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Motivation 1-3

Quantile Regression

[J QR: conditional behavior of a response Y
[J Median regression = mean regression (symmetric)

(] “Gradually developing into a comprehensive strategy for
completing the regression prediction”, Koenker & Hallock
(2001)
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Motivation 1-4

5

Figure 1: The 0.9-quantile curve, the 0.9-quantile with hgo =
1.25 and 95% confidence bands. @ QR1
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Motivation 1-5
Example

J Financial Market & Econometrics

» VaR (Value at Risk) tool to measure risk, Lauridsen (2000)
» Detect conditional heteroscedasticity, Koenker & Bassett
(1982)

[ Labor Market

» Analyse income of football players w.r.t. different ages, years,
and countries, etc
» Investigate discrimination effects, Buchinsky (1995)

log (Income) = A(year, age, etc)
+/ B(education, gender, nationality, union status, etc) + ¢

» Inequality analysis
>
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Motivation 1-6

Quantile Regression

O I(x) = F*ﬁ((p) p-quantile regression curve
[ /(x) = linear (parametric) form, Koenker & Bassett (1978)

B Ih(x) quantile-smoother

How to decide between functional forms? (global variability of the
estimate, peak or valley really a feature?)
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Motivation 1-7

Theorem (Hardle and Song (2009))
An approximate (1 — a) x 100% confidence band over [0, 1] is

W(t) £ (nh)™Y2{p(1 — p)/Fx(t)}/2F1{I(t)|t}
x{dn + c(a)(28log n) 2} - IA(K)M2, (1)

where c(a) = log2 — log | log(1 — a)| and fx(t), F{I(t)|t} are
consistent estimates for fx(t), f{I(t)|t}.

Emil Julius Gumbel on BBI: Z;

| |
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Motivation 1-8

Challenges

LCIT, - 1)

w exp-exp(-)}
A

L -1
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Motivation 1-9

Opportunities

(] “Hungarian machine gun", x € R* (KMT)
Tool to prove asymptotic bands
[ Extend this to x € R? and improve band precision?
Hall (1991): bootstrap can beat it! (density)
Hahn (1995): consistency of bootstraping CDF
Horowitz (1998): bootstrap (pointwise) for median
PLM: Green & Yandell (1985), Denby (1986), Speckman
(1988) and Robinson (1988)
Variable selection for QR: Liang and Li (2009)
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Bootstrap confidence bands 2-1

Quantile Regression

O {(X;, Yi)}, iid. r's, x € J* = (a, b) for some
0O<a<b<l yeR

[ Suppose Y; = I(X;) + €i, €j ~ F(-|X;) with F(0|X;) = p. Both
I & F are smooth.

(] Estimator /5(-): the solution of

2oz Kn(x = Xi)1{Y; < Ih(x)} <p< < 2im Kn(x = XY < lh(x)}
> Kn(x = Xi) Do Kn(x = Xi)

[ S,: any slowly varying function (e.g., S2 = S, is valid...).

| |
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2-2

Bootstrap confidence bands

[J Local rate of convergence of I,
6n = h? + (nh)~Y2 = O(n=%/%) with h, = O(n~1/%)

) Auxiliary estimate /, with larger bandwidth g, = h,n¢ ((:

4/45)
£ N 2 Ke(Xi=X) K Y= In(Xi)<-}
BFCX) = = ko

| |}
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Bootstrap confidence bands 2-3
Check Function

pp(u) = pul{u € (0,00)} — (1 — p)ul{u € (—00,0)}

15

0.57

Figure 2: Check function for p=0.9, p=0.5 and weight function in condi-

tional mean regression . 1
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Bootstrap confidence bands 2-4

The Quantile Curve

pp(u) = pul{u € (0,00)} — (1 = p)ul{u € (—00,0)}
I(x) = argamin E{pp(Y —0)|X = x}

In(x) = argmin 0™ " pp(Y; — 0)Kn(x — X;)
0 i—1

where K, (u) = h™1K(u/h) is a kernel (symmetric density
function with compact support) with bandwidth h
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Bootstrap confidence bands 2-5

Weight Function

(u) = p—1H{u € (-00,0)}
In(x) and I(x): treated as a zero of Ha{ls(x),x} and H{I(x), x}

where:
Folln(x),x} =0 Ha(6,x) & _12Kh x = X;)(Yi — 6)

H{l(x),x}=0:  H(®,x) & /f(xy W(y — 0)dy

| |}
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Bootstrap confidence bands 2-6

~

F Approximation Performance around 0

Lemma
[Franke and Mwita (2003), p14] If assumptions (A1, A2, A4) hold,
then for any small enough (positive) ¢ — 0,

sup |Fi(t) — F(t|1X))| = 0p(Sadne'/? + ). (2)

[t|<e,i=1,...,n,.X;€J*

| ]
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Bootstrap confidence bands 2-7

The Bootstrap Couple

O Ui, ..., Up: iid. uniform [0,1] rv's
(] Bootstrap sample

Vi = LX)+ FNU), i=1,...,n

(1 Couple with the true conditional distribution:

Y# = 1)+ FY(Ui|X;), i=1,....n.

1

Given Xi,..., Xy Y1,...,Y, and Yl#, LY are equally
distributed.
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Bootstrap confidence bands 2-8

A Very Close Couple

y,.# = I(X))+ FY(Ui|X), i=1,...,n.

Values of Yi# and Y;* are meaningful only if |U; — p| < Spdp.
By the inverse function theorem around p, we have

max  |YF (X)) = Y+ (X)) = 0p{S.032}.
i:| Y7 —1(X;)| < Sndn

| |}
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Bootstrap confidence bands 2-9

How Close?
O gni(Y,...,Yn) = et In(X;) for data set {(X;, Yi)}7,
(] Assumption A3 gives:

max  |lg(Xi) = lg(Xj) = 1(X;) + 1(X})] = Op(dn)

‘X,'—Xj|<Ch

O [; and /f: local bootstrap quantile and its coupled sample
analogue. Then

(X) = Ig(X3) = anil{ Y] — () + lg(X)) — [e(X) )]
F(XG) = 10X) = anil{ Y7 = 10X) + 1(X)) = 1(X)} ]
Thus

max [ (X:) — lg(X;) — 77 (X:) = 1(X))] = Op(6n).

| |
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Bootstrap confidence bands 2-10

Bootstrapping Approximation Rate

Theorem
If assumptions (A1)—(A3) hold, then

sup |I5(x) = Ig(x) — /f(x) —1(x)] = 0,(8,) = Op(n_2/5)_

xeJ*

[] Bootstrap improves the rate of convergence.

| |
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Bootstrap confidence bands

Why Oversmoothing?

[J To handle the bias (closer). Tuning parameter: g
[J Hardle and Marron (1991), let

by(x) =

EfF(x) — I(x)
Bh,g (X) o

Bl (x) = g(x)

. 2
[J Investigate MSE E {bh’g(x) — bh(x)} | X1, ,X,,]
How fast it converges to 07
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Bootstrap confidence bands 2-12

Oversmoothing

Theorem
Under some assumptions, for any x € J*

E Hi’h,g(x) - bh(X)}2 [Xo,. o Xn| ~ hH{Op(g") + Op(n~"g ")}

in the sense that the ratio between the RHS and the LHS tends in
probability to 1 for some constants Cy, C,.

To minimize MSE, g = O(n~1/°), g >> h, where h = O(n~1/%)
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Bootstrap Confidence Bands in PLMs 3-1

The Multivariate Case

O x=(u,v)T eRY veER:
I(x)=u"8+I(v)

[J Estimation idea: ANOVA, approximately linear form (locally)

[ Partition [0, 1] (for v) in a, intervals I,; & regard /(v) as a
constant item inside /,;.

| |}
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Bootstrap Confidence Bands in PLMs 3-2

Two Stage Estimation Procedure

(] Linear quantile regression inside each /,; + Weighted mean
yields G:

B = argmin mln Zw{Y BTU; — 2/1 (Vieli)}
B

1. :an i=1 J 1
[ Smooth quantile estimate T5(v) from (V;, Y; — U B)7_,.

Theorem
3 positive definite matrices D,,, C,, s.t.

V(B - B) 5 N{0, p(1 — p)D71C,D1Y as n — o
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Bootstrap Confidence Bands in PLMs 3-3

Uniform Consistency of J,(v)

Lemma
Under assumptions (A7) & (A8), we have a.s. as n — oo

s:Jp* Th(v) = I(v)| < Cs max{(nh/log n)~*/2 K%} (3)

with another constant Cs not depending on n. If additionally
& > {log(+/log n) — log(v/nh)}/log h, (3) can be further simplified
to:

sup [l(v) — I(v)| < Gs{(nh/log n) */2}.

veJ*
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Bootstrap Confidence Bands in PLMs 3-4

Multidimensional Uniform Confidence Bands

[0 Estimation error for parametric part: O,(n1/?).

[] Bootstrapping approximation error for nonparametric part:
Op(n~2/%), dominating!

Corollary

Under the assumptions (A1) - (A8), an approximate
(1 — a) x 100% confidence band over RI~1 x [0,1] is

B E [ RG]

where d} is based on the bootstrap sample (specify later).
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Monte Carlo study 4-1

How to Bootstrap?

1) Simulate {(X;, Yi)}7_;,n=1000 w.r.t. f(x,y).
f(x,y) = f,;x(y —sinx)1(x € [0,1]), (4)

where f,,,(x) is the pdf of N(0, x).
2) Compute Ip(x) of Yi,..., Y, and residuals
éi: Y,'—/h(X,'), i = 1,...,!1.
If we choose p = 0.9, then <D_1(p) = 1.2816,
I(x) = sin(x) + 1.2816+/x and the bandwidth is h = 0.05.

Partial Linear Quantile Regression and Bootstrap Confidence Bands — ‘.v h {




Monte Carlo study 4-2

3) Compute the conditional edf F,,:

Fo(th) = izt Knlx = X)L{E < 1}
>y Ka(x = Xi)

with the quartic kernel

K(u) = (1 —u?)?, (vl <1).

4) Generate rv € p ~ Fax: b=1,...,B and construct the
bootstrap sample Vi i=1....n, b=1,...,B as follows:
Yip = lg(Xi) + €7 p,

)

with g = 0.2.

| |
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Monte Carlo study 4-3

5) For each bootstrap sample {(Xi, Y;",)}/_;, compute /; and the
random variable
def 2 2 *
do < sup [F{I)xH/ B = (| ()
XeJ*

6) Calculate the (1 — «) quantile d; of di,...,ds.

7) Construct the bootstrap uniform confidence band centered

around hy(x), e, h(x) % [F{I0 BB d

| |
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Monte Carlo study
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Figure 3: The real 0.9 quantile curve, 0.9
sponding 95% uniform confidence band from asymptotic theory and con-
fidence band from bootstrapping.
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Monte Carlo study 4-5

Convergence Rate (n small)

n Cov. Prob. Area
50 0.144 (0.642) 0.58 (1.01)
100 0.178 (0.742) 0.42 (0.58)
200 0.244 (0.862) 0.31 (0.36)

Table 1: Simulated coverage probabilities & areas of nominal asymptotic
(bootstrap) 95% confidence bands with 500 repetition.

(1 For small n, bootstrap’s » asymptotic’s & not sacrifice much
on the band's width

[J To achieve same cov. prob., quantile regression usually need
more observations than mean regression

[J Use larger bandwidth on both X & Y (F~1{/(x)|x})
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Monte Carlo study 4-6

PLM QR

O Bivariate data {(U;, V;, Yi)}7_;, n = 8000 with:
y:2u+v2+5—¢(p) (6)

where u € [0,2], v € [0,1] and ¢ is the standard normal rv.
[J The real 0.9-quantile curve 1(x) = 2u + v2.

[0 h=0.2 & g = 0.7. For the following specific set of random
variables, a, = 20, 5 = 2.016758
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Monte Carlo study 4-7

# of Partitions?

o
N I
g o
= &
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Figure 4: 3 with respect to different p for different # of observations, i.e.
n = 1000, n = 8000, n = 261148.
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Monte Carlo study 4-8

an n=1000 n=28000 n=261148
n/3/8 3.6+1073
n/3/4 54%107' 4.0%1072 3.3x1073
nt/3/2  61%107! 35%1072 3.2x1073

n/3  62%107! 36%1072 3.1x1073
/3.2 80x107! 3.9%1072 2.9x103
n/3.4 49x1071 3.6%1072 2.8x103
nl/3.8 3.4%1073

Table 2: SSE of 3 with respect to a, for different numbers of observations.

[J Suggest a, = n*/3 (cost / performance)
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Monte Carlo study 4-9

15

1.0

Nonparametric Part
L

Lo]
o|.7\ T
00 02 04 06 08 10

Figure 5: Nonparametric part smoothing, real 0.9 quantile curve with re-
spect to v, 0.9 with corresponding 95% bootstrap uni-
form confidence band.
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Labor Market Applications 5-1

Labor Market Application

(] How income depends on age w.r.t. different education levels?
[J Relation: log (Wage) ~ (3 - Education + /(Age)
(1 Administrative data from the German National Pension Office

[1 Male, born 1939 ~ 1942, sample 25 - 59, full-time, begin
receiving a pension in 2004 ~ 2005

Partial Linear Quantile Regression and Bootstrap Confidence Bands — ‘.: ) '



Labor Market Applications 5-2

(] Education categories: “no answer", “low education”,
“apprenticeship” and “university”

(] Normal impression:

E(y|v, u = Low education)
< E(y|v, u = Apprenticeship)
< E(y|v, u = University)

| ]
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Labor Market Applications 5-3

Box Plot
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Figure 6: Boxplots for “no answer", “low education”, “apprenticeship” &
“university” groups corresponding to v = 0,0.5, 1.

| |
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Labor Market Applications 5-4

[J Drop “no answer" group & n = 175760 observations

[J 1 “low education", 2 “apprenticeship" and 3 “university"
[J 175760%/3 /2 = 28 partitions

[ Quartic kernel, h = 0.018 (after rescaling)
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Labor Market Applications 5-5

(6 Estimates

Beta Estimates
0.00 0.05 0.10 0.15 0.20

Different Quantiles

Figure 7: 3 corresponding to 8, 16, 32 partitions.

| |
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Labor Market Applications 5-6

Low Income - Significant

9.8 10.2

9.4

Log Real Earnings

25 30 35 40 45 50 55 60
Ages

Figure 8: 95% uniform confidence bands for 0.05-quantile smoothers with 3
different education levels “low education”, “apprenticeship” & “university”.

| |}
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Labor Market Applications 5-7

Median Income - Significant

10.8

10.4

Log Real Earnings
10.0

25 30 35 40 45 50 55 60
Ages

Figure 9: 95% uniform confidence bands for 0.50-quantile smoothers with 3
different education levels “low education”, “apprenticeship” & “university’”.

| |
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Labor Market Applications 5-8

High Income - Not Significant

Log Real Earnings
10.0 10.2 104 10.6 10.8 11.0

|
X

25 30 35 40 45 50 55 60
Ages

Figure 10: 95% uniform confidence bands for 0.99-quantile smoothers with
3 different education levels “low education”, “apprenticeship” & “university”

| |}
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Labor Market Applications

5-9

Real effect of education for income?

(] High educations offers a safety line!

(J For high end (income) labour, high education no significant
effect
» Smart, no need go to school
» Be scientist after Ph.D. graduation

» Poor, not continue school, but hard working & know a lot
from practice

» Education may make people less creative
> ...

[J Causality test, Jeong, Hardle and Song (2009)

| |
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Labor Market Applications 5-10

Drawbacks

[ Very rich people maybe not recorded in the pension system
(] Maybe not same retirement time

[J Panel data, not exactly i.i.d. (furthur research)

...

| |}
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Labor Market Applications 5-11

Sth must keep in mind!

[J You are dealing with 70-year old people now!

[J Time flies (technology level 1), more and more high income
jobs require high educated people. Time variation of the 37
further research.
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Appendix 6-1

Appendix - Assumptions

A and C;: generic constants.

Al. Xi,..., X, are an i.i.d. sample, and fx(x) > Ag. The quantile
function satisfies: |I'(-)] < A1, [I"(*)] < X2.

A2. F(t|x) have a density, f(t|x) > A3 > 0, continuous in x, and
in t in the neighborhood of 0. That is, for some A(-) and fy(-)

F(t|x") = p+ fo(x)t + A(x)(x" — x) + R(¢, x’; x),

[R(t,x":x)|

t2+|x' —x|? < o0.

where sup; ,
Iy

| |
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Appendix 6-2

Note that by Assumption A1, /,(x) is the quantile of a discrete
distribution.

This distribution is equivalent to a sample size of Op(nh) from a
distribution with p-quantile whose biased is O,(h?) relative to the
true value.

Let 0, be the local rate of convergence of the function /p,
essentially 0, = h2 + (nh,)~Y/2 = O(n=2/%), with h, = O(n~1/%).

B |
Partial Linear Quantile Regression and Bootstrap Confidence Bands — m



Appendix 6-3

A3. The estimate /,, satisfies:

sup [l;(x) = I"(x)| = op(1),
xeJ*

’ N (7)
sup |lg(x) = I'(x)| = 0p(dn/h)

xeJ*

Note that there is no S, term in (7) exactly because the bandwidth
gn used to calculate /; is slightly larger than that used for /. As a
result Iz has a slightly worse rate of convergence (as an estimator
of the quantile function), but its derivatives converge faster.

We assume:

(A4). fx(x) is twice continuously differentiable and f(t|x) is
uniformly bounded in x and t by, say, As.
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Appendix 6-4

(AT). The conditional densities f(-|y), y € R, are uniformly local
Lipschitz continuous of order & (ulL-&) on J, uniformly in
y € R, with 0 < & <1, and (nh)/log n — .

(A8). infyee

Joly = 1(v) + e}dF(ylv)| > Glel,  for [e] < a1,

where 01 and § are some positive constants, see also [?]. This
assumption is satisfied if there exists a constant § such that
f{I(v)|v} > g/p, x € J.
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