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Motivation

More Complex Regressions
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Motivation 1-4

Implied Volatility Dynamics

implied volatiity

time to maturity eyness time to maturity

Figure 1: The typical IV data design on two different days. Bottom solid
lines indicate the observed maturities, which move towards the expiry. Left
panel: observations on 20040701. Right panel: observations on 20040819.
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Motivation 1-5

(X1,1, Y1,1)5 -+ (X010 You,1) (X1,2, Y2,2)5 00 v e (X7, 73 Y1,7)
t=1 t=2 t=T
where:
Xj,e € R
Vit €R

T - the number of observed time periods (days)
Jt - the number of the observations in (day) t
E(Yt|Xt) - Ft(Xt)

What is F:(X¢)?
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Motivation 1-6

[J neglecting dependency on t then F(X) is a usual regression
problem based on the pooled data

(] analyzing F; separately for each t leads to T regression
problems, common structure is lost

(] one needs some compromise between the common structure
and time dependency
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Motivation 1-7

Example

[J panel data models, one observes J; records through time
Z ZXS + Vi Ay

Xj(ts) is s-th coordinate of the vector Xj;

Vj represents individual specifics, (random or non-random)
A reflects external time effects
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Motivation 1-8

Example

[ time varying linear regression (Hansen et al. (2004) for Risk
Theory)

d
E(Ye|Xt) = Zeo + Z Zt,th(S)
s=1
[J time varying nonlinear regression (Connor and Linton (2007)

for stock returns)

d

E(Y¢X¢) = Zio+ Z Zt,sgs(Xt(S))
s=1

Xt(s) is s-th coordinate of the vector X;, gs are known or unknown.

; - .
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Motivation 1-9
Example

J parametric factor approach (Nelson and Siegel (1987) for yield
curves) - my; known

L
E(Ye|Xe) = mo(Xe) + > Zeymy(Xe
(] multivariate time series dimension reduction techniques

L
E(Y|X¢) & Fe(Xt) = mo(X¢) + Z Zt,im(X¢)
I=1

where F; is a multivariate time series representation of F;.
(Ramsay and Silverman (1997) in functional data analysis
context)

; - .
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Motivation 1-10

DSFM

The dynamic semiparametric factor model (DSFM) assumes
the following form:

L
E(YelXe) =mo+ Y Zeymi(Xe) = Z, m(Xy)

=1
m(-) is a tuple of functions (mg, my,...,my)"
Ze=(1,2Z¢7,. .-, Zt,L)—r is a multivariate time series with a certain

dynamic structure.
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Motivation 1-11

DSFM

CJ m reflects the time invariant (factor) structure
(] M is nonparametric estimator obtained directly from the data
(] Z; describes the dynamic behavior

[ the dynamics is analyzed via estimates Z;

What is the difference of the inference
based on the Z; instead of Z;?
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Motivation 1-12

The inference on Z; is essential for:
[J forecasting Y; distribution (eg. pricing exotic options, risk
management)
[J cointegration with external variables (eg. macroeconomic
variables)
(J studying dynamics of related objects (eg. empirical pricing
kernel)

e
|+
Lt

Dynamic Semiparametric Factor Models



1-13

Motivation

Overview

Motivationv”
Model Formulation
Asymptotic Results
Simulations

Application

ook W=

Conclusion

Dynamic Semiparametric Factor Models

e
|+
Lt



Model Formulation

Model

The model has the form:

Yej = Z, m(Xe)) + €,

For simplicity of notation:

t=1,...,T,
j=1..,J (=),
Xtde[oil]dv

m;:[0,1]¢ - R

Dynamic Semiparametric Factor Models
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Model Formulation

2-2
Implied Volatility Surface

1.1

0.15
moneyness

time to maturity

Figure 2: The implied volatility surface estimated on 20050629 using a
two-dimensional local linear estimator.
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Model Formulation 2-3

Kernel Estimator

Fengler et al. (2007) propose to minimize:

T Lo 2

> Z/ {ytd- = zt,,m,(u)} Ki(u— X)) du,  (2)
t=1j=1 I=0

where K}, denotes a two dimensional product kernel, h = (hy, hy),
Kn(u) = kny(u1) X kny(u2), with a one-dimensional kernel kp, (v) =
= h71k(h7'v). A kernel smoothing procedure can be equivalently
replaced by a series estimator.

Fy
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Model Formulation 2-4

Series Estimator

L K
X) =" Zey ) anpyi(X) = Z Ap(X)
=0 k=1

where ¥(X) = (¥1,...,%k) " (X) is a vector of known basis
functions, A € R(EFD*K is 3 coefficient matrix. K plays a role of
the bandwidth h in (2). Define the least squares estimators

Z, = (Zo,-- )’ and A = (a/,k)/:o,...,L;k:L...,K

(Z;, A) = arg m|n Z Z { Yij— 2;|—Z¢(Xt,j)}2 (3

t’tljl

~—
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Model Formulation 2-5

Identification Issues

The minimization problem (3) has no unique solution. If (Z;, A) is
a minimizer then also
(B'Z,, B tA)

is a minimizer. Here B is an arbitrary matrix of the form

)

for an invertible matrix B.

e
|+
Lt

Dynamic Semiparametric Factor Models



Model Formulation 2-6

Smoothing parameters

(] L - the dimension of the time series
[J K - number of the series expansion functions

[J 9 - type of the basis functions (here B-splines)
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Asymptotic Results 3-1

Inference

The differences in the inference based on Z; instead of (true
unobservable) Z; are asymptotically negligible.

This asymptotic equivalence carries over to estimation and testing
procedures in the framework of fitting a vector autoregresssive
model.

Therefore it is justified to fit vector autoregressive model and
proceed as if Z; were observed.
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Asymptotic Results 3-2

Suppose that the model (1) holds and that (Z;, A) is defined by the
minimization problem (3). Define a random matrix B

-1

T T
B= (T‘l > zjj) Ty z7], (4)
t=1

t=1

and
Z.=B'Z,
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Asymptotic Results 3-3

Theorem
Under regularity assumptions (see Appendix) for h > 0

1 I = e T
72 (2-2)(20-2)
t=h+1
2 zT: (20-2) (2e0-2) =op(T?)
t=h+1

and

7 -Z=o0p(T 13,
where 7 = % S, Ziand Z = T Sz
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Asymptotic Results 3-4

VAR processes

Consider Z; as a VAR(p) process:

Zt - Ath,:[ + ...+ ApZt,p + Ut,

where U; is white noise and A; is a coefficient matrix.
Define 8 = (Ai,...,Ap) then 8 is a function of the autocovariance
matrices (Yule-Walker equations) and

VTG -6) = 0p(1).
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Asymptotic Results

Adopting similar notation for Z; and 8 one obtains:

VT (§-0) = VT (6-8)+vT(5-0)
——
DSFM
(’)P(l) +OP(1) = Op(l)
N——v
Theorem
The asymptotic error of the DSFM estimation is of smaller order

than the error of parameter estimation in the VAR framework!
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Simulation 4-1

Simulation Setting

(J Simulate Z; from a VAR(1) model
[J Simulate design points X;; from uniform distribution [0, 1]2

(] Set some known functions m and generate Y;; from Z;, m
and X; ;

[] Estimate Z and compare autocovariance matrices of Z and
Zt
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Simulation 49
VAR Model
Z = AZ 1+ Uy WMWWWMW
e N
Ut ~ N(O, Z}U) :;:0 2‘:)0 4(:’0 5‘:30 8{)0 1000

095 -02 0 10~4 0 0

0.1 0 06 0o 0 107
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Simulation 4-3

The following tuple of 2-dimensional functions are considered:

mo 1

i (x1,%2) = 3i4623(X1 N %) 1)2

mo ’ 9.45 {(x1 — 12— } —16
m3 1.41sin(2mx2)

(5)
The coefficients in (5) were chosen so that my, ma, m3 are close to
orthogonal.
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Simulation

4-4
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Figure 3: True functions my, my, m3 from which the data were generated.
(mo =1)
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Simulation 4-5

For the basis functions 9 we choose tensor B-splines on the
equidistance knots in each direction.

T | 500 1000 2000
100 250 1000
K| 36 49 64

—

for each setting the simulations were repeated 250 times
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Simulation 4-6

The one-dimensional linear B-splines 1[~Jk are defined on a
consecutive equidistant knots x, x¥T1, xk+2 py

(X - Xk)/(xk+1 - Xk): X € (Xkaxk+1]:
"‘/;k(x) = (Xk+2 - X)/(Xk+2 - Xk+1)) X € (Xk+1:Xk+2]:
0, otherwise.
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Simulation 4-7

Figure 4: Tensor linear B-spline basis used in the estimation. Left panel:
one particular basis function . Right panel: the whole set of basis
functions for K = 36.
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Simulation 4-8
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Figure 5: The boxplots based on 250 differences of the elements of the
scaled covariance matrices. The bold line represents 95% and 5% quantiles
of "true” differences.
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Simulation

4-9

The differences of the scaled covariance matrices (boxplots):

t=1

1 [nine =\ /2 =T . —\T
ﬁ{;(zt—z) (2-2) ->(2-2)(2-2) }
The "true” differences (bold line):

1

={r@-7)(@-2) -1}

where T is the true covariance matrix of the simulated VAR process.
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Application 5-1

Implied Volatility

Volatility & as implied by observed market prices C;:
: Co—CB(S,K,7,r6)=0.

Unlike assumed in the Black-Scholes (BS) model, +(K,T) exhibits
distinct, time-dependent functional patterns across K (smile or
smirk), and a term-structure T — t: Thus 6+(K, ) is interpreted
as a random surface: the implied volatility surface (IVS).
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Application 5-2

Degenerated Design

implied volatilty

time to maturity time to maturity
moneyness moneyness

Figure 6: Left panel: |V strings observed on 20040701. Right panel: kernel
density estimator of the design points from 20040701 to 20050629
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Application 5-3

Data Overview

Min. Max. Mean Median Stdd. Skewn. Kurt.

T. to mat. 0.03 050 0.120 0.088 0.088 1.787 6.282
Moneyness. | 0.70 1.20 0.989 0.994 0.055 -0.708 5.324
\% 0.03 1.61 0.159 0.153 0.040 1.615 14.621

Table 1: Summary statistics from 20040701 to 20050629. Source: EUREX,
ODAX, stored in the SFB 649 FEDC.
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Application 5-4

Data Preprocessing

In order to avoid problems with very skewed design we transform
data with marginal empirical distribution functions.

For the tensor B-splines we place equidistant knots in each direction
(10 knots for splines of order 3 in moneyness direction (X1), 5
knots for splines of order 2 in time to maturity direction (X2)).
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Application 5-5
We estimate L = 2 basis functions.

. EZ— E;t{YtJ - Z/L:o 2t,lf77l(Xt.n/')}2

RV(L) EZ—EJJt(YtJ_ Y)?

No. Factors 1— RV(L)

L=1 0.848
L=2 0.969
L=3 0.976
L=4 0.978
L=5 0.980

At the last step of the estimation we orthogonalize the functions
and order them in such a way that the explained variation by the
first function is maximal.

fomt [ et
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Application 5-6

0.4

moneyness 10 time to maturity moneyness 10 time to maturity

Figure 7: Dynamic basis functions my and my

T .
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Application 5-7
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Figure 8: Time series of weights Z, 1 (lower) and Z,z (upper).
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Application

5-8

0.1 . . .
Julo4a Oct04 Jan05 Apros Julos

Figure 9: VDAX from 20040701 to 20050629 (solid) and the dynamics of
the corresponding IV given by the sub-model g + Z,l my (dashed).
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Application 5-9

VAR modelling of Z,

[J We fit the VAR(1) (Schwarz and Hannan-Quinn criteria) and
VAR(2) (AIC criterion) models for Z;.

[ Roots lay inside the unit root circle.

[J Autocorrelation tests (Portmanteau and LM) cannot be
rejected.
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Application 5-10

VAR parameters

Zi11 Zic1p Zio1 Zi2p c

)

Ze1 | 0984 -0.029 -0.001
Zio | 0.055 0.739 0.005
VAR(2)

Ze1 | 0913 -0.025 0.071 -0.004 -0.001
Zeo | 0124 0.880 -0.065 -0.187 0.006

Table 2: The estimated parameters for VAR(1) and VAR(2) models.

Fy
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Conclusion 6-1

Conclusion

[J asymptotic convergence of the covariance matrix of Z; to the
covariance matrix of Z;

(] confirmed by the simulations
[ inference on Z; is justified
(] DSFM could be used for the analysis of the IVS dynamics

Dynamic Semiparametric Factor Models
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Conclusion

Terra Incognita

External Variable:

Constraints:

Multi DSFM:

6-2
E(YelXe) = Z m(X¢) + G(St)
E(YeXe) = Z m(X:) € G
E(rxE) = Z7m(x{?)
T
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Conclusion 6-3
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Conclusion 6-4
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Conclusion
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Conclusion 6-6

Appendix A

(A1) The variables Xj 1,...,.XT,J, €1,1,....6T,s are independent.

(A2) For t =1,..., T the variables X; 1,...,X¢,; are identically
distributed, have support [0,1]9 and a density f; that is
bounded from below and above on [0, 1]¢, uniformly over
t=1,..,T.

(A3) We assume that

Ele.j] = Ofort=1,..,T,j=1,..,,

sup E[E%J] < 00.
t=1,...,Tj=1,....J

(A4) The functions 9 are normed: f[071]d P2(x) dx =1

Eaarell
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Conclusion 6-7

(A5) The components myg,...,m; can be approximated by %1, ..., ¥k,
i.e.

0k = su inf m(x) — AY(x)| = 0
“ XE[OE]dAER(L+1)XK| (x) — Ap(x)|

for | =0,...,L and K — 00. We denote a matrix that fulfills
SUPc[0,1]¢ |m( ) — AY(x)| <20k by A. We assume that
Ok O(K1/2J 1/2) for K, J — o0.

(A6) There exist constants 0 < C; < Cy < 0o such that all
eigenvalues of the random matrix T-2327_, Z,Z" lie in the
interval [C;, Cy] with probability tending to one.

(A7) It holds that (K'log K)/J — 0 and log T/J — 0.
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Conclusion 6-8

(A8)

(A9)

(A10)

Dynamic Semiparametric Factor Models

It holds maxi<:<7 || Z¢|| < M7 /Cpr with a constant

Cm > supyeo,1 Im(x)] and M2 (K log K/J) — 0 and

MZ(log T/J) — 0.

The bound maxi<:<7 ||Z¢|| < M7 holds with probability
tending to one and it holds that M2{(K log K)/J} — 0 and
M2 (log T/J) — 0.

Z; is strictly stationary with E(Z;) = 0 and E||Z||” < oo for
some y > 2. It is strongly mixing with 3%, a(i)("=2/7 < co.
The matrix EZtZtT has full rank. The process Z; is
independent of Xi1, ..., X7, €11, .-, ETJ.
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Conclusion 6-9

(A11l) The functions mo, ..., m; are linearly independent. In
particular, no function is equal to 0. Furthermore, it holds that
suPxepo,1) [[¥(X) ]| = O(K'?).

(A12) It holds that K/J +dx = o(T~/?), log T = o(K),
K3J*(log K)?> = o(T~1), and K7J3(log K)? = o( T71).
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Conclusion 6-10

Appendix B

How to model dynamics of
multidimensional phenomena
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Conclusion

Time Series

O Ye=(Y1,...,Yq)] isd
dimensional time series.

(1 The components Yi,..., Yy
are not linked together -
each permutation defines
same series

Dynamic Semiparametric Factor Models
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Conclusion

Factor Analysis for Times Series

(1 For dimension reduction one
may consider factor model
Yt — MZt

[0 The dimension of Z; is much
smaller than dimension of Y;
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Conclusion

Balanced Panel

[ For each individual i in each
time point t one observes
external variable Xj;

[ For each time point t one
has a regression
E(Ye[Xe) = Fe(Xe)

Dynamic Semiparametric Factor Models
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Conclusion

Unbalanced Panel

(1 Not every individual has to
be observed for the whole
time range

(] The regression structure is
kept but the model can no
longer be recognized as a
classical multidimensional
time series

Dynamic Semiparametric Factor Models
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Conclusion

Dynamic Regression

(1 There can be no direct link
among observations through
the time

(] One observes evolution of
regression
E(Y:|Xt) = F:(X:) problems
but it is not a panel any
more

Dynamic Semiparametric Factor Models




Conclusion

Functional Data Approach

(1 A possible solution: smooth
the data and obtain a
balanced panel (multivariate
time series)

(] Points are linked according
to external variable X;

e
Dynamic Semiparametric Factor Models jj:



Conclusion

Factor Models for Dynamic Regression

(1 For dimension reduction one
may consider factor models
E(Yi|X:) = mT (X)) Z;
where m is a tuple of
functions

1 m and Z; can be obtained in
different ways

Dynamic Semiparametric Factor Models
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Conclusion

Factor Models for Dynamic Regression

(] Z; observed - varying
coefficient model

(1 m and Z; estimated through
some techniques applied to
multidimensional time series
(functional approach) +
projection on X;

Dynamic Semiparametric Factor Models
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Conclusion

Factor Models for Dynamic Regression

[J m may be specified
parametrically and estimated
directly from the data
through pooled least squares
- special case unbalanced
panel

Dynamic Semiparametric Factor Models
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Conclusion

Factor Models for Dynamic Regression

(1 m and Z; estimated directly
from the data without
parametric assumptions
about m - DSFM

t=1
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Factor Analysis
for Time Series Panel Data

external Xt\ / no links in time

DSFM

smoothing directly Z; unobservable
factor functions

Functional Data Varying Coefficients



Factor Analysis
for Time Series Panel Data

no external\ / links in time

DSFM

smoothing mt/ \ Z; observable

Functional Data Varying Coefficients
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