Semiparametric bootstrap approach to hypothesis tests and confidence intervals for the Hurst coefficient

Peter Hall¹ Wolfgang Härdle²

Torsten Kleinow³ Peter Schmidt⁴

¹ Centre for Mathematics and its Applications, Australian National University, Canberra

 $^{2+3}$ Institute of Statistics and Econometrics, Faculty of Economics and Business Administration, Humboldt-University at Berlin

 $^{2+3}$ Sonderforschungsbereich 373

⁴ Quantitative Research,

Bankgesellschaft Berlin AG

Overview

- Motivation
- Self-Similar processes, Long Memory
- Statistical methodology (Model, R/S Analysis)
- ullet Distribution of $\hat{H}-H$
- Bootstrap algorithm
- Application to financial data

Motivation

- observe discounted asset prices: $(S(n))_{n \in \{1,...,N\}}$
- define $X(n):=\log(S(n))$ $\forall n\in\{1,\ldots,N\}$ and $\dot{X}(n):=X(n+1)-X(n) \qquad \forall n\in\{1,\ldots,N-1\}$
- if $(\dot{X}(n))_{n\in\{1,\ldots,N\}}$ is stationary, define $\forall n\in\{1,\ldots,N-k\}$ Autocorrelation: $\rho(k)=Corr(\dot{X}(n+k),\dot{X}(n))$

Model

- Model: $(X(n))_{n \in \{1,...,N\}}$ are discrete observations of a
 - Diffusion $(X(t))_{t\geq 0} \Longrightarrow \rho(k) = 0$

$$dX(t) = \mu(X(t), t)dt + \sigma(X(t), t)dB(t)$$

$$X(0) = x$$

– self-similar process $(X(t))_{t\in I\!\!R}$ with stationary increments

$$\Longrightarrow$$
 for $N\longrightarrow\infty$ and $K\longrightarrow\infty$

$$\sum_{k=-K}^K \rho(k) \longrightarrow 0 \quad \text{or} \quad \sum_{k=-K}^K \rho(k) \longrightarrow \infty$$

Self-similar processes

self-similar:

$$c^{-H}(X(ct))_{t \in R} =_d (X(t))_{t \in R}$$
 $\forall c > 0$

stationary increments:

$$\rho(k) = \frac{1}{2} \{ (k+1)^{2H} - 2k^{2H} + (k-1)^{2H} \}$$

for 0 < H < 1, $H \neq \frac{1}{2}$

$$\frac{\rho(k)}{H(2H-1)k^{2H-2}} \to 1 \qquad k \to \infty$$

$$\sum_{k=-\infty}^{\infty} \rho(k) = 0 \qquad \forall H \in \left(0, \frac{1}{2}\right)$$

$$\sum_{k=-\infty}^{\infty} \rho(k) = \infty \qquad \forall H \in \left(\frac{1}{2}, 1\right)$$

Statistical Methodology

- $X(t) = g(Y(\epsilon t), t)$ for all $t \in \mathcal{I}$
 - Y is a Gaussian process whose sample path has fractal dimension D=2-H, $EY(t)\equiv 0$,

$$E(Y(s+t) - Y(s))^{2} = c|t|^{\alpha} + O\left(|t|^{\alpha+\beta}\right)$$

uniformly in $s \in [0,1]$ as $t \longrightarrow 0$ for constants c>0, $\alpha=2H \in \left(\frac{1}{2},2\right)$ and $\beta>\min\left(\frac{1}{2},2-\alpha\right)$.

- g is a smooth function

$$g_{j_1j_2} := \frac{\delta g}{(\delta y)^{j_1}(\delta t)^{j_2}}$$

are bounded for each $j_1, j_2 \geq 0$ and g_{10} does not vanish

- H is called the Hurst coefficient.

R/S Analysis 1

- observations: $X(0), \ldots, X(N)$
- interval lengths $n \in \{l_1 m, \ldots, l_k m\} \subset I\!\!N$, $\max\{l_1 m, \ldots, l_k m\} \leq N$, $m \in I\!\!N$
- ullet number of intervals of length $n\colon\ A:=rac{N}{n}$
- ullet for every A and every $t \in [(a-1)n,an]$, $a=1,\ldots A$ define:

$$Z_t := X_t - \frac{t}{n}(X_{an} - X_{(a-1)n})$$

R/S Analysis 2

$$R_a = \max_{(a-1)n \le t \le an} Z_t - \min_{(a-1)n \le t \le an} Z_t$$

$$S_a := \sqrt{\frac{1}{n} \sum_{t=(a-1)n}^{an} (X_t - m_a)^2}$$

R/S Analysis 3

$$\left(\frac{R}{S}\right)_n := A^{-1} \sum_{a=1}^A \frac{R_a}{S_a}$$

define \hat{H} :

$$\log\left(\left(\frac{R}{S}\right)_n\right) = \hat{H}\log n + b$$

R/S Analysis - Example

$$\hat{H} = 0.6049$$

Distribution of $\hat{H} - H$

- Limiting distribution $(N \longrightarrow \infty$, for fixed k):
 - Normal: $0 < H \le \frac{3}{4}$
 - Rosenblatt: $\frac{3}{4} < H < 1$
- Monte Carlo approach
 - greater accuracy then asymptotic approximation
 - stochastic fluctuation of the "S" part of the R/S Analysis influence the true distribution of \hat{H} but not the limiting distribution

Classical bootstrap approach

- Simulation of a parametric model
 - The model is not completely known
- nonparametric bootstrap
 - the data are strongly dependend
 - in general it is not possible to find the iid "disturbances"

Distribution of $\hat{H} - H$

- assume $\epsilon:=\frac{1}{N}\longrightarrow 0$ and $m=m(\epsilon)\longrightarrow \infty$ as $\epsilon\longrightarrow 0$ with $\frac{1}{m}+m\epsilon=O(\epsilon^{\alpha})$ $(\alpha>0)$
- ullet define: $\xi:=m\epsilon$ and

$$t_{\xi} = \begin{cases} \xi^{2(1-H)} & : & \text{if } 3/4 < H < 1 \\ \left(\xi \log \xi^{-1}\right)^{1/2} & : & \text{if } H = 3/4 \\ \xi^{1/2} & : & \text{if } 0 < H < 3/4 \,, \end{cases}$$

Then: $\epsilon \longrightarrow 0 \implies t_{\xi} \longrightarrow 0$

and

$$\hat{H} - H = t_{\xi} Z_{\xi}$$

where Z_{ξ} has a proper limiting distribution independent of g. $(X(t)=g(Y(\epsilon t),t))$

Bootstrap algorithm

- estimate \hat{H}
- simulate a number of processes $(X(t)^*)_{t \in I\!\!R}$ with self-similarity parameter \hat{H} and estimate \hat{H}^* for every simulated process
- \bullet take the empirical distribution of $\hat{H}^* \hat{H}$ as an approximation of $\hat{H} H$

How to choose $(X(t)^*)_{t \in I\!\!R}$?

- structur of process $(X(t))_{t\in\mathbb{R}}$ does not influence the limiting distribution of \hat{H}
- it would be the same as for an elementary self-similar gaussian process
- ⇒ fractional Brownian Motion

Financial Application

 Data: 6900 observations of 24 german stocks (included in DAX) from January 1973 to June 1999

• Test:
$$H_0: H = \frac{1}{2}$$
 $H_1: H \neq \frac{1}{2}$

asset	\hat{H}	p-value
BMW	0.5851	0.05
Daimler	0.5859	0.05
Mannesmann	0.5856	0.05
Preussag	0.5884	0.035
Siemens	0.6007	0
Volkswagen	0.6049	0

p-value :=
$$P\left[|\hat{H}^* - E\hat{H}^*| > |\hat{H} - E\hat{H}^*| \middle| H_0
ight]$$

