Shape Invariant Modelling and Risk Patterns

Maria Grith Wolfgang Härdle Juhyun Park

Ladislaus von Bortkiewicz Chair of Statistics CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin http://ise.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Financial Market

Riskless bond with constant interest rate r, stock price $(S_t)_{t \in [0,T]}$ follows a diffusion process

☑ risk neutral valuation principle

$$e^{-Tr}\int_0^\infty \psi(s_T) \; \frac{q(s_T)}{p(s_T)} p(s_T) \; ds_T$$

where q is a risk neutral density and p is the probability density function of S_T .

Pricing Kernels & Preferences

 \boxdot the pricing kernel at time 0

$$\mathcal{K}_0(S_T) = \frac{q(S_T)}{p(S_T)}$$

 relationship between representative investor's preferences and pricing kernel (e.g. Leland 1980):

$$ARA(S_{T}) = \frac{p'(S_{T})}{p(S_{T})} - \frac{q'(S_{T})}{q(S_{T})} = \frac{-\mathcal{K}'(S_{T})}{\mathcal{K}(S_{T})}$$

EPK Shape Invariant Modelling -

Empirical Pricing Kernel (EPK)

- \odot EPK: any estimation of pricing kernel $\frac{q}{2}$
- \boxdot under Black-Scholes model the EPK is decreasing in wealth
- other estimation methods and models for stock prices, Ait-Sahalia & Lo 2000, Engle & Rosenberg 2002, Brown & Jackwerth 2004

some paradoxa

Figure 1: EPK/Moneyness K/S_t for maturities: $\tau = 0.097$ (blue), 0.083 (red), 0.069 (magenta), 0.061 (cyan), 0.047 (black). Expiration date: 02-Jun-2006 EPK Shape Invariant Modelling

Figure 2: EPK/Moneyness for maturity τ =0.083, observed in 2006: 18-Jan (blue), 15-Feb (red), 22-Mar (magenta), 19-Apr (cyan), 17-May (black) EPK Shape Invariant Modelling

Literature

Multiple curves

- ⊡ Gasser et al. (1984) Zurich Longitudinal Studies on Growth
- ⊡ Härdle and Marron (1990) Automobile side impact data

Self Modelling

⊡ Sylvestre et al. (1972)

EPK paradoxon: aims

Empirical pricing kernels are not monotone decreasing across returns, vary across maturities and observation time:

- How to model the changes in the EPK functionals based on the common feature?
- Can EPK deformation explain the patterns in risk perception?

Outline

- 1. Motivation \checkmark
- 2. Empirical Pricing Kernel
- 3. Shape Invariant Modelling
- 4. Pricing Kernel and Risk Aversion
- 5. Conclusions
- 6. Selected Bibliography

The Financial Market I

In an arbitrage-free market, the European call price is given by

$$C_t(K,\tau,r,S_t) = e^{-r\tau} \int_0^\infty [S_T - K]^+ q(S_T | \tau, r, S_t) \, dS_T$$

- \bigcirc S_t the underlying asset price at time t,
- \odot K the strike price,
- \boxdot τ the time to maturity,
- \Box $T = t + \tau$ the expiration date,
- □ r constant risk free interest,

The Financial Market II

The price can be written as:

$$C_t(S_T) = e^{-r} \mathsf{E}^Q \left\{ (S_T - \mathcal{K})^+ | S_t \right\} \\ = e^{-r} \mathsf{E}^P \left\{ (S_T - \mathcal{K})^+ \mathcal{K}_t(S_t, S_T) | S_t \right\}$$

with $\mathcal{K}_t(S_t, S_T)$ the pricing kernel at time t, s.t conditional risk neutral distributions $Q_{S_T|S_t}$:

$$Q_{S_{\mathcal{T}}|S_t=s_t}(S_{\mathcal{T}} \leq x) \stackrel{\text{def}}{=} \int_{-\infty}^{x} \mathcal{K}_t(s_t, \cdot) \ dP_{S_{\mathcal{T}}|S_t=s_t}$$

where $P_{S_T|S_t=s_t}$ is the conditional distribution of S_T under S_t .

EPK Shape Invariant Modelling -

Data

- Source: Reseach Data Center (RDC) http://sfb649.wiwi.hu-berlin.de
- Datastream DAX 30 Price Index;
 2 years worth of daily returns in a sliding window
- EUREX European Option Data; daily tick observations; selected 38 days of cross-sectional data: 200304:200605

Estimation of PK

⊡ estimate PK as the ratio between 2 estimated densities:

$$\hat{\mathcal{K}}_t(s_t, S_T) = rac{\hat{q}_t(S_T)}{\hat{p}_t(S_T)}$$

□ $\hat{q}_t(S_T)$ by Rookley (1997) method based on the results of Breeden and Litzenberger (1978)

$$q_t(S_T) = e^{r\tau} \frac{\partial^2 C_t(\cdot)}{\partial K^2}\Big|_{K=S_T}.$$

 \bigcirc $\hat{p}_t(S_T)$ historical density by kernel method

Estimation of RND

Rookley used a scaled version of the Black-Scholes call price formula that depends only on moneyness and maturity $\sigma_{IV}(K/S_t, \tau)$.

- ☑ local polynomial smoothing of degree 3
- quartic kernel

Figure 3: Implied volatility/Moneyness, its first and second derivative, q estimates with varying bandwidths (0.05, 0.10, 0.15, 0.20)

The Model

⊡ Y_{tj} is be a noisy sample of T curves at design points u_j , with $j \in \{1, ..., n\}$:

$$Y_{tj} = \mathcal{K}_t(u_j) + \varepsilon_{tj}$$
, with $\varepsilon_{tj} \sim \mathsf{N}(0, \sigma_t^2)$.

□ The smooth curves are of the form:

$$\mathcal{K}_t(u) = \theta_{t1} \mathcal{K}_0\left(\frac{u-\theta_{t3}}{\theta_{t2}}\right) + \theta_{t4}.$$

: \mathcal{K}_0 is a reference curve and $\theta = (\theta_{t1}, \theta_{t2}, \theta_{t3}, \theta_{t4})$ are horizontal and vertical deviation parameters

Estimation of SIM I

Synchronisation

 $\mathcal{K}_t(\theta_{t2}u + \theta_{t3}) = \theta_{t1}\mathcal{K}_0(u) + \theta_{t4}, \qquad \theta_{t1} > 0, \quad \theta_{t2} > 0.$

• Normalizing conditions:

$$T^{-1}\sum_{t=1}^{T}\theta_{t1} = T^{-1}\sum_{t=1}^{T}\theta_{t2} = 1, \quad T^{-1}\sum_{t=1}^{T}\theta_{t3} = T^{-1}\sum_{t=1}^{T}\theta_{t4} = 0.$$

Common curve

$$T^{-1}\sum_{t=1}^{T}\mathcal{K}_t(\theta_{t2}u+\theta_{t3})=\mathcal{K}_0(u).$$

Common Shape

Figure 4: Estimated common shape function \mathcal{K}_0 (left) and transformed curves $\mathcal{K}_t(\theta_{t2}u + \theta_{t3})$ of those in Figure 5 on the common domain (right)

Estimation of SIM II

Peak identification

$$0 = \mathcal{K}'_t(u) = \frac{\theta_{t1}}{\theta_{t2}} \mathcal{K}'_0\left(\frac{u - \theta_{t3}}{\theta_{t2}}\right).$$

☑ Inflection point

$$0 = \mathcal{K}_t''(u) = \frac{\theta_{t1}}{\theta_{t2}^2} \mathcal{K}_0''\left(\frac{u - \theta_{t3}}{\theta_{t2}}\right),$$

The solutions also satisfy

$$u_t = \theta_{t2} u_0 + \theta_{t3} \, .$$

 \Box This gives the starting values of θ_{t3} and θ_{t2} .

Figure 5: Landmark identification. Pricing kernels with fixed maturity 1 month between 200304:200605

Estimation of SIM III

Estimation procedure :

$$\min_{\theta} \int \{\hat{\mathcal{K}}_t(\theta_2 u + \theta_3) - \theta_1 \hat{\mathcal{K}}_0(u) - \theta_4\}^2 w(u) \, du \,, \qquad (1)$$

where $\hat{\mathcal{K}}_i$ are nonparametric estimates of the curves and the common region is defined for some $a \ge inf(u_{1,t})$ and $b \le sup(u_{n,t})$

$$w(u) = \prod_{t} \mathbb{1}_{[a,b]} \{ (u - \theta_{t3}) / \theta_{t2} \}.$$

The Algorithm

- □ Iterative scheme based on (1)
- \Box Given prior estimates for $(\theta_{t2}, \theta_{t3})$ and $\hat{\mathcal{K}}_0$

$$\min_{\theta} \sum_{j} \left\{ \hat{\mathcal{K}}_t(\theta_{t2}u_j + \theta_{t3}) - \theta_{t1}\hat{\mathcal{K}}_0(u_j) - \theta_{t4} \right\}^2 w(u_j) \,. \tag{2}$$

 \Box Update $(\theta_{t2}, \theta_{t3})$ and $\hat{\mathcal{K}}_0$

Repeat procedure until convergence is reached

Asymptotics: EPK

$$\begin{aligned} \hat{\mathcal{K}}(u) - \mathcal{K}(u) &= \frac{\hat{q}(u)}{\hat{p}(u)} - \frac{q(u)}{p(u)} \\ &\simeq \frac{\hat{q}(u) - q(u)}{p(u)} - \frac{q(u)}{p(u)} \frac{\hat{p}(u) - p(u)}{p(u)} \,. \end{aligned}$$

Bias

$$\mathsf{E}\left\{\hat{\mathcal{K}}(u)-\mathcal{K}(u)\right\}\simeq \mathcal{O}(h_q^4)+\mathcal{O}(h_p^2),$$

Variance

$$\operatorname{Var}\left\{\hat{\mathcal{K}}(u)-\mathcal{K}(u)
ight\}\simeq\mathcal{O}(Mh_q)^{-1}+\mathcal{O}(mh_p)^{-1}$$
 .

with M sample size for q, m sample size for p,

 h_q and h_p the corresponding bandwidths.

EPK Shape Invariant Modelling

Asymptotics: SIM Parameters

: based on standard non-linear least square methods $\hat{\theta}_t \approx \mathsf{N}(\theta_t, \Sigma_t) \,.$

$$\hat{\Sigma}_{t} = \hat{\sigma}^{2} \Big[n^{-1} \sum_{j=1}^{n} \Big\{ \bigtriangledown_{\boldsymbol{\theta}} \tilde{\mathcal{K}}_{t}(\boldsymbol{u}_{j}; \tilde{\boldsymbol{\theta}}) \Big\} \Big\{ \bigtriangledown_{\boldsymbol{\theta}} \tilde{\mathcal{K}}_{t}(\boldsymbol{u}_{j}; \tilde{\boldsymbol{\theta}}) \Big\}^{\top} \Big]^{-1},$$

where $\bigtriangledown_{\boldsymbol{\theta}} \mathcal{K}(u; \boldsymbol{\theta})$ is the first derivative of the function $\mathcal{K}(u; \boldsymbol{\theta})$ and

$$\hat{\sigma}_t^2 = n^{-1} \sum_{j=1}^n \hat{e}_{tj}^2$$
.

with $\hat{e}_{tj} = \hat{\mathcal{K}}_t(u_j) - \tilde{\mathcal{K}}_t(u_j)$ where $\hat{\mathcal{K}}$ is the initial estimates and $\tilde{\mathcal{K}}$ is the SIM estimates.

EPK Shape Invariant Modelling -

Functional Data Analysis

Figure 6: Parameter estimates of the SIM and their confidence intervals at 95% confidence level for the EPK 200304:200605

ARA and SIM

Under SIM specifications the ARA measure is given by:

$$ARA_{t}(u) = \frac{-\frac{\theta_{t1}}{\theta_{t2}}\mathcal{K}_{0}'\left(\frac{u-\theta_{t3}}{\theta_{t2}}\right)}{\theta_{t1}\mathcal{K}_{0}\left(\frac{u-\theta_{t3}}{\theta_{t2}}\right) + \theta_{t4}}.$$

The Effect of θ_1 on \mathcal{K}_0 and ARA_0

Figure 7: EPK (left) and ARA (right) $\theta_1 = 0.75$ (red), $\theta_1 = 1.25$ (blue) compared to the baseline model $\theta_0 = (1, 1, 0, 0)$ (black)

The Effect of θ_2 on \mathcal{K}_0 and ARA_0

Figure 8: EPK (left) and ARA (right) $\theta_2 = 0.75$ (red), $\theta_2 = 1.25$ (blue) compared to the baseline model $\theta_0 = (1, 1, 0, 0)$ (black)

The Effect of θ_3 on \mathcal{K}_0 and ARA_0

Figure 9: EPK (left) and ARA (right) $\theta_3 = -0.025$ (red), $\theta_3 = 0.025$ (blue) compared to the baseline model $\theta_0 = (1, 1, 0, 0)$ (black)

The Effect of θ_4 on \mathcal{K}_0 and ARA_0

Figure 10: EPK (left) and ARA (right) $\theta_4 = -0.25$ (red), $\theta_4 = 0.25$ (blue) compared to the baseline model $\theta_0 = (1, 1, 0, 0)$ (black)

Risk Aversion and Business Cycle Indicators

- Data: Daily observations. German market.
- Credit spread (CD): 5Y Corporate Gov. bond yield;
- ☑ Yield curve (YC): 3M 10Y Gov. bond yield;
- ⊡ Short term interest rate (*IR*): 3M Gov. bond yield;
- ⊡ Datastream DAX 30 stock index (I_{Dax}) .
- \square P_x, P_y EPK peak coordinates

Business Cycle Indicators

Indicator	Expansion	Recession	
CS	\Downarrow	↑	
YC	\Downarrow	↑	
IR	\Downarrow	↑	
I _{Dax}	↑	\Downarrow	

Table 1: Behaviour of the economic indicators under the BC phases

	$\Delta \theta_1$	$\Delta \theta_2$	$\Delta \theta_3$	$\Delta \theta_4$	ΔP_x	ΔP_y
$\Delta \theta_1$	1.00					
$\Delta \theta_2$	-0.71*	1.00				
$\Delta \theta_3$	0.71*	-0.99*	1.00			
$\Delta heta_4$	-0.93*	0.45*	-0.45*	1.00		
ΔP_x	-0.27***	0.41**	-0.38**	0.1	1.00	
ΔP_y	0.96*	-0.83*	0.83*	-0.82*	-0.31***	1.00
ΔCS	-0.30***	0.19	-0.19	0.31***	0.13	-0.28***
ΔYC	-0.02	-0.15	0.15	0.11	-0.21	0.03
ΔIR	0.01	0.10	-0.08	-0.02	0.53*	-0.00
R _{Dax}	0.68*	-0.57*	0.56*	-0.59*	-0.52*	0.69

Table 2: Correlation coefficients between SIM parameters, EPK peak coordinates and BC indicators (sig at 1% = *, 5% = **, 10% = ***)

Figure 11: EPK_t and ARA_t (red/dashed) in individual effects: θ_1 (brown/triangle), θ_2 (blue/dash-dotted), θ_3 (green/dotted), θ_4 (magenta/star) compared to the baseline model (black), on 20030716

Figure 12: EPK_t and ARA_t (red/dashed) in individual effects: θ_1 (brown/triangle), θ_2 (blue/dash-dotted), θ_3 (green/dotted), θ_4 (magenta/star) compared to the baseline model (black), on 20060419

Conclusions

- □ An increase in the EPK peak comes with a decrease in duration
- Changes in risk proclivity are negatively correlated with the credit spread growth and positively correlated with R_{Dax}
- Agents update the expected value of the risky bets in the same sense with the ΔIR and in the oposite sense with R_{Dax}
- Local risk proclivity is pro-cyclical

Selected Bibliography

- Härdle, W. and Hlavka, Z. Dynamics of state price densities To appear in: Journal of Econometrics, 2009
 - Jackwerth, J.C.

Risk Aversion from Option Prices and Realized Returns Source: The Review of Financial Studies, Vol. 13, No. 2, 2000, pp. 433-451

Selected Bibliography

Giacomini, E., Handel, M. and Härdle, W. Time Dependent Relative Risk Aversion Risk Assessment: Decisions in Banking and Finance, 2008, pp. 15-46. Physica Verlag

Kneip, A. and Engel, J. Model Estimation in Nonlinear Regression under Shape Invariance Source: The Annals of Statistics, 1995, Vol. 23, No. 2, pp. 551-570

🔈 Ramsay, J. O. and Silverman, B. W. Applied functional data analysis Springer Series in Statistics, Springer, New York 2002

EPK Shape Invariant Modelling

