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A model is considered to be biased if it can be naturally

represented as a sample from a density with respect to

some dominating measure µ given by

p(x) =
q(x)w(x)∫

q(x′)w(x′)dµ(x′)
,

where q is some ‘natural’ pdf for the problem, repre-

senting in some sense the ‘true’ underlined distribution,

while w is a given weight function that biased the

sample.
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Vardi (1985) was the first to analyze systematically

these type of models. Asymptotic theory was develop

in Gill, Vardi and Wellner (1088). Gilbert, Lele and

Vardi (1999) extended the model to the situation

where the weight function depends on some parameter,

w(x) = w(x; f). The large sample properties were

discussed in Gilbert (2000).
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Let X = (U,Z) where U denotes the bait property (e.g.,

percentage of fat) and Z is a vector of measurement for

each animal (e.g., gender, weight, and age).

p(x; f, h, g) =
w(u, z; f)g(u)h(z)∫ ∫

w(ũ, z̃; f)g(ũ)h(z̃) µ. (ũ) dν(z̃)
.

w(u, z; f) is some parametric weight function, f is the

parameter to be estimated. h is unknown, and typically

too complicated to be estimated. g is known (and it is

part of the design).
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We will consider the weight function with u ∈ R and

z ∈ Rp

w(u, z; f) = exp{ufTz}.

The likelihood equation for f is then:

0 =
∑

UiZi − n

∫ ∫
uzeufTzg(u)h(z) dµ(u) dν(u)∫ ∫
eufTzg(u)h(z) dµ(u) dν(u)
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If Z has at least one continuous component, the GMLE

estimator of its distribution is discrete with a point mass at

each observation, so that we obtain

0 =
∑

UiZi − n

∑
j

∫
uzje

ufTzjg(u)ĥj dµ(u)
∑

j

∫
eufTzjg(u)ĥj dµ(u)

.

where ĥj is the estimated mass at the point Zj .
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However, the likelihood equation for h is clearly

0 =
1

ĥj

− n

∫
eufTZjg(u) dµ(u)∑

i

∫
eufTZig(u) dµ(u)ĥi

Plugging this into the profiled log-likelihood equation

for f we obtain

0 = ˙̀(f) =
1

n

∑
i

UiZi −
∑

j

∫
uzje

ufTzjg(u) dµ(u)∫
eufTzjg(u) dµ(u)

=
1

n

∑
i

Zi

{
Ui − Êf (U |fTZi)

}
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Ef (U |z) is function of the known g(·) and w(·; ·).
For example, in the simple case where g is uniform on

the interval (a, b):

Êf (U |z) =

∫ b

a
ueufTz du∫ b

a
eufTz du

=
bebfTz − aeafTz

ebfTz − eafTz
− 1

fTz

if fTz 6= 0, and (a + b)/2 otherwise.
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0 = ˙̀(f) =
1

n

∑
i

Zi

{
Ui − Êf (U |fTZi)

}

Generally, the derivative of Êf (U |fTZi)
}

is

−Varf (U |fTZi)ZiZ
T
i .

Hence ` is concave in f .

Hence the maximizer of ` is simple to find and is

asymptotically normal with asymptotic covariance

function given by E
{
Varf (U |fTz)ZZT

}
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The next n pages are taken from the talk “Empirical Pricing Kernels and Investor Preferences” of K.

Detlefsen, W. K. Härdle1, and R. A. Moro1.

An investor observes the stock price and forms his subjective

opinion about the future evolution.

An opinion on the future value St can be described by a

subjective density p (historical or physical density).
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There is also a state-price density (SPD) q implied by

the market prices of options.

The SPD (a.k.a. risk-neutral density) differs from p be-

cause it corresponds to replication strategies (martingale

risk neutral measure).

A person alone does not use in general a replication

strategy but thinks in terms of his p density.
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For SPD estimation a Heston continuous stochastic volatility

model is used, which is an industry standard for option

pricing models:

dSt

St
= r dt +

√
VtdW 1

t

where the volatility process is modeled by a square-root

process:

dVt = ξ(η − Vt)dt + θ
√

VtdW 2
t ,

and W 1 and W 2 are Wiener processes with correlation ρ.
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The pricing kernel K(x) is defined as:

K(x) =
q(x)

p(x)

An estimate of the pricing kernel is called empirical

pricing kernel (EPK). We use the estimate:

K̂(x) =
q̂(x)

p̂(x)

where q̂ and p̂ are the estimated risk-neutral and

subjective densities.
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Since . . . are equivalent . . . the pricing kernel is:

K(ST ) =
q(ST )

p(ST )
=

U ′(ST )

U ′(S0)
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The aggregate return in the perceptible state u is given

by:

RA(u) =

∫
U−1(u, z)f(z)dz

In oder to solve this for f(·):

arg min
f∈F

∫ {
RA

f (u)− U−1
M (u)

}2
P̃ (du),

where U−1
M (u) is the inverse of the estimated market

utility function, P̃ is the distribution of utility levels.

End of Cut and paste section
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It is assumed in that the observed density of the form

p(x) = cqν(x)w(x; f)

where qν is assumed to follow a given parametric

function and c is a normalization factor. The weight

function is theoretically derived to be given by

w(x; f) = 1/U ′(x),

where U is the market utility function.
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The market utility function itself is assumed to be a

function of the mixture of the individual investors, such

that

x = U−1(u) =

∫
g(u; ξ)f(ξ) dξ,

where g(·; ·) is the inverse utility function and it is

considered known, and f = f(·) is a probability density

function. A subject with inverse utility function g(·; ξ)
has utility function u(·; ξ) satisfying g{u(x; ξ); ξ} ≡ x.
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The problem we consider in this paper is to find the

density f . We obtain therefore the representation:

p(x) = cqν(x)

∫
∂

∂u
g(u; ξ)f(ξ) dξ,

with x =

∫
g(u; ξ)f(ξ) dξ.
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Like DHM we want to solve for f
∫

g(u; ξ)f(ξ) dξ = ψ(u),

• qν is estimated as a parametric density.

• p can be estimated at a standard non-parametric rate

based on sample from p.

• We assume therefore that ψ = cp/q and its relevant

derivatives can be estimated in some polynomial rate

‖ψ̂(i) − ψi‖∞ = Op(n
−αi) for some αi > 0.
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If f is approximated by a finite distribution with point

mass at ξ1, . . . , ξm, and we consider the equation at the

k points u1, . . . , uk then we can write the approximation

as

ψ̂(ui) =
m∑

j=1

βjg(ui; ξj) + εi, i = 1, . . . , k.

This looks like a standard linear model, and indeed we

suggest to estimate f by solving it.

However, some basic assumptions of regression are

violated.
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How fast can f be estimated? We are going to present

toys examples similar to those of DHM. These examples

show that in very similar models can have completely

different behavior type:

(i) There is no consistent estimator of f ;

(ii) f can be estimated at a regular nonparametric

rate of n−α;

(iii) f can be estimated but at a very slow rate.
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The switching utility function U(·; ξ) (α1 = 2, α2 =

2.25, c = 2) for two different values of ξ (solid lines),

and of the logarithmic utility for two values of ξ (broken

lines).
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Consider the individual utility function:

U(x; ξ) = α2c
1−1/α2 [x− ξ]1/α1

+ ∨ (x + c)1/α2 − α2c, ξ > 0

where α1, α2 > 1 and c > 0 are given.
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Then

g(u; ξ) = min{βα2(u + α2c)α2 − c, βα1(u + α2c)α1 + ξ},

where β = α−1
2 c−1+1/α2 . To simplify and generalize a little,

we consider the general case where ξ ∈ R and

g(u; ξ) =





g2(u) u ≤ h(ξ)

g1(u) + ξ u > h(ξ)

where

h = g2 − g1 ↗ .
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Then

ψ(u) =
∫ h−1(u)

0
ξf(ξ) dξ + g2(u)F

{
h−1(u)

}

+ g2(u)
{

1− F
{
h−1(u)

}}

where F is the cdf corresponding to the pdf f . Changing

variables:

ψ
{
h(s)

}
=

∫ s

ξf(ξ) dξ − sF (s) + g2

{
h(s)

}
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Taking a derivative:

F (s) = h′(s)
{

g′2
{
h(s)

}− ψ′
{
h(s)

}}
.

Hence f(·) can be estimated in the same rate as the

rate of the estimation of second derivative of ψ, which

is essentially governed by the rate of estimation of the

second derivative of p, which depends on the level of

smoothness assumption we are willing to accept. Thus

if we assume s bounded derivative, then f can be

estimated with an Op(n
−(s−2)/(2s+1)) error.
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Modest changes in the inverse utility function may

create situations in which f can hardly estimated, or

even not at all.

Suppose g(u; ξ) = (uξ)−1
{
(u + ξ)α − 1

}
for ξ ∈ R+

and known α > 1. If α is integer then ψ(·) is only a

function of the first α moments of f , and hence there

is no consistent estimator of f .
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Seemingly as α → ∞ more and more moments will be

revealed.

The limiting form of the inverse utility function, as α →∞
and αζ → ξ is given by

g(u; ξ) ≡ ξ−1(euξ − 1).

The density f is now identified.

For example, all its moments can be estimated, e.g., by∫
ξif(ξ) dξ = ψ(i+1)(0). Really?!



Berlin 04/2007 Logarithmic utility entails logartithmic rates 33Ã
¦ ¦
`

0 5 10 15 20 25
0

2

4

6

8

10

12

x

U
(x

)

Figure 1: The switching utility function U(·; ξ) (α1 = 2, α2 = 2.25, c = 2) for two

different values of ξ (solid lines), and of the logarithmic utility for two values of ξ (broken lines).
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We will argue now that if f(·) is assumed to have

two bounded derivatives then its value at a point

can be estimated, but in a very slow rate, slower

than any polynomial rate. To be more exact,we argue

that there is an estimator such that f̂(s) − f(s) =

Op(n
−α log log n/ log n) for some α, and that there is not

any other estimator f̃(s), such that f̃(s) − f(s) =

Op(n
−α/ log log n) for some α > 0.
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The idea is standard: pick ∆̃n(·) such that
∫

g(u; ξ)∆̃n(ξ) dξ = O(n−1/2).

Then one cannot test between f0(·) and fn(·) =

f0(·) + ∆̃n(·). However if nα∆̃(c) → ∞, then the rate

nα cannot be achieved.
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The perturbation should be as non-smooth as permitted

by by the three restrictions: f0+∆̃n should (i) integrated

to 1; (ii) be positive; and (iii) the 2nd derivative should

be uniformly bounded; and (iv) ∆̃ should have compact

support.

We wanted to work with ∆̃ = ϕ(m), a high derivative of

the normal pdf — a nice smooth function with known

derivatives. However, its support is not compact. So

approximations are in need.



Berlin 04/2007 The negative details 29Ã
¦ ¦
`

Let

πm(ξ) =
{

1−
(ξ − c

d

)2}m

1(ξ ∈ (c− d, c + d))

= (1− ξ − c

d
)m(1 +

ξ − c

d
)m1(ξ ∈ (c− d, c + d)).

Note that for k ≤ m:
∫ c+d

c−d

euξπ(k)
m (ξ) dξ = (−1)kuk

∫
euξπm(ξ) dξ

π(2k)
m (c) = (−1)kd−2k

(
m

k

)
(2k)!
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π2k
m (ξ) = d−2k

2k∑
i=0

(
2k

i

)
(−1)i m!

(m− i)!
(1− ξ̃)m−i

× m!

(m− 2k + i)!
(1 + ξ̃)m−2k+i

= d−2k

k∑
i=0

(−1)iai, say.

The ai series is bimodal, hence the sum is of the order

of the largest ai.
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‖π(2k)
m ‖∞ ≤ max ai ≤ C(2k)!

{
c2

m

k

}2k
.

Let

∆m,k(ξ) =
d2k

(2k + 2)!(c1c2)2k
π(2k)

m (ξ).

We take m = dc1ke. Then ∆(2)
m,k is uniformly bounded,

while

∆m,k(c) ≥ c3k
−2(c1c2)−2k

(
m

k

)
≥ c−k

4

for some c4 > 1.
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Z
ξ−1

�
euξ − 1

	�
f(ξ) + ξ∆m,k(ξ)

	
dξ

= · · ·

= ψ(u) + (−1)k
�
1 + O(1)

	 √
2πd2k+1

(2k + 2)!m1/2c2k
2

u2keuc.

Hence if

d2k+1

(2k + 2)!m1/2(c1c2)2k
= o(n−1/2),

or k log k − log n → ∞, then one would not be able to test between f to

f + ξ∆m,k.

In particular this happens when k = log n/ log log log n. However, then

nα∆m,k(c) →∞ for any α > 0. This proves that f can be estimated in any

nα, α > 0 rate.
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The practical way would be standard least squares, but then

rates are difficult to evaluate.

If ψ(u) =
∫

g(u; ξ) f(ξ), let ψs = ψs(u) = e−usψ(u).
Assume for simplicity that by assumption f(ξ) = 0 for

ξ 6∈ (s0 − d, s0 + d). Then

ψs(u) =
∫

eu(ξ−s)ξ−1f(ξ) dξ − e−us

∫
ξ−1f(ξ) dξ

ψ(k)
s (u) =

∫
(ξ − s)keu(ξ−s)ξ−1f(ξ) dξ

− (−1)kske−us

∫
ξ−1f(ξ) dξ,
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Formally:

√
m

2πd2

m∑

k=0

(
m

k

){−1
d2

}k
ψ(2k)

s (u)

=
√

m

2πd2

∫
πm(ξ; s, d)eu(ξ−s)ξ−1f(ξ) dξ

−
√

m

2πd2
πm(s; 0, d)e−us

∫
ξ−1f(ξ) dξ

→ s−1f(s).
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Let ψ̂s be an estimator of ψs. Let K be a smooth kernel

to order 2m, integrated to 1, and with bounded support

kernel. Then we can estimate f(s) by

f̂(s) = s

√
m

2πd2

m∑

k=0

(
m

k

)(−1
d2

)k
∫

K(u)ψ̂(2k)
s (u) du

= s

√
m

2πd2

m∑

k=0

(
m

k

)(−1
d2

)k
∫

K(2k)(u)ψ̂s(u) du

=
∫

K̄(u)ψ̂s(u) du
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where

K̄(u) ≡ s

√
m

2πd2

m∑

k=0

(
m

k

)(−1
d2

)k
K(2k)(u)

Since we have already developed the machinery we pick

K(u) = γm

√
2m

2πσ2
π2m(u; u0, σ)

where γm = 1 + O(1). Hence

‖K̄‖∞ ≤ s
m

2πσd

m∑

k=0

(
m

k

)(αm

k

)2k
(2k)! = O(αmmm).
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It can be seen by comparing the results that if ψs can be

estimated at a standard polynomial rate then the balance

between variance and bias is achieved when

m log m− α log n = log m.

By taking m = mn = α log n/ log log n we achieve the rate

of

f̂(s)− f(s) = O
(
n−α log log n/ log n

)
,

for any α < 1. We have shown that the optimal rate of

convergence is nαn for some αn → 0 slowly.
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Since f cannot be really estimated, one may ask whether

the model of logarithmic useless? Surprisingly not.

Although f cannot be estimated per-se many of its

functionals can be estimated quite easily.

For example, as mentioned, its moments. Similarly

ψ(u) considered as the a simple linear functional can be

estimated quite easily.
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We show that in this smooth case, where on one hand

f can be hardly estimated, ψ can be estimated almost

at the parametric rate. In fact, these are two aspects of

one phenomena. The shape of the observable ψ hardly

depends on f , and essentially depends only on a few

aspects of f , which can be estimated well (and hence

ψ can be estimated well too). The other aspects can

hardly be estimated and hence f cannot be estimated

in a reasonable rate. This yields an uncertainty principle

— the more you are certain about f the less you are

about ψ.
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Suppose that f is supported by some compact interval

(a, b). Then one can approximate

ψ(u) =
m∑

i=1

β0
i u

i + Rm(u)

β0
j =

∫
ξj−1f(ξ) dξ/j!

0 ≤ Rm(u) =
1

(m + 1)!
ψm+1(ũ) ≤ bmeub

(m + 1)!
.

That is, very few βs are needed, but they reveal very

little.
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We assume that in our disposal there is an estimate

ψ̂ = ψ̂n. Let Σij(u1, . . . , uk) = cov
{
ψ̂(ui) , ψ̂(uj)

}
for any

u1, . . . , uk > 0. We assume

A1. For any n there is k = kn, and u1, . . . , uk ∈ (c, d), 0 <

c < d, such that the spectral radius of Σ(u1, . . . , uk) is

O(k/n) and maxi |Eψ(ui)− ψ(ui)|2 = log n/n.

A1 is satisfied by many nonparametric density and regres-

sion estimators when they are strictly under-smooth.
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We care much more about bias than about variance of

the original estimator ψ̂. Thus, we have in mind a kernel

estimator with bandwidth of order n−1/4+ε. The spectral

radius assumption is valid assuming the estimator at points

that are a multiply of the bandwidth apart are (almost)

independent, for example this is trivially the case with

kernel estimator with compact support. The relationship

in the assumption are derived from assuming that the bias

of the estimator is O(σ2), the variance is O(1/nσ), and

k = O(σ−1).
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Consider now the least squares regression of the vector

Y =
{
ψ̂(u1), . . . , ψ̂(uk)

}T
with design matrix Z ∈

Rk×m, Zij = uj
i . That is β̂ = (Z ′Z)−1Z ′Y , where

β̂ ∈ Rm. Finally let ψ̃(u) =
∑m

j=1 β̂ju
j, u > 0. We

argue that the error of ψ̃ is almost the parametric rate

even if ψ̂ achieves only a non-parametric rate.

Theorem Suppose g(u; ξ) ≡ ξ−1(euξ − 1) and

that f is supported on a compact interval. Assume

A1 holds and m = mn = log n/ log log n. Then

k−1
∑k

i=1

{
ψ̃(ui)− ψ(ui)

}2
= Op

{
(log n)2/n

}
.
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Let β0 be the true value β0
j =

∫
ξj−1f(ξ) dξ/j!. Write

Y = Zβ +ε, where ε include both the random error and the

bias terms due to both the estimator and the truncation.

By standard least squares results

k−1E
k∑

i=1

{
ψ̃(ui)− ψ(ui)

}2 = k−1E
{
εTZ(ZTZ)−1ZTε

}

= k−1 trace
{
Z(ZTZ)−1ZTE(εεT)

}
.

Since Z(ZTZ)−1ZT is a projection matrix on a m-

dimensional space, the RHS is bounded by the largest

eigenvalue of E(εεT) times m/k.
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This has three sources (variance and two biases) and hence

k−1E
k∑

i=1

{
ψ̃(ui)− ψ(ui)

}2 = O
{m

k

{k

n
+ k

log n

n
+ k

{bm

m!
}2

}}
.

The factor k before the last two terms is due to the norm

of the unit vector in Rk. The theorem follows by taking

m = log n/ log log n
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A1. Assume that for some c, d and each ε there are

hε,1, . . . , hε,M(ε) such that

sup
ξ

min
γ

max
c<u<d

∣∣g(u; ξ)−
M(ε)∑

j=1

γjhj(u)
∣∣ < ε

Note that clearly the assumption ensures the existence of

γ(·) such that maxc<u<d |g(u; ξ) − ∑M(ε)
j=1 γj(ξ)hj(u)| <

ε, but then there are also βj =
∫

γj(ξ)f(ξ) dξ, j =

1, . . . ,M(ε), such that maxc<u<d |ψ(u)−∑M(ε)
j=1 βjhj(u)| <

ε.
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Theorem Suppose Assumptions A1 and A1 hold.
Define εn by εn = arg minε{M(ε)/n + ε}. Let ψ̃ be
the least squares estimate of the regression of ψ̂ on
hεn,1, . . . , hεn,M(εn). Then k−1

∑k
i=1

{
ψ̃(ui) − ψ(ui)

}2 =
Op(εn).
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In practice, Theorems and may seem to be of a

limited use — a knowledge of the structure of the span

of the individual utility functions is needed, and the

regression is based on an identified efficient base, which

may be not natural. For example, we used a polynomial

base for the exponential utility function.

The practical approach is an histogram or discrete

approximation of f . Will it work?
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This is indeed the case. Let ξ1, . . . , ξM(ε) be reasonably

spaced points in the support of f . With the notation

introduced after Assumption A1 , and by a similar

argument, for a vector β on the simplex

sup
u

∣∣∣
M(ε)∑
j=1

βjg(u; ξj)−
M(ε)∑
j=1

βj

M(ε)∑

l=1

γl(ξj)hl(u)
∣∣∣ ≤ ε.

Hence, one can use the base function g(·; ξ1), . . . , g(·; ξM(ε))

as well.
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The starting equation for the DAX problem can be

rewritten as

p
{∫

g(u; ξ)f(ξ) dµ(ξ)
}∫

∂

∂u
g(u; ξ)f(ξ) dµ(ξ)

= cq
{∫

g(u; ξ)f(ξ) dµ(ξ)
}{∫

∂

∂u
g(u; ξ)f(ξ) dµ(ξ)

}2

,
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x ≡
∫

g
{
U(x; f); ξ

}
f(ξ) dµ(ξ) ≡ ψf

{
U(x; f)

}
.

p(x) =
q(x)

∫
∂
∂ug(U(x; f); ξ)f(ξ) dµ(ξ)∫

q
{
y
}(∫

∂
∂ug(U(y; f); ξ)f(ξ) dµ(ξ)

}
dy

=
q(x)ψ′f

{
ψ−1

f (x)
}

∫
q(y)ψ′f

{
ψ−1

f (y)
}

dy

The statistical model assumed by DHM is that we obtain

a simple random sample from p, parametrized by the high

dimensional parameter f . A natural approach is to estimate

f by the MLE or a variant of it.
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The density of the Ui can be easily found:

rf (u) = p
{
ψf (u)

}
ψ′f (u) =

q
{
ψf (u)

}{
ψ′f (u)

}2

∫
q
{
ψf (v)

}{
ψ′f (v)

}2
dv

.

The model of random sample from the density p can

be well approximated as σ → 0 by a measurement error

model: U1, . . . , Un are sampled from rf , and observed

only indirectly through

Xi = ψf (Ui) + εi, εi ∼ N(0, σ2)

independent.
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Now, the log-likelihood of the joint density of

(X1, Y1), . . . , (Xn, Yn) is given by

`f =
n∑

i=1

[
log q

{
ψf (Ui)

}
+ 2 log

{
ψ′f (Ui)

}]
− nCf

− 1

2σ2

n∑
i=1

(Xi − ψf (Ui))
2

where

Cf = log

∫
q
{
ψf (v)

}{
ψ′f (v)

}2
dv.
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By a well known formula for the Bayes estimator in the

Gaussian measurement error model, under the above

model, the distribution of ψf (Ui) − Xi given Xi is

normal with mean σ2f ′X(Xi)/fX(Xi) and a second

moment equal to σ4f ′′X(Xi)/fX(Xi) + σ2, where fX is

the marginal density of Xi. At the limit as σ2 → 0, the

conditional expectation of the log-likelihood given the

Xis amounts to replacing Ui by ψ−1
f (Xi).
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The EM algorithm, therefore, iterates therefore between

The E step:

Ui ← ψ−1
f (Xi), i = 1, . . . , n,

and

The M step:

f ← arg max
[ n∑

i=1

{
log q

{
ψf (Ui)

}
+ 2 log

{
ψ′f (Ui)

}}
− nCf

]
.



Berlin 04/2007 A final simplification 2Ã
¦ ¦
`

Let U = (U1, . . . , Un), X = (X1, . . . , Xn), and denote

the E-step by U = ψ−1
f (X). The M-step can be solved

by solving the likelihood equation:

0 = ˙̀M
f (ξ;U)

=
n∑

i=1

[
q′

{
ψf (Ui)

}

q
{
ψf (Ui)

} g(Ui; ξ) +
2

ψ′f (Ui)

∂

∂u
g(Ui, ξ)− Ċf (ξ)

]
,

=
n∑

i=1

[
Tf (Ui; ξ)− Ef

{
Tf (U ; ξ)

}]
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We consider the following approximation of the EM:

fi+1 = fi + H−1
fi

`M
fi

{·; ψ−1
fi

(X)
}
, i = 1, 2, . . . ,

where Hf : L2(µ) → L2(µ) is the operator given by:

Hf (ξ, ζ) = covf

{
Tf (U ; ξ) , Tf (U ; ζ)

}
.
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