Crypto volatility forecasting: ML vs GARCH

Bruno Spilak
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E.-Center for Applied Statistics and Economics
International Research Training Group
Humboldt-Universität zu Berlin
lvb.wiwi.hu-berlin.de
www.case.hu-berlin.de
irtg1792.hu-berlin.de
Why predicting realized volatility?

- Trading volatility derivative products (VIX, VDAX, Forex, volatility swaps)
- Build trading strategies with options
- Dynamic risk management
- Crypto market is highly volatile: need for efficient risk management
- Opportunities for new financial products
- ETF on VCRIX?
ML vs GARCH

Econometrics
- Observe price
- Make assumptions on its dynamics
- Find a formula to price an instrument

Machine learning
- Observe price
- Feed it into a neural network (kernel machine, random forest)
- We got a “model”!
ML Machine Learning

work.caltech.edu/library/181.html

W Phillips (curve), hydro engineer/economist, MONIAC
Monetary National Income Analogue Computer

ML vs GARCH
ML vs GARCH

Econometrics
- Strong assumptions
- Structural breaks
- Fat tails, skewness, long memory

Machine learning
- Not enough data
- Imbalance class problems
- Blackbox
Motivation

ML vs GARCH

- Predictive accuracy
- Robustness
- Computation
- Flexibility
- Interpretability

How to use econometrics to make the black box transparent?
Risk management

- Prediction of future extreme loss (X_t) rather than overshooting or undershooting
- Build metric for undershooting evaluation
- Build metric for overshooting evaluation
- Overshooting of $\hat{\text{VaR}}_t$ GARCH forecast
- Undershooting of $\hat{\text{VaR}}_t$ forecast as historical VaR_t

How to use ML and ETRIX on top of simple strategies in order to build a well calibrated risk management?
Over/undershooting

If we could predict all exceedances over the undershooting risk manager, we would have a perfect strategy.
Tail Loss for risk management

- Invest when tail estimator \hat{VaR}_t is small
- De-invest when \hat{VaR}_t is large
- P_t, position size at time t, (capital invested in risky asset):

$$P_t = \frac{k}{\hat{VaR}_t^p}$$

Where k is the budgeted risk (predefined) per trade and p is used to penalise extreme losses (for now $p=1$)

Goal: reduce drawdowns without losing trading opportunities
Tail Loss for risk management

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Undershooting</th>
<th>Overshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average position size</td>
<td>0.91</td>
<td>0.69</td>
</tr>
<tr>
<td>Average gains</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td>Average loss</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td>Max gain</td>
<td>0.109</td>
<td>0.076</td>
</tr>
<tr>
<td>Max loss</td>
<td>0.079</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Undershooting and Overshooting risk managers for the btc return with position sizing 20170801 - 20180501
Outline

1. ETRIX
2. ML
3. ML vs GARCH
4. Results for two risk management strategies
Presentation of models

- **ARIMA**(p, d, q) :

\[
\Delta y_t = a_1 \Delta y_{t-1} + a_2 \Delta y_{t-2} + \ldots + a_p \Delta y_{t-p} \\
+ \varepsilon_t + b_1 \varepsilon_{t-1} + b_2 \varepsilon_{t-2} + \ldots + b_q \varepsilon_{t-q}
\]

Where $\Delta y_t = y_t - y_{t-1}$ is the differenced series and $\varepsilon_t \sim N\left(0, \sigma^2\right)$

- **GARCH**(p, q) :

\[
\varepsilon_t = Z_t \sigma_t \\
Z_t \sim N(0,1)
\]

\[
\sigma_t^2 = \omega + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^2 + \sum_{j=1}^{q} \alpha_j \varepsilon_{t-j}^2
\]

Where $\omega > 0$, $\alpha_i \geq 0$, $\beta_i \geq 0$; $\sum_{i=1}^{p} \beta_i + \sum_{j=1}^{q} \alpha_j < 1$
Extreme value theory (EVT) for ETRIX

- **GARCH** captures time-varying volatility behaviour
- **GARCH innovation** (Z_t) heavy tails
- Need to take into consideration extreme tail events
Extreme value theory (EVT) for ETRIX

- GARCH – EVT\((p, q)\) approach (N. Packham et al (2016))

- Fit simple GARCH on loss (negative return) \(r_t = Z_t \sigma_t\) via Quasi Maximum Likelihood Estimation (QMLE)

- Get volatility forecast \(\hat{\sigma}_t\) and residuals \(\varepsilon_t = r_t / \hat{\sigma}_t\)

- Define threshold \(u\) corresponding to a certain quantile of loss

- Fit \(\varepsilon_t\), where \(\varepsilon_t \geq u\) to new distribution: Generalized Pareto distribution (GPD)
Generalized Pareto Distribution (GPD)

\[G_{\xi, \beta}(x) = \begin{cases}
1 - (1 + \frac{\xi x}{\beta})^{-1/\xi}, & \xi \neq 0 \\
1 - \exp^{-x/\beta}, & \xi = 0
\end{cases} \]

where \(\beta > 0, \ x \geq 0, \) when \(\xi \geq 0 \) and \(0 < x \leq -\beta/\xi, \) when \(\xi < 0 \)

- Describes max domain of attraction McNeil et al., 2005
- Pareto distribution is heavy-tailed, exponential distribution is light-tailed and Pareto type II distribution is short-tailed
- GPD as proxy of excess distribution (Pickands, Balkema, de Haan Theorem)
ETRIX for Risk Management

- Fit GARCH model to data
- Fit GARCH innovations to various distributions (normal, GPD)
- Build mean $\hat{\mu}_{t+1}$ and volatility $\hat{\sigma}_{t+1}$ forecast from estimated GARCH
- Forecast $\hat{\text{VaR}}_t^{(q)} = \text{VaR}_t^{(q)}(X_{t+1}) = \hat{\mu}_{t+1} + \hat{\sigma}_{t+1} \cdot \text{VaR}_t^{(q)}(Z)$

where

- $\text{VaR}_t^{q}(Z) = F^{-1}(q)$ where F is the distribution function of Z
- For ex: if $Z \sim \text{GPD}(u, \sigma, \xi)$,
 \[\text{VaR}_t^{q}(Z) = u + \sigma/\xi \left[\left((1 - q)/(\xi_u) \right)^{-\xi} - 1 \right] \]
Recurrent neural network

\[y_t = f_\theta(X_t) \]

- Here \(f_\theta \) is a neural network
- hyper parameters (depth, width, activation function)
- Estimate the weights with BPTT

\[y_t = f_\theta(y_{t-1}, x_t) = W_{rec} \sigma(x_{t-1}) + W_{in} x_t + b, \]
where \(\sigma \) is the sigmoid activation function
Activation functions

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

softmax

hinge

$$ReLU(x) = \max(0, x)$$

ML vs GARCH
LSTM memory block

- Self-connected memory LSTM cells: superset of RNN
- Hidden units can see their previous output
- Sequential memory
- Long term dependencies
- Three multiplicative units: input, output, forget gates (write, read, reset)
Specific task for deep learning

- Build training data \{ (X_1, y_1), \ldots, (X_n, y_n) \}
- Input: \(X_t \) for a given window size \(l \): \(X_t = (\frac{p_{t-l+1}}{p_{t-l}}, \ldots, \frac{p_{t+1}}{p_t}) \)
- \(y_t \) depends on risk management strategy
$\text{histVaR}_{t}^{(0.1)}$ undershoots risk

Exceedances: 12%

Figure: $\text{histVaR}_{t}^{(0.1)}$ hourly forecast and btc returns
Dynamic volatility forecast for ML VaR calibration

- Include future information from training set to build target variable
- Target variable:

\[
y_t = \begin{cases}
0, & \text{if } \hat{\text{histVaR}}_t^q \leq r_{t+1} \leq \hat{\text{histVaR}}_t^{1-q}, \\
1, & \text{if } r_{t+1} \geq \hat{\text{histVaR}}_t^{1-q}, \\
2, & \text{if } r_{t+1} \leq \hat{\text{histVaR}}_t^q
\end{cases}
\]

- Define \(J_t^w \) as:

\[
J_t^w = \begin{cases}
0, & \text{if } y_t = 0 \text{ or } y_t = 1 \\
1, & \text{if } y_t = 2
\end{cases}
\]

Can we accurately predict \(\hat{\text{histVaR}}_t^q \) exceedances?
NN Training

- Loss function: cross-entropy
- Highly imbalanced class by definition (through threshold q)
- To make training more efficient: weighted loss
Hyperparameter tuning

- 10-fold crossvalidation
- 1M moving window
- Robust evaluation of model

These are 4 folds

2016-01-01

2018-01-01

2018-09-30

2018-10-31

2018-11-30

2018-12-31

Data

Train

Test

Train

Test

Train

Test

Train

Test

ML vs GARCH
GARCH VaR calibration backtest measure

- Build VaR forecast, de-investment in period of high $\hat{\text{VaR}}_{t}^{0.1}$

- $\hat{\text{VaR}}_{t}$ violation (exceedance):
 \[
 \psi^{(1)}(t) = I_t(r_t < \hat{\text{VaR}}_{t-1}^{0.1})
 \]

- Define J^w_t(GARCH) as:
 \[
 J^w_t(\text{GARCH}) = \begin{cases}
 0, & \text{if } \hat{\text{VaR}}_{t}^{0.1} \leq \text{histVaR}_{t}^{0.1} \leq r_{t+1} \\
 1, & \text{if } r_{t+1} \leq \text{histVaR}_{t}^{0.1} \leq \hat{\text{VaR}}_{t}^{0.1}
 \end{cases}
 \]

Is $\hat{\text{VaR}}_{t}^{0.1}$ a better estimator than ML for $\text{histVaR}_{t}^{0.1}$ exceedances?
ML VaR calibration backtest measure

- Class 2 is the tail event of interest
- Compare corresponding One vs All confusion matrix by grouping other classes
- Type I error: wrongly classified as tail event (false positive: Overshooting)
- Type II error: wrongly classified as normal event (false negative: Undershooting)
- Type II error out-of-the-blue event (N. Packham et al (2016))

Confusion matrix \(\begin{pmatrix} J^w, \hat{J}^w \end{pmatrix} = \text{CM}^\text{ml}_w \)

\(\text{histVaR}^0.1_t \) violation: \(\text{FN}^\text{ml} = \text{CM}^\text{ml}_w[2,1] \)
Metrics for undershooting evaluation: type II errors

- $\hat{\text{VaR}}_{t}^{0.1}$ calibration, average exceedances: $\Psi^{(1)} = 1/T \sum_{t=1}^{T} \Psi_{t}^{(1)}$

- Correspond to $\text{FNR} = 1/T \cdot \text{FN}^{ml}$ (false negative) for the ML case

- Both metrics must be smaller than for good calibration of tail events for the level $q = 0.1$
Metrics for overshooting evaluation: type I errors

- With ML minimising type II error is very easy (predict positive class all the time)

- If we predict a drop ($\text{histVaR}_{0.1}^t \geq \text{VaR}_{0.1}^t$ or $\hat{J}_t^w = 1$), set position to 0, otherwise apply tail loss with $\text{histVaR}_{0.1}^t$

- If type I error is high, we will miss trading opportunities

Compare missed opportunities between models
Data

- Intraday data: 1h close price of Bitcoin (BTC)
- 20160101 to 20181231 (26305 observations)
- train (20160101/20180930)/validation (20181001/20181231)
- Keep the rest for later out-of-sample test
- Retrain every day

price (USD) Market Cap
20190121 - 20190128
coinmarketcap.com
Results

Data

Figure: BTC log returns

Figure: QQ-plot of BTC log returns

ML vs GARCH
ARIMA

- Classical methodology, Franke et al (2019)
- Chen et al (2017) A first econometric analysis of the CRIX family
- Box-Jenkins method to estimate $ARIMA(3,0,1)$ with AIC

Figure: ACF and PACF of squared residuals of $ARIMA(3,0,1)$
Final GARCH(1,2) model

Figure: QQ-plot of residuals of GARCH(1,2)
Final EVT-GARCH(1,2) model

Figure: QQ-plot GARCH(1,2) residuals for GPD distribution (sample below 10% threshold, $u = -1.04$)
RESULTS EVT

Figure: Rolling (6 months) 10% VaR hourly forecast with \text{normal} and \text{GPD} distributions for the innovations

\text{VaR GARCH Exceedances: } \Psi^{(1)}_{\text{evt}} = 0.07 < 0.1

\text{VaR EVT GARCH Exceedances: } \Psi^{(1)}_{\text{norm}} = 0.06 < 0.1

\text{Overshooting ?}
DL Architecture

- One LSTM layer with 4 neurons
- One Dense layer with 2 neurons with tanh activation function
- One output layer with softmax activation function

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\[\text{tanh}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]
LSTM classification performance

Figure: ROC curve for class 0 vs 1 (AUC 0.64), class 0 vs 2 (AUC 0.56), class 1 vs 2 (AUC 0.63)

Figure: ROC curve for class 1 vs (0,2) (AUC 0.60), class 0 vs (1,2) (AUC 0.61), class 2 vs (0,1) (AUC 0.57)

Better classification for right tail events than left ones
Results

Undershooting

Figure: Exceedances of $\hat{\text{VaR}}_{t}^{0.1}$ with normal and GDP distribution and of LSTM compared to $\text{histVaR}_{t}^{0.1}$

ML vs GARCH
Undershooting correction

<table>
<thead>
<tr>
<th>Model</th>
<th>Metric</th>
<th>Exceedances (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{histVaR}_t^{0.1}$</td>
<td>$\psi^{(1)}$</td>
<td>0.129</td>
</tr>
<tr>
<td>Var_{norm}</td>
<td>$J_t^w (\text{GARCH})$</td>
<td>0.014</td>
</tr>
<tr>
<td>Var_{evt}</td>
<td>$J_t^w (\text{EVTGARCH})$</td>
<td>0.010</td>
</tr>
<tr>
<td>LSTM</td>
<td>FNR</td>
<td>0.056</td>
</tr>
</tbody>
</table>

Table: Missed drops (exceedance) where $r_{t+1} \leq \text{histVaR}_t^{0.1}$ for different models

ETRIX is better at predicting drops with $\text{Var}_t^{0.1}$ than LSTM

ETRIX gives good correction of simple RM based on histVaR_t for undershooting
Overshooting correction

- Apply corrected tail loss strategy with different models

- Compare strategy return to real return when \(r_{t+1} \geq \hat{\text{VaR}}_t^{0.1} \) for ETRIX or \(J_t^w = 0 \) for ML

- We know, \(P_t = 1/(\hat{\text{VaR}}_t + 1) \), thus we want to have \(\hat{\text{VaR}}_t^p \) close to 0 when we have positive returns
Overshooting correction

- Apply corrected tail loss strategy based on $\overline{\text{VaR}}_{t}^{0.1}(\text{GARCH})$ (GARCH-STRAT), $\overline{\text{VaR}}_{t}^{0.1}(\text{EVTGARCH})$ (EVTGARCH-STRAT) and \hat{J}_{t}^{w} (ML-STRAT)

- Build corresponding position size at time t, P_{t}

- Compare $\overline{P}^{(m)} = \frac{1}{T} \sum_{t=1}^{T} P_{t}^{m}$ for each model when $r_{t} \geq 0$
Overshooting correction

<table>
<thead>
<tr>
<th>Model</th>
<th>(\bar{P}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH</td>
<td>0.16</td>
</tr>
<tr>
<td>EVT GARCH</td>
<td>0.12</td>
</tr>
<tr>
<td>ML-STRAT</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table: Average position size for positive return

GARCH overestimate risk in period of positive returns

EVTGARCH is the most conservative model
What is best?

Figure: Corrected tail loss strategy return for **GARCH-STRAT**, **EVTGARCH-STRAT**, **ML-STRAT** compared to original $\text{histVaR}_{t}^{0.1}$, $\overline{\text{VaR}}_{t}^{0.1}(\text{GARCH})$, $\overline{\text{VaR}}_{t}^{0.1}(\text{EVTGARCH})$ and **btc**

ML vs GARCH
Take home message

- ETRIX outperforms simple ML model at predicting extreme loss for a predefined level (lower type II error): conservative strategy

- ML outperforms ETRIX in terms of overshooting extreme loss for a predefined level (lower type I error): aggressive strategy

- Which model is the best? Depends on the investor’s goal and market condition
Future work

- Compare with CaViaR

- Hyperparameter tuning: ML performance can be greatly improved

- Different horizon forecasts
References

ML vs GARCH
Crypto volatility forecasting: ML vs GARCH

Bruno Spilak
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E.-Center for Applied Statistics and Economics
International Research Training Group
Humboldt-Universität zu Berlin
lvb.wiwi.hu-berlin.de
www.case.hu-berlin.de
irtg1792.hu-berlin.de
GARCH parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Average</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar1</td>
<td>0.41</td>
<td>0.028</td>
</tr>
<tr>
<td>ar2</td>
<td>0.051</td>
<td>0.01</td>
</tr>
<tr>
<td>ar3</td>
<td>-0.0024</td>
<td>0.0013</td>
</tr>
<tr>
<td>ma1</td>
<td>-0.59</td>
<td>0.037</td>
</tr>
<tr>
<td>alpha1</td>
<td>-0.031</td>
<td>0.0052</td>
</tr>
<tr>
<td>beta1</td>
<td>0.54</td>
<td>0.0322</td>
</tr>
<tr>
<td>gamma1</td>
<td>0.28</td>
<td>0.0066</td>
</tr>
<tr>
<td>mu</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: Parameters stability
Appendix

LSTM equations

Input gate, i_t at time t and candidate cell state, C_t^*:

$$ i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i) $$

$$ C_t^* = \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c) $$

Activation of the memory cells’ forget gate, f_t at time t and new state, C_t:

$$ f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f) $$

$$ C_t = f_tC_{t-1} + i_tC_t^* $$

Activation of the cells’ output gate, o_t at time t and their final outputs, h_t:

$$ o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o) $$

$$ h_t = o_t \tanh(C_t) $$

where W_{ab} is the weighted matrix from gate a to gate b