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Binomial Trees

e Option pricing model, recovers the state price density(SPD)
from option prices

e State price density(SPD), density function assigning probabil-
ities to the various possible values of the underlying at the
option’s expiration, p(S;, St,r, T)

e Geometric Brownian Motion (GBm) model assumption

dsS;

?t = Tdt+ O'dZt




e

yields (Black and Scholes - BS):

1

S SprT) = — = ex
P(St, S1,7,7) = g P

where 7 =T — t,
Sy is the stock price at time t,
r is the interest rate,

o is the constant volatility.
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Let K be the exercise price at time 7.
e Option prices

+o0
CK,T) = e / (Sz — K)"p(Ss, S, 7)dSy,
0

+o00
P(K,T) = e_”/ (K — St)™p(Ss, Sr, 7, 7)dSr.
0

e Implied local volatility surface

o2 (s,7) = var(logSp|S; = s)

imp
= /(log Sr — Elog St)*p(s, Sr,r,7) dSt.




e CRR Binomial Tree ( Cox, Ross,& Rubinstein (1979))
Example

S =100,T = 2 years, At = 1 year, 0 = 10%,r = 0.03,7 =T

122.15
110.52

100.00 100.00
90.48

81.88
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Why Implied Binomial Trees (IBT)?

Problem of the GBm model:
Volatility smile: the Black-Scholes implied volatility of market op-

tion prices decreases with the stock price; increases with the time.

Purpose of the IBT

e construction adapted to the volatility smile
e possibility to price derivative securities
e calculation of the state price density (SPD)

e calculation of the implied local volatility surfaces
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Diffusion process
(1)

Questions

dS,

St

[Ltdt + O'(St, t)dZt

o (St t), local instantaneous volatility function.

e precision of the SPD estimations obtained from the IBT?

the Black Scholes implied volatility surface?

e relation between the local instantaneous volatility function and
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Overview
v/ 1. Introduction and Motivation
2. Algorithm
3. Simulation and Comparison
4. Expectation on the elements of DAX

5. Conclusion
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Construction Algorithm

Notation and Basic Requirements

® s,, the stock price of the ith node at the nth level

e Forward prices Fp; = sp; X e® and transition probabilities

Dn,i satisfy the preference-free condition:
Foi=DniSnt1i+1 + (L — Dni)Snt14

e Arrow-Debreu prices A, ; (discounted risk-neutral probability)
the price of an option that pays 1 in one and only one state ¢
at nth level, and otherwise pays 0.
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Ant11 = e At {(1 =pn1)In1}
Mativt = € "N ibni + Aist(L—priv1)}, 2<i<n
)\n+17n+1 = e—rAt {An,npn,n}

At, the length of the time level
e Call option price C(K,n/\t) satisfies

n+1
C(K, nAt) = Z )\n+1,i maX(an,i — K, O)

i=1

o [ < Spt1i41 < Fiiy1, in order to avoid arbitrage.
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Algorithm: Derman and Kani IBT

Step 1: Central nodes

e Define s,41,;, =511 =95, i =n/2+ 1, for n even

2 _ Q2
Sn,i/8n+1,i+1 = S8%/sn+1,i41, for n odd

L S{EtIO(S. Al + MiS = pu)
n+1l,24+1 — /\n,z’Fn,i - erAtC(S7 nAt) + Pu

for

e Start from S,i14, Spi1i+1, @ = (n + 1)/2, suppose spi1; =

i=(n+1)/2
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Step 2: Upward

s ) o Sn,i{erAtC(sn,ia TLAt) - pu} - )\n,isn,i(Fn,i - Sn—l—l,i)
b {erAtC(Sn,i; TLAt) - pu} - )\n,i(Fmi - Sn-l—l,i)

Step 3: Downward

Smir1{€" P P (8piy nAE) — o1} — MiSni(Fri — Snytit1)

Sn+1’i B {erAtP(Sn,zﬁ TLAt) - Pl} + ATz,i(ﬁ;t,z' - Sn+1,i+1)




where

Pu = Z )‘n7j<ij - Snﬂ')

j=it1
1—1

= E:An,j(sn,i—Fn,j)
=1

Technical Summary for Derman and Kani construction:
- prices options by CRR method

- satisfies the basic requirements above

- starts from the central nodes, define the current value as the

stock price of the central node at the odd level
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Algorithm: Barle and Cakici IBT

Major modifications
than with the current stock price
option of the nodes at the next level

to calculate the interpolated option prices

e align the center nodes of the tree with the forward price rather

e use the forward price of the previous node to calculate the new

e Use Black-Scholes formula instead of CRR binomial tree method
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Simulation and Comparison

State space density estimation

e Estimation using the IBT

rn/\t
P(SnAt = 8n+1,i) = )\nJrl,i xXe

At, the length of the time level

- IBT is constructed from BS implied volatility surface,
which is a direct assumption, or calculated from (implied
by) market option prices.
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- IBT is constructed from option prices interpolation di-
rectly, option price can be obtained from the market (dif-
ficult), or from the Monte-Carlo simulation samples of the

diffusion process (1) by its definition

e Monte-Carlo Simulation of the diffusion process, Milstein scheme

- From diffusion process model (1), get the random samples

of St and estimate their density.

~
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e Estimation using the IBT

EX =

O'imp(sn,i, mAt) =

Implied local volatility surface

> " pi10g(snim,j)
j=1

Z 10g Sn—i—m ,J

— EX)?
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Example

e S =100, r = 3%, the annual BS implied volatility of a call is
o = 10%, the implied volatility increases (decreases) linearly
by 0.5 percentage points with every 10 point drop (rise) in the

strike. (assumption on the BS implied volatility function)

ds
—L = pdt + o(S;, t)dZ
Si
where o (S, t) = 0.15 — 0.0005 5;, drift function p; = r = 0.03.

(assumption on the local instantaneous volatility function)
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abilities, Arrow-Debreu prices respectively:

five-year D & K IBT:

4, 1999 using IBT method, tau=0.5 year:

N

~

Output four-step four-year IBT of stock prices, transition prob-

Q XFGimplt01

Output a plot of SPD, and a implied local volatility surface for

Q XFGimplt02

Output a plot of SPD estimations for DAX index data at Jan.

Q XFGimplt05

/



http://www.quantlet.de/codes/xfg/XFGimplt01.html
http://www.quantlet.de/codes/xfg/XFGimplt02.html
http://www.quantlet.de/codes/xfg/XFGimplt05.html

Derman and Kani one year(three step) IBT
stock price
117.404
111.616
105.944 105.964
100.000 100.000
94.389 94.372
88.344
82.980




transition probability

0.573

0.603

0.600

0.592

0.572

0.549




Arrow-Debreu price

1.000

0.567

0.423

0.339

0.474

0.168

0.199

0.405

0.292

0.075
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Barle and Cakici one year IBT

stock price

120.017
114.327
105.727 108.500
100.000 102.010
96.484 97.836
89.160
86.044




Estimated Implied Distribution
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Figure 1: SPD estimation by the D & K IBT, level=20, calculate from Monte-Carlo

simulated option prices(blue), T' = 5 year, At = 0.25 year




Implied Local Volatility Surface

50.00 75.00 100.00 125.00

Figure 2: the implied local volatility surface estimation by the five year Derman and Kani

IBT




Estimated State Price Density

probability*0.1

50 100 150 20
stock price
Figure 3: SPD estimation by Monte-Carlo simulation(red), and its confidence band (dashed),
form the B & C IBT (blue), from the D & K IBT (black, thin), level =20, T' = 5 year,

At = 0.25 year
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Implied Local Volatility Surface
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Figure 4: Implied local volatility surface estimation by D & K IBT, from Monte-Carlo

simulated option prices




Implied Local Volatility Surface
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Figure 5: Implied local volatility surface estimation by B & C IBT, from Monte-Carlo

simulated option prices




Implied Local Volatility Surface

50.00 75.00 100.00 125.00

Figure 6: Implied local volatility surface estimation by Monte-Carlo simulation




Volatility Surface

(8000263107 5039,0501)

Figure 6: BS implied volatility surface estimation by Monte-Carlo simulation
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DAX data Example

German DAX index data included in MD*BASE
e German DAX option prices data at January 4, 1999

e DAX daily prices between January 1, 1997, and January 4.
1999

State price density estimation

e from the two IBTs (Derman and Kani, Barle and Cakici)

e historical time series density estimation (Ait-Sahalia, Wang &
Yared (2000))

N /



http://www.mdtech.de

State Price Density Estimation
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Figure 7 :SPD estimation of the DAX data, by historical time series density estimation and
its confidence band (red), by the B & C IBT (blue), and by the D & K IBT (green), 7 = 0.5

year
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Trading Rules to exploit SPD differences

Skewness sell OTM put,
(S1) | skew(f)> skew(g) buy OTM call
Trade (52) | skew(f) < skew(g) buy OTM put,
sell OTM call
Kurtosis sell far OTM and ATM ,
(K1) | kurt(f)> kurt(g)  buy near OTM options
Trade (K2) | kurt(f) < kurt(g)  buy far OTM and ATM,
sell near OTM options

normal SPD is f and time series SPD is g. A far OTM call (put) is defined as one whose exercise price is

10% higher (lower) than the future price. A near OTM call (put) is defined as one whose exercise price is

5% higher (lower) but 10% lower(higher)than the future price.
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Conclusion

the IBT

e the IBT helps in assessing expectation about the future stock
prices

e produces arbitrage-free binomial trees

e describes diffusion processes with variable volatility




e

Limitation of the IBT
e negative probabilities are sometimes encountered
e redefinition causes losses of the information about the smile

e continuous diffusion is approximated by a binomial process
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Precision of the SPD estimation

e SPD estimations from the two IBT methods coincide with the
simulated SPD well, their precision depend on the precision of
the implied volatility surface

e Difference between the SPD estimations from the two kinds of
IBT construction

- Running speed: Barle and Cakici method is faster

- Precision: have no obvious difference

- Special situation: when interest rate is high, the B & C
IBT behaves better (Figure 8)

e Difference between volatility functions

N /
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Estimated State Price Density

probability*0.1

stock price

Figure 8: SPD estimation by Monte-Carlo simulation (red), by the B & C IBT (blue),and by

the D & K IBT (black), where r = 20%,T = 1 year
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