Partially Linear Models with Heteroskedastic Variance

Wolfgang Härdle

Hua Liang

1

Partially Linear Models with Heteroskedastic Variance

Outline

- Partially linear models (PLM)
- PLMHV
- Estimators
- Asymptotic Normality
- Remarks
- Simulation
- Example
- Conclusions

Partially Linear Models – PLM

- Engle, et al. (1986), JASA
- Many papers study **PLM** in theory and their applications in Economics, Biostatistics and so on.

In theory and applications

- Härdle, Mammen & Müller (1998). East–West German migration
- Liang, Härdle & Werwarz (1999). Income and age in west Germany.
- Schmalensee & Stoker (1999). Household gasoline consumption in the United States.

Partially Linear Models – PLM

In theory

- Speckman, P. (1988), JRSSB.
- Green & Silverman, (1991), Book
- Cuzick, J. (1992), JRSSB.
- Robinson, P. (1988), Econometrica.
- Liang, H. & Härdle, W. (2001).
- Hamilton & Troung (1997), Journal of Multivariate Analysis .

Härdle, W., Liang, H. and Gao, J. (2000), *Partially Linear Models*. *Springer Physica-Verlag*.

Nonparametric Smoothing

$$Y = X^{\top}\beta + g(T) + \varepsilon$$
$$E(Y|T) = \{E(X|T)\}^{\top}\beta + g(T)$$
$$Y - E(Y|T) = \{X - E(X|T)\}^{\top}\beta + \varepsilon$$

- $\widehat{E}(Y|T) = \sum_{i=1}^{n} \omega_{ni}(T)Y_i$
- $\widehat{E}(X|T) = \sum_{i=1}^{n} \omega_{ni}(T) X_i$
- "LS" estimator of β : regression of $Y \widehat{E}(Y|T)$ on $X \widehat{E}(X|T)$.

Of course, one may estimate nonparametric function by Smoothing Spline, Piecewise Polynomial, Local Linear, and even Wavelet.

Nonparametric Smoothing

$$\beta_{LS} = (\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{Y}}$$
$$\widetilde{\mathbf{X}}^{\top} = (\widetilde{X}_1, \dots, \widetilde{X}_n), \quad \widetilde{X}_i = X_i - \sum_{j=1}^n \omega_{nj}(T_i) X_j$$
$$\widetilde{\mathbf{Y}} = (\widetilde{Y}_1, \dots, \widetilde{Y}_n)^{\top}, \quad \widetilde{Y}_i = Y_i - \sum_{j=1}^n \omega_{nj}(T_i) Y_j$$

$$n^{1/2}(\beta_{LS}-\beta) \xrightarrow{\mathcal{L}} N(0, B^{-1}CB^{-1})$$

 $B = \operatorname{cov}\{X - E(X|T)\} \text{ and } C = \operatorname{cov}\big[\varepsilon * \{X - E(X|T)\}\big].$

Partially Linear Models with Heteroskedastic Variance -

PLMHV

$$Y_i = X_i^{\top}\beta + g(T_i) + \sigma_i e_i, i = 1, \dots, n,$$

with

- Case 1. σ_i² = H(W_i), where {W_i; i = 1,...,n} are also design points, which are assumed to be independent of e_i and (X_i, T_i) and defined on [0, 1].
- Case 2. $\sigma_i^2 = H(T_i)$, i.e., the variance σ_i^2 is a function of the design points T_i .
- Case 3. $\sigma_i^2 = H\{X_i^\top \beta + g(T_i)\}.$

7

Estimators

$$\beta_{nW} = \left(\sum_{i=1}^{n} \widehat{\gamma}_i \widetilde{X}_i \widetilde{X}_i^{\top}\right)^{-1} \left(\sum_{i=1}^{k_n} \widehat{\gamma}_i^{(2)} \widetilde{X}_i \widetilde{Y}_i + \sum_{i=k_n+1}^{n} \widehat{\gamma}_i^{(1)} \widetilde{X}_i \widetilde{Y}_i\right)$$

- k_n : the integer part of n/2
- $\widehat{\gamma}_i^{(1)}$: estimator of $1/\sigma_i^2$ based on $(X_1, T_1, Y_1), \ldots, (X_{k_n}, T_{k_n}, Y_{k_n})$
- $\widehat{\gamma}_i^{(2)}$: estimator of $1/\sigma_i^2$ based on $(X_{k_n+1}, T_{k_n+1}, Y_{k_n+1}), \dots, (X_n, T_n, Y_n),$

One of Main Results

• β_{nW} is an asymptotically normal estimator of β with asymptotic distribution

$$N\left\{0, \left(E\left[\frac{1}{\sigma_i^2} \mathrm{cov}\{X - E(X|T)\}\right]\right)^{-1}\right\}$$

• Estimators of the nonparametric component $g(\cdot)$

$$\widehat{g}_{nW}(t) = \sum_{i=1}^{n} \omega_{ni}^*(t) (\widetilde{Y}_i - \widetilde{X}_i^T \beta_{nW}),$$

One of Main Results

• A consistent estimator for asymptotic variance by a standard nonparametric regression as follows.

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\widehat{\gamma}_{i}}\left\{X_{i}-\sum_{j=1}^{n}\omega_{nj}(T_{i})X_{j}\right\}\left\{X_{i}-\sum_{j=1}^{n}\omega_{nj}(T_{i})X_{j}\right\}^{+}$$

Remarks

• The efficiency bound (Chamberlain, 1992) for partially linear models:

$$E\left(\frac{1}{\sigma_i^2}X_iX_i^T \left| T_i \right. \right) - E\left\{ E\left(\frac{1}{\sigma_i^2}X_i \left| T_i \right. \right) E\left(\frac{1}{\sigma_i^2}X_i \left| T_i \right. \right)^\top E^{-1}\left(\frac{1}{\sigma_i^2} \left| T_i \right. \right) \right\}$$

- The covariance of our estimators is identical to the bound of Chamberlain (1992) if σ_i^2 does not depend on T_i .
- For general structure, our estimators do not arrive this bound and new estimators are need

$$Y_i = X_i^{\top}\beta + g(T_i) + \sigma_i\varepsilon_i, \quad i = 1, \dots, n = 300$$

- $\{\varepsilon_i\}$: N(0,1)
- $\{X_i\}$ and $\{T_i\}$: \sim uniform[0, 1]
- $\beta = (1, 0.75)^{\top}$
- $g(t) = \sin(t)$
- Run 500 situations
- Quartic kernel $(15/16)(1-u^2)^2 I(|u| \le 1)$
- Cross-Validation criterion to select bandwidth

- Model 1: $\sigma_i^2 = T_i^2$
- Model 2: $\sigma_i^2 = W_i^3$ where W_i iid ~ Uniform[0,1].
- Model 3: $\sigma_i^2 = a_1 \exp[a_2 \{X_i^\top \beta + g(T_i)\}^2], (a_1, a_2) = (1/4, 1/3200).$

Table 1: Simulation results ($\times 10^{-3}$)

		$\beta_0 = 1$		$\beta_1 = 0.75$	
	Model	Bias	MSE	Bias	MSE
β_{LS}	1	8.696	8.7291	23.401	9.1567
eta_{nW}	1	4.230	2.2592	1.93	2.0011
β_{LS}	2	12.882	7.2312	5.595	8.4213
eta_{nW}	2	5.676	1.9235	0.357	1.3241
β_{LS}	3	5.9	4.351	18.83	8.521
eta_{nW}	3	1.87	1.762	3.94	2.642

Figure 1: Estimates of the function g(T) for the first model. Solid-lines stand for true values and dished-lines for our estimate values.

Figure 2: Estimates of the function g(T) for the second model

Figure 3: Estimates of the function g(T) for the third model

National Health and Nutrition Survey I: epidemiologic follow-up study in USA (NHANES)

- Data: 3,145 women aged 25-50 and interviewed about their nutrition habits and when later examined for evidence of cancer.
- *Y*: saturated fat
- *T*: age
- X: body mass index (BMI), protein and vitamin A and B intakes

National Health and Nutrition Survey I: epidemiologic follow-up study in USA (NHANES)

- Y depends nonlinearly on age but linear upon other dummy variables.
- σ_i^2 is a function of age (case 2)
- XploRe was used
- $\beta_{nW} = (-0.162, 0.317, -0.00002, -0.0047)^{\top}$
- The pattern reaches to the summit at about age 37.

National Health and Nutrition Survey I: epidemiologic follow-up study in USA (NHANES)

Figure 4: NHANES regression of saturated fat on age

Conclusion

- Partially linear models with heteroskedastic variances has been considered;
- Three classes of variance functions and corresponding estimators have been proposed;
- More efficient estimator β_{nW} has been constructed;
- Several simulations have been carried to illustrate our estimators;
- A real data set has been studied;
- Future work: More general variance function???