t \sigma_t$  via Quasi
  - Maximum Likelihood Estimation (QMLE)
- Get volatility forecast  $\hat{\sigma}_t$  and residuals  $\varepsilon_t = r_t / \hat{\sigma}_t$
- $\hfill \square$  Define threshold u corresponding to a certain quantile of loss
- Fit  $\varepsilon_t$ , where  $\varepsilon_t ≥ u$  to new distribution: Generalized Pareto distribution (GPD)



### Generalized Pareto Distribution (GPD)

$$G_{\xi,\beta}(x) = \begin{cases} 1 - (1 + \xi x/\beta)^{-1/\xi}, & \xi \neq 0\\ 1 - \exp^{-x/\beta}, & \xi = 0 \end{cases}$$

- where  $\beta > 0, \, x \geq 0$  , when  $\xi \geq 0$  and  $0 < x \leq \, \beta / \xi$  , when  $\xi < 0$ 
  - Describes max domain of attraction McNeil et al., 2005
  - Pareto distribution is heavy-tailed, exponential distribution is light-tailed and Pareto type II distribution is short-tailed
  - GPD as proxy of excess distribution (Pickands, Balkema, de Haan Theorem)



# **ETRIX for Risk Management**

#### □ Fit GARCH model to data

Fit GARCH innovations to various distributions (normal, GPD)
 Build mean \$\hat{\mu}\_{t+1}\$ and volatility \$\hat{\sigma}\_{t+1}\$ forecast from estimated GARCH
 Forecast \$\hat{VaR}\_t^{(q)} = VaR\_t^{(q)}(X\_{t+1}) = \hat{\mu}\_{t+1} + \hat{\sigma}\_{t+1} \cdot VaR\_t^{(q)}(Z)\$

where

- $\operatorname{VaR}_t^q(Z) = F^{-1}(q)$  where *F* is the distribution function of *Z*
- For ex: if  $Z \sim GPD(u, \sigma, \xi)$ ,

$$\operatorname{VaR}_{t}^{q}(Z) = u + \sigma/\xi \left[ \left( (1-q)/(\zeta_{u}) \right)^{-\xi} - 1 \right]$$



### Recurrent neural network

$$y_t = f_\theta(X_t)$$

Here f<sub>θ</sub> is a neural network
 hyper parameters (depth, width, activation function)
 Wrec
 Win



 $y_t = f_{\theta}(y_{t-1}, x_t) = W_{rec}\sigma(x_{t-1}) + W_{in}x_t + b,$ where  $\sigma$  is the sigmoid activation function



### Activation functions



where where the state of the st

### LSTM memory block

- Self-connected memory LSTM cells: superset of RNN
- Hidden units can see their previous output
- Sequential memory

- □ Long term dependencies
- □ Three multiplicative units: input, output, forget gates (write, read, reset)





### Specific task for deep learning

• Build training data  $\{(X_1, y_1), \dots, (X_n, y_n)\}$ 

Input:  $X_t$  for a given window size *I*:  $X_t = (\frac{p_{t-l+1}}{p_{t-l}}, \dots, \frac{p_{t+1}}{p_t})$ 

 $\bigcirc$  *y<sub>t</sub>* depends on risk management strategy









Figure:  $histVaR_t^{(0.1)}$  hourly forecast and btc **returns** 



# Dynamic volatility forecast for ML VaR calibration

Include future information from training set to build target variable
 Target variable:

$$y_{t} = \begin{cases} 0, & \text{if } \widehat{\text{hist}\text{Va}}\mathbb{R}_{t}^{q} \leq r_{t+1} \leq \widehat{\text{hist}\text{Va}}\mathbb{R}_{t}^{1-q}, \\ 1, & \text{if } r_{t+1} \geq \widehat{\text{hist}\text{Va}}\mathbb{R}_{t}^{1-q}, \\ 2, & \text{if } r_{t+1} \leq \widehat{\text{hist}\text{Va}}\mathbb{R}_{t}^{q} \end{cases}$$

• Define  $J_t^w$  as:

$$J_t^w = \begin{cases} 0, & \text{if } y_t = 0 \text{ or } y_t = 1\\ 1 & \text{if } y_t = 2 \end{cases}$$

Can we accurately predict  $histVaR_t^q$  exceedances ?



## **NN** Training

□ Loss function: cross-entropy

• Highly imbalanced class by definition (through threshold q)

□ To make training more efficient: weighted loss

23

### Hyperparameter tuning

#### ■ 10-fold crossvalidation

□ 1M moving window

# Robust evaluation of model

2016-01-01

2018-12-31



# GARCH VaR calibration backtest measure

Build VaR forecast, de-investment in period of high  $\widehat{\operatorname{VaR}}_{t}^{0.1}$ 

■  $\widehat{\operatorname{VaR}}_{t}$  violation (exceedance):  $\Psi_{t}^{(1)} = I_{t}(r_{t} \leq \widehat{\operatorname{VaR}}_{t-1}^{0.1})$ 

$$\operatorname{RCH} = \begin{cases} 1 & \text{if } r_{t+1} \leq \widehat{\operatorname{histVaR}}_t^{0.1} \leq \widehat{\operatorname{VaR}}_t^{0.1} \end{cases}$$

Is  $\widehat{\operatorname{VaR}}_{t}^{0.1}$  a better estimator than ML for  $\widehat{\operatorname{histVaR}}_{t}^{0.1}$  exceedances ?



## ML VaR calibration backtest measure

- Class 2 is the tail event of interest
- Compare corresponding One vs All confusion matrix by
  - grouping other classes
- Type I error: wrongly classified as tail event (false positive:
  Overshooting)
- Type II error: wrongly classified as normal event (false negative:
  - **Undershooting**)
- Type II error out-of-the-blue event (N. Packham et al (2016))

Confusion matrix 
$$(J^w, \hat{J}^w) = CM_w^{ml}$$
  
 $\widehat{histVaR}_t^{0.1}$  violation:  $FN^{ml} = CM_w^{ml}[2, 1]$ 



ML prediction

# Metrics for undershooting evaluation: type II errors

■ 
$$\widehat{\operatorname{VaR}}_{t}^{0.1}$$
 calibration, average exceedances:  $\Psi^{(1)} = 1/T \sum_{t=1}^{T} \Psi_{t}^{(1)}$ 

• Correspond to  $FNR = 1/T \cdot FN^{ml}$  (false negative) for the ML case

■ Both metrics must be smaller than for good calibration of tail events for the level q = 0.1



# Metrics for overshooting evaluation: type I errors

Overshooting

 With ML minimising type II error is very easy (predict positive class all the time)

□ If we predict a drop ( $\widehat{histVaR}_t^{0.1} \ge \widehat{VaR}_t^{0.1}$  or  $\widehat{J}_t^w = 1$ ), set position to 0, otherwise apply tail loss with  $\widehat{histVaR}_t^{0.1}$ 

■ If type I error is high, we will miss trading opportunities

Compare missed opportunities between models



# Data

- Intraday data: 1h close price of Bitcoin (BTC)
- □ 20160101 to 20181231 (26305 observations)
- □ train (20160101/20180930)/validation (20181001/20181231)
- Keep the rest for later out-of-sample test
- Retrain every day



### Data



Figure: BTC log returns



Figure: QQ-plot of BTC log returns





30

# ARIMA

ML vs GARCH



□ Chen et al (2017) A first econometric analysis of the CRIX family

Box-Jenkins method to estimate ARIMA(3,0,1) with AIC



Figure: ACF and PACF of squared residuals of ARIMA(3,0,1)



 $\underline{\mathscr{D}}$  Springer

ürgen Franke Volfgang Karl Härdle

Q

Statistics of

Financial Markets

# Final GARCH(1,2) model



Figure: QQ-plot of residuals of GARCH(1,2)



# Final EVTGARCH(1,2) model



Theoretical Quantiles

Figure: QQ-plot GARCH(1,2) residuals for GPD distribution (sample below 10% threshold, u = -1.04



# **RESULTS EVT**



# **DL** Architecture

One LSTM layer with 4 neurons

One Dense layer with 2 neurons with tanh activation function

One output layer with softmax activation function



$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$





# LSTM classification performance



Figure: ROC curve for **class 0 vs 1 (AUC 0.64)**, **class 0 vs 2 (AUC 0.56)**, **class 1 vs 2 (AUC 0.63)** 

ML vs GARCH

Figure: ROC curve for class 1 vs (0,2) (AUC 0.60), class 0 vs (1,2) (AUC 0.61), class 2 vs (0,1) (AUC 0.57)

Better classification for right tail events than left ones



# Undershooting



## Undershooting correction

| Model               | Metric                   | Exceedances (%) |
|---------------------|--------------------------|-----------------|
| $histVaR_t^{0.1}$   | $\Psi^{(1)}$             | 0.129           |
| VaR <sub>norm</sub> | $J_t^w(GARCH)$           | 0.014           |
| VaR <sub>evt</sub>  | $J_t^w(\text{EVTGARCH})$ | 0.010           |
| LSTM                | FNR                      | 0.056           |

Table: Missed drops (exceedance) where  $r_{t+1} \leq histVaR_t^{0.1}$  for different models

ETRIX is better at predicting drops with  $\widehat{VaR}_{t}^{0.1}$  than LSTM

ETRIX gives good correction of simple RM based on  $histVaR_t$  for undershooting

### **Overshooting correction**

Apply corrected tail loss strategy with different models

□ Compare strategy return to real return when r<sub>t+1</sub> ≥ VaR<sup>0.1</sup><sub>t</sub> for ETRIX or J<sup>w</sup><sub>t</sub> = 0 for ML
 □ We know, P<sub>t</sub> = 1/(VaR<sup>t</sup><sub>t</sub> + 1), thus we want to have VaR<sup>p</sup><sub>t</sub> close to 0 when we have positive returns



### **Overshooting correction**

■ Apply corrected tail loss strategy based on VaR<sup>0.1</sup><sub>t</sub>(GARCH) (GARCH-STRAT), VaR<sup>0.1</sup><sub>t</sub>(EVTGARCH) (EVTGARCH-STRAT) and  $\hat{J}_t^w$  (ML-STRAT)

 $\odot$  Build corresponding position size at time *t*,  $P_t$ 

• Compare 
$$\overline{\mathbf{P}}^{(m)} = 1/T \sum_{t=1}^{T} \mathbf{P}_{t}^{m}$$
 for each model when  $r_{t} \ge 0$ 



## **Overshooting correction**

| Model    | P (%) |
|----------|-------|
| GARCH    | 0.16  |
| EVTGARCH | 0.12  |
| ML-STRAT | 0.53  |

Table: Average position size for positive return

GARCH overestimate risk in period of positive returns EVTGARCH is the most conservative model



### What is best?



 $\widehat{\text{VaR}}_{t}^{0.1}(\text{GARCH}), \widehat{\text{VaR}}_{t}^{0.1}(\text{EVTGARCH})$  and btc



### Take home message

 ETRIX outperforms simple ML model at predicting extreme loss for a predefined level (lower type II error): conservative strategy

 ML outperforms ETRIX in terms of overshooting extreme loss for a predefined level (lower type I error): aggressive strategy

Which model is the best ? Depends on the investor's goal and market condition



### Future work

Compare with CaViaR

Hyperparameter tuning: ML performance can be greatly improved

Different horizon forecasts



### References

Chen S, Chen CYH, Härdle WK, Lee TM, Ong B (2017) A first econometric analysis of the CRIX family, in Handbook of Blockchain, Digital Finance and Inclusion, Vol 1, Cryptocurrency, FinTech, InsurTech, and Regulation, David LEE Kuo Chuen Robert Deng, eds. ISBN: 9780128104415, Academic Press, Elsevier

Coles S. (2001) An Introduction to Statistical Modelling of Extreme Values, Springer

Franke J, Härdle WK, Hafner CM (2019) Statistics of Financial Markets - An introduction, 5th edition, Springer Verlag

Packham N, Papenbrock J, Schwendner P, Woebbeking F (2017), Tail-Risk Protection Trading Strategies, Quantitative Finance, 17 (5), 729-744, <u>https://doi.org/10.1080/14697688.2016.1249512</u>

Kjellson, B. (2013), Forecasting Expected Shortfall: An Extreme Value Approach, ISSN 1654-6229, <u>https://github.com/BenjaK/Thesis2013</u>

Bee, M., Trapin, L. (2018), Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review, Risks, 6 (2), 1-16

Wong, Z.Y., Chin W.C., Tan S.H. (2016) Daily value-at-risk modelling and forecast evaluation: The realised volatility approach, The Journal of Finance and Data Science



# Crypto volatility forecasting: ML vs GARCH

Bruno Spilak Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E.-Center for Applied Statistics and Economics

International Research Training Group

Humboldt-Universität zu Berlin Ivb.wiwi.hu-berlin.de

www.case.hu-berlin.de

irtg1792.hu-berlin.de

46











# **GARCH** parameters

| Parameters | Average | std    |
|------------|---------|--------|
| ar1        | 0.41    | 0.028  |
| ar2        | 0.051   | 0.01   |
| ar3        | -0.0024 | 0.0013 |
| ma1        | -0.59   | 0.037  |
| alpha1     | -0.031  | 0.0052 |
| beta1      | 0.54    | 0.0322 |
| gamma1     | 0.28    | 0.0066 |
| mu         | 0       | 0      |

Table 3: Parameters stability



# LSTM equations

Input gate,  $i_t$  at time t and candidate cell state,  $C_t^*$ :

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$
  
$$C_t^* = \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c)$$

Activation of the memory cells' forget gate,  $f_t$  at time *t* and new state,  $C_t$ :

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$
  
$$C_t = f_t C_{t-1} + i_t C_t^*$$

Activation of the cells' output gate,  $o_t$ , at time tand their final outputs,  $h_t$ :

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$$
  
$$h_t = o_t \tanh(C_t)$$

where  $W_{ab}$  is the weighted matrix from gate *a* to gate *b* 



