Calibrating CAT Bonds for Mexican Earthquakes

Wolfgang Karl Härdle Brenda López Cabrera

Humboldt-Universität zu Berlin http://case.wiwi.hu-berlin.de http://ise.wiwi.hu-berlin.de

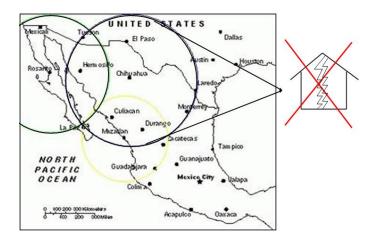


Figure 1: Location of epicenters Calibrating CAT Bonds for Mexican Earthquakes

Motivation

Mexico is exposed to earthquake risk (EQ):

- □ EQ disasters are huge and volatile
- An 8.1 Mw EQ hit Mexico in 1985: estimated payouts of 4 billion dollars

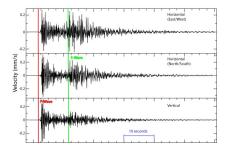


Figure 2: Waves from seismograph

Seismology

- EQ: sudden dislocation of large rock masses along fault lines fractures
- Parameters: location, fault rapture plane, magnitude and depth
- Depth (d): distance between the hypocenter and the epicenter
- Magnitude (Mw): numerical quantity of the total energy released
- ⊡ Tools: seismograph and the accelerograph

1-3

CAT bonds

- Reconstruction can be financed by transfering the risk with CAT bonds
 - From insurers, reinsurance and corporations (sponsors) to capital market investors
- □ Alternative or complement to traditional reinsurance
- Supply protection against natural catastrophes without credit risk present in reinsurance
- □ Offer attractive returns and reduce the portfolio risk
- Attractive surplus alternatives

Calibrating CAT bonds

 \Box The intensity rate (λ) describes the flow process of EQ:

- Reinsurance market (λ₁): Ceding & Reinsurance company
- Capital market (λ_2) : SPV & investors
- Historical data (\u03c6₃): real intensity of EQ
- $\ \, \boxdot \ \, \mathsf{Comparative analysis: is} \ \, \lambda_1 = \lambda_2 = \lambda_3 ? \ \, \mathsf{Fair}?$
- Different variables affect the value of the loss: physical parameters, property value, building material, construction design, impact on main cities, etc.

Outline

- 1. Motivation \checkmark
- 2. What are CAT bonds?
- 3. Calibrating the parametric Mexican CAT Bond
- 4. Calibrating a Modeled loss CAT bond

CAT bonds

- ⊡ Ease the transfer of catastrophic insurance risk
- Coupons and principal depend on the performance of a pool or index of natural catastrophe risks
- ⊡ Parties: Sponsor, SPV, collateral & investors
- □ If there is no event: SPV gives the principal back to the investors with the final coupon.
- If there is an event: investors sacrifices fully or partially their principal plus interest and the SPV pays the insured loss

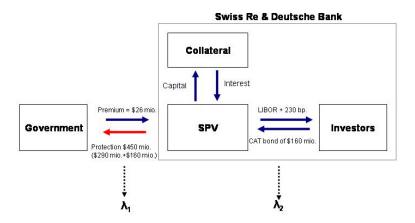


Figure 3: Cash Flows Diagram. Event (red), no event(blue)

Trigger mechanisms

- 1. Indemnity trigger: Actual loss of the ceding company
- 2. Industry index trigger: The ceding recovers a % of total industry losses in excess of a predetermined point
- 3. Pure parametric Index trigger: Richter Scale
- 4. Parametric index trigger: weighting boxes exposure
 - Hurricane Index value = $K \sum_{i=1}^{l} w_i (v_i L)^n$
- 5. Modeled loss trigger: A third party projects the expected losses to the ceding company's portfolio

2-3

Examples

Date	Sponsor	SPV	Total size (\$mio)	Term (yrs)	Peril
Jul'97	Swiss Re	SR EQ Fund	\$137	2	EQ
Nov'97	Tokyo Mar.	Parametric Re	\$100	10	EQ
June'01	Zurich Re	Trinom	\$162	3	Multi peril
May'03	USAA Re	Residential Re 2003	\$160	3	Multi peril
Jun'03	PIONEER'03 II-B	Swiss Re	\$12	3	Wind

Table 1: Examples of CAT bond

- 2-4

CAT-MEX bond

	N
Issue Date	May-06
Sponsor	Mexican government
SPV	CAT-Mex Ltd
Reinsurer	Swiss Re
Total size (P)	\$160 million
Risk Period	3 year
Risk	Earthquake
Structure	Parametric
Spread (s)	LIBOR plus 230 basis points
Total coverage	\$450 million
Premiums	\$26 million

Table 2: Mexican parametric CAT bond

Calibrating the Mexican CAT Bond

- □ Air Worldwide Corporation modeled the seismic risk
- ⊡ Given the federal governmental budget plan: 3 zones

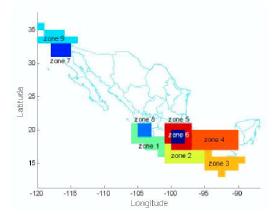


Figure 4: Map of regions Calibrating CAT Bonds for Mexican Earthquakes —

□ The CAT bond payment would be triggered if:

Zone	Coverage	Threshold u in $Mw \ge to$
	A . -A	
Zone 1	\$150 mio.	8
Zone 2	\$150 mio.	8
Zone 5	\$150 mio.	7.5

Table 3: Thresholds u's of the Mexican parametric CAT bond

⊡ In case of a trigger event:

- Swiss Re pays the covered insured amount to the government
- Investors sacrifices their full principal and coupons

□ Premium & proceeds are used to pay coupons to bondholders

Assumptions

The arrival process of EQ N_t , $t \ge 0$ uses the times between EQ $W_i = T_i - T_{i-1}$:

$$N_t = \sum_{n=1}^{\infty} \mathbb{I} \left(T_n < t \right) \tag{1}$$

• EQ suffer the *loss of memory property*:

$$P(X > x + y | X > y) = P(X > x)$$

 N_t can be characterized by a Homogeneous Poisson Process (HPP)

Homogeneous Poisson Process (HPP)

 N_t is an HPP with intensity rate $\lambda > 0$ if:

- \bigcirc N_t is a point process governed by the Poisson law
- \Box The waiting times $W_i = T_i T_{i-1}$ are i.i.d. $\exp(\lambda)$

The probability of occurrence of an EQ in the interval (0, t] is:

$$P(W_i < t) = 1 - P(W_i \ge t) = 1 - e^{-\lambda t}$$

$$\tag{2}$$

Calibrating Parametric CAT bond

The intensity rate (λ) describes the flow process of EQ:

- \square Reinsurance market (λ_1): Ceding & Reinsurance company
- \Box Capital market (λ_2): SPV & investors
- \square Historical data (λ_3): real intensity of EQ

Reinsurance market intensity: λ_1

- Flat term structure of interest rates & an annual continuously compounded discount interest rates equal to the the LIBOR in May 2006 r = 5.35%
- \square N_t is a HPP with intensity λ_1
- \Box Let *H* be the annual premium & let *J* be the Swiss Re's payoff

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ be a probability space and $\mathcal{F}_t \subset \mathcal{F}$ an increasing filtration, with time $t \in [0, T]$, a compounded discounted *actuarially fair insurance price* that equals the premiums to the expected loss at t = 0 is:

$$\mathsf{E}\left[He^{-tr_t}\right] = \mathsf{E}\left[Je^{-tr_t}\right] \tag{3}$$

where:

$$\mathsf{E}\left[\mathsf{H}e^{-tr_t}\right] = \int_0^T h e^{-tr_t} \lambda_1 e^{-\lambda_1 t} dt$$

and

$$\mathsf{E}\left[Je^{-tr_t}\right] = \int_0^T je^{-tr_t}\lambda_1 e^{-\lambda_1 t} dt$$

Then:

$$26 = \int_0^3 450\lambda_1 e^{-t(r_t+\lambda_1)} dt$$

Hence, λ_1 =0.0215, i.e. Swiss Re expects 2.15 events in 100 years or a probability of occurrence of an event in 3 years equal to 0.0624.

Capital market intensity: λ_2

- \Box Annual discretely compounded discount interest rate r_t
- CAT bond with coupons every 3 months and payment of the principal P at T
- \odot Coupon bonds pay a fixed spread *s*=230 bp. over LIBOR
- □ In case of no event: investor receives principal plus coupons
- ⊡ In case of event: investor sacrifices principal P & coupons
- Coupons equal to $C = \left(\frac{r+s}{4}\right) P =$ \$3.06 mio

Let *G* be the investors' gain & N_t a HPP with intensity λ_2 . A discounted *fair bond price* at time t = 0 is given by:

$$P = \sum_{t=1}^{12} \left(\frac{1}{1+r_t} \right)^{\frac{t}{4}} C e^{-\lambda_2 \frac{t}{4}} + \left(\frac{1}{1+r_t} \right)^T P e^{-\lambda_2 T}$$
(4)

Then,

$$160 = \sum_{t=1}^{12} 3.06 \left(\frac{e^{-\lambda_2}}{1+r_t}\right)^{\frac{t}{4}} + \frac{160e^{-3\lambda_2}}{(1+r_t)^3}$$

Hence, $\lambda_2 = 0.0222$. The capital market estimates a probability of occurrence of an event equal in 3 years to 0.0644, equivalently to 2.22 events in one hundred years.

Historical Intensity: λ_3

Descriptive	time(t)	depth(d)	magnitude(Mw)
Minimum	1900	0	6.5
Maximum	2003	200	8.2
Mean	-	39.54	6.9
Median	-	33	6.9
Sdt. Error	-	39.66	0.37
25% Quantile	-	12	6.6
75% Quantile	-	53	7.1
Excess	-	2.63	0.25
Nr. obs.	192	192	192
Distinct obs.	82	54	18

Table 4: Descriptive statistics of EQ data from 1900 to 2003(SSN)

Intensity model

- Let Y_i be i.i.d rvs. indicating Mw of the i^{th} EQ at time t
- □ Let $\varepsilon_i = I(Y_i \ge \overline{u})$ characterizing EQ with Mw higher than a defined threshold for a specific location
- \square N_t be a HPP with intensity $\lambda > 0$

A new process B_t defines the trigger event process:

$$B_t = \sum_{i=1}^{N_t} I(\varepsilon_i > 0)$$
(5)

 Data contains only 3 events: the calibration of the intensity of B_t is based on 2 W_i

Consider B_t and define p as the probability of occurrence of a trigger event conditional on the occurrence of the earthquake. The probability of no event up to time t:

$$P(B_t = 0) = \sum_{k=0}^{\infty} P(N_t = k)(1-p)^k$$
$$= \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} e^{(-\lambda t)} (1-p)^k$$
$$= e^{-\lambda p t} = e^{-\lambda_3 t}$$
(6)

The annual historical intensity rate for a trigger event is equal to $\lambda_3 = \lambda p = 1.8504 \left(\frac{3}{192}\right) = 0.0289$

Calibrating CAT Bonds for Mexican Earthquakes -

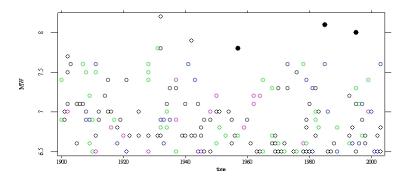


Figure 5: Mw of trigger events (filled circles), EQ in zone 1 (black circles), EQ in zone 2 (green circles), EQ in zone 5 (magenta circles), EQ out of insured zones (blue circles) **Q** eq65thMexcase.xpl

Calibration of intensity rates

	λ_1	λ_2	λ_3
Intensity (10^{-2})	2.15	2.22	2.89
Prob. of event in 1 year (10^{-2})	2.12	2.19	2.84
Prob. of event in 3 year (10^{-2}) No. expected events in 100 years	6.24 2.15	6.44 2.22	8.30 2.89

Table 5: Intensity rates

 $\lambda_1 \neq \lambda_2$:

- Absence of the public & liquid market of EQ risk in the reinsurance market: limited information is available
- Contracts in the capital market are more expensive than in the reinsurance market: cost of risk capital & risk of default

 $\lambda_1 \neq \lambda_2 \neq \lambda_3$:

- \boxdot λ_3 is based on the time period of the historical data
- \boxdot If λ_3 would be the "real" intensity rate:
 - The Mexican government paid total premiums of \$26 million that is 0.75 times the real actuarially fair one:

$$\int_{0}^{3} 450\lambda_{3}e^{-t(r_{t}+\lambda_{3})}dt = 34.49$$

- Savings of \$8.492 million? NO
- The mix of the reinsurance contract and the CAT bond: 35% of the total seismic risk to the investors

Modeled Loss CAT bond for earthquakes

- Other variables can affect the value of losses: Richter, depth, location, impact I(0,1), property value, building materials and construction designs
 - Losses are \propto *Mw* & time *t* & inversely \propto *d* of EQ
- Losses data from EQ during 1900-2003 that López (2003) built
- : Losses $\{X_k\}_{k=1}^{\infty}$ adjusted to population, inflation, exchange rate
- Missing data treatment: Expectation-Maximum (EM) algorithm

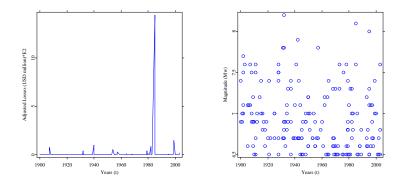


Figure 6: Adjusted Losses - Richter Scale Q CMX02.xpl

Calibrating CAT Bonds for Mexican Earthquakes

Calibrating a Modeled Loss CAT bond -

• Modeled loss:

 $\ln(X) = -27.99 + 2.10 Mw + 4.44 d - 0.15I(0, 1) - 1.11 \ln(Mw) \cdot d$



Figure 7: Historical and modeled losses of EQ from 1900-2003 (left panel), without the outlier of the EQ in 1985 (middle panel), without outliers of EQ in 1985 and 1999 (right panel) CMXmyEMalgorithm.xpl

4-3

Compound Doubly Stochastic Poisson Pricing Model

Cizek, Härdle & Weron (2005):

- □ A doubly stochastic Poisson process N_s describing the flow of EQ with an intensity process λ_s , where $s \in [0, T]$
 - HPP with an intensity $\lambda = 1.8504$
 - NHPP with intensity $\lambda_s^1 = 1.8167$
 - Renewal Process: $W_i \sim exp(\lambda)$ with $\lambda_s^2 = 1.88$

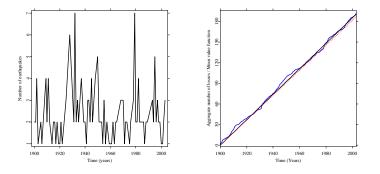


Figure 8: Left panel: Number of EQ occurred in Mexico during 1900-2003. Right panel: The accumulated number of EQ (solid blue line) and mean value functions $E(N_t)$ of the HPP with intensity $\lambda_s = 1.8504$ (solid black line) and the $\lambda_s^1 = 1.8167$ (dashed red line) \bigcirc CMXrisk03.xpl

4-5

□ Losses $\{X_k\}_{k=1}^{\infty}$ at t_i are i.i.d with $F(x) = P(X_i < x)$

Distrib.	Log-normal	Pareto	Burr	Exponential	Gamma	Weibull
Parameter	$\mu = 1.387$ $\sigma = 1.644$	$lpha=2.394\ \lambda=12.92$	$lpha=3.323\ \lambda=16.67\ au=0.919$	eta=0.143	lpha= 0.143 eta=-0.007	$eta=0.220\ au=0.764$
Kolmogorov Sminorv (D test) Kuiper (V test) Cramér-von Mises (W ² test) Anderson Darling (A ² test)	$\begin{array}{c} 0.173\\(<\ 0.005)\\0.296\\(<\ 0.005)\\1.358\\(<\ 0.005)\\10.022\\(<\ 0.005)\end{array}$	$\begin{array}{c} 0.131\\ (< 0.005)\\ 0.248\\ (< 0.005)\\ 0.803\\ (< 0.005)\\ 5.635\\ (0.005)\end{array}$	$\begin{array}{c} 0.137\\ (< 0.005)\\ 0.260\\ (< 0.005)\\ 0.884\\ (< 0.005)\\ 5.563\\ (0.01)\end{array}$	$\begin{array}{c} 0.135\\(<\ 0.005)\\0.222\\(<\ 0.005)\\0.790\\(<\ 0.005)\\9.429\\(<\ 0.005)\end{array}$	$\begin{array}{c} 0.295 \\ (< 0.005) \\ 0.569 \\ (< 0.005) \\ 7.068 \\ (< 0.005) \\ 36.076 \\ (< 0.005) \end{array}$	$\begin{array}{c} 0.145\\(<\ 0.005)\\0.282\\(<\ 0.005)\\1.051\\(<\ 0.005)\\5.963\\(<\ 0.005)\end{array}$

Table 6: Parameter estimates by A^2 minimization procedure and test statistics. In parenthesis, the related *p*-values based on 1000 simulations

4-6

⊡ The countinuous and predictable aggregate loss process is:

$$L_t = \sum_{i=1}^{N_t} X_i \tag{7}$$

- \odot The threshold level D
- \Box A continuously compounded discount interest rate r

$$e^{-R(s,t)} = e^{\int_s^t r(\xi)d\xi}$$

• A threshold time event $\tau = \inf \{t : L_t \ge D\}$. Baryshnikov et al. (1998) defined it as a point of a doubly stochastic Poisson process $M_t = I(L_t > D)$ with a stochastic intensity:

$$\Lambda_s = \lambda_s \left\{ 1 - F(D - L_s) \right\} I \left(L_s < D \right)$$
(8)

Zero Coupon CAT bonds (ZCCB)

- \Box Pays *P* at *T* conditional on $\tau > T$
- \boxdot The payment at maturity is independent from the occurrence and timing of D
- \boxdot In case of a trigger event *P* is fully lost

The non arbitrage price of the ZCCB V_t^1 :

$$V_t^1 = \mathsf{E}\left[\mathsf{P}e^{-\mathsf{R}(t,T)}\left(1-\mathsf{M}_T\right)|\mathcal{F}_t\right]$$

=
$$\mathsf{E}\left[\mathsf{P}e^{-\mathsf{R}(t,T)}\left\{1-\int_t^T\lambda_s\left\{1-\mathsf{F}(\mathsf{D}-\mathsf{L}_s)\right\}\mathsf{I}\left(\mathsf{L}_s<\mathsf{D}\right)d_s\right\}|\mathcal{F}_t\right](9)$$

Calibrating CAT Bonds for Mexican Earthquakes -

4-8

Coupon CAT bonds (CCB)

- \boxdot Pays P at T & gives coupons C_s until au
- : The payment at maturity is independent from the occurrence and timing of D
- \Box Pays a fixed spread s (bp.+LIBOR)
- \boxdot In case of a trigger event *P* is fully lost

The non arbitrage price of the CCB V_t^2 :

$$V_{t}^{2} = \mathsf{E}\left[Pe^{-R(t,T)}\left(1-M_{T}\right)+\int_{t}^{T}e^{-R(t,s)}C_{s}\left(1-M_{s}\right)ds|\mathcal{F}_{t}\right]$$

$$= \mathsf{E}\left[Pe^{-R(t,T)}+\int_{t}^{T}e^{-R(t,s)}\left\{C_{s}\left(1-\int_{t}^{s}\lambda_{\xi}\left\{1-F(D-L_{\xi})\right\}\right.\right.$$

$$\left.I\left(L_{\xi}$$

Calibrating CAT Bonds for Mexican Earthquakes -

4-9

Calibration

- \Box r equal to the LIBOR (r = 5.35%)
- \boxdot $T \in [0.25, 3]$ years
- ⊡ $D \in [\$100, \$135]$ mio. (0.7 & 0.8-quantiles of 3 yearly acc.losses)

$$\odot$$
 s = 230 bp. over LIBOR

• Quarterly
$$C_t = \left(\frac{LIBOR+230bp}{4}\right)$$
 \$160=\$3.06 mio.

- \bigcirc N_t is an HPP with intensity $\lambda_s = 1.8504$
- ☑ 1000 Monte Carlo simulations

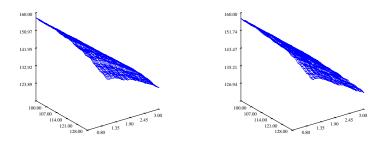


Figure 9: The ZCCB price (vertical axis) with respect to D (horizontal left axis) & T (horizontal right axis) in the Burr-HPP (left panel) & Pareto-HPP (right panel) for the modeled loss \mathbb{Q} CMX05e.xpl

Calibrating CAT Bonds for Mexican Earthquakes

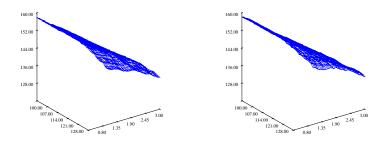


Figure 10: The CCB price (vertical axis) with respect to D (horizontal left axis) & T (horizontal right axis) in the Burr-HPP (left panel) & Pareto-HPP (right panel) for the modeled loss \mathbb{Q} CMX07e.xpl

Calibrating CAT Bonds for Mexican Earthquakes

121.00

128.00

1.35

0.80

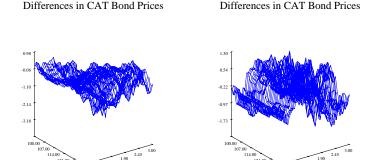


Figure 11: The difference in ZCCB price (left panel) & CCB prices (right panel) in the vertical axis left panel between the Burr & Pareto distributions under a HPP, with respect to the D (horizontal left axis) & T (horizontal right axis) \mathbf{Q} CMX06f.xpl Calibrating CAT Bonds for Mexican Earthquakes

121.00

128.00 0.80 1.35

	Min. (% Principal)	Max. (% Principal)	
Diff. ZCB Burr-Pareto	-2.640	0.614	
Diff. CB Burr-Pareto	-1.552	0.809	
Diff. ZCB-CB Burr	-6.228	-0.178	
Diff. ZCB-CB Pareto	-5.738	-0.375	

Table 7: Min. & max. of the diff. in the ZCCB-CCB prices in % of P for the Burr-Pareto distributions of the modeled loss

- \bigcirc $V_t^1 \& V_t^2$ increases as D increases
- \odot F(x) influences the price of the CAT bond

 Modeled loss: no significant impact on ZCCB-CCB prices, but more important than the loss distribution

Conclusion

- ⊡ Seismic risk can be transfered with CAT bonds
- CAT bonds: No credit risk, high returns and better performance of the portfolio
- □ Calibration of a Mexican CAT bond:
 - 1. N_t a HPP with intensity λ
 - Parametric trigger (physical parameters): the intensity rates of EQ in ≠ parts of the contract vs. real historical
 - 3. Modeled loss trigger considers several variables & connected to index trigger
- This analysis prices a CAT bond relative to an *expected level*

References

📎 P. Cizek, W. Härdle, R. Weron (2005) Statistical Tools for Finance and Insurance Springer.

- 💊 Yu. Baryshnikov, A. Mayo, D.R Taylor (1998) Pricing Cat Bonds http://www.cam.wits.ac.za/mfinance/research.html
- 📎 K. Burnecki, G. Kukla (2003) Pricing of Zero-Coupon and Coupon Cat Bonds, Appl. Math (Warsaw) 30(3): 315-324.

References

📎 W. Dubinsky, D. Laster (2005) SIGMA: Insurance - link securities Swiss Re publications.

I IBOR Rate

http://www.fanniemae.com/tools/libor/2006.jhtml

📎 B. Lopez (2003) Valuación de bonos catastróficos para terremotos en México http://www.mexder.com.mx/inter/info/mexder/avisos/ ValuaciondeBonoscatastroficosparaTerremotosenMexico.pdf

References

📎 B. Lopez (2006)

Pricing Catastrophic Bonds for earthquakes in Mexico http://www.edoc.hu -berlin.de/docviews/abstract.php?lang = gerid = 27524

📎 Secretaría de Hacienda y Crédito Público Mexico (SHCP) (2004)Administración de Riesgos Catastróficos del FONDEN Secretaría de Hacienda y Crédito Público.

📎 Servicio Sismologico Nacional Instituto de Geosifísica UNAM Mexico (SSN) (2006) Earthquakes Data Base UNAM.

Calibrating CAT Bonds for Mexican Earthquakes

