Genetic Algorithm for Support Vector Machines Optimization in Probability of Default Prediction

Wolfgang Härdle
Dedy Dwi Prastyo

Ladislaus von Bortkiewicz Chair of Statistics
C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

Classifier

Figure 1: Linear classifier functions (1 and 2) and a non-linear one (3)

Loss

\square Nonlinear classifier function f be described by a function class \mathcal{F} fixed a priori, i.e. class of linear classifiers (hyperplanes)
\square Loss

$$
L(x, y)=\frac{1}{2}|f(x)-y|= \begin{cases}0, & \text { if classification is correct } \\ 1, & \text { if classification is wrong }\end{cases}
$$

Expected and Empirical Risk

\square Expected risk - expected value of loss under the true probability measure

$$
R(f)=\int \frac{1}{2}|f(x)-y| d F(x, y)
$$

\square Empirical risk - average value of loss over the training set

$$
\widehat{R}(f)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left|f\left(x_{i}\right)-y_{i}\right|
$$

VC bound

Vapnik-Chervonenkis (VC) bound - there is a function ϕ (monotone increasing in VC dimension h) so that for all $f \in \mathcal{F}$ with probability $1-\eta$ hold

$$
R(f) \leq \widehat{R}(f)+\phi\left(\frac{h}{n}, \frac{\log (\eta)}{n}\right)
$$

Outline

1. Introduction \checkmark
2. Support Vector Machine (SVM)
3. Feature Selection
4. Application
5. Conclusions

SVM

\square Classification
Data $D_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}: \Omega \rightarrow(\mathcal{X} \times \mathcal{Y})^{n}$ $\mathcal{X} \subseteq \mathbb{R}^{d}$ and $\mathcal{Y} \in\{-1,1\}$
\square Goal - to predict \mathcal{Y} for new observation, $x \in \mathcal{X}$, based on information in D_{n}

Linearly (Non-) Separable Case

Figure 2: Hyperplane and its margin in linearly (non-) separable case

SVM Dual Problem

$$
\begin{aligned}
\max _{\alpha} L_{D}(\alpha)= & \max _{\alpha}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}\right\} \\
\text { s.t. } \quad & 0 \leq \alpha_{i} \leq C \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

Figure 3: Mapping two dimensional data space into a three dimensional feature space, $\mathbb{R}^{2} \mapsto \mathbb{R}^{3}$. The transformation $\Psi\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}$ corresponds to $K\left(x_{i}, x_{j}\right)=\left(x_{i}^{\top} x_{j}\right)^{2}$

Non-Linear SVM

$$
\begin{aligned}
\max _{\alpha} L_{D}(\alpha)= & \max _{\alpha}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)\right\} \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

\square Gaussian RBF kernel $-K\left(x_{i}, x_{j}\right)=\exp \left(-\frac{1}{\sigma}\left\|x_{i}-x_{j}\right\|^{2}\right)$
\square Polynomial kernel $-K\left(x_{i}, x_{j}\right)=\left(x_{i}^{\top} x_{j}+1\right)^{p}$

Structural Risk Minimization (SRM)

Search for the model structure \mathcal{S}_{h},

$$
\mathcal{S}_{h_{1}} \subseteq \mathcal{S}_{h_{2}} \subseteq \ldots \subseteq \mathcal{S}_{h *} \subseteq \ldots \subseteq \mathcal{S}_{h_{k}}=\mathcal{F}
$$

such that $f \in \mathcal{S}_{h *}$ minimises the expected risk bound, with $f \subseteq \mathcal{F}$ is class of linear function and h is VC dimension i.e.

$$
\operatorname{SVM}\left(h_{1}\right) \subseteq \ldots \subseteq \operatorname{SVM}\left(h_{*}\right) \subseteq \ldots \subseteq \operatorname{SVM}\left(h_{k}\right)=\mathcal{F}
$$

with h correspond to the value of SVM (kernel) parameter

Evolutionary Feature Selection

\square Featured selection - SVM parameters optimization
\square Evolutionary optimization - Genetic Algorithm (GA)
\square GA finds global optimum solution

GA - SVM

Figure 4: Iteration (generation) in GA-SVM

Credit Scoring \& Probability of Default

\square Score (Sc) from SVM method

$$
S c(x)=\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(x_{i}, x\right)
$$

\checkmark Probability of Default (PD)

$$
f(y=1 \mid S c)=\frac{1}{1+\exp \left(\beta_{0}+\beta_{1} S c\right)}
$$

β_{0} and β_{1} are estimated by minimizing the negative log-likelihood function (Karatzoglou and Meyer, 2006)

Validation of Scores

Discriminatory power (of the score)

- Cumulative Accuracy Profile (CAP) curve
- Receiver Operating Characteristic (ROC) curve
- Accuracy, Specificity, Sensitivity

Figure 5: CAP curve (left) and ROC curve (right)

Discriminatory power

\square Cumulative Accuracy Profile (CAP) curve

- CAP/Power/Lorenz curve \rightarrow Accuracy Ratio (AR)
- Total sample vs. default sample
\square Receiver Operating Characteristic (ROC) curve
- ROC curve \rightarrow Area Under Curve (AUC)
- Non-default sample vs. default sample
\square Relationship: AR $=2$ AUC -1

Discriminatory power (cont'd)

	sample		
		default	non-default
		(1)	(-1)
predicted	(1)	True Positive (TP)	False Positive (FP)
	(-1)	False Negative (FN)	True Negative (TN)

- Accuracy, $\mathrm{P}(\hat{Y}=Y)=\frac{T P+T N}{P+N}$
- Specificity, $\mathrm{P}(\widehat{Y}=-1 \mid Y=-1)=\frac{T N}{N}$
- Sensitivity, $\mathrm{P}(\widehat{Y}=1 \mid Y=1)=\frac{T P}{P}$

Examples - Small Sample

$\square 100$ solvent and insolvent companies
\square X3 - Operating Income / Total Asset
\square X24 - Account Payable / Total Asset

SVM classification plot

Figure 6: SVM plot, $C=1$ and $\sigma=1 / 2$, training error 0.19 (left) and GA-SVM, $C=14.86$ and $\sigma=1 / 121.61$, training error 0 (right).

Credit reform data

type	solvent (\%)	insolvent (\%)	total (\%)
Manufacturing	$27.37(26.06)$	$25.70(1.22)$	27.29
Construction	$13.88(13.22)$	$39.70(1.89)$	15.11
Wholesale and retail	$24.78(23.60)$	$20.10(0.96)$	24.56
Real estate	$17.28(16.46)$	$9.40(0.45)$	16.90
total	$83.31(79.34)$	$94.90(4.52)$	83.86
others	$16.69(15.90)$	$5.10(0.24)$	16.14
$\#$			
$\#$	20,000	1,000	21,000

Table 1: Credit reform data

Pre-processing

year	solvent $\#(\%)$	insolvent $\#(\%)$	total $\#(\%)$
	$\#(9.08)$	$86(0.90)$	$958(9.98)$
1997	$872(998$	$928(9.66)$	$92(0.96)$
$1020(10.62)$			
1999	$1005(10.47)$	$112(1.17)$	$1117(11.63)$
2000	$1379(14.36)$	$102(1.06)$	$1481(15.42)$
2001	$1989(20.71)$	$111(1.16)$	$2100(21.87)$
2002	$2791(29.07)$	$135(1.41)$	$2926(30.47)$
total	$8964(93.36)$	$638(6.64)$	9602

Table 2: Pre-processed credit reform data

Scenario

scenario	training set	testing set
Scenario-1	1997	1998
Scenario-2	$1997-1998$	1999
Scenario-3	$1997-1999$	2000
Scenario-4	$1997-2000$	2001
Scenario-5	$1997-2001$	2002

Table 3: Training and testing data set

Full model, X_{1}, \ldots, X_{28}

\square Predictors - 28 financial ratio variables

- Population (\# solutions) - 20
\square Evolutionary iteration (generation) - 100
\square Elitism - 0.2 of population
\square Crossover rate -0.5 , mutation rate -0.1
\square Optimal SVM parameters $-\sigma=1 / 178.75$ and $C=63.44$

Quality of classification (1/2)

		sample	
		training	testing
Disc. power	AR	1	1
	Accuracy	1	1
	Specificity	1	1
	Sensitivity	1	1

Table 4: Discriminatry power of Scenario-1, 2, 3, 4, 5

Quality of classification (2/2)

training	TE (CV)	testing	TE (CV)
1997	$0(8.98)$	1998	$0(9.02)$
$1997-1998$	$0(8.99)$	1999	$0(10.03)$
$1997-1999$	$0(9.37)$	2000	$0(6.89)$
$1997-2000$	$0(8.57)$	2001	$0(5.29)$
$1997-2001$	$0(4.55)$	2002	$0(4.61)$

Table 5: Percentage of Training Error (TE) and Cross-Validation (CV, with group $=5$)

Conclusion

\square Optimal feature selection (via Genetic Algorithm) leads to perfect classification
\square Cross validation - overcome the overfiting in training \& testing error

Genetic Algorithm for Support Vector Machines Optimization in Probability of Default Prediction

Wolfgang Härdle
Dedy Dwi Prastyo

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics
 and Economics
Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

References

(Chen, S., Härdle, W. and Moro, R.
Estimation of Default Probabilities with Support Vector Machines
Quantitative Finance, 2011, 11, 135-154
\otimes Holland, J.H.
Adaptation in Natural and Artificial Systems University of Michigan Press, 1975

References

围 Karatzoglou, A. and Meyer, D.
Support Vector Machines in R
Journal of Statistical Software, 2006, 15:9, 1-28
國 Zhang, J. L. and Härdle, W.
The Bayesian Additive Classification Tree Applied to Credit Risk Modelling
Computational Statistics and Data Analysis, 2010, 54,
1197-1205

Linearly Separable Case

Figure 7: Separating hyperplane and its margin in linearly separable case

\square Choose $f \in \mathcal{F}$ such that margin $\left(d_{-}+d_{+}\right)$is maximal
\square No error separation, if all $i=1,2, \ldots, n$ satisfy

$$
\begin{array}{ll}
x_{i}^{\top} w+b \geq+1 & \text { for } \quad y_{i}=+1 \\
x_{i}^{\top} w+b \leq-1 & \text { for } \quad y_{i}=-1
\end{array}
$$

\checkmark Both constraints are combined into

$$
y_{i}\left(x_{i}^{\top} w+b\right)-1 \geq 0 \quad i=1,2, \ldots, n
$$

\square Distance between margins and the separating hyperplane is $d_{+}=d_{-}=1 /\|w\|$
\square Maximize the margin, $d_{+}+d_{-}=2 /\|w\|$, could be attained by minimizing $\|w\|$ or $\|w\|^{2}$
\square Lagrangian for the primal problem

$$
L_{P}(w, b)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left\{y_{i}\left(x_{i}^{\top} w+b\right)-1\right\}
$$

Karush-Kuhn-Tucker (KKT) first order optimality conditions

$$
\begin{array}{rlr}
\frac{\partial L_{P}}{\partial w_{k}}=0: & w_{k}-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i k} & =0
\end{array} \quad k=1, \ldots, d
$$

\square Solution $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$, therefore

$$
\begin{aligned}
\frac{1}{2}\|w\|^{2} & =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} \\
-\sum_{i=1}^{n} \alpha_{i}\left\{y_{i}\left(x_{i}^{\top} w+b\right)-1\right\} & =-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{\top} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}+\sum_{i=1}^{n} \alpha_{i} \\
& =-\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}+\sum_{i=1}^{n} \alpha_{i}
\end{aligned}
$$

\square Lagrangian for the dual problem

$$
L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

\square Primal and dual problems

$$
\begin{array}{ll}
\min _{w, b} L_{P}(w, b) \\
\max _{\alpha} L_{D}(\alpha) \quad \text { s.t. } \quad \alpha_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}
$$

\square Optimization problem is convex, therefore the dual and primal formulations give the same solution
\square Support vector, a point i for which $y_{i}\left(x_{i}^{\top} w+b\right)=1$ holds

Linearly Non-separable Case

Figure 8: Hyperplane and its margin in linearly non-separable case

\square Slack variables ξ_{i} represent the violation from strict separation

$$
\begin{array}{rlrr}
x_{i}^{\top} w+b & \geq 1-\xi_{i} & \text { for } & y_{i}=1, \\
x_{i}^{\top} w+b & \leq-1+\xi_{i} & \text { for } & y_{i}=-1, \\
\xi_{i} & \geq 0 & &
\end{array}
$$

\square constraints are combined into

$$
y_{i}\left(x_{i}^{\top} w+b\right) \geq 1-\xi_{i} \quad \text { and } \quad \xi_{i} \geq 0
$$

\square If $\xi_{i}>0$, the objective function is

$$
\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

\square Lagrange function for the primal problem

$$
\begin{aligned}
L_{P}(w, b, \xi) & =\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i}- \\
& \sum_{i=1}^{n} \alpha_{i}\left\{y_{i}\left(x_{i}^{\top} w+b\right)-1+\xi_{i}\right\}-\sum_{i=1}^{n} \mu_{i} \xi_{i}
\end{aligned}
$$

where $\alpha_{i} \geq 0$ and $\mu_{i} \geq 0$ are Lagrange multipliers
\square Primal problem

$$
\min _{w, b, \xi} L_{P}(w, b, \xi)
$$

First order conditions

$$
\begin{aligned}
& \frac{\partial L_{P}}{\partial w_{k}}=0: \\
& \frac{\partial L_{P}}{\partial b}=0: \\
& \frac{\partial L_{P}}{\partial \xi_{i}}=0:
\end{aligned}
$$

$$
\begin{aligned}
w_{k}-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i k} & =0 \\
\sum_{i=1}^{n} \alpha_{i} y_{i} & =0
\end{aligned}
$$

$$
C-\alpha_{i}-\mu_{i}=0
$$

$$
\begin{array}{ll}
\text { s.t. } & \alpha_{i} \geq 0, \quad \mu_{i} \geq 0, \quad \mu_{i} \xi_{i}=0 \\
& \alpha_{i}\left\{y_{i}\left(x_{i}^{\top} w+b\right)-1+\xi_{i}\right\}=0
\end{array}
$$

\square Note that $\sum_{i=1}^{n} \alpha_{i} y_{i} b=0$. Translate primal problem into

$$
L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}+\sum_{i=1}^{n} \xi_{i}\left(C-\alpha_{i}-\mu_{i}\right)
$$

\square Last term is 0 , therefore the dual problem is

$$
\begin{aligned}
\max _{\alpha} L_{D}(\alpha)= & \max _{\alpha}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}\right\} \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

What is a Genetic Algorithm ?

Genetics algorithm is search and optimization technique based on Darwin's principle on natural selection (Holland, 1975)

GA - Initialization

Figure 9: GA at first generation

GA - Convergency

Figure 10: Solutions at $1^{\text {st }}$ generation (left) and $r^{\text {th }}$ generation (right)

GA - Decoding

Figure 11: Decoding

$$
\theta=\theta_{\text {lower }}+\left(\theta_{\text {upper }}-\theta_{\text {lower }}\right) \frac{\sum_{i=0}^{l-1} a_{i} 2^{i}}{2^{l}}
$$

where θ is solution (i.e. parameter C or σ), a is allele

GA - Fitness evaluation

\square Calculate $f\left(\theta_{i}\right), \quad i=1, \ldots$, popsize
\square Evaluate fitness, $f_{d p}\left(\theta_{i}\right)$ $f_{d p}\left(\theta_{i}\right)-A R, A U C$, accuracy, specificity, sensitivity
\square Relative fitness, $p_{i}=\frac{f_{d p}\left(\theta^{i}\right)}{\sum_{k=i}^{p o p s i z e} f_{d p}\left(\theta^{i}\right)}$

Figure 12: Proportion to be choosen in the next iteration (generation)

GA - Roulette wheel

\square rand $\sim \mathrm{U}(0,1)$
\square Select $i^{\text {th }}$ chromosome if $\sum_{i=1}^{k} p_{i}<$ rand $<\sum_{i=1}^{k+1} p_{i}$
\square Repeat popsize times to get popsize new chromosomes

GA - Crossover

Figure 13: Crossover in nature

Figure 14: Randomly choosen one-point crossover (top) and two-points crossover (bottom)

GA - Reproductive operator

Figure 15: One-point crossover (top) and bit-flip mutation (bottom)

GA - Elitism

\checkmark Best solution in each iteration is maintained in another memory place
\square New population replaces the old one, check whether best solution is in the population
If not, replace any one in the population with best solution

Nature to Computer Mapping

Nature	GA-SVM
Population	Set of parameter
Individual (phenotype)	Parameters
Fitness	Discriminatory power
Chromosome (genotype)	Encoding of parameter
Gene	Binary encoding
Reproduction	Crossover
Generation	Iteration

Table 6: Nature to GA-SVM mapping

