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Merck &Co INC Dow-Jones 430
PfizerINC Dow-Jones 406 X
| sBc: INC | Dow-jones 4,06 .
[Barreserve -099%

Aktueller Zinssatz der Europaischen Zentralbank:

Stand: 30.03.2005
Quellen: O, Bundesbank, Thomson FinancalDatastean, Boomber.

MSR

1-5



Risk Management 1-6

Example

Daily log-returns of the German stock Bayer from 1992-01-01 to
2006-12-29. (+)

Daily log-returns of Bayer
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Q MSRbayer_log_returns
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Example

Daily log-returns of the German stock BMW from 1992-01-01 to
2006-12-29.

Daily log-returns of BMW
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Q MSRbmw_log_returns
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Example
Daily log-returns of the German stock Siemens from 1992-01-01 to
2006-12-29.

Daily log-returns of Siemens
0.15 T T T

-0.15
0

1000 2000 3000

Q MSRsiemens_log_returns
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Example

Daily log-returns of the German stock portfolio (Bayer, BMW and
Siemens) with trading strategy b’ = (1,1,1) from 1992-01-01 to
2006-12-29.

Daily log-returns of portfolio

0 1000 2000 3000

Q MSRportfolio_log_returns
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Extreme Value

Statistics of Extreme Risks

Stylized facts in financial markets
(] Returns are heavy tailed distributed
(] Volatility changes stochastically

(] GARCH model yields fat tails but often underestimates for
q > 95%.

MSR
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Model structure of the daily log-returns series of portfolio (Bayer,
BMW, Siemens) from 1992-01-01 to 2006-12-29.

Xt = OtEt, Et ~~ iid N(O, 1)
o7 = w+aXZ i+ foi_,

Figure 1: Kernel (normal kernel, bandwidth given by Silverman's
rule-of-thumb) density (left) and log-density (right) estimate for
portfolio's GARCH innovations (red) and normal variables (blue).
MSR Q MSRDortfoIio,est(@)
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Clayton Copula with GARCH for BMW-VOW

HHEHE 4 A T RO ER R R ot b

10l . . .
Jan 2000 Jan 2002 Jan 2004 Jan 2006

Figure 2: Backtesting results for Value-at-Risk estimation at 0.05 level for
BMW and Volkswagen with Clayton copula. Time period: 1st January
1999 — 1st September 2006, size of moving window 250, Monte Carlo
samples of 10.000 realizations of pseudo random variable. Margins mod-
eled with GARCH with normal innovations. Exceedances ratio @ = 0.0474.

Q MSRvar_cop_GARCH _backtesting
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Extreme value distributions

(] yield more precise approximations in the tails

[J probability of extreme events depends on the tail of f(x) - pdf
of &

(] apply methods of extreme value statistics to estimate
“extreme” quantiles

MSR @
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Identifying extreme events

(J Maxima (block maxima) taking in successive periods

[J Peaks over threshold (POT): loss exceeds a given (high)
threshold v.

X, o

il NN

11
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The limits of maxima

Xi,...,Xp are i.i.d. with cdf F(x)
M, = max(Xi, ..., Xn)
Example

Let us consider a random variable which represent daily losses or
returns: X; = —Z; at day t where Z; is the Profit & Loss random
variable. Here we take a maximum for every consecutive block of
n = 3 observations.

HHM ‘

Figure 3: Block-maxima @
MSR .
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One may easily compute the cdf of maxima: One may easily
compute the cdf of maxima:

P(M, < x)=P(X1 <x,...,Xp, < x)=F"(x). (1)
For unbounded random variables, (i.e. F(x) <1, Vx < 00):
F"(x) — 0

hence b
M, — o0

Problem: The maximum of n unbounded random variables may
become arbitrary large. For an analysis of asymptotics one needs
the limit law for the block maxima M,.

MSR eﬁ)
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Definition (Maximum Domain of Attraction)

The random variables X; belong to the maximum domain of
attraction (MDA) of the nondegenerated distribution G, if there
exist constants ¢, > 0 and d, such that:

Mn—dn r G for n— oo,

Cn

i.e. F"(cax + dn) — G(x) for all points of continuity x of the cdf
G(x).
Extreme value distribution
Distribution G in the above Definition is called an extreme value
(EV) distribution.

MSR eﬁ)
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Three standard extreme value distributions:

Fréchet: Gio(x) =exp{—x"“}, x>0,a>0, (2)
Gumbel:  Go(x) =-exp{—e ™}, x €R, (3)
Weibull:  Gpo(x) =exp{—|x|7“}, x<0,a<0. (4)

Extreme Value Densities

Figure 4: Fréchet (red), Gumbel (black) and Weibull (blue) probability
density functions. Q MSRevt1
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Jenkinson and von Mises suggested a parametric representation for
the three standard distributions:

Definition (Generalized Extreme Value)

The generalized extreme value distribution (GEV) with the shape
parameter v € R has the following cdf:

Gy (x) = exp{—(1 +vx)"Y7}, 1+9x >0 for y #0
Go(x) = exp{—e™™}, xR

Gumbel Gy
Fréchet  G,(*51) = Gy y/,(x) for v >0
Weibull GW(—XTH) = Gy,_1/4(x) for vy < 0.

R. von Mises on BBI: @z

MSR @3
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Theorem (Fisher and Tippett (1928) Theorem)

If there exist constants ¢, > 0, d, € R and some non-degenerated
distribution function G such that

M,—d, r
—/ 2 =G forn— oo,
Cn

then G is a GEV distribution.

Assume that we have a large enough block of n iid random
variables and set y = c,x + d,, then P(M, < y) ~ G,(X=%).

R. Fisher on BBI: | S

MSR @3
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Lemma (Convergence-Type Theorem)

Let Uy, Uy, ..., V, W be random variables, b,, 3, > 0, a,, o, € R.

If
Un_an L

b,V
in distribution for n — oo, then the following statement holds:
Up—an ¢ . bn dn — Qp
— =W iff — —b>0, — a€eR.
Bn Bn - Bn

In this case W follows the same distribution as bV + a.

Notice that for all n > 1 the maximum M, of n iid random
variables Xi, ..., X, has the same distribution as ¢, X1 + d, given
suitable constants ¢, > 0 and d,.

MSR eﬁ)
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Properties of GEV

[J In general we can change the center and the scale to obtain
other GEV distributions:

with the shape parameter ~, the location parameter p and the
scale parameter o > 0.

MSR @3




Extreme Value 2-15

Properties of GEV

tJ

MSR

GEV distributions are characterized by their max-stability. A
probability density function F is max-stable if

F™(dn + cnx) = F(x)

for a suitable choice of constants d, and ¢, > 0. For example,
the maximum M, of n iid random variables X; has the same
distribution as ¢, Xi + d,, given suitable constants ¢, > 0 and
d,.
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For an exploratory data analysis one checks the graphs:

—k+1
K
PP-plot {F(X( )) n+1 }k K
B n —k+1
QQplot  {XW, FI(——)} L,
mean excess-plot {X(k),en(X k))}k:y

MSR
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PP Plot of Extreme Value - Frechet
1 T T T T

Figure 5: Normal PP plot of the pseudo random variables with Frechét
distribution, see (2), with a = 2. Q MSRevt2
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PP Plot of Extreme Value - Weibull
1 ; — : ‘

ol . . . .
0 0.2 0.4 0.6 0.8 1

Figure 6: Normal PP plot of the pseudo random variables with Weibull
distribution, see (4), with a = —2. Q MSRevt2
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PP Plot of Extreme Value - Gumbel
1 T T T T

0 b ¢ I I I I
0 0.2 0.4 0.6 0.8 1

Figure 7: Normal PP plot of the pseudo random variables with Gumbel
distribution, see (3). Q MSRevt2
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PP Plot Gumbel

Figure 8: PP plot of the pseudo random variables with Gumbel distribution
against theoretical Gumbel distribution, see (3). Q MSRevt3
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Identifying the type of the limit (GEV)
distributions

The deciding factor is how fast the probability for extremely large
observations decreases beyond a threshold x, when x increases.
It depends obviously on the decrease of the function:

F(x)=P(X >x)=1-F(x)

for large x.

MSR @
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Theorem
a) For 0 < 7 < oo and every sequence of real numbers u,,n > 1, it
holds for n — oo

nF(u,) — 7 iff P(Mp,<u,) —e .

b) F belongs to the MDA of the GEV distribution G with the
standardized sequences c,, d,, exactly when n — oo

nF(cpx + dp) — —log G(x) for all x € R.

MSR @3
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The excess probability of Fréchet G; , behaves as:

G1a(x) = Xia{l +0o(1)} for x — oc.

A[distributions that belong to the MDA of Fréchet Gy o fquLH:
x“F(x) is "almost constant” for x — oo or more precisely x®F(x)
is a slowly varying function.

MSR ﬁ)
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Definition (Slowly Varying Functions)

A positive measurable function L in (0,00) is called slowly varying,
if for all t > 0:

Example
L(x) = log(1 + x),x > 0 is slowly varying (L'Hospital’s rule).

MSR @
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Example
L(x) = log(1 + x),x > 0 is slowly varying?

log(1+tu) = logt+log(t™!+ u)

= logt+log{l+u+(t71—1)}

A, = log{l+u+(t7t—1)} —log(l+ v)
Taylor (t_l — 1)2 (t_l — 1)3
o 5 T+ T +...
ie. {A,/log(1+u)} = oflog7(1+ u)}

log(1+ tu) log t _
gty 1+7|og(1+u) + oflog71(1 + u)}

®
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Theorem (MDA of Frechét distribution)

F belongs to the MDA of the Frechét distribution Gi ., for o > 0,
if and only if xX*F(x) = L(x) is a slowly varying function. The
random variables X; with the distribution function F are
unbounded (i.e. F(x) <1 for all x < c0) and

M, r
n &, lea
Cn

with ¢, = F_l(l — %) orf(c,,) = P(X¢ > cy) =1/n.
M. Frechét on BBI: .@\

MSR @3
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Theorem (MDA of Frechét distribution) states a criterion for
obtaining the GEV Fréchet G;  as limit distribution.

The Weibull distribution can be obtained via the relationship
Ggﬂ(—x*l) = G1,4(x), x > 0. However random variables, whose
maxima are asymptotically Weibull distributed, are by all means
bounded.

Therefore, in financial applications they are only interesting in

special situations where using a type of hedging strategy, the loss,
which results from an investment, is limited.

W. Weibull on BBI:
MSR @)
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Example
The Pareto distributions with cdf

Wia(x)=1-— i,x >1,a>0,
XOC
and all other cdfs with Pareto tails:
F(x) = {1+ 0(1)} for x— oc.
X

belong to the MDA of the Fréchet distribution.

In this case f_l(q) for g ~ 1 behaves as (x/q)/*: Set
cn = (rkn)t/e:

Mn L

(en)i/o — G, forn— oo

MSR
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Theorem (MDA of Gumbel distribution)

The cdf F of X; belongs to the MDA of the Gumbel distribution iff
there exist scaling functions c(x), g(x) > 0 and an absolute cts
function e(x) > 0:

c(x)—>c>0 g(x)—1e (x)—>0forx—>oost z < 00!

F(x) = c(x) exp{— fX g( dy}, z < x < oco. In this case

Mn - dn
Cn

£, Gy

where d, = F~1(1 — 1) and c, = e(d,).

MSR ﬁ)
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As function e(x) in Theorem (MDA of Gumbel distribution) one
may choose the mean excess function:

1

=

/ F(y)dy, x < oc.

Example

The exponential distribution has the form: F(x) =1—e ™ x > 0.
Hence F(x) = e ™ fulfills the assumptions of Theorem (MDA of
Gumbel distribution) with

c(x)=1, g(x)=1, z=0and e(x) = 1/A.

MSR @
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Example
The maximum of n iid exponentially distributed random variables
with the parameter A converges to the GEV Gumbel distribution:

1
MM, — N log n) £, Go

for n— oo.

®
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Example
The maximum of n iid N(0, 1) random variables converges to the
GEV Gumbel distribution:

M, —d
ui>G0 for n— oo
Cn

where

cn = (2 log n)71/2
loglog n + log(4)
2y/2 log n '

d, = 2 log n

®
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Peaks-over-threshold (POT) approach

Definition (Excess over threshold)

Let K,(u) and N(u) be the index set and the number of
observations over the threshold u. Denote the random variables
Yj, j=1,...,N(u), as the excesses over the threshold value u
with

{Yla"'7YN(u)} = {)<J —u; jE€ K,,(U)}
= {(XO gy, xN) )

MSR @
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Let us consider a random variable which represent daily losses or
returns: X; = —Z; at day t where Z; is the Profit & Loss random
variable.

Figure 9: Excesses over a threshold u.

MSR @
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Definition
Let u be a threshold value and F a distribution function of some
unbounded random variable X.
a) Fux) =P{X-u<x|X>u}=
{F(u+x)— F(u)}/F(u), 0 < x < oo is called conditional
excess distribution function over the threshold u.
b) e(u) =E{X —u| X >u}, 0<u< oo isthe mean excess
function.

With the integration by parts one obtains:

_ [T F)
e(u)—/u oY

A random variable A, with cdf F,(x) has expected value
EA, = e(u).

MSR eﬁ)
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Theorem (Pickands (1975), Balkema and de Haan (1974))

For a large class of underlying distribution functions F, the
conditional excess distribution function F,(x) is well approximated
by:

Fu(x) = W, 3(x) u— oo.

where W, g(x) is the generalized Pareto distribution.

MSR @3
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Definition (Generalized Pareto distribution)

The generalized Pareto distribution (GP) with the parameters
B > 0, v has the distribution function:

B X, _1 x>0 if v>0
W%g(x)—l—(l—kﬁ) v for {0§x<ﬁ f <0,

and .
Wos(x)=1—e 5%, x> 0.

W, (x) = W, 1(x) are called generalized standard Pareto
distributions or standardized GP distributions.

MSR ﬁ)
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Submodels of GP distribution

[J Exponential (GP0): Wy(x)=1—e"%, x>0
[ Pareto (GP1): Wi g(x)=1—x"# x>1and 8> 0
() Beta (GP2): Wh3=1— (—x)8,-1<x<0,8<0

®
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Generalized Pareto densities
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Figure 10: Generalized Pareto distributions (3 = 1) with the parameters
v = —0.5 (Red), 0 (Black) and 0.5 (Blue). Q MSRgpdist
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Theorem (Mean excess function)
Let X be a positive, unbounded rv with an absolute cts cdf F.

a) The mean excess function e(u) uniquely determines F:

Fo) = e {= [ auf x0

b) If F belongs to the MDA of the Fréchet distribution Gi o,
then e(u) is for u — oo approximately linear i.e.:

e(u) = ;45 u{l+ o)},

The generalized standard Pareto distribution is the adequate
parametric distribution function for exceedances.

MSR @
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Theorem (MDA of GEV distribution)
The distribution F is contained in the MDA of the GEV distribution

G, with the form parameter v > 0, exactly when for a measurable
function 3(u) > 0 and the GP distribution W, g it holds that:

sup [Fu(x) = W, gy (x)| — 0 for u— oo.
x>0

A corresponding result also holds for the case when v < 0, in
which case the supremum of x must be taken for those
0< W%ﬂ(u)(x) <1

MSR ﬁ)
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For the generalized Pareto distribution F = W, 5 it holds for every
finite threshold u > 0

x>0 if v>0

Fu(x) = W%,@‘FWU(X) for { 0< x< By if v <0
— f}/ ’

In this case f(u) = 3+ v u.

MSR @3
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Estimation in extreme value models

Consider data xi, ..., X, generated under a distribution function
F". Thus each x; is the maximum of n values that are governed by
the distribution function F.

[J Gumbel: Go(x) = exp{—e™*}. One may use the following two
methods to estimate p and o of the Gumbel model:

GO,,LL,O’ = eXp{_e—(x—’u,)/g}'
» MLE: go0 = %e,(x,u)/aexp(_e,(x,#)/g)
» Moment estimation: estimators of 1 and ¢ are deduced from
the sample mean X and variance s,. For example,

Op = \/65,,/71

MSR ﬁ)
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[ Fréchet model: Gy o(x) = exp(—x~%) for @ > 0 and x > 0.
MLE can be used. Keep in mind that the left endpoint of

G1,q,0,0 is always equal to 0.
[J Weibull model: G340, for x <0, a <0 and o > 0.

MSR -
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Estimation in Generalized Pareto Models

Let X;,i =1,...,n be the original data which are governed by a
cdf F.

Notation:

X1) £ ... < X(p) (increasing) order statistics
XM > > X" (decreasing) order statistics
e Xy =X, X =X,
We deal with upper extremes which are either
(] the exceedances yi, ..., Ym over a fixed threshold u, or

(] the m upper ordered values y1, ..., Ym = X, x(m),

MSR @3
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Definition (Empirical Mean Excess Function)
Let Kno(u) = {j < n; X; > u}, N(u) = #Kn(u) and define the edf
as:

~ 1 <

Fo(x) = — ) 1(X; <x)

n <
J=1

Define I?,, =1- It_,, and the empirical mean excess distribution:

) = [ Faln)ay/Falw)
1 1 o
= () Z (Xj—u) = I\I(u); max{(X; — u),0}

JEKn(v)

MSR @3
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PP Plot of Daily Return of Portfolio
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Figure 11: Normal PP plot of daily log-returns of portfolio (Bayer, BMW,
Siemens) from 1992-01-01 to 2006-12-29. Q MSRportfolio
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QQ Plot of Daily Return of Portfolio
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Figure 12: Normal QQ plot of daily log-returns of portfolio (Bayer, BMW,
Siemens) from 1992-01-01 to 2006-12-29. Q MSRportfolio
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QQ plot, Generalized Extreme Value Distribution
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Figure 13: QQ plot of 100 tail values of daily log-returns of portfolio (Bayer,
BMW, Siemens) from 1992-01-01 to 2006-09-01 against Generalized Ex-
treme Value Distribution with parameter v = 0.0498 estimated globally
with block maxima method. Q MSRtailGEV
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PP plot, Generalized Extreme Value Distribution
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Figure 14: PP plot of 100 tail values of daily log-returns of portfolio (Bayer,
BMW, Siemens) from 1992-01-01 to 2006-09-01 against Generalized Ex-
treme Value Distribution with parameter v = 0.0498 estimated globally
with block maxima method. Q MSRtailGEV
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QQ plot, Generalized Pareto Distribution
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Figure 15: QQ plot of 100 tail values of daily log-returns of portfolio
(Bayer, BMW, Siemens) from 1992-01-01 to 2006-09-01 against General-
ized Pareto Distribution with parameter v = —0.0768 estimated globally
with POT method. Q MSRtailGPareto
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PP plot, Generalized Pareto Distribution
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Figure 16: PP plot of 100 tail values of daily log-returns of portfolio
(Bayer, BMW, Siemens) from 1992-01-01 to 2006-09-01 against General-
ized Pareto Distribution with parameter v = —0.0768 estimated globally
with POT method. Q MSRtailGPareto
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Nonparametric method

Let yi,..., ¥m be the exceedances over u which are assumed to be
iid with cdf F,.

Fuy)=P(X—u>y|X>u)=F(y+u)/F(u), ie
F(x) = F(u) - Fulx —u), u<x<oo. (5)
For large u and using Theorem (MDA of GEV distribution) we can

approximate f, with W, 5 by choosing v and 3 approximately.
Fn(u) is replaced by

I?,,(u)_,7_nl\l(u)_1—l\IE7Ll).

MSR ﬁ)




Extreme Value 2-54

Definition (POT Estimator)
The POT estimator for F(x), x large is defined by

u) — u x—uw) Y7
f/\(x): N(w) 5 p(x—u) = NE? ) {1—1—7(3)} , U< x <00,

where 7, B are appropriate estimators for v, (.

~ and ﬁ may be computed via the ML method on the basis of the
excesses Y1,..., Yn(u)-

MSR @
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MLE of 5 and 3

Fix N(u) = m for the moment. Yi,..., Y}, iid Pareto W, 3,7 > 0,
with pdf:

1 1
py) = (1+—) Lox>o.
g
Log-likelihood:

0y, Y1,...,Ym) = —mlog 3 — +1 Z|og1+ Y)).

7
g

MSR %
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Theorem
For all v > —%, it holds for m — oo:

Vm@A =7, = —1) £ Ny(0, D7),

™)

-1
normal distributed. The estimators are also asymptotically efficient.

where D = (1 + ~) ( 1+ 2_1 ) , i.e. (7, B) are asymptotically

MSR @3



Extreme Value 2-57

Definition (POT Quantile estimator)
The POT quantile estimator X, for the g-quantile x, = F~1(q) is
the solution of f/\(?q) =1-—gq,ie

{ita-0) -

Xg= U+ =
I 3

)

MSR @
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Comparison to the empirical quantile

Choose u such that N(u) = m > n(1 — q), i.e. u= X(m+1),
POT quantile estimator:

%o = X(m+D) | Om (2a- }‘%_1

Xq, + :}/\m m( q) )

Empirical quantile: X5 = X([n(1=q)l+1)
Simulation studies show that

mg = argmin,,E(Xg.m — Xq)°

is bigger than [n(1 — q)] + 1. This means that the POT estimator
is better than X3 in MSE terms.
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Mean Square Error Dilemma

(] u too big: there are not enough exceedances Y and thus the
variance is too high.

(] u too small: the approximation by Pareto is not good enough
and thus a bias occurs.

MSR @
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Theorem
Let Z be a W, g distributed random variable with 0 < v < 1, then
the mean excess function of Z is linear:

B+ yu

e(u) =E{Z —u|Z > u} = T

, u>0, for 0 <~ <1

Motivation: Choose u of the POT estimator such that the
empirical mean excess function is approximately linear.
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Models for distributions with ‘fat tails’
Pareto distribution:
F(x) = P(X > x) ~ kx™®
where a > 0. If a > ¢, then E[|X¢|¢] < o0.
Estimation of a:
log F(x) ~ log k — alog x. (6)

Take the sample Xi,..., X, and form the order statistic
XD > > x0),

MSR ﬁ)
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Estimate the probability F(x) for x = X(j) by the relative frequency

HEXe 2 Xy
n " on

Replace F(X(;)) in (6) with the estimator J;
Iogimlogk—alogX- . (7)
n )

@ is the slope of the linear regression (7) obtained e.g. by least
squares.

The linear approximation of log F(x) will only be good in the tails.
Thus we estimate (7) using the m biggest order statistics, only.

MSR eﬁ)
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Tail Index Regression of Portfolio

Logi/n

b8.03 0.64 0.65 0.66 0.67 0.68 0.09

Log X
Figure 17: Right tail of the logarithmic empirical distribution of the port-
folio (Bayer, BMW, Siemens) negative log-returns from 1992-01-01 to
2006-06-01. Q MSRtailport
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ANOVA TABLE

Source SS df MS F Prob > F
Columns 802.644 1 802.644 1863.54 0
Error 85.28 198 0.431

Total 887.924 199

Table 1: Analysis of variance performed on the negative log-returns of the
portfolio (Bayer, BMW, Siemens).
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Hill estimator

The Hill estimator is based on maximum likelihood:

m -1
1 .
a—= = () _ (m)
a < ;_1 log X log X ) , (8)

m denotes the number of observations from the tails used in the
estimation.
How to choose m?

If mis large, there is a large bias,
if mis small, there is a large variance.

‘Rule of thumb’ m
0.005 < - < 0.01
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Motivation of the Hill estimator
F(x)=xL(x) L(x)~c* V; %log(X;/c).

Then -
P(V; > v) = P(X; > ce’) = F(ce") = (Gym =€, y 20,
Vi,..., V, areii.d. exponentially distributed random variables

with parameter «.

(EV;)™! = a. The MLE for a: o« =1/V,,.
-1

1 & ,
an=1-="3 logx® —log x(m
aH ~ jEl og og

MSR ﬁ)
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Hill estimator is consistent:

~ P
oy —
n,m— oo, m/n — 0.
Vm(@y — a) -5 N0, a?)

Also in this situation one has the bias -variance tradeofF:

F(x) L) (XM\T [ xm\® .
F(x(m) — L(X(m) \ x “\x ) ©)
F(X(m) ~ m/n.
B. Hill on BBI:
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Hill Estimator of F(x)

. m [ x(m\*
Fuba =7 <X>

Hill Quantile Estimator

RgH = X(’”){%(l—q)}il/af’

_ x(m) | x(m) [{;(1 - q)}—% B 1}

where Yy = 1/ay Q SFEhillquantile

MSR ﬁ)
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Shape Parameter Estimates

Mathod Bl

Block Max | 0.0498
POT -0.0768
Regression | 0.0125
Hill 0.3058

Table 2: Values of shape Parameter estimated with different methods for
the 100 tail observations of the portfolio (Bayer, BMW, Siemens) negative
log-returns from 1992-01-01 to 2006-09-01.
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Mean Excess Functions

0.04

0.03 0.04 0.05 0.06 0.07 0.08 0.09

Figure 18: Empirical mean excess plot (blue line), mean excess plot of
generalized Pareto distribution (black line) and mean excess plot of Pareto
distribution with parameter estimated with Hill estimator (red line) for
portfolio (Bayer, BMW, Siemens) negative log-returns from 1992-01-01 to
2006-09-01. Q MSRmeanExcessFun ()

-




Extreme Value 2-71

Value-at-Risk with Block Maxima Model

For a sample of negative returns {X:}_,

1. decompose the time period T into k non-overlapping time
periods of length n

2. select maximal returns {Z;}}; where
Zj = min{X;_1)nt1s-- -+ Xjn}

3. estimate the parameters of generalized extreme value
distribution for the maximal returns {ZJ}J":1

4. compute the VaR of the position with given a (o = 0.95)

—1/y
a"=1—-F(VaR) = exp [_{1+7<\/‘3R0—u> : H
VaR = pu+ %[{(1 a1,
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Moving Window

[ use static windows of size w = 250 scrolling in time t for VaR
estimation:

{Xf}izswarl
fors=w,..., T
(] the VaR estimation procedure generates a time series

— t —~ o~ o~
{VaRl—a}lT:W and {:u’t};rzwv {o-f}tT:Wv {’Vt}z—zw of parameters
estimates.
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Backtesting

The estimated VaR values are compared with true realizations {/;}
of the Profit and Loss function. An exceedance occurs when /; is
smaller than \7‘;)7?;_@.

The ratio of the number of exceedances to the number of
observations gives the exceedances ratio:

T

~ 1 —t

o = ﬁ Z /(/t < VaRl_a)
t=h+1

MSR ﬁ)
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Value-at-Risk with Block Maxima Model

Block Maxima Model

fre + A -

Jan 2000 Jan 2002 Jan 2004 Jan 2006

Figure 19: Value-at-Risk estimation at 0.01 level for portfolio: Bayer,
BMW, Siemens. Time period: from 1992-01-01 to 2006-09-01.
Size of moving window 250. Backtesting result @ = 0.0103.

Q MSRvar_block_max_backtesting
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Value-at-Risk with Block Maxima Model

Block Maxima Model

-10f,

I L e S b i
Jan 2000 Jan 2002 Jan 2004 Jan 2006

Figure 20: Value-at-Risk estimation at 0.05 level for portfolio: Bayer,
BMW, Siemens. Time period: from 1992-01-01 to 2006-09-01.
Size of moving window 250. Backtesting result @ = 0.0514.

Q MSRvar_block_max_backtesting
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i i S
w‘ m[ lemﬂ ‘. Location Parameter
| A W om
".f \M
va'( 1
T
J ! ' UL ‘WM’ il by J‘n"'\WW
m‘w | MMMMMMMW ““’ W”M

Ja{r% 2000 Jan 2002 Jan 2004 Jan 2006

Figure 21: Parameters estimated in Block Maxima Model for portfolio:
Bayer, BMW, Siemens. Time period: from 1992-01-01 to 2006-09-01.
Q MSRvar_block_max_params
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Value-at-Risk with POT Model

Peaks Over Threshold Model

-10f,

I e e S b i
Jan 2000 Jan 2002 Jan 2004 Jan 2006

Figure 22: Value-at-Risk estimation at 0.05 level for portfolio: Bayer,
BMW, Siemens. Time period: from 1992-01-01 to 2006-09-01.
Size of moving window 250. Backtesting result @ = 0.0571.

Q MSRvar_pot_backtesting
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Parameters in Peaks Over Threshold Model

Scale Parameter

Shape Parameter
Threshold

I T
;f mILJJf ol L

o

L/ = /
) \”Mﬂwﬁdf , [ NP
Ry MJ |

s

Ja{rzl 2000 Jan 2002 Jan 2004 Jan 2006

Figure 23: Parameters estimated in POT Model for portfolio: Bayer,
BMW, Siemens. Time period: from 1992-01-01 to 2006-09-01.
Q MSRvar_pot_params
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Measures of dependence

Log-Returns of BMW versus Volkswagen

of Volkswagen

°

Standardized Log-Returns

5 ] 5
Standardized Log-Returns of BMW.

Figure 24: Scatter plot of daily standardized log-returns of BMW versus
Volkswagen. Q MSRsca_bmw_vw

(] Pearson’s correlation coefficient p
[ Kendall's 7
[J Spearman's rank correlation coefficient pg
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Pearson’s p

The linear correlation coefficient between X and Y

Cov(X,Y)
Va2(X)a?(Y)
where Cov(X,Y) = E(XY) — E(X)E(Y).

[J Need finite variance (extreme value distributions e.g. Fréchet).

p(X,Y) =

(] Linear correlation is a measure of linear dependence.

L] Linear correlation is invariant only under strictly increasing
linear transformations: p(X,Y) # p(log X, log Y).

MSR eﬁ)
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Kendall’s 7

Kendall's tau for the random vector (X, Y)
(X, Y) = P{(X = X)(Y = Y) >0} — P{(X — X)(Y = Y) <0},

where (X, Y) is an independent copy of (X, Y).
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Spearman’s p,

Spearman’s rho for the random vector (X, Y)
ps(X,Y) = 3[P{(X=X)(Y=Y") > 0}~ P{(X=X)(Y-Y") < 0}],

where (X, Y), (X, Y) and (X', Y') are independent copies.

[J Kendall's 7 and Spearman’s ps are invariant under strictly
increasing componentwise transformations.
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3-6

Portfolios T Ds

BAY - SIE 0.3483 0.4822
BMW - VOW | 0.4257 0.5822
SIE - VOW 0.3693 0.5106

Table 3: Kendall's 7 and Spearman’s ps of daily log-returns of three dif-
ferent portfolios. Time period: 1st January 1999 — 1st September 2006.
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Tail Dependence

(1 Risk behavior is determined by tails large losses that can occur
jointly.
[ Pearson’s correlation can not capture joint large loss events.

(] Tail dependence describes the limiting proportion that one
margin exceeds a certain threshold given that the other
margin has already exceeded that threshold.

MSR ﬁ)
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Upper tail dependence

0.8r

Volkswagen
o
[}

o
IS

0.2

0 " 0.‘2 - 0.‘4 ] O‘.G 018 1

BMW
Figure 25: UTD for standardized log-returns of BMW vs Volkswagen trans-
formed by t-Student cdf. Q MSRutd_bmw_vw

MSR @

<




Tail Dependence 3-9

Upper tail dependence

Let (X, Y) ~ F with margins F; and F».
Coefficient of upper tail dependence (UTD):

Ay = Ii;nl P{Y > F; Hu)|X > F(w)).

Asymptotical upper tail dependence: Ay € (0,1].
Asymptotical upper tail independence: Ay = 0.

MSR @3
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Lower tail dependence

Let (X, Y) ~ F with margins F; and F».
Coefficient of lower tail dependence (LTD):

— Ii{no P{Y < F, Hu)|X < Fii(w)}).

Asymptotical lower tail dependence: \; € (0,1].
Asymptotical lower tail independence: A\; = 0.

MSR @3
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Elliptical distribution

An elliptical distribution is obtained by a transformation
X =pu+AY

of a spherical distribution Y with i € RY, A € R9x9.
Y has a spherical distribution, if and only if the characteristic
function can be represented as

E{exp(it'Y)} = ¢(t? + ...+ t3)

with some function ¢ : Ry — R called the characteristic generator.

MSR ﬁ)
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Elliptical distribution

Let X ~ Np(0,1/,). Since the components X; ~ N(0,1), i =1, ...,
n, are independent and the characteristic function of X; is
exp(—t?/2), the characteristic function of X is

1 1
exp {—2(t12 +...4 t,%)} = exp {—2tTt} .

Normal distribution is elliptical distribution, where the
characteristic generator ¢(u) = exp(—u/2).

MSR ﬁ)
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0.8f
tho=0.8
tho=0.6

0.6f
S
)
<

0.4 tho=0.8

0.2f

8.5 0.6 0.7 0.8 0.9 1

v

Figure 26: The function Ay(v) = 2- P{X; > F{H(v) | Xo = F; 1 (v)}
for a bivariate normal distribution with correlation coefficients p =
—0.8, —0.6, ..., 0.6, 0.8. Note that A\y = 0 for all p € (—1,1).

Q MSRtail_dep_normal
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1 S
0.8f
tho=0.8
tho=0.6
0.6f
S
=}
<
0.4F  rtho=08
0.2f
8.5 0.6 0.7 0.8 0.9 1

A\

Figure 27: The function Ay(v) = 2- P{X; > F; }(v) | Xo = F, *(v)} for
a bivariate t-distribution with 3 degrees of freedom and with correlation
coefficients p = —0.8, —0.6, ..., 0.6, 0.8.

Q MSRtail_dep_tStudent
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Elliptical distribution

The density function, if it exists, of an elliptically-contoured
distribution has the following form:

F(x) =[] g {(x =) "= M (x—p)}, xeR",

for some function g : Rg — Rg, called the density generator.
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Regular variation index

Elliptical distributions are upper and lower tail-dependent if the tail
of their density generator is regularly varying.

A measurable function f : Ry — Ry is called regularly varying

(at 0o) with index oo € R if for any t > 0

im f(tx)
A )

= t¢%

When a =0, f is called slowly varying.

MSR @3
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Tail dependence for elliptical distributions

Let (X1, X2) be elliptically distributed with a regularly-varying
density generator with an index o > 0 and a correlation coefficient:

. COV()(l7 XQ)
P /Var(X1) Var(X2)
Tail dependence coefficient is given by

j‘h(P) u® du
Mo, p) = Ay =AL = JO Vi-w2TT Vi*lﬂ

1
fo ﬁdu

i

with

(1_,))2}—1/2.

2
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0.7

0.6

0.5

0.4

<

0.3

0.2

0.1

Figure 28: Tail-dependence coefficient A versus regular variation index «
for “correlation” coefficients p = 0.5, 0.3, 0.1.
Q MSRtaildepVsVarlndex
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Density generator g or « for
Type characteristic generator ¢  Parameters n =2
Normal g(u) = cpexp(—u/2) — o0
—(n+6)/2
t g(u):cn<1+§> >0 6
Symmetric
o (1) = ¢, sV 6 x>0
genera. - BT O R AeR
hyperbolic
Symmetric (1 )9/2}
= — 5 0 < (0,2 6
f-stable o(u) exp{ ok (0.2]
logistic exp(—u) — 00

84) = o i ()2

Table 4: Regular variation index « for various density generators g of mul-
tivariate elliptical distributions. K, is the modified Bessel function of the

third kind.
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Copulae

A copula is a multivariate distribution function defined on the unit
cube [0,1]9, with uniformly distributed margins.

P(X1 <x1,...,Xa <xq) = C{P(X1 <x1),...,P(Xqg < xq)}
C{Fl(Xl),...,Fd(Xd)}

W. Hoeffding on BBI: | &
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Bivariate copulae

A 2-dimensional copula is a function C : [0,1]?> — [0, 1] with the
following properties:

1. For every u € [0,1], C(0,u) = C(u,0) =0 (grounded)

2. Forevery ue[0,1], C(u,1)=u and C(l,u)=u

3. For every (u1, up), (v1, v2) € [0,1] x [0, 1] with u; < v; and
up < var C(vi,vo) — C(v1, u2) — C(ug, v2) + C(ug,u2) >0
(2-increasing)
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Sklar’'s Theorem

For a distribution function F with marginals Fx, ..., Fx,. There
exists a copula C : [0,1]¢ — [0, 1], such that

F(Xl,...,Xd) = C{FXI(Xl),...,FXd(Xd)} (10)

forall x; eR,i=1,...,d. If Fx,,...,Fx, arects, then C is
unique. If Cis a copula and Fyg,..., Fx, are cdfs, then the
function F defined in (10) is a joint cdf with marginals

Fx.,- - Fx

e
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Copulae

Mexy) Woey) eey)

Figure 29: M(u,v) = min(u, v), W(u,v) = max(u+ v —1,0)
and M(u,v) = uv Q MSR Frechet_bounds

M. Fréchet on BBI: I&
®
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Gauss Copula

Clup,up) = {0 H(w),® (o)}
& 1uy) 07 () 1 2, )
X< —2pxy +y
_ exp { — dx d
N Xp{ 21— 17 } A

— o0 — o0

I\(,/"I.Sé;auss on BBI: [& @
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t-Student Copula

C(LI17U2) = tp,l/{ty_l(ul)vtu_l(l-@)}
t () £ (u2)
1 X2 — 2pxy + y? }—(V+2)/2
= ———expyl+ ———————— dx d
2m\/1— p2 { v(1—p?) d

Student Copula ensiy,v=3, =04

. .
o’“
'
v () x

Figure 31: t-Student copula density, parameters v = 3 and p = 0.4.
Q MSRpdf_cop_tStudent

| T
W. Gosset on BBI: (S @
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Archimedean Copulae

Archimedean copula:

C(u,v) = Ty () + ()}

for a continuous, decreasing and convex 1, 1(1) = 0.

1 $7Y(t), 0<t<1(0),
vt (t)_{ 0, P(0) < t < 0.

For 1(0) = oo: ol =41,
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Gumbel Copula

C(u,v) = exp [_ {(— log u)? + (— log v)g}%]

Gumbel Copula Density, 6 =2

20

Figure 32: Gumbel copula density, # = 2. Q@ MSRpdf_cop_Gumbel

MSR
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Clayton Copula

C(u,v) = max{(u_e +v - 1)%,0}

Clayton Copula Density, 0 = 2

Figure 33: Clayton copula density, §# = 2. @ MSRpdf_cop_Clayton
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Frank Copula

Clu,v) = _% log {1 L (e (e - 1)}

Frank Copula Density, 6 =2

Figure 34: Frank copula density, # = 2. @ MSRpdf_cop_Frank
MSR
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Tail Dependence and Copulae

Tail dependence is a copula property:

. 1=2v+C(v,v)
= |
AU vi‘nl 1—v ’
. C(v,v)
AL = | . 11
L v{no v ( )
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Copula T Au AL
Gauss 2arcsinp 0forp<1 0forp<1
-1<7<1 lforp=1 lforp=1
t, %arcsinp 2t, 41 < %) Au
-1<7<1 —1<ps<1
Gumbel 1-1 227 0
0<7r<1
Clayton 7 0 274
0<r<1
Frank 1- 41— Dl(e)} 0 0
Dk(X F f P ldt
-1<7 § 1

Table 5: Kendall's 7 and TDCs for various selected copulae.
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Tail Dependence for t-copula

Tail Dependence Coefficient for t-Student Copula

L

| w““u\‘u‘\\\N\\\‘\\ch i

Tail Dependence Coefficient

Correlation 10 Degrees of Freedom

Figure 35: Value of upper (lower) tail dependence coefficient for
the t-copula. Q MSR_TDC_tStudent
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Empirical Copula

Let {x("l), . ,x(T)} be the order statistics of i-th stock and
{r,...,ri-} corresponding rank statistics such that x("r;-) = x|
forall i=1, ..., d. Any function
T d
~ (1 ty 1 ;

is an empirical copula.
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Estimation of the upper TDC
{Xi}, € R? j.i.d. the empirical copula is

Ca(u,v) = Fa{ F1,} (1), P, (V)},
Fin empirical cdfs of Xj;, j=1,...,n.

(1 5] (- £

n

(1)
)\U,n

Xx|l= x| >

IRY > n— k,RY > n— k)
j=1
Here Rr%) and R,(,Q is the rank of Xl(j) and X2(j) respectively.

MSR @
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Estimation of the lower TDC

Similarly

S0 _ Nk kY 1SS R0 g gD
)‘L,n_kC”<n7n>_kz;l( nl —k7Rn2 —k)7 (13)
J:
where k = k(n) — oo and k/n — 0 as n — oo, From EVT:
3@ o M (kK
I ),

n
1 n . .
— 2_k.zll(R'(711) >n—korR,(f2) >n—k), (14)
=

obtains the usual nonparametric bias-variance problem.

MSR @3
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Application

Closing Prices for German Companies
140 T T

120

100

D‘MM”WWW [l

0 500 1000 1500 2000

Figure 36: Closing prices of stocks: BMW, Bayer, Siemens, Volkswagen.
Time period: 1st January 1999 — 1st September 2006, 2000 data points.

Q MSRclose
MSR
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Returns

Let Py, ..., P, be a time series of stock’s prices.

(1 Simple return is defined as

R _ P: — Pr_q
! Pi_1

[0 Logarithmic return (log-return) is defined as

re = lo .
t g P,

MSR @
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Daily Standardized Log-Returns of BMW Daily Standardized Log-Returns of Bayer

0 500 1000 1500 2000

Daily Standardized Log-Returns of Siemens Daily Standardized Log-Returns of Volkswagen

“o 500 1000 1500 E

§

1500 2

Figure 37: Daily stock standardized log-returns: BMW, Bayer, Siemens,
Volkswagen. Q MSRstdlogret
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Log-Returns of Bayer versus Siemens TDC estimation for Siemens & Volkswagen.

o
w

TDC estimator
o
N

0.1

Standardized Log-Returns of Siemens
o

0 50 100 200 250 300

-5 0 5 150
Standardized Log-Returns of Bayer Threshold k

Figure 38: Scatter plot of Bayer versus Siemens daily stock standardized
log-returns and the corresponding TDC estimate Ay for various thresholds
k. Chosen k ~ 135, TDC Ay = 0.3465. Q MSRnonp_utd
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TDC estimation for BMW & Volkswagen.

Log-Returns of BMW versus Volkswagen 0.7

§
=3 0.6
<4
z, 5
5 0.5
2 .
S B
2 € 04 A
2 H
g 3
© © 03]
2 o
8 =
3 0.2
8
s
g -5
= 0.1
g
7}

0’

0 50 100 200 250 300

-5 0 5 150
Standardized Log-Returns of BMW Threshold k

Figure 39: Scatter plot of BMW versus Volkswagen daily stock standard-
ized log-returns and the corresponding TDC estimate A\ for various thresh-
olds k. Chosen k ~ 128, TDC \y = 0.4184. Q MSRnonp_utd
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TDC estimation for Bayer & Siemens.
Log-Returns of Siemens versus Volkswagen 0.45

1\

c
g
)
g
H
H
=
5
2 -
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g
2 £ 025
2 7
0
¢ 5 02
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S =
= 0.15
5
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S 0.1
85
& 0.05
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Figure 40: Scatter plot of Siemens versus Volkswagen daily stock stan-
dardized log-returns and the corresponding TDC estimate Ay for various
thresholds k. Chosen k ~ 103, TDC Ay = 0.2848. Q MSRnonp_utd
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Fitting copulae to data
Copula Parameters Upper TDC Lower TDC
Gauss 0.5202 0 0
t(4) 0.5202 0.2774 0.2774
Gumbel 1.5344 0.4290 0
Clayton 1.0688 0 0.5228
Frank 3.4876 0 0
Nonparametric | — 0.2848 0.4057
bivariate t-cdf | 5 0.1778 0.1778

Table 6: Tail dependence coefficients of different copulae for BAY and SIE.
Standardized margins modeled with t-distribution.
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Tail Dependence

Fitting copulae to data

Copula Parameters Upper TDC Lower TDC
Gauss 0.6199 0 0

t(4) 0.6199 0.3397 0.3397
Gumbel 1.7412 0.51100 0

Clayton 1.4824 0 0.6265
Frank 4.5260 0 0
Nonparametric | — 0.4184 0.5272
bivariate t-cdf | 8 0.1802 0.1802

3-43

Table 7: Tail dependence coefficients of different copulae for BMW and
VOW. Standardized margins modeled with t-distribution.
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Tail Dependence

Fitting copulae to data

3-44

Copula Parameters Upper TDC Lower TDC
Gauss 0.5481 0 0

t(4) 0.5481 0.2936 0.2936
Gumbel 1.5856 0.4517 0

Clayton 1.1712 0 0.5533
Frank 3.7528 0 0
Nonparametric | — 0.3465 0.3470
bivariate t-cdf | 6 0.1621 0.1621

Table 8: Tail dependence coefficients of different copulae for SIE and VOW.
Standardized margins modeled with t-distribution.
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Tail Dependence 3-45

Value-at-Risk with Copulae

For a sample {X:}/_,
1. specification of marginal distributions Fx;(x;; ;)
2. specification of copula C(u1, ..., uqs;0)
3. fit of the copula C
4

. generation of Monte Carlo data
XT+1NC{F1(X1), ey Fd(Xd); 0}
generation of a sample of portfolio losses L141(X741)

o

6. estimation of \737?1_a, the empirical quantile at level o from
L11(X).

MSR @3
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Moving window

For a sample {X:}/_,

1.
2.

MSR

specification of marginal distributions Fx.(x;; ;)
specification of returns’ subsets of size h: {y;+};_._, 1
fors=h, ..., T—1

specification of copulae Cs(us, ..., uq; 0) for every subset
{-y.ht}izs—h-‘rl

fit of the copulae C;, s=h, ..., T —1

generation of Monte Carlo data

Xop1~Co{Fi(x1), ..., Fa(xq); 0} fors=h, ..., T—1
generation of a samples of portfolio losses L1 1(Xs+1)

estimation of {VaR;,a J.T:_lh.




Tail Dependence 3-47

Backtesting

The estimated VaR values are compared with true realizations {/;}
of the Profit and Loss function. An exceedance occurs when /; is
smaller than \7‘;)7?;_@.

The ratio of the number of exceedances to the number of
observations gives the exceedances ratio:

T

~ 1 — t

o = ﬁ Z /(/t < VaRl_a)
t=h+1

MSR ﬁ)




Tail Dependence

Value-at-Risk estimation

3-48

Copula BAY - SIE BMW - VOW SIE - VOW
Gauss 0.0320 0.0394 0.0371
t-Student 0.0309 0.0400 0.0360
Gumbel 0.0337 0.0411 0.0389
Clayton 0.0297 0.0343 0.0349
Frank 0.0320 0.0400 0.0377
Normal distribution | 0.1217 0.1006 0.1217

Table 9: Backtesting results for Value-at-Risk estimation at 0.05 level for 3

portfolios, w = (1,1)7, size of moving window 250, Monte Carlo samples
of 10.000 realizations of pseudo random variable. Standardized margins
modeled with t-distribution.
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Tail Dependence 3-49

Gumbel Copula for BMW-VOW Normal Distribution for BMW-VOW

"~ ProfifLoss . - Profirloss
—— VR —aR
Exceedances . . + Bxocedances

e,

L -

4% 2000 Jan 2002 Jan 2004 Jan 2006 33 2000 Jan 2002 Jan 2004 Jan 2006

Figure 41: VaR, P&L and exceedances estimated with Gumbel copula (a =
0.0411) and bivariate normal distribution (& = 0.1006) for BMW and
Volkswagen.

Q MSRvar_cop_backtesting_gumbel @ MSRvar_cop_backtesting_normal
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Copulae 4-2

Applications of Copulae for the Calculation of
Value-at-Risk

Value-at-Risk (VaR) computation: most VaR methods assume a
multivariate normal distribution of the risk factors.

Several pitfalls!

Copulae can be used to describe the dependence between two or
more random variables with arbitrary marginal distributions.
Backtesting often shows that copula produce more accurate results
than “correlation dependence”.

MSR @3




Copula, ae [latin]

1.

a) Band, Leine, Koppel;
b) Enterhaken

2. Verbindung

i
i
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Copulae 4-4

What is a copula?

A function that links a multidimensional distribution to its
one-dimensional margins.

The joint cumulative distribution functions (cdf) of d random
variables Xi,..., Xy with cdf F1,..., F4 is:

P(Xl <x1,...,Xp §Xd) = C{P(Xl SXl),...,P(Xd < Xd)}
C{Fl(Xl),...,Fd(Xd)}

MSR &



Copulae 4-5
Value-at-Risk

1. value of linear portfolio w = (wy, ..., wy)' of assets
St = (51,t7 ey Sd’t)—r:

d
Ve = Z w;S)t
Jj=1

2. profit and loss (P&L) function:

d

Liyi = Vi —Ve= Z w;Sj (Xt — 1)
=1
Xet1 = log Se1 — log St

3. Value-at-Risk at level «:
VaR(a) = F; ()

MSR @3




Copulae 4-6
Log returns DCX & VW at 20030408
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Figure 42: Standardized log returns, DaimlerChrysler (DCX) and Volkswagen (VW),
20020415-20030408
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Copulae 4-7
Log returns DCX & VW at 20041027

vw
9

Figure 43: Standardized log returns, DaimlerChrysler (DCX) and Volkswagen (VW),
20031103-20041027
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Copulae 4-8

VaR depends on the distribution Fx of log returns
X =(X1,...,Xq)".

1. How to model Fx and the dependency among Xi,..., Xy ?

2. How does Fx and the dependency among Xi,..., Xy vary
over time 7

MSR @
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Traditional approach (RiskMetrics)

Log returns conditionally normal
Xt ~ N(07 Zt)

Drawbacks from multivariate normal distribution:
1. no heavy-tails
2. joint extreme values relatively infrequent

3. symmetry (elliptical distribution)

MSR @
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Copula based approach

Log returns conditionally distributed with copula C:

Xi ~ C{Fx,(x1),- -, Fx,(xq); 0t}

where Fx,,..., Fx, are marginal distributions and 0; is the copula

(dependence) parameter.

MSR @



Copulae

Adaptive Copulae

Global parameter 6; = 6, too optimistic.

1. local parametric assumption: 6; nearly constant on
homogeneity intervals

2. find largest interval where homogeneity is acceptable
(wpak\e)
3. for each t, adaptively find homogeneity interval

Estimate dependence parameter 6; in a time varying interval

MSR



Copulae 4-12
Local Parametric Assumption

1.2

I I I I
0 100 200 t=m* 300 t

Figure 44: Parameter 6; (blue), size of homogeneity interval at t (black).
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Copulae

Outline

1. Motivation Vv

2. Copulae and Value-at-Risk
3. Adaptive Copulae

4. Applications
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Copulae 4-14

Copulae

1. a copula C:[0,1]9 — [0,1] is a d-variate distribution with
marginal distributions being U(0, 1)

2. the copula associated with distribution F and its marginals F;
is the distribution C that satisfies

F(x1,...,xq4) = C{F1(x1), ..., Fa(xq)}

MSR ﬁ)
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Theorem (Sklar’s theorem)

For a distribution function F with marginals Fx,,...,Fx,. There
exists a copula C : [0,1]¢ — [0, 1] with

F(Xl,...,Xd) = C{Fxl(Xl),- -~7FXd(Xd)}

If Fx,, ..., Fx, are cts, then C is unique. If C is a copula and
Fx,,...,Fx, are cdfs, then the function F defined in (1) is a joint

cdf with marginals Fx,, ..., Fx,.

MSR ﬁ)
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With copula density

8dC(U1, ey ud)
o) = dug
the density function of F(xy,...,xq) is

d
Fx,. . xd) = c{Fx,(xa), -, Fx, (xa) } [T 6 (x
j=1

where u; = Fx;(x;) and fi(x;) = F)/g(xj) j=1...d

MSR @
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1. Gaussian Copula

Cga(ul, coyUg) = ¢w{¢_1(u1), . ,Cb_l(ud)}

& univariate standard normal cdf

®y d-dimensional standard normal cdf with correlation matrix W

(] Gaussian copula contains the dependence structure

(] normal marginal distributions + Gaussian copula =
multivariate normal distributions

L1 non-normal marginal distributions + Gaussian copula =
meta-Gaussian distributions

MSR ﬁ)
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Copulae 4-18

Explicit expression for the Gaussian copula

C&(uy.. . ug) = Syp{®7Hu),..., o (ug)}
o u) 0N (ug) _
- / ' / Cortw TV gy
where
— T 0= d(x:
r_(rla"'vrd) » Uj = (XJ)
O C&(u1, ..., ug) allows to generate joint symmetric

dependence, but no tail dependence (i.e., there are no joint
extreme events)

MSR ﬁ)
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2. Frank Copula, 0 < 0 < o0

_ d -
, H {exp(—0Ouj) — 1}
j=1
C@(ulw"uud) = _élog 1+ {exp(_e)_l}d—l

(] dependence becomes maximal when 6 — oo

(] independence is achieved when § — 0

MSR @
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3. Gumbel-Hougaard copula, 1 <60 < o0

-1
d 0

Co(ur,...,uq) =exp |— Z(— log u;)?
j=1

(] for 8 > 1 allows to generate dependence in the upper tail
(Schmidt, 2005)

(] For 8 =1 reduces to the product copula, i.e.
C@(Ul, ceey ud) = H}j:l uj.
(] for @ — oo, we obtain the Fréchet-Hoeffding upper bound:

0 .
Co(ut, ..., ug) — min(ui, ..., ug).

MSR @
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4. Ali-Mikhail-Haq copula, -1 <6 <1

||ED.

Cg(ul,...,ud) = 4
19{H(1UJ }
=1

[J independence is achieved when 6 = 0

[ the Fréchet-Hoeffding bounds are not achieved

MSR @
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Q))&

2\ o

Figure 45: Pdf contour plots, F(xi,x) = C{®(x1), ®(x2)} with Gaussian (p = 0),
AMH (6 = 0.9), Frank (6 = 8), Gumbel (6 = 2) copulae.
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5. Clayton copula, 0 >0

MSR

d -0
Co(ury ..., uq) = Z”j_e —d+1
j=1

dependence becomes maximal when § — oo
independence is achieved when § — 0

the distribution tends to the lower Fréchet-Hoeffding bound
when § — 1

allows to generate asymmetric dependence and lower tail
dependence, but no upper tail dependence

®
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Copulae 4-24
Copula estimation
The distribution of X = (X1, ..., X4) " with marginals Fx.(xj,6;),
j=1,...,d is given by:

Fx(x1,...,xq) = C{Fx,(x1;01),..., Fx,(x4;04); 0}
and its density is given by

f(x1,. - Xd;01,--,04,0)

d

= c{Fx,(x1;01),-.-, FXd(Xd; dq); 0} H G(XJ' 61')
j=1

where c is a copula density.

MSR @3
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For a sample of observations {x;}/_; and
9= (01,...,04,0)" € RI*1 the likelihood function is

T

L(ﬁ;X]_, e ,XT) = H f(XLt, <oy Xd ot 51, ey 5d, 0)
t=1

and the corresponding log-likelihood function

T

00 x1,...,xT) = Z log c{Fx,(x1,¢;01), .-, Fx,(Xd.t:6a); 0}
t=1

d
> log fi(xj.6: 9j)

j=1

_l’_

t

MSR ﬁ)
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Copulae 4-26

Full Maximum Likelihood (FML)

[ FML estimates vector of parameters 1} in one step through

Q%:ML = arg max £(19).
9

[ the estimates Uppyy = (gl, . ,gd,g)—r solve
(00/061,...,00/Dd4,0¢/00) = 0.

(] Drawback: with an increasing dimension the algorithm
becomes too burdensome computationally.

MSR eﬁ)



Copulae 4-27
Inference for Margins (IFM)

1. estimate parameters J; from the marginal distributions:
T
§; = argmax {;(9;) = arg max {Z log fi(Xj.¢; (5j)}
s 5 ]

2. estimate the dependence parameter 6 by maximizing the pseudo
log-likelihood function

;
0(0,61,...,04) = > _log c{Fx,(x1,e:61), ..., Fx,(xa.e: 04); 0}

t=1

[ The estimates J;en = (61, ..., 04,0) | solve

(00161, ..., 00q)854,0L/00) = 0.

[J Advantage: numerically stable.

MSR ﬁ)




Copulae 4-28
Canonical Maximum Likelihood (CML)

] CML maximizes the pseudo log-likelihood function with empirical
marginal distributions

;
0(0) = log c{Fx,(x1¢),- -, Fx,(xa.e); 0}
t=1

Jem = arg max £(0)
0

where

~

;
1
Fx(x) = TiﬂZI{Xj,tgx}
t=1

[1 Advantage: no assumptions about the parametric form of marginal
distributions.
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Value-at-Risk with Copulae

The process {X:}]_; of log-returns can be modelled as
Xjt = 0j,t€j¢

with
O-_[?,t = E[Xﬁt | Fe-1]

where F; is the available information at time t.

MSR @
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The standardized innovations
ee = (e1e,--- ,gdyt)T
are independent with distribution function
F(e:) = C{Fi(e1),..., Fa(eq); 0}

where
1. C is copula with parameter 6

2. ¢j have continuous marginal distributions F;, j =1,...,d

MSR ﬁ)
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VaR Estimation with Copulae

For log-returns {x; +}/_;, j=1,...,d, estimation of VaR at level
a

determine innovations &; (e.g. by deGARCHing)
specificy and estimate marginal distributions F;(&;)
specificy a copula C and estimate dependence parameter 6

simulate innovations ¢ and losses L

o b=

determine \737?(04), the empirical a-quantile of F;.

MSR @3
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Copulae

Moving Window

[] use static windows of size w = 250 scrolling in time t for VaR
estimation:
{xttizs—wr1
fors=w,..., T

(] the VaR estimation procedure generates a time series
{VaR.}[_,, and {6;}]_,, of dependence parameters estimates.

MSR @3
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Adaptive Copula Estimation |

Estimation of dependence parameter by moving window does not
fine tune changes in dependency

1. window too small: high variability of estimator

2. window too large: poor sensitivity to changes in parameter,
high delay in detections

MSR @3
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Adaptive Copula Estimation Il

1. "oracle " choice: largest interval | = [tg — my~, ty] where small
modelling bias condition (SMB)

A1(0) =D K(Pa,, Pp) < A

tel

where
p(y,v)

KW,9') = Eylo
(0.0) = E & oy, )

holds
2. 0 is ideally estimated from | = [tog — my~, tp]

MSR @
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Adaptive Copula Estimation IlI

—

MSR

"oracle " choice depends on unknown parameter 6;
adaptively estimate largest interval where homogeneity
hypothesis is accepted

Local Change Point detection (LCP), Mercurio, Spokoiny
(2004): sequentially test 6 is constant (i.e. 8; = 6) within
some interval /

. complete theory in Spokoiny (2007)
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Local Change Point procedure (LCP)

1. define family of nested intervals Iy C h C b C ... C Ix with
length my as Iy = [to — my, to]
2. T = I\ k=1 = [to — my, to — my_1]

to — Miy1 to — my to — mMk—1 to
: : : |
A 7\ VAN 7
TV TV TV
Tkt1 Tk k1
Vv
I
NS >
Vv
lk+1
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LCP

Start with Kk =1 and

1. test homogeneity hypothesis Hp  against change point
alternative within T using testing interval [, q;

2. if no change points were found in T, accept /. Take next
interval Tx41 and repeat the previous step until homogeneity
is rejected or the largest possible interval Ix = [ty — mk, to] is
accepted;

3. if Hok is rejected for Ty, the estimated interval of
homogeneity is last accepted interval [ = [_1.

4. if the largest possible interval Ik is accepted, 1= Ik.

MSR (ﬁ)
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Test of homogeneity against a change point
alternative
Interval | = [tog — m, o], T C /
Ho : VYTe€T, 6i=0vVtedJ=|rt), VteJ =1I\J
H : IreT, 0,=0,VteJ, 9t:027é61Vt€JC

Je J

to —m T to

MSR @
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Likelihood ratio test for the fixed change point location:

T/7T = max{LJ(Ql) + LJC(92)} — max L/(H)
01,62 9
= /L\_/ + /L\_jc — Z/
Test statistics for unknown change point location:

T/ = maxTem T/ﬂ-

Reject Hy if T; >3

MSR ﬁ)
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For critical values 31,...,3x define the random sets
1.
Co = {Ti, <3k}

2. I accepted:
A =CinN...NCk

3. Ik accepted, ;41 rejected:

By = Ak\Ck+1

MSR @
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Adaptive Estimator 0

1. adaptive estimator @\k at step k

k—1

O3, ->36) = OkL(Ax) + Y 01(B)
I=1

2. adaptive estimator 0 o
0 =0k

where 6 is weak (MLE) estimator at /i

MSR @



Copulae 4-42

Choice of Critical Values ;

Desirable in the homogeneous situation
é\k = 5/(

"False alarm": /I\k C Iy, the estimated homogeneity interval is too
small and
L,k(Hk,Gk) >0

Select 31, ..., 3k such that risk associated with "false alarm” is
bounded.

MSR @
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Choice of Critical Values ;

The critical values 31, ...,3k are the minimal values providing

Ep-|Li, Bk, 06)|"* < pR(67),  k=2,...,K, 6" €© (15)

where 0 < p <1 and R(0") is the risk of the non-adaptive
estimate 0:

Ly, (6, 67)| 2.

6*) = max Eg-
R(07) = maxEy

MSR @
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Sequential Choice of ;

Sequentially select 3, for / =0,..., K — 1 such that

pR(07)
K-1

max Eg~ L/k 9/(,9/ ‘ /2

k>1>0

(16)

by Monte Carlo simulation under Hy : 6; = 6*, Vt € Ik.

MSR @
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Simulated Examples
1. Clayton copula: sudden jump in
dependence

Simulated sets of observations from 6-dimensional Clayton copula
with parameter

b 9, if —390<t<10
Tl 9, if 10<t<210

for different values of the pair (¥,,Jp).

MSR @
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Copulae

Selection of intervals / and 7,

1. set of numbers my defining the length of /, and T in form of
a geometric grid.

2. my = [mock] for k =1,2,...,K, mp =20 and c = 1.25
where [x] means the integer part of x.

3. Iy = [to — my, to] and T, = [to — my, to — mk_l] for
k=12,....K.
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Critical Values

4 4 4
3 3 3
2 2 2
1 1 1
03 4 5 6 03 4 5 6 G3 4 5 6

Figure 46: Critical values 3, (p,0*) (vertical axis), log(my) (horizontal axis) for p =
0.2,0.5 and 1.0 (top to bottom), 6* = 0.5,1.0 and 1.5 (left to right). Based on 5000
simulations from Clayton copula, my =20, ¢ =1.25, k=1,...,11
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Copulae
1 1
150 200
150 200
150 200

Figure A7:  Pointwise median (full), 0.25 and 0.75 quantiles (dotted) from 6;. True parameter 6, (dashed)
with 9, = 0.10, 9, = 0.50, 0.75 and 1.00 (left, top to bottom) and ¥, = 0.10, ¥, = 0.50, 0.75 and 1.00

(right, top to bottom). Based on 100 simulations from Clayton copula, estimated with LCP, mg = 20, ¢ = 1.25

and p = 0.5
VS L)
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Copulae

Detection Delay

Detection delay § at rule r € [0,1] to jump v =60 — ;1 at t

6(t,y,r) = min{u > t:au:9t71_|_rfy}_t

1. number of steps for estimated parameter to reach r-fraction
of jump in real parameter

2. proportional to type Il error (accept homogeneity when jump),
decreasing in power and increasing in XC(Ho, H1).

MSR ﬁ)
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Detection Delay and Clayton Copula

For Clayton copula
1. KL is asymmetric: 0y < 61, K4(6o,01) > Ka(61,00)

2. detection delay ¢ is decreasing in |y| and higher for downward
than for upward jumps.

MSR @
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208

10r

Figure 48: Kullback-Leibler divergences %(0.10,) (full) and X(4,0.10)
(dashed), 6-dimensional Clayton copula
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Copulae

Detection Delay Statistics

(92, 9p) r mean std dev. max min
0.25 9.06 7.28 56 0

(0.50, 0.10) 0.50 | 13.64 9.80 60 0
0.75 21.87 14.52 89 3

0.25 5.16 4.24 21 0

(0.75,0.10) 0.50 8.85 5.55 25 0
0.75 16.72 10.37 64 3

0.25 4.47 2.94 12 0

(1.00, 0.10) 0.50 7.94 4.28 22 0
0.75 14.79 7.38 62 5

0.25 8.94 6.65 36 0

(0.10, 0.50) 0.50 14.21 9.06 53 0
0.75 21.43 12.15 68 0

0.25 9.00 4.80 25 0

(0.10, 0.75)) 0.50 14.30 5.96 40 3
0.75 21.00 10.97 75 6

0.25 7.39 3.67 19 0

(0.10,1.00) | 0.50 | 13.10 4.13 22 2
0.75 20.13 7.34 55 10

4-52

Table 10: Statistics for detection delay & at rule r, based on 100 simulations from

Clayton copula, mp =20, ¢ =1.25 and p =0.5
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4-53

Figure 49: Mean detection delays (crosses) at r = 0.75, 0.50 and 0.25 from top to

bottom. Left: ¥, = 0.10(upward jump). Right: ¥, = 0.10 (downward jump), Clayton

Copula
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2. Clayton copula: smooth change in
dependence

Simulated sets of observations from 6-dimensional Clayton copula
with parameter

0, if  —350<t<50
Or =< Yo+ L52(0p—0,) if 50<t<150
i if 150 < t < 350
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0 100 200 300 0 100 200 300

Figure 50:  Pointwise median (full), 0.25, 0.75 quantiles (dotted) of estimated pa-
rameter é}, true parameter 0; (dashed). Based on 100 simulations, Clayton copula,

(¥a,9p) = (1.00,0.10), mp = 20 and ¢ = 1.25
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Applications: Value-at-Risk

Estimation of VaR from portfolios composed of 6 DAX stocks. Use
2 groups:
group 1: Volkswagen, DaimlerChrysler, Allianz, Miinchener
Riickversicherung, Bayer and BASF (high concentration)
group 2: Siemens, E.ON, ThyssenKrupp, Lufthansa, Schering
and Henkel (low concentration)
closing daily prices from 01.01.2000 to 31.12.2004 (1270
observations)

data available in http://sfb649.wiwi.hu-berlin.de/fedc

MSR ﬁﬁ)
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Copulae 4-57

VaR Estimation

1. log-returns from stock j modelled by
Xt,j = Ut,j£t,j

2. afj estimated at time t by exponential smoothing with \ = %
Ut,_, Z e—)\(t S)X2
s<t

3. empirical distribution of the obtained residuals £} ;

4. 6-dim copula belongs to Clayton family

MSR @3
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Backtesting

The exceedances ratio at level « for a portfolio w is given by

1< _
Gw(o) = = > 1{l; < VaRy(a)}
t=1

where {/;} are realizations of the P&L function.
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VaR Estimation: Performance

Calculate @ (a) using RiskMetrics (RM) and time varying copula
procedures moving window (MW) and Local Change Point (LCP)

1. for set W= {w*, w,;n=1,...,100} of portfolios

2. w* = (wj,...,w)T, is the equally weighted portfolio
wi=1%i=1,...,6.

3. w, is a realization of a random variable uniformly distributed
on S ={(x,-..,%) ER®: 3%  x; =1,x >0}
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VaR Estimation: Performance

1. average exceedance ratio (A")
1
AV === " a,
|W| weWw

2. squared sum of differences to level (SW)

wew

3. relative distance to level (D)

1/2
DW—;{Z(aw—o&}

wew

The performances in VaR estimation are compared based on DW.
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Results Group 1

O I I I E|
2001 2002 2003 2004 2005

Figure 51: Estimated copula parameter §t for group 1, LCP method, my = 20,
¢ =1.25 and p = 0.5, Clayton copula
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Figure 52: P&L (dots), Value-at-Risk at level a = 0.05 (line), exceedances (crosses),
estimated with LCP (above), MW (middle) and RM (below), for equally weighted

portfolio w*, group 1
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Copulae
RM MW LCP
a(x10%)
500 1.00 | 5.00 1.00 | 5.00 1.00
Qu+ | 6.21 128 | 581 0.69 | 552 0.69
Qw, | 640 1.28 | 6.40 0.69 | 6.31 0.79
Qw, | 532 158 | 591 099 | 562 0.99
(x10?)
AW | 502 142 | 552 0.64 | 541 0.66
SW 1094 020|051 0.15 | 038 0.14
DW | 192 452 | 143 383 | 123 3.74

Table 11: Exceedance ratios for portfolios w*, wy and ws, average, sum of squared
differences and relative distance to level across levels and methods, group 1
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Results Group 2

0.5

0
I I I
2001 2002 2003 2004 2005

Figure 53: Estimated copula parameter @ for group 2, LCP method, mg =
20, ¢ = 1.25 and p = 0.5, Clayton copula
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Copulae

-
2003 2004 2005

2
- e HH e F e W+

2001 2002

Figure 54: P&L (dots), Value-at-Risk at level o = 0.05 (line), exceedances (crosses),
estimated with LCP (above), MW (middle) and RM (below) for equally weighted port-

folio w*, group 2

MSR -



4-66

Copulae
RM MW LCP
a(x10%)
500 1.00 | 5.00 1.00 | 5.00 1.00
Qu+ | 5.42 158 | 453 0.39 | 453 0.30
Qw, | 6.01 167 | 522 0.69 | 502 0.69
Qw, | 522 148 | 493 069 | 463 0.59
(x10?)
AW | 543 150 | 453 0.55 | 443 051
SW 1034 028|055 022|058 0.26
DW | 1.17 532 | 1.49 473 | 1.53 5.10

Table 12: Exceedance ratios for portfolios w*, wy and ws, average, sum of squared
differences and relative distance to level across levels and methods, group 2
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Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is a general
algorithm for maximum-likelihood estimation where the model
depends on latent variables or where the data are incomplete.
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Algorithm

1. Expectation step (E-step) computes the conditional
expectation of the complete data likelihood given the current
estimates of model parameters and the observed data.

2. Maximization step (M-step) re-estimates all the parameters by
maximizing the expected likelihood.

3. The parameters found on the M-step are then used to begin
another E-step. The process is repeated until the likelihood
converges, i.e reaching a local maxima.
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History

The EM algorithm was explained and given its name in 1977 in a
paper by Arthur Dempster, Nan Laird and Donald Rubin Maximum
likelihood from incomplete data via the EM algorithm in the
Journal of the Royal Statistical Society.
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Notation
y the incomplete (observed) data
z the latent variables

The complete data consist of the observed and missing variables.

p(y,z|@) the joint probability density function (continuous case)
or probability mass function (discrete case) of the
complete data with parameters given by the vector 6
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Conditional Distribution

Using the Bayes rule and the law of total probability the
conditional distribution of the missing data given the observed can
be expressed as:

_ply,z[0) _ p(ylz,0)p(z]0)
PO ="018) = Trlylz.0)p(zlf)dz
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E-step

The aim is to maximize the incomplete data likelihood log p(y|6)
through maximizing the expected complete data likelihood (since it
is much easier to maximize) where expectation is taken over all
possible values of the hidden variables:

Q(0) = Ez{log p(y, z|0)|y}.
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Q-function

Discrete case:

Q(6) = > _ p(zly,6) log p(y, z|0)
z
Continuous case:

Q(6) = / " p(aly. 6) log ply. 2/6)dz
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M-step

EM starts with some initial guess of the parameter values 6y and
then iteratively searches for better values for the parameters.
Assume that the current estimate of the parameters is 6, our goal
is to find another #,,1 that can improve the expected value of the
log-likelihood Q(6)

On+1 = argmax Q(6)
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Convergence

Convergence may be determined by examining when the
parameters quit changing:

10041 — Onll <€

for some € and measure ||-|.

EM algorithm does not guarantee that the convergence will be to a
global maximum. For multimodal distributions, convergence will be
to a local maximum which depends on the initial starting point 6.

MSR eﬁ)

o




EM

5-10

Applications

.

OO dQo

MSR

genetics: observed data (the phenotype) is a function of
unobserved data (the genotype),

signal processing: image reconstructions, pattern recognition,
medical image reconstruction: tomography,

spectroskopy,

psychometrics: the item response theory models,

portfolio risk management,

speach recognition.
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Mixture Copula

Let Gy, ..., Ck be d-dimensional copulae and wy, ..., wk
positive weights so that wy + ...+ wx = L.
Mixture copula:

K
Crix(u1, ..., uq) = Z w;Ci(ur, ..., ug).
i=1
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Mixture Copula

Joint density of (Y1,...,Yy)"

fFy:lv) = Z wifi(y.0i),
where ¥ = (w;,0,)),, t=1,..., T and
d
fi(yel0:) = ci{Fi(yre)s- s Falya): 6} [ | &i(vi0),
j=1
where gj, j =1, ..., d, are densities of marginal distributions.
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Indicator Variables

The log-likelihood function

T K
Uyp) = Z log Z w;fi(y|0;)-
t=1 =1

When we observe data y; we do not know from which component
density f; they were generated.
The indicator variables {z}/[_;

z; = i when y; was generated from f;.
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Q-function for Mixture Copula Model

.
Q(6) = E.{logf(y,z[0)ly} = E.{log [ [ f(ye z:[0)ly.}
T K =
= D> f(ze = ilye 0){log ci(ue; 0;)
t=1 i=1
d
+> loggj(yj.e) + log f(z: = il0)}.
j=1
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Lagrangian

To find the extremes of function Q(6) we add a Lagrange
multiplier and define the Lagrangian:

T K

d
JO) = YD f(ze =iy, O)flogcius 6;) + > log gi(y;.e)

t=1 i=1 j=1

K
+log f(ze = il0)} = M1 =Y f(ze = ilo)},

i=1

where X is an unknown scalar.
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E-step and Mixture Copula Model

The E-step computes and updates the conditional probability that
our observation was from each component copula. Computing
(n+ 1)-th time the iteration of weights we use values of
parameters calculated in n-th estimation step

T

it 1w 07)

7 :
' T e wiei(us 67)
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M-step and Mixture Copula Model

For any given estimates of weights w;" dependence parameters 07
in our mixed copula model are not available in closed form.
Consequently, in order to obtain the final results, we calculate
parameters of the copulae using the complete-data maximum
likelihood estimation.
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Drawback of the Algorithm

The estimates are sensitive to initial values and the standard
approach can lead us only to a local maximum.
Possible solutions of this problem:

[l we try many different initial values and choose the solution
that has the highest likelihood value,

(] we use a simpler model to determine an initial value for more
complex models.
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Application

Example Consider daily standardized stock log-returns of BMW
and Siemens. Time period: 1st January 1999 — 1st September
2006, 2000 data points. We fit to the data two mixture copulae.
The margins are modeled with t-distribution.

The parameters estimated by the EM Algorithm:

Mixture w 01 0>
Gumbel-Clayton | 0.109 3.92 7.10718
Frank-Clayton | 0.496 123 2-10716
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