Portfolio Credit Risk Contribution

Hien Pham Thu
Shih-Kang Chao
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. – Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
The Concept of Central Counterparty (CCP)

Central Counterparty interposes itself between counterparties and becomes the buyer to every seller and the seller to every buyer.

Figure 1: Legal process of replacing original OTC contract to central counterparty (novation)
Risk Reserve Architecture of CCP

- **Membership Requirements**: e.g. minimum requirement of rating, minimum capital requirement, …
- **Variation margin**: Margin based on daily changes in market value of the cleared product
- **Initial margin**: Margin based on potential future exposure (via stress test, e.g. largest 5 days decline)
- **Default Funds**: Funds based on loss given default of single largest clearing member or simultaneous defaults of second and third largest

Risk Measurement of CDS Portfolios
Motivation

Credit Default Swap Spread

Figure 2: Cash-flow structure of CDS until credit event in τ

$$S_{t_0} = \frac{E^Q_{t_0} \left[\exp \left\{ - \int_{t_0}^{\tau} r(\ell) d\ell \right\} \{1 - R(\tau)\} \mathbf{1}_{\{\tau < T\}} \right]}{E^Q_{t_0} \left[\sum_{i=1}^{n} \exp \left\{ - \int_{t_0}^{t_i} r(\ell) d\ell \right\} \mathbf{1}_{\{\tau > t_i\}} \right]}$$

Risk Measurement of CDS Portfolios
Risk measures

- Value at Risk (VaR)

\[\text{VaR}_t^\alpha = \inf \{ x \in \mathbb{R} : P(X_{t+d} \leq x \mid \mathcal{F}_t) \geq \alpha \} \quad (1) \]

where \(X_t \) denotes the spread returns.

- Expected shortfall (ES)

\[\text{ES}_t^\alpha = -E \left(X_{t+d} \mid X_{t+d} \leq \text{VaR}_t^\alpha \right) \quad (2) \]

Expected shortfall is the expected return given the return exceeds its \(\text{VaR}_t^\alpha \) value.
CCP’s credit risk contribution from each member?

Question: What is the portfolio’s credit risk and credit risk contribution of each constituent?
Objectives

- VaR and CoVaR calculation under consideration of CDS spreads as indicator for credit risk and market variables
- Indirect spillover effect via CoVaR calculation under consideration of market variables
- Semi-parametric quantile regression modelling
- Significance of market variables in predicting CDS spreads
Outline

1. Motivation ✓
2. Linear quantile regression
3. Partial linear quantile regression
4. CDS spreads data
5. Linear versus nonparametric quantile regression model
6. Research outlook
CoVaR

Adrian & Brunnermeier (2011): linear quantile regressions

\[
X_{i,t} = \alpha_i + \gamma_i^\top M_{t-1} + \epsilon_{i,t}, \\
X_{j,t} = \alpha_{j|i} + \beta_{j|i} X_{i,t} + \gamma_{j|i}^\top M_{t-1} + \epsilon_{j,t}.
\]

\(M_t\): state variables. \(F^{-1}_{\epsilon_{i,t}}(\tau|M_{t-1}) = 0\) and \(F^{-1}_{\epsilon_{j,t}}(\tau|M_{t-1}, X_{i,t}) = 0\).

\[
\widehat{\text{VaR}}_{i,t} = \hat{\alpha}_i + \hat{\gamma}_i^\top M_{t-1}, \\
\widehat{\text{CoVaR}}_{j|i,t} = \hat{\alpha}_{j|i} + \hat{\beta}_{j|i} \widehat{\text{VaR}}_{i,t} + \hat{\gamma}_{j|i}^\top M_{t-1}.
\]
Quantile Regression in Risk Calibration

- Chao, Härdle & Wang (2013): partial linear quantile regression:

\[X_{i,t} = \alpha_i + \gamma_i^\top M_{t-1} + \varepsilon_{i,t}; \]
\[X_{j,t} = \tilde{\alpha}_{j|i} + \tilde{\beta}_{j|i}^\top M_{t-1} + l_{j|i}(X_{i,t}) + \varepsilon_{j,t}. \]

- \(l \): a general function.
- \(M_t \): state variables.
- \(F_{\varepsilon_{i,t}}^{-1}(\tau|M_{t-1}) = 0 \)
- and \(F_{\varepsilon_{j,t}}^{-1}(\tau|M_{t-1}, X_{i,t}) = 0 \).

\[\widehat{\text{VaR}}_{i,t} = \hat{\alpha}_i + \hat{\gamma}_i^\top M_{t-1}, \]
\[\widehat{\text{CoVaR}}_{j|i,t} = \hat{\alpha}_{j|i} + \hat{\gamma}_{j|i}^\top M_{t-1} + \hat{l}_{j|i}(\widehat{\text{VaR}}_{i,t}). \]
State variables

M_t: 7 state variables suggested by AB and further extension:

1. VIX
2. Short term liquidity spread
3. Change in the 3M T-bill rate
4. Change in the slope of the yield curve
5. Change in the credit spread between 10 years BAA-rated bonds and the T-bond rate
6. S&P500 returns
7. Dow Jones U.S. Real Estate index returns
8. Constituent’s specific stock returns
9. Constituent’s specific stock volatility returns
Data:

- G14 FI: daily CDS spreads of 14 biggest derivative dealers
- Overall data period: Sept 2002 - Dec 2011 ($N = 2228$)
- Segregation into three sub-periods
 - pre-crisis: Sept 2002 - June 2007
 - crisis: July 2007 - March 2009
 - post-crisis: April 2009 - Dec 2011

Risk Measurement of CDS Portfolios
Characteristics of CDS spreads data

<table>
<thead>
<tr>
<th>G14 FI</th>
<th>2002-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
</tr>
<tr>
<td>Citi</td>
<td>7.44</td>
</tr>
<tr>
<td>CS</td>
<td>8.40</td>
</tr>
<tr>
<td>GS</td>
<td>18.75</td>
</tr>
<tr>
<td>JPM</td>
<td>11.45</td>
</tr>
<tr>
<td>MS</td>
<td>17.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G14 FI</th>
<th>pre-crisis</th>
<th>crisis</th>
<th>post-crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µ</td>
<td>σ</td>
<td>µ</td>
</tr>
<tr>
<td>Citi</td>
<td>20.01</td>
<td>10.89</td>
<td>172.08</td>
</tr>
<tr>
<td>CS</td>
<td>25.64</td>
<td>23.25</td>
<td>101.20</td>
</tr>
<tr>
<td>GS</td>
<td>33.48</td>
<td>13.38</td>
<td>176.76</td>
</tr>
<tr>
<td>JPM</td>
<td>31.42</td>
<td>18.58</td>
<td>96.84</td>
</tr>
<tr>
<td>MS</td>
<td>33.88</td>
<td>14.03</td>
<td>256.01</td>
</tr>
</tbody>
</table>
QR of MS daily spread returns and VIX

Figure 3: Left: overall period; right: pre-crisis period; y-axis = MS spread returns; x-axis = VIX. Locally linear quantile estimation. Linear quantile regression line. 95% asymptotic CB, dash: bootstrap CB.
QR of MS daily spread returns and VIX

Figure 4: Left: crisis period; right: post-crisis period; y-axis = MS spread returns; x-axis = VIX. Locally linear quantile estimation. Linear quantile regression line. 95% asymptotic CB, dash: bootstrap CB.
QR of Morgan Stanley daily spread returns and daily stock returns

Figure 5: Left: overall period; right: pre-crisis period; y-axis = MS spread return; x-axis = MS stock return. Locally linear quantile estimation. Linear quantile regression line. 95% asymptotic CB, dash: bootstrap CB.

Risk Measurement of CDS Portfolios
QR of Morgan Stanley daily spread returns and daily stock returns

Figure 6: Left: crisis period; right: post-crisis period; y-axis = MS spread returns; x-axis = MS stock return. Locally linear quantile estimation. Linear quantile regression line. 95% asymptotic CB, dash: bootstrap CB.

Risk Measurement of CDS Portfolios
Confidence band violation area

Area between confidence band and linear regression line:

\[D = \int_{-\infty}^{0} \{ |y_o(x) - l(x)| \} 1 \{ y_o(x) < l(x) \} dx + \int_{-\infty}^{0} \{ |y_u(x) - l(x)| \} 1 \{ y_u(x) > l(x) \} dx. \]

Area calculated for Morgan Stanley quantile regression:

<table>
<thead>
<tr>
<th>State variables</th>
<th>2002-2011</th>
<th>pre-crisis</th>
<th>crisis</th>
<th>post-crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIX</td>
<td>0.051</td>
<td>0.010</td>
<td>0.053</td>
<td>0.841</td>
</tr>
<tr>
<td>diffRepoTB3M</td>
<td>0.148</td>
<td>0.001</td>
<td>1.863</td>
<td>0.001</td>
</tr>
<tr>
<td>diffTB3M</td>
<td>0.156</td>
<td>1.339</td>
<td>14.368</td>
<td>0.001</td>
</tr>
<tr>
<td>diffSlopeYieldCurve</td>
<td>0.160</td>
<td>0.004</td>
<td>0.074</td>
<td>0.008</td>
</tr>
<tr>
<td>diffCDSSpread</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>diffEquityReturn</td>
<td>13.507</td>
<td>0.781</td>
<td>7.113</td>
<td>9.008</td>
</tr>
<tr>
<td>diffRealEstateReturn</td>
<td>3.557</td>
<td>1.092</td>
<td>1.251</td>
<td>60.255</td>
</tr>
<tr>
<td>Stock returns</td>
<td>37.102</td>
<td>0.001</td>
<td>0.007</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Preliminary Conclusion

- Dependence behaviour during overall period differs from sub-period analysis.
- Dependence between spread and market variables seems to increase in crisis period.
- Low significance for non-linearity for some state variables in certain period.
Next steps

- Significance test based on confidence band violation area
- Additive model (Dynamic SPM) for VaR and CoVaR calculation
Portfolio Credit Risk Contribution

Hien Pham Thu
Shih-Kang Chao
Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. – Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
Partial Linear Model (PLM)

The partial linearity observation implies:

\[X_{i,t} = \alpha_i + \gamma_i^\top M_{t-1} + \varepsilon_{i,t}; \]
\[X_{j,t} = \tilde{\beta}_{j|i}^\top M_{t-1} + l_{j|i}(X_{i,t}) + \varepsilon_{j,t}. \] \hspace{1cm} (3)

\(l \): a general function. \(M_t \): state variables. \(F_{\varepsilon_{i,t}}^{-1}(\tau| M_{t-1}) = 0 \)
and \(F_{\varepsilon_{j,t}}^{-1}(\tau| M_{t-1}, X_{i,t}) = 0. \)

Advantages

- Capturing nonlinear asset dependence
- Avoid curse of dimensionality
Estimation of Partial Linear Model

- PLM model: Liang, Härdle and Carroll (1999) and Härdle, Ritov and Song (2012)

\[Y_t = \beta^\top M_{t-1} + l(X_t) + \varepsilon_t. \]

- Consider \([0, 1]\) (standard rank space). Dividing \([0, 1]\) into \(a_n\) equally divided subintervals \(I_{nt}, a_n \uparrow \infty\). On each subinterval, \(l(\cdot)\) is roughly constant.
Estimation of PLM QR

1. Linear element β:

$$\hat{\beta} = \arg\min_{\beta} \min_{l_1, \ldots, l_n} \sum_{t=1}^{n} \rho_{\tau} \left\{ Y_t - \beta^\top M_{t-1} - \sum_{m=1}^{a_n} l_m 1(X_t \in I_{nt}) \right\}$$

2. Nonlinear element $l(\cdot)$: With data $\{(X_t, Y_t - \hat{\beta}^\top M_{t-1})\}_{t=1}^{n}$, applying LLQR.
References

Acharya, V. V., Pedersen, L. H., Philippon, T., and Richardson, M.
Measuring systemic risk,

Adrian, T. and Brunnermeier, M.
CoVaR,
Staff Reports 348 (2011), Federal Reserve Bank of New York

Chao, S. K., Härdle, W. and Wang W.
Quantile Regression in Risk Calibration
References

Cont R. and Kan, Y. H.
Statistical Modeling of Credit Default Swaps Portfolios

Härdle, W. and S. Song
Confidence bands in quantile regression

Härdle, W., Y. Ritov and S. Song
Partial Linear Quantile Regression and Bootstrap Confidence Bands
J. of Multivariate Analysis, forthcoming 2012
References

Heller, D. and Vause, N.
Collateral Requirements for Mandatory Central Clearing of Over-the-Counter Derivatives
BIS Working Papers (2012)

Liang, H., W. Härdle and R. J. Carroll
Estimation in a Semiparametric Partially Linear Errors-in-Variables Model