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Motivation 1-1

Generalized Quantiles

(] Quantiles and Expectiles are “generalized quantiles", Jones
(1994).

[-] Capture the tail behaviour of conditional distributions.
[J Applications in finance, weather, demography, - - -

[] Some applications involve MANY GQR curves.
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Motivation 1-2

Estimation Method

[] Kernel Smoothing
» Quantile: Fan et.al (1994)
» Expectile: Zhang (1994)
[] Penalized Spline Smoothing

» Quantile: Koenker et.al (1994)
» Expectile: Schnabel and Eilers (2009)

Both can be estimated by least asymmetric weighted squares
(LAWS)
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Motivation 1-3

Method

[ Traditional: estimate individually

(] Directly: estimate all parameters together

(] not all information applied

[] too many parameters, curse of dimensionality
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Motivation 1-4

Functional Principle Component
Analysis(FPCA)

(] a common tool to capture random curves

(] dimension reduction

] meaningful interpretation of principle components
(] apply FPCA and LAWS to estimate GQR curves

FPCA for Expectiles




Motivation 1-5
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Figure 1: Estimated 95% expectile curves for the volatility of temperature
of 30 cities in Germany from 1995-2007.

FPCA for Expectiles




Outline

1. Motivation Vv

2. Generalized Quantile Estimation

3. FPCA for Generalized Quantile Regression Curve
4. Simulation

5. Application

6. Conclusion

FPCA for Expectiles




Generalized Quantile Estimation for Single Distribution 2-1

Quantile and Expectile

Quantile /
A= [ dF) =
| = F;l(T)
Expectile /
S Y = 11dF(y)
YO == v =iare =T
| = G;I(T)
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Generalized Quantile Estimation for Single Distribution 2-2

Loss Function

[] Square loss L(Y,0) = (Y —6)?
[ Absolute value loss L(Y,0) = |Y — 6|

Asymmetric loss function for generalized quantiles:
pr(u) = [1(u < 0) — 7[[u]®, 7€ (0,1) (1)

with a € {1,2} and u =Y — 6.
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Generalized Quantile Estimation for Single Distribution 2-3

10
9
o
c o«
S
k3]
c
S
[
o
]
o
J
=
o |
IS}
I I I I I I I
-3 -2 -1 0 1 2 3
X

Figure 2: Loss functions for 7 = 0.9(red); 7 = 0.5(blue); o = 1 (slide
line); a = 2 (dashed line). ' ‘
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Generalized Quantile Estimation for Single Distribution 2-4
Minimum contrast approach:

b= argmin E{p.(Y — 0)}

= argm@in (1 —7’)/

—00

0 e’}
y — 01°dF(y) + 7 /9 ly — 0]°dF(y)

generalized quantile regression curve:

le = argmein E{p-(Y —0)|X =t}
0

S

—0o0

ly — 0]°dF(y|t) + /9 ly — 61*dF (y]2)
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Generalized Quantile Estimation for Single Distribution 2-5

Single Curve Estimation

Ye=1(t) + et (2)
approximate /(-) by a spline basis:
I(t) = b(t) "6, (3)

where b(t) = {b1(t), -+, bg(t)}" is a vector of basis functions and
6, is a vector with dimension q.
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Generalized Quantile Estimation for Single Distribution 2-6

Estimation

Employ a roughness penalty:

)
S(0,) = 3" wel Ye — b(£) 0,07 + A6 / b()b(t)Tdt 0.} (4)
t=1

where Y = (Y1, Ya,---, Y7)T, b(t) = agzt(zt) and w; is the t-th

element of the weight matrix defined in (6).
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Generalized Quantile Estimation for Single Distribution
Weight

For expectile:
Wi =
1—7 if Yy <I(t)

and for quantile:

viorr F Ye> (1)

im},—(;w if Yy =I(t)

Therefore, quantiles can be calculated by LAWS.

FPCA for Expectiles

2-7

(5)

(6)




Generalized Quantile Estimation for Single Distribution 2-8

Estimation

The generalized quantile curve:

~

6, = arg min 5(6,)
= {BTWB+)\/b (t)Tdt} 1(BTwy)
B = {b(t)} is the spline basis matrix with dimension T x g, and

W defined in (6): R
I(t) = b(t)0y (7)
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FPCA for Generalized Quantile Regression 3-1

Mixed effect Model

Observe i =1,--- , N individual curves:

li(t) = pu(t) + vi(t) (8)

[J p(t) mean function,
[ vi(t) departure from pu(t).
Approximate via

lj = I(tg) = b(ti) "0, + b(ty) "y (9)

where i=1,--- ,Nand j=1,---,T;.
(] Too many parameters to estimate.
[ Very volatile when sparse data exists, James et.al (2000).
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FPCA for Generalized Quantile Regression

Reduced Model

[J pu(t) the overall mean
] fi k-th principle component functions with

F(t) = {A(t), - fic(t)}T

) aj = (aj1,- -+, ajk) principle component scores.

Represent 1 and f by a basis of spline functions:

u(t) = ()T,
()T = br)Te;
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3-3

FPCA for Generalized Quantile Regression

lj = I(t5) = b(ty) "0, + b(ty) ' Ora;

Further, define L; = {/i(t1),- - ,l,-(T,-)}T,

B; = {b(t1), - ,b(T;)}T is the basis matrix with dimension
T,' X q.

The GQR curves in a matrix form:

L; = B,'@u + B;Oraq;
Then the model is transferred as

Yi=Li+e¢ei = Bif, + BOra; +¢;
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FPCA for Generalized Quantile Regression 3-4

Constraints

0fer = Ik

/b(t)Tb(t)dt _ 1,

which satisfies the usual orthogonality requirements of the principle
component curves:

/f (t)"dt = @T/b t) T b(t)dt O = Ix
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FPCA for Generalized Quantile Regression 3-5

Empirical Loss Function

S= ZZW,,{Y,J b(t)) "0, — b(t;) T Ora;}? (14)

i=1 j=1

T if Y,'J' > /,J
W,'j = (15)
1-— T If Y,'j S /,J

A roughness penalty applied to both mean and departure curve:

where

I\/queT/b Tdt o,

Mg = Zka/b t)Tdt Orr
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FPCA for Generalized Quantile Regression 3-6

Asymmetric Least Square

S* = S+ )‘#MM + A Mg
N
= Z(Yl — B,-GM - B,-@fa,-)TVV,-(Y,- — B,'Qu — B,-@,ca,-)
i=1

+Au{0) / b(t)b(t)"dt 6,.}

K
A [ Ble)b(e)de i) (16)
k=1
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FPCA for Generalized Quantile Regression 3-7

Solutions

Minimizing (16):

N —1
0, = {ZBTWB Y /b(t Tdt}
=1
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FPCA for Generalized Quantile Regression

3-8

& = {éIB,TVV,-B,-éf}*l{éIB,TVV,-(Y,-—B,@u)} (18)

Where
Qj=> Ot
Py
andi=1,--- N, j=1,---,K.
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FPCA for Generalized Quantile Regression 3-9

Initial Values

1. Estimate N single curves?,- individually.
2. Run linear regression to get @0' 7 = Bif,, +¢;

3. Calculate /0 = / - B; Hﬂo, and run the linear regression to get
Fio = ©roaio, and To = (T10,- -+ , o).

o= Bil; +e
4. Apply SVD to decompose Tio:
F,‘o = UDVT = efooé,'o

5. Choose the first K principle components from U as ©fo, and do
regression based on ©¢g to get Qjo:

Tio = Oro(ein, -, i) + i (19)

FPCA for Expectiles




FPCA for Generalized Quantile Regression 3-10

Update Procedure

5.

FPCA for Expectiles

Plug éfo and @jg into (17) to update 6,,, and get é,u.
Plugging HA,A and @jp into the second equation of (17) gives
On. R

Given 6,1 and ©O¢q, estimate q;.

Recalculate the weight matrix:

T if Y,'J'>//\,‘j
1—7 if V<]

where 7,-J- is the jth element in7,- = B,-é\ul + B,-@,clo’[,-
Repeat step (1) to (4) until the solutions converge.




FPCA for Generalized Quantile Regression 3-11

Auxiliary Parameters

[J Number of knots is not crucial.
[J Use 5-fold cross validation (CV) to choose the number of
components and the penalty parameters.

N—mx5 T;

cvim=¢ > Swlv-hP ()

i=N—(m—1)x5 j=1

where m=1,2,--- [[N/5].
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Simulation 4-1

Simulation

Yie = p(t) + A(t)aa; + f(t)aoi + €ir (21)
with i=1,--- Nand t=1,---,T.

The mean curve and principal component functions:

p(t) = 1+ t+ exp{—(t—0.6)%/0.05}
A(t) = sin(27x)/V/0.5
H(t) = cos(2mx)/v0.5

where aq; ~ N(O7 36), Qo ~ N(O, 9)

FPCA for Expectiles




Simulation 4-2

Scenarios

L] Ejit ~ N(O, 05)
5 e ~ N(O, u(t) x 0.5)
L] Ejit ~ t(5)

[ small sample: N =20, T = 100

[] large sample: N =40, T = 150
Theoretical 7 quantile and expectile for individual i
lie = p(t) + A(t)asi + h(t)az + e

where e, represents the corresponding theoretical 7-th quantile and
expectile of the distribution of ¢j;.
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Simulation

Estimators

[0 The individual curve:

i =
/i,in

[J The mean curve:

Min
FPCA for Expectiles

43

K
w+ Z froik
k=1

Bié\u + Biéf&i

Single curve, see (7)

1 -
= Nzli,in @




Simulation 4-4
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Figure 3: The estimated principle components (dashed blue) compared
with the true ones (solid red) for the 95% expectile with the error term
normally distributed. The left part is for N = 20, T = 100. The rlght one

EPf A%r Eﬁgegt—lles 150.




Simulation 4-5
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Figure 4: The estimated mean curve compared with the true mean for the
95% expectile with the error term normally distributed. The left part is for
N =20, T = 100. The right one is for N = 40, T = 150.
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Simulation

Individual Mean

Sample Size FPCA Single FPCA  Single
N =20,7 =100 0.0469 0.0816 0.0072 0.0093
N =40, T =150 0.0208 0.0709 0.0028 0.0063
N=20,T =100 0.1571 0.2957 0.0272 0.0377
N =40,T =150 0.1002 0.2197 0.0118 0.0172
N=20,T =100 0.2859 0.5194 0.0454 0.0556
N =140,T =150 0.1531 0.4087 0.0181 0.0242

4-6

Table 1: The mean squared errors (MSE) of the FPCA and the single curve
estimation for expectile curves with error term is normally distributed with
mean 0 and variance 0.5 (Top Pattern), with variance pu(t) x 0.5 (Middle
Pattern) and t(5) distribution (Bottom Pattern).
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Application 5-1

Data

The temperature in 30 cities in Germany in 2006.
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Figure 5: Maps of the 30 cities of Germany.
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Application 5-2
(] The temperature T;; on day t for city i
Tit = Xit + Nit

(] The seasonal effect Aj;:

M
27(t — dim)
Nz = a;j + bit + Z Cimcos{ ———}

— [ -365
[J Xj follows an AR(p) process:
Pi

Xip = Z BijXit—j + €it (23)

j=1

Pi
Eit = Xit_E BijXi t—j
=1
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Application 5-3
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Figure 6: 5% (left) and 95% (right)

estimated expectile curves of the

temperature variations for 30 cities in Germany in 2006. The thick black
line represents the mean curve of the expectiles.
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Application 5-4
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Figure 7: 25% (left) and 75% (right) estimated expectile curves of the
temperature variations for 30 cities in Germany in 2006. The thick black
line represents the mean curve of the expectiles.
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Application 5-5
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Figure 8: The estimated three eigenfunctions for 05% (left) and 95% (right)
expectile curves of the temperature variation. The black one is the first
eigenfunction, the red one is the second and the green one represents the
third eigenfunction.
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Application 5-6
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Figure 9: The estimated three eigenfunctions for 25% (left) and 75% (right)
expectile curves of the temperature variation. The black one is the first
eigenfunction, the red one is the second and the green one represents the
third eigenfunction.
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6-1

Conclusion

Conclusion

(] Provides a novel way to estimate several generalized quantile
curves simultaneously.

[] Outperforms the single curve estimation, especially when the
data is very volatile.

[] Overcomes the data sparsity.
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Conclusion 6-2
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Appendix 7-1

30 cities in Germany

Aachen, Ausburg, Berlin, Bremen, Dresden, Dusseldorf, Emden,
Essen, Fehmarn, Fichtelberg, Frankfurt, Greifswald, Hamburg,
Hannover, Helgoland, Karlsruhe, Kempten, Konstanz, Leipzig,
Magdeburg, Munchen, Munster, Nurburg, Rostock, Saarbrucken,
Schieswig, Schwerin, Straubing, Stuttgart, Trier.
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