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Introduction and Theory 1-1

Arrow-Debreu Securities - Definition

� Starting point of all modern financial asset pricing theories

� Developed by Arrow (1964) and Debreu (1959)

� State-dependent contingent claims, entitle their holder to a
payoff of 1$ in one specific state of the world, and 0 in all
other states of the world

� Prices are always non negative and sum up to one, due to the
dependence on the probability

� Priced differently in different states of the world, a one Euro
loss does not always have the same value
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Options as Arrow-Debreu Securities

� Option price is the discounted expectation of random payoffs
received at maturity

� Payoff = Value of the claim at maturity, so the Value Process
is a martingale

� If qs is the price of an Arrow-Debreu security when r = 0 and
Q denotes the risk neutral probability measure:

Ct = e−r(T−t) EQ
t [ψ(ST )]

def
= e−r(T−t)

∑
s

qsψs(ST ) (1)

we discount the payoff to get the option price

� The continuous counterpart of the Arrow-Debreu state
contingent claims is the State Price Density (SPD)
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Introduction and Theory 1-3

A Standard Dynamic Exchange Economy

� Described by Lucas (1978), Rubinstein (1976) and others.

� Complete markets for securities, one consumption good, no
exogenous income, investors maximize state-dependent utility
function

� A risky stock in the economy follows:

dSt

St
= µdt + σdWt (2)

� A riskless bond described by

dBt = rBtdt (3)
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A Standard Dynamic Exchange Economy

� Defining corrected stock price S̃t
def
= e−(r+δ)tSt and

considering dividend yield δ = 0:

dS̃t = d(e−rtSt)

= −re−rtStdt + e−rtdSt

= −re−rtStdt + e−rt [µStdt + σStdWt ]

= (µ− r)S̃tdt + σS̃tdWt

= σS̃tdW t (4)

� W t
def
= Wt + µ−r

σ t is a Brownian motion on the probability
space corresponding to the risk-neutral measure Q. The term
µ−r
σ measures the excess return per unit of risk borne by the

investor and hence vanishes under Q
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Representative Agent’s Utility Function

Constantinides (1982) proved existence of a representative agent
under certain conditions. Its utility function can depend on any
variable in the state-contingent vector st :

U(st , st+1) = u(st)+β Et [u(st+1)]
def
= u(st)+β

∑
st+1

u(st+1)pt(st+1|st)

(5)
pt(st+1|st) – the subjective probability of the state of the world at
time t + 1 conditioned on information at time t, u(st) – one-period
utility at state st and β – subjective discount factor

The Dynamics of Pricing Kernels



Introduction and Theory 1-6

Representative Agent’s Optimization Problem

Agent can buy or sell freely an asset with payoff ψt+1 at price Pt .
Yt – agent’s wealth (endowment) at t, ξ – amount of asset he
chooses to buy, ct – his consumption at t:

max
{ξ}

{u(ct) + Et [βu(ct+1)]}

subject to

ct = Yt − Pt · ξ
ct+1 = Yt+1 + ψt+1 · ξ

FOC:

Pt = Et

[
β

u′(ct+1)

u′(ct)
ψt+1

]
(6)
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MRS = Pricing Kernel

� MRSt
def
= β · u′(ct+1)

u′(ct)
is the Marginal Rate of Substitution at t,

the rate at which the investor is willing to substitute wealth at
t + 1 for wealth at t. c can be substituted with every variable
in s.

� Lucas (1978), Merton (1973) and others generalized to
multi-period models. Utility and wealth are all functions of
stock price St (the only income), time to maturity is

τ
def
= T − t:

Pt = e−rτ

∫ ∞

0
ψ(ST )λ

U ′(ST )

U ′(St)
pt(ST |St)dST (7)

where λe−rτ = β, λ – constant independent of index level or
interest rate
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MRS = Pricing Kernel

� Äıt-Sahalia and Lo (2000) show, that equation (7) can be
rewritten using the risk-neutral probability measure as:

Pt = e−rτ

∫ ∞

0
ψ(ST )qt(ST |St)dST = e−rτ EQ

t [ψ(ST )] (8)

where qt(ST |St) is the State Price Density

� Combining equations (7) and (8), the pricing kernel Mt(ST ) is
defined:

Mt(ST )
def
=

qt(ST |St)

pt(ST |St)
= λ

U ′(ST )

U ′(St)
= MRSt (9)
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Pricing Kernels and Risk Aversion

� Risk aversion is a measure of the curvature of the agent’s
utility function

� Arrow (1965) and Pratt(1964) defined representative agent’s
coefficient of Relative Risk Aversion (RRA) as

ρt(ST )
def
= −STu′′(ST )

u′(ST )
(10)

� According to equation (9):

Mt(ST ) = λU′(ST )
U′(St)

⇒ M ′
t(ST ) = λU′′(ST )

U′(St)
(11)
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Pricing Kernels and Risk Aversion

Expressing equation (10) using equation (11):

ρt(ST ) = −STλM ′
t(ST )U ′(St)

λMt(ST )U ′(St)
= −STM ′

t(ST )

Mt(ST )
(12)

Using equation (9) the RRA is:

ρt(ST ) = −ST [qt(ST |St)/pt(ST |St)]
′

qt(ST |St)/pt(ST |St)

= −ST
q′t(ST |St)pt(ST |St)− p′t(ST |St)qt(ST |St)

qt(ST |St)pt(ST |St)

= ST

[
p′t(ST |St)

pt(ST |St)
− q′t(ST |St)

qt(ST |St)

]
(13)
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Power Utility of Consumption

� Rubinstein (1976) showed that for a power utility of
consumption:

u(ct) =

{
1

1−γ c1−γ
t for 0 < γ 6= 1

log(ct) for γ = 1
(14)

aggregate consumption ∝ aggregate wealth (wealth, stock
price and consumption utility are interchangeable)

� It can be seen that limγ→0 u(ct) = ct
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Constant Relative Risk Aversion (CRRA)

The risk aversion of an investor with a power utility can be
calculated using equation (10), with consumption instead of wealth
as an argument (as they are interchangeable):

ρ(ct) = −ct
−γ(ct)

−γ−1

(ct)−γ
= γ (15)

This equation shows that the RRA turns out to be a constant, and
for the logarithmic utility case, the risk aversion is 1.
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P and Q under B&S

� Implied risk-neutral probability is log-normal:

qBS(ST |St) =
1

ST

√
2πσ2τ

· e−
[ln(ST /St )−(r−0.5σ2)τ ]2

2σ2τ (16)

and the underlying asset price follows the stochastic process:

dSt

St
= r · dt + σ · dWt

� The subjective probability is also log-normal:

p(ST |St) =
1

ST

√
2πσ2τ

· e−
[ln(ST /St )−(µ−0.5σ2)τ ]2

2σ2τ (17)

and the underlying asset price follows the stochastic process:

dSt

St
= µ · dt + σ · dWt
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Pricing Kernel and Risk Aversion under B&S

Plugging B&S Q and P into equation (9) yields a closed-form
solution for the investor’s pricing kernel:

MBS
t (ST ) =

(
ST

St

)−µ−r

σ2

· e
(µ−r)(µ+r−σ2)τ

2σ2 (18)

The investor’s utility function can be derived by solving the
differential equation. It can be shown to be a power utility and the
RRA is therefore constant:

ρBS
t (ST ) = γ =

µ− r

σ2
(19)

Constant RRA utility function under B&S was shown by Rubinstein
(1976), Breeden and Lietzenberger (1978) and many others
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The Stock Price under B&S

Revisiting the stochastic process in equation (4), the Brownian
motion defined on the probability space of the risk neutral measure
under B&S with a constant RRA is:

W t = Wt +
µ− r

σ
t = Wt + σγt (20)

whereas the stochastic process can be expressed as:

dS̃t = σS̃tdW t = σS̃tdWt + σ2S̃tγdt (21)
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On Estimating the PK

� The assumptions of B&S don’t hold in practice, the implied
volatility experiences a smile and the SPD does not have a
closed form solution

� A good estimation of the pricing kernel can be achieved by
estimating the p and q empirically and derive the PK and
RRA from them.

� The Pricing Kernel Puzzle of Jackwerth (2000)

� Doubt whether the ratio of two estimators equals the estimate
of the ratio - beyond the scope of this work

� Rubinstein (1994) showed, that any two of the following imply
the third: Utility function, P and SPD. We will estimate P
and Q and calculate PK based on equation (9)
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The Model 2-2

Model Description

� Static (daily) model to estimate subjective density, SPD,
pricing kernel and relative risk aversion on a daily basis

� Repeating this process for each trading day in the database
(April 1999 - April 2002)

� Examining the time-series of the PK and RRA to draw
conclusions on a changing investors behavior
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Subjective Density Estimation

� Taking the preceding three months as historical data and
estimating a GARCH (1,1) model

εt = σtZt

σ2
t = ω + αε2t−1 + βσ2

t−1 (22)

where ω, α, β are estimated using QMLE.

� Simulating a GARCH (1,1) model with the estimated
parameters to obtain the time-series εt .

� Creating the simulated DAX level as:

St = St−1e
εt ∀t ∈ {1, . . . ,T},S0 given (23)

� Estimating the density of the DAX at certain maturities
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Daily Subjective Density Estimates

Figure 1: Subjective density for different maturities (30,60,90,120 days) on

different trading days. EPKdailyprocess.xpl
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The Model 2-5

SPD Estimation

� Estimating IVS from the trivariate data moneyness (κ), time
to maturity (τ) and IV (σBS(κ, τ)) using local polynomial
regression (Rookley (1997)) from options data of a specific
day

� Local polynomial regression yields the IVS and its first two
derivatives with respect to moneyness and time to maturity in
one step

� Starting from ∂2σ
∂κ2 , it is possible to derive ∂2C

∂K2

� Breeden and Lietzenberger (1978):

erτ ∂
2C (St ,K , τ)

∂K 2

∣∣∣∣
K=ST

= qt(ST ) = SPD (24)
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Daily SPD Estimates

Figure 2: SPD for different maturities (30,60,90,120 days) on different

trading days. EPKdailyprocess.xpl
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The Model 2-7

Daily Pricing Kernel Estimates

Figure 3: Pricing Kernel for different maturities (30,60,90,120 days) on

different trading days. EPKdailyprocess.xpl
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The Model 2-8

Daily Relative Risk Aversion Estimates

Figure 4: Relative Risk Aversion for different maturities (30,60,90,120 days)

on different trading days. EPKdailyprocess.xpl
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The Model 2-9

The Database

� Intraday DAX and options data from MD*Base between
January 4th, 1999 and April 30th, 2002, after a thorough
preparation scheme.

� For each observation: S̃t(corrected for dividends), K , r , τ , Pt ,
type of option, κf , σ

BS
t .

� Observations with τ <= 1 day, IV > 0.7, κf > 1.22 or
κf < 0.74 are dropped.

� 2,719,640 observations on 843 trading days.
� Daily estimation begins in April 1999 to enable a three

months window for GARCH estimation.
� The days on which the GARCH model doesn’t fit the data or

local polynomial estimation reveals negative volatilities are
dropped.
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Some Empirical Results 3-2

The Analyzed Moments

Considering 5 moments (f̂t – daily estimation of PK or RRA):

� Pricing Kernel and RRA at the money f̂ ATM
t (κ = 1)

� Expectation: µt =
∫
κf̂tdκ

� Standard Deviation: σt =
√∫

(κ− µt(f̂t))2f̂tdκ

� Skewness: Skewt = 1
σ3

t

∫
(κ− µt(f̂t))

3f̂tdκ

� Kurtosis: Kurt = 1
σ4

t

∫
(κ− µt(f̂t))

4f̂tdκ

Also: Differences and Log Differences of the moments.
Altogether: 5 moments × 3 time-series × 4 maturities = 60 series
for each, PK and RRA.
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Figure 5: ATM Pricing Kernel for different maturities (30,60,90,120 days).

EPKtimeseries.xpl
The Dynamics of Pricing Kernels
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Figure 6: Differences of ATM Pricing Kernel for different maturities

(30,60,90,120 days). EPKtimeseries.xpl
The Dynamics of Pricing Kernels
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Figure 7: ATM Relative Risk Aversion for different maturities (30,60,90,120

days). EPKtimeseries.xpl
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Figure 8: Differences of ATM Relative Risk Aversion for different maturities

(30,60,90,120 days). EPKtimeseries.xpl
The Dynamics of Pricing Kernels
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Figure 9: Expected Pricing Kernel for different maturities (30,60,90,120

days). EPKtimeseries.xpl
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Figure 10: Differences of Expected Pricing Kernel for different maturities

(30,60,90,120 days). EPKtimeseries.xpl
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Figure 11: Expected Relative Risk Aversion for different maturities

(30,60,90,120 days). EPKtimeseries.xpl
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Figure 12: Differences of Expected Relative Risk Aversion for different

maturities (30,60,90,120 days). EPKtimeseries.xpl
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Figure 13: Standard Deviation of Pricing Kernel for different maturities

(30,60,90,120 days). EPKtimeseries.xpl
The Dynamics of Pricing Kernels
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Figure 14: Differences of Standard Deviation of Pricing Kernel for different

maturities (30,60,90,120 days). EPKtimeseries.xpl
The Dynamics of Pricing Kernels
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Figure 15: Standard Deviation of Relative Risk Aversion for different ma-

turities (30,60,90,120 days). EPKtimeseries.xpl
The Dynamics of Pricing Kernels
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Figure 16: Differences of Standard Deviation of Relative Risk Aversion for

different maturities (30,60,90,120 days). EPKtimeseries.xpl
The Dynamics of Pricing Kernels
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KPSS Test for Stationarity

� Checking which of the 120 time-series are stationary

� Null hypothesis: series is stationary, φ = 0

Xt = c + νt + φ

t∑
i=1

ξi + ηt (25)

where ν is a linear time trend, ηt is stationary

� KPSS test is sensitive to existence of trend and to choice of
the order of the autocovariance estimator, test conducted with
various T and with/without trend
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Example for KPSS Test

Maturity No Linear Trend With Linear Trend Stationary
T=0 T=7 T=21 T=0 T=7 T=21

τ = 30
µt 0.883 0.135 0.078 0.579 0.089 0.052 For higher order
∆µt 0.003 0.022 0.036 0.003 0.016 0.027 YES
∆ logµt 0.003 0.022 0.037 0.003 0.022 0.028 YES

τ = 60
µt 0.281 0.107 0.067 0.224 0.086 0.054 Without trend
∆µt 0.002 0.014 0.037 0.037 0.012 0.034 YES
∆ logµt 0.002 0.014 0.038 0.001 0.013 0.035 YES
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KPSS Results - PK Stationarity

Maturity PKATM µt σt Skewt Kurt
τ = 30 Large T Large T Large T Large T Large T
τ = 60 Large T No trend With trend Large T Large T
τ = 90 Large T Large T Large T Large T Large T

no trend without trend
τ = 120 Large T No trend Large T Large T N.A.

with trend with trend
∆ A l w a y s S t a t i o n a r y
∆ log A l w a y s S t a t i o n a r y N.A. Stationary
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KPSS Results - RRA Stationarity

Maturity RRAATM µt σt Skewt Kurt
τ = 30 Large T Large T Always No trend Always

with trend Stationary Stationary
τ = 60 Large T Large T Always Always Always

with trend Stationary Stationary Stationary
τ = 90 Large T No trend Always Always Always

with trend Stationary Stationary Stationary
τ = 120 With trend Large T Always With trend N.A.

Stationary
∆ A l w a y s S t a t i o n a r y
∆ log N.A. N.A. Stationary N.A. Stationary
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Principal Components Analysis

Conducting PCA on the differences of the moments of PK and
RRA:

X =


∆PKATM

2 ∆µ2 ∆σ2 ∆Skew2 ∆Kur2
∆PKATM

3 ∆µ3 ∆σ3 ∆Skew3 ∆Kur3
...

...
...

...
...

∆PKATM
n ∆µn ∆σn ∆Skewn ∆Kurn


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PC Analysis - RRA Differences

Principal Eigenvalue Explained Cum. Expl.
Component Variance Variance
τ = 30
1 1.87 37.48% 37.48%
2 1.63 32.55% 70.03%
3 1.00 19.95% 89.98%
4 0.36 7.23% 97.21%
5 0.14 2.79% 100.00%
τ = 60
1 1.88 37.58% 37.58%
2 1.77 35.45% 73.03%
3 0.98 19.53% 92.56%
4 0.23 4.58% 97.14%
5 0.14 2.86% 100.00%
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The Principal Components

∆PK Principal Components:

1. Central mass movement factor: ∆µt and ∆σt

2. Change of tendency factor: ∆Skewt and ∆σt

3. The shifts in investors’ beliefs at the money: ∆PKATM

∆RRA Principal Components:

1. Dispersion change factor: ∆σt

2. The shifts in investors’ beliefs at the money: ∆RRAATM

3. Dispersion change factor: ∆Kurt
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EPKPCA.xpl
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Time-Series Analysis of PCs

� After defining proper PCs for the differences of PK and RRA,
checking for autocorrelation of those PCs.

� Demonstrating on a maturity of 60 days, checking ACF and
PACF functions, we detect a MA(1) structure..
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Conclusions and Further Research

� Changes in daily moments of PK and RRA are stationary.

� Variability of daily estimates of PK and RRA can be explained
using three factors, behavior at the money is one of them.

� The principal components exhibits a MA(1) structure.
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Y. Äıt Sahalia and A. Lo
Nonparmetric risk management and implied risk aversion
Journal of Econometrics, 94: 9–51, 2000

K. Arrow
The role of securities in the optimal allocation of risk bearing
Review of Economic Studies, 31: 91–96, 1964

K. Arrow
Aspects of the theory of risk-bearing
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