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1. Introduction
Tests of time series models are standard tasks in data analysis.

For nested parametric models there exist a large toolbox.
Goodness of fit tests are designed for this situation.
Comparison with smooth alternatives is natural especially for
financial processes, where many observations are available.
The Empirical Likelihood technique is a versatile tool for such

situations.
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Assume that {(X;,Y;)}, is a strictly stationary time series with
X,,;ERd and Y; € R.

X may be the
Zt — m(Zt_l, “ e 7Zt—d) —|— €¢ (1)
Zy = 04&y
of = wtaZi,
Y, = 77
Xy = Zia

no symmetry of the news impact function E(Y|x) = m(z) is well
known (Engle and Gonzalez-Rivera (1991)). /
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Diffusion models are

widely applied in finance.

S& P 500 with exponential trend
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Daily closing value S(t) of the S&P 500 share index from 31. Dec
1977 to 31. Dec 1997 (n = 5479).

Residual series S(t)/S(t) is modeled as

dZ(t) = B{1 — Z()}dt + v/ Z () dW (t).

dZ(t) = B{1 — Z(t)Ydt +~dW (1).

Goal: Test the parametric form of drift and diffusion functions.
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Discretising the series leads to (X;,Y;) with

Xi = Xia
Yi = Xaugna —Xia

This series is a-mixing and the form of m(x) = a(1 — z) may then

be tested using the empirical likelihood method.

Formula framework:

E(Y|X = z)
o’(x) = Var(Y|X =2)

=
=
[

{my|0 € ©} a parametric model.
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KNe are interested in testing \

Hy:m(x) =mg(x) forallz € S

Hi :m(x) =mg(x) + cnAp(z),

where ¢, — 0, A, (x) are bounded functions.

Semiparametric testing problem:

Horowitz (1997)
Bosq (1998)

Empirical likelihood:

Owen (1988)

\ Hall and La Scala (1990) /
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2. Kernel Estimator and Empirical Likelihood

Let K be a d-dimensional standard kernel.
Kp(u) = h 4K (h )

NW estimator

_ iy Yiln (7 — X;)
D iy K — X5)

smoothed parametric model

’ iz Kn(z — X5)
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Empirical Likelihood (EL)

L{p(z)} = max Hpi(w)

subject to

and

-

h
Compute the EL L{u} for p(z) = m(x) and p(x) = my(x).
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Introduce Lagrange multipliers to obtain

pe) =L owr () viowen] @

n

where

- K (2574) {Yi — p(x)}
1+ AMa)K (5524) {Y; — p(e)}

= 0. (4)

1=1
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The maximum EL is

{ms(z)} = —2log )

-

pl@) =~ Lip(@)}=n""
which is equivalent to
p(r) = m(z)
The log-EL ratio test statistic is
Limg(z)}

— —2log[L{i(x)}n").
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Gemma 1. Under appropriate assumptions,

sup [A(z)| = 0p{(nh®) "2 log(n)}.

~

Denote by v(z) = Op(dy): sup,cg |7(x)] = Op(dn).

Define U;(z) = (nh®)~1 32" | [K (x_hXi> 1Y — m@(ﬂf)}]

Obtain \(z) = Uy ' (2)U; (2) + 6,{(nh?) "' log®(n)}

= (nh)'U5 ' (2)U7 () + 6,{(nh?)~/* log*(n)}.

-

Hmy(z)} = —2log[L{my(z)}n"]
= 2 Zlog[l + A\(2)K (5'3 _hX") {Y; —my(z)}]
= 2(nh")M(@)U1 — (nh)N*(2)Us + 6,{(nh?) ="/ 1og*(n)}

/
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distance between ﬁzé and m.

Hmg(x)} = Uy'UF +6,{(nh?)~/?log’(n)}

-

~

The log EL ratio is asymptotically equivalent to a studentized Lo

— V@ h) () — ()} + Of(nh?) " hlog?(n))

/
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3. Empirical Likelihood Goodness-of-fit Statistic

Choose k,, equally spaced lattice points t1,ta,--- ,tz, in [0, 1]¢.
A simple choice: k,, = (2h)9.
Global goodness-of-fit test:

baling) = > g 1)} 5)
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Theorem 1

-

kb, (m

) = (nhd)/{m(x)‘;(ge(@} da

+0,{k; log®(n) + hlog®(n)}.

Héardle and Mammen (1993):

— nh/? /{m o(2)}2m(x)dx
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Theorem 2
1) & / A2(s

where A is a normal process on S = [0, 1]¢ with mean
E{N(s)} = hd/4An(S)/ Vi(s)

and covariance

f(s)o2(s) Ws? (s, 1)
FOFW) | Jw® (s, w2, 1)

Q(s,t) = Cov{N(s),N(t)} = \/

where

W (s, 1) = / WKL = /WKL )y (©

\_ /
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4. Goodness-of-Fit Test

of [(N?(s)ds as (kyn)~ Z] CN2(t).
Choose k,, = (2h)~% with |t; — tg| > 2h, j # k:

ZN2 3) ™~ Xie, (V)

where i, = h¥/4{3°0" A2(t;)/V (t;)}!/? is the non centrality

parameter.

-

~

Derive the asymptotic distribution of k¢, (74) by discretisation

(7)

/
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Asymptotic normality:

b (1) N(l + 12 / A7 (s)V ! (s)ds, 2K ™) <o>{K<2><o>}—2)

(8)
test for Hy:
b (iig) > 1+ 2o {K)(0)} 7 /2hE @) (0) (9)
asymptotic power:
ol EP(0) ML)V (s)ds
: (I){ } V2EK®(0) } 10
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5. Simulation and Application

Here
X; = Yiq
o(x) = exp(—a?/4)
n ~ Ul=1,1]
n = 500,1000
c, = 0,0.03,0,06
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Figure 1: Power of the empirical likelihood test. The dotted lines
indicate the 5% level.

Trend of decreasing power when h increases. This comes from

discretisation.
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Application to
Hy:m(x) = 6(1 —x)

parametric estimate: B = (0.00968.

The estimator is the mean value of ﬁAl and Bg, where ﬁAl is based on
the marginal distribution of X while Bg is based on the
autocorrelation function of X (Héardle, Kleinow, Korestelev,
Logeay, Platen (2001)). Global smoothing bandwidth was
determined by cross validation: h., = 0.053.
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P-value

p values for S& P 500 data
g_
g_
q-_
o
g_
0.03 0.04 0.05 0.06
bandwidth h

Figure 2: P-values of the empirical likelihood test for the S&P data.
The dotted line indicates the 5% level.
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6. Conclusion

e The proposed test compares the parametric model with a

kernel smoothing estimator.

e The test statistic is based on the asymptotics of the empirical
likelihood.

e Its asymptotic distribution is known which avoids bootstrap

and secondary plug-in estimation.

e The null hypothesis of a diffusion process with drift
m(z) = a(l — x) is not rejected for the normalized S&P 500
data.
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