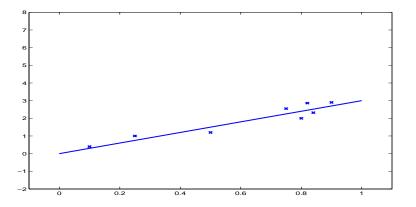
Dynamic Semiparametric Factor Models

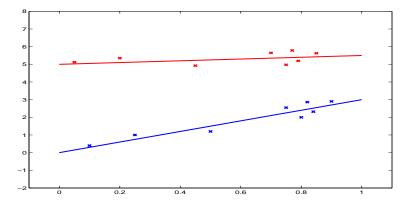
Szymon Borak Wolfgang K. Härdle Enno Mammen Beyong Park

CASE-Center for Applied Statistics and **Economics** Humboldt-Universität zu Berlin Universität Mannheim and Seoul National University

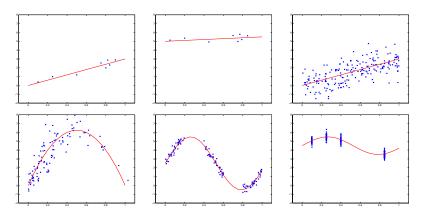
One Regression Line



Two Regression Lines



More Complex Regressions



Implied Volatility Dynamics

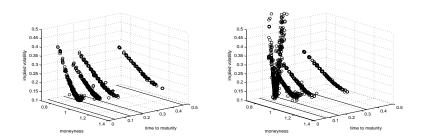


Figure 1: The typical IV data design on two different days. Bottom solid lines indicate the observed maturities, which move towards the expiry. Left panel: observations on 20040701. Right panel: observations on 20040819.

$$\underbrace{(X_{1,1}, Y_{1,1}), \dots, (X_{J_1,1}, Y_{J_1,1})}_{t=1} \underbrace{(X_{1,2}, Y_{1,2}), \dots}_{t=2} \dots \underbrace{(X_{J_T,T}, Y_{1,T})}_{t=T}$$

where:

$$X_{i,t} \in \mathbb{R}^d$$

$$Y_{i,t} \in \mathbb{R}$$

T - the number of observed time periods (days)

 J_t - the number of the observations in (day) t

$$E(\mathbf{Y}_t|\mathbf{X}_t) = F_t(\mathbf{X}_t).$$

What is $F_t(X_t)$?

- neglecting dependency on then is a usual regression problem based on the pooled data
- \Box analyzing F_t separately for each t leads to T regression problems, common structure is lost
- one needs some compromise between the common structure and time dependency

Example

 \Box panel data models, one observes J_t records through time

$$E(Y_{jt}|X_{jt}) = \sum_{s=1}^d Z_s X_{jt}^{(s)} + V_j + \Lambda_t$$

 $X_{jt}^{(s)}$ is s-th coordinate of the vector X_{jt} V_j represents individual specifics, (random or non-random) Λ_t reflects external time effects

Example

 • time varying linear regression (Hansen et al. (2004) for Risk Theory)

$$E(\mathbf{Y}_{t}|\mathbf{X}_{t}) = Z_{t,0} + \sum_{s=1}^{d} Z_{t,s} X_{t}^{(s)}$$

itime varying nonlinear regression (Connor and Linton (2007) for stock returns)

$$E(\mathbf{Y}_{t}|\mathbf{X}_{t}) = Z_{t,0} + \sum_{s=1}^{d} Z_{t,s}g_{s}(X_{t}^{(s)})$$

 $X_t^{(s)}$ is s-th coordinate of the vector \mathbf{X}_t , g_s are known or unknown.

++

Example

 \Box parametric factor approach (Nelson and Siegel (1987) for yield curves) - m_l known

$$E(\mathbf{Y}_t|\mathbf{X}_t) = m_0(\mathbf{X}_t) + \sum_{l=1}^{L} Z_{t,l} m_l(\mathbf{X}_t)$$

multivariate time series dimension reduction techniques

$$E(\mathbf{Y}_t|\mathbf{X}_t) \approx \widehat{F}_t(\mathbf{X}_t) \approx m_0(\mathbf{X}_t) + \sum_{l=1}^{L} Z_{t,l} m_l(\mathbf{X}_t)$$

where \hat{F}_t is a multivariate time series representation of F_t . (Ramsay and Silverman (1997) in functional data analysis context)

++

DSFM

The dynamic semiparametric factor model (DSFM) assumes the following form:

$$E(\mathbf{Y}_t|\mathbf{X}_t) = m_0 + \sum_{l=1}^{L} Z_{t,l} m_l(\mathbf{X}_t) = Z_t^{\top} m(\mathbf{X}_t)$$

 $m(\cdot)$ is a tuple of functions $(m_0, m_1, \ldots, m_L)^{\top}$ $Z_t = (1, Z_{t,1}, \ldots, Z_{t,L})^{\top}$ is a multivariate time series with a certain dynamic structure.

DSFM

- \boxdot \widehat{m} is nonparametric estimator obtained **directly** from the data
- oxdot the dynamics is analyzed via estimates \widehat{Z}_t

What is the difference of the inference based on the \hat{Z}_t instead of Z_t ?

The inference on Z_t is essential for:

- \odot forecasting Y_t distribution (eg. pricing exotic options, risk management)
- cointegration with external variables (eg. macroeconomic variables)
- studying dynamics of related objects (eg. empirical pricing kernel)

Overview

- Motivation√
- 2. Model Formulation
- 3. Asymptotic Results
- 4. Simulations
- 5. Application
- 6. Conclusion

Model

The model has the form:

$$Y_{t,j} = Z_t^{\top} m(X_{t,j}) + \varepsilon_{t,j} \tag{1}$$

For simplicity of notation:

$$t = 1, ..., T, \ j = 1, ..., J (J_t = J), \ X_{t,j} \in [0,1]^d, \ m_j : [0,1]^d \to \mathbb{R}$$

Implied Volatility Surface

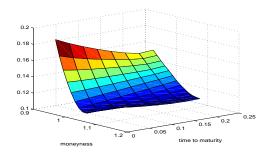


Figure 2: The implied volatility surface estimated on 20050629 using a two-dimensional local linear estimator.

+ +

Kernel Estimator

Fengler et al. (2007) propose to minimize:

$$\sum_{t=1}^{T} \sum_{j=1}^{J_t} \int \left\{ Y_{t,j} - \sum_{l=0}^{L} \widehat{Z}_{t,l} \widehat{m}_l(u) \right\}^2 K_h(u - X_{t,j}) \ du, \qquad (2)$$

where K_h denotes a two dimensional product kernel, $h=(h_1,h_2)$, $K_h(u)=k_{h_1}(u_1)\times k_{h_2}(u_2)$, with a one-dimensional kernel $k_h(v)=h_1^{-1}k(h_1^{-1}v)$. A kernel smoothing procedure can be equivalently replaced by a series estimator.

Series Estimator

$$Z_t^{\top} m(X) = \sum_{l=0}^{L} Z_{t,l} \sum_{k=1}^{K} a_{l,k} \psi_k(X) = Z_t^{\top} A \psi(X)$$

where $\psi(X) = (\psi_1, \dots, \psi_K)^\top(X)$ is a vector of known basis functions, $A \in \mathbb{R}^{(L+1)\times K}$ is a coefficient matrix. K plays a role of the bandwidth h in (2). Define the least squares estimators $\widehat{Z}_t = (\widehat{Z}_0, \dots, \widehat{Z}_L)^\top$ and $\widehat{A} = (\widehat{a}_{l,k})_{l=0,\dots,L;k=1,\dots,K}$

$$(\widehat{Z}_t, \widehat{A}) = \arg\min_{Z_t, A} \sum_{t=1}^{T} \sum_{i=1}^{J} \left\{ Y_{t,j} - \widehat{Z}_t^{\top} \widehat{A} \psi(X_{t,j}) \right\}^2$$
(3)

++

Identification Issues

The minimization problem (3) has no unique solution. If $(\widehat{Z}_t, \widehat{A})$ is a minimizer then also

$$(\widetilde{B}^{ op} \widehat{\mathcal{Z}}_t, \widetilde{B}^{-1} \widehat{A})$$

is a minimizer. Here $\tilde{\emph{B}}$ is an arbitrary matrix of the form

$$\tilde{B} = \left(\begin{array}{cc} 1 & 0 \\ 0 & B \end{array} \right)$$

for an invertible matrix B.

Smoothing parameters

- L the dimension of the time series
- oxdot K number of the series expansion functions
- $\ \ \ \psi$ type of the basis functions (here B-splines)

Inference

The differences in the inference based on \hat{Z}_t instead of (true unobservable) Z_t are asymptotically negligible.

This asymptotic equivalence carries over to estimation and testing procedures in the framework of fitting a vector autoregressive model.

Therefore it is justified to fit vector autoregressive model and proceed as if \hat{Z}_t were observed.

Suppose that the model (1) holds and that $(\widehat{Z}_t, \widehat{A})$ is defined by the minimization problem (3). Define a random matrix \widetilde{B}

$$\widetilde{B} = \left(T^{-1} \sum_{t=1}^{T} Z_t \widehat{Z}_t^{\top}\right)^{-1} T^{-1} \sum_{t=1}^{T} Z_t Z_t^{\top}, \tag{4}$$

and

$$\tilde{Z}_t = \tilde{B}^{\top} \hat{Z}_t,$$

Theorem

Under regularity assumptions (see Appendix) for $h \ge 0$

$$\begin{split} \frac{1}{T} \sum_{t=h+1}^{T} \left(\widetilde{Z}_{t} - \overline{\widetilde{Z}} \right) \left(\widetilde{Z}_{t-h} - \overline{\widetilde{Z}} \right)^{\top} \\ &- \frac{1}{T} \sum_{t=h+1}^{T} \left(Z_{t} - \overline{Z} \right) \left(Z_{t-h} - \overline{Z} \right)^{\top} = o_{P}(T^{-1/2}) \end{split}$$

and

$$\overline{\tilde{Z}} - \overline{Z} = \mathcal{O}_P(T^{-1/2}),$$

where $\overline{\widetilde{Z}} = \frac{1}{T} \sum_{t=1}^T \widetilde{Z}_t$ and $\overline{Z} = \frac{1}{T} \sum_{t=1}^T Z_t$

VAR processes

Consider Z_t as a VAR(p) process:

$$Z_t = A_1 Z_{t-1} + \ldots + A_p Z_{t-p} + U_t,$$

where U_t is white noise and \mathcal{A}_i is a coefficient matrix. Define $\theta = (\mathcal{A}_1, \dots, \mathcal{A}_p)$ then $\widehat{\theta}$ is a function of the autocovariance matrices (Yule-Walker equations) and

$$\sqrt{T}(\widehat{\theta}-\theta)=\mathcal{O}_P(1).$$

Adopting similar notation for \tilde{Z}_t and $\tilde{\theta}$ one obtains:

$$\sqrt{T}\left(\widehat{\widetilde{\theta}} - \theta\right) = \sqrt{T}\left(\widehat{\widetilde{\theta}} - \widehat{\theta}\right) + \sqrt{T}\left(\widehat{\theta} - \theta\right)$$

$$= \underbrace{\mathcal{O}_{P}(1)}_{\text{Theorem}} + \mathcal{O}_{P}(1) = \mathcal{O}_{P}(1)$$

The asymptotic error of the DSFM estimation is of smaller order than the error of parameter estimation in the VAR framework!

Simulation Setting

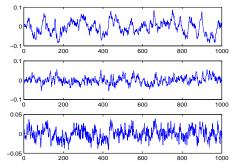
- \odot Simulate Z_t from a VAR(1) model
- \odot Simulate design points $X_{t,j}$ from uniform distribution $[0,1]^2$
- $oxed{oxed}$ Set some known functions m and generate $Y_{t,j}$ from Z_t , m and $X_{t,j}$
- $oxed{oxed}$ Estimate $ilde{Z}_t$ and compare autocovariance matrices of $ilde{Z}_t$ and Z_t

VAR Model

$$Z_t = \mathcal{A}Z_{t-1} + U_t$$

where:

$$U_t \sim N(0, \Sigma_U)$$



$$\mathcal{A} = \left(egin{array}{ccc} 0.95 & -0.2 & 0 \\ 0 & 0.8 & 0.1 \\ 0.1 & 0 & 0.6 \end{array}
ight) \quad \Sigma_{\mathcal{U}} = \left(egin{array}{ccc} 10^{-4} & 0 & 0 \\ 0 & 10^{-4} & 0 \\ 0 & 0 & 10^{-4} \end{array}
ight).$$

The following tuple of 2-dimensional functions are considered:

$$\begin{pmatrix} m_0 \\ m_1 \\ m_2 \\ m_3 \end{pmatrix} (x_1, x_2) = \begin{pmatrix} 1 \\ 3.46(x_1 - \frac{1}{2}) \\ 9.45\left\{ (x_1 - \frac{1}{2})^2 + (x_2 - \frac{1}{2})^2 \right\} - 1.6 \\ 1.41\sin(2\pi x_2) \end{pmatrix}.$$
(5)

The coefficients in (5) were chosen so that m_1 , m_2 , m_3 are close to orthogonal.

++

Simulation — 4-4

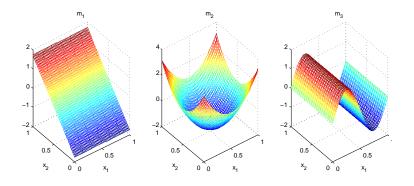


Figure 3: True functions m_1, m_2, m_3 from which the data were generated. $(m_0 = 1)$

+ +

For the basis functions ψ we choose tensor B-splines on the equidistance knots in each direction.

Т	500	1000	2000
J	100	250	1000
K	36	49	64

for each setting the simulations were repeated 250 times

The one-dimensional linear B-splines $\tilde{\psi}_k$ are defined on a consecutive equidistant knots x^k, x^{k+1}, x^{k+2} by

$$ilde{\psi}_k(x) = \left\{ egin{array}{ll} (x-x^k)/(x^{k+1}-x^k), & x \in (x^k,x^{k+1}], \ & (x^{k+2}-x)/(x^{k+2}-x^{k+1}), & x \in (x^{k+1},x^{k+2}], \ & 0, & ext{otherwise.} \end{array}
ight.$$

Simulation 4-7

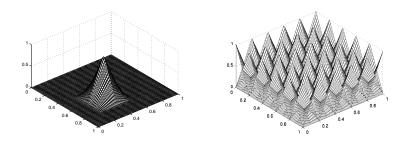


Figure 4: Tensor linear B-spline basis used in the estimation. Left panel: one particular basis function ψ_k . Right panel: the whole set of basis functions for K=36.

Simulation — 4-8

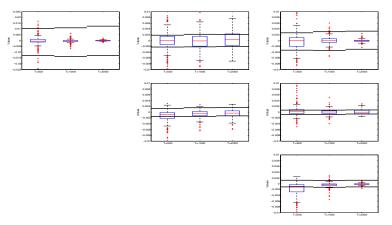


Figure 5: The boxplots based on 250 differences of the elements of the scaled covariance matrices. The bold line represents 95% and 5% quantiles of "true" differences.

The differences of the scaled covariance matrices (boxplots):

$$\frac{1}{\sqrt{T}} \left\{ \sum_{t=1}^{T} \left(\widetilde{Z}_{t} - \overline{\widetilde{Z}} \right) \left(\widetilde{Z}_{t} - \overline{\widetilde{Z}} \right)^{\top} - \sum_{t=1}^{T} \left(Z_{t} - \overline{Z} \right) \left(Z_{t} - \overline{Z} \right)^{\top} \right\}$$

The "true" differences (bold line):

$$rac{1}{\sqrt{T}}\left\{\sum_{t=1}^{T}\left(Z_{t}-\overline{Z}
ight)\left(Z_{t}-\overline{Z}
ight)^{\top}-\Gamma
ight\},$$

where Γ is the true covariance matrix of the simulated VAR process.

Application — 5-1

Implied Volatility

Volatility $\hat{\sigma}$ as *implied* by observed market prices \tilde{C}_t :

$$\hat{\sigma}: \quad \tilde{C}_t - C_t^{BS}(S_t, K, \tau, r, \hat{\sigma}) = 0.$$

Unlike assumed in the Black-Scholes (BS) model, $\hat{\sigma}_t(K, \tau)$ exhibits distinct, time-dependent functional patterns across K (smile or smirk), and a term-structure T-t: Thus $\hat{\sigma}_t(K, \tau)$ is interpreted as a random surface: the implied volatility surface (IVS).

Application — 5-2

Degenerated Design

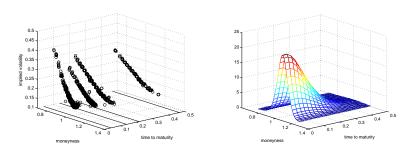


Figure 6: Left panel: IV strings observed on 20040701. Right panel: kernel density estimator of the design points from 20040701 to 20050629

Data Overview

	Min.	Max.	Mean	Median	Stdd.	Skewn.	Kurt.
T. to mat.	0.03	0.50	0.120	0.088	0.088	1.787	6.282
Moneyness.	0.70	1.20	0.989	0.994	0.055	-0.708	5.324
IV	0.03		0.159	0.153	0.040	1.615	14.621

Table 1: Summary statistics from 20040701 to 20050629. Source: EUREX, ODAX, stored in the SFB 649 FEDC.

Data Preprocessing

In order to avoid problems with very skewed design we transform data with marginal empirical distribution functions.

For the tensor B-splines we place equidistant knots in each direction (10 knots for splines of order 3 in moneyness direction (X_1) , 5 knots for splines of order 2 in time to maturity direction (X_2)).

We estimate L=2 basis functions.

$$RV(L) = \frac{\sum_{t}^{T} \sum_{j}^{J_{t}} \{Y_{t,j} - \sum_{l=0}^{L} \widehat{Z}_{t,l} \widehat{m}_{l}(X_{t,j})\}^{2}}{\sum_{t}^{T} \sum_{j}^{J_{t}} (Y_{t,j} - \bar{Y})^{2}}$$

No. Factors	1 - RV(L)			
L=1	0.848			
L=2	0.969			
L=3	0.976			
L=4	0.978			
L=5	0.980			

At the last step of the estimation we **orthogonalize** the functions and **order** them in such a way that the explained variation by the first function is maximal.

Dynamic Semiparametric Factor Models -

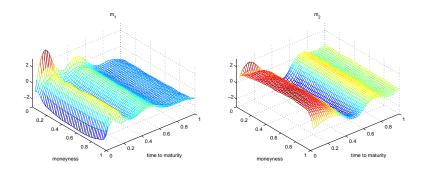


Figure 7: Dynamic basis functions \widehat{m}_1 and \widehat{m}_2

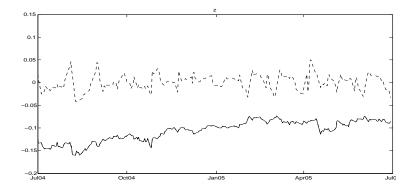


Figure 8: Time series of weights $\widehat{Z}_{t,1}$ (lower) and $\widehat{Z}_{t,2}$ (upper).

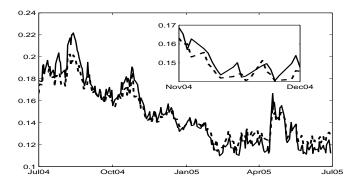


Figure 9: VDAX from 20040701 to 20050629 (solid) and the dynamics of the corresponding IV given by the sub-model $\widehat{m}_0 + \widehat{Z}_{t,1}\widehat{m}_1$ (dashed).

+ +

VAR modelling of \widehat{Z}_t

- ☑ We fit the VAR(1) (Schwarz and Hannan-Quinn criteria) and VAR(2) (AIC criterion) models for \hat{Z}_t .
- Roots lay inside the unit root circle.
- Autocorrelation tests (Portmanteau and LM) cannot be rejected.

VAR parameters

	$\widehat{Z}_{t-1,1}$	$\widehat{Z}_{t-1,2}$	$\hat{Z}_{t-2,1}$	$\hat{Z}_{t-2,2}$	С
			VAR(1)		
$\widehat{Z}_{t,1}$	0.984	-0.029			-0.001
$\widehat{Z}_{t,1}$ $\widehat{Z}_{t,2}$	0.055	0.739			0.005
			VAR(2)		
$\widehat{Z}_{t,1}$ $\widehat{Z}_{t,2}$	0.913	-0.025	0.071	-0.004	-0.001
$\widehat{Z}_{t,2}$	0.124	0.880	-0.065	-0.187	0.006

Table 2: The estimated parameters for VAR(1) and VAR(2) models.

Conclusion

- oxdot asymptotic convergence of the covariance matrix of \tilde{Z}_t to the covariance matrix of Z_t
- onfirmed by the simulations
- \mathbf{I} inference on $\widehat{Z_t}$ is justified
- □ DSFM could be used for the analysis of the IVS dynamics

Terra Incognita

External Variable:

$$E(\mathbf{Y}_t|\mathbf{X}_t) = Z_t^{\top} m(\mathbf{X}_t) + G(S_t)$$

Constraints:

$$E(\mathbf{Y}_t|\mathbf{X}_t) = Z_t^{\top} m(\mathbf{X}_t) \in \mathcal{G}$$

Multi DSFM:

$$E(\mathbf{Y}_t^{(i)}|\mathbf{X}_t^{(i)}) = Z_t^{\top} m^{(i)}(\mathbf{X}_t^{(i)})$$

+ +

Reference

- Borak, S., Härdle, W., Mammen, E. and Park, B. Time Series Modelling with Sempiparametric Factor Dynamics *SFB 649 Discussion Paper*, 2007-023, 2007.
- Connor, G. and Linton, O.
 Semiparametric Estimation of a Characteristic-based Factor Model of Common Stock Returns

 Journal of Empirical Finance, 2007.

For Further Reading

Fengler, M., Härdle, W. and Mammen, E.
A Dynamic Semiparametric Factor Model for Implied Volatility
String Dynamics

Journal of Financial Econometrics, 5(2):189–218, 2007.

Hansen, L., Nielsen, B. and Nielsen, J.
Two sided analysis of variance with a latent time series
Nuffield College Economic Working Paper, 2004-W25, 2004.

Nelson, C. R. and Siegel, A. F. Parsimonoius Modelling of Yield Curves *Journal of Business*, 60:473–489, 1987.

For Further Reading



Appendix A

- (A1) The variables $X_{1,1},...,X_{T,J}, \varepsilon_{1,1},...,\varepsilon_{T,J}$ are independent.
- (A2) For t = 1, ..., T the variables $X_{t,1}, ..., X_{t,J}$ are identically distributed, have support $[0, 1]^d$ and a density f_t that is bounded from below and above on $[0, 1]^d$, uniformly over t = 1, ..., T.
- (A3) We assume that

$$\begin{array}{rcl} & & & \mathsf{E}[\varepsilon_{t,j}] & = & 0 \text{ for } t=1,...,T, j=1,...,J, \\ \sup_{t=1,...,T,j=1,...,J} & & & \mathsf{E}[\varepsilon_{t,j}^2] & < & \infty. \end{array}$$

(A4) The functions ψ_k are normed: $\int_{[0,1]^d} \psi_k^2(x) \ dx = 1$

Dynamic Semiparametric Factor Models —

(A5) The components $m_0,...,m_L$ can be approximated by $\psi_1,...,\psi_K$, i.e.

$$\delta_K = \sup_{x \in [0,1]^d} \inf_{A \in \mathbb{R}^{(L+1) \times K}} |m(x) - A\psi(x)| \to 0$$

for I=0,...,L and $K\to\infty$. We denote a matrix that fulfills $\sup_{x\in[0,1]^d}|m(x)-A\psi(x)|\leq 2\delta_K$ by A. We assume that $\delta_K=\mathcal{O}(K^{1/2}J^{-1/2})$ for $K,J\to\infty$.

- (A6) There exist constants $0 < C_L < C_U < \infty$ such that all eigenvalues of the random matrix $T^{-1} \sum_{t=1}^{T} Z_t Z_t^{\top}$ lie in the interval $[C_L, C_U]$ with probability tending to one.
- (A7) It holds that $(K \log K)/J \to 0$ and $\log T/J \to 0$.

++

- (A8) It holds $\max_{1 \le t \le T} \|Z_t\| \le M_T/C_m$ with a constant $C_m > \sup_{x \in [0,1]} \|m(x)\|$ and $M_T^2(K \log K/J) \to 0$ and $M_T^2(\log T/J) \to 0$.
- (A9) The bound $\max_{1 \le t \le T} \|Z_t\| \le M_T$ holds with probability tending to one and it holds that $M_T^2\{(K \log K)/J\} \to 0$ and $M_T^2(\log T/J) \to 0$.
- (A10) Z_t is strictly stationary with $\mathrm{E}(Z_t)=0$ and $\mathrm{E}\|Z_t\|^{\gamma}<\infty$ for some $\gamma>2$. It is strongly mixing with $\sum_{i=1}^{\infty}\alpha(i)^{(\gamma-2)/\gamma}<\infty$. The matrix $\mathrm{E}Z_tZ_t^{\top}$ has full rank. The process Z_t is independent of $X_{11},...,X_{TJ},\varepsilon_{11},...,\varepsilon_{TJ}$.

+ +

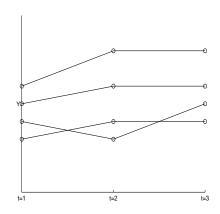
- (A11) The functions $m_0, ..., m_L$ are linearly independent. In particular, no function is equal to 0. Furthermore, it holds that $\sup_{x \in [0,1]} \|\psi(x)\| = \mathcal{O}(K^{1/2})$.
- (A12) It holds that $K/J + \delta_K = \mathcal{O}(T^{-1/2})$, $\log T = \mathcal{O}(K)$, $K^5 J^{-4} (\log K)^2 = \mathcal{O}(T^{-1})$, and $K^7 J^{-5} (\log K)^2 = \mathcal{O}(T^{-1})$.

Appendix B

How to model dynamics of multidimensional phenomena

Time Series

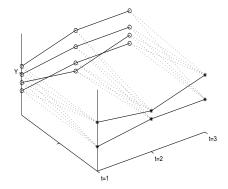
- $Y_t = (Y_1, \dots, Y_d)_t^{\top}$ is d dimensional time series.
- The components Y₁,..., Yd are not linked together each permutation defines same series



Dynamic Semiparametric Factor Models

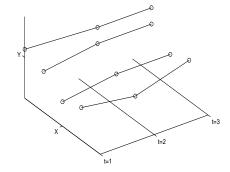
Factor Analysis for Times Series

- For dimension reduction one may consider factor model Y_t = MZ_t
- \Box The dimension of Z_t is much smaller than dimension of Y_t



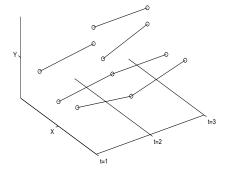
Balanced Panel

- For each individual i in each time point t one observes external variable X_{it}



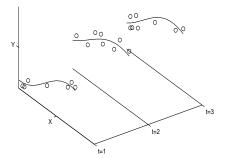
Unbalanced Panel

- Not every individual has to be observed for the whole time range
- The regression structure is kept but the model can no longer be recognized as a classical multidimensional time series



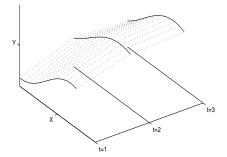
Dynamic Regression

- There can be no direct link among observations through the time
- One observes evolution of regression
 E(Y_t|X_t) = F_t(X_t) problems but it is not a panel any more

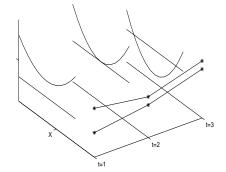


Functional Data Approach

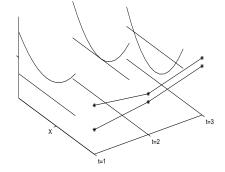
- A possible solution: smooth the data and obtain a balanced panel (multivariate time series)



- For dimension reduction one may consider factor models $E(Y_t|X_t) = m^{\top}(X_t)Z_t$ where m is a tuple of functions



- o Z_t observed varying coefficient model
- m and Z_t estimated through some techniques applied to multidimensional time series (functional approach) + projection on X_t



 m may be specified parametrically and estimated directly from the data through pooled least squares
 special case unbalanced panel

