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Motivation 1-1

Generalized Quantile Regression (GQR)

[J Quantiles and Expectiles are generalized quantiles, Jones
(1994).

[] Capture the tail behaviour of conditional distributions.
[] Applications in finance, weather, demography, - - -

[] Some applications involve MANY GQR curves.
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Motivation 1-2

Applications

[J Finance: VaR and expected shortfall (ES)

[] Labor: Wage with education levels
(] Weather: Temperature and rainfall

» Energy Company
» Tourist Company
» Farmers
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Motivation 1-3

Figure 1: Land before and after the flood
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Motivation 1-4
Weather Derivatives

A CAT temperature future under the non-arbitrage pricing setting:

T2
FCAT(t,ThTz) = EQ)\ |:/ Tudu|]:t:|

1
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= / Nydu + at,Tl,szt + / AuO'uat,Tl,’rzeLdu
T t

1

T2
+ / Noovel AL exp {A(rs — 1)} — li]erdu (1)
T1

where ), is market price of risk, and o, is the volatility of
temperature.

To estimate o, more accurately is to price the futures more
precisely.
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1-5

Figure 2: Weather Stations in China
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Motivation 1-6

Statistical Challenges

(] Traditional: estimate GQR individually
(] Directly: estimate GQR jointly

[ common structure neglected

[] too many parameters, curse of dimensionality
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Motivation 1-7

Functional Data Analysis (FDA)

a tool to capture random curves
consider dependencies between individuals
FPCA a tool to reduce dimensionality

interpretation of factors

0ot

apply “FPCA" and least asymmetric weighted squares (LAWS)
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Generalized Quantile Estimation for Single Distribution 2-1

Quantile and Expectile

Quantile /
F(I):/_ dF(y)=r
I =F~Yr)
Expectile /
oo ly = 11dF(y)
0=y = 1dr) ="
| = Gfl(T)
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Generalized Quantile Estimation for Single Distribution 2-2

Loss Function

Loss function:
L(y,0) =y —0|* (2)

Asymmetric loss function for generalized quantiles:
pr(u) = [Wu < 0) — 7|[ul? 7€(0,1) 3)

with o € {1,2} and u =y — 0.
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Generalized Quantile Estimation for Single Distribution 2-3
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Figure 3: Loss functions for 7 = 0.9 (red); 7 = 0.5 (blue); o = 1 (solid
line); o = 2 (dashed line). » ‘
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Generalized Quantile Estimation for Single Distribution 2-4

Weight

wa(u) = [I(u < 0) — 7|ul*~?) (4)
Minimum contrast approach:
I = argmein E{p-(Y —0)}
= arg mein Ewa(Y —0)Y -6
Generalized quantile regression curve:
b(t) = argmin E{p(Y —0)X =t}
= argmin E{w,(Y —0)|Y — 6’| X = t}
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Generalized Quantile Estimation for Single Distribution 2-5

Estimation Method

[] Kernel Smoothing
» Quantile: Fan et.al (1994)
» Expectile: Zhang (1994)
[] Penalized Spline Smoothing

» Quantile: Koenker et.al (1994)
» Expectile: Schnabel and Eilers (2009)

GQR can be estimated by Iterated Reweighted Asymmetric Least
Square.
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Generalized Quantile Estimation for Single Distribution 2-6

Single Curve Estimation

Rewrite as regression pb:
Y =I(t) + et (5)

where F-1(7)=0and G }(7)=0.

elt elt

Approximate /(-) by a B-spline basis:
I(t) = b(t) "6, (6)

where b(t) = {b1(t), -+, bg(t)} " is a vector of cubic B-spline
basis and 6, is a vector with dimension g.
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Generalized Quantile Estimation for Single Distribution

Estimation

Employ a roughness penalty:

T

S(0,) = Z we{ Ye — b(t) " 0,,}?

t=1

+)\{6T/b t)Tdt 0,}

where Y = (Y1, Ya,---, Y7)T, b(t) = 821;(;) and
we = wo{Y: — I(t)} (/(t) known).
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Generalized Quantile Estimation for Single Distribution 2-8
Estimation

The generalized quantile curve:

@L = arg rrgin S5(6,)

w

_ {BTWBH/L(t)L(t)Tdt}1(BTWY)

B = {b(t)}._, is the spline basis matrix with dimension T x g, and
W = diag{w:} defined in (4):

1(t) = b(t)8), (8)
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FDA of Generalized Quantile Regression

Regression Model
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Figure 4:

Yij = li(ty) +ej

Data design with 7 = 0.95. @ design
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3-2

FDA of Generalized Quantile Regression

Mixed effect Model

Observe i =1,--- , N individual curves:

h(t) = (t) + vi(t)

[J u(t) common shape
[ vi(t) departure from pu(t).
Approximate via

lj = li(ty) = b(ty) "6, + b(tz) vy

where i=1,--- ,Nand j=1,---,T;.
(] Too many parameters to estimate.

[J Very volatile for sparse data, James et.al (2000).
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FDA of Generalized Quantile Regression 3-3

Reduced Model

K
() = () + D i )vie (12)
k=1

[1 K the number of factors and f; k-th factor:
f(t) = {A(t), -, f(t)} T
O a; = (a1, -+ ,aik)' random scores.

Representation of i and f:

p(t) = b(t)"6,
f(t)" = b(t)' o

where §,, € R9 and Of with dimension g x K. —_—
FDA of GQR B
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FDA of Generalized Quantile Regression

Reduced Model

Rewrite (12)
/ij = /,'(t,'j) = b(tij)—r@u + b(tij)T@fai (13)
With Li = {li(t1),-- , i(T)} ", Bi={b(t1),--- ,b(T;)}", the
GQR curves:
Li = Bjb, + BiOra (14)
Then the model reads:

Yi=Li+¢e;= B0, + BiOraj +¢; (15)

with Y;is T; x 1 and «; is K x 1.
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FDA of Generalized Quantile Regression 3-5

Constraints

Orthogonality requirements of the factors:

/f (t)"dt = eT/b t)dt ©f = I

That is to say
0/e; = Ik
/b(t)Tb(t)dt = I
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FDA of Generalized Quantile Regression 3-6
“Empirical" Loss Function

For the GQR regression:

N T;
S=2 > wi{Yy— b(t) 0, — b(t) ©ra;}*  (16)

i=1 j=1

Roughness penalty:

M,

GT/b )b(t)"dt 6,
M, = Ze} / b(£)B(t) T dt Oyr

And wjj = wo (Y} — I;j), where [;; defined in (13).
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FDA of Generalized Quantile Regression

LAWS

S = 5+)‘,U»M,U+)‘fo
N
= > (Yi— Bif — Bi®ra) Wi(Y; — B6),
i=1

+)\M{9T/b t)'dt 6,}

+Af{29fk/b Vb(£)Tdt 05 4}

where 0¢ i is the k-th column in ©f.
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FDA of Generalized Quantile Regression 3-8

Solutions

Minimizing S*:

-1
b, = {ZBTWB + A /b b(tTdt}
i=1
N A~
{Z B Wi(Y; - B,-efa,-)}
i=1
N -1
i=1

N
{ZauBTW(Y B0, B,-Q,-J-)} (18)
i=1
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FDA of Generalized Quantile Regression 3-9

— ~ V1~ ~
aj = {@;B;T VViBief} {@IB,-T Wi(Y: — Bieu)} (19)
Where
Qij = Zéf,k&ik
ki
andi=1,--- ,N,j=1,--- K.

[J initial values [ > Details J
[ updated procedure [ > Details J
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FDA of Generalized Quantile Regression 3-10

Auxiliary Parameters

[J Number of knots is not crucial, James et.al (2000)

[ Use 5-fold cross validation (CV) to choose the number of
factors and the penalty parameters

[ Define an index function x : {1,--- , N} — {1,--- ,5} and

7,-(-)_”(") denote the estimated ith generalized quantile
function using data excluding those in the fold of x(i).

CV(K, A\uy Ar) = Zzpﬂm [ O))

ll’iljl
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Simulation 4-1

Simulation

Yij = () + A(t)eni + H(t)azi + € (20)
withi=1,--- /N, j=1,---,T; and t; is equal distanced on [0, 1].

The common shape curve and factor functions:

p(t) = 14 t+ exp{—(t—0.6)%/0.05}
fi(t) = sin(2rt)/V0.5
H(t) = cos(2rt)/v/0.5

where aq; ~ N(O7 36), Qo ~ N(O, 9)
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Simulation 4-2

Scenarios

1 ej ~ N(0,0.5)
1 ej ~ N(O, u(t) x 0.5)
(] €jj ~ t(5)

(] small sample: N=20,T7 = T; = 100
] large sample: N =40, T = T; = 150

Theoretical 7 quantile and expectile for individual i:
lj = p(t;) + f(t))aai + f(t)azi + &

where ¢;; represents the corresponding theoretical 7-th quantile and
expectile of the distribution of e; (g;; = e + /0.5 - ®71(7)).
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Simulation

Estimators

[0 The individual curve:

[J The mean curve:

Min
FDA of GQR
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K
w4+ Z froik
k=1

Bié\u + Biéf&i

Single curve, see (8)

1 -
= Nzli,in @




Simulation 4-4
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Figure 5: The estimated p (blue dotted), the real p (black solid) and the
5% — 95% pointwise confidence intervals ( red dashed) for 95% expectile
curves when the error term is normally distributed with mean 0 and variance
0.5. The sample size are respectively N = 20, M = 100 (Left) and N =
40, M = 150 (Right).
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Simulation 4-5
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Figure 6: The estimated first and seond principal components f; and f5._
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Simulation 4-6
Expectile curves Quantile curves
Scenario Sample Size FDA Separate FDA Separate
1 N =20,T =100 0.0815 0.1407 0.1733 0.2539
(0.0296)  (0.0149) (0.0283)  (0.0227)
N =40,T =150 0.0189 0.0709 0.0723 0.1875
(0.0025) (0.0052) (0.1205) (0.0127)
2 N =20,T =100 0.1436 0.3188 0.2769 0.8039
(0.0248)  (0.0339) (0.1061) (0.0860)
N =40,T =150 0.0931 0.2751 0.1785 0.6029
(0.0106) (0.0188) (0.0813)  (0.0503)
3 N =120, T =100 0.2859 0.5194 0.4490 1.2227
(0.0525) (0.1284) (0.2867)  (0.2290)
N =40,T =150 0.1531 0.4087 0.2340 0.8683
(0.0212) (0.0707) (0.1259)  (0.1085)
Table 1 The summary statistics (mean and SD) of the MSEs for esti-

mating 95% generalized quantile curves by the FDA approach and the sepa-
g g y

rate estimation approach.

eij ~ N(0, p(t) x 0.5) and Scenario 3 with gj ~ t(5).

FDA of GQR
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Figure 7: Time series plot of 5 selected weather stations (south, north,

east, west and middle) from 150 weather stations in China
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Application

Data

Let Tj: denote the average temperature on day ¢ for city (station)
i. The standard model described is:

Tit = Xit + Nit,

M
2n(t — d;
Nie = aj + bt + ZC""’COS{,E,,%E-I, )},

(22)

m=1

Pi
Xit = E BijXit—j + €it-
=1
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Application 5-3

Expectile levels

PCindex 5% 25% 75% 95%

1 0.3833 0.0596 0.0659 0.4421
0.0665 0.0131 0.0194 0.1102
0.0471 0.0077 0.0158 0.0746
0.0415 0.0074 0.0123 0.0657
0.0306 0.0072 0.0056 0.0455
0.0262 0.0051 0.0050 0.0226

SO WN

Table 2: The empirical variances of PC scores for the Chinese temperature
data.
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Application 5-4
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Figure 8: The estimated first principal component for the 5% (black solid),
25% (red dashed), 75% (green dotted), 95% (blue dash-dotted) expectiles
curves of the volatility of the temperature of China in 2010 with the data
from 150 weather stations.
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Application 5-5

Figure 9: The estimated first principal component scores a; for the 5%,
25%, 75% and 95% expectile curves of the temperature distribution.
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Conclusion 6-1

Conclusion

(] Dimension Reduction technique applied to a nonlinear object.

(] Provides a novel way to estimate several generalized quantile
curves simultaneously.

[] Outperforms the single curve estimation, especially when the
data is very volatile.

[ Pricing weather derivatives more precisely can be possible.
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Conclusion 6-2
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Appendix 7-1
Volatility of Temperature
> Return J
[1 The temperature T; on day t for city /:
Tie = Xie + Ni
[J The seasonal effect Ag:
Nie = ai + bit + Zc,,,,cos{ ( _ 'm)}
m=1
[J Xt follows an AR(p;) process:
Pi
Xii = Z ,Bini,t—j + €it (23)
j=1

Pi
Eir = Xit_g BiiXie—j
s
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Appendix 7-2

Initial Values

1. Estimate N single curves?,- individually.

2. Linear regression for auoi li = Bib, +¢;
3. Calculate 7,-0 :7,- — B;é\uo, and Fo = (Flo, e ,FNO).
lo=Bili +¢
4. Apply SVD to decompose Tio:
Tio = UDVT = ©gpajo

5. Choose the first K factors from U as é,co, and regress F,-o on éfo to
get Qjo:

Fio = éfo(am S k) € (24)
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Appendix 7-3

Update Procedure

1. Plug O and @jo into (18) to update 6,,, and get 0,,;.

2. Plugging OAul and @jp into the second equation of (18) gives
Or1.

3. Given @\#1 and éf‘]_, estimate a;.

4. Recalculate the weight matrix:

wi; = wo( Yy —Ty)

where //\,-J- is the j-th element in /l: = B;@\#l + BiéflO/é\,‘
5. Repeat step (1) to (4) until the solutions converge.
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Appendix 7-4
Mercer’'s Lemma

The covariance operator K
K(s,t) = Cov{l(s),I(t)}, E{I(t)} = p(t),s,t €T (25)

There exists an orthonormal sequence (7)) and non-increasing and
non-negative sequence (k;),

(KY)(s) = rjibi(s)
K(s,t) = D rji(s)uy(t)
j=1

io:l"ij = /K(t, t)dt < oo (26)
j=1

I
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Appendix 7-5

Karhunen-Loéeve Theorem

Under assumptions of Mercer's lemma

I(8) = u(e) + ) V/RiEi(2) (27)

j=1

where & %/ L[ I(t);(s)ds, and E(g) =0

E(§ék) =0jkx  Jj,keN

and §; x is the Kronecker delta.
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