# SONIC: Social Networks with Influencers and Communities

Cathy Y.H. Chen Wolfgang Karl Härdle Yegor Klochkov



Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de



## Analysis of networks

- Social network produces high-dimensional time series
  - ▶ Daily sentiment as quantification of one's opinion
  - Missing observations
- Adjacency matrix must be estimated
- Problem: network size is immense
- Smart data analytics based on StockTwits



#### StockTwits sentiment



Figure 1: https://www.stocktwits.com message examples



## Sentiment weight: tf · idf scheme

the bown

For each term t,

$$SW(t) = \frac{tf \cdot idf_{pos}(t) - tf \cdot idf_{neg}(t)}{tf \cdot idf_{pos}(t) + tf \cdot idf_{neg}(t)}$$

where

$$tf \cdot idf_{pos}(t) = freq_{pos}(t) \cdot \log \frac{\text{positive messages}}{\text{positive occurences of } t}$$

$$tf \cdot idf_{neg}(t) = freq_{neg}(t) \cdot \log \frac{\text{negative messages}}{\text{negative occurences of } t}$$



## Crypto-specific terms

| Term         | Sentiment weight |
|--------------|------------------|
| 129          | 0.90             |
| <u> </u>     | -0.91            |
|              | -0.98            |
| hodl         | 0.32             |
| hodl!        | 0.64             |
| hackers      | -0.83            |
| miner        | 0.62             |
| tulip mania  | -0.94            |
| bitcoin 😂    | -0.73            |
| scam         | -0.77            |
| f***ing scam | -0.86            |

CYH Chen Dictionary



#### **@AAPL**



Figure 2: SWs constructed from @AAPL messages



### **@BTC**



Figure 3: SWs constructed from @BTC messages



## Modeling opinion networks

 $\odot$  Sentiment weights (SW) for N users during T days

$$Z_{it} = ext{average of } SW$$
s for user  $i$  during day  $t$ 
 $Z_t \in \mathbb{R}^N$ 

Missing observations

$$Z_{it} = \delta_{it} Y_{it},$$
 i.i.d.  $\delta_{it} \sim \text{Bernoulli}(p_i)$  where  $Y_{it}$  is the *opinion*,  $Z_{it}$  — *expressed opinion*



## Modeling opinion networks

Network interactions through VAR

$$Y_t = \Theta Y_{t-1} + W_t, \qquad \mathsf{E}[W_t | \mathcal{F}_{t-1}] = 0,$$
  
 $\Theta \in \mathbb{R}^{N \times N},$ 

- Unknown adjacency matrix
- ► Curse of dimensionality  $T \lesssim N$
- Zhu, X., Pan, R., Li, G., Liu, Y. and Wang, H. Network vector autoregression Annals of Statistics, 2017

→ more Literature

 $Theta_{ij} = \beta^* A_{ij}/sum(A_{ik}, k=1..N), known A!$ 



#### Influencer

□ Relationships expressed by VAR parameters

$$\Theta_{ij} \neq 0 \Rightarrow i \text{ follows } j$$

- □ Influencer followed by a significant part of network
- - motivated by real life social networks
  - sparsity constraints reduce sample complexity



## Research question

 $\Box$  Each user is affected at most by s others

$$\max_{i} \sum_{j} \mathbf{1}(\Theta_{ij} \neq 0) \leq s;$$

□ Sparsity grows up to  $||Θ||_0 ≤ Ns$ , so lasso requires

$$\frac{(sN)\log N}{T}\ll 1$$

$$(\|\Theta\|_0 = \sum_{ij} \mathbf{1}(\Theta_{ij} \neq 0))$$

Structural assumptions appropriate for social networks?



### **Outline**

- 1. Motivation ✓
- 2. New structural approach
- 3. Estimation
- 4. Missing observations
- 5. Local result
- 6. Simulations
- 7. StockTwits analysis
- 8. Outlook



#### Stochastic Block Model

□ Partition of nodes into K disjoint communities

$$C_1 \cup \cdots \cup C_K = \{1, \ldots, N\}, \qquad C_i \cap C_j = \emptyset$$

oxdot Independent edges  $P(a_{ij}=1)=\Omega_{ij}$  with

$$\Omega_{ij} = B_{l_i l_j}, \qquad ext{for } i \in C_{l_i}, \ j \in C_{l_j}$$

(usually arbitrary diagonal elements  $\Omega_{ii}$  allowed)

□ Low rank assumption: Rank(Ω ) ≤ K



ightharpoonup Example for N=5, K=2

$$\Omega = \begin{pmatrix} a & a & b & b & b \\ a & a & b & b & b \\ b & b & c & c & c \\ b & b & c & c & c \\ b & b & c & c & c \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$
index matrix



#### ightharpoonup Realization for N=20, K=3







## New structural approach

$$\max_i \sum_j \mathbf{1}(\Theta_{ij} \neq 0) \leq s$$

 $\square$  Communities  $C_1, \ldots, C_K$  with shared dependencies

$$\Theta_{i\cdot} = \Theta_{i'\cdot}, \qquad i, i' \in C_I$$

Chen, Y., Trimborn, S., Zhang, J.

Discover Regional and Size Effects in Global Bitcoin Blockchain via

Sparse-Group Network AutoRegressive Modeling

preprint, 2018



#### Influencers and communities





## Clustering

○ Via user *labels*:  $C = (I_1, ..., I_N)$ , where  $I_i \in [K]$ 

$$C_I = \{i : I_i = I\}$$

oxdot Relabeling  $\mathcal{C} \sim \mathcal{C}'$  iff there is  $\pi$ 

$$I_i = \pi(I_i'), \qquad i = 1, \ldots, N$$

Equivalent distance,

$$d(\mathcal{C}, \mathcal{C}') = \min_{\pi} \sum_{i=1}^{N} \mathbf{1}(I_i \neq \pi(I_i'))$$
$$= \min_{\pi} \sum_{j=1}^{K} |C_j \setminus C_{\pi(j)}'|$$



#### **Block structure**

Shared dependencies in each community

$$I_i = I_{i'} \Rightarrow \Theta_{ij} = \Theta_{i'j}, \qquad j = 1, \dots, N$$

 $\Box$  Example K = 3

$$\Theta = \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

(up to a permutation)



#### Block structure 2

 $oxed{\Box}$  Each column of  $\Theta$  is a span of

Factor representation

$$\Theta = Z_{\mathcal{C}}V^{\top}, \qquad V \in \mathbb{R}^{N \times K}$$
 where  $Z_{\mathcal{C}} = [z_{\mathcal{C}_1}, z_{\mathcal{C}_2}, \dots, z_{\mathcal{C}_K}]$ 



## Influencers and sparsity

In social media users are influenced by a small group of people (e.g. celebrities)

user j is influencer iff  $\Theta_{ij} \neq 0$  for some i

$$\max_{j} \sum_{i=1}^{N} \mathbf{1}(V_{ij} \neq 0) \leq s$$

□ Sparsity + clusterisation = dimensionality reduction



#### Penalized loss function

Define

$$R_{\lambda}(V; \mathcal{C}) = \frac{1}{2} \sum_{t=2}^{T} \|Y_{t+1} - Z_{\mathcal{C}} V^{\top} Y_{t} \|^{2} + \lambda \|V\|_{1,1}$$

- oxdots  $\ell_1$  penalty  $\|V\|_{1,1} = \sum_{ij} |V_{ij}|$  with a tuning parameter  $\lambda$
- Minimum contrast estimator

$$(\hat{V}_{\lambda},\hat{\mathcal{C}}_{\lambda}) = \arg\min R_{\lambda}(V;\mathcal{C}), \qquad \hat{\Theta}_{\lambda} = Z_{\hat{\mathcal{C}}_{\lambda}}\hat{V}_{\lambda}^{\top}$$



#### LASSO estimator for V

oxdot Penalized risk minimization with a given clustering  ${\mathcal C}$ 

$$\hat{V}_{\mathcal{C},\lambda} = \arg\min_{V} R_{\lambda}(V;\mathcal{C})$$

- □ Convex problem for V
- □ Parallelization is possible: K independent subproblems due to  $Z_{\mathcal{C}}^{\top} Z_{\mathcal{C}} = I$

$$\hat{v}_j = \arg\min_{v \in \mathbb{R}^\top} \frac{1}{2} \sum_{t=1}^{I-1} \left\{ (z_{C_j}^\top Y_{t+1}) - v^\top Y_t \right\}^2 + \lambda \|v\|_1$$



## Greedy procedure

Minimize the risk for clustering

$$F_{\lambda}(\mathcal{C}) = \min_{V} R_{\lambda}(V; \mathcal{C}) \rightarrow \min_{\mathcal{C}}$$

- 1. randomly initialize  $C_1, \ldots, C_K$ ;
- 2. for each i = 1, ..., N change the label of the *i*th user

$$F_{\lambda}(\mathcal{C}) \to \min_{l}$$

(i.e. 
$$d(\mathcal{C}^{old}, \mathcal{C}^{new}) \leq 1$$
)

3. repeat (2) until clustering does not change;



## Alternating procedure

Joint risk

$$R_{\lambda}(V; \mathcal{C}) = \frac{1}{2} \mathsf{Tr}(V^{\top} \hat{\Sigma} V) - \mathsf{Tr}(V^{\top} \hat{A} Z_{\mathcal{C}}) + \lambda \|V\|_{1,1}$$

- 1. randomly initialize  $C = (C_1, \ldots, C_K)$ ;
- 2. estimate  $\hat{V}_{C,\lambda}$  using LASSO;
- 3. repeat:
  - 3.1 perform greedy procedure for

$$-\mathsf{Tr}(\hat{V}^{\top}AZ_{\mathcal{C}}) o \min_{\mathcal{C}}$$

- 3.2 update  $\hat{V}_{\mathcal{C},\lambda}$  using the new clustering;
- 3.3 repeat until does not change



## Missing observations

Unobserved "opinion" process

$$Y_t = \Theta^* Y_{t-1} + W_t$$

- true parameter Θ\*
- $\Box$  innovations  $W_t$  with  $\mathsf{E}(W_t|\mathcal{F}_{t-1})=0$

Observed variables

$$Z_{it} = \delta_{it} Y_{it}, \qquad \delta_{it} \sim \mathsf{Bernoulli}(p_i)$$

- $\square$  user *i* makes a post with probability  $p_i$  every day
- $\odot$  still allows estimation of the covariance of Y



#### Loss decomposition

$$L(\Theta) = \frac{1}{2T} \sum_{t>1} \|Y_t - \Theta Y_{t-1}\|_2^2$$
$$= \frac{1}{2} \text{Tr}(\Theta \widetilde{\Sigma} \Theta^\top) - \text{Tr}(\Theta \widetilde{A}) + \frac{1}{2T} \sum_{t>1} \|Y_t\|^2$$

where

$$\widetilde{\Sigma} = T^{-1} \sum_{t>1} Y_{t-1} Y_{t-1}^{\top}, \qquad \widetilde{A} = T^{-1} \sum_{t>1} Y_{t-1} Y_{t}^{\top}$$



Probabilities of non-zero observation

$$\hat{\rho}_i = T^{-1} \sum_t \mathbf{1}(Z_{it} \neq 0)$$

Observed sample covariance

$$\Sigma^* = T^{-1} \sum_t Z_t Z_t^{\top}, \qquad A^* = T^{-1} \sum_{t>1} Z_{t-1} Z_t^{\top}$$

Covariance estimation

$$\hat{\Sigma} = \operatorname{diag}(\hat{p})^{-1}\operatorname{Diag}(\Sigma^*) + \operatorname{diag}(\hat{p})^{-1}\operatorname{Off}(\Sigma^*)\operatorname{diag}(\hat{p})^{-1}$$
$$\hat{A} = \operatorname{diag}(\hat{p})^{-1}A^*\operatorname{diag}(\hat{p})^{-1}$$

▶ Upper bound



Lounici, K.

High-dimensional covariance matrix estimation with missing observations

Bernoulli, 2014



#### Local result

Recall the definition

$$d(\mathcal{C},\mathcal{C}') = \sum_{j=1}^K |C_j \setminus C'_j|$$

(1 if only one label differs)

- □ Greedy algorithm changes one label at each step
- oxdot If  $\mathcal C$  is such that

$$\min_{d(\mathcal{C},\mathcal{C}')=1} F_{\lambda}(\mathcal{C}') \geq F_{\lambda}(\mathcal{C}),$$

the algorithm stops at C — "locally optimal";



Local result — 5-2

#### **Conditions**

$$oxdots \Theta^* = Z^*[V^*]^ op$$
 with  $Z^* = Z_{\mathcal{C}^*}$  and

$$V = [v_1^*, \dots, v_K^*], \qquad ||v_i^*||_0 \le s,$$

where 
$$||x||_0 = \sum \mathbf{1}(x_i \neq 0)$$
;

- **□** condition number of  $[V^*]^T \Sigma V^*$  bounded by  $\kappa_0$ ;
- significant size of clusters

$$\min_{j} |C_j^*| / \max_{j} |C_j^*| \ge \alpha \in (0,1]$$



Local result \_\_\_\_\_\_\_5-3

#### **ERC** condition

Denote exact recovery coefficient (ERC)

$$\mathsf{ERC}(\Lambda) = 1 - \| \Sigma_{\Lambda^c \Lambda} \Sigma_{\Lambda, \Lambda}^{-1} \|_{1, \infty},$$

where 
$$\|A\|_{1,\infty} = \max_i \sum_j |A_{ij}|$$

Suppose,

$$ERC(\Lambda_j) \geq 3/4$$

for each 
$$\Lambda_j = \operatorname{supp}(v_j^*)$$



Tropp, J.

Just relax: Convex programming methods for identifying sparse signals in noise

IEEE Transactions on Information Theory, 2006



Local result — 5-4

#### **Network size limits**

We work in the regime

$$\frac{sn^* \log N}{Tp_{\min}^2} \le c$$

with c > 0 not depending on  $N, s, K, T, \delta_i$ ;

□ largest cluster size n\* within the range

$$\frac{N}{K} \le n^* \le \frac{\alpha^{-1}N}{K}$$



Local result — 5-

#### Local result

#### Theorem

There are constants c, C such that if

$$C\sqrt{\frac{\log N}{Tp_{\min}^2}} \le \lambda \le c\left\{s^{-1} \lor (\sqrt{s}K)^{-1}\right\},$$

then with probability at least 1-1/N there is a locally optimal  $\hat{C}$  such that  $\hat{\Theta}_{\lambda}=Z_{\hat{C}}\hat{V}_{\hat{C},\lambda}$  satisfies

$$\|\hat{\Theta}_{\lambda} - \Theta^*\|_F \lesssim \lambda K \sqrt{s}$$





Local result

Ideally we choose

$$\lambda^* \sim \sqrt{\frac{\log N}{Tp_{\min}^2}}$$

In this case the bound is

$$\|\hat{\Theta}_{\lambda^*} - \Theta^*\|_F \lesssim \sqrt{rac{s\mathcal{K}^2 \log \mathcal{N}}{Tp_{\mathsf{min}}^2}}$$



### **Simulations**

- N = 100, T = 100
- - ▶ K = 2..30 with  $C_j$  having equal  $(\pm 1)$  sizes;
  - $\blacktriangleright$  for each  $j = 1, \dots, K$

$$\mathsf{supp}(v_j^*) = 1;$$

- $||\Theta^*||_{op} = 0.5$
- Simulate

$$Y_t = \sum_{k \geq 0} [\Theta^*]^k W_{t-k}, \qquad W_t \sim N(0, I_N)$$





Figure 4: Normalized error  $E\|\hat{\Theta}_{\lambda} - \Theta^*\|_F/\|\Theta^*\|_F$  against  $\lambda$ 





Figure 5: Cluster difference for optimal  $\lambda$  against  $K=2,\ldots,30$ 



# Choice of $\lambda$



Figure 6: Optimal  $\lambda$  for  $K=2,\ldots,30$ 

$$\lambda^* \approx \sigma \sqrt{\frac{\log N}{T p_{\min}^2}};$$

$$\hat{\sigma} = \lambda_{K+1}(\hat{\Sigma});$$



StockTwits 7-1

# **Experiment with StockTwits**

- Preprocessing
  - ▶ pick users with  $\hat{p}_i \ge 0.5$  (small  $p_i$  produce too much error)
  - $\blacktriangleright$  persistence: covariance estimator requires stationarity of  $(\delta_{it})$
  - result: 46 users & 72 days
- Estimation
  - ▶ 100 iterations with 100 initializations



StockTwits — 7-2

### **@AAPL**



Figure 7: Estimated  $\Theta$  for AAPL daily sentiment

Opinion Networks in Social Media

→ How to choose K?



StockTwits — 7-

### **@AAPL**











StockTwits - 7-4

# **@BTC**



Figure 8: Estimated  $\Theta$  for BTC daily sentiment

Opinion Networks in Social Media

→ How to choose K?



### **@BTC**





Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.

Measuring User Influence in Twitter: The Million Follower Fallacy
4th AAAI conference on weblogs and social media, 2010



Outlook — 8-

### Outlook

- Application to StockTwits sentiment
  - identify clusters and influencers
- - ▶ follower/followee relationship unavailable in StockTwits
  - analysis of cluster stability



### Literature

- Zhu, X., Pan, R., Li, G., Liu, Y. and Wang, H. Network vector autoregression Annals of Statistics, 2017
- Chernozhukov, V., Härdle, W.K., Huang, C., Wang, W. LASSO-driven Inference in Time and Space preprint, 2018
- Chen, C.Y.H, Härdle, W, Okhrin, Y. Tail event driven networks of SIFIs Journal of Econometrics, 2019 DOI: 10.1016/j.jeconom.2018.09.016



Appendix ————9-

# **@AAPL**

- $\square$  Sample period: 2017/05/22 to 2019/01/27 ( $\sim$  600 days)
- - ▶ 29.6% bullish / 10.7% bearish / 59.7% unlabelled
  - training dataset 99,985 positive / 36,100 negative
- Lexicon from @AAPL messages
  - ▶ 543 positive terms
  - ▶ 786 negative terms

▶ Back



Zhu, X., Wang, W., Wang, H. and Härdle, W.K. Network quantile autoregression Journal of Econometrics, 2019

Chernozhukov, V., Härdle, W.K., Huang, C., Wang, W. LASSO-driven Inference in Time and Space Ann. Stat., to appear

Chen, C. H.-Y., Härdle, W.K., Liu, K. Financial Risk Meter
Empirical Economics, to appear

Chen, Y., Trimborn, S., Zhang, J.

Discover Regional and Size Effects in Global Bitcoin Blockchain via

Sparse-Group Network AutoRegressive Modeling

preprint, 2018



Appendix

### subgaussian innovations

$$\|\langle u, W_t \rangle\|_{\psi_2} \lesssim \|\langle u, W_t \rangle\|_{L_2}$$

where

$$||X||_{\psi_2} = \inf\{C > 0 : \operatorname{E} \exp(|X|^2/C) \le 2\}$$
  
 $||X||_{L_2} = \operatorname{E}^{1/2}|X|^2$ 



#### Lemma

Suppose,

- $\square$   $W_t$  are subgaussian;
- $\square \|\Theta^*\|_{op} \leq \gamma < 1;$
- $\Box P, Q \in \mathbb{R}^{N \times N}$  are projectors of ranks  $\leq M$ .

It holds with probability at least  $1 - e^{-u}$  for  $u \ge 1$ 

$$||P(\hat{\Sigma}-\Sigma)Q||_{op} \le C||\Sigma||_{op} \left(\sqrt{\frac{M(\log N + u)}{Tp_{\min}^2}} \sqrt{\frac{M(\log N + u)\log T}{Tp_{\min}^2}}\right),$$

where 
$$C = C(\gamma)$$



### Lemma

Suppose,

- $\ \ \ Y_1, \ldots, Y_T$  are subgaussian;
- $\square \|\Theta^*\|_{op} \leq \gamma < 1;$
- $\square$   $P, Q \in \mathbb{R}^{N \times N}$  are projectors of ranks  $\leq M$ .

It holds with probability at least  $1 - e^{-u}$  for  $u \ge 1$ 

$$||P(\hat{A} - A)Q||_{op} \le C||\Sigma||_{op} \left(\sqrt{\frac{M(\log N + u)}{Tp_{\min}^2}} \sqrt{\frac{M(\log N + u)\log T}{Tp_{\min}^2}}\right),$$

where 
$$C = C(\gamma)$$





### Theorem (Chapter 4)

Let  $X_1, \ldots, X_T \in \mathbb{R}^{d \times d}$  are independent with  $\| \|X_i\| \|_{\psi_1} < \infty$ . Set

Then for each  $t \geq 1$ 

$$P\left(\left\|\sum_{i=1}^{N}X_{i}-\mathsf{E}X_{i}\right\|\lesssim\sigma\sqrt{t}+Ut\right)\leq de^{-t}$$

Here  $||Y||_{\psi_1} = \inf\{C > 0 : \operatorname{Eexp}(|Y|/C) \le 2\}$ 





# How to choose number K?

- Analyze stability of cluster estimation
- □ Consider few shorter windows (say, of length  $\frac{3T}{4}$ )

$$\mathcal{I}_1 = \left[0, \frac{3}{4}T\right], \mathcal{I}_2 = \left[\frac{1}{20}T, \left(\frac{3}{4} + \frac{1}{20}\right)T\right], \dots, \mathcal{I}_6 = \left[\frac{1}{4}T, T\right]$$

Compare resulting clusterings

$$d(\hat{C}(\mathcal{I}_1), \hat{C}(\mathcal{I}_j)), \qquad j=2,\ldots,6,$$

where  $\hat{\mathcal{C}}(\mathcal{I})$  is estimated using data from time interval  $\mathcal{I}$ 





Figure 9: Cluster differences for K=2,3,4,5,6 for the BTC dataset





Appendix ——————————————————————9-9



Figure 10: Cluster differences for K=2,3,4,5,6 for the BTC dataset





### Proof sketch

- □ Exact recovery supp( $v_j$ ) =  $Λ_j$  in the neighbourhood of  $C^*$  (w.h.p.);
- □ Explicit expression for  $F_{\lambda}(C)$ ;
- Quadratic deviation of deterministic part v.s. linear growth of stochastic part
- Gribonval, R., Jenatton, R., Bach, F.

  Sparse and spurious: dictionary learning with noise and outliers
  IEEE Transactions on Information Theory, 2015

▶ Back



# V-step

For arbitrary  $\mathcal{C} = (C_1, \dots, C_K)$  we solve for each  $j = 1, \dots, K$   $\hat{v}_j = \arg\min \frac{1}{2} v^\top \hat{\Sigma} v - v^\top \hat{A} z_j + \lambda \|v\|_1,$ 

where 
$$Z_C = [z_1, \ldots, z_K]$$

### Lemma

Denote,  $\hat{c} = \hat{A}z_j$ . Suppose,

$$\|\hat{\Sigma}_{\Lambda_j^c,\Lambda_j}\hat{\Sigma}_{\Lambda_j,\Lambda_j}^{-1}\hat{c}_{\Lambda_j}-\hat{c}_{\Lambda_j^c}\|_{\infty}\leq \lambda \big(1-\|\hat{\Sigma}_{\Lambda_j^c,\Lambda_j}\hat{\Sigma}_{\Lambda_j,\Lambda_j}^{-1}\|_{1,\infty}\big)$$

where  $||A||_{1,\infty} = \max_i \sum_i |A_{ij}|$ . Then,  $supp(\hat{v}_j) \subset \Lambda_j$ .



Solution with  $supp(\hat{v}_j) \subset \Lambda_j$ 

$$\hat{v}_j = \Sigma_{\Lambda_j,\Lambda_j}^{-1}(\hat{A}_{\Lambda_j,\cdot}z_j - \lambda g)$$

with some  $g \in \mathbb{R}^{|\Lambda_j|}$ ,  $\|g\|_{\infty} \leq 1$ 

If  $\|\hat{v}_j - v_j^*\|_{\infty} < \min_{i \in \Lambda_j} |V_{ij}^*|$  then follows explicit form

$$\hat{v}_j = \hat{\Sigma}_{\Lambda_j,\Lambda_j}^{-1}(\hat{A}_{\Lambda_j,\cdot}z_j - \lambda(s_j^*)_{\Lambda_j})$$

where  $s_j^* = \operatorname{sign}(v_j^*)$ 



### Exact recovery yields

$$F_{\lambda}(\mathcal{C}) = -\frac{1}{2} \sum_{j=1}^{K} \hat{v}_{j}^{\top} \hat{\Sigma} \hat{v}_{j}$$

$$= -\frac{1}{2} \sum_{j=1}^{K} \left( \hat{A}_{\Lambda_{j}, \cdot} z_{j} - \lambda(s_{j}^{*})_{\Lambda_{j}} \right)^{\top} \hat{\Sigma}_{\Lambda_{j}, \Lambda_{j}}^{-1} (\hat{A}_{\Lambda_{j}, \cdot} z_{j} - \lambda(s_{j}^{*})_{\Lambda_{j}})$$

$$= \Phi_{\lambda}(\mathcal{C})$$



#### Lemma

Let  $\lambda, \bar{r} > 0$  be such that

$$C\sqrt{rac{\log N}{Tp_{\min}^2}} \leq \lambda \leq c \, s^{-1}, \qquad \sqrt{rac{n^* \log N}{Tp_{\min}^2}} ar{r}^2 \leq c \lambda.$$

Then, with probability  $\geq 1 - N^{-\beta}$ 

$$F_{\lambda}(\mathcal{C}) = \Phi_{\lambda}(\mathcal{C}), \qquad \forall \mathcal{C}: \ \|Z_{\mathcal{C}} - Z_{\mathcal{C}^*}\|_{\mathsf{F}} \leq \overline{r}$$

Moreover,

$$\|\hat{V}_{\mathcal{C},\lambda} - V^*\|_{\mathsf{F}} \lesssim \lambda \sqrt{\mathit{Ks}}$$



### **Estimation of clusters**

Define,

$$\hat{\mathcal{C}} = \arg\min_{\mathcal{C}: \|Z_{\mathcal{C}} - Z_{\mathcal{C}^*}\|_F \leq \bar{r}} \Phi_{\lambda}(\mathcal{C})$$

quadratic vs. (at most) linear for  $r = \|Z_{\mathcal{C}} - Z_{\mathcal{C}^*}\|_F \leq \bar{r}$ 

$$\Phi_{\lambda}(C) - \Phi_{\lambda}(C^*) \ge \left(c - C\sqrt{\frac{sn^* \log N}{Tp_{\min}^2}}\right)r^2 - C\lambda\sqrt{s}Kr$$



Define,

$$ar{\Phi}_{\lambda}(\mathcal{C}) = -rac{1}{2}\sum_{i=1}^K \left(A_{\Lambda_j,\cdot}z_j - \lambda(s_j^*)_{\Lambda_j}
ight)^{ op} \Sigma_{\Lambda_j,\Lambda_j}^{-1}(A_{\Lambda_j,\cdot}z_j - \lambda(s_j^*)_{\Lambda_j})$$

when  $r = \|Z_{C} - Z_{C^*}\|_F \le 0.3$ 

$$\bar{\Phi}_{\lambda}(\mathcal{C}) - \bar{\Phi}_{\lambda}(\mathcal{C}^*) \ge \frac{\mathsf{a_0} \, \mathsf{r}^2}{\mathsf{a}} (1 - 10\alpha^{-1} \mathsf{r}^2) - \lambda \sqrt{\mathsf{Ks}} \| \mathsf{V}^* \|_{\mathsf{F}} \mathsf{r}$$



With probability at least  $1 - N^{-\beta}$ 

$$\begin{aligned} |\Phi_{\lambda}(\mathcal{C}) - \bar{\Phi}_{\lambda}(\mathcal{C}) - \Phi_{\lambda}(\mathcal{C}^{*}) + \bar{\Phi}_{\lambda}(\mathcal{C}^{*})| \\ &\lesssim \sqrt{\frac{sK \log N}{Tp_{\min}^{2}}} r + \sqrt{\frac{sn^{*} \log N}{Tp_{\min}^{2}}} r^{2} \end{aligned}$$



$$\begin{split} \Phi_{\lambda}(\mathcal{C}) - \Phi_{\lambda}(\mathcal{C}^{*}) &\geq \bar{\Phi}_{\lambda}(\mathcal{C}) - \bar{\Phi}_{\lambda}(\mathcal{C}^{*}) \\ &- |\Phi_{\lambda}(\mathcal{C}) - \bar{\Phi}_{\lambda}(\mathcal{C}) - \Phi_{\lambda}(\mathcal{C}^{*}) + \bar{\Phi}_{\lambda}(\mathcal{C}^{*})| \\ &\geq \left(c - C\sqrt{\frac{sn^{*}\log N}{Tp_{\mathsf{min}}^{2}}}\right)r^{2} - C\lambda\sqrt{s}Kr \end{split}$$

Hence  $\Phi_{\lambda}(\hat{\mathcal{C}}) \leq \Phi_{\lambda}(\mathcal{C}^*)$  yields

$$r \leq \lambda \sqrt{s}K$$

▶ Back

