Assignments of JEL codes via Adaptive Weights Clustering

Larisa Adamyan, Kirill Efimov, Linxi Wang, Wolfgang K. Härdle

International Research Training Group 1792
Ladislaus von Bortkiewicz Chair of Statistics
Humboldt–Universität zu Berlin
Introduction

- Publication industry offers a rich portfolio of research work
- The mass of textual data requires pre-structuring
 - Abstracts are a condensed information of full documents
 - Economic papers require manually specify the JEL codes (project areas, topics)
- Clustering can be a solution to identify the research directions and activity of economic research on certain topics.
Motivation

- Analyze Discussion paper abstracts from School of Business and Economics at Humbold-Universität zu Berlin
- Find a **cluster structure** using Adaptive Weights Clustering
- Examine its correlation with paper’s *JEL codes*

Abbildung: Papers on SFB website
What is clustering?

Data: $X_1, \ldots, X_n \in \mathbb{R}^d$.

Aim: split into homogeneous groups (clusters).

Number and structure/shape of clusters usually unknown.

Ideal picture:
Outline

1 Motivation

2 Data Preparation

3 Adaptive Weights Clustering

4 AWC Results

5 AWC on SFB Abstracts
Scrape SFB webpage with discussion papers and extract:
- Abstracts
- JEL Codes

Preprocess abstracts:
- Tokenize
- Transfer all letters to small ones
- Remove punctuation, numbers, stopwords, special characters
- Lemmatize/stemming
- Remove words which occur only once
Term-Document Matrix (TDM)

- Rows correspond to the documents
- Columns correspond to the terms
- Each cell represents frequency of a word in a document

Abbildung: Most frequent terms from abstracts on SFB website
Term frequency- inverse document frequency (TF-IDF)

- A weighting factor
- Reflects how important a word is to a document in a collection
- The i-th document is presented as vector $X_i = \{x_{ij}\}_{j=1}^{d}$, where

$$x_{ij} = t_{fi,j} \times idf_j, \quad idf_j = \log \frac{1+n}{1+n_{j}} + 1.$$

$t_{fi,j}$: frequency of term j in the document i
idf_j: inverse document frequency
n: number of documents
n_{j}: number of documents which contain the term j.
Outline

1 Motivation

2 Data Preparation

3 Adaptive Weights Clustering

4 AWC Results

5 AWC on SFB Abstracts
Adaptive clustering

Aim: an efficient procedure which adapts to **unknown cluster structure**.

Approach: Describe the cluster structure by an **adjacency matrix** $W = (w_{ij})$, where

$$w_{ij} = \begin{cases} 1, & i, j \text{ from the same cluster}, \\ 0, & \text{otherwise} \end{cases}$$

The matrix W is recovered from the data by an iterative procedure.
Let \(\{X_1, \ldots, X_n\} \subset \mathbb{R}^d \) be the set of all samples \(X_i \).

Example: 250 points, 3 normal clusters \((100 + 100 + 50)\) and the corresponding matrix of weights \(W \).

\[
W = (w_{ij})_{i,j=1,\ldots,n}, \quad w_{ij} \in [0, 1].
\]
AWC Procedure

- Initialize with one cluster $C_i^{(0)}$ per point X_i;

- At each step, increase the locality parameter h_k and recompute the local weights $w_{ij}^{(k)}$ using a statistical test of no gap between two local clusters $C_i^{(k-1)}$ and $C_j^{(k-1)}$.

- Stop when the bandwidth h_k reaches the global value.
Test of “no gap between local clusters”

Homogeneous case:

“Gap” case:
Test of “no gap between local clusters”. Cont

After \(k - 1 \) steps, for each \(i \leq n \), the cluster \(\mathcal{C}_i^{(k-1)} \) is given via weights \(w_{ij}^{(k-1)}, \ j \leq n \).

At step \(k \), suppose the locality parameter \(h_k \) to be fixed and consider any pair \((X_i, X_j)\) with \(\|X_i - X_j\| \leq h_k \).

Problem: For two local clusters \(\mathcal{C}_i^{(k-1)} \) and \(\mathcal{C}_j^{(k-1)} \) with \(\|X_i - X_j\| \leq h_k \), compute the value \(w_{ij}^{(k)} \) reflecting the gap between \(\mathcal{C}_i^{(k-1)} \) and \(\mathcal{C}_j^{(k-1)} \).

Principal idea: check the data density in the overlap \(\mathcal{C}_i^{(k-1)} \cap \mathcal{C}_j^{(k-1)} \).
Test of “no gap between local clusters”. Cont

Mass of the overlap $N_{i \cap j}^{(k)}$:

$$N_{i \cap j}^{(k)} \overset{\text{def}}{=} \sum_{l \neq i, j} w_{il}^{(k-1)} w_{jl}^{(k-1)} \approx \# \text{ points in } \mathcal{B}(X_i, h_{k-1}) \cap \mathcal{B}(X_j, h_{k-1})$$

Mass of the union $N_{i \cup j}^{(k)}$:

$$N_{i \cup j}^{(k)} \overset{\text{def}}{=} N_{i \cap j}^{(k)} + N_{i \Delta j}^{(k)} \approx \# \text{ points in } \mathcal{B}(X_i, h_{k-1}) \cup \mathcal{B}(X_j, h_{k-1})$$

where $N_{i \Delta j}^{(k)}$ is the mass of the complementary parts:

$$N_{i \Delta j}^{(k)} \overset{\text{def}}{=} \sum_{l \neq i, j: \{||X_i - X_l|| \leq h_{k-1}\} \triangle \{||X_j - X_l|| \leq h_{k-1}\}} \left(w_{il}^{(k-1)} + w_{jl}^{(k-1)} \right).$$
Test of “no gap between local clusters”. Cont

Estimated relative density in the overlap:

\[\tilde{\theta}_{i \cap j}^{(k)} = \frac{N_{i \cap j}^{(k)}}{N_{i \cup j}^{(k)}} \left(= \frac{\text{Vol} \cap (\rho_{ij}, h_{k-1})}{2 \text{Vol}(h_{k-1}) - \text{Vol} \cap (\rho_{ij}, h_{k-1})} = q \left(\frac{\rho_{ij}}{h_{k-1}} \right) \right) \]

Local homogeneous case corresponds to the nearly uniform distribution:

\[\tilde{\theta}_{i \cap j}^{(k)} \approx q_{ij}^{(k)} \overset{\text{def}}{=} \frac{\text{Vol} \cap (\rho_{ij}, h_{k-1})}{2 \text{Vol}(h_{k-1}) - \text{Vol} \cap (\rho_{ij}, h_{k-1})} = q \left(\frac{\rho_{ij}}{h_{k-1}} \right), \]

where \(\text{Vol}(h) \) is the volume of a ball with radius \(h \) and \(\text{Vol} \cap (\rho, h) \) is the volume of the intersection of two balls with radii \(h \) and the distance \(\rho \) between centers, \(\rho_{ij} = \|X_i - X_j\| \).

Null (no gap): \(\theta_{i \cap j}^{(k)} > q_{ij}^{(k)} \) vs alternative (a gap) \(\theta_{i \cap j}^{(k)} < q_{ij}^{(k)} \).
Outline

1 Motivation
2 Data Preparation
3 Adaptive Weights Clustering
4 AWC Results
5 AWC on SFB Abstracts
Artificial Examples
More examples

Abbildung: $DS4$, $n = 10000$ points
More examples
Outline

1. Motivation
2. Data Preparation
3. Adaptive Weights Clustering
4. AWC Results
5. AWC on SFB Abstracts
Abbildung: Clustering Structure found by AWC vs Original
Cluster 1 found by AWC

- 46% contain G: 'Financial economics'
- 81% contain C: 'Mathematical and quantitative methods'
- Contains 86% of pairs \{C, G\}

Abbildung: size = word frequency, darker color — higher idf
Cluster 2 found by AWC

- 77% contain J: ‘Labor economics’

Abbildung: size = word frequency, darker color – higher idf
Cluster 3 found by AWC

- 51% contain D: 'Microeconomics'
- 54% contain C: 'Mathematical and quantitative methods'

Abbildung: size = word frequency, darker color \Rightarrow higher idf
Cluster 4 found by AWC

- 73% contain E: ‘Macroeconomics and monetary economics’

Abbildung: size = word frequency, darker color — higher idf
Cluster 5 found by AWC

- 32% contain R: 'Urban, rural, and regional economic'
- 24% contain Q: 'natural resource economics'
- 40% contain C: 'Mathematical and quantitative methods'

Abbildung: size = word frequency, darker color – higher idf
Cluster 6 found by AWC

- 54% contain I: 'Health, education, and welfare'
- 80% contain C: 'Mathematical and quantitative methods'
- 50% contain pairs \{I, C\}

Abbildung: size = word frequency, darker color − higher idf
Summary

- Clustering as a specification of research directions of the papers

- Clustering using adaptive weights:
 - numerically feasible and applicable for large data sets
 - fully adaptive to unknown clustering structure including the number and shape of clusters and the separation distance
 - State-of-the-art performance of a wide range of artificial and real life examples

- Clustering procedure automatically assigns the JEL codes to submitted papers.
Thank you!
Test of “no gap between local clusters”. Formal definition

We need to test if \(\theta_{i \cap j}^{(k)} > q^{(k)}_{ij} \). Following to Polzehl and Spokoiny (2006), define the test statistic \(T_{ij}^{(k)} \)

\[
T_{ij}^{(k)} = N_{i \cup j}^{(k)} \mathcal{K}(\tilde{\theta}_{i \cap j}^{(k)}, q^{(k)}_{ij}) (-1) I(\tilde{\theta}_{i \cap j}^{(k)} > q^{(k)}_{ij}),
\]

where \(\mathcal{K}(\theta, q) \) is the Kullback-Leibler divergence:

\[
\mathcal{K}(\theta, q) = \theta \log \frac{\theta}{q} + (1 - \theta) \log \frac{1 - \theta}{1 - q}.
\]
Algorithm steps:

- Initialization of weights w_{ij}
 - each point is connected with its n_0 closest neighbors
 - default choice of $n_0 = 2d + 1$
- Fix a sequence of radii h_k:
 - The average number of screened neighbors for each X_i at step k grows at most exponentially.
- Iterative update of the weights:
 - At step k for all pairs of points X_i and X_j with distance $\|X_i - X_j\| \leq h_k$ compute
 \[
 w_{ij}^{(k)} = \mathbb{1}(\|X_i - X_j\| \leq h_k) \mathbb{1}(T_{ij}^{(k)} \leq \lambda)
 \]
- Cluster extraction from matrix of weights
Cluster extraction from W

- Take the point X_i with maximal local cluster $\mathcal{C}(X_i) = (X_j : w_{ij} > 0)$.
- Consider it as a separated cluster if majority of points X_j in $\mathcal{C}(X_i)$ have almost the same number of neighbors as X_i.
- Delete this cluster $\mathcal{C}(X_i)$ and repeat the procedure for remaining points until we delete all points.
Tuning the parameter λ

Run the procedure with different λ and select one by checking an increase of the sum of weights $\sum_{i,j} w_{i,j}^{(K)}$.

Abbildung: $\sum_{i,j} w_{i,j}^{(K)}(\lambda)$

Abbildung: AWC for 1