Dynamic Factor Models in Risk Behaviour

Enzo Giacomini and Wolfgang K. Härdle

CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin

Pricing Kernels & Risk Aversion

Pricing Kernel (PK) at time t and maturity $\tau = T - t$

$$M_{t,\tau}(S_T) = \frac{u'(S_T)}{u'(S_t)}$$

- 1. S_t is value at time t from wealth, consumption, asset
- 2. u(x) is utility function
- 3. under risk aversion: M(x) monotone decreasing

Figure 1: Empirical (red) and theoretical (blue) pricing kernel, DAX 19990205, $\tau=10$ days.

Dynamic Factor Models in Risk Behaviour -

CARA / CRRA Utility Functions

CARA utility

$$u(x) = -\frac{1}{\alpha}e^{-\alpha x}$$

 α > 0 is the absolute risk aversion coefficient.

CRRA utility (power utility)

$$u(x) = \frac{x^{1-\gamma} - 1}{1-\gamma}$$

 $\gamma \in (0,1)$ is the relative risk aversion coefficient.

Figure 2: CRRA, $u(x) = \frac{x^{\gamma}}{\gamma}$ (red), $\alpha(x) = \frac{1-\gamma}{x}$ (blue), $\rho(x) = \gamma$ (green), $\gamma = 0.5$.

Dynamic Factor Models in Risk Behaviour

Figure 3: Empirical RRA, DAX 19990205, $\tau=$ 10 days.

Figure 4: Empirical PK across moneyness κ and maturities τ , DAX 19990303

Figure 5: Empirical PK across κ and τ , DAX 19990303, 19990313 and 19990323

Empirical pricing kernels

- 1. do not reflect risk aversion across all strikes
- 2. vary across time to maturity τ and time t

$$M(x) = M_{t,\tau}(x)$$

How to explain pricing kernel and risk aversion dynamics?

Outline

- Motivation ✓
- 2. Pricing Kernels
- 3. DSFM and Pricing Kernel Estimation
- 4. Empirical Results
- 5. References

Pricing Kernels

Asset price follows

$$\begin{split} \frac{dS_t}{S_t} &= \mu(S_t, t)dt + \sigma(S_t, t)dB_t \\ S_t &= S_0 \exp\left[\left\{\mu(S_t, t) - \frac{1}{2}\sigma^2(S_t, t)\right\}t + \sigma(S_t, t)B_t\right] \end{split}$$

where $t \in [0, T]$ and

- 1. B_t is standard Brownian motion under measure P
- 2. $B_t^* = B_t + \int_0^t \frac{\mu_s r}{\sigma_s} ds$ is Brownian motion under measure Q

Measure Q defined by $\frac{dQ}{dP}\Big|_{\mathcal{F}_t} = \zeta_t$,

$$\zeta_t = \exp\left(-\int_0^t \lambda_u dB_u - \frac{1}{2} \int_0^t \lambda_u^2 du\right)$$
$$\lambda_t = \frac{\mu(S_t, t) - r}{\sigma(S_t, t)}$$

 λ is called market price of risk

For any measurable function $\Psi(S_t)$ and $0 \le s \le t \le T$

$$E^{Q}[\Psi(S_{t})|\mathcal{F}_{s}] = E^{P}\left[\Psi(S_{t})\frac{\zeta_{t}}{\zeta_{s}}\Big|\mathcal{F}_{s}\right]$$

The arbitrage free price at time s for payoff $e^{-r\tau}\psi(S_t)$ is

$$e^{-r au}E^Q[\psi(S_t)|\mathcal{F}_s]=E^Pigg[\psi(S_t)e^{-r au}rac{\zeta_t}{\zeta_s}igg|\mathcal{F}_sigg]$$

where $\tau = t - s$

The pricing kernel, or stochastic discount factor is defined as

$$\begin{array}{lcl} \mathit{M}_{s,\tau} & = & e^{-r\tau} \frac{\zeta_t}{\zeta_s} \\ \\ & = & \exp\left(-\int_s^t \lambda_u dB_u - \frac{1}{2} \int_s^t \lambda_u^2 du\right) \end{array}$$

Example: $\mu, \sigma, \lambda \in \mathbb{R}$ (BS)

$$\begin{split} \frac{\zeta \tau}{\zeta_t} &= \exp\left\{-\lambda (B_T - B_t) - \frac{\lambda^2 \tau}{2}\right\} \\ &= \exp\left[-\frac{\lambda}{\sigma} \left\{\sigma (B_T - B_t) - \sigma \left(\lambda - \frac{\sigma}{2}\right)\tau\right\} - \frac{\lambda \tau}{2}(\lambda - \sigma)\right] \\ &= \left(\frac{S_T}{S_t}\right)^{-\frac{\lambda}{\sigma}} \exp\left\{\frac{\lambda \tau}{2}(\lambda - \sigma) + r\tau \frac{\lambda}{\sigma}\right\} \\ &= \exp\left[\frac{\left\{\log\left(\frac{S_T}{S_t}\right) - \left(\mu - \frac{\sigma^2}{2}\right)\tau\right\}^2 - \left\{\log\left(\frac{S_T}{S_t}\right) - \left(r - \frac{\sigma^2}{2}\right)\tau\right\}^2}{2\sigma^2 \tau}\right] \\ &= \frac{q_t(S_T)}{p_t(S_T)} \end{split}$$

Thus, $M_{t,\tau}$ is decreasing in S_T and is given by

$$M_{t,\tau} = e^{-r\tau} rac{q_t(S_T)}{p_t(S_T)}$$

where q_t , p_t are conditional densities of $S_T = \exp\left\{\left(\cdot - \frac{\sigma^2}{2}\right)\tau + \log S_t + \sigma(B_T - B_t)\right\}$

Dynamic Factor Models in Risk Behaviour

Merton Optimization Problem

Market completness, representative investor, $t \le s \le T$

- 1. utility function U
- 2. wealth proces $\{W_s\}$
- 3. consumption process $\{C_s\}$, $C_s = 0$
- 4. consumes all wealth at T, $C_T = W_T$
- 5. amount $\{\xi_s\}$ invested in S_s

$$\max_{\{\mathcal{E}_{\mathbf{s}}\}} E[U(W_T)|\mathcal{F}_t]$$

subject to

$$W_s \ge 0$$

 $dW_s = \{rW_s + \xi_s(\mu - r)\}ds + \xi_s\sigma dB_s$

1. in equilibrium $W_s = S_s$ and

$$e^{-r\tau}\frac{\zeta_s}{\zeta_t} = \frac{J_W(S_s, s)}{J_W(S_t, t)} \tag{1}$$

2. at the end consume all wealth, i.e. $C_T = W_T = S_T$ and

$$e^{-r\tau}\frac{\zeta_T}{\zeta_t} = \frac{U'(W_T)}{U'(W_t)}$$
 (2)

Merton: Pricing Kernels and Preferences

In Merton asset-pricing model the pricing kernel

1. is path independent (1), can be written as ratio of conditional densities

$$\mathrm{e}^{-r au}rac{\zeta_T}{\zeta_t}(S_T,S_t)=\mathrm{e}^{-r au}rac{q_t(S_T)}{p_t(S_T)}$$

2. is equal to the marginal rate of substitution (2),

$$e^{-r au}rac{\zeta_T}{\zeta_t}(S_T,S_t)=rac{U'(S_T)}{U'(S_t)}$$

Thus, it holds

$$egin{array}{lll} rac{U'(S_T)}{U'(S_t)} &=& e^{-r_T}rac{q_t(S_T)}{p_t(S_T)} \ & U(S_T) &=& e^{-r_T}U'(S_t)\intrac{q_t(S_T)}{p_t(S_T)}dS_T \ &
ho(S_T) &=& -S_Trac{U''(S_T)}{U'(S_T)} \ & =& S_T\left\{rac{p_t'(S_T)}{p_t(S_T)}-rac{q_t'(S_T)}{q_t(S_T)}
ight\} \end{array}$$

Figure 6: Pricing kernel, utility function, risk neutral and objective measures.

Pricing Kernel Estimation

Empirical pricing kernel $\widehat{M}_t(\kappa, \tau)$

$$\widehat{M}_t(\kappa, au) = \mathrm{e}^{-r_t au} rac{\widehat{q}_t(\kappa, au)}{\widehat{p}_t(\kappa, au)}$$

Ait-Sahalia and Lo (2000) Estimate state-price density \hat{q} from option prices

Breeden and Lietzenberger (1978)

$$q_t(S_T) = \frac{\partial^2 C_t(S_t, K, \tau, r_t, \sigma_t)}{\partial K^2} \bigg|_{K=S_T}$$

Ait-Sahalia and Lo (1998)

1. estimated call price function

$$\widehat{C}_t = C_{t,BS}\{S_t, K, \tau, r_t, \widehat{\sigma}_t(\kappa, \tau)\}$$

 $\widehat{\sigma}_t(\kappa, \tau)$: nonparametric estimator for implied volatility, $C_{t,BS}$: Black-Scholes price at t

2. implied state-price density

$$\widehat{q}_t(S_T) = \left. \frac{\partial^2 C_{t,BS}\{S_t, K, \tau, r_t, \widehat{\sigma}_t(\kappa, \tau)\}}{\partial K^2} \right|_{K = S_T}$$
(3)

Degenerated Design

Figure 7: Left panel: call and put implied volatilities observed on 20000502. Right panel: data design on 20000502; ODAX, difference-dividend correction according to Hafner and Wallmeier (2001) applied.

Dynamic Factor Models in Risk Behaviour

Dynamic semiparametric factor models (DSFM)

$$Y_{i,j} = \sum_{l=0}^{L} z_{i,l} m_l(X_{i,j}) + \varepsilon_{i,j}$$

- 1. $Y_{i,j} = \log \sigma_{i,j}$
- 2. $\sigma_{i,j}$ implied volatility at trade j on trading day i, i = 1, ..., I, $j = 1, ..., J_i$
- 3. $m_l(\cdot)$ are basis functions, $l=0,\ldots,L$, in covariables $X_{i,j}$
- 4. $z_{i,l}$ are time dependent factors

 $X_{i,j} = (\kappa_{i,j}, \tau_{i,j})^{\mathsf{T}}$ is a two-dimensional vector containing

- 1. time to maturity $\tau_{i,j}$
- 2. forward moneyness $\kappa_{i,j} = \frac{K}{F_{i,j}}$

where K is strike and $F_{i,j}$ are futures price

$$F_{i,j} = S_{i,j} \exp(r_{\tau_{i,j}} \tau_{i,j})$$

Following Borak et al. (2007), the basis functions are expanded using a series estimator

$$m_l(X_{i,j}) = \sum_{k=1}^K \gamma_{l,k} \psi_k(X_{i,j})$$

for functions $\psi_k : \mathbb{R} \to \mathbb{R}$, k = 1, ..., K and coefficients $\gamma_{l,k} \in \mathbb{R}$

Defining $Z = (z_{i,l})$, $\Gamma = (\gamma_{l,k})$ we obtain the least square estimators

$$(\widehat{\Gamma}, \widehat{Z}) = \arg\min_{\Gamma \in \mathcal{G}, Z \in \mathcal{Z}} \sum_{i=1}^{J} \sum_{j=1}^{J} \{Y_{i,j} - z_i^{\mathsf{T}} \Gamma \psi(X_{i,j})\}^2$$

where

- 1. $z_i = (z_{i,0}, \ldots, z_{i,L})^{\top}$
- 2. $\psi(x) = \{\psi_1(x), \dots, \psi_K(x)\}^{\top}$
- 3. G = M(L + 1, K)
- 4. $Z = \{Z \in \mathcal{M}(I, L+1) : z_{i,0} \equiv 1\}$

Implied volatility and DSFM

The implied volatility at time *i* is estimated as

$$\widehat{\sigma}_i(\kappa, \tau) = \exp\left\{\widehat{\mathbf{z}}_i^{\top} \widehat{\mathbf{m}}(\kappa, \tau)\right\} \tag{4}$$

where
$$m(x) = \{m_1(x), \dots, m_k(x)\}^{\mathsf{T}}$$
 and $\widehat{m}_l(x) = \widehat{\gamma}_l^{\mathsf{T}} \psi(x)$

Implied SPD and DSFM

Combining (3) and (4) implied SPD estimated as

$$\begin{split} \widehat{q}_{t}(S_{T}) &= \frac{\partial^{2}C_{t,BS}\{S_{t},K,\tau,r_{t},\widehat{\sigma}_{t}(\kappa,\tau)\}}{\partial K^{2}} \bigg|_{K=S_{T}} \\ &= \phi(d_{2})\left\{ \frac{1}{K\widehat{\sigma}_{t}\sqrt{\tau}} + \frac{2d_{1}}{\widehat{\sigma}_{t}}\frac{\partial \widehat{\sigma}_{t}}{\partial K} + \frac{K\sqrt{\tau}d_{1}d_{2}}{\widehat{\sigma}_{t}} \left(\frac{\partial \widehat{\sigma}_{t}}{\partial K} \right)^{2} + K\sqrt{\tau}\frac{\partial^{2}\widehat{\sigma}_{t}}{\partial K^{2}} \right\} \bigg|_{K=S_{T}} \end{split}$$

where $\phi(x)$ is pdf from standard normal distribution

Empirical Results

Intraday DAX index and option data

- 1. from 20010101 to 20020101
- 2. 253 trading days
- 3. model selection: L=3
- 4. \hat{q}_t estimated with DSFM
- 5. \hat{p}_t estimated from last 240 days with GARCH(1,1)

Figure 8: Loading factors \hat{z}_{tl} , l = 1, 2, 3 from the top

Figure 9: Basis functions \hat{m}_l , l = 0, ..., 3 clockwise

Figure 10: Estimated SPD across κ and τ at t= 20010710

Figure 11: Estimated PK across κ and τ at t= 20010710

Pricing Kernel and SPD dynamics

Figure 12: \widehat{p}_{t_0} (dash), \widehat{q}_{t_0} , \widehat{q}_{t_1} (top), $\frac{\widehat{q}_{t_0}}{\widehat{p}_{t_0}}$, $\frac{\widehat{q}_{t_1}}{\widehat{p}_{t_0}}$, $t_0 = 20010710$, $t_1 = 20010730$

Pricing Kernel and SPD dynamics

1. influence of loading factors in q

$$\hat{q}_t(S_T) = \phi(d_2) \left\{ \frac{1}{K \hat{\sigma}_t \sqrt{\tau}} + \frac{2d_1}{\hat{\sigma}_t} \frac{\partial \hat{\sigma}_t}{\partial K} + \frac{K \sqrt{\tau} d_1 d_2}{\hat{\sigma}_t} \left(\frac{\partial \hat{\sigma}_t}{\partial K} \right)^2 + K \sqrt{\tau} \frac{\partial^2 \hat{\sigma}_t}{\partial K^2} \right\} \bigg|_{K = S_T}$$

2. analyse first moment of q across time and maturities

$$\mu_{t,\tau} = \frac{1}{S_t e^{r\tau}} \int x \widehat{q}_{t,\tau}(x) dx$$

Figure 13: $\mu_{t,\tau}$, $\tau = 0.06, \dots, 2.21$.

Figure 14: $\mu_{t,\tau}$, $\tau=0.06\ldots,2.21$, \widehat{z}_1 (below).

Sensitivity to Loading Factors

One increasing factor, remaining factors constant at sample median, n = 0, ..., N, l, k = 1, ..., 3 and $l \neq k$,

$$z_{ln}^* = d_l + \frac{n}{N}(u_l - d_l)$$

$$z_{kn} \equiv med(z_k)$$

$$d_l = \min \hat{z}_{tl} - 0.5 |\min \hat{z}_{tl}|$$

$$u_l = \max \hat{z}_{tl} + 0.5 |\max \hat{z}_{tl}|$$

	z_{t1}	z_{t2}	z_{t3}
min	0.36	-0.37	-0.07
max	0.75	0.49	0.05
median	0.66	0.01	0.00
mean	0.63	0.00	0.00
std.dev.	0.09	0.05	0.02
u	1.13	0.73	0.07
d	0.18	-0.57	-0.10

Table 1: Descriptive statistics of loading factors.

First factor loading \widehat{z}_1

Figure 15: $\mu_{l,\tau}$ estimated with z_{1n}^* , $n=0,\ldots,50,\,\tau=0.06,\ldots,2.21$ (below).

1

Figure 16: SPD estimated with z_{1n}^* , $n=0,\ldots,3$ (dash), N=4 (solid). Left $\tau=0.06$, right $\tau=0.21$

Figure 17: PK estimated with z_{1n}^* , $n=0,\ldots,3$ (dash), N=4 (solid). Left $\tau=0.06$, right $\tau=0.21$

Second factor loading \widehat{z}_2

Figure 18: $\mu_{t,\tau}$ estimated with $z_{2n}^*,\, n=0,\ldots,50,\, au=0.06,\ldots,2.21$.

Figure 19: SPD estimated with z_{2n}^* , $n=0,\ldots,3$ (dash), N=4 (solid). Left $\tau=0.06$, right $\tau=0.21$

Figure 20: PK estimated with z_{2n}^* , $n=0,\ldots,3$ (dash), N=4 (solid). Left $\tau=0.06$, right $\tau=0.21$

Third factor loading \widehat{z}_3

Figure 21: $\mu_{t,\tau}$ estimated with z_{3n}^* , $n=0,\ldots,50,\,\tau=0.06,\ldots,2.21$ (below).

Figure 22: SPD estimated with z_{3n}^* , $n=0,\ldots,3$ (dash), N=4 (solid). Left $\tau=0.06$, right $\tau=0.21$

Figure 23: PK estimated with z_{3n}^* , $n=0,\ldots,3$ (dash), N=4 (solid). Left $\tau=0.06$, right $\tau=0.21$

Outlook

- 1. influence of remaining loading factors on SPD
- 2. correlation between loading factors
- 3. correlation between moments and loading factors

References — 5-51

References

Y. Ait-Sahalia and A. Lo Nonparametric Risk Management and Implied Risk Aversion Journal of Econometrics, 94 (2000) 9-51.

P. Fishburn
Utility Theory

Management Science, Vol. 14, No. 5, Theory Series (Jan, 1968) 335-378.

H. Föllmer and A. Schied Stochastic Finance Walter de Gruyter, Berlin 2002.

References 5-52

- J. Franke, W. Härdle and C. Hafner Statistics of Financial Markets Springer-Verlag, Heidelberg, 2004.
- W. Härdle, T. Kleinow and G. Stahl Applied Quantitative Finance Springer-Verlag, Heidelberg, 2002.
- R. Merton Continuous-Time Finance Blackwell Publishers, Cambridge, 1990.

From (1) ζ_t is path independent and

$$\zeta_{t} = \frac{q(S_{0}, S_{t})}{p(S_{0}, S_{t})} \\
= \frac{q(s_{0}, s_{0 < k \leq s}, S_{s < k \leq t})}{p(s_{0}, s_{0 < k \leq s}, S_{s < k \leq t})} \\
\frac{\zeta_{s}}{\zeta_{t}} = \frac{q(s_{0}, s_{0 < k \leq t}, S_{t < k \leq s})}{q(s_{0}, s_{0 < k \leq t})} \frac{p(s_{0}, s_{0 < k \leq t})}{p(s_{0}, s_{0 < k \leq t}, S_{t < k \leq s})} \\
= \frac{q_{s}(S_{t})}{p_{s}(S_{t})}$$

where $q_t(S_s)$ and $p_t(S_s)$ are conditional densities from S_s at time t, s > t

