
Quantile Regression in Risk Calibration

Shih-Kang Chao

Wolfgang Karl Härdle

Weining Wang

Ladislaus von Bortkiewicz Chair of
Statistics
C.A.S.E. - Center for Applied Statistics
and Economics
Humboldt-Universität zu Berlin
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de

1

http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de


Motivation 1-1

Dependence Risk
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Motivation 1-2

Risk Calibration and Quantile Regression

� Quanti�cation via value-at-risk (VaR)/expected shortfall (ES)

� Quantile VaR: dependence risk?

� Parametric VaR: Chernozhukov and Umantsev (2001), Engle
and Manganelli (2004)

� Nonparametric VaR: Cai and Wang (2008), Taylor (2008) and
Schaumburg (2010)

� Parametric CoVaR: Adrian and Brunnermeier (2010)(AB)
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Motivation 1-3

Risk Calibration

� Marginal Expected Shortfall (MES): Acharya et al. (2010)

� Distressed Insurance Premium (DIP): Huang et al. (2010)
Go to details

� AB: Xj and Xi are two asset returns,

P
{
Xj ≤ CoVaRτj |i

∣∣∣Xi = VaRτ (Xi ),Mt−1

}
= τ.

� Advantages:
I Cloning property
I Conservative property
I Adaptiveness

Go to details
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Motivation 1-4

CoVaR Construction (AB)

Xj ,t and Xi ,t are two asset returns. Two linear quantile regressions:

Xi ,t = αi + γ>i Mt−1 + εi ,t , (1)

Xj ,t = αj |i + βj |iXi ,t + γ>j |iMt−1 + εj ,t . (2)

Mt : state variables. F
−1
εi,t

(τ |Mt−1) = 0 and F−1εj,t
(τ |Mt−1,Xi ,t) = 0.

V̂aR i ,t = α̂i + γ̂>i Mt−1,

ĈoVaR j |i ,t = α̂j |i + β̂j |i V̂aR i ,t + γ̂>j |iMt−1.

Quantile Regression in Risk Calibration
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Motivation 1-5

CoVaR Construction Linear?
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Figure 1: Goldman Sachs (GS, y-axis) and Citigroup (C, x-axis) quantile

functions (τ = 5%). XGS,t = f (XC ,t) + εGS,t . LLQR curve. Linear quan-

tile regression line. 95% asymptotic con�dence band and 95% bootstrap

con�dence band. Data weekly returns 20050131-20100131 (n=546).
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Motivation 1-6

Nonlinear Dependence
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Figure 2: Bank of America (y-axis) and C (x-axis) quantile functions (τ =

5%). XBOA,t = f (XC ,t) + εBOA,t . LLQR curve. Linear quantile regression

line. 95% asymptotic con�dence band and 95% bootstrap con�dence band.

Data weekly returns 20050131-20100131 (n=546).
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Motivation 1-7

Nonlinear Dependence

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●● ●

●

●

●

●
●●

●● ● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●
●

●
●

●

●

●
● ●

●
●●

●

●
● ●●

●●●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

● ● ●
● ●●

●
●

●

●

●

● ●
●

●

●●

●

●
●
●

●
●

●

● ●

●

●

●

●

●

●
● ●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●
●

●

●●

●
●

●

●

●

●

●

● ●●

●●

●

●
●

●
●

●

●
●●●

●

● ●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●
●● ●

●

●●

●

●

●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●●
● ●●

●

●●

●
●

●●

●

● ●

●

●

●●
●

● ●
●● ●

●●
●

●

●

●

●

●

●

●

●
●
●

●●

●●

●

●
●

●

●
● ●● ●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●

●

●
●

●●
●●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●
●

●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

● ●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

−0.2 0.0 0.2

−0
.5

0.
0

0.
5

Figure 3: J.P.Morgan (y-axis) and GS (x-axis) quantile functions (τ = 5%).

XJPM,t = f (XGS,t) + εJPM,t . LLQR curve. Linear quantile regression line.

95% asymptotic con�dence band and 95% bootstrap con�dence band.

Data weekly returns 20050131-20100131 (n=546).
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Motivation 1-8

General Speci�cation

� Nonparametric quantile regression:

Xi ,t = f (Mt−1) + εi ,t ; (3)

Xj ,t = g(Xi ,t ,Mt−1) + εj ,t . (4)

Mt : state variables. F
−1
εi,t

(τ |Mt−1) = 0 and

F−1εj,t
(τ |Mt−1,Xi ,t) = 0.

� Challenges
I The curse of dimensionality for f , g
I Numerical Calibration of (3) and (4)

Quantile Regression in Risk Calibration
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Motivation 1-9

Research Questions

� Measure CoVaR in a nonparametric (semiparametric) way

� Test the performance of the CoVaR

� What can one learn from the semiparametric speci�cation?

� Consequences for econometrical modelling?
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Outline

1. Motivation X

2. Locally Linear Quantile Regression

3. A Semiparametric Model

4. Empirical CoVaR

5. Backtesting

6. Conclusions and Outlook



Locally Linear Quantile Regression 2-1

Locally Linear Quantile Estimation (LLQR)

� {(Xi ,Yi )}ni=1
⊂ R2 i.i.d. bivariate random variables, locally

linear kernel quantile estimator estimated as l̂(x0) = â0,0:

argmin
{a0,0,a0,1}

N∑
i=1

K

(
xi − x0

h

)
ρτ {yi − a0,0 − a0,1(xi − x0)} . (5)

Check Functions

� Choice of Bandwidth: Yu and Jones (1998):

hτ = hmean

[
τ(1− τ)ϕ{Φ−1(τ)}−2

]1/5
,

where hmean: local mean regression bandwidth.

Quantile Regression in Risk Calibration
●

● ●●● ●

●

●

●

●

●
●●

●●

●

●

●●

●

●
●

● ●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●

●●

●●

● ●● ●
●

●
●

●

●

●

●

●●●●

●

●

● ●

●
●

●●
●

●
●

●

●●
●

●

●

●
●

●
●

● ●

●●
●
●●

● ●
●●●●

●

●●●
●●

●

●
●●●●

●● ●●
●
●

●
●

●

●
● ●●

●

●●● ● ●

●
●

●
●

●●
●●

●
●

●
●

●
●● ●●

●
●●●

●●
●

●
●●

●
●●

●
●
●●

●

●●

●
●

● ●●
●

●
● ●●

● ●

●
●
●
●

●
●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●
●●

−0.1 0.0 0.1 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

 

 



Locally Linear Quantile Regression 2-2

Stabilized Estimator

� Calculate X(i :n) (order statistics), then perform LLQR on
{i/n}ni=1

and corresponding Y(i :n) (τ = 5%)

� l̂(x)f̂ −1X (x) is a consistent estimator for the conditional
quantile in the original X space
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Locally Linear Quantile Regression 2-3

Uniform Con�dence Band

Theorem (Härdle and Song (2010))

Under regularity conditions,

P

[
(2δ log n)1/2

{
sup
x∈J

r(x)|̂l(x)− l(x)|/λ(K )1/2 − dn

}
< z

]
→ exp{−2 exp(−z)},

as n→∞, where l̂(·) is the solution of (5) and dn is a scaling

constant.

Emil Julius Gumbel on BBI:

Stochastic Integrals and Differential Equations 5-2

This part of the course provides the tools for the valuation of
options.
We will define stochastic processes as solutions of stochastic
differential equations (SDE).

Stochastic process in continuous time

A stochastic process in continuous time is a collection of random
variables {Xt ; t ∈ R+} with a continuous time variable t.

Norbert Wiener on BBI:

SFE
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A Semiparametric Model 3-1

Macroeconomic Drivers

Components of Mt :

1. VIX

2. Short term liquidity spread

3. Change in the 3M T-bill rate

4. Change in the slope of the yield curve

5. Change in the credit spread between 10 years BAA-rated
bonds and the T-bond rate

6. S&P500 returns

7. Dow Jones U.S. Real Estate index returns

Quantile Regression in Risk Calibration
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Figure 4: GS daily returns given 7 market variables and LLQR curves. Data

20060804-20110804. n = 1260. τ = 0.05.
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Figure 5: GS daily returns given 7 market variables and LLQR curves. Data

20060804-20110804. n = 1260. τ = 0.05.
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A Semiparametric Model 3-4

Partial Linear Model (PLM)

� The linearity observation (Figure 4, 5) implies:

Xi ,t = αi + γ>i Mt−1 + εi ,t ;

Xj ,t = β̃>j |iMt−1 + lj |i (Xi ,t) + εj ,t . (6)

l : a general function. Mt : state variables. F
−1
εi,t

(τ |Mt−1) = 0

and F−1εj,t
(τ |Mt−1,Xi ,t) = 0.

� Advantages
I Capturing nonlinear asset dependence
I Avoid curse of dimensionality

Quantile Regression in Risk Calibration
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A Semiparametric Model 3-5
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Figure 6: The nonparametric element of the PLM. y-axis=GS daily re-

turns after �ltering Mt 's e�ect. x-axis=C daily returns. The LLQR quan-

tile curve. Linear parametric quantile line. 95% Con�dence band. Data

20080625-20081223. n = 126 (window size). h =0.2003. τ = 0.05.
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A Semiparametric Model 3-6

Estimation of Partial Linear Model

� PLM model: Liang, Härdle and Carroll (1999) and Härdle,
Ritov and Song (2012)

Yt = β>Mt−1 + l(Xt) + εt .

� Consider [0, 1] (standard rank space). Dividing [0, 1] into an
equally divided subintervals Int , an ↑ ∞. On each subinterval,
l(·) is roughly constant.

Quantile Regression in Risk Calibration
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A Semiparametric Model 3-7

Estimation of PLM QR

1. Linear element β:

β̂ =

argmin
β

min
l1,...,lan

n∑
t=1

ρτ

{
Yt − β>Mt−1 −

an∑
m=1

lm1(Xt ∈ Int)

}

2. Nonlinear element l(·): With data {(Xt ,Yt − β̂>Mt−1)}nt=1
,

applying LLQR.

Quantile Regression in Risk Calibration
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Empirical CoVaR 4-1

Empirical CoVaR

� j : GS daily returns,
i : C daily returns
Window Size: 126 days (half a year)
Data 20060804-20110804

� Three types of VaR (CoVaR):
I VaR from (1)
I CoVaRAB from (2)
I CoVaRPLM from (6)

Quantile Regression in Risk Calibration
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Figure 7: CoVaR of GS given the VaR of C. The x-axis is time. The y-axis

is the GS daily returns. PLM CoVaR . AB CoVaR. The linear QR VaR of

GS.
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2008−8 2009−01 2009−8

Figure 8: CoVaR of GS given the VaR of C during 20080804-20090804.

The x-axis is time. The y-axis is the GS daily returns. PLM CoVaR . AB

CoVaR . The VaR of GS.

Quantile Regression in Risk Calibration
●

● ●●● ●

●

●

●

●

●
●●

●●

●

●

●●

●

●
●

● ●
●

●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●

●
●

●●

●

●●

●●

● ●● ●
●

●
●

●

●

●

●

●●●●

●

●

● ●

●
●

●●
●

●
●

●

●●
●

●

●

●
●

●
●

● ●

●●
●
●●

● ●
●●●●

●

●●●
●●

●

●
●●●●

●● ●●
●
●

●
●

●

●
● ●●

●

●●● ● ●

●
●

●
●

●●
●●

●
●

●
●

●
●● ●●

●
●●●

●●
●

●
●●

●
●●

●
●
●●

●

●●

●
●

● ●●
●

●
● ●●

● ●

●
●
●
●

●
●

●

●
●

●●● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●

●

●
●●

−0.1 0.0 0.1 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

 

 



Backtesting 5-1

Backtesting Procedure

� Berkowitz, Christo�ersen and Pelletier (2011): If the VaR
calibration is correct, violations

It =

{
1, if Xi ,t < ̂(Co)VaR

τ

t−1(Xi ,t)
0, otherwise.

should form a sequence of martingale di�erence

Quantile Regression in Risk Calibration
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Backtesting 5-2
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Figure 9: The timings of violations {t : It = 1}. The circles are the

violations of the ĈoVaR
PLM

GS|C ,t , totally 68 violations (5.4%). The squares

are the violations of ĈoVaR
AB

GS|C ,t , totally 74 violations (5.87%). The stars

are the violations of V̂aRGS,t , totally 137 violations (10.87%). n = 1260,

τ = 5%.
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Backtesting 5-3

Box Tests

� ρ̂k be the estimated autocorrelation of lag k of violation {It}
and N be the length of the time series.

� Ljung-Box test:

LB(m) = N(N + 2)
m∑

k=1

ρ̂2k
N − k

(7)

� Lobato test:

L(m) = N

m∑
k=1

ρ̂2k
v̂kk

(8)
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Backtesting 5-4

CaViaR Test

� Berkowitz, Christo�ersen and Pelletier (2011): CaViaR
performs best overall

� Test procedure:

It = α + β1It−1 + β2VaRt + ut ,

where VaRt can be replaced by CoVaRt in the case of
conditional VaR. The residual ut follows a Logistic distribution.

� The null hypothesis is β1 = β2 = 0.
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Backtesting 5-5

Summary of Backtesting Procedure

� LB(1): Ljung-Box test of lag 1

� LB(5): Ljung-Box test of lag 5

� L(1): Lobato test of lag 1

� L(5): Lobato test of lag 5

� CaViaR-O: CaViaR test, all data 20060804-20110804

� CaViaR-C: CaViaR test, crisis data 20080915-20090315 (6
months after Lehman Brothers brankrupted)
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Backtesting 5-6

Table 1: Goldman Sachs VaR/CoVaR(on C) backtesting p-values.

Measure LB(1) LB(5) L(1) L(5) CaViaR-O CaViaR-C

V̂aRGS,t 0.0361 0.1323 0.0735 0.2614 < 0.1% 0.0020

ĈoVaR
AB

GS|SP,t 0.7174 0.3174 0.7341 0.6082 < 0.1% 0.0097

ĈoVaR
PLM

GS|SP,t 0.8332 0.3672 0.8396 0.6637 < 0.1% 0.0211

Green, blue: signi�cant at the 5, 1 percent levels.
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Backtesting 5-7

Table 2: Bank of America VaR/CoVaR(on C) backtesting p-values.

Measure LB(1) LB(5) L(1) L(5) CaViaR-O CaViaR-C

V̂aRGS,t 0.8418 0.0149 0.8449 0.0933 0.0037 0.0424

ĈoVaR
AB

GS|SP,t 0.2185 0.0097 0.3094 0.1342 < 0.1% 0.0192

ĈoVaR
PLM

GS|SP,t 0.3099 0.0045 0.3922 0.0958 0.0069 0.1989

Green, blue: signi�cant at the 5, 1 percent levels.
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Backtesting 5-8

Table 3: J.P. Morgan VaR/CoVaR(on GS) backtesting p-values.

Measure LB(1) LB(5) L(1) L(5) CaViaR-O CaViaR-C

V̂aRGS,t 0.3904 0.0038 0.4359 0.0052 < 0.1% 0.0536

ĈoVaR
AB

GS|SP,t 0.5800 0.9520 0.6404 0.9677 0.4265 0.0737

ĈoVaR
PLM

GS|SP,t 0.4241 0.1475 0.4787 0.2930 0.0047 0.1782

Green, blue: signi�cant at the 5, 1 percent levels.
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Conclusions and Outlook 6-1

Conclusions and Outlook

� Semiparametric PLM does well during �nancial crisis

� Nonlinear tail dependence is not negligible

� Multivariate nonlinear part in PLM
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Appendix 7-1

Macroprudential Risk Measures

� Marginal Expected Shortfall (MES): Portfolio R =
∑

i wiXi

where wi : weights, Xi : asset return, 0 < τ < 1,

MESiτ =
∂ESτ (R)

∂wi
= −E [Xi |R ≤ −VaRτR ]

� Distressed Insurance Premium (DIP): Huang et al. (2010)
L =

∑N
i=1

Li total loss of a portfolio

DIP = EQ [L|L ≥ Lmin]

Return
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Appendix 7-2

Advantages of CoVaR

� Cloning Property: if dividing Xi into several clones, then the
value of CoVaR conditioning on the individual large �rm does
not di�er from the one conditioning on one of the clones

� Conservative Property: CoVaR conditioning on some bad
event, the value would be more conservative than VaR

� Adaptive to the changing market conditions

Return
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Appendix 7-3

Check Function

−2 −1 0 1 2
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5

Figure 10: Solid line: τ = 0.9. Dashed line: τ = 0.5. Dotted line:

ρ(u) = u2 (OLS regression). LLQR
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Appendix 7-4

How to Bootstrap?

1) We have two asset returns sequence {Zi}ni=1
and {Yi}ni=1

.
{Xi}ni=1

: n equally divided grid on [0, 1]. n = 546. Assume
that Z is ordered by size and Y has been sorted by the order
of Z .

2) Bivariate data: {(Xi ,Yi )}ni=1
Compute lh(x) of Y1, . . . ,Yn and

residuals ε̂i = Yi − lh(Xi ), i = 1, . . . , n. τ = 5%.
The bandwidth are h = 0.1026(GS-C), 0.2155(BOA-C) and
0.2188(JPM-GS).
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Appendix 7-5

3) Compute the conditional edf:

F̂ (t|x) =

∑n
i=1

Kh(x − Xi )1{ε̂i 6 t}∑n
i=1

Kh(x − Xi )

with the quartic kernel

K (u) =
15

16
(1− u2)2, (|u| 6 1).

4) Generate rv ε∗i ,b ∼ F̂ (t|x), b = 1, . . . ,B and construct the
bootstrap sample Y ∗i ,b, i = 1, . . . , n, b = 1, . . . ,B , B = 500, as
follows:

Y ∗i ,b = lg (Xi ) + ε∗i ,b,

with g = hn4/45 = 0.1796(GS-C), 0.3774 (BOA-C),
0.3831(JPM-GS).
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Appendix 7-6

5) For each bootstrap sample {(Xi ,Y
∗
i ,b)}ni=1

, compute l∗h and the
random variable

db
def
= sup

x∈J∗

[
f̂ {l∗h (x)|x}

√
f̂X (x)|l∗h (x)− lg (x)|

]
. (9)

6) Calculate the (1− α) quantile d∗α of d1, . . . , dB .

7) Construct the bootstrap uniform con�dence band centered

around l(z) = lh(x)/

√
f̂Z (z), i.e.

l(z)±
[
f̂ {lh(x)|x}

√
f̂X (x)f̂Z (z)

]−1
d∗α

.
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Appendix 7-7
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Figure 11: The real 0.9 quantile curve, 0.9 quantile estimate with corre-

sponding 95% uniform con�dence band from asymptotic theory and con-

�dence band from bootstrapping.
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Appendix 7-8

How to Bootstrap?

1) Simulate {(Xi ,Yi )}ni=1
, n = 1000 w.r.t. f (x , y).

f (x , y) = fy |x(y − sin x)1(x ∈ [0, 1]), (10)

where fy |x(x) is the pdf of N(0, x).

2) Compute lh(x) of Y1, . . . ,Yn and residuals
ε̂i = Yi − lh(Xi ), i = 1, . . . , n.
If we choose p = 0.9, then Φ−1(p) = 1.2816,
l(x) = sin(x) + 1.2816

√
x and the bandwidth is h = 0.05.
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Appendix 7-9

3) Compute the conditional edf:

F̂ (t|x) =

∑n
i=1

Kh(x − Xi )1{ε̂i 6 t}∑n
i=1

Kh(x − Xi )

with the quartic kernel

K (u) =
15

16
(1− u2)2, (|u| 6 1).

4) Generate rv ε∗i ,b ∼ F̂ (t|x), b = 1, . . . ,B and construct the
bootstrap sample Y ∗i ,b, i = 1, . . . , n, b = 1, . . . ,B as follows:

Y ∗i ,b = lg (Xi ) + ε∗i ,b,

with g = 0.2.
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Appendix 7-10

5) For each bootstrap sample {(Xi ,Y
∗
i ,b)}ni=1

, compute l∗h and the
random variable

db
def
= sup

x∈J∗

[
f̂ {l∗h (x)|x}

√
f̂X (x)|l∗h (x)− lg (x)|

]
. (11)

6) Calculate the (1− α) quantile d∗α of d1, . . . , dB .

7) Construct the bootstrap uniform con�dence band centered

around lh(x), i.e. lh(x)±
[
f̂ {lh(x)|x}

√
f̂X (x)

]−1
d∗α.
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Appendix 7-11

Convergence Rate (n small)

Table 4: Simulated coverage probabilities & areas of nominal asymptotic

(bootstrap) 95% con�dence bands with 500 repetition. τ = 0.9.

n Cov. Prob.

50 0.144 (0.642)
100 0.178 (0.742)
200 0.244 (0.862)

� For small n, bootstrap's � asymptotic's & not sacri�ce much
on the band's width

� Use larger bandwidth on both X & Y (1/f̂ {lh(x)|x})
Asymptotic Con�dence Band
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