FRM financialriskmeter

Andrija Mihoci Cathy Yi-Hsuan Chen Wolfgang Karl Härdle Michael Althof

UNIVERSITY of GLASGOW

Ladislaus von Bortkiewicz Professor of Statistics Humboldt-Universität zu Berlin Ivb.wiwi.hu-berlin.de

Charles University, WISE XMU, NCTU 玉山学子 University of Glasgow

Tail Events (TE)

TEs across companies indicate increased risk

- CoVaR measures joint TEs between 2 risk factors
- CoVaR and other risk factors?
- TENET Tail Event NETwork risk, Härdle Wang Yu (2017) J E'trics

□ FRM Financial Risk Meter for joint TEs

FRN

2

Risk, Model Risk, Systemic Risk

The financial cycle and the business cycle are not synchronised, implying that risks can emerge especially in the periods of "disconnect" between the two cycles.", <u>Vítor Constâncio, VP</u> <u>ECB, 2015</u>

"Broadly speaking, model risk can be attributed to either an incorrect model or to an incorrect implementation of a model", <u>Buraschi and Corielle (2005)</u>

"I know it when I see it", Justice Potter Stewart (1964)

Tail Behaviour

- Ultra High Dimensions
- Nonlinear in Time and Space (=Network)

Risk Measures

□ VIX: IV based, does not reflect joint TEs CoVaR concentrates on a pair of risk factors NBER recession indicator, Google trends, SRISK, … □ FRM employs the full picture of TE dependencies HU.berlin/FRM financjalriskmeter 2000 - 2019

Outline

- 1. Motivation 🖌
- 2. Genesis
- 3. FRM Framework
- 4. CoStress ID, Active Set
- 5. Extension to other asset classes
- 6. FRM a predictor for recession
- 7. Conclusions

VaR Value at Risk

Probability measure based

$$\mathbf{P}(X_{i,t} \le VaR_{i,t}^{\tau}) \stackrel{def}{=} \tau, \ \tau \in (0,1)$$

 $\Box X_{i,t}$ log return of risk factor (company) *i* at *t*

□ VaRs (0.99, 0.01) based on RMA, Delta Normal Method

Quantiles and Expectiles

 $q^{\tau} = \arg\min_{\theta} \mathbf{E} \left\{ \rho_{\tau} \left(Y - \theta \right) \right\}$ For r.v. Y obtain tail event measure:

asymmetric loss function

$$\rho_{\tau}\left(u\right) = \left|u\right|^{\alpha} \left|\tau - \mathbf{I}_{\{u<0\}}\right|$$

 $\alpha = 1$ for quantiles, α = 2 for expectiles

Expectile as Quantile

Quantiles and Expectiles

- Quantiles/Expectiles focus on TEs
- SRM Spectral Risk Measures
- LAWS algorithm fast and efficient

Figure: Loss function of expectiles and quantiles for $\tau = 0.5$ (dashed) and $\tau = 0.9$ (solid)

Conditional Value at Risk

Adrian and Brunnermeier (2016) introduced CoVaR
 $P{X_{i,t} ≤ CoVaR_{j|i,t}^{\tau} | X_{i,t} = VaR^{\tau}(X_{i,t}), M_{t-1}} \stackrel{def}{=} τ,$

 \square M_{t-1} vector of macro-related variables

Goldman Sachs (Y), Citigroup (X), Conf Bands, Chao et al (2015)

CoVaR and the magic of joint TEs

CoVaR technique

CoVaR: First calculate VaRs, then compute the TE given a stressed risk factor.

Linear Quantile Lasso Regression

$$X_{j,t}^{s} = \alpha_{j,t}^{s} + A_{j,t}^{s\top} \beta_{j}^{s} + \varepsilon_{j,t}^{s}, \qquad (1)$$

• Where $A_{j,t}^{s\top} \stackrel{def}{=} \left[M_{t-1}^s, X_{-j,t}^s \right]$

- \Box $X^{s}_{-j,t}$ log returns of all other firms except j at time t
- □ s length of moving window
- □ M_{t-1}^s log return of macro prudential variable at time t-1

• Application
$$j = 1,..., J, t = 2,..., T$$

 $J = 100, T = 2700, s = 63$

Lasso Quantile Regression

$$\min_{\alpha_{j}^{s},\beta_{j}^{s}} \left\{ n^{-1} \sum_{t=s}^{s+(n-1)} \rho_{\tau}(X_{j,t}^{s} - \alpha_{j}^{s} - A_{j,t}^{s\top}\beta_{j}^{s}) + \lambda_{j}^{s} \parallel \beta_{j}^{s} \parallel_{1} \right\},$$
(2)

 \Box here c = 1,2 correspond to quantile, expectile regression

- \square λ creates size of "active set", i.e. spillover
- \square λ is sensitive to residual size, i.e. TE size
- \square λ reacts to singularity issues, i.e. joint TEs.

λ Role in Linear Lasso Regression

- Penalisation (Lagrange) parameter λ , Osborne et al. (2000)
- Dependence, time-varying, company-specific
- Size of model coefficients depends on

- \square Penalty λ depends on:
- residual size, condition of design matrix, active set

λ Role in Linear Quantile Regression

 \square λ size of estimated LQR coefficients Li Y, Zhu JL (2008)

$$\left(\alpha - \gamma\right) = \tau I(Y - X\beta(\lambda) > 0) + (\tau - 1) I(Y - X\beta(\lambda) < 0)$$

 \square Penalty λ depends on:

..., residual size", condition of design matrix, active set

Average penalty: an indicator for tail risk

$$FRM_t \stackrel{def}{=} J^{-1} \sum_{j=1}^J \lambda_{jt}$$

☑ The FRM time series is ONE index for joint TEs!

λ Selection

Generalized approximate cross-validation (GACV)

$$\min GACV(\lambda_j^s) = \min \frac{\sum_{t=s}^{s+(n-1)} \rho_\tau(X_{j,t}^s - \alpha_j^s - A_{j,t}^{s,\top} \beta_j^s)}{n - df}$$

FRM codes	Hold Anzahl: Buy: 12 Hold: 11 Sell: 1	severe risk of crisis
L <u>HU.DCHIII/IIII</u> Sell 50	60 70 80 90 100 110 120 130	high risk of crisis
Low Risk	<20%	
General Risk	20% - 40%	elevated risk of crisis
Elevated Risk	40% - 60%	general risk of crisis
High Risk	60% - 80%	
Severe Risk	>80%	X low risk of crisis

FRM

Methodology

- Obtain company list of all historically active index members
- Download daily prices and market cap in same currency (USD)
- Sort market cap decreasingly (to select bigger J companies)
- Calculate stock and macro variable returns
- On every trading day,
 - Select J biggest companies' returns over s trading days
 - Attach returns of macroeconomic risk factors
 - Calculate λ for all companies
 - Calculate average λ , etc.
 - Store active set

Data

- 100 largest U.S. and Canadian publicly traded financial institutions
- 6 macro related variables
- □ Quantile level $\tau = 0.05, \tau = 0.01, ...$
- ☑ Time frame: 2000-2019
- Macroeconomic risk factors:
 - **CBOE** Volatility Index
 - S&P 500
 - **REIT** Index
 - 3M Treasury Constant Maturity Rate
 - 10Y Treasury Constant Maturity Rate
 - Moody's Seasoned Baa Corp Bond Yield Spread

European Data

- 100 largest European publicly traded financial institutions
- 7 macro related variables
- □ Quantile level $\tau = 0.05, \tau = 0.01, ...$
- □ Time frame: 2000 2019
- Macroeconomic risk factors:
 - Eurostoxx 50 Volatility Index
 - Eurostoxx 600
 - MSCI Europe REIT Index
 - 1Y Germany Treasury Constant Maturity Rate
 - 10Y Germany Treasury Constant Maturity Rate
 - Barclays Bloomberg EuroAgg Corporate Yield Spread
 - 10 year Italy Treasury to 10 year German Treasury Constant
 - Maturity Rate Spread

FRM@Americas, FRM@Europe

□ Based on J=25 Financial Institutions (limited data availability)

20

FRM@S&P500

□ Based on J=25 Financial Institutions (limited data availability)

FRM@Americas (S&P 500)

FRM vs Other Risk Measures

□ The evolution of FRM@Europe relative to VSTOXX, ECB's CISS

European Systemic Risk Measure Comparison

Distributional characteristics

□ Identifying companies CoStress $\tau = 0.05$ J = 25

Company's CoStress

☑ September 7th, 2008:

High CoStress: Visa Inc, Toronto Dominion Bank, US

Bancorp, American Express Co, and American

International Group (AIG) Inc

Low CoStress: Mastercard Inc, Bank of America Corp,

Bank of Nova Scotia, Goldman Sachs Group Inc and Merrill Lynch & Co Inc

Visualising the Active Set: Total Degree Centrality

☑ September 7th, 2008, FRM@Americas, J=25

Visualising the Active Set: Total Degree Centrality

□ January 20th, 2012, FRM@Europe, J=25

Sensitivity to hyperparameters ☑ Identifying companies CoStress, J = 25

Network Dynamics

□ 100 risk factors

LM EV OCN AMG

 $\tau = 0.05$

Coeffs of all companies from 20190417 to 20190426

FRM@Asia

□ SHSZ300 and Four Asian Tigers, J = 25

Same macroeconomic risk factors, ex corporate spread

FRM@Crypto

Scrape Web for Crypto Prices and Amount Outstanding

30

FRM@Crypto

Macroeconomic risk factors:

- US dollar index (average of USD vs main non-crypto currencies)
- yield level in USD (carry component for the drift)

CVIX (same as VIX, but on major fiat currencies)

► S&P500

What are the right macroeconomic risk factors per asset class?

SRM@EuroArea

EuroArea 10y Yields: Greece, Portugal, Italy, Germany

FR

 \mathbf{N}

SRM@EuroArea

□ Systemic Risk in Bond Yield Changes: $\tau = 0.05$ J = 11

SRM@EuroArea

- Macroeconomic risk factors:
 - Euro Area REIT
 - Euro Stoxx 50
 - Euro Stoxx 50 Volatility Index
 - Germany treasury yield curve slope
 - 10y Kreditanstalt f
 ür Wiederaufbau (KfW) yield spread to Germany

What are the right macroeconomic risk factors per asset class?

SRM@EuroArea: Active Set and CoStress

□ May 4th, 2015

July 3rd, 2015

FRI

 \mathbf{N}

Combining FRMs

Average of FRM@Europe, SRM@Euro Area, versus CISS

European Systemic Risk Measure Comparison

FRED meets FRM

Logistic linear regression

$$\log \frac{\mathbf{P}(y=1 \mid x; \beta)}{\mathbf{P}(y=0 \mid x; \beta)} = \beta_0 + \beta_1 x$$

- y National Bureau of Economic Research (NBER) recession indicator
- x FRM

Result

Implied recession probability

□ FRM@Americas

39

FR

Л

40

Л

Extensions

- Use national or EU data to construct localised FRM
- Adaptive LASSO
- Global contagion effect of FRMs
- Relate Network Centrality to Max/Min CoStress nodes
- Besides equal weights, weights by degree of centrality
- LASSO in Time and Space
- Aggregate global FRMs, across asset classes
- Price Vectors

Extensions: Neural Network CoVaR (Keilbar, 2018)

Systemic Network Risk Index (SNRI) measures total systemic risk

□ Incorporates bivariate risk spillover effects $a_{ji,t}$

$$SNRI_{t} = \sum_{j=1}^{k} \sum_{i=1}^{k} (1 + |\operatorname{VaR}_{i,t}^{\tau}|)(1 + |\operatorname{CoVaR}_{j,t}^{\tau}|) \cdot a_{ji,t}$$

Extensions: Neural Network CoVaR (Keilbar, 2018)

 Systemic Hazard Index (SHI) measures the risk of bank i imposes to the financial system

$$SHI_{i,t} = \sum_{j=1}^{k} \left(1 + |\operatorname{CoVaR}_{j,t}^{\tau}|\right) \cdot a_{ji,t}$$

 Systemic Fragility Index (SFI) measures the exposure of bank j to the financial system

$$SFI_{i,t} = \sum_{i=1}^{k} \left(1 + |\operatorname{VaR}_{i,t}^{\tau}|\right) \cdot a_{ji,t}$$

Conclusions

- FRM financialriskmeter = Flexible Risk Meter
- □ has systemic risk components
- predicts recession periods
- □ can be tuned to any TE risk

reacts to coagulation of risk emitters via active set

FRMs in FinTech, Cryptos, ...

Vol 1. 2019 on Crypto Currencies

Volume 1 • Number 1 • January 2019 • pp.

Springer

EDITORS: Wolfgang Karl Härdle and Steven Kou

Digital Finance

Smart Data Analytics, Investment Innovation, and Financial Technology

Advisors

Georg Keilbar Alla Petukhina

Keyan LIU

Weining WANG

Lining YU

Jochen Papenbrock

Rui REN

FRM

FRM Team

Michael Althof Cathy YH CHEN Wolfgang K Härdle Andrija Mihoci

FRM financialriskmeter

Andrija Mihoci Cathy Yi-Hsuan Chen Wolfgang Karl Härdle Michael Althof

AND H DIT-UNIL BERLIN HUBERLIN

UNIVERSITY of GLASGOW

Ladislaus von Bortkiewicz Professor of Statistics Humboldt-Universität zu Berlin Ivb.wiwi.hu-berlin.de

Charles University, WISE XMU, NCTU 玉山学子 University of Glasgow

References

- Adrian J, Brunnermeier M (2016) CoVaR, American Economic Review, 106 (7): 1705-41, DOI: 10.1257/aer.20120555
- Buraschi A, Corielle F (2005). Risk management of time-inconsistency: Model updating and recalibration of no-arbitrage models. J Banking and Finance 29: 2883–907
- Chao SK, Härdle WK, Wang W (2015) Quantile Regression in Risk Calibration. in Handbook for Financial Econometrics and Statistics, Cheng-Few Lee, ed., Springer Verlag, DOI: 10.1007/978-1-4614-7750-1_54.
- Härdle WK, Wang W, Zbonakova L (2018) Time Varying Lasso, in Applied Quantitative Finance 3rd ed, (Chen, Härdle, Overbeck eds.) Springer Verlag, ISBN 978-3-662-54486-0
- ☑ Keilbar G (2018) Modeling systemic risk using Neural Network Quantile Regression, MSc thesis
- □ Li Y, Zhu JL (2008) L1 Norm Quantile Regression, J Comp Graphical Statistics 17(1): 1-23
- ☑ Osborne MR, Presnell B, Turlach BA (200) J Comp Graphical Statistics Vol. 9, 319-337

Expectile as Quantile

 $e_{ au}(Y)$ is the au-quantile of the cdf T , where

$$T(y) = \frac{G(y) - xF(y)}{2\{G(y) - yF(y)\} + \{y - \mu_Y\}}$$

and

$$G(y) = \int_{-\infty}^{y} u \, dF(u)$$

Back to Expectiles

FRM

Company List

Symbol	Name	LastSale	MarketCap	ADR TSO	IPOyear	Sector	Industry Summary Quote			
WFC	Wells Fargo & Company	51.88	2.65E+11	n/a	n/a	Finance	Major Banks	http://www.nasdaq.com/symbol/wfc		
JPM	J P Morgan Chase & Co	62.81	2.31E+11	n/a	n/a	Finance	Major Banks	http://www.nasdaq.com/symbol/jpm		
BAC	Bank of America Corporation	16.08	1.67E+11	n/a	n/a	Finance	Major Banks	http://www.nasdaq.com/symbol/bac		
С	Citigroup Inc.	50.12	1.49E+11	n/a	n/a	Finance	Major Banks	http://www.nasdaq.com/symbol/c		
AIG	American International Group, Inc.	59.75	73911497592	n/a	n/a	Finance	Property-Casualty Insurers	http://www.nasdaq.com/symbol/aig		
GS	Goldman Sachs Group, Inc. (The)	169.84	72442901924	n/a	1999	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/gs		
USB	U.S. Bancorp	41.05	71803718395	n/a	n/a	Finance	Major Banks	http://www.nasdaq.com/symbol/usb		
AXP	American Express Company	64.42	63405122360	n/a	n/a	Finance	Finance: Consumer Services	http://www.nasdaq.com/symbol/axp		
MS	Morgan Stanley	30.5	59054830750	n/a	n/a	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/ms		
BLK	BlackRock, Inc.	330.16	54848693699	n/a	1999	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/blk		
MET	MetLife, Inc.	44.37	49322866962	n/a	2000	Finance	Life Insurance	http://www.nasdaq.com/symbol/met		
PNC	PNC Financial Services Group, Inc. (The)	91.6	46515010272	n/a	n/a	Finance	Major Banks	http://www.nasdaq.com/symbol/pnc		
вк	Bank Of New York Mellon Corporation (The)	38.82	42428419621	n/a	n/a	Finance	Major Banks	http://www.nasdaq.com/symbol/bk		
SCHW	The Charles Schwab Corporation	30.79	40535754347	n/a	n/a	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/schw		
COF	Capital One Financial Corporation	68.55	36471702025	n/a	1994	Finance	Major Banks	http://www.nasdaq.com/symbol/cof		
PRU	Prudential Financial, Inc.	76.92	34537080000	n/a	2001	Finance	Life Insurance	http://www.nasdaq.com/symbol/pru		
TRV	The Travelers Companies, Inc.	109.04	33172017516	n/a	n/a	Finance	Property-Casualty Insurers	http://www.nasdaq.com/symbol/trv		
вх	The Blackstone Group L.P.	27.29	32092061544	n/a	2007	Finance	Investment Managers	http://www.nasdaq.com/symbol/bx		
CME	CME Group Inc.	88.93	30079362252	n/a	2002	Finance	Investment Bankers/Brokers/Service	http://www.nasdaq.com/symbol/cme		

FRM equations

FRM financialriskmeter

FRM

Predicting Future Recessions

Predictions up to 6mth ahead

		EU recession				
k-month ahead	coefficient	std	R^2	coefficient	std	R^2
1	69.43*	14.44	0.36	77.07*	13.95	0.27
2	54.87*	11.55	0.29	65.12*	12.30	0.22
3	47.12*	9.84	0.23	56.65*	11.18	0.18
4	42.12*	8.77	0.19	50.83*	10.45	0.14
5	35.83*	7.59	0.14	45.68*	9.86	0.12
6	29.77*	6.70	0.10	38.56*	9.16	0.09

FR

Λ