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Motivation 1-1

Why investors may wish to trade volatility?

Figure 1: DAX level vs. DAX 3M realized vola(2000-2005)
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Motivation 1-2

Why investors may wish to trade volatility?

Volatility:

� reverts to it’s long-term mean
� jumps when markets crash
� experiences different regimes
� negatively correlated with the underlying
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Motivation 1-3

Volatility trading

� Taking directional bets on volatility (variance)
� Trading spreads on indices
� Hedging volatility exposure
� Dispersion trading
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Outline

1. Motivation X

2. Definition
3. Replication and hedging
4. Dispersion trading strategy



Definition 2-1

Variance swap

Figure 2: Cash flow of a Variance swap at expiry

Variance swaps



Definition 2-2

Definition

Variance swap is a forward contract that at maturity pays the
difference between realized variance σ2

R and predefined strike K 2
var

multiplied by notional Nvar .

(σ2
R − K 2

var ) · Nvar

σR =

√√√√252
T

T∑
t=1

(
log

St

St−1

)2

· 100

Notional can be expressed in Vega and variance terms:

Nvega = Nvar · 2Kvar
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Definition 2-3

Construction

Example: 3-month variance swap long
Trade size is 2500 variance notional (represents a payoff of 2500
per point difference between realized and implied variance).
If Kvar is 20% (K 2

var = 400) and the subsequent variance realized
over the course of the year is (15%)2 (quoted as σ2

R = 225), the
investor will make a loss because realized variance is below the level
bought.
Overall loss: 437500 = 2500 · (400− 225).
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Definition 2-4

Marking-to-market

� Variance is additive.
� At time t we price a variance swap initiated at 0 and maturing

at T :

(σ2
R,(0,T ) − K 2

var ,(0,T )) · Nvar

At time t the part of volatility is already realized!
� Let σ2

R,(0,t) - realized variance between 0 and t, K 2
var ,(t,T ) -

strike of the variance swap initiated at t and maturing at T .
Then

1
T

{
tσ2

R,(0,t) − (T − t)K 2
var ,(t,T )

}
− K 2

var ,(0,T )

is a swap payoff at time t (per unit of variance notional).
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Replication and hedging 3-1

Replication and hedging - intuitive approach

� A call option with BS price: CBS(S , K , σ
√

τ).
� Variance Vega:

V =
∂CBC

∂σ2 =
S
√

τ

2σ
exp(−d2

1 /2)√
2π

where

d1 =
log(S/K ) + (σ2τ)/2

σ
√

τ
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Replication and hedging 3-2

Replication and hedging - intuitive approach

If we need a position in future realized variance CBS(S , K , σ
√

τ) is
imperfect vehicle since V is sensitive to stock price moves. Solution
- construct an portfolio of options with V = const.
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Replication and hedging 3-3

What kind of portfolio is needed?

Figure 3: Variance Vega of options portfolios
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Replication and hedging 3-4

Replication - more rigorous approach

Assumptions:

� existence of futures market with delivery dates T ′ ≥ T
� futures contract Ft(underlying) follows a diffusion process with

no jumps
� existence of European futures options market, for these

options all strikes are available (market is complete)
� continuous trading is possible
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Replication and hedging 3-5

Log contract

Let us consider the following function:

f (Ft) =
2
T

{
log

F0

Ft
+

Ft

F0
− 1
}

This function is twice differentiable with derivatives:

f ′(Ft) =
2
T

(
1
F0
− 1

Ft

)
and

f ′′(Ft) =
2

TF 2
t

at time t = 0 the function f (Ft) has a value of zero.
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Replication and hedging 3-6

To find the dynamic of f (Ft) use Itô’s lemma. In general for every
smooth twice differentiable function f (Ft) Itô’s lemma gives:

f (Ft) = f (F0) +

∫ T

0
f ′(Ft)dFt +

1
2

∫ T

0
F 2

t f ′′(Ft)σ
2
t dt

Substituting the above introduced function gives obtain expression
for the realized variance:

1
T

∫ T

0
σ2

t dt =
2
T

(
log

F0

FT
+

FT

F0
− 1
)
−

− 2
T

∫ T

0

(
1
F0
− 1

Ft

)
dFt (1)
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Replication and hedging 3-7

� Equation 1 shows that the value of a realized variance for the
time interval from 0 to T equals to:

2
T

∫ T

0

(
1
F0
− 1

Ft

)
dFt

� continuously rebalanced futures position. This position costs
nothing to initiate and easy to replicate;

2
T

(
log

F0

FT
+

FT

F0
− 1
)

� log contract, static position of a contract that pays f (FT ) at
expiry and has to be replicated.
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Replication and hedging 3-8

Carr and Madan (2002) argue that the market structure assumed
above allows to represent any twice differentiable payoff function
f (FT ):

f (FT ) = f (k) + f ′(k)
(
[(FT − k)+ − (k − FT )+

]
+

∫ k

0
f ′′(K )(K − FT )+dK

+

∫ ∞

k
f ′′(K )(FT − K )+dK
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Replication and hedging 3-9

For f (FT ) expansion around F0 we gives:

log
(

F0

FT

)
+

FT

F0
− 1 =

=

∫ F0

0

1
K 2 (K − FT )+dK +

∫ ∞

F0

1
K 2 (FT − K )+dK
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Replication and hedging 3-10

To obtain the strike K 2
var of a variance swap take a risk-neutral

expectation:

K 2
var =

2
T

erT
∫ F0

0

1
K 2 P0(K )dK +

2
T

erT
∫ ∞

F0

1
K 2 C0(K )dK

But it is impossible to find vanilla options with a complete strike
range (from 0 to ∞) traded on the market. How to replicate a fair
future realized variance in reality?
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Replication and hedging 3-11

Discrete approximation

Figure 4: Discrete approximation of a log payoff
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Replication and hedging 3-12

Discrete approximation

Dermann et al. (1998) proposed approach for finding weights for
replicating portfolio of options:

wc(K0) =
f (K1c)− f (K0)

K1c − K0

The second segment - combination of call with strikes K0 and K1c :

wc(K1c) =
f (K2c)− f (K1c)

K2c − K1c
− wc(K0)
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Replication and hedging 3-13

Setting up a replicating portfolio

Example: Constructing a variance swap
Suppose we are replicating a 3-month maturity DAX variance swap
starting 07.09.2001. Index value is 4730, 3-month risk free rate
(FIBOR/EURIBOR) 4.2%. The replicating portfolio consists of 13
OTM vanilla options: 7 puts and 6 calls with strikes 85 ip apart.
Option prices are calculated using data from implied volatility
surfaces of DAX vanilla options.
The prices, and numbers of options required for each strike are
given in table below.
The total cost of replicating variance 534.67, Kvar=23.12.
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Replication and hedging 3-14

Payoff of the variance swaps

Figure 5: 3-month DAX variance swap strike, realized volatilty, payoff of a
long swap position
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Dispersion trading strategy 4-1

Basket volatility

For a basket of any assets the variance is defined:

σ2
Basket =

n∑
i=1

w2
i σ2

i + 2
n∑

i=1

n∑
j=i+1

wiwjσiσjρij

where σi - standard deviation of the return of an i-th constituent
(also called volatility), wi - weight of an i-th constituent in the
basket, ρij - correlation coefficient between the i-th and the j-th
constituent.
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Dispersion trading strategy 4-2

Average index correlation

Assume ρij = const for any pair of i , j and call this parameter ρ -
average index correlation, or dispersion:

ρ =
σ2

index −
∑n

i=1 w2
i σ2

i
2
∑n

i=1
∑n

j=i+1 wiwjσiσj
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Dispersion trading strategy 4-3

Dispersion trading strategy

From the previous definition follows the idea of dispersion trading.
Long dispersion means:

� short index variance
� long variance of index constituents

Corresponding positions in variances can be taken by buying
(selling) variance swaps.

� short swap on index realized variance
� long swaps on each of n index constituents
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Dispersion trading strategy 4-4

Payoff of dispersion strategy

The payoff of the direct dispersion strategy is a sum of variance
swap payoffs of each of i-th constituent

(σ2
R,i − K 2

var ,i ) · Ni

and of short position in index swap

(K 2
var ,index − σ2

R,index) · Nindex

where

Ni = Nindex · wi
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Dispersion trading strategy 4-5

Payoff of dispersion strategy

The payoff of the overall strategy is:

Nindex ·

(
n∑

i=1

wiσ
2
R,i − σ2

R,Index

)
− ResidualStrike

ResidualStrike = Nindex ·

(
n∑

i=1

wiK 2
var ,i − K 2

var ,Index

)
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Dispersion trading strategy 4-6

Implementing dispersion strategy

the success of the volatility dispersion strategy lies in determining:

� the direction of the strategy
� constituents for the offsetting variance basket

Variance swaps



Dispersion trading strategy 4-7

Figure 6: Average implied correlation (blue), average realized correlation
(red), payoff of the direct dispersion strategy (black)
Variance swaps



Dispersion trading strategy 4-8

Basic vs improved dispersion strategies on
DAX Index

Strategy Mean Std. Dev. Skewness Kurtosis J-B Prob.
Basic 0.032 0.242 0.157 2.694 0.480 0.786

Improved 0.077 0.232 -0.188 3.012 0.354 0.838
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