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Motivation 1-1

Motivation

� Bootstrap improves �nite sample performance

� Regression Problem: resample from residuals

� For nonlinear functionals (e.g. sup), little improvement

� ‖ln(x)− l(x)‖∞
def
= supx |ln(x)− l(x)|, where l(x) is a mean or

quantile curve, and ln(x) is a quantile or mean smoother
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Motivation 1-2

Challenges

(log n)-1

(log n)-1

exp{-exp(-x)}

L( || lh - l ||
∞

)

L*( || l*h - lg||
∞

)

Gumbel, Emil J. 43

Emil Julius Gumbel

BBI
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Motivation 1-3

Song et. al. (2012)
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Figure 1: The real 0.9 quantile curve, 0.9 quantile estimate with corre-

sponding 95% uniform con�dence band from asymptotic theory and con-

�dence band from bootstrapping.
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Motivation 1-4

Theorem (Song et. al. (2010))

An approximate (1− α)× 100% con�dence band over [0, 1] is

lh(t) ± (nh)−1/2{p(1− p)/f̂X (t)}1/2 f̂ −1{lh(t)|t}
×{dn + c(α)(2δ log n)−1/2} · {λ(K )}1/2, (1)

where c(α) = log 2− log | log(1− α)| and f̂X (t), f̂ {lh(t)|t} are
consistent estimates for fX (t), f {l(t)|t}.

n Cov. Prob.

50 0.144 (0.642)
100 0.178 (0.742)
200 0.244 (0.862)

Table 1: Simulated coverage probabilities based on asymptotics ( bootstrap

methods).
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Motivation 1-5

Bootstrap Improvement

� Bootstrap improvements for the quantile smoother have been
shown

� Quantile estimator is of Bounded In�uence

� M- smoothers or a general QMLE may be expected to have
same performance?

� How to handle high dimensional objects?

Tying the straps for generalized linear models



Motivation 1-6

Opportunities

Extend this to x ∈ Rd and improve band precision?

� Hall (1991): bootstrap improvement

� Hahn (1995): consistency of bootstraping cdf

� Horowitz (1998): bootstrap (pointwise) for median

� Additive Models: Horowitz (2001), Horowitz and Lee (2005)
and Stone(1985)
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How to tie the straps tighter?
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Bootstrap con�dence bands 2-1

Regression with a general loss function

� {(Xi ,Yi )}ni=1
i.i.d. rv's, x ∈ J∗ = (a, b)

� Suppose Yi = l(Xi ) + εi , εi ∼ Fε|Xi
(·) . Both l & F are

smooth.

� Suppose
l(x) = arg minθ E (Y |X=x)ρ(Y − θ), (2)

where ρ(.) is a loss function of Hampel/Huber type or more
generally a negative (quasi) log likelihood.
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Bootstrap con�dence bands 2-2

Robust Statistics

For ρ(.) is a trimmed mean (Tukey's biweight),

ρ(x) =

{
x2, |x | ≤ k ,
k2, |x | > k

(3)

or a form of Winsorized mean (Huber):

ρ(x) =

{
x2/2, |x | ≤ k ,

−k2/2 + k |x |, |x | > k .

}
. (4)
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Bootstrap con�dence bands 2-3

The Bootstrap Couple

� {Ui}ni=1
: i.i.d. uniform U[0, 1] rv's

� Bootstrap sample

Y ∗i = lg (Xi ) + F̂−1(εi |Xi )
(Ui ), i = 1, . . . , n

� Couple with the true conditional distribution:

Y#
i = l(Xi ) + F−1(εi |Xi )

(Ui ), i = 1, . . . , n.

Given X1, . . . ,Xn: Y1, . . . ,Yn and Y#
1
, . . . ,Y#

n are equally
distributed.
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Bootstrap con�dence bands 2-4

Bootstrapping Approximation Rate

Theorem
If assumptions (A1)�(A3) hold, then

sup
x∈J∗
|l∗h (x)− lg (x)− lh(x) + l(x)| = Op(δn) = Op(h2Γn),

with Γn a slowly varying sequence (a sequence an is slowly varying
if n−αan → 0 for any α > 0).

Bootstrap improves the rate of convergence
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Bootstrap con�dence bands 2-5

Sketch of the Proof

� The basic elements: smoothness of FY |X (·) and bounded
in�uence of ρ(.)

�

max
i
|ε]i − ε

∗
i | = Op(h2Γn)

max
i
|ψ(ε∗)− ψ(ε])| = Op(h2Γn)

max
||Xi−Xj ||≤ch

|lg (Xi )− lg (Xj)− {l(Xi )− l(Xj)}| = Op(h2Γn)

�
|F̂−1(u|Xi )− F−1(u|Xi )| ≤ h2Γn,∀u ∈ B.

�
E

F̂ε|x=Xi

ψ(ε∗i ) = 0 = E Fε|x=Xi
ψ(ε]) (5)
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Bootstrap con�dence bands 2-6

�

G ∗n (θ,Xi )
def
= n−1

n∑
j=1

Wh,j(Xi )[ψ{ε∗j − θ + l̂g (Xj)}]

= n−1
n∑

j=1

Wh,j(Xi ){ψ(Y ∗j − θ)}

G ]
n(θ,Xi )

def
= n−1

n∑
j=1

Wh,j(Xi )[ψ{ε]j − θ + l(Xj)}]

= n−1
n∑

j=1

Wh,j(Xi ){ψ(Y ]
j − θ)}

Tn,1(Xi )
def
= G ∗n {̂lg (.),Xi} − G ]

n{l(.),Xi}
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Bootstrap con�dence bands 2-7

�

E F (ε|Xi )Tn,1(Xi ) = 0

Var (ε|Xi )Tn,1(Xi ) = n−2
n∑

j=1

W 2

h,j(Xi )Var{ψ(ε∗j )− ψ(ε]i )}

= Op(n−1h3)

�

l̂∗h,g (Xi )− l̂g (Xi ) = − G ∗n {̂lg (Xi ),Xi}
G ′∗n {̂l∗h,g (Xi ),Xi}

+ Op(h2), (6)

l̂h(Xi )− l(Xi ) = − G ]
n{l(Xi ),Xi}

G
′]
n {̂lh(Xi ),Xi}

+ Op(h2). (7)
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Bootstrap con�dence bands 2-8

Why Oversmoothing?

� Take care of bias with tuning parameter: g

� Härdle and Marron (1991), let

bh(x)
def
= E l#h (x)− l(x)

b̂h,g (x)
def
= E∗ l∗h (x)− lg (x)

� Investigate E
[{

b̂h,g (x)− bh(x)
}2
|X1, . . . ,Xn

]
.

How fast it converges to 0?
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Bootstrap con�dence bands 2-9

Oversmoothing

Theorem
Under some assumptions, for any x ∈ J∗

E
[{

b̂h,g (x)− bh(x)
}2
|X1, . . . ,Xn

]
∼ h4{Op(g4) +Op(n−1g−5)}

To minimize RHS, g = O(n−1/9), g � h, where h = O(n−1/5)
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Bootstrap Con�dence Bands in Additive Models 3-1

The Multivariate Case

m(Xi ) =
d∑

j=1

mj(xi ,j), (8)

Estimate the additive model via a basis function approach:

mj(xi ,j) ≈
Lj+1∑
l=1

al ,jgl (xi ,j),

ψ(xi ,j)s are B-splines, e.g. linear B-splines.

ψl (x) =


Hx − l + 1 (l − 1)H−1 ≤ x ≤ lH−1

l + 1− Hx lH−1 ≤ x ≤ (l + 1)H−1

0 otherwise
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Bootstrap Con�dence Bands in Additive Models 3-2

Bootstrap Couple

Quantile

Zi =

{
1 with prob τ
−1 with prob 1− τ ,

where τ = 1/2 is for symmetric error distribution. The bootstrap
couple ε∗ (the bootstrap residuals) and ε] (the theoretical couple)
are:

ε∗i = Zi |ε̂i | (9)

ε]i = Ziηi (10)
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Bootstrap Con�dence Bands in Additive Models 3-3

Bootstrap

Fi ,s(t)
def
= P(|εi | ≤ t|sεi > 0), i = 1, . . . , n, s ∈ {1,−1}, (11)

ηi
def
= F−1i ,Zi

{Fi ,sgn(εi )(|εi |)}, i = 1, . . . , n. (12)

Recall FY |X=xi{l(Xi )} = τ and Fε|X=xi (0) = τ . Fi ,sgn(εi )(|εi |)
standard uniform

Fi ,+1(t) =
Fi (t)− 1 + τ

τ
,Fi ,−1(t) =

1− τ − Fi (−t)

1− τ
.

L(ε]i ) = L(εi ). (13)

Go to details
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Bootstrap Con�dence Bands in Additive Models 3-4

Uniform Consistency

Theorem
Let assumptions A.1- A.9 be ful�lled, then

sup
x
|(m̂j −mj)(x)− {(m̂∗j − m̂j)(x)}| = Op(h2Γn),

Go to conditions
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Monte Carlo study 4-1

How to Bootstrap?

� Simulate {Xi ,Yi}ni=1
,

f (x , y) = g{y − sin(πx)}1(x ∈ [0, 1]) (14)

g(u) = 9ϕ(u)/10 + ϕ(u/9)/90 (15)

� Compute the smoother (Tukey biweight) l̂h(x),
ε̂i = Yi − l̂h(Xi )

� Compute the conditional edf:

F̂ε|Xi=x(t) =

∑n
i=1

Kh(x − Xi )1(ε̂i ≤ t)∑n
i=1

Kh(x − Xi )

with Gaussian kernel

Kh(u) = (
√
2π)−1 exp{−u2/2h}/h,

h = 0.06.

Tying the straps for generalized linear models



Monte Carlo study 4-2

� For each i = 1, . . . , n, generate random variable ε∗ ∼ F̂ (t|x),
i∗ = 1, . . . , n∗, where n∗ is the bootstrap sample size:

Yi ,i∗ = l̂g (Xi ) + ε∗i ,i∗ ,

with g = 0.2.

� For each sample Xi ,Y
∗
i , compute l̂

∗
h (.) and the random

variable

di∗
def
= sup

x∈J∗
{
√
f̂X (x)E y |x{ψ′(ε∗i )}/

√
E y |x{ψ2(ε∗i )}|̂l∗h (x)−l̂g (x)|}

� Calculate the 1− α quantile d∗α of d1, . . . , dn∗ .

� Construct the bootstrap uniform band centered around mh(x)

l̂h(x)± [

√
f̂X (x)E y |x{ψ′(ε∗i )}/

√
E y |x{ψ2(ε∗i )}]−1d∗α
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Monte Carlo study 4-3
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Figure 2: Plot of true curve (grey), BI estimation and bands (blue), local

polynomial estimation (black), bootstrap band (red)
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Monte Carlo study 4-4

n Cov. Prob. Area

100 0.88(0.98) 1.23(2.51)
200 0.89(0.98) 0.89(1.95)
400 0.90(0.96) 0.78(1.32)

Table 2: Simulated coverage probabilities areas of nominal asymptotic

(bootstrap) 95% con�dence bands with 100 repetition.
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Monte Carlo study 4-5

Bootstrap for Additive Models

� Simulate {Xi ,Yi}ni=1
. The variable

Xi = (x1i , x2i , x3i , x4i ) ∼ U(−2.5, 2.5),

m1(x1) = sin(πx1),m2(x2) = Φ(3x2),m3(x3) = x33 ,m4(x4) = x44 ,

and εi is as in (15).

� Compute m̂1(x1), m̂2(x2), m̂3(x3), m̂4(x4) and
ε̂i = Yi −

∑
4

j=1
m̂l (xi ,j).

� For each i = 1, . . . , n, generate random variable ε∗i ,
i∗ = 1, . . . , n∗ as in (9), where n∗ is the bootstrap sample size:

Yi ,i∗ =
4∑

j=1

m̂l (xi ,j) + ε∗i ,i∗ .
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Monte Carlo study 4-6

� For each sample (x1i , x2i , x3i , x4i ,Y
∗
i ), compute m∗j (.) and the

random variable

di∗
def
= sup

x∈J∗
{
√
f̂xj (xj)E y |x{ψ′(ε∗i )}/

√
E y |x{ψ2(ε∗i )}|m̂∗j (x)−m̂j(x)|}

� Calculate the 1− α quantile d∗α of d1, . . . , dn∗ .

� Construct the bootstrap uniform band centered around m̂j(xj)

m̂j(xj)± [
√
f̂xj (xj)E y |xj{ψ

′(ε∗i )}/
√
E y |xj{ψ2(ε∗i )}]−1d∗α
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Monte Carlo study 4-7
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Figure 3: Plot of true curve (dark blue), robust estimation and bands

(cyran), bootstrap band (red dotted)
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Monte Carlo study 4-8

n Cov. Prob. Area

100 0.95, 0.98, 0.83, 0.95 6.06, 5.37, 5.44, 5.21
200 0.88, 0.95, 0.93, 0.88 5.50, 4.74, 4.54, 4.65
400 0.84, 0.95, 0.96, 0.84 4.83, 3.63, 3.76, 3.70

Table 3: Simulated coverage probabilities areas of nominal asymptotic

(bootstrap) 95% con�dence bands with 100 repetition, 100 bootstrap sam-

ple.

n Cov. Prob. Area

100 0.89, 0.94, 0.85, 0.92 5.88, 5.07, 5.04, 5.30
200 0.90, 0.95, 0.86, 0.88 4.84, 3.84, 3.85, 4.00
400 0.85, 0.90, 0.92, 0.84 4.02, 3.25, 3.11, 3.03

Table 4: Simulated coverage probabilities areas of nominal asymptotic

(bootstrap) 90% con�dence bands with 100 repetition, 100 bootstrap sam-

ple.Tying the straps for generalized linear models



Applications 5-1

Firm expenses analysis

� Joel L. Horowitz and Sokbae Lee (2005)
� Whether a concentrated shareholding is associated with lower

expenditure on activities
� The dependent variable Y : general sales and administrative

expenses de�ated by sales (denoted by MH5)
� The covariates: ownership concentration (denoted by

TOPTEN, cumulative shareholding by the largest ten
shareholders), �rm characteristics: the log of assets, �rm age,
and leverage (the ratio of debt to debt plus equity)

� n = 185

MH5 = β0 + m1(TOPTEN) + m2{log(Assets)}
+m3(Age) + m4(Leverage) + error

Tying the straps for generalized linear models



Applications 5-2
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Figure 4: Robust estimation (blue), bootstrap band (red dotted), left up:

Log(Asset), right up: Leverage, left below: Age, right below: Leverage.
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Applications 5-3

The impact on stock market

� (Oil, currency, bond, real estate) a�ect the stock market.

� (http://www.lnstatistical.com
/Main.jsp;jsessionid=009E36E74DFA15C80B74EE0BDAEB5746)

� The X variables are: the crude oil price, EUR- USD exchange
rate, the 10 year treasury constant maturity in�ation index %,
and the y variable is S&P 500 index returns.

� 20080903− 20111128, n = 170
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Applications 5-4
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Figure 5: Robust estimation (blue), bootstrap band (red dotted), y S&P

index, left up: exchange rates EUR-USD, right up: crude oil price, left

below: in�ation index, right below: real estate price.
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Applications 5-5
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Figure 6: Robust estimation (blue), bootstrap band (red dotted), y S&P

index return, left up: exchange rates EUR-USD, right up: crude oil price,

left below: in�ation index, right below: real estate price.
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Applications 5-6

� Exchange rate (EUR-USD): (< 1.27) negatively correlated
with the stock indices, (> 1.43) a positive correlation follows

� Oil prices: negative impact

� In�ation index: the in�ation rate high, interest rates typically
high; A negative correlation >0.7

� The stock indices raise when the real estate prices gets higher

� . . .
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Appendix 6-1

Appendix - Assumptions

A.1 ψ(.) = ρ′(.) being a.s. di�erentiable and Lipschitz continuous:
∀µ1, µ2 ∈ B |ψ(µ1)− ψ(µ2)| < C |µ1 − µ2|, and we assume that
∃M > 0 s.t.ψ(µ) ≤ M .
A.2 The support of X is [0, 1]d . The conditional density f(y |X=x)(.)

is bounded from below ∞ > C1 > inft f(y |X=x)(t) = c1 > 0.
A.3 The kernel function K (.) is a product kernel composed from
one dimension kernel with bandwidth h = hn:

Kh(s) = Πd
j=1K (sj/h)/h, s = (s1, . . . , sd )> ∈ Rd . (16)
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Appendix 7-1

Appendix - Assumptions

A.4 The bandwidth satis�es h ∼ n−1/(4+d). Let g be another
bandwidth sequence g >> h. (Work our later the speed). Let Γn

be a slowly increasing sequence in the sense that n−αan → 0 for
any α > 0.

A.5 Assume supx∈B |̂l ′′g (x)− l ′′(x)| = Op(1), and

supx∈B |̂l ′(x)− l ′(x)| = Op(h2Γn).

A.6 There is an α > 0 such that

E X{
d∑

i=1

mj(Xj)}2 ≥ αmaxj E Xj
{m2

j (Xj)}

E Xj
{mj(Xj)} = 0,mj(· · · ) ∈ L2(Xj).
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Appendix 7-2

A.7 EXj
{ψ2

l (xi ,j)} = 1 for any i ∈ 1, . . . , n and j ∈ 1, . . . , d .

||Φl (Xj)||∞ ≤ C3/L, a.s., where Φl (Xj)), . . . , φ2l (xn,j)}>.

A.8 The inverse link function b′ satis�es the following: b′ ∈ C (R),
b′′(θ) > 0,θ ∈ R while for a compact interval Θ whose interior
contains m([0, 1]d ), Cb > maxθ∈Θ b′′(θ) > minθ∈Θ b′′(θ) > cb for
Cb > cb > 0

A.9 The number of regressors p = dL + 1 (more precisely L = Lj)
with L ∼ n1/5. Go back
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Appendix 7-3

P(ε]i < t) = τ P[F−1i ,+1
{Fi ,∼ðn(εi )(|εi |)} < t] + 1− τ

= τ P{Fi ,∼ðn(εi )(|εi |) < Fi ,+1(t)}+ 1− τ
= τ P{εi < 0,Fi ,−1(−εi ) < Fi ,+1(t)}

+ τ P{εi > 0,Fi ,+1(εi ) < Fi ,+1(t)}+ 1− τ

= τ P{εi < 0,
1− τ − Fi (εi )

1− τ
<

Fi (t)− 1 + τ

τ
}

+ τ P(0 < εi < t) + 1− τ

= τ P[1− τ > Fi (εi ) >
1− τ
τ
{1− Fi (t)}]

+ τ P(0 < εi < t) + 1− τ

= τ [1− 1− τ
τ
{1− Fi (t)} − τ ] + τ{Fi (t)− 1 + τ}+ 1− τ

= Fi (t).
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