Alena Myšičková Piotr Majer Song Song Peter N. C. Mohr Wolfgang K. Härdle Hauke R. Heekeren

C.A.S.E. Centre for Applied Statistics and Economics Humboldt-Universität zu Berlin Freie Universität Berlin

Max Planck Institute for Molecular Genetics

http://lvb.wiwi.hu-berlin.de

http://www.languages-of-emotion.de

http://www.molgen.mpg.de

Risk Perception

- Can statistical analysis help to detect this area?
- □ Response curve (to stimuli)? classify "risky people"?

Risk Perception

- Survey conducted by Max Planck Institute
- 22 young, native German, right-handed and healthy volunteers
 - 3 subjects with extensive head movements (> 5mm)
 - 2 subjects with different stimulus frequency

$$n = 22 - (3 + 2) = 17$$

- Experiment
 - \triangleright Risk Perception and Investment Decision (RPID) task (\times 45)
 - ▶ fMRI images every 2.5 sec.

Risk Perception



Risk Perception - Thermodynamics

Theoretical framework

Risk-return model Mohr et al., 2010

Empirical evidence

 Mechanical Equivalent of Heat the first law of thermodynamics Mayer, 1841

Experiments "Joule apparatus"Joule, 1843

Risk Perception

 Measuring Blood Oxygenation Level Dependent (BOLD) effect every 2-3 sec

High-dimensional, high frequency & large data set

Risk Perception

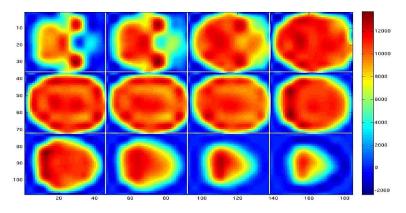
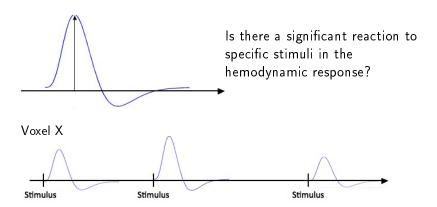


Figure 1: Example of a fMRI image at fixed time point, 12 horizontal slices

of the brain's scan. MRI
Risk Patterns and Correlated Brain Activities

fMRI



fMRI methods

- Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Voxel-wise GLM
 Vo
 - linear model for each voxel separately
 - strong a priori hypothesis necessary
- Dynamic Semiparametric Factor Model (DSFM)
 - ▶ Use a "time & space" dynamic approach
 - ► Separate low dim time dynamics from space functions
 - Low dim time series exploratory analysis

Outline

- 1. Motivation ✓
- 2. DSFM
- 3. Results vs. Subject's Behaviour
- 4. Conclusion
- 5. Future Perspectives

Notation

$$\underbrace{(X_{1,1}, Y_{1,1}), \dots, (X_{J,1}, Y_{J,1})}_{t=1}, \dots, \underbrace{(X_{1,T}, Y_{1,T}), \dots, (X_{J,T}, Y_{J,T})}_{t=T},$$

 $X_{j,t} \in \mathbb{R}^d$, $Y_{j,t} \in \mathbb{R}$ T - the number of observed time periods J - the number of the observations in a period t $\mathsf{E}(Y_t|X_t) = F_t(X_t)$

What is $F_t(X_t)$? How does it move?

Dynamic Semiparametric Factor Model

$$\mathsf{E}(Y_{t}|X_{t}) = \sum_{l=0}^{L} Z_{t,l} m_{l}(X_{t}) = Z_{t}^{\top} m(X_{t}) = Z_{t}^{\top} A^{*} \Psi$$

$$Z_t = (1, Z_{t,1}, \dots, Z_{t,L})^{\top}$$
 low dim (stationary) time series $m = (m_0, m_1, \dots, m_L)^{\top}$, tuple of functions $\Psi = \{\psi_1(X_t), \dots, \psi_K(X_t)\}^{\top}, \psi_k(x)$ space basis $A^* : (L+1) \times K$ coefficient matrix

DSFM Estimation

$$Y_{t,j} = \sum_{l=0}^{L} Z_{t,l} m_l(X_{t,j}) + \varepsilon_{t,j} = Z_t^{\top} A^* \psi(X_{t,j}) + \varepsilon_{t,j}$$

 $\ \ \ \ \ \psi(x) = \left\{\psi_1(x), \ldots, \psi_K(x)
ight\}^{ op}$ tensor *B*-spline basis

$$(\widehat{Z}_{t}, \widehat{A^{*}}) = \arg\min_{Z_{t}, A^{*}} \sum_{t=1}^{I} \sum_{i=1}^{J} \left\{ Y_{t,j} - Z_{t}^{\top} A^{*} \psi(X_{t,j}) \right\}^{2}$$
(1)

Minimization by Newton-Raphson algorithm

B-Splines

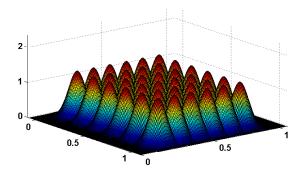


Figure 2: *B*-splines basis functions; order of *B*-splines: quadratic; number of knots: 36

DSFM Estimation

 \odot Selection of L by explained variance

$$EV(L) = 1 - \frac{\sum_{t=1}^{T} \sum_{j=1}^{J} \left\{ Y_{t,j} - \sum_{l=0}^{L} Z_{t,l} m_l(X_{t,j}) \right\}^2}{\sum_{t=1}^{T} \sum_{j=1}^{J} \left\{ Y_{t,j} - \bar{Y} \right\}^2}$$

number of *B*-splines (equally spaced) knots: 12 imes 14 imes 14

L=2	L = 4	<i>L</i> = 5	L = 10	L = 20
92.07	92.25	92.29	93.66	95.19

Table 1: EV in percent of the model with different numbers of factors L, averaged over all 17 analyzed subjects.

Panel DSFM

$$Y_{t,j}^{i} = \sum_{l=0}^{L} (Z_{t,l}^{i} + \alpha_{t,l}^{i}) m_{l}(X_{t,j}) + \varepsilon_{t,j}, \quad 1 \leq j \leq J, \quad 1 \leq t \leq T,$$

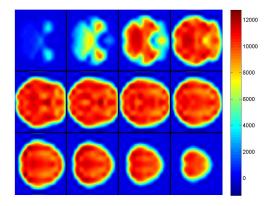
- \Box n = 17 weakly/strongly risk-averse subjects
- □ $Y_{t,j}$ BOLD signal; X_j voxel's index $α_{t,j}^i$ fixed individual effect

Panel DSFM Estimation

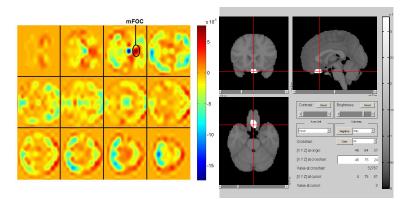
- 1. Average $Y_{t,j}^i$ over subjects i to obtain $\bar{Y}_{t,j}$
- 2. Estimate factors m_l for the "average brain" (via one step of 1)
- 3. Given \widehat{m}_l , for i, estimate $Z_{t,l}^i$

$$Y_{t,j}^{i} = \sum_{l=0}^{L} Z_{t,l}^{i} \widehat{m}_{l}(X_{t,j}) + \varepsilon_{t,j}^{i}$$

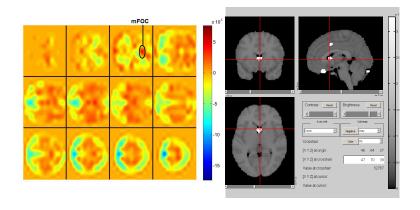
 \boxdot 26h - estimation time; CPU - 2 \times 2.8GHz; data set of size 24.31 GB



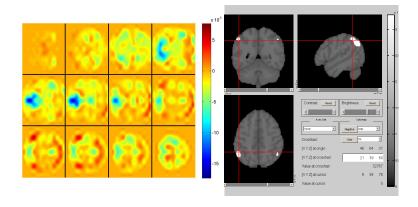
Estimated constant factor $\widehat{m}_0 = \sum_{k=1}^K \widehat{a}_{0,k} \psi(X)$ with L=20



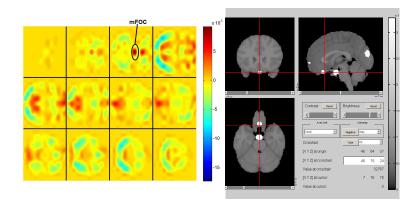
Estimated factor $\widehat{m}_5 = \sum_{k=1}^K \widehat{a}_{5,k} \psi(X)$ with L=20 (MOFC = Medial orbitofrontal cortex)



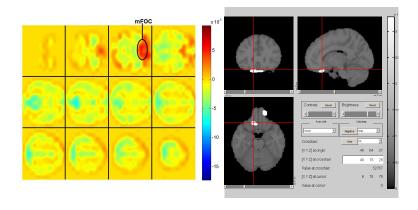
Estimated factor $\widehat{m}_9 = \sum_{k=1}^{\mathcal{K}} \widehat{a}_{9,k} \psi(X)$ with L=20



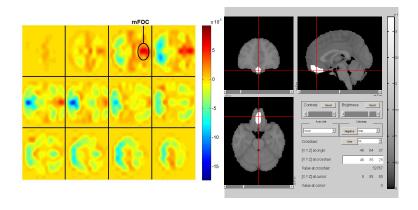
Estimated factor
$$\widehat{m}_{12} = \sum_{k=1}^K \widehat{a}_{12,k} \psi(X)$$
 with $L=20$



Estimated factor $\widehat{m}_{16} = \sum_{k=1}^K \widehat{a}_{16,k} \psi(X)$ with L=20



Estimated factor
$$\widehat{m}_{17} = \sum_{k=1}^{K} \widehat{a}_{17,k} \psi(X)$$
 with $L=20$



Estimated factor
$$\widehat{m}_{18} = \sum_{k=1}^K \widehat{a}_{18,k} \psi(X)$$
 with $L=20$

Estimated Factor Loading \widehat{Z}_5

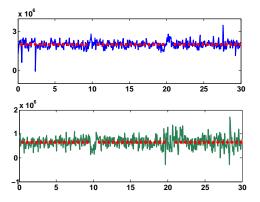


Figure 3: Estimated factor loading \widehat{Z}_5 for subjects within 30 minutes: 12 (lower panel) and 19 (upper panel) with L=20; red dots denote stimulus Risk Patterns and Correlated Brain Activities

Estimated Factor Loading \widehat{Z}_9

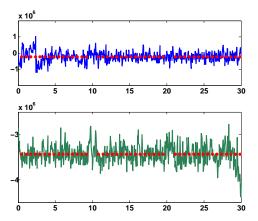


Figure 4: Estimated factor loading \widehat{Z}_9 for subjects within 30 minutes: 12 (lowerapenel) and CD9 (upperBpainel) withe L=20; red dots denote stin

Estimated Factor Loading \widehat{Z}_{12}

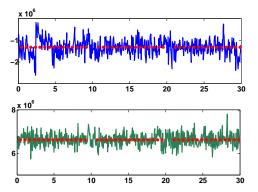


Figure 5: Estimated factor loading \widehat{Z}_{12} for subjects within 30 minutes: 12 (lower panel) and 19 (upper panel) with L = 20; red dots denote stimulus

Estimated Factor Loading \widehat{Z}_{16}

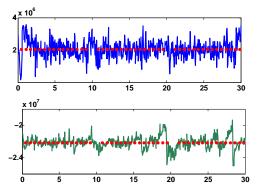


Figure 6: Estimated factor loading \widehat{Z}_{16} for subjects within 30 minutes: 12 (lower panel) and 19 (upper panel) with L=20; red dots denote stimulus

Estimated Factor Loading \widehat{Z}_{17}

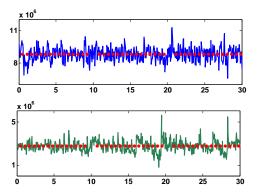


Figure 7: Estimated factor loading \widehat{Z}_{17} for subjects within 30 minutes: 12 (lower panel) and 19 (upper panel) with L=20; red dots denote stimulus

Estimated Factor Loading \widehat{Z}_{18}

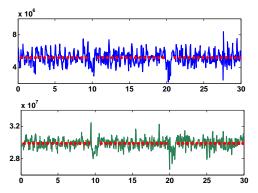


Figure 8: Estimated factor loading \widehat{Z}_{18} for subjects within 30 minutes: 12 (lower panel) and 19 (upper panel) with L=20; red dots denote stimulus

Reaction to the stimulus

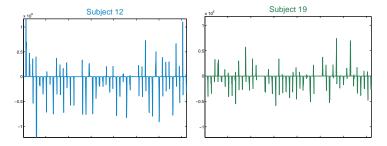


Figure 9: Reaction to stimulus for factors loadings $\widehat{Z}_{t,12}$ for subjects 12 (left) and 19 (right) during the whole experiment (45 stimuli).

- Subject's risk perception risk metrics
 - standard deviation
 - empirical frequency of loss (negative return)
 - difference between highest an lowest return (range)
 - coefficient of range (range/mean)
 - empirical frequency of ending below 5%
 - coefficient of variation (standard deviation/mean)
- \odot Different subject different risk perception fitted by correlation between risk metrics of return streams and answers for 1 task, N=27

- Subjective expected return return ratings
 - recency (higher weights on later returns)
 - primacy (higher weights on earlier returns)
 - below 0% (higher weights on returns below 0%)
 - ▶ below 5% (higher weights on returns below 5%)
 - mean
- oxdots Selecting return ratings for each subject individually best model by one-leave-out cross validation procedure, N=27

□ Risk-return choice model

$$V_i = m_i - \beta_i R_i, \quad 1 \leq i \leq n,$$

 m_i -subjective expected return, R_i - perceived risk, V_i - subjective value, 5% - risk free return

 $oxedsymbol{ox{oxedsymbol{oxedsymbol{ox{oxedsymbol{ox{oxed}}}}}}}$ Risk attitude parameter

$$P \{ risky \ choice | (m, R) \} = \frac{1}{1 + exp(m - \beta R - 5)}$$

$$P \{ sure \ choice | (m, R) \} = 1 - \frac{1}{1 + exp(m - \beta R - 5)}$$

risky choice - unknown return, sure choice - fixed, 5% return

 $oxdot \widehat{eta}$ derived by maximum likelihood method

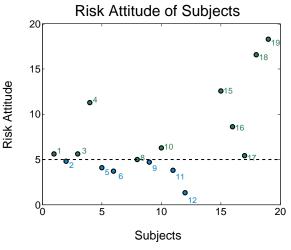


Figure 10: Risk attitude for 16 subjects; modeled by the softmax function from individuals' decisions, estimated by ML method Mohr et al.

Risk Patterns and Correlated Brain Activities

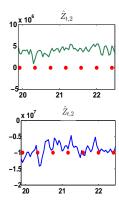
SVM Classification Analysis

- Support Vector Machines (SVM)17 subjects, 20 factor loadings per subject
- Leave-one-out method to train and estimate classification rate SVM with Gaussian kernel; (R, C) chosen to maximize classification rate

SVM Classification Analysis

- Reaction to the RPID corresponds to dynamics of $\widehat{Z}_{t,l}^{i}$, l = 5, 9, 12, 16, 17, 18
- First 3 observations (7.5 sec.) after stimulus

Decison time - 7 sec.



SVM Classification Analysis

- 1. factors attributed to risk patterns: l = 5, 9, 12, 16, 17, 18
- 2. only "Decision under Risk" (Q3) stimulus
- 3. $\Delta \widehat{Z}_{t,I}^i \stackrel{\text{def}}{=} \widehat{Z}_{s+t,I}^i \widehat{Z}_{s,I}$, s is the time of stimulus
- 4. average reaction to s stimulus $\overline{\Delta} \widehat{Z}_{s,l}^i = \frac{1}{3} \sum_{\tau=1}^3 \Delta \widehat{Z}_{s+\tau,l}^i$

SVM input data: volatility of $\overline{\Delta} \widehat{Z}_{s,l}^i$ over all Q3

Std	d Estimated		
		Strongly	Weakly
Data	Strongly	1.00	0.00
	Weakly	0.14	0.86

Table 2: Classification rates of the SVM method, without knowing the subject's estimated risk attitude.

Conclusion — 4-1

Conclusion

- oxdot Factors \widehat{m} identify activated areas, neurological reasonable
- ightharpoonup SVM classification analysis of measurements in $Z_{t,l}$, l=5,9,12,16,17,18 after stimulus, can distinguish weakly/strongly risk-averse individuals with high classification rate, without knowing the subject's answers

Future Perspectives

- Comparison with the PCA/ICA (PARAFAC) approach
- Analysis of the second part of the experiment (under assumption of independency) to "generate" larger number of subjects
- Improvement of the classification criterion
- □ Penalized DSFM with seasonal effects

Alena Myšičková Piotr Majer Song Song Peter N. C. Mohr Wolfgang K. Härdle Hauke R. Heekeren

C.A.S.E. Centre for Applied Statistics and Economics
Humboldt-Universität zu Berlin
Freie Universität Berlin
Max Planck Institute for Molecular Genetics
http://lvb.wiwi.hu-berlin.de
http://www.languages-of-emotion.de
http://www.molgen.mpg.de

References

Remarks on the Forces of Nature

The Benjamin/Cummings Publishing Company, London, 1841.

Mohr, P., Biele G., Krugel, L., Li S., Heekeren, H. Risk attitudes

Neural foundations of risk-return trade-off in investment
decisions

Neurolmage, 49: 2556-2563

Park, B., Mammen, E., Härdle, W. and Borak, S. Time Series Modelling with Semiparametric Factor Dynamics J. Amer. Stat. Assoc., 104(485): 284-298, 2009.

References

陯 Ramsay, J. O. and Silverman, B. W.

Functional Data Analysis

New York: Springer.

Noolrich, M., Ripley, B., Brady, M., Smith, S.

Temporal Autocorrelation in Univariate Linear Modelling of **FMRI** Data

Neurolmage, 21: 2245-2278

Voxel-wise GLM | fMRI methods

- □ GLM framework

$$Y = XB + \eta$$
,

- Y single voxel **BOLD** time series, X design matrix (regressors, i.e. visual, auditory)
- \square Significant, active areas (B) selected by z-scores

