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Partially Linear Models – PLM

• Engle, et al. (1986), JASA

• Many papers study PLM in theory and their applications in

Economics, Biostatistics and so on.

In theory and applications

• Härdle, Mammen & Müller (1998). East–West German migration

• Liang, Härdle & Werwarz (1999). Income and age in west Germany.

• Schmalensee & Stoker (1999). Household gasoline consumption in

the United States.
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Partially Linear Models – PLM

In theory

• Speckman, P. (1988), JRSSB.

• Green & Silverman, (1991), Book

• Cuzick, J. (1992), JRSSB.

• Robinson, P. (1988), Econometrica.

• Liang, H. & Härdle, W. (2001).

• Hamilton & Troung (1997), Journal of Multivariate Analysis .

Härdle, W., Liang, H. and Gao, J. (2000), Partially Linear Models.

Springer Physica-Verlag.
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Nonparametric Smoothing

Y = X>β + g(T ) + ε

E(Y |T ) = {E(X|T )}>β + g(T )

Y − E(Y |T ) = {X − E(X|T )}>β + ε

• Ê(Y |T )=
∑n

i=1 ωni(T )Yi

• Ê(X|T )=
∑n

i=1 ωni(T )Xi

• “LS” estimator of β: regression of Y − Ê(Y |T ) on X − Ê(X|T ).

Of course, one may estimate nonparametric function by Smoothing

Spline, Piecewise Polynomial, Local Linear, and even Wavelet.
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Nonparametric Smoothing

βLS = (X̃>X̃)−1X̃>Ỹ

X̃> = (X̃1, . . . , X̃n), X̃i = Xi −
n∑

j=1

ωnj(Ti)Xj

Ỹ = (Ỹ1, . . . , Ỹn)>, Ỹi = Yi −
n∑

j=1

ωnj(Ti)Yj

n1/2(βLS − β) L−→ N(0, B−1CB−1)

B = cov{X − E(X|T )} and C = cov
[
ε ∗ {X − E(X|T )}

]
.

Partially Linear Models with Heteroskedastic Variance



PLMHV 7

PLMHV

Yi = X>
i β + g(Ti) + σiei, i = 1, . . . , n,

with

• Case 1. σ2
i = H(Wi), where {Wi; i = 1, . . . , n} are also design

points, which are assumed to be independent of ei and (Xi, Ti) and

defined on [0, 1].

• Case 2. σ2
i = H(Ti), i.e., the variance σ2

i is a function of the

design points Ti.

• Case 3. σ2
i = H{X>

i β + g(Ti)}.
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Estimators

βnW =
( n∑

i=1

γ̂iX̃iX̃
>
i

)−1( kn∑
i=1

γ̂
(2)
i X̃iỸi +

n∑
i=kn+1

γ̂
(1)
i X̃iỸi

)

• kn: the integer part of n/2

• γ̂
(1)
i : estimator of 1/σ2

i based on (X1, T1, Y1), . . . , (Xkn , Tkn , Ykn)

• γ̂
(2)
i : estimator of 1/σ2

i based on

(Xkn+1, Tkn+1, Ykn+1), . . . , (Xn, Tn, Yn),
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One of Main Results

• βnW is an asymptotically normal estimator of β with asymptotic

distribution

N

{
0,

(
E

[
1
σ2

i

cov{X − E(X|T )}
])−1

}

• Estimators of the nonparametric component g(·)

ĝnW (t) =
n∑

i=1

ω∗ni(t)(Ỹi − X̃T
i βnW ),
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One of Main Results

• A consistent estimator for asymptotic variance by a standard

nonparametric regression as follows.

1
n

n∑
i=1

1
γ̂i

Xi −
n∑

j=1

ωnj(Ti)Xj


Xi −

n∑
j=1

ωnj(Ti)Xj


>
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Remarks

• The efficiency bound (Chamberlain, 1992) for partially linear models:

E

(
1
σ2

i

XiX
T
i

∣∣∣∣Ti

)
− E

{
E

(
1
σ2

i

Xi

∣∣∣∣Ti

)
E

(
1
σ2

i

Xi

∣∣∣∣Ti

)>
E−1

(
1
σ2

i

∣∣∣∣Ti

)}

• The covariance of our estimators is identical to the bound of

Chamberlain (1992) if σ2
i does not depend on Ti.

• For general structure, our estimators do not arrive this bound and

new estimators are need
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Simulation with XploRe

Yi = X>
i β + g(Ti) + σiεi, i = 1, . . . , n = 300

• {εi}: N(0, 1)

• {Xi} and {Ti}: ∼uniform[0, 1]

• β = (1, 0.75)>

• g(t) = sin(t)

• Run 500 situations

• Quartic kernel (15/16)(1− u2)2I(|u| ≤ 1)

• Cross-Validation criterion to select bandwidth
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Simulation with XploRe

• Model 1: σ2
i = T 2

i

• Model 2: σ2
i = W 3

i where Wi iid ∼ Uniform[0,1].

• Model 3: σ2
i = a1 exp[a2{X>

i β + g(Ti)}2], (a1, a2) = (1/4, 1/3200).
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Simulation with XploRe

Table 1: Simulation results (×10−3)

β0 = 1 β1 = 0.75

Model Bias MSE Bias MSE

βLS 1 8.696 8.7291 23.401 9.1567

βnW 1 4.230 2.2592 1.93 2.0011

βLS 2 12.882 7.2312 5.595 8.4213

βnW 2 5.676 1.9235 0.357 1.3241

βLS 3 5.9 4.351 18.83 8.521

βnW 3 1.87 1.762 3.94 2.642
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Simulation with XploRe

Figure 1: Estimates of the function g(T ) for the first model. Solid-lines

stand for true values and dished-lines for our estimate values.
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Simulation with XploRe

Figure 2: Estimates of the function g(T ) for the second model
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Simulation with XploRe

Figure 3: Estimates of the function g(T ) for the third model
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National Health and Nutrition Survey I:
epidemiologic follow-up study in USA
(NHANES)

• Data: 3, 145 women aged 25-50 and interviewed about their

nutrition habits and when later examined for evidence of cancer.

• Y : saturated fat

• T : age

• X: body mass index (BMI), protein and vitamin A and B intakes
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National Health and Nutrition Survey I:
epidemiologic follow-up study in USA (NHANES)

• Y depends nonlinearly on age but linear upon other dummy

variables.

• σ2
i is a function of age (case 2)

• XploRe was used

• βnW = (−0.162, 0.317,−0.00002,−0.0047)>

• The pattern reaches to the summit at about age 37.
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National Health and Nutrition Survey I:
epidemiologic follow-up study in USA (NHANES)

Figure 4: NHANES regression of saturated fat on age
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Conclusion

• Partially linear models with heteroskedastic variances has been

considered;

• Three classes of variance functions and corresponding estimators

have been proposed;

• More efficient estimator βnW has been constructed;

• Several simulations have been carried to illustrate our estimators;

• A real data set has been studied;

• Future work: More general variance function???
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