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Data & Motivation 1-1

Temperatures and Climate Change

(] China Meteorological 50
Administration, J =159
weather stations in China
from 19570101 - *
20091231 20

(] Daily observations 1
(averaged over stations),
T = 19358

1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008
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Data & Motivation 1-2
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Figure 1: The moving average (of 730 nearby days) temperatures of China
of 19570101 - 20091231
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Data & Motivation 1-3

Weather Derivatives

Econometrics Fin. Mathematics
T: CAR(3)
1 {
Xe=Te =Mt FCAT(t,Tl,'rg)
4 4
Xepz = a' Xi + oiet MPR
d

2= (1)

[ Detect complex trends, evaluate “non priced” places
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Risk Perception

functional Magnetic Resonance Imaging

measures the oxygen level (BOLD) in the blood every 2-3 sec
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Data & Motivation 1-5

Data Set

Series of 3-dim images
[0 each scan transformed on the resolution 2 x 2 x 2mm?3
(1 91 slices
[] observed every 2.5 seconds
[J data set: series of T = 1360 images with 91 x 109 x 91 voxels

High-dimensional, high frequency & large data set.
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Data & Motivation 1-6

Functional Magnetic Resonance Imaging
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Figure 2: Typical example of fMRI image in a particular time point, 12

different horizontal slices of the brain’s scan. @ fMRI
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Data & Motivation

Risk Patterns and Brain Activities

(] Which part is activated during risk related decisions 7
[J Can statistical analysis help to detect this area?
[J Can we provide an integrated dynamic analysis?

[J Response curve (to stimuli)? classify “risky people”?

1-7
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Data & Motivation

Implied Volatility Surface

Figure 3: Typical IV data design on two different days. Bottom solid lines
indicate the observed maturities, which move towards the expiry. Left
panel: observations on 20040701. Right panel: observations on 20040819.

@l s
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Data & Motivation 1-9

IVS

] “Strings”’, “Smile”, “Skewness”, Dimensionality not fixed
(] Trading, hedging and risk management of option portfolios
[ IVS reflects perception of market risk, Bakshi et al. (2000)...
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Data & Motivation 1-10

Order Book

x 10% NAB, 08/07/02, 10:15
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Figure 4: Bid and ask curves constructed from the order book of National

Australian Bank stock prices on 20020801. @ LOB
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Data & Motivation

Collateralized Debt Obligation

=D years to mat.
m— 7 cedrs to mat.
s 5 years to mat.
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Figure 5: Compound correlations on 070321 w.r.t. time to maturity (in

years), implied correlation and tranche (in %). @ CDO
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Data & Motivation

CO, Emission Allowance

20051004

2006 2007 2008 2009 2010 2011 2012
X

Figure 6: Term structure for CO, emission allowance's spot and futures

prices, trading on 20051004 in the EEX market. @ CO2
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Data & Motivation 1-13

Empirical Pricing Kernel

0.15
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Figure 7: Estimated PK across moneyness k and maturity 7 at t =

200107108 Pk
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Data & Motivation

Electricity Forward Prices

20041230
T

Figure 8: Term structure of the electricity prices (NOK/MWh) from the

Nord Pool on 20041230, & EFP
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Data & Motivation 1-15

High Dimensional Nonstationary Time

Series

[J Medicine

>

fMRI data

(] Meteorology

>

Temperatures, rainfall etc. from many stations

[l Finance

vV vy VY VvYyy

>

Implied Volatility Surface
Order Book

Collateralized Debt Obligation
CO, Emission Allowance
Empirical Pricing Kernel
Electricity Forward Price

(] “eBird", tree rings, ...
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Data & Motivation 1-16

Formal Setting

(X1,1, Y1,1)s -0 (X010, You,1) (X1,2, Yi2)s e e oeeee (Xyr, 72 Y1,7)
t=1 t=2 t=T

where:

Xt €R?, Y €R

T - the number of observed time periods (days)
Jt - the number of the observations in (day) t
E(Y:|Xe) = Fe(Xt).

What is F:(X;)? How it moves?
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Data & Motivation

Basic Idea

[] Use a “time & space” dynamic approach

(] Separate time dynamics from space functions
(1 Low dim time series dynamics

[ High dim (time invariant) space functions

(1 # of factors ~ J, fitting 7
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Data & Motivation 1-18

Dynamic Semiparametric Factor Model

L
E(YelXe) = D Zo,eami(Xe) = Zgem(Xe) = Zg AP(X)
=1
D Zt -
m(-) tuple of functions (mg, my, ..., m)
B 1/}( ) = (1, -..,%k) " (x) vector of known basis functions
[ A: L x K coefficient matrix.

(Zo,t1s- -, Zo’t,L)—r low dim (stationary) time series
T
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Data & Motivation

Deterministic Model

Yij = ZZ ur(t)vn Z anPr(Xej) + €4

I=1r=1

Y, = U/T A, e, dﬁf Ul BTV, + e
N—— ——~
zr m

O U] = (u(t),...,ur(t), u(t) time basis

O We = (P1(Xe), .-, ¥k(Xe)) T, ¥i(x) space basis
[ B*T R x K matrix consisting of Bs

1Bll2,1 = S8y \/m (group Lasso)

()
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Data & Motivation 1-20

Generalized Dynamic Semiparametric Factor
Model

Y, = (Zi:+ U NAV, + &, = U[TAV, + (Z) AV, + &})
© UITAV, + 6, with E(Zo|X;) = 0.
2 Step Estimation Procedure
] Find the trend based on Y, = U/ TAV, + ¢,

=T ~ ~ ~
[J Based on Y, def Y,! — U] BV,, A and V,, obtain 2o,
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Data & Motivation

Questions

J How to fit GDSFM?
J What risk is involved?

] How to select basis?

GDSFM: Data - Theory - Data - Theory - ...
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Data & Motivation 1-22

Overview

Data & Motivationv’

Estimation

Its Properties

Generalized Dynamic Semiparametric Factor Model
Weather, fMRI and I1VS

How well are we doing?

ook w e
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Estimation 2-1

Time Basis

[J Global trend: 1, t, (3t> — 1)/2,... Legendre Polynomial

(J Local variation: sin{it/(p2m)}, cos{it/(p2m)}, i=1,...
Fourier Series

[J Period p = 11.8 (fMRI), 365, 3650 (weather)
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Estimation 2-2

Lasso & Group Lasso

[J Lasso (least absolute shrinkage and selection operator),
Tibshirani (1996)

(J Group Lasso: Yuan and Lin (2006)
[J Shrink some coefficients to 0

(] Advantages over subset and ridge regressions
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Estimation 2-3

Space Basis

[J FPCA (data dependent basis), motivated by Hall et. al (2006)
[] 4y: eigenfunctions of the smoothed covariance operator

$(u,v) :3o(u v) —a(u)a(v)

Sy, be(u€ — X5)PK Xy —u

Yoo q u—a—Z (v = ( hy )

t=1j=1
T d
> {Y5 Yk — a0 — Y bf(u® — X sz ve = X5)¥
t=1 1<jAk<J; =1

Xt'—U Xt'—
<K ( " )K( T %)
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Estimation 2.4

1st eigenfunction, interpolated 2nd eigenfunction, interpolated

time to maturity 0o time to maturity 0 0

moneyness moneyness

Figure 9: IVS Modeling using FPCA for space basis.
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Estimation 2-5

Estimation Procedure

0 Space basis W; via FPCA

1 Time basis U, selection via group Lasso; B (R x K)
T T
ming(T) 13 (Y = U7 87w (Y - U7 BT wy)
t=1

+2M[Bll21 (3)

2 Split Binto T, A

T: first “L" eigenvectors of BBT; A=T'jB
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Estimation 2-6

Tuning parameter \

[J Take 100 equally spaced X € [0, max, || 32, V. Y: Uy || /VK]
() Evaluate Cp(A) where

T _1TRT 2

52
52 el Ve - U BoisVe IP
JT —df

| Br H

o = T I 0r+ 3 s (K

[ Choose the minimal Cp(A)
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Its Properties 3-1

Theorem 1: Risk Bound (Gaussian)

Under Assumptions (A1, A2, A3, A4, 1), let
A= 20/\/JT\/1 + Alog R//T with A > 8, and then with
probability at least 1 — R1=9 with g = min(Alog R, v/ T), for all B:

i
T) S W (B - B*)Us | < 640°s(1+ Alog R/V/T)/(K2J),
t=1

T=12|| B — B* ||, < 3205\/1+ Alog R/VT/(k2VJ),

M(B) < 64¢2,,.5/K>
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Its Properties 3-2

Theorem 2: Risk Bound (Non-Gaussian)

Under Assumptions (A1, A2, A3, A5, 1, 2), let
A =o04/(log R)1*¢/JT, § > 0, and then with probability at least
1— (2elog R — €)C/(log R):*%, for all B:
T
(UT) 22NV (B = B)U: |I” < 160%5(log R)' 4/ (2J)

t=1
T2 B—B" |l < 1605\/@/@2\0)

M(B) < 64¢2,,.5/K>
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Generalized DSFM 4-1

Theorem 3: Risk Bound (Dependent)

Under Assumptions (A1, A2, A3, 1, 3), let

¢, [R5 B
VT llog Ry=72:
and then with probability at least p(1 — R~%), for V B:

* 2 2
Zn W (B - B | < (c' W) /K2

A=

é' >0,

(log R)I=9'T

X+ b?
1/2|| IB B* ||21 (CI U()g(p)lz_:;;) S/K,Z

M(B) < 64¢7as/ K’
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Generalized DSFM 4-2

Comparison

i.i.d. Gaussian

(] Dependence on R is negligible for large T

[0 Low sparsity, s/x2 large, bounds large, M(B) large
Independent, bounded 2nd moment

[] Dependence on R not made negligible for large T
Dependent

(1 Dependence level *, bound *
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Generalized DSFM 4-3

Theorem 4: 70,7? not get affected

Suppose that all assumptions in Theorem 3 and Assumptions (B1 -
B7) hold. Then we have

1 S,
= > |2 A=z
1<t<T

"= 0p(p? + 53). (4)

since B is close enough to 8
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Generalized DSFM 4-4

Definitions
def T R T
B = (. 21200) 'Y 20420,
t=1 t=1
zO,t d:ef BT?O,t

T
Zn t d:ef (T_l Z ZO,SZ(;,—S)_I/2ZOJ

s=1

.
def _ _
Zne = (T Zos24,) Y220

s=1
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Generalized DSFM 4-5

Theorem 5: Covariance Equivalence

Suppose that all assumptions in Theorem 3 and Assumptions (B1 -
B7, C1 - C2) hold. Then we have for h > 0

min[7,T—h] _ _ - :
T_l Z ZO:t (Zo,t+h - ZO,t) — ZO,t (ZO,t+h — ZO,t) _ OP(T—1/2)
t=max|[1,-h+1]
min[T,T—h]
T—]- Z Zn’tZ,;l’—tJrh — Z”:tZr;l,—t+h — OP(T—l/Q)
t=max[1,-h+1]
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Applications 5-1

Weather: space functions

8000 1
6000 08
4000 0.6
2000 04
"5 10 15 20 2 30 3 40 %% 5 10 15 20 25 30 35 40

Figure 10: Distribution of the eigenvalues and the relative proportion of
variance explained by the first K basis.
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Applications 5-2

China Climate Types

China Climate Types "(ﬁ

Figure 11: Weather stations & China Climate Types
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Applications

Time Basis

Factors Factors
Trend 1 Large sin{2mt/(365 - 10)}
(Year by Year) t Period  cos{2mt/(365 - 10)}
3P -1 sin{47t/(365 - 10)}
Seasonal sin{2mt/365} cos{4mt/(365-10)}
Effect cos{27t/365} sin{67t/(365 - 10)}
cos{207t/365} cos{207t/(365 - 10)}

Table 1: Initial choice of 53 -3 + 20 = 179 time basis.

GDSFM: Data - Theory - Data - Theory - ...
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Applications

Time Basis Coefficients

(1 Long term: quadratic trend, warming effect
[J Yearly variation (p = 365): earth rotation
[J 10-year variation (p = 3650): solar activity

0 1962 1967 19%2 1977 1982 '1987 1992 1997 2002 2007

5-4

Figure 12: Estimated coefficients of the 1st factor T,1 wrt. the yearly

polynomial time basis (constant, linear, quadratic).
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Applications

5-5
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Figure 13: Estimated coefficients of the 2nd - 5th factors Frg, ..

the 54 - 3 yearly polynomial time basis.
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Applications 5-6

Basis Estimates
sin 27t /365 —0.1777 0.0076 0.0177 —0.0136 0.0084
cos 2mt/365 —0.6081 0.0126 0.0366 —0.0369 0.0114
sin4mt/365 0.0000 0.0000 0.0000 0.0000 0.0000
cos4rt/365 —0.0145 0.0028 0.0021 —0.0022 0.0029
. 0.0000 .
cos 20mt/365 0.0000 -
sin27t/(365 - 10) 0.0025 —0.0006 0.0009 —0.0008 —0.0001
cos2mt/(365 - 10) 0.0000

0.0000

cos20mt/(365-10)  0.0000

Table 2: Estimated coefficients of the 5 factors w.r.t. the 20 Fourier series
time basis.
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Applications 5-7

Extracted Trends

Il

. . . . . . . . . .
1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

Figure 14: Extracted trends based on U/ 5.
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Applications

GDSFM:

x10°

Il 1 L
1977 1982 1987

Figure 15: Extracted trends based on U, B.

5-8
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Applications 5-9
Estimated Stochastic Process 7,

1000

900 b
800 b
700p b
6007 b
500
400
300

200
100

-100 ‘ ‘ : ‘ ‘ ‘ ‘ ‘ ‘ 3
1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008

Figure 16: Estimated Stochastic Process 20,t,1
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Applications

Econometric Modeling of Z),t

20,t = ’R?o,t,l + €0,+ with random vector gq ; and estimated
coefficient matrix;

0.9732 —-0.0135 -—0.0002 -—0.0006 —0.0002
0.0127  0.1766 —0.1824 —-0.0682 —0.0009
0.0358 —0.2867  0.4493 —0.1138  0.0053
—0.0001 —-0.1967 —-0.1962  0.8010 —0.0052
0.0790  0.0492  0.0690 -0.0225 0.8418
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Applications

80

60-

40}

20

-80 1978 1983

Figure 17: Estimated Stochastic Process ?O,t,l

5-11
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Applications 5-12

Improvements

[ Periodic behavior in Z),t

[J Step 1 (detrending, both weather + fMRI):
Variance of the noise ~ mean of the measurements!

[J Group Lasso under heteroscedasticity with high J (Poisson -
like model)

Y, = U/TAV, +¢;, Cov(e;) = diag(|U, TAV,|)

[J Lasso under heteroscedasticity, Jia et. al. (2009)
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Applications 5-13

Current calibration

[J 2 Steps: Fourier truncated series + GARCH(p,q) & t FTSG

. 2imt
af = c+ Z {cz, Cos < 365 ) + C2j41 81N <365)}

+ OélEt,1 + 610,:71

[J 1 Step: Local linear Regression (LLR) & t Lur Yi=£6
t)

GDSFM: Data - Theory - Data - Theory - ... W
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Applications 5-14

Risk Perception and Investment Decision

Perceived
Risk

HHH

or

Subjective
" Expected
Return

8.93% HHH

or

Decision /
[A] \

10x 2 sec 2.5 sec 7 sec
= 20 sec
Returns Pause Decision
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Applications 5-15

fMRI methods (Panel)

[J existing methods to analyze these data: voxel-wise GLM
» strong a priori hypothesis necessary
(] new statistical method: DSFM

» dimension reduction keeping the data structure
» exploratory analysis
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Applications 5-16

Panel Version Model with Multi Subjects
1<i<|

L
Yii=> (ab, + U TDm(Xey) +eej, 1<j<Jpy, 1<t<T,
=1

with fixed effect ai,, and

v
)3 <Z aé,lm/(Xt,j)’Xt,j> = 0.

i=1 \/=1
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Applications 5-17

2-step estimation procedure

1 Average YtiJ over i, and estimate common my as in the
original approach.

2 Given the common my, for i, estimate their specific factors in
time Z;,.

L
=1
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Applications 5-18

Estimated factor loading iy with L = 5.
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Applications 5-19

Estimated factor loading i, with L = 5.
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Applications 5-20

e

Estimated factor loading 3 with L = 5.
(VMPFC = Ventromedial prefrontal cortex)
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Applications

Motor region for the right hand

Estimated factor loading iy with L = 5.

GDSFM: Data - Theory - Data - Theory - ...
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Applications

L i
.

Parietal cortex

Estimated factor loading s with L = 5.
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Applications

Response to Stimuli
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Figure 18: Response curves (to stimuli) U] T} for probands i = 9 & i = 19

with periodic cubic polynomial as time basis.
GDSFM: Data - Theory - Data - Theory - ...

L




Applications 5-24

SVM Analysis (Risk)

[] Different subjects’ response curves have different shapes
(] SVM based on the 8

MEAN Estimated
Strongly 0.85 0.14
Weakly  0.59 0.40

Data

Table 3: Classification rates of the SVM method.

The rates hold over a wide range of parameters
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Applications 5-25

SVM Classification

Scores
05
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Applications

Related & Future Research

[J Risk Patterns and Correlated Brain Activities (with A.
Mysickova)

(1 Tell what the subject see

[J Emotions recognition from face (FOX: “Don't lie to me") +
fMRI analysis
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Applications
Implied Volatility Surface Modeling

1st eigenfunction, interpolated 2nd eigenfunction, interpolated

0.4
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o1 -01
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0
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-01 ~0.4

1

0.5

time to maturity 00 time to maturity 00

moneyness

moneyness

Figure 19: IVS Modeling using FPCA for space basis.
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Applications

A0F T
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Figure 20: Estimated time series of factors Z;1, Z:» (20070102 -
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Applications 5-30
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Appendix 6-1

Assumptions

A1 Normalization of Uy & Wy: W] /J = Iy, "L, U U;/R =1
A2 The number of nonzero BFs: M(p*) <s
A3 Pmax is the maximum eigenvalue of 2;1 u:Ul

A4 The error terms €1, ..., €7 are i.i.d. Gaussian with mean 0
and variance g2/,

A5 The error terms €1, ..., €7 are independent with mean 0 and
finite variance E(e3) < 02
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Appendix 6-2

Assumption 1
There exists a positive number k = k(s) such that

in{ZtH‘VtTAUtH
VI | Ax ||
| Are [[21< 3| Ar

HIR| < s, 8 € RFF\{0},

2,1 } Z K.

[ Restriction on the eigenvalues of U; as a function of sparsity s

(] Low sparsity, s big, k small
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Appendix 6-3

Assumption 2
The matrices V; and U; are such that

T J

K
TS (max 3 wagsl) < €,

t=1j=1 k=1

for a constant C > 0.
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Appendix 6-4

Measure of Dependence, Jason (2004)

Given a set 7 and random variables V;, t € T, we say:

O

B
B

A subset 7' of T is independent if the corresponding random variables
{Vi}ter are independent.

A family {7;}; of subsets of T is a cover of T if UJ'E =T.

A family {(7;, w;)}; of pairs (7}, w;), where 7, C T and w; € [0,1] is a
fractional cover of T if ZJ. wily > 11, ie. ZJ. w; > 1 for each
teT.

A (fractional) cover is proper if each set 7; in it is independent.

X(T) is the size of the smallest proper cover of T, i.e. the smallest m
such that 7 is the union of m independent subsets.

:tE’E-

X*(T) is the minimum of Zj w; over all proper fractional covers

{(T5 wi)};-

X*(T): measure of dependence; X*(7) = 1 (independent).
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Appendix

Assumption 3
With a high probability p, V;, U; and e, are such that

K J
J’lzzwtkjngtr)z < b%

k=1j=1
10305 < 2
JT) wthEtJ Utr) < .
t=1 k=1 j= ﬁ
forV r and some constants b;, C' > 0,t=1,...,T.

6-5
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Appendix 6-6
Assumptions

Bl Xi1,..., X7, €1,1,---,67,, and Zo 1, ..., Zo, 7 are independent.

B2 Xia,...,X: are identically distributed, support [0,1]9 and a density £,

B3

B4

that is bounded from below and above on [0, 1], uniformly over
t=1,...,T.

We assume that Eg;; =0for 1 <t < T,1< ;< J, and for ¢ > 0 small
enough sup; <.« 7 1<j<y Eexp{c(er;)*} < oo.

The vector of functions m = (m1,...,my)" can be approximated by Wy,
ie.

ok sup  inf [Im(x) — AW(x)|| = 0

x€[0,1]

as K — oo. We denote A that fulfills sup,.( 14 [|m(x) — AW (x)|| < 26k
by A*.
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Appendix 6-7

B5

B6

B7
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There exist constants 0 < C; < Cy < oo such that all eigenvalues of the
matrix T~! Z;r:l ZOtZ(It lie in the interval [Cy, Cy] with probability
tending to one.

The minimization (3) runs over all values g with

sup  max ||Z(ItA\IJ(X)|| < M+,
xe[o,1d ISEST

where the constant Mt fulfils maxi<e<t || Zo,t|| < M7/ G (with
probability tending to one) for a constant C, such that

SUP,¢[o,1)4 [ImCIl < Com.

It holds that p* = (K + T)M% log(JTM+)/(JT) — 0. The dimension L
is fixed.




Appendix 6-8

Assumptions

Cl Zy,; is a strictly stationary sequence with E(Zp+) = 0,
E(]| Z0,¢]|") < oo for some ¥ > 2. It is strongly mixing with
22, a(i) 7727 < co. The matrix EZo,tZoT,t has full rank.
The process Z ; is independent of Xi1,...,X7J,€11,...,€7
C2 It holds that
llog(KT)?{(KM7/J)/2 + TY2M%J 2  K3/2J1
+K4/3J_2/3 T—1/6} + 1]T1/2(p2 _}_5%() — (’)(p2 + 5%{)
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